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ROBUSTNESS PROPERTIES OF NONLINEAR PROCESS CONTROL
AND IMPLICATIONS FOR THE DESIGN AND CONTROL OF A
PACKED BED REACTOR

Francis J. Doyle III

Abstract

The robustness properties of nonlinear process control are studied with particular
emphasis on applications to the design and control of a catalytic fixed bed reactor.

Analysis tools are developed to determine the stability and performance of nonlin-
ear dynamical systems. The results are based upon new extensions of the structured
singular value to a class of nonlinear and time-varying systems. Conic sectors are uti-
lized in approximating the static nonlinearities present and an algorithm is developed
for optimal conic sector calculation.

The synthesis tools of differential geometry are studied with respect to their closed
loop robust performance properties. New results in approximate linearization are con-
trasted with exact linearization and linear control. It is shown that the approximate
linearization technique is superior with respect to disturbance handling, optimization
of the resultant transformations, and range of applicability.

Nonlinear approaches for the control of a packed bed reactor are investigated. In
particular, the differential geometric technique of input-output linearization is found
to yield superior closed-loop performance over regions of open-loop parametric sensi-
tivity. The synthesis of a linearizing controller for this nonlinear distributed parameter
system involves a two-tier approach. In the first stage, a low order nonlinear model

is developed for the reactor. This is accomplished by treating the active transport
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mechanisms in the bed as a nonlinear wave which propagates through the bed in
response to changes in the operating conditions. The resultant lumped parameter
model facilitates the design of the input-output linearizing controller in the second
tier of this scheme. The implementational hurdles for this approach are identified and
comparisons are drawn on the strengths of this approach over robust linear control
for the reactor.

Practical guidelines are developed for the design of packed bed reactors. The
criteria result from requirements on the radial temperature profile, temperature sen-
sitivity, and acceptable pressure drop. The stabilizing effects of feedback control for
industrial fixed bed catalytic reactors are addressed. Simulations support the result
that violation of the proposed criteria leads to unacceptable closed-loop performance.

In conclusion, general guidelines are constructed from a series of case studies on
the proper selection of linear versus “linearizing” control. The relative performance is
measured by the region of attraction, magnitude of manipulated variable action, and
sensitivity to input disturbances. The work represents the first objective evaluation of

the strengths and limitations of input-output linearization compared to linear control.
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Nomenclature

Area [L]

Biot Number %ﬁ?—

Cone Center

Specific Heat [%]

Concentration

Tube Diameter [L]

Activation Energy [-Mt-fi]

Flow Rate [-“;4—]

Superficial Mass Flow Velocity [4£]

Specific Enthalpy [%]

Heat Transfer Coefficient [t%%]

Normalized Heat Transfer Coefficient %4 [FAT{Z]
Rate Constant

Effective Thermal Conductivity [%TL

Radial Thermal Conductivity [%%
Reactor Length [L]

Reaction Order

Cpcoko
Pressure [{%]
Prandtl Number sz’m
Feed Stream Flow Rate
Reaction Rate
Gas Constant or Dilution/Recycle Factor or Cone Radius
Reynolds Number %’-
é—gﬂ or Cone Radius
Temperature [T]
Time [t]
Heat Transfer Coefficient
Manipulated Variable
Space Velocity [2£]
Volume [L3]
Fractional Conversion or Dimensionless Temperature

33

A

33
<

A

oS

Cas
System OQutput or Dimensionless Concentration

Difference
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Subscripts

ad

eff
€q

mazx
min

-

Superscripts

Abbreviations

AL
DPS
GSL
IOL
LMLC

Fractional Void Space
E

rTw

Flow Coeflicient for Heat Transfer
Purity of i

Viscosity [#]

Catalyst Particle Shape Factor
Density [#]

ey

Residence Time, Time Lag [t]

Initial or Nominal
Adiabatic
Bulk
Coolant
Effective
Equilibrium
Fluid
Maximum
Minimum
Particle
Radial

Wall

Solid
Deviation Variable
Approximate

Approximate Linearization
Distributed Parameter System
Global State Linearization
Input-Output Linearization
Linear Model, Linear Control



LPS
MP

NMP
NLMLC
NLMNLC
QAL

TI

TV

xi

Lumped Parameter System
Minimum Phase

Nonminimum Phase

Nonlinear Model, Linear Control
Nonlinear Model, Nonlinear Control
Quadratic Approximate Linearization
Time-Invariant

Time-Varying
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Chapter 1

Introduction

Chemical reaction systems display a rich array of nonlinear dynamical behavior, from
simple stability, bifurcations, limit cycles, chaos, to pathological instability. In con-
trast, the tools of feedback control theory, which have been used for the regulation
of these systems, have primarily been restricted to linear methods. The objective of
this thesis is the development of practical tools for the study of nonlinear dynamical
systems from which an effective and objective analysis on the merits of nonlinear

control can be accomplished.

1.1 Motivation

1.1.1 Nonlinear Process Control

Chemical process systems are inherently nonlinear. Indeed, no real physical system

conforms to precisely linear dynamical behavior. This idea was expressed, perhaps,

most eloquently by the physicist Enrico Fermi:

“It does not say in the Bible that all the laws of nature are expressible
linearly!” [35]

There are a number of well-known mechanisms which contribute to the nonlinear

behavior observed in process systems:



e Reaction Kinetics - Rate expressions for chemical reactors often have a poly-
nomial or fractional dependence on the concentration of the reacting species.
The dependence of reaction rates on temperature is usually exponential, in ac-
cordance with the Arrhenius law. These expressions are further complicated in

heterogeneous systems with catalytic rate mechanisms.

e Thermodynamics - The equilibrium relationships in multiphase, multicom-
ponent systems are highly nonlinear. This is manifested, for example, in the

relative volatility of two species in a distillation column.

e Transport Phenomena - The nonlinear nature of the equations of continuity,
motion, and energy is clearly manifested in the dependence of such parameters
as the mass transfer coefficient, drag coefficient, and heat transfer coefficient on

the flow rate (Reynolds number).

Control approaches for these processes have relied primarily on linear designs
which are based upon first-order approximations of the actual physical systems. These
approaches are inherently conservative as performance is sacrificed in order to guar-
antee stability for a much larger class of models than merely the single first-order
approximation. This tradeoff is characterized in the “robustness” of the controller
[67] and reflects the fact that the simple linear model is an inaccurate description of
the true system.

Clearly, more accurate models are required; furthermore, more efficient utilization
of these models in the control synthesis is demanded. A logical progression involves
the incorporation of well characterized system nonlinearities into the control algo-
rithm, yielding a nonlinear controller. A promising approach for such a technique is
provided in the area of differential geometry. These approaches will be reviewed in
the subsequent chapters and, using the new tools presented in this thesis, an objective

evaluation of their applicability to practical industrial process systems is carried out.



It is emphasized that these approaches represent an alternative to traditional linear
methods, and not an absolute complement to these methods as the word nonlinear

might imply. This distinction has been pointed out in other contexts:

The mathematician Stanislaw remarked that to call the study
... “nonlinear science” was like calling zoology “the study of nonelephant
animals.” [35]

These nonlinear methods of feedback linearization must be considered as a com-

petitive approach to linear control. An objective comparison of the two is carried out

in this thesis.

1.1.2 Packed Bed Reactor

The packed bed reactor is a key unit operation in the chemical process industry. It is
characterized by highly nonlinear, heterogeneous kinetics and its distributed nature
leads to an (ideal) model consisting of partial differential equations. Its utility as a
target application for the present work is evident.

A primary shortcoming of many previous studies in nonlinear process control is the
limit of scope to primarily theoretical and academic issues. In the area of differential
geometric control methods, the emphasis in research has been on very simple reaction
systems for which low-order, lumped parameter models were readily derived. The
value of such studies is important to the advancement of nonlinear control theory.
However, their ultimate practical utility to the chemical process industry is limited.
To date, only one industrial application of such techniques has been reported [58].

The packed bed reactor represents a practically useful system, although its ideal
model does not readily admit solutions for feedback linearization. This has prompted,
in the present work, the development of appropriate models which both accurately
describe the complicated fixed bed dynamics and are suitable for the application of

feedback linearizing control. This approach to deriving a reduced-order nonlinear



model for the packed bed reactor represents an attractive technique for modeling a
variety of process systems. Thus, the reactor case study serves as a demonstration of
a general technique for robust nonlinear model-based control design.

The industrial utility of the packed bed reactor does not sufficiently justify the
practical value of theoretical studies on reactor design and control. As in the case of
nonlinear control, there have been a number of very useful academic studies which
have served to further the theoretical understanding of reactor fundamentals. How-
ever, some of the key practical issues have often been overlooked, thus limiting their
overall value. Among these considerations are the multitubular variations in the reac-
tor and the limited set of measurements available for control purposes. This present
study addresses these issues and provides useful guidelines for the design and control

of packed bed reactors.

1.2 Previous Work

1.2.1 Nonlinear Control Theory

Early work in nonlinear control theory was primarily limited to analysis results dating
from the work of Lyapunov [60] on the stability of autonomous differential equations.
The key results for closed-loop systems are largely attributed to Zames [95] and
Popov [77] in which they addressed the stability of linear dynamical systems which
are perturbed by memoryless, norm-bounded, nonlinear perturbations. The question
of model/plant mismatch was addressed by Doyle [18] in a similar framework in which
model uncertainty is formulated as a structured, norm-bounded, linear perturbation
on a nominal model. The present work addresses nonlinear systems in this same
framework using the Small Gain Theorem developed by Zames [95] and extensions of
the structured singular value. The result is a conservative bound on the attainable
performance levels in a system.

Outside the area of differential geometry, nonlinear control synthesis research pro-



ceeded as a natural extension of several successful linear approaches. Economou and
Morari [26] extend the linear design approach of Internal Model Control to the nonlin-
ear setting. They present a numerical algorithm for calculating the inverse operator
of a nonlinear plant which is used in the control law. Nonlinear Model Predictive
Control is another approach which extends the ideas of linear Model Predictive Con-
trol to the case of a nonlinear plant [9]. A nonlinear optimization problem is set
up in the time domain to calculate the value of the control action which minimizes
the performance objective over a time horizon. However, global convergence of the
‘nonlinear optimization is not guaranteed and rigorous performance/stability results
are not available.

The nonlinear synthesis problem in differential geometry dates back to the work by
Poincare [76] in which he studied the problem of transforming an autonomous nonlin-
ear system by a change of coordinates into a simpler or normal form. The first rigorous
results for controlled systems are mainly attributed to Hunt, Su and Meyer [43] who
showed the equivalence of a nonlinear system and a linear controllable system through
state transformations and nonlinear feedback. A similar result by Krener [56] showed
how the work of Poincare could be used to calculate an approximate linearization.
By allowing higher order remainder terms in the transformed system, the restrictions
on problems which admit a solution are somewhat relaxed. One shortcoming of both
state linearization approaches is the fact that the “linearized” portion of the original
system is the state dynamics and not the input-output mapping. This was addressed
by Kravaris [52] who showed that a linear input-output linearizing controller could be
derived for a nonlinear system by calculating a realization of the system inverse. The
restriction imposed is that the original system is invertible (minimum phase). An
approximate approach for input-output linearization has recently been introduced by
Hauser [39]. As with Krener’s approach, a relaxed set of requirements on the trans-

formed system allows the treatment of a much larger set of problems. The appeal to



these control approaches is that differential geometry provides tools which are natural
extensions of the linear algebraic tools used in optimal linear control.

The pioneer work by Hunt, Su, and Meyer [43] paved the way for application
studies in the areas of robotics, aircraft control, biomedical engineering, and process
control (see [44], [54], [83] and references contained therein). The process control
applications have been largely limited to simple lumped parameter systems such as
flow control in a tank or a continuous stirred tank reactor. In addition, with the
exception of severely restrictive matching condition methods [12], [55], there has
been minimal work done to address the robustness properties of these closed-loop
systems. A third weakness of the application work for process systems is the lack of
an objective evaluation of the strengths of these approaches over traditional linear
approaches. The present work addresses these concerns by the definition of meaningful
robust performance objectives and through application studies on a complex process

system.

1.2.2 Packed Bed Reactor

The design and control of packed bed reactors have been the subjects of a number of
theoretical and experimental studies. A comprehensive survey of the academic and
industrial efforts in these areas is provided in [46].

Packed bed reactor modeling approaches for control studies have relied on approx-
imating the distributed parameter system by a set of ordinary differential equations.
Typical approaches to this problem have included the techniques of orthogonal col-
location and finite differences. The drawback to this approach is the relatively large
number of dynamic variables which result. In particular, the differential geomet-
ric approaches described above require models of size less than about 10 ordinary
differential equations or the resulting Lie Algebraic calculations are intractable.

An alternative approach for low-order modeling of distributed parameter systems



was put forth by Gilles and co-workers in the early 1980s [32], [33], [34]. This approach
involved the modeling of concentration and temperature profiles as nonlinear waves
which propagate through the medium in response to changes in operating conditions.
The intuitive appeal to this approach is the identification of a small set (typically
2 to 6) of key dynamical variables for the system resulting in low-order lumped pa-
rameter models. A survey of these techniques was recently published [67] in which a
broad range of chemical engineering applications were discussed. This so-called wave
propagation approach was modified for use in the present study.

Theoretical studies on packed bed reactor stability have focused on describing con-
ditions of parametric sensitivity where small perturbations in the operating conditions
lead to huge excursions in the reactor temperature [68], [69], [70], [78], [89]. These
studies involved the formulation of differential sensitivities for describing conditions
of runaway behavior. Experimental validation of these results has been published
in (8], [30]. However, the direct implications of this sensitivity theory for practical
reactor design are not apparent.

The stabilization of sensitive reactor behavior can be accomplished in a CSTR
by application of simple proportional feedback control [4]. Theoretically, the same
stabilization theory can be invoked for a packed bed reactor and safe closed-loop
operation can be attained in a region of open-loop sensitivity (see, e.g., [80]). A
number of experimental studies have also focused on the stabilizing effects of feedback
control in a single tube reactor [38], [41], [64], [85]. However, these studies have
largely ignored some of the key industrial issues such as multitubular variations and

availability of measurement signals for control purposes.

1.3 Thesis Overview

In chapter 2, a novel condition for nonlinear robust performance is presented. The ap-

proach utilizes new extensions of the structured singular value and conic sector bounds



of nonlinear operators to result in an upper bound for the attainable performance level
in a nonlinear system. The approach is demonstrated through application to a con-
tinuous stirred tank reactor. The resulting tools provide a systematic approach to the
calculation of stability and performance properties for a general nonlinear system.

In chapter 3, the differential geometric techniques of exact and approximate state
linearization are studied as candidate approaches for chemical reactor control. The
approaches are compared with respect to disturbance handling, optimization of the
resultant nonlinear transformations, and the restrictions on application. It is shown
that the relaxed restrictions and type of coordinate transformation for approximate
linearization results in superior performance. These ideas are demonstrated through
simulations involving two non-involutive reaction systems. The tools of chapter 2 are
employed in calculating robust performance properties for two additional reaction
systems under closed-loop approximate linearization and linear control.

In chapter 4, a nonlinear controller is derived for a packed bed reactor. The
approach involves two steps: (i) first the development of a reduced-order nonlinear
model, and (ii) the synthesis of an input-output linearizing feedback controller. In ad-
dition, the implementational issues for the “linearizing” controller are addressed. The
resulting scheme is compared to standard linear approaches for packed bed reactor
control. This work represents the first application of differential geometric techniques
to packed bed reactor control.

In chapter 5, simple guidelines are presented for the design of industrial packed bed
reactors. Requirements on the radial temperature profile, temperature sensitivity, and
pressure drop are translated into criteria involving the practical design parameters of
length and diameter. The stabilizing effect of feedback control for practical packed bed
reactors is addressed. It is demonstrated by simulation that violation of the proposed
criteria leads to unacceptable closed-loop performance in an industrial reactor.

In chapter 6, an objective comparison of nonlinear “linearizing” versus linear con-



trol is presented. A series of case studies involving physical and some purely mathe-
matical systems reveals the strengths and limitations of the novel design technique of
input-output linearization. Consideration is given to region of attraction, penalties on
the actuator movement, and sensitivity to input disturbances. The work represents
the first objective evaluation of these “linearizing” techniques and suggests guidelines
for the judicious selection of “linearizing” over linear control.

A summary of the contributions of this thesis and recommendations for further
work are presented in chapter 7.

Appendix A contains a discussion of ¢!-optimal control as an alternative to the
H, formulation for structured uncertainty analysis. Comments on the relative merits
of the two approaches are made in the context of the present work.

Appendix B contains data from the Caltech methanation reactor which is used to

fit the wave-propagation model introduced in chapter 4 to an actual system.
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Chapter 2

Tools for Nonlinear Analysis - Motivated
by CSTR Example

Abstract

A design methodology is presented for the analysis and synthesis of robust linear con-
trollers for a nonlinear continuous stirred tank reactor. Operating regions are defined
in the phase plane in which the maintenance of robust stability and the achievement of
robust performance levels are guaranteed. The results are based upon new extensions
of the structured singular value theory to a class of nonlinear and time-varying sys-
tems. Comparisons are drawn between these results and previous Lyapunov-function
approaches to stability analysis, and extensions are proposed for the application of
this methodology to more complex schemes. This chapter provides insight into a
novel condition for nonlinear robust performance and the first application of recent

advances in control theory to a chemical process.

2.1 Introduction

Chemical reactor stability analysis can be traced back to the classic three-part treatise
by Aris [4,5,6] in which a systematic study of the complex behavior exhibited by a well-
agitated continuous reactor was undertaken. They utilized the concept of linearization
to evaluate the merits of various control schemes in stabilizing the open-loop system.

The present work is also concerned with the stabilization of regions in the phase
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plane. A nonlinear approach is proposed, however.

There has been considerable interest in nonlinear control theory over the past
decade, particularly in the area of process control. This can be partially attributed
to the inherently nonlinear nature of chemical processes. The complex dynamics
which can evolve from these systems are revealed in the simple example of a single
first-order reaction carried out in a stirred tank. This system is known to exhibit
bifurcations to multiple steady states and periodic limit cycles [86]. Traditionally,
linear methods have been used to design controllers for these nonlinear processes.
The control schemes which were proposed include “conservative” linear controllers
and linear controllers with gain schedules. These methods are based on a first-order
approximation of the actual system at a single point and a discrete set of operating
points, respectively. Consequently, these techniques cannot account for large per-
turbations or operation away from the steady state operating curve. In addition,
linear model-based techniques have been used in the analysis of control schemes for
such processes. Robustness properties have been calculated with respect to linear
perturbations acting on a nominal linear model.

In recent years, various design methods have been proposed which utilize more
accurate nonlinear models. A precise treatment of model nonlinearities has emerged
with the new differential geometric techniques of linearization [44]. These meth-
ods have been applied to the aforementioned CSTR problem to obtain exact state
linearization [42], exact input/output linearization [55], and state linearization with
disturbance rejection [13]. The controller synthesis involves two steps: first, a state
feedback transformation to a new coordinate system in which the transformed vari-
ables exhibit linear dynamics; and second, a controller design for the resultant lin-
ear system. The major shortcoming of these techniques is their lack of robustness
guarantees; in particular, robust performance, that is the maintenance of desired per-

formance levels in the face of model uncertainty, cannot be assured. In fact, even
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nominal performance cannot be assessed quantitatively for these schemes.

For the case of linear model-plant mismatch, i.e., linear model with linear time-
invariant perturbation, model uncertainty has been handled most efficiently by the
structured singular value (SSV) approach [19]. Using this method, necessary and
sufficient conditions are calculated which guarantee stability and performance levels
for the perturbed nominal system. This technique has been applied to a complex
chemical reactor model [61]. New advances in SSV theory [71] allow the application
of the results to a class of time-varying and nonlinear models. These models include
the class of dynamical systems with cone-bounded nonlinearities. The focus of the
present work is the application of this new technique to the calculation of margins of
robust stability and robust performance for a nonlinear CSTR model.

The treatment of the reactor problem in this work parallels the approach of linear
optimal control theory in as much as a systematic procedure is outlined for the design

of robust control systems. The design approach will entail the following steps:

(i) identification of system variables (inputs, outputs, manipulated variables);
(ii) selection of overall control objectives;

(iii) modeling of the nonlinear system, in particular, formulation in the general

framework for SSV treatment;

(iv) synthesis and/or analysis of a controller using nonlinear SSV.

The objective of this chapter is the presentation of a systematic design procedure
for nonlinear systems which guarantees the achievement of stability and performance
levels over a wide operating range. With the exception of a conference paper by
Smith and Doyle [84], there have been no published accounts of the application of
these advances to practical control systems. Although the treatment will be developed

for the generic class of systems with cone-bounded nonlinearities, it will be motivated
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by the specific application to a first order exothermic reaction carried out in a CSTR.
A short description of the reactor problem is given in section 2.2. In section 2.3, the
structured singular value is re-introduced and the recent developments for nonlinear
perturbations are reviewed. The controller design methodology is outlined in section
2.4, with the CSTR problem serving as a case study. A discussion of actual simulations
and performance characteristics for the controlled CSTR can be found in section 2.5.

The further potential of this method is discussed in the concluding section.

2.2 The CSTR Problem Formulation

2.2.1 The Physical System

The mass and energy balances for a CSTR with first order, irreversible, exothermic

kinetics (A — B) are given by [86]:

dacC
—dt_A = %(CAF — C4) = koCye™Be/RT (21)
dT _ Qf kOCA —quRT UAh

This simple model has two state variables (reactant concentration, reactor temper-
ature) and one manipulated variable (cooling water temperature). Various control
objectives are possible, with the reactant concentration being a likely candidate for
regulation. In addition, it is possible to consider perturbations in the feed temper-
ature as an unmeasured disturbance entering the second state equation. Using the

dimensionless quantities defined in Table 2.1, the normalized model is given by:

& = —z1 + Da(l — ml)el+:27" " (2.3)
&3 = —z9 + BDa(l — a:l)el+:27*f - B(zz —z) + Pu+d (2.4)

The pertinent dynamical information for the open-loop reactor can be summa-
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I Table 2.1 Dimensionless Variables for CSTR Model |

T3 (Cas —Ca)/Ca
T (T =T%)/Try

(Tey = T5)/Try
(Ty =T4)/Thy
(Tc - Tco)/Tfo7
vaf'koe-q
“AHCAf/CPTf07
UAL/Q;C,
Ea/RTy,

B LN ERE

rized in a phase plot with axes representing the two state variables. Two plots are
particularly insightful for this analysis: first, a phase portrait for the uncontrolled
system; and second, a plot of the stable and unstable portions of the operating curve
for fixed values of the manipulated variable. Two example plots for a particularly
pathological set of parameter values (B = 22.0,3 = 3.0, Da = 0.082,7 — oo, u = 0)
are shown in Figures 2.1 and 2.2. In this case the uncontrolled system has three

steady states (one stable, two unstable) and an-attracting limit cycle.

2.2.2 Previous CSTR Nonlinear Control Approaches

Recent advances in differential geometry have led to a number of useful, so-called
“linearization” techniques which have been applied to CSTR control. One approach
[43] involves coordinate transformations on the state and input variables to trans-
form the nonlinear system to a controllable linear system. Another approach [52]
utilizes an input transformation by state feedback to obtain, in the new coordinates,
a linear input/output map. These ambitious approaches suffer from a number of
weaknesses. The class of systems which yield solutions to state linearization is lim-
ited to involutive systems and input/output linearization requires minimum phase

systems. Typical chemical reactor problems violate one or the other of these con-



15

10
8 - .
§ . Limit Cycle
- .
E' .
g 6+
Q -
= - Unstable Fixed
5 9 Points
¥ 4] StableFixed
2 1 Point
g ]
-
2 g2 4
o L] L4 L] ¥ l L) L] 1] 1] ' L] LB L] L J I — L] L 1] 1 l L L L] L] ]
0 02 0.4 0.6 0.8 1.0

Dimensionless Concentration

Figure 2.1. Phase Portrait

ditions [54]. In addition, these methods require a knowledge of the state variables,
information which is not always available. This requirement is difficult to meet with
an observer since there is no separation principle to guarantee stability for the com-
bined controller-observer nonlinear system. In [13], additional shortcomings of these
methods are outlined with respect to disturbance handling, constraints and modeling
errors. They propose an IMC-based method for handling the first two problems.

A major weakness of the aforementioned techniques is the lack of robust per-
formance guarantees. There are a few results, using numerical Lyapunov functions,
which guarantee robust stability for certain unmodeled dynamics [55]. However, work
has been done which suggests that these linearization techniques can be very sensitive

to model error [2]. Furthermore, due to the “pseudo” transformed variables, it is not
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a straightforward procedure to specify traditional performance criteria on the input,
output, and state variables for a given problem.

The results presented in this chapter provide a complementary approach to the
previous CSTR nonlinear control techniques by outlining a new technique for ana-
lyzing the robustness properties of nonlinear systems. The present work focuses on
fairly simple linear controllers but the theory is sufficiently general as to include a
wide variety of nonlinear plants and nonlinear controllers. The strength of these new
methods is the development of a technique, albeit sufficient, for the evaluation of

performance for uncertain nonlinear systems.
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2.3 Structured Singular Value Concepts

2.3.1 The General Framework

We will employ a general dynamical system description which establishes the rela-
tionship between the inputs, states and outputs. Elements which may comprise the
system include a nominal plant, a feedback controller, and an uncertainty block. The
latter element is used to represent a family of plants which can be arrived at by per-
turbing the nominal plant. The input v represents setpoints, disturbances and noise,
the output e represents error signals. In this framework, the control analysis problem
focuses on two key questions: first, is the system stable for all perturbations in some
prescribed set (robust stability); and second, does the error e remain in a desired
bounded set for all perturbations and inputs in some appropriate sets (robust per-
formance). We will develop a general framework within which conditions for robust
stability and robust performance can be expressed mathematically.

The usual Euclidean norm or 2-norm will be used to calculate the norm of vec-
tors in C" or R™. For vector signals e(t) this norm is defined to be: |le(2)||* =

I2% €T (t)e(t)dt. The operator norm induced by the 2-norm is:

G .
sup L2 _ sup 5(G(jw)) 211611 (2.5)
R

where £, is the space of functions with bounded 2-norm.
An understanding of uncertainty descriptions can be gained by considering the
nominal time-invariant, linear system G(s):

z = Az + Bv
(2.6)

e = Cz+ Dv
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This systeﬁl leads to a state-space realization which can be defined by the matrix W:

(=0 2) ()= an

It can be seen from Figure 2.3 that G(s) can be obtained by closing the top loop on
W with an integrator block s~!, leading to the linear fractional transformation (LFT)

for the transfer function:
1 1 1.,
e =G(s)v = F,(W, ;)v =[D+ C’;(I - A;) Blv (2.8)

where the subscript u refers to the fact that the upper loop has been closed. For this
example, the stability of G(s) depends obviously on the invertibility of (sI — A), or
equivalently, on the location of the eigenvalues of A.

As an illustration of this general description, consider a structured perturbation

on the nominal system leading to a new transfer function Ga(s) defined by:

T = (A + Z?:l 5,'Ai)$ + Bv
e = Cr+Dv

(2.9)

Here, the scalar parameters §; represent the uncertainty for this system. Again, an

LFT can be constructed for this perturbed system with an appropriate state-space
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matrix Wy:
A A+ Z:-c:l 6A; B
o D
From the block diagram in Figure 2.4, the perturbed LFT is given by:
1
e = F,(Wa, ;)v (2.11)

It is desirable to isolate the uncertainty elements from the overall transfer function
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Ga. Stepwise, this proceeds as illustrated in Figure 2.4. First, the matrix W) is
rewritten as a feedback connection of a matrix N and an uncertainty block A. The
matrix NNV is an algebraic function of the elements of W, but is independent of the
uncertainty elements ;. The block A is composed of k diagonal scalar-times-identity
blocks with dimensions equal to the rank of the A; matrices. For example, if all the

A; have full rank then

(A B I I .. I)
C D 0 0 0
A, 0 0
N = (2.12)
Ay 0 0
\4; 0 0 0 0)

The structure of the uncertainty block is a key feature of this representation and
will be exploited in the following sections. Note that in general, the uncertainty block

will be a linear operator in the set

A := {diag[b11r,,...,0m L, A1, ..., A0]} (2.13)

where depending on the problem the 6;, A; will be restricted to certain classes. We

define the bounded subset:

BA := {A € Al5(A) <1} (2.14)

Note that the LFT representation for W) is given by

Wa = Fy(N,A) (2.15)
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where £ refers to the fact that the lower loop is closed. Finally, a general LFT for

Ga(s) can be given by:
1
Ga(s) = Ful(Fu(N, =), 8) (2.16)

and defining M2F, (N, 1) (see Figure 2.4):
GA(S) = Fg(M, A) (217)

' v
Thus, the so-called “M — A structure” is constructed. This mapping from ( ) to
w

e
( ) can be appropriately partitioned:

z
€ My My v

= (2.18)
z Mgl M22 w
Thus, for w = Az, the general LFT for G, is given by:

Fy(M, A2 My + My AT — My A)™' My, (2.19)

The previously mentioned concepts of robust stability and robust performance can
be defined in this LFT framework. Robust stability requires that F,(M,A) remain
stable for all A € BA. Robust performance requires that a norm bound on the
mapping from input v to output e is met for all perturbations.

Filters can be designed which “shape” the input signal class into the expected set
of inputs, and similarly weight the outputs (by frequency) according to the specified
performance criteria. All of these “performance and uncertainty weights” are usually
absorbed into the structure M. Then the appropriate robust performance condition
is:

|F(M,A)]|lo <1 V A€BA (2.20)
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Figure 2.5. Well-posedness Loop

2.3.2 Benefit of Constant D Scalings

Considering the system in Figure 2.4, it is clear that the input-output system is
well-posed if and only if the (I — M2;A) term in Equation 2.19 is invertible and the
perturbed system is stable if the operator (I — My;A)~! is stable. The term “well-
posed” indicates that for each input v there are unique vectors w, z and e which satisfy
the closed-loop equations. M describes the nominal closed-loop system; therefore we
will assume that M is stable. The robust stability condition can be reformulated by
considering the loop in Figure 2.5. An application of the small gain theorem then

gives a sufficient condition for stability [95]:
1
supd(Mz) <y (y>0) VAe ;BA (2.21)

where 2BA is the subset of A with 5(A) < 1.

Consider the class of matrices, D, which commute with the perturbation block A.
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Table 2.2 Commuting D — A Pairs |

[ Teble2: Pairs
I Uncertainty (A) I 1ﬁ 15031518‘(1)) _ ﬁ___l

T1, full block, complex Frequency-varying, scalar-times-identity |
T1, scalar-times-identity, complex Frequency-varying, full block
TV, full block, complex Constant, scalar-times-identity
| TV, scalar-times-identity, complex Constant, full block

Definition 2.1 If D and A commute, then by definition

DAD™'= A (2.22)

A listing of appropriate D,A commuting pairs is given in Table 2.2.

If Equation 2.22 holds, then for any operator My,, the two diagrams in Figure 2.6
are equivalent to each other and to the structure in Figure 2.5.
Now, application of the Small Gain Theorem to Figure 2.6 guarantees the stability

of the loop for all stable and time-varying A which also satisfy:

1

7(A) < 2.23
& < Dbl 22

This equation shows that conservatism can be minimized by considering
jnf |DMz D |oo (2.24)

where D defines an appropriate commuting set for the A in Equation 2.13:
D= {diag[Ds, ..., Dm,di ]k, ..., duls,]|Di € CT*" is invertible, d; # 0}  (2.25)

The D scale which achieves or gets arbitrarily close to the infimum in Equa-

‘tion 2.24 is referred to as the optimal D scale since it maximizes the bound that can
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ﬁ 22

Figure 2.6. Equivalent Scaled Loops for Robust Stability
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—

Figure 2.7. D Scalings for Robust Performance

be obtained with this method.

Given these D scales, it is possible to formulate a less conservative condition for

robust stability than that proposed in the previous subsection.

Theorem 2.1 (Robust Stability; Time-Varying, Complez A)
The system Fy(M,A) is stable for all time-varying A € BA if

inf sup G(DMyxpD™) < 1 (2.26)

where D is appropriately constructed as in Table 2.2.
Proof 2.1 Follows directly from Small Gain Theorem [95].

The details for deriving the robust performance criterion can be seen by examining

Figure 2.7. Absorbing the D scales into the M block yields the transformed matrix:

I 0 M, My, I 0
(2.27)
0 D My, My 0 D!

Just as for robust stability, a less conservative condition then Equation 2.20 can ‘be

derived for robust performance:

Theorem 2.2 (Robust Performance; Time-Varying, Complez A )
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Fy(M, A) is stable and ||Fy(M,A)||lo <1 VA € BA if

I 0 I 0
inf sup & [( ) M ( )} =<1 (2.28)
b w 0 D 0 D!

where D is appropriately constructed as in Table 2.2

Proof 2.2 The condition of the theorem implies (see Figure 2.7): ||z + |le|]® <
B (Ivll? + llw|[?). Furthermore, from Equation 2.22 and 5(A) < 1: ||z|2 > |jwl?.
Thus |le||* < B2||v][* and [|[Fy(M,A)]le < 1

In order to use Theorems 2.1 and 2.2, a procedure has to be found for finding the
optimal D’s which are required on the LHS of the inequalities 2.26 and 2.28. The

following two sections establish an equivalent minimization problem which is easier

to solve.

2.3.3 Connection to Lyapunov Approach

The following section outlines the robust stability and robust performance results in
the time domain. The motivation for this analysis is twofold: first, the usual Lyapunov
results for stability can be clearly represented in the time domain; and second, the
actual calculations involved for the scaled singular values are computationally more
attractive in the time domain.

In order to provide a clear exposition, the calculations will be carried out for
discrete systems. In the z-domain, the robustness results are considerably simpler
than the corresponding results in the Laplace domain. The equivalence of these results
can be demonstrated by constructing a norm-preserving bilinear transformation which
maps the unit disk to the right half plane. For example, consider the transfer function

which has the continuous realization (A4, B, C, D). Its equivalent discrete realization
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is given by
A B ((I+A)(I—A)‘1 V2(I - A)'B ) 229
. =~ = 2.29
C D V2C(I- A D+C(I-A"'B
where the transformation s = (1 — z)/(1 + z) is used.
Consider the linear difference equation
Ter = Fo(N, Az, (2.30)

where z, € C*, N € C(»+m)x(n+m) and for each k, Ak i1s an element of the prescribed
uncertainty set A. The stability of this system for a prescribed set of A is to be

investigated. The assumptions on A; are:
i) 3(Ax) <1
ii) Ay varies with k

The time-varying nature of A invalidates spectral radius arguments which do not

guarantee that z; decreases for all k. However, the following sufficient condition does

yield exponential stability:
Jmax, F(F(N,Ar)) <1 (2.31)

This condition guarantees that the operator Fy(N,A;) is a contraction. This con-
servative result can be strengthened by searching for a single quadratic Lyapunov
function, z* Pz, for the entire set of operators contained in {F,(N,A;)|Ax € BA}.

A necessary and sufficient condition for the existence of such a function is given by:

max G(TFy(N,A)T™) <1 for some T € C™*™, invertible (2.32)

ArEB
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This result is equivalent to the usual discrete Lyapunov matrix equation
F*PF - P < -Q @ positive definite (2.33)

where F = Fy(N, Ag). In other words, P = T*T is a suitable Lyapunov function and
equivalently, given P satisfying Equation 2.33, then T = P73 satisfies Equation 2.32.

Equation 2.32 can be rewritten as:

max &(Fu(N7,Ar)) <1 for some T € C**™, invertible (2.34)

Are
A [T O\ (Nu N\ (T 0 )
Nr= . . (2.35)
0 I Nyy Ny 0 I

By comparing Equations 2.26 and 2.35, it is clear that the Lyapunov approach

where

involves a type of scaling not unlike the optimal D scales. In this case, the “scaling”
consists of a coordinate transformation T on the state variable. It is possible to
reformulate Equation 2.34 by incorporating the appropriate D scales in Figure 2.8.

Now, a sufficient condition for the existence of a Lyapunov function is given by

T 0\ [Ny N\ (T 0
inf & . . =0<1 (2.36)
T:Da 0 D, N1 No, 0 D7 !

where D; commutes with Ay and T € C™*", invertible. To see this, note that

Equation 2.36 implies
Zrsal® + Nl2l® < B2 (I1Z€]? + lwe?) (2.37)

(where the ~ denotes the transformed states). The restriction on A implies that
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Figure 2.8. Equivalent Scaled and Transformed Loops for Robust Stability
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|lwe]| < ||2]|- Combining these facts we obtain:
IZeaall® < 8%l (2-38)

But this is exactly what we are trying to obtain in Equation 2.32. This proves the
sufficiency direction. For a limited, special class of uncertainties, Equation 2.36 is
also necessary for the existence of a single quadratic Lyapunov function [71]. For
readers familiar with structured singular value theory, this class constitutes precisely
those problems for which the structured singular value is equal to its upper bound.
A complete description of these uncertainty structures is given in [72].

It can be verified that the uncertainty description used in the subsequent reactor
analysis is a member of this set. Consequently, the stability results for the reactor
problem are completely equivalent to quadratic Lyapunov function stability results.
The advantage of this technique is that a systematic method is proposed to search
for the optimal scalings and transformations.

The robust performance results follow quite naturally from the above calculations.

Consider the full system

Thy1 Niy N2 Nis Tk
€k = N21 N22 N23 Vk (239)
2 N3y Nis; Naz) \wi

where the uncertainty is fed back from z; to wy through the perturbation block Aj.
The objective is the achievement of gain less than 1 across the v to e path for all
perturbations in the set Ag. Consider the equivalent structures in Figure 2.9, where

once again the proper scaling matrices have been introduced. Robust performance
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Xk > Xk+l
Yk : N > e
Wk zk

Figure 2.9. Equivalent Scaled and Transformed Loops for Robust Performance
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can be guaranteed if

T 0 0 T-1 0 0
infe [0 1 0[N| O I 0 [[=8<1 VA eBA (2.40)
0 0 D 0 0 D

To see this, examine the inequality implied by Equation 2.40:
IZkanll® + llewll® + llzell® < B2(Zkl® + llorll® + llorl?) (2.41)
The bound on Ay gives ||w||? < ||21]|? yielding:
IZeenll® + llewll® < B2 Zel® + Ilox]|®) (2.42)
Summing over k from 0 to 7 gives
18-l + llell? + (1 = B2 < B2llvll? + [|Zo? (2.43)

where the T-norm ( ||z|2 = Y7, ||z&||> ) becomes the usual Euclidean norm in the
limit as 7 goes to infinity. Defining ¢; as the set of 2-norm bounded discrete signals
and given that v € ¢, we can see from Equation 2.43 that z € ¢; and e € £;,. This
implies that ||£,,,]| goes to zero as 7 goes to infinity. If we further assume that

Zo = 0, then we arrive at the desired robust performance result:
if zo =0 and {vx}32, € £, then |le|| < B|v||

An entirely analogous argument can be used to interpret the result given in Equa-
tion 2.40 in terms of the so-called power norm. For vector signals e(t) the power norm
is defined by: |le(t)||p = lim, . /7, s-e(t)e(t)dt. Strictly speaking, the power norm
does not satisfy all the properties of a norm. However, the class of bounded power

signals is of practical interest. The argument proceeds from Equation 2.42, but now
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the summation must be carried out with division by 7. In this case the Pr-norm
(llzll3, = Zi=o 2||z£||*) becomes the power norm in the limit as 7 goes to infinity. A
notable difference in the calculations is that the Z, term (finite) divided by 7 goes
to zero, which not unexpectedly leads to a result which is independent of the initial
conditions. Defining {p as the the set of power-norm-bounded discrete signals and
using the fact that v € ¢p combined with Equation 2.43 implies that = € £p and

e € £p. This yields an alternative performance result:
if {vx}32o € £p then [le]lp < Bllv||p

Thus, the performance results obtained by this method are applicable to problems
with bounded energy inputs and outputs and to problems with bounded power inputs
and outputs. For completeness it should be noted that the induced power norm for
a stable operator with power-norm-bounded inputs is the infinity norm.

In summary, the results given by Equation 2.36 and Equation 2.40 give time
domain conditions which guarantee robust stability and robust performance, and are
sufficient for the existence of a quadratic Lyapunov function. For certain uncertainty
structures an equivalence can be shown. The primary objective of this section has
been the derivation of these time domain results which are computationally simpler
than the earlier frequency domain results. The minimum-maximum calculations given
by Equation 2.26 and Equation 2.28 have been reduced to single infimum calculations

in the time domain (Equation 2.36 and Equation 2.40).

2.3.4 Computation of Optimal Constant Ds

The unifying connection between the continuous frequency domain results of Sec-

tion 2.3.2 and the discrete time domain results of Section 2.3.3 can be given by the

following theorem:

Theorem 2.3 Optimal D Scalings
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A B
Let € R(+m)X(ntm) be given, with all eigenvalues of A in the open left

C D
half plane. Let D be some set of scaling matrices.

Then 3D € D such that
sup& (D(C(jwl — A)'B+ D)D) < 1 (2.44)

off 3T € C**™ invertible, D € D such that

[(T 0) ((I+A)(IA)'1 V2(I - A)'B ) (T" 0 )J
s <1 (2.45)
0 D/ \V20-A)"C D+(I-A"'B 0 D

Proof 2.3 Follows below.

This result shows that constant D scalings can be found if and only if the state
space test can be made. The latter minimization can be reformulated as a convex,
nondifferentiable optimization, and as such, has been computationally successful [10].
The sufficiency direction will be proved as the logic fits within the framework of the
previous calculations. For the necessity direction, the reader is referred to [72].

Using the block diagram in Figure 2.10, we can obtain the following inequality

from Equation 2.45:
I211% + llall* < Jlwll® + lf5]f? (2.46)

Operation by €*I preserves norm, so ||b]| = ||a|| and thus ||z|| < ||w||. Noting that
the T' matrices commute with the diagonal eI, we can define the following discrete

transfer function from w to z:

Tw:(eI) = D[D + Cz(I — Az)"'B|D™* (2.47)
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B
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Figure 2.10. Equivalent Transformed Discrete Systems
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where A, B, C, D are the discrete state space elements given in Equation 2.45. Since

llz]l < ||| then |
(DT,.(e’D™) <1 Vo (2.48)

or equivalently,
DTz (e’ D7} |oo < 1 (2.49)

But this is equivalent to Equation 2.44, where (A4, B,C, D) is the continuous state

space representation of T,,,(s).

2.3.5 Scaling and Performance Degradation

The potential difficulty of the theorems 2.1 and 2.2 is the dependence of the re-
sults on the specified perturbation bounds. Results with greater flexibility can be
derived by introducing a scaling factor 7(< 1) into the robust stability result of the-
orem 2.1. The Small Gain Theorem allows for a scaling on Mj;; provided that A
is scaled by the inverse of 4. Thus, the requirement stated in theorem 2.1 becomes
infp sup, 6(DyMpD~') < 1 V5(A) < 4. Theorem 2.2 already reveals the rela-
tionship between the achievable performance and the maximum singular value of the
closed loop. If the error signal is scaled by a(< 1) until A is just less than 1, then the
achievable performance level is 1/a. This can be seen clearly in Figure 2.11, where
the scalings o and « are depicted. In this manner it is possible to analyze the effect

of perturbation size on performance level:

Theorem 2.4 (Performance Degradation; Time-Varying, Complez A )
v e
Consider M : ( ) — ) such that e = Fp(M,A)v and A € BA.

w z

Let infp, 3(DyyMoyy D7) < 1.

Define o, = maxqso{c|infp, sup, 3(D:M,D7') < 1}
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Figure 2.11. Scalings for Performance Degradation

aMy; oM,
where M, =

YMzn  yMo,
then infp, supse,pa (D2 M D7) = al:
Proof 2.4 Follows from above discussion.

A final remark should be made concerning the results of the previous sections.
For the special case of linear time-invariant perturbations, there exist necessary and
sufficient conditions for robust stability and robust performance. The results involve
a test on the so-called structured singular value, for which the D-scaled maximum
singular value is an upper bound. The reader is referred to [18] for further details. In
addition, theoretical results have recently been obtained for the case of real perturba-

tions [11], [94]. This method shares some of the computationally attractive features



Figure 2.12. Conic Sector (C,R)

of the previously discussed problems.

2.3.6 Conic-Sector Bounded Nonlinearities

In this section, a class of nonlinear systems is described which fits into the previously
described M — A structure. A conic sector can be interpreted as the bounds on a
linear approximation to a nonlinear or time-varying operator. Rigorously speaking,

a conic sector is defined as
Cone(C, R) = {(z,y)lly — Ca|| < || Ba|l} (2.50)

where (z,y) is the input-output pair for a general nonlinear operator, y = f(z), (see
Figure 2.12). (This is a simplistic representation and will be expanded in the next
chapter to include correlations between the outputs.) Evidently, a nonlinear operator
enveloped tightly by a conic sector is most accurately approximated (linearly) by the
cone center C. In general, the cone center will not coincide with the plant described
by the Jacobian of the nonlinear model evaluated at an operating point. The model

suggested by the cone formulation is more sensitive to variations in the nonlinearities
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over the operating range. Further research is being conducted to assess the value of
this linear approximation over the standard Taylor series approximation for certain
control applications.

Note that because we have replaced a potentially highly nonlinear operator by a
function consisting of two linear time-invariant operators, the cost of this simplifica-
tion is increased conservatism. The cone (C, R) describes many input-output pairs,
some of which may yield worse performance than the original operator.

It should be clear that there exists a direct correspondence between a nonlinear
cone-bounded operator and a time-varying gain. From the conic sector definition, the
plant can be interpreted as being equal to the nominal value (C) which is perturbed
by a time varying gain of magnitude R. R and C are absorbed into the system to
arrive at the general structure in Figure 2.4, where now A is a time-varying gain of
norm 1. It should be noted that in a strict sense, constant Ds do not commute with
cone-bounded nonlinearities in the sense that Equation 2.22 is not satisfied. However,
the similarity transformation on A by constant Ds does remain within the original
cone bound on A. Thus, the necessary norm inequalities given in Theorems 2.1 and
2.2 still hold.

A final calculation should clarify the connection between general conic-sector-
bounded nonlinear dynamics and the conventional state space uncertainty structure.
Consider the nonlinear system

t = f(z)+ bu (2.51)

y = cz

where y,u € R'. Assume that f is inside the cone (Ao, A1) where A; has rank 1.

Introduce the time-varying scalar parameter A; which can take on values between -1
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and 1 and the system in Equation 2.51 becomes

T = T+ A1A1z + bu
Aoz + Sus (2.52)

y = @

L) Gl) e

Factor the A; term in to two vectors (by singular value decomposition for higher order

Oor:

problems):
Ay =a; - bF (2.54)

Then the plant is given by F,(N,A;) where

A b ay
N=|c 0 0 | (2.55)
bp 0 0

The details of the construction of interconnection structures for more general uncer-

tainty descriptions can be found in [67].

2.4 Controller Design for a Nonlinear CSTR Model

The case study under consideration is regulation of outlet reactant concentration,
which is assumed to be measured. Coolant temperature is the manipulated variable;
input saturations will not be considered. The control objective will be the accurate
tracking of step changes in the concentration set point. Two sets of parameter values
will be investigated, one which was introduced in section 2.2. The other (B = 1.0, =
0.3,y = 20.0, Da = 0.072) yields an open-loop system with a single stable steady state
for all fixed values of the input. In each of the two cases, the goal of the controller

analysis will be the construction of an 'operating range or “window” in the phase
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plane over which certain robustness properties are guaranteed.

2.4.1 Uncertainty Characterization

In section 2.3 it was shown that for conic-sector-bounded nonlinearities, it is possible
to formulate a structured uncertainty interconnection structure. In this subsection
we show how the CSTR dynamics can be treated as a time-varying linear operator.
First, the dynamics are represented in deviation variables so that the origin is a fixed
point. Note that a cone-bounded operator must satisfy this property. Consequently,
the nominal or center plants are limited to points along the fixed-point operating

curve. The equations are:

. ~ Eo 4z
1 = fl = —T; — T10 + Da(l - 51 — $10)el+z’2+@2057‘7

o ~ Eo4x
Ty = fao—fPu=—3F;—z9+ BDa(l — &; — z10)eFGE2+=20)77 (2.56)

Ty =

—B(Z2 + z20) — B(i + uo)

The nonlinearity in these equations is solely a function of the state variables and
therefore would be equivalent to uncertainty in the state-space A matrix, provided
that fl, fg can be shown to be conic-sector bounded.

Two physical insights should be observed here. First, the dimensionless concentra-
tion (or conversion), 1, is physically limited to positive values less than or equal to 1.
Second, the exponential term reaches an asymptotic value of e” for large temperature,
T2, and equals 1 when the reactor temperature approaches the inlet temperature. The
physics of the problem already impose some useful bounds on the state variables. For
the purposes of this study, we will impose bounds on the state variables which define
an operating window in the phase-plane. Consider the nominal point (zq9,z3), a

window width (zy,,zs,), and a plot of f; and f, (Figure 2.13). A simple calculation
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Figure 2.13. Contour Plots of Nonlinearity
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reveals that the following bounds are valid

(fl) ("/11 712) (51)
= (2.57)
f2 Y1 Y22 Z,

where
Z20°F Tog+ 2
—1 — DaeTC-57 < 4y < —1 — DaeTeaoteanl7

M2tB < "2 < MwB
z ZTHo =T

mMap = ZiDa(l —z10 — zl,)(e_”Tuzzo 7 — em;i%.—,ﬁh;)
zog+z z

712UB = z_:r'Da(l — T10 + mlr)(e 1+i"20+’2rs7‘7 — el+’2o!7_’1)

(2.58)
M1 = Cu xRy

T2 = Cia xRy,
Y2 = B(Cu+1)+BR;; =Cy + Ry
Y2 = (=1 =8+BCi3)+BRj; = Coy £ Ry,

where C' and R are derived in a straightforward manner from the upper and lower
bounds above. Utilizing these bounds, it is possible to formulate a cone for the
nonlinearities which consists of two independent uncertain gains. Intuitively, this
accounts for both the exponential temperature dependence of the reaction rate and
the coupling between the concentration and temperature in the rate expression. Our

final plant description is given by

()1 o) (3 )= (SONC) e

Cu Ch2 Ry 0O
A= ; A= ;
Cy Co faa 0 (2.60)

0 Ry 0
A2=( ); B=< ); C=[1 0
0 R22 /B

and is in the general structure of Figure 2.4 for structured singular value analysis.

where
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Figure 2.14. Three-Dimensional Plot of Nonlinearity

Actually, a deeper analysis of the problem reveals that it is possible to formulate
a tighter conic-sector bound with only one uncertain gain. This is due to the linear
dependence of the rate expression on the concentration. This can be seen in a three-
dimensional plot, (Figure 2.14), where with the proper perspective on the %, — %,
plane, the nonlinearity falls within a well-defined “bow-tie” region. The nonlinearity
is bounded by two planes, both perpendicular to the plane of observation in the figure.

Now the plant description is given by

()l o) (0 em



45

where . . - -
. Cn Chp ) . ( Ry1 Ry )
A=| - ; Ar=| - 3
gn Ca Ry Ry (2.62)
B= ; C=[ 0]
B

and A, A, are easily calculated from Equation 2.58 and basic trigonometric manipu-
lations.

A formal numerical procedure for calculating these uncertainty structures and
selecting the optimal uncertainty formulation is presented in the next chapter.

The calculations in the following sections are based upon an uncertainty descrip-

tion consisting of two independent uncertain complex gains.

2.4.2 H,-Optimal Controller Design

A convenient choice of control objective is the minimization of the integral square error
(ISE) or the 2-norm of the error for a specific input (e.g., a step input). Following
the IMC procedure [67], one can readily derive the Hy-optimal controller. The family
of plants under consideration for the CSTR consists of second order, minimum phase
systems which may have 0 or 1 unstable pole. The procedure requires a nominal
linear plant, which will be taken to be the center of the cone defined by the chosen
operating window. If this model is designated as P,(s), then the controller is given
by:

Crmc(s) = P71 (s)F(s) (2.63)

Here F(s) is a low-pass filter which renders the controller proper, allows for asymptotic
tracking properties, and provides robustness. For stable systems F (s) is given by

(As 4+ 1)~2, while for unstable systems the filter structure is more complicated

_(s=p1)(s —p3)(aos +1) _(Op+123=1)
T (As+1)P—aes—1 ' Go = " (2.64)

F(s)
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where p, is the unstable pole and p, the stable one.
The filter time constant affects the speed of the closed-loop response and can be
increased (detuned) to achieve robust stability at the expense of reduced performance

(A = 0 is Hy-optimal).

2.4.3 H,-Optimal Controller Design

For the unstable operating condition, we will consider, as an alternative to the H,-
optimal control objective, the minimization of the error for a set of inputs of bounded
two-norm. This class includes steps, pulses and narrow-band signals of various fre-
quencies. As mentioned in section 2.3.1, the operator norm induced by the two-norm
is the infinity norm. Consequently, this optimization entails a minimization of the
infinity-norm of the weighted sensitivity operator. The appropriate weight is chosen
to reflect the expected inputs and the desired performance. A reasonable selection is

" the inverse of the nominal closed-loop sensitivity function weighted by a scalar gain

(< 1). A transfer function of the form 5o+7 Closely follows the nominal sensitivity and
also “pushes” for zero error at steady state.

The aforementioned weights can be used in analyzing the closed-loop system (with
weights absorbed) for robustness properties. An H,-optimal method can be used to

find the controller, K, which solves:
| Fe(M,A)]le0 <1 (2.65)

where M represents the weighted closed-loop sensitivity function. The optimal K is

found by a search over all stabilizing K’s and scaling D’s so that the quantity
|DFo(M, A) D] (2.66)

is minimized. For this problem, since only constant D’s commute properly, it is
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Figure 2.15. IMC Simulation
straightforward to set up a grid and search for the optimal scaled H,-solution.

2.5 Computational Results

2.5.1 Single, Stable Steady State ( 1o = 0.3, z5 = 1.96; uncontrolled)
[B=1.0,8=0.3,7 = 20.0, Da = 0.072]

For this case study, a relatively mild operating condition was considered with the
expectation that robustness properties can be established for a large window in the
phase plane. The operating window is defined to be: |z;—0.3] < 0.3, |z,—1.96] < 1.96.
Throughout this window the open-loop poles along the operating curve vary from -1.1

to -1.8.

An IMC controller was designed for this stable system and the simulation results

are shown in Figure 2.15. In this plot, the concentration and temperature profiles are
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given for a setpoint change of magnitude 0.2 in the concentration for various values of
the filter parameter A. The role played by this tuning parameter is evident, although
a prediction of the transient response is only possible in a local neighborhood of the
operating point where the linear model is valid. It can be seen in Figure 2.15 that
the initial speed of response varies inversely with the magnitude of A (as expected).
Balancing the tradeoff between fast response and bounded initial transients, a value
of A = 0.1 was selected for the IMC controller.

An analysis of the robust stability of the closed-loop system yields a scaled maxi-
mum singular value of 0.9 for the IMC controller. Thus, stability is assured through-
out the entire operating window and could in fact be extended to include a region
approximately 10% larger. An analytical performance evaluation of the controller
is shown in the performance degradation plots of Figure 2.16. Presented here is a
plot of the attainable performance level measured by the infinity-norm versus the
magnitude of the perturbation (A). The intercept of the curve at the y-axis rep-
resents the nominal performance (zero perturbation) while perturbation magnitude
corresponding to the vertical asymptote represents the SSV for robust stability (no
performance). Another interpretation of the x-axis is the necessary reduction factor
for the window to achieve a given performance level. An important point to note
is that these performance bounds are only guaranteed when the system states re-
main with the described operating window. An additional curve is included in this
plot. It represents the necessary and sufficient condition for robust performance with
time-invariant perturbations. The distance between the two curves indicates both the
sufficiency of the time-varying result and the additional constraint that time-varying
perturbations place on performance levels above those imposed by time-invariant per-
turbations. Thus, if the two curves lie close together, then the time-varying result is
not particularly conservative.

A final plot is given to substantiate the claim that the chosen operating window is
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Figure 2.16. Performance Degradation Curve (Stable Case)

physically meaningful. In Figure 2.17, the transient responses of the system to various
setpoint changes and step disturbances are given in the z; — z, phase plane. It can
be seen that, for these examples, the system trajectories remain within the operating

window, thus validating the assumptions required for the robustness results.

2.5.2 Multiple Steady States (uncontrolled) [B = 22.0,8 = 3.0,Da =
0.082,7 — o]

The second case study presents a more formidable control challenge. Consequently,
both H; and He-optimal controllers have been designed for this case study. For

the chosen parameter values, the open-loop dynamics are somewhat pathological as
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evidenced in Figure 2.1. In this case, the control objective is the construction of a
window about the open-loop operating point (z; = 0.305,z; = 1.677,u = 0). The
chosen operating region is: |r; — 0.305| < 0.2, |z; — 1.677| < 1.677. The open-loop
poles along the operating curve in this window range from (1.4+0.35¢) to (—0.54,5.5).
This window also encompasses the stable uncontrolled fixed point z; = 0.184,2, =
1.014.

Following the design approach of the previous subsection, an IMC controller is
constructed and the tuning parameter is chosen to be A = 0.1. Using an output
performance weight of (%432), an H.-optimal controller was designed to achieve the
infimum in theorem 2.2. A comparison of the transient response of the CSTR system
implemented with the two controllers can be seen in Figure 2.18.

Robust stability analysis yields scaled maximum singular values of 0.9 for the IMC

controller and 1.1 for the H.,-optimal controller. In this case, the H,-optimal closed
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Figure 2.18. H; and H,, Optimal Simulations (Unstable Case)

loop has guaranteed stability throughout the phase window but the H,-optimal con-
troller yields a stable closed loop throughout a region approximately 10% smaller
than the chosen window.

The performance degradation curves for these two controllers are given in Fig-
ure 2.19. The achievable performance levels are not as low as for the first case study,
which is not surprising given the range of uncertainty for the latter, more pathological
case. It can be seen that for this sufficiency measure, the H,,-optimal controller gives
a better performance guarantee. It is important to realize that since the analysis
results are only sufficient, a comparison of relative performance levels for the two
controllers is meaningless. Only upper bounds on guaranteed performance can be
inferred. Included in the same figure are the corresponding necessary and sufficient
performance degradation curves for time-invariant perturbations. Finally, the tran-

sient responses in the phase plane, shown in Figure 2.20, validate the utility of the
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Figure 2.19. Performance Degradation Curve (Unstable Case)

chosen window for a range of operating conditions.

State space realizations of the controllers used in the preceding sections can be

found in Table 2.3.

2.5.3 Interpretation of Results

For purposes of comparison, several quadratic Lyapunov functions are calculated for
the specific nonlinearities which describe the CSTR system. Using the standard tech-
niques described in [74], regions of attraction are constructed for the open-loop CSTR
system, that is areas from which no trajectories can escape. Thus, this stability anal-

ysis is for an unforced (zero-input) system. These regions are depicted in Figure 2.21.
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Also shown in this diagram is the ellipse defined by the Lyapunov function z*7T™*T'z
(Equation 2.32) corresponding to the optimal D-scalings which were computed for the
open-loop time-varying uncertainty description. The D-scalings are 2-by-2 matrices
which give the general orientation and shape of the ellipse; the radius is determined
by inscribing the ellipse in the operating window. The ellipse cannot exceed the cal-
culated window since this would violate the conic-sector bound and thus invalidate
the stability results. In other words, there is no stability guarantee for trajectories
originating outside the operating window. The large disparity in size between the
specific regions of attraction for the nonlinearity and the ellipse for the cone can be
readily explained by the fact that the cone contains many nonlinearities. The lat-
ter region corresponds to the worst case nonlinearity in the cone, which is evidently
more pathological than the specific nonlinearity under consideration. This point is

elucidated by considering that the cone encompasses not only the nonlinear effects,
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l Table 2.3 Controllers for Simulations |

H;-optimal Controller, Stable Operating Condition:

7.489F — 2 1 0
—1.5035E0 —2.008F1 1
0 —1.795E3 | 1.0E2

H,-optimal Controller, Unstable Operating Condition:

6.749 1 0 0
-5.298E -1 —-5.072E -2 1 0
0 -1.020E0 —-3.670F1 1

-1.223E —11 -1.819E - 12 -1.868F4 |5.446F2

H-optimal Controller, Unstable Operating Condition:

—2.658E1 8.549FE —1 -7.510F —17 | —2.462F1
—-3.928E4 —-3.569E3 2.597F4 —4.493E2
0 0 0 1

—-1.294F4 -1.194E3 8.658E3 | 0

but also covers model uncertainty, which alters the nonlinear curves lying within the
cone. Thus, the critical nonlinearity can be interpreted as the worst case unmodeled
dynamics which fit within the cone.

Another interesting comparison is illustrated in Figure 2.22. Here the operating
windows and respective regions of attraction are depicted for the open- and closed-
loop (H;-optimal) systems obtained from the two different conic-sector descriptions
given in section 2.4.1. For closed-loop systems, the computation of the quadratic
Lyapunov function is somewhat involved since the D-scalings are typically of dimen-
sion 4 or 5. These higher-order “ellipsoids” are projected onto the z; — z, plane to

yield bounds on the possible trajectories. Consistent with intuition, the closed-loop
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regions in Figure 2.22 are significantly larger than the open-loop areas, indicating the
stabilizing effect of feedback control. The second observation revealed in this figure
is the superiority of a single uncertain gain conic-sector description compared to one
with two uncertain gains. Evidently the conic-sector formulation is critical for these
computations. A final observation can be made regarding the orientation of the el-
lipses and their subsequent total area. There appears to be no connection between
a maximal region of attraction and the computation of optimal D-scalings for the
structured singular value.

The robust performance results obtained for the nonlinear or time-varying system
require further consideration. Unlike linear time-invariant systems, a linear time-
varying operator will not preserve the frequency of the input signal. Consequently,
the design of an output performance weight for time-varying systems cannot assume
any correspondence between inputs and outputs of a particular frequency. The input
weights still retain their function of shaping a bounded ball of signals into the appro-
priate input set. The output performance weight can be designed to attenuate signals
of a specified frequency range without regard to the input frequency content. Thus the
design of performance weights for both linear time-invariant and linear time-varying
systems are qualitatively similar.

With respect to the operating windows, the robust performance results indicate
that input signals of bounded power or bounded energy produce outputs of bounded
power or energy, respectively, provided that these input signals produce states which
remain in the defined window. As stated before, this can be compared to the standard
linearization results which yield bounded input-bounded output results in an ambigu-
ous region “over which the linear model is valid.” Our method explicitly defines the
region over which the robustness properties are guaranteed.

Stronger results for guaranteeing the system’s state bounds are possible using

the structured singular value. In particular, one can define an operating window
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which yields bounded trajectories, thus validating the proposed uncertainty structure

(conic-sector bounds). The details of this result will be described in the next chapter.

2.6 Conclusions

A practical problem is presented which demonstrates the utility of the new extensions
of the structured singular value to nonlinear systems. While robust control of the
closed-loop system over the entire phase plane is too ambitious for these potentially
pathological systems, it is demonstrated that closed-loop systems can be obtained
with linear controllers which are robustly stable over a significantly large portion
of the phase plane. The new results allow us to evaluate robust performance as a
function of the size of the operating window.

These results suggest the potential for application of these techniques to more
complex systems such as packed bed reactors. This is investigated in more detail in
chapter 4. An examination of the simple plug flow model for a fixed-bed reactor which
incorporates only external heat and mass transfer limitations [70] reveals the same
type of nonlinearities as those in the simple CSTR model. The structured uncertainty
formulation lends itself readily to analysis of model uncertainty, and coupled with the
nonlinear extensions, could be used to evaluate robustness properties with regard
to nonlinear model errors. The authors envision the application of these results to
complicated systems comprised of a,vvariety of uncertainty elements; real and complex,
time-varying and time invariant.

While conservatism is inherent in the analysis of time-varying systems, the pre-
sented technique shows a computationally attractive method for quadratic Lyapunov
function construction. It should be possible to reduce the values of the structured
singular values by considering real variations in A (as opposed to complex). The
physical system considered in this chapter would be more accurately described by

real perturbations, and work is underway to develop software to handle this class of
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problem. Additional conservatism is introduced by the formulation of conic-sector
bounds on the nonlinearities. Careful and clever modeling is required to minimize
the cone size to limit the uncertainties introduced in this design step.

The presented calculations in the H,, setting are inherently conservative because of
the Small Gain Theorem. Recent results have suggested an alternative approach, ¢!-
optimal control. In this setting, it is possible to derive necessary and sufficient results
for norm-bounded nonlinear perturbations interconnected with a nominal linear plant.
A comparative discussion of this approach is found in appendix A.

Note

Versions of this chapter originally appeared in [23] and [25].
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Chapter 3

Tools for Nonlinear Control Synthesis -
Exact and Approximate Linearizations

Abstract

The robustness properties of exact and approximate linearization are studied in the
context of chemical reactor control. The relative merits of the two techniques are in-
vestigated in terms of the disturbance handling, optimization of the nonlinear trans-
formations, and restrictions on application. With these properties as measures, the
approximate linearization represents a significantly superior approach. The robust-
ness properties are further investigated using extensions of structured singular value
theory to nonlinear systems. The uncertainty structure is formulated using conic-
sector bounds, and an algorithm for computing optimal conic sectors is presented.
The results are supported by a series of case studies involving both involutive and

non-involutive chemical reactor systems.

3.1 Introduction

There has been considerable interest in the application of differential geometry to
the control of nonlinear process systems over the past five years. The inherently
nonlinear nature of chemical process dynamics and the pathological behavior which
can evolve from these systems have motivated the application of these techniques

to process control. Two of the more popular approaches, state linearization and
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input-output linearization, have received considerable attention. With a few notable
exceptions [12], the issues of unmeasured disturbances and unmodeled dynamics in
these frameworks have not been properly emphasized. In this chapter, we propose a
general methodology to address these issues.

The analysis tools employed in this research are extensions of the structured sin-
gular value (SSV) to nonlinear systems [25], [71]. Utilizing the conic-sector approx-
imation of a nonlinear operator, it is possible to represent a nonlinear system as a
nominal LTI plant perturbed by a bounded nonlinear operator. The SSV results for
nonlinear perturbations are only sufficient and thus conservative. Therefore, the pri-
mary objective in this design scheme is the minimization of the size of the nonlinear
perturbations. This is accomplished by two means. First, the nonlinear nature of the
plant is minimized by means of exact or approximate linearization via state trans-
formation and feedback [43], [56]. Second, a tight characterization of the resultant
nonlinearity is achieved with an optimization program. Thus, we arrive at a nearly
“linear” plant description which can then be handled with standard robust linear
control theory.

The usual Euclidean norm or 2-norm will be used to calculate the norm of vec-
tors in C" or R™. For vector signals e(t), this norm is defined to be: |le(?)||*? =

I2% €7 (t)e(t)dt. The operator norm induced by the 2-norm is

Gv
o Il = sup a(G ) 2161 (31)
where £, is the space of functions with bounded 2-norm. This is also the operator
norm induced by the power norm defined to be: ||e(t)||[} = lim,oo [7, 5= T(t)e(t)dt
The Frobenius norm for matrices in C"*" is given by ||A||Fr = [2,- > |a,-j|2] 2. The
superscript notation, f(°)(z), will be used to represent a polynomial function of order

p in the argument.



61

The following Lie Algebraic definitions and notation will be utilized in the rest of
this thesis. We define the vector fields f and g on ®™ which are functions of z € ®".
The scalar field ~ on R" maps the state vector z € " in R. The differential operator
L is defined as:

0 0
Li=fim—+ -+ foe— 3.2

n
Using this operator, we define two types of Lie derivatives associated with these
vector fields. The first is the Lie Derivative or directional derivative of a function

with respect to a vector field:

Ly(h) = (dh, f) = flgil - fn-g-’; (3.3)

Another useful quantity is the Lie derivative of a vector field with respect to a vector

field, denoted the Lie Bracket (or commutator or Poisson bracket). It is defined as

follows:

[fvg = gg'f - 'a—f (34)

z Oz

The following recursive notation will be employed for successive Lie Brackets:

ad$(g) =g
adi(9)  =If.9]
adi(g) = [f,ad5(g)] (3.5)

Having set up the notation, one can now formally define the property of involutivity

which will be referred to throughout the following chapters.

Definition 3.1 The linearly independent vector fields g,(z), ga(z), -+, gn(z) are in-

volutive if the Lie Bracket of any two members of the set is expressible as a linear
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combination of the members of the set.

3.2 Feedback Linearization

The standard nonlinear control problem focuses on control-linear systems of the form:
z = f(z) + g(z)u (3.6)

In addition, the more general dynamical system (including disturbance effects) is

described by
¢ = f(z) + g(z)u + d(, ) (3.7)

where z € " , u € R™ and d € R". Here, d(z,t) may represent external disturbances
as well as unmodeled dynamics; the key point is that it is unmeasured. The standard
state feedback linearization problem can be stated as follows: when does there exist
an invertible coordinate transformation which, when coupled with the appropriate
nonlinear feedback, results in a linear controllable system in the new coordinates?

The answer to this question involves the following state and input transformations

: = T(z) (3.8)

u = az)+ (I +p(z))v (3.9)

and is provided by the following theorems:

Theorem 3.1 Global State Linearization (GSL)
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The nonlinear system 3.6 can be transformed with a nonlinear change of coordi-

nates (3.8) and nonlinear feedback (3.9) into the linear system

0 1 0
z'=( )z+( )v (3.10)
00 1

where (A, B) is in Brunovsky companion form iff
1. [g,...,ad}"'g] span R"
2. lg,..., ad'f"zg] is involutive

Proof 3.1 See [{3]

Comment
(1) is a standard controllability condition. (2) is an integrability condition which

arises from application of the Frobenius theorem to the integration of the nonlinear

change of coordinates.

Theorem 3.2 Approzimate Linearization (AL)

The nonlinear system 3.6 can be transformed with a nonlinear change of coordi-

nates (3.8) and nonlinear feedback 3.9 into the linear system
2= Fz+ Guv+ 0 (z,v) (3.11)

where (F,G) represent the Jacobian matrices corresponding to the system ( 3.6) iff

1. span |g,... ,ad}"'lg] has order p local basis

2. [g,..., ad?'zg] is order p involutive
Proof 3.2 See [56]

Comments
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Note the relaxation of the requirements as compared to GSL. Now, for instance,
the involutivity condition need only be solved to within order p terms. This will

considerably widen the class of linearizable systems.

These theorems describe the necessary and sufficient conditions for accomplishing
the transformation of our original system (Equation 3.6) into a linear (or within or-
der p linear) system. The intuitive appeal of this approach is readily apparent. The
nonlinearities in the system are directly treated by “bending” the coordinates. Stan-
dard optimal linear control is employed on the resulting linear system. The control
problem is effectively decoupled into two stages: (i) removal of the nonlinearity; (ii)
linear control design to match specifications (robustness, performance, etc.).

We consider now a more detailed comparative analysis of the Global State Lin-
earization [43] (GSL) technique and the Approximate Linearization (AL) technique
developed by Krener and co-workers [48], [56]. Using the following features as mea-

sures, the AL represents a significantly superior linearization approach:

e Transformed Coordinate System
e Disturbance Effects
e Involutivity Restrictions

e Optimization of Possible Transformations

These issues will now be discussed in more detail.

3.2.1 Transformed Coordinate System

GSL transforms a second order system of the form in Equation 3.7 into the following

dynamical system:

01 0 v
z= ( ) z+ ( ) v+ [%i:d(xat)]z,':T‘l(z) (3.12)
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Although the resultant nominal state dynamics are linear, they are in Brunovsky
canonical form in which many of the states have lost their physical significance. For
process systems in which the states are typically temperatures and concentrations,
the transformed variables may represent unmeasurable quantities or highly nonlinear
functions of the measurable variables. Another problem with the so-called “global”
techniques is the fact that the state transformation T'(z) is only a local diffeomor-
phism, and therefore, these techniques can only be applied over finite regions of the
phase space.

AL also handles systems of the form in Equation 3.7, but for convenience we will

represent the nominal system as a series expansion of the terms in Equation 3.6:
g= Fr+ @)+ -+ fO(z)+ (G +9V(z)+ -+ g(p-l)(,,)) u+ 0P (z y)
The following structure is imposed upon the state transformation:

z=1z — ¢ (z) (3.13)

The resultant dynamical system is linear in the state dynamics up through order p

terms:

:z=Fz+Gv+ [g%d(w, t)]z:T'l(z) + O”"’l(z, v) (3.14)

The particular choice of state transformation in Equation 3.13 and input transfor-
mation (Equation 3.9) leads to first order terms F' and G which are identical to the
respective terms in the first order approximation of the original dynamical system.
Mathematically, we say that the new variables z have pth-order contact with the
original variables z. This is contrasted with the GSL in which the transformed co-
ordinates have only zero order contact with the original variables (higher derivatives

do not match). The implications for control design are obvious. Optimal linear con-
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trollers can be calculated for the first order approximation of the original system and
then application to the AL system is direct. For the GSL approach, the desired first
order dynamics in ¢ must be translated to the new coordinate system, z, before the

corresponding linear control law can be calculated.

3.2.2 Effect of Disturbances and Unmodeled Dynamics

A related weakness of the GSL technique is revealed by the impact of disturbances
and unmodeled dynamics in the transformed coordinates. These terms are incor-
porated into the new coordinate system after pre-multiplication by the Jacobian of
the state transformation. Thus, even simple linear disturbances are transformed by
GSL into potentially pathological operators in the linearized coordinate system. Sim-
ple perturbations in d may dramatically affect the already critically stable nominal
system (open loop).

This is contrasted with the AL approach in which the transformation Jacobian
matrix has zero-order terms equal to identity. The higher order terms are simple
polynomials in x. Just as with the transformed coordinate system, the disturbances
and unmodeled dynamics have p-th order contact with the original variables. Thus,
to first order, these two perturbations are the same in both coordinate systems (z

and z). In effect, this minimizes the “nonlinear” nature of the disturbances.

3.2.3 Involutivity Restrictions

A restriction on the nonlinear systems which admit GSL solutions is an involutivity
condition, the computation of which becomes quite difficult for large order systems.
Typical chemical engineering processes, particularly complex reaction systems, vio-
late this constraint. A precise understanding of the interpretation of involutivity for
process dynamical systems is not possible. However, a number of properties have

been identified which lead to non-involutive systems. These include:
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1. Recycle reaction systems.
2. Second and higher order reactions for nonisothermal CSTRs.
3. Reaction systems with optima involving sign changes in the system gain.

In contrast, the AL approach requires only that the system be “approximately invo-
lutive” or order-p involutive (Theorem 3.2). This is a milder constraint in the sense

that it allows an order p remainder term, whereas GSL requires zero remainder.

3.2.4 Optimization of Possible Transformation

One of the real strengths of the AL approach lies in its flexibility to “optimize” the
resultant solution. Consider the mapping from the transformations (¢, a, 3) to the
functions (f,g). For AL, one can represent this mapping in terms of the polynomial
coefficients of the various polynomial functions. (A straightforward interpretation is
not possible for the GSL.) If this mapping has a non-trivial kernel, then a parametrized
family of solutions results. The parameters are selected to minimize the “size” of o, 3
and ¢. If the magnitude of ¢ is minimized, then the mapping from z to z becomes
closer to identity. Similarly, minimizing « and 3 yields a mapping from u to v that
is close to identity. Thus the linearization is accomplished with minimal nonlinear
“distortion” of the original system.

Similarly, if the map is deficient in rank, then a linearization solution is not possible
(i.e., the system is not p-order involutive). In this case, one can search over the space
of solutions ( f, g) which are linearizable. An optimization is done to minimize the
“distance” between (f,g) and ( f, §). The reader is referred to [48] for the optimization
algorithm and a discussion of the relevant metrics used to define the various sizes and
distances.

In effect, the constraint in Theorem 3.1 is removed. This will be demonstrated

with two non-involutive examples in the next sections. This systematic procedure for
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finding the “closest” linearizable system reveals the flexibility of the AL approach.

3.2.5 Summary

It has been shown in Equations 3.12 and 3.14 how the so-called linearization tech-
niques actually result in nonlinear systems when the effects of disturbances and un-
modeled dynamics are accounted for. This is represented in Figure 3.1 where the
shaded blocks are nonlinear operators. At the center of this structure are the input
transformation, nonlinear plant, and state transformation. The effect of unmodeled
dynamics and disturbances on the stability of the open-loop transformed system is
clear. A; represents the difference between the true nonlinear dynamics and the
assumed nominal linear model. The linear model here is taken as the “linearized”
system in z coordinates (GSL, AL) or as the Jacobian (classical linearization) of the
original system in = coordinates (linear control). For instance, the Quadratic Approx-
imate Linearization scheme (QAL), p = 2, has a A; term to represent order 3 and
higher effects. A, represents the nonlinear effect of the disturbance acting through
the Jacobian of the transformation. Finally, Aj represents the nonlinearity associ-
ated with the actual coordinate transformation itself and its effect upon the set-point
signal.

Consider the case of unmeasured disturbances which enter linearly into the original
system (Equation 3.7). The resulting uncertainty formulation yields an uncertainty
structure with magnitudes described in Table 3.1. In the linear control case, the
disturbance effects remain linear (A;) in the unchanged coordinate system, but the
original nonlinear system has a potentially large discrepancy between the model and
its Jacobian (A;). In the case of GSL, the nonlinear dynamics are completely can-
celled (A;), but the linear disturbance becomes nonlinearly transformed in the new
coordinates (A;). Finally, for AL, the nonlinear dynamics are approximately can-

celled (A;) and the linear disturbance remains approximately linear (A;). Clearly,
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Figure 3.1. General Linearization Uncertainty Structure

the AL approach strikes an overall balance in reducing the nonlinearity in the system

| Table 3.1 Relative Magnitude of Uncertainty Elements |

Control Ay A,
Action || Nonlinear Dynamics | Nonlinear Disturbances

Linear Large Zero

GSL Zero Possibly Large

AL Approximately Zero Approximately Zero
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Figure 3.2. Non-Involutive Reaction System (Example #1)

dynamics and the impact of the disturbance.

The preceding four sections have clearly enumerated the incentives for using Ap-
proximate Linearization. This overall practicality motivates its use in the present
design. In addition, there are extensions of this technique to systems in which the
outputs are nonlinear functions of the states. Although they are not explored here,

they represent an attractive framework for pursuing input-output linearization.

3.2.6 Example #1: Non-Involutive System

Consider a continuous stirred tank reactor (CSTR) in which the following isothermal,

liquid-phase chemical reactions take place (Figure 3.2):

1,2 34

A=BZC (3.15)

Schematically, the reactor system is described in Figure 3.2. The following rate

expressions hold: ry = kyCy,ry = k2CE,r3 = k3C% and ry = k,Cp. Regulation of
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the concentration of C (desired output) will be accomplished by manipulating the
flow rate (A) of a feedback stream consisting primarily of component B (fraction =
M), which has been separated from the aqueous solution by a drying process. Mass

balances for the system are given by the following differential equations:

VCa= FCar —VkCa+ VkCh — FCy + A\eFCa)
VCs = VkCy—VkCh —VksCh — FCp + AMFCpA (3.16)
VCo = VksC% — FCo + A FCc

The following choice of physical parameters (§ = 1.0,k = 3.0,k; = 0.5,k3 =
1.0,ky = 2.0,A, = 0.1,X = 0.75,\. = 0.15,C4r = 1.0 ) and operating point
(u =X =0.5,z4 = 0.33,z40 = 0.79, 2,0 = 0.21) lead to the normalized dimensionless

mass balances:

-3.95 .790 0.0 .033
= 30 2994 20 |z+]|.592]|a
00 1.580 —2.925 .032
(3.17)
52 0.1 0.0 0.0 %,

(4]

+| -1582 [+]00 075 0.0 ||
1.05? 0.0 00 015/ \z

Note that this system is second order and is in control-linear form. However, it is
straightforward to show that this system is not involutive (unless A, = Ay = ).).

Using the MATLAB software for QAL [48] (see Acknowledgements), one sees that
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the following plant is in fact involutive:

—3.95 .790 0.0 033
5= | 30 2994 20 [5+].592]2
0.0 1.580 —2.925 032

—.00058%,%, .4905) —.00056%;5.
+ ~1.5% (3.18)
0002735, 1.0055.  .00026%,3,

A

0.112  -0.012  0.027

> &
i~}

I3
o
S

+ | —.00039 0.750 —.00086
—.0052 0.011 0.138

31

c

The remarkable closeness of the two systems is attributable to a remainder term
which satisfies the approximate involutivity condition for system 3.18. The following
simulation results confirm that when the QAL for 3.18 is applied to 3.17, the resultant
closed loop exhibits less nonlinear behavior than the original nonlinear plant with
simple linear control. The subsequent simulations employ the QAL for the system in

Equation 3.18, which are given by the state transformation z = z — ¢(z) where

—¢1 =0.075773% — 21.68%1%, — 0.991%; %3 + 0.07904%% — 0.0158%,%3 + 0.1636%2
—¢y = —1.29022 — 1.367%,3, + 3.9925%, %3 + 0.522552 — 0.2640%,%5 + 0.4220%2

—¢s = 0.38432 — 0.02033, 7, — 1.554%; 55 + 0.0558632 — 0.16327,75 + 0.117332
(3.19)



73

and nonlinear feedback @ = a + (I + 3)% where:

a = 2.08232 + 22.78%,%, — 21.84F, 7,
—8.28932 + 8.519%,&3 — 0.0815452 (3.20)

B = —1.297%, + 2.22%, — 0.08721%;

In the following simulations, three closed-loop systems will be compared:

1. Linear Model with Linear Controller (LMLC). This represents a linear approx-
imation of the true nonlinear system controlled by an optimal linear controller.

It will serve as a benchmark for comparison of the next two systems.

2. Nonlinear system with Linear Controller (NLMLC). This is the true system

with an optimal linear controller.

3. Nonlinear system with Nonlinear Controller (NLMNLC). This is the true system

with quadratic approximate linearization (QAL).

The linear feedback law is a quadratic optimal regulator designed with identity weight-

ing matrices on the states and inputs. The resulting controller gains are:
K =1[0.1317,0.2032,0.1363] (3.21)
The closed-loop eigenvalues are:
Ai = (—5.6184, —3.4890, —0.8910) (3.22)

Three simulation studies are depicted in Figures 3.3, 3.4, and 3.5. In the graphs,
the various curves representing the closed-loop systems correspond to LMLC (solid),

NLMLC (dash - dot), and NLMNLC (dashed).
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In the first case (Figure 3.3), the system is started from nonzero initial conditions
(0.25,0.0,0.0) and the objective is to return to this equilibrium as quickly as possible.
From this figure one can see that the nonlinear control law shows a faster speed
of response and smaller overshoot as the states return to their equilibrium value of
(0.0,0.0,0.0). This is accomplished at the expense of somewhat excessive manipulated
variable action.

The second simulation (Figure 3.4) shows the response of the system to a step
disturbance (magnitude 0.25) in the input. The objective here is a minimal perturba-
tion or offset from the equilibrium value. Here it is seen that the nonlinear dynamics
are cancelled and the offset for the NLMNLC system is roughly equal to the offset
predicted by the linear system (LMLC). However, the linearly controlled nonlinear
system (NLMLC) exhibits greater nonlinear offset in response to the disturbance.

The final simulation (Figure 3.5) also reveals the ability of the nonlinear controller
to mitigate nonlinear effects. In this case, a sinusoidal input (0.4sint) is applied.
Again, it is observed that the NLMNLC yields nearly linear behavior (as measured by
LMLC), in contrast to the NLMLC case. The achievement of this dynamic behavior

is accomplished by the highly nonlinear control action shown in the figure.

3.2.7 Example #2: Non-Involutive System

Consider a pair of continuous stirred tank reactors (CSTRs) in which the following

autocatalytic, isothermal, liquid-phase chemical reactions take place:
ALB (3.23)

Schematically, the reactor system is described in Figure 3.6. The following rate
expression holds: r; = kC4Cp. Regulation of the concentration of B (desired output)

will be accomplished by manipulating the concentration of A fed into the first tank,
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Figure 3.6. Non-involutive Reaction System (#2)

and the amount of recycle from the second tank back to the first tank. Mass balances

for the system are given by the following differential equations:

VCum = FCap —VkCa1Co1 — F(1 + A)Cay + FACas
VCpi = VkCaCpi — F(1 4 A\)Cas1 + FACg

VCiz = —VkCa3Chy + F(1+ N)Cuy — F(1 4 A)Clag
VCry = VkCa2Coz+ F(1+ A)Cp1 — F(1+ A)Cae

(3.24)

The following choice of physical parameters (k = 1.1, 7‘,{- = 1.0) and operating point

(10 = A = 1.0,uz0 = Cyr = 0.1,219 = 0.798, 229 = 0.202, 235 = 0.550, 249 = 0.450)
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leads to the normalized dimensionless mass balances:

-1.3225 —0.8775 0.1 0.0 -0.2475 1
. 0.2225 —-0.2225 0.0 0.1 0.2475 0
z= z+ ﬁ
1.1 0.0 —1.5948 —0.6052 0.2475 0
0.0 1.1 0.4948  —0.4948 —0.2475 0
(3.25)
-1.1%,%, -1.0 00 1.0 0. %
1.1%;%, 00 -1.0 00 1.0 z,
+ + Uy
—1.123%, 1.0 00 -1.0 0.0 I3
1.1%3%, 00 1.0 00 -1.0/ \z,

Note that this system is second order and is in control-linear form. However, it
is straightforward to show that this system is not involutive. Using the MATLAB

software for QAL, one sees that the following plant is in fact involutive:

-1.3225 —0.8775 0.1 0.0 —0.2475 1
. 0.2225 —0.2225 0.0 0.1 ) 02475 0] .
= i+ i
1.1 00  —1.5948 —0.6052 0.2475 0
0.0 1.1 0.4948 —0.4948 —0.2475 0
~1.1%,%, -1.0 0.0 1.0 0.0 #
1.1%, %, 02677 —-1.0 0.0 1.0 T
+ o+ | (3.26)
~1.1%,%, 0.4645 0.0 —1.0 0.0 #s
1.1%3%, —0.2677 1.0 0.0 -1.0/ \Z,
0.4645 0.0 —~1.0 0.0 #
—0.2677 1.0 0.0 -1.0 iy | .
+ N R
0.0 0.0 0.0 0.0 %3

K
S

0.0663 —0.0663 —0.0663 0.0663
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It can be seen that the presence of additional remainder terms in Equation 3.26
satisfies the approximate involutivity condition. The following simulation results
confirm that when the QAL for 3.26 is applied to 3.25, the resultant closed loop

exhibits less nonlinear behavior than the original nonlinear plant with simple linear

control.
The state and input transformations which solve the QAL problem for the system

in Equation 3.26 are used in the subsequent closed-loop simulations. They consist of

the fbllowing change of coordinates:

—$1 = 10.40132 + 2.278%,3, + 0.83753, 55 — 0075775, 54 + 1.66152
—0.38343,3; — 2.3663,&, — 0.00291752 — 0.2301%374 + 0.609152

—Ba =&y +0.022752 + 0.5873%, %, + 0.27523, 55 + 0.4748%, 74 + 0.630432
—0.558%;35 — 0.04539%,&4 — 0.0759252 + 0.37497354 — 0.204632

—@3 = B3 +0.122152 4 0.3885%,3, + 0.07641%, 75 + 0.6736F, 4 — 1.60232
+2.7758,%3 + 3.061%,3, — 0.335732 — 0.652875%,4 + 1.28552

~@s = &4 — 0.022732 — 0.5873%, & + 027525 &5 — 0.4748%, 74 — 0.611972

+0.8653,3 + 0.39063,3, + 0.30592 + 0.3921&5%, + 0.760732
(3.27)
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and nonlinear feedback @ = a + (I + 3)% where:

(23]

Q2

P

Bz

1321

P2z

= 1.89932 + 0.09872%, 3, — 3.847%, &5 — 1.61%, 74 — 4.09752
+4.427%,F; + 0.43223,&, + 1.6532 — 3.26737, — 1.5632
= 2.4265% — 0.16753,&; — 2.263%, 35 — 1.075; 54 — 3.44452
—1.4123,%3 + 0.33,3, + 0.350632 + 0.32445 57, — 0.316532
(3.28)
= 1.4243%, — 3.879%; — 1.36%; + 4.304%,
= 0.341%, — 0.2109%, + 0.41675 + 0.13993,

=).4512%, + 2.105%, + 0.8442%; + 2.186%,

= —0.691%; + 2.799%; + 1.046&5 + 0.4653%,4

As before, the following simulations will be compared:

1. Linear Model with Linear Controller (LMLC).

2. Nonlinear system with Linear Controller (NLMLC).

3. Nonlinear system with Nonlinear Controller (NLMNLC).

The expectation is that effective “linearization” by QAL will result in similar behavior

between the LMLC system and NLMNLC system. The linear feedback law is a

quadratic optimal regulator designed with identity weighting matrices on the states
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and inputs. The resulting controller gains are:

0.0169 0.8176 0.0938 0.1031
K = (3.29)
0.5268 0.6117 0.1813 0.1978
The closed-loop eigenvalues are:
A = (—1.3371 + 0.12147, —1.2415, —0.4416) (3.30)

The three simulation studies are depicted in Figures 3.7, 3.8, and 3.9. In the
graphs, the curves representing the closed-loop systems correspond to LMLC (solid),
NLMLC (dash — dot), and NLMNLC (dashed).

In the first case (Figure 3.7), the system is started from nonzero initial conditions
(0.25,0.0,0.0,0.0) and the control action works to restore equilibrium at (0.0, 0.0, 0.0).
From this figure one can see that the nonlinear control law shows a faster speed of
response and smaller overshoot as the states return to their equilibrium value.

The second simulation (Figure 3.8) shows the response of the system to a step
disturbance (magnitude —0.2) in the second input. The objective here is a mini-
mization of the transients away from the equilibrium value. Here it is seen that the
nonlinear dynamics afe cancelled and the offset for the NLMNLC system is roughly
equal to the offset predicted by the linear system (LMLC). However, the linearly
controlled nonlinear system (NLMLC) exhibits greater nonlinear offset in response to
the disturbance.

The final simulation (Figure 3.9) also reveals the ability of the nonlinear controller
to cancel nonlinear effects. In this case, a sinusoidal input (0.1sin?) is applied to the
first input. Again, it is observed that the NLMNLC yields nearly linear behavior (as
exhibited by LMLC), in contrast to the NLMLC case.

These two case studies demonstrate the strength of the QAL approach with re-

spect to broad applicability. The two nonlinear non-involutive examples cannot be
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controlled by GSL. However, a QAL controller was synthesized in each case and
simulations illustrate the improved performance of QAL over linear control.

In the following sections, a more detailed analysis of the robustness properties
of the differential geometric approaches is carried out using structured singular value

(SSV) theory in combination with conic-sector approximations of nonlinear operators.

3.3 Structured Singular Value Concepts

3.3.1 General Framework

Reviewing the notation from the previous chapter, the general framework is depicted
in Figure 3.10, where M(s) is a linear time invariant operator and A is a nonlinear

operator with the following block structure:
AL {diag[8,1,,,...,6ul,,, A1, .., An]} (3.31)

This structure can be arrived at from any interconnection of linear blocks and nonlin-
ear perturbations, A. In the diagram, the input v represents set points, disturbances
and noise, the output e represents error signals. In this framework, the control analysis
problem focuses on two key questions : first, is the system stable for all perturbations
in some prescribed set (robust stability); and second, does the error remain in a de-

sired bounded set for all perturbations and inputs in some appropriate sets (robust
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performance).

Practically speaking, this approach will be applied to plants with input signals of
bounded energy or bounded power, and the results guarantee that the outputs are also
bounded in energy or power, respectively. For the class of bounded-energy signals,
mild smoothness conditions guarantee that the signal goes to zero asymptotically. It
should be noted that the class of input signals can be broadened by the inclusion
of weights which are incorporated into the nominal plant M. This can be used, for
example, to include steps in the input class. Similarly, the output signals can be

weighted to incorporate performance criteria.

3.3.2 Stability and Performance Results

In this section, the robustness results of the last chapter are briefly summarized.

Consider again Figure 3.10 and an appropriate partitioning of M:

€ My My v
()= (e ) ()
z My Moy w

Connecting the loop between z and w yields the linear fractional transformation

(LFT) representation for the overall operator, G, :
e = Fy(M, AYw2[My; + My A(I — My A) ™ My o (3.33)

Since it is required that the nonlinearities are conic-sector bounded, it is without loss

of generality that A is restricted to the class of bounded operators:
BA := {A € A|A € Cone(0,1,1)} (3.34)

We forgo formally defining the cone notation until the next section. It suffices to say

that the operators in this class have well-behaved bounded properties. The Small
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Gain Theorem can be used to arrive at sufficient conditions for robust stability and

performance (RS) and (RP):

RS : ||My:)le = Brs (Brs < 1)
RP: ||Fy(M,A)llo =Brp (Brp <1)forall A € BA

(3.35)

These conservative conditions can be improved by the introduction of constant scaling
matrices which commute with the perturbation block A. In this context, commutivity
is defined to be:

[IPAD™ oo < |Aloo (3.36)

For the uncertainty structure given in Equation 3.31, one appropriately structured

commuting set is:

D £ {diag[Dy,...,Dm,di]s,,...,dulk,]
|D; € C™*™ is invertible, d; # 0}

(3.37)

Incorporating these scaling matrices, we can arrive at less conservative conditions for

robust stability (RS’) and robust performance (RP’):

RS": |[DMy; Do = Brsr (Brs' < 1)

I 0 I 0 (3.38)
([0 s (! 2 )] ) iemse
0 D 0 D-!

(Brpr < 1) for all A € BA

In [25], the motivation was presented for carrying out the SSV calculations in the
time domain because of the computational attractiveness of the resulting calculations.
Consider now the discrete map N(z), which is calculated from M(s) with the norm-

preserving bilinear transformation, s = };—j, mapping the unit disk to the right half
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plane. The map is appropriately partitioned

Ti4a N Nz Ny T
€k = Ngl Ngz Ng3 Vi (339)
E N3; Ni; Naz/) \wp

where wi = A(k, zx) and for each k, A is an element of the prescribed uncertainty
set BA. Now a coordinate transformation, T, is introduced as a scaling on the
state variables. In an analogous manner to the commuting D scales, the coordinate

transformation reduces the conservatism of the time domain result.

Theorem 3.3 Robust Performance
Given a system N and block structure A. Suppose A is inside cone(0,1,I). If there

are appropriately partitioned constant scaling matrices T' and D such that

T 0 0 ™1 0 0
gllo I o|N|] O T o =8<1
0 0 D 0 0 D

then the uncertain system

Thyl Nii Nz Ny Tk
er | =| Na Ny Ny Vg
Zk N31 N32 N33 \ Wk

Wi = A(k‘, Zk)

is zero-inpul ezponentially stable and if zo = 0 and {vi }2 € L2, then ||e|le, < B||v|le,-

Proof 3.3 See [25].
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3.3.3 State-Bounded Result

For this study, it is necessary to impose bounds on the state variables to guarantee the
invertibility of the linearizing transformations as well as to facilitate the calculation
of conic-sector bounds. The region will consist of a scaled unit hypersphere which
becomes a hyperellipsoid in the original variables.

The SSV yields performance results with the norm of an error signal being bounded
by a norm on the input signal. If we select as an error signal z,, the scaled states,
then we can calculate an upper bound for z, as a function of the inputs and the initial

conditions. This particular value of the SSV will be denoted Ags.

Theorem 3.4 State Bound
If the conditions of Theorem 3.3 are satisfied when the system state, z,, are selected

as the output, e, then the following bounds on the states hold:

lzs||* < @|[v]f* + 7 |lzso|* < 1 (3.40)
where:
a = P
y = &(T)

and T' is the state transformation used in Theorem 3.3.

Proof 3.4 Theorem 3.3 results in:

lell?, + (1 = B Tzally, < BlIollZ, + |1 Tzl (3.41)
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Unwrapping the state transformation yields:
lellz, +2*(T)(1 = B)llzallf, < B2llvl, + 5*(T)llzaol, (3.42)

Selecting the output, e, to be the plant states, z,, and choosing zero initial conditions

for the controller yields:
lzall7, +<*(T)(1 = BY)l[zally, < BlIollE + 5*(D) |zl (343)
Which implies:
.2, < BlIvllZ, + 5*(T)ll=woll7, (3.44)

For a given k, the following holds: ||zo|* < T2, ||zsk|* = ||zs]|,. Thus the bounds

hold but are somewhat conservative.

3.4 Conic-Sector-Bounded Nonlinearities

3.4.1 General Description

In this section, the class of nonlinear operators which are to be considered is formally
defined. It is required that the operator y = N(z) be inside a conic sector or cone.

The simple definition for a conic sector introduced in chapter 2 is expanded as follows:

Definition 3.2 The conic sector Cone(C,R,S) describes the bounds on a static, non-

linear, input-output mapping (y = f(z)), which satisfies:

Cone(C, R,S)2{(z,y)ly = Cz + SA(Rz), ||A(z)] < ||z} (3.45)
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For y € #,z € R" and a square A structure of size d, then S € ®P*¢ R € RI*™ and

C € ®*". The cone described in chapter 2 now corresponds to:
Cone(C, R,1)2{(z,y)|lly - Ca|| < ||R=|} (3.46)

In simplest terms, the cone center C represents the best linear approximation of the
nonlinear operator over the range of interest. The radii R and S give some measure
of the error associated with this representation. A key point to note is that the
Cone(C,R,S) contains many different operators, some of which may be considerably
more pathological than the original nonlinear operator.

In terms of LFTs, the conic sector has a convenient representation which lends

itself naturally to SSV analysis

Cone(C,R,S) = F,(M.,A) where M, = (O R) (3.47)
S C

and A is inside the Cone(0,L,I). This shows quite clearly how the nominal plant Cz
is perturbed via the terms R and S. A minimization of these two factors yields the
least “uncertain” or most linear system. The term R accounts for the interactions
between the inputs to the operator, and the term S takes into account the coupling
between the outputs of the system. For example, a perfectly diagonal map such as
yi = fi(z) for ¢ = 1,p, can be described by a cone with a diagonal R term and a
diagonal A structure with p uncertain gains (the diagonal S term can be absorbed

through the A block into the R term).

3.4.2 Optimal Cones

The objective of a minimally conservative paradigm is to reduce the effect of the SAR
term in the conic-sector description of our nonlinear plant. This is determined by two

factors:
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e The overall magnitude of R and S.
e The complexity of the A structure.

The balancing of these two factors to yield the least conservative SSV calculation
is a formidable task involving an elaborate iterative scheme. A simple algorithm
is proposed here to arrive at a sub-optimal solution to this problem (though not
necessarily the global optimum).

In general, the maximum (sensible) A is a diagonal matrix containing np inde-
pendent gains. This assumes completely independent gains for each input-output
matching in the mapping of N. At the other extreme, the simplest nonlinear opera-
tor could be described with a single uncertain gain. This is true in the conic-sector
representation for the dynamics of a simple CSTR [25]. Simpler A structures are
more attractive from a computational perspective and, in fact, the SSV is equal to
its computable upper bound for some simple structures in the case where A is linear
(but possibly time-varying) [72].

For a fixed A structure, a simple geometric argument will be made for the defini-
tion of a minimally conservative cone. Consider the case of a scalar nonlinear operator
(§ =1). In Table 3.2 is shown the geometric interpretation of various conic sectors.
In order to minimize the region inside the cone, one can minimize the hyperdimen-
sional éngle (or sum of such quantities), which defines the region. It can be shown
that this is equivalent to a minimization of the Frobenius norm of the matrix R. This
result can also be derived from the fact that the Frobenius norm is an upper bound

for the infinity norm. Using the conic sector definition (Equation 3.45) we get:

[SAR2)| . ISHIAR)] _ [IS]IIR=| < IS IRlF (3.48)

=l*  ~ el = =l

Three possibly distinct solutions to the conic-sector minimization problem can be

envisioned corresponding to three A structures.
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| Table 3.2 Conic-Sector Regions - Geometric Interpretation |

[d]n — Region |
= — S -

1|1 2 Flat Slices

112 2 Infinitely Deep Slices

212 2 Square Based Pyramids

Definition 3.3 The Feasible solution to the nonlinear conic-sector bound minimizes
the Frobenius norm of the product of the cone radii S, R, corresponding to the smallest

A structure which can envelop the nonlinear operator.

Definition 3.4 The Full solution to the nonlinear conic-sector bound minimizes the
Frobenius norm of the product of the cone radii S, R, corresponding to the largest

sensible A structure (np independent gains).

As the size of the A structure increases, the Frobenius norm must necessarily decrease

(i.e., the smaller feasible structures are all subsets of a larger structure).

Definition 3.5 The Global Optimal solution to the nonlinear conic-sector bound
minimizes the upper bound on the Structured Singular Value (SSV) corresponding to

the uncertainty structure associated with the cone (C,R,S).

As the first two are the limiting cases, the Global Optimal solution must lie between
them. The tradeoff between simple A structure and small Frobenius norm is balanced

at this point.
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3.4.3 Numerical Calculations

A nonlinear program (NLP) is set up to calculate the solution which minimizes the
Frobenius norm for a given A structure. The program requires ¢ data points consisting
of an input vector z and corresponding output vector y. As most of the nonlinearities
for this study are monotonic and constrained to a finite region in z, it was often
sufficient to calculate the data points along the boundary of the hyper-ellipsoid. The
g;eneral scheme of the NLP is to minimize the Frobenius norm with the constraint
that the data lie inside the calculated conic sector. Obviously, the larger the value of
¢, the more accurate the calculated conic sector and the greater the computational

complexity of the NLP. For the case where the d sub-blocks of A are scalar, the NLP

can be written

Min g
, (\/Ei';l ;'l=1 5121) (\/Z:';l ?:1 R?J) =n
T Cuzie + Ty [Su‘ (zn, Rijzji) 5:'Ic] = Yik

T Coiin + Ty [Spi (Ties Rijos) S| = v
|61k <1

k=1,q4

|6ak | <1

\

where {(y1k, -, Ypk), (Z1ks - .., Tnk)} are the given data points (k = 1,q). The total
number of variables is (1 + dn + dp + pn + dg) and the total number of constraints
is (1 4+ pg + dg). It is important to note that the above algorithm can be used to
find the linear bounds on an arbitrary polynomial approximation (cone center) to the
nonlinear function. The additional variables introduced appear linearly in the equality
constraint equations ( y = Cyz + Cpz? +- - -). For example, consider a quadratic cone

center which approximates an operator with two inputs and one output. As there is
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only a single output, there is no need for an S matrix, and the equality constraints

in the NLP become:

2 2
Cnziy + Crazikzor + Co2z3)

+ [61k (Ruzik + Ri2ak) + 6ok (Ranz1k + Roazak)] = yix

This approach will be used in conjunction with the QAL scheme.

3.4.4 Design Procedure

The overall design procedure is indicated by the flowchart in Figure 3.11. First,
a reasonable region of operation is selected over which the selected control law is
valid (no singularities in the nonlinear control algorithm). Next, a second order
approximation is introduced for the cone center in the numerical algorithm of Section
3.4.3. Using the QAL software, the approximate involutivity condition is verified.
In the event that this property is not satisfied, the “nearest” involutive second order
plant is found. The result at this stage is a representation of the closed-loop linearized
plant and the A; term which is required to represent the third and higher order
terms neglected in the approximate linearization. Next we consider the impact of
disturbances on the nonlinear closed-loop system. The nonlinear cone center and
radii for this additional nonlinearity is calculated and the resultant system is evaluated
against theorem 3.4. Violation of this theorem suggests two alternatives. First, the
magnitude of the disturbance can be reduced in an effort to satisfy the originally
formulated state bounds. Otherwise, the region of operation (state bounds) must
shrink until theorem 3.4 is satisfied. If the state bounds shrink to zero, the robust
performance for the nonlinear system approaches the nominal performance for its
linear approximation (Jacobian). Using this as a lower bound, the region is increased
and, as more nonlinearity is introduced, the resulting performance degradation is

observed.
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Once the state bounds have been verified, the uncertainty formulation based upon
the conic-sector description is validated. Now the standard robust performance anal-

ysis can be performed upon the closed-loop system.

3.5 Example #3: Nonlinear Exothermic CSTR with First
Order Kinetics

3.5.1 CSTR Model

The dimensionless mass and energy balances for a CSTR (see Figure 3.12) with first

order, irreversible, exothermic kinetics (A — B) are given by

o -~ 204z
& = fi=-& —210+ Da(l — & — z10)eFEF20)7

Fp = fz-ﬂu+d=—ig—mgo—ﬁ(ﬁ+uo)+d (3.49)
+BDa(l — &1 — 210)e BT — B(3; + 720)

using the dimensionless quantities defined in Table 2.1. This simple model has two
state variables (reactant concentration, reactor temperature). The control problem
focuses on the SISO regulation of the reactor temperature by manipulating the cooling
water temperature while subjected to disturbances in the feed-stream temperature.
The values of the dimensionless parameters are [12]: Da = 0.072,B =8,3 =0.3,y =
20 and z. = 0.0. These conditions lead to multiple steady states and operation is

chosen at the unstable point (uo = —0.20, 219 = 0.5, 25 = 3.03).

3.5.2 Linearizing Transformations and Uncertainty Description

We consider three controller synthesis techniques (GSL, QAL and simple linear (P,
PI)), as well as two disturbance classes (bounded energy and steps). The GSL results

have been published elsewhere [12],[42]; we merely summarize here. The state and
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> A, B

Figure 3.12. Example #3 — Exothermic CSTR
input transformations

21 = TI(QI) = Ty — Tig
2 = Tz(“’) = f1($1 - 3510)
a(z) = <dTy, f >

Blz) = <dlzg> -1 (3.50)
yield, in transformed coordinates, the dynamical system
0
01 0
= z+ v+ (z2tz1tzi0)d (3.51)
00 1 [ 1 }
-1

1+
;_-ﬂ-_;L-!-z_
" D;i 1—z1—210)

It is clear to see the constraints imposed by inverting T5(z) in Equation 3.50. For

general problems, this inherent limitation restricts the application of state lineariza-
tion techniques to local regions in the phase space. For the purpose of this study, we

consider the region of interest to be the interior of the ellipse:

2 2
21 23

42 _ 3.52
.082 + .552 ! ( )
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for QAL. This corresponds roughly to a circle of radius 0.1 in the z domain for GSL.

This region and the constraints on it are depicted in Figure 3.13.

For the QAL, it is necessary to calculate a nominal quadratic plant. Using the

it is found that the second order plant with

NLP described in the previous section,

the tightest conic sector over the region of interest (Equation 3.52) is given by:

T = —2% 4 .381%; + .0208% — 7613, %, + .127%2

-~

Ty = —8%; + 1.75%, + .320%% — 6.09%, %, + 1.02%2 + 0.34

~

The uncertainty is characterized by a single uncertain gain with radii:

(1 8)",R

(0 0.0067). This can be compared with the tightest conic sector
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associated with a first order approximation of the nonlinear plant

. [-2 0377 1
= i+ i (3.54)
-8 1.718 0.3

and its associated uncertainty radii: S = (1 8)T,R = (0 0.104). Using the
objective in our NLP as a measure, the quadratic approximation reduces the nonlinear
uncertainty by a factor of 15. The second order system in Equation 3.53 yields an

exact quadratic linearization with the following state and input transformations :

zn=Ti(z)= % —0.7388%2
29 = Tg(w) = 512 +3.9320§:§ - 3.4751.’%152 + 0.33335%
a(z) = —1.330432 — 4.9235%, %, + 0.9311%2

B(z) = —3.4751%, + 0.6667, (3.55)

Just as in the case of GSL, the state transformations derived for QAL are not
globally invertible and the loci of singularity are shown in Figure 3.13. These loci
correspond to values of z which result in complex values for z.

The transformed coordinates yield the same linear approximation

—2 0.3808 0 o7 (0
z= z+ v+ |5 +AP (3.56)
~ \ =8 17467 0.3 02 \d) |, _p-1z)

where the Jacobian is calculated from Equation 3.55. The other term in this equation,
AP, accounts for both the error in approximating the nonlinear plant by a second
order system and also for the order three and higher terms inherent in the QAL.

In summary for the disturbance problem, the GSL scheme requires a single un-
certainty block to represent the nonlinear effect of the disturbance. This block is
optimally modeled with two uncertain nonlinear gains. The QAL technique requires

an uncertainty block for both the nonlinear disturbance effect and the plant model-
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| Table 3.3 Uncertainty Description (Example #3) |

Method | A structure | ISlIFlI R F
6 0
GSL ( 0 62) 0.29
6 0 0
QAL 0 6 O 0.61
0 0 6
Linear (61) 1.10

ing error. In this case, the optimal uncertainty description has three nonlinear gains.
Finally, the simple linear control approach requires a single uncertain gain to repre-
sent the error inherent in the first order approximation. The structure of the various
uncertainty blocks and the magnitude of their radii are listed in Table 3.3. It should
be pointed out that conclusions about the various schemes based on these data alone
should be drawn carefully. The schemes represent rather different coordinate systems

as well as uncertainty structures.

3.5.3 Analysis of Stability Properties

We restrict our attention in this chapter to a particular performance criterion - namely
the bounding of the states while the plant is subjected to two classes of disturbances.
In the first case, we consider bounded inputs of bounded energy (e.g., decaying sinu-
soids). In the second case, we consider the class of inputs of bounded energy passed

through the filter 1 (e.g., steps).
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Bounded-Energy Disturbances

In this case it is sufficient to consider simple proportional control in the outer loop
of Figure 3.1. No integral action is required for feed temperature disturbances of
bounded energy to guarantee zero offset. The controller gains [1.35,2.12], as found
in [12], are used for the GSL, and the gains [—16.9,6.23] yield the same closed-loop
poles for the QAL (and the simple linear approach). To simplify the comparison, all
three systems are required to have the same closed-loop dynamics in the transformed
variables. A more realistic comparison might involve calculating a controller to give
the same dynamics in the original variables, but as shown in section 3.1, this is not
easily done for the GSL.

The analysis procedure involves varying the magnitude of d and calculating a cor-
responding value of Bgs. Then we can use Equation 3.40 to calculate a bound on the
initial state. For the general robust performance problem, one can use this approach
to calculate the tradeoff between initial condition and input magnitude effects on the
computed performance guarantee. For the state bound problem, the tradeoff curves
are plotted in Figure 3.14. Recall that this approach yields sufficient results, so the
curves in this diagram represent a lower bound on the tolerable disturbance and ini-
tial condition magnitudes which give rise to bounded states. An additional point
is given in the diagram to show an actual simulation in which the states escape the
bound in Equation 3.52. This represents an upper bound on the tolerable disturbance
magnitude (zero initial condition), and the proximity of the points along the y-axis
shows the promise of this technique.

In Figure 3.15, we depict the various state bounds as they are mapped into the
true z; — 3 coordinate system. As expected, the QAL contour shows minimal defor-
mation of the original ellipse as compared to the GSL contour. It is evident from this
figure that a precise comparison of the results is not possible. Each result guarantees

stability over a different region in the phase space. Included in this diagram is the
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Figure 3.14. Bounds for Which Closed-Loop Stability is Guaranteed (Example #3,
Bounded £, Signals)

phase portrait of the response of the simple linear system to the input disturbance
0.3 e7% sin(.5t). The response of the QAL and GSL are virtually identical to the
depicted response for this input. This indicates that Table 3.3 is a reasonable measure

of the conservatism inherent in analyzing the three approaches in the SSV framework.

Step Inputs

The above procedure is repeated for persistent step disturbances with PI control in
the outer loop for asymptotic tracking. The controller gains are [4.93,3.93] for the
GSL and the error in z; is integrated with 77 = 0.422. For the QAL (and linear)
schemes, the gains which yield the same closed-loop poles are [—17.27,12.25] and

77 = 0.0482. The GSL approach suffers from the weakness that only z; represents a
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physically meaningful quantity to integrate. This is opposed to the flexibility inherent

in the QAL scheme to integrate a reasonable estimate of ;. The tradeoff between

disturbance bounds and initial condition magnitudes is shown in Figure 3.16.
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Figure 3.16. Bounds for Which Closed-Loop Stability is Guaranteed (Example #3,
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3.6 Example #4: Nonlinear Isothermal CSTR with Van de
Vusse Kinetics

3.6.1 CSTR Model

The dimensionless mass balances for a CSTR with isothermal Van de Vusse kinetics

[87] (Figure 3.17) are given by

.‘i‘l = —-kl.’tl - k3$% + u(xm - 1171)
11.72 = klil?] - kgmg + U(—.’L'g) + d (357)
y = 2

using the dimensionless quantities defined in Table 3.4. This simple model has two
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> A,B,C,D

Figure 3.17. Example #4 — Van de Vusse Reaction

| Table 3.4 Dimensionless Variables for Example #4 |

77
Ch
Z2 100,
$Bo
d T10 Can
F
u v

state variables corresponding to the two chemical species. The control problem focuses
on the SISO regulation of the concentration of B by manipulating the inlet flowrate of
A (dilution rate) while subjected to disturbances from a side stream containing B. The
values of the dimensionless parameters are: z;0 = 5.0,k; = 0.5,k, = 3.0, ks = 0.5.
These conditions allow operation at the following point: (ug = —1.0, 19 = 2.0, 250 =

0.25).

3.6.2 Linearizing Transformations and Uncertainty Description

We consider three controller synthesis techniques (GSL, QAL and simple linear (P,

PI)). The GSL approach results in the following state and input transformations :

T2

z = Ti(z) = function of —
10—

29 = Tz((t) = Lf(zl)
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a(r)= <dTy, f>

B(z) = <dTg9> -1 (3.58)

In this example, we find that the new states (z;, z;) have very complicated dependence
on the original states (z1,z,) and yield a dynamical system for which it is difficult to
translate our original con£r01 objectives (on the concentration of B). One approach
around this is to satisfy the GSL conditions for one of the states but retain our output
(z2) in the resultant linearized dynamics. This leads to the so-called input-output
linearization (IOL) [54]. A detailed discussion of this approach is postponed until
chapter 4. It is sufficient to point out that this method requires a minimum phase
system. It can be easily shown that the system described above also violates this
condition.

Consequently, the only meaningful approach is to consider QAL. The second order
system in Equation 3.57 yields an exact quadratic linearization with the following

state and input transformations :

5H=Ti(%)= % -0.0937657 —0.5225%,%, — 0.1529%2
Z,=T(%) = %, +0.025323% + 0.1303%,%, + 0.03345%2
a(z) = —0.144432 + 0.6457%1 %, + 0.229432

B(%) = —0.4773%, — 0.4970%, (3.59)

As before, there are constraints imposed by inverting the transformations in Equa-
tion 3.59. For the purpose of this study, we consider the region of interest to be the

interior of the ellipse:

A
o T s = ! (3.60)

The nonlinear transformations are invertible over the entire physical range of the

variables (zero concentration - full conversion). In the transformed coordinates the
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[ Table 3.5 Uncertainty Description (Example #4) |

Method A structure ISN7||RllF
6 0 0 0 O
0 6 0 0 O
QAL 0 0 & 0 0 2.67
0 0 0 6 O
0 0 0 0 &
& 0 0
Linear 0 6 O 1.14
0 0 6

dynamics are given by

—35 0.0 3 ar (0
z = z+ V4 | + AP (361)
05 —4.0 —0.25 92 \d)|,oresgs

where the Jacobian is calculated from Equation 3.59. The quadratic transformation
is also invertible over the region defined in Equation 3.60. The other term in this
equation, AP, accounts for both the error in approximating the nonlinear plant by a
second order system and also for the order 3 and higher terms inherent in the QAL.
It can be calculated from the following equation which is obtained by subtracting the

linear resulting plant from the transformed nonlinear original system:

AP = (F /() + 9(@)a(@)] lo=1-1) + (5 [9()T + B@))] lomr-1(9) »

[(Gos ) ()]

The tightest uncertainty formulation for these two closed-loop systems (QAL and

(3.62)
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linear), including disturbances, is outlined in Table 3.5. QAL requires five indepen-
dent nonlinear gains for enveloping the nonlinear remainder terms and the linearly
controlled reactor required three independent nonlinear gains to cover its nonlinear
elements. The product of the Frobenius norm of the radii for QAL is more than twice
as large as the product of the Frobenius norm for the linear case. This is in part
due to the number of gains in the QAL structure, and in part due to the resultant
transformations which have not been normalized over the relatively skewed ellipse in
Equation 3.60. As mentioned in the previous case study, it is not advised to draw
comparative observations from the results in this table. The SSV calculations are con-
servative and represent upper bounds for attainable performance levels. In fact, as
the simulations in the next section will demonstrate, the QAL scheme demonstrates

superior robust stability properties over linear control for the Van de Vusse reactions

in a CSTR.

3.6.3 Analysis of Stability Properties
Bounded-Energy Disturbances

The linear control synthesis scheme for the linearly controlled system and the outer
loop for QAL are identical due to the equivalent Jacobian approximations in each
case. As can be verified from Equation 3.61, the reaction system possesses a right half
plane zero and is therefore minimum pha.se.b The IMC approach is used to synthesize
a linear controller with a first order filter (time constant = 0.1).

The design procedure outlined in Figure 3.11 results in the tradeoff curves depicted
in Figure 3.18. This figure suggests that the linearly controlled system can handle
much larger disturbances over a wider range in the state variables than the QAL
controlled system. The trends in this figure follow logically from the uncertainty
formulation in Table 3.5. However, it is emphasized that these results are only upper

bounds.



111

0.06

0.05 -

0.04 -

0.03 -

0.021 QAL

Disturbance Magnitude

0.01 -

0.00 ¥ T ¥ T ¥ T ¥ - e O
0.0 0.2 0.4 0.6 0.8 1.0
Initial Condition Bound
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Despite the results from the SSV analysis, QAL for a quadratic, highly nonlinear
system is expected to yield vastly superior robustness results over the linearly con-
trolled system. (Highly nonlinear refers to the presence of nonlinear f(z) and g(z)
in the state dynamics for the reactor.) These claims will be investigated through

closed-loop simulations.

Simulation

In Figure 3.19 are shown the responses of the closed-loop reactor system to an im-
pulse disturbance in the concentration of species A (equivalently consider nonzero
initial conditions for ;). The top two graphs show the response of C4 and Cp (in
normalized, deviation variables) for both QAL (solid line) and IMC linear control

(dashed line) to a 10% perturbation in C4. The results are virtually indistinguish-
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Figure 3.19. Disturbance Response (Example #4, Linear (dashed), QAL (solid))

able over this small range. Note that this range is completely covered by the ellipse
in Equation 3.60. This indicates that the results in Table 3.5 are very conservative.

The lower two graphs in Figure 3.19 show the same reactor variables when sub-
jected to a larger (45%) perturbation in C4. Now the nonlinear dynamics are clearly
manifested in the linearly controlled system. In fact, a slightly larger perturbation
(50%) will drive the linearly controlled system unstable. This is in direct contrast
to the QAL scheme, which behaves qualitatively the same in each case: its response
is scaled linearly. To understand this effect more clearly, consider the curves in Fig-
ures 3.20 and 3.21.

Shown here are the values of the output, Cz, and the manipulated variable, u,
from the last simulation. The curves represent the linear controller (NLMLC), QAL
(NLMNLC), and an additional curve is added to show the response of the ideal linear
model (Jacobian) under linear control (LMLC). Now the “linearizing” ability of QAL
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Figure 3.21. Disturbance Response (Example #4)

is evident. The output for QAL in Figure 3.20 tracks the linear output exactly. This
is accomplished at the expense of the relatively aggressive control action illustrated
in Figure 3.21.

A few concluding comments regarding this example are in order:

e Simulations confirm the superior performance of QAL over linear control for

this reactor.

e Results from SSV theory predict a vastly superior performance for the linearly

controlled system.

This example clearly emphasizes the need for continued research in the formulation

of minimally conservative criteria for the calculation of robustness properties for a
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nonlinear system. The positive result demonstrated in this example is the tremendous

improvement in system performance attained when second order nonlinear effects are

directly treated.

3.7 Conclusion

In this chapter, we have revealed the theoretical concepts which demonstrate that the
Quadratic Approximate Linearization is a more practical linearization scheme than
the Global State Linearization. The presence of external disturbances and unmodeled
dynamics is manifested in relatively minimal nonlinear behavior in the QAL scheme.
In addition, the broad applicability of this technique and potential for systematic
optimization of the resultant solution further motivate its use. Through several case
studies, the relative merit of QAL over both GSL and linear control is clearly demon-
strated.

An additional contribution developed in this chapter is a formal algorithm for
calculating minimally conservative conic-sector bounds for a general nonlinear oper-
ator. The result is expressed in the form of an nonlinear optimization and several
examples involving its application are illustrated. New extensions of the structured
singular value are used in conjunction with the uncertainty structures resulting from
these conic-sector bounds to calculate bounds on the robustness properties of several
chemical reaction systems. Performance specifications are derived over physically sig-
nificant operating regions in the reactors. Unfortunately, the conclusions drawn for
a single system with different controllers (GSL, QAL, and linear) indicate that the
results are fairly conservative and not appropriate for absolute comparisons.

In the final case study, the application of QAL to a highly nonlinear quadratic
system resulted in vastly superior performance over linear control. This demonstrates
the utility in a nonlinear approach which directly handles successively higher order

terms in a series approximation of a true system. The software for Ternary Approx-
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imate Linearization (TAL) is currently being released and future work in this area
will center on an investigation of the incremental improvement in TAL over QAL for
certain classes of process systems.
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Chapter 4

Implications of Nonlinear Control for a
Packed Bed Reactor

Abstract

A nonlinear controller design for a packed bed reactor is presented. The scheme em-
ploys a two-tier approach in which first, a low-order nonlinear model is developed
and, subsequently, a feedback linearizing control law is synthesized. The reduced-
order model treats transport mechanisms in the reactor as a nonlinear wave which
propagates through the bed. Application of input-output “linearizing” control yields
mild linear dynamics over a range of operating conditions which lead to parametri-
cally sensitive (open-loop) reactor behavior. The practical issues of implementing the
resultant digital, implicit, nonlinear control law on an actual system are addressed.
Analytical tools are employed, along with closed-loop simulations, to illustrate the
robustness properties of the nonlinear controller. In addition, the relative strengths

of this approach over traditional linear control are identified.

4.1 Introduction

Packed bed reactor control and modeling have been an active area for both academic
and industrial research. For the most part, previous approaches have focused on mod-
els described by large-order linear systems of ordinary differential equations (ODEs)

which approximate the partial differential equations (PDEs) for the mass and en-
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ergy balances in the reactor. These models, in turn, are employed in a model-based
framework, such as model predictive control or internal model control, to synthesize
a controller. For a survey of the academic and industrial efforts towards this goal,
the interested reader is referred to [46].

While traditional approaches toward packed bed reactor control have sought to
maintain the cooling jacket temperature at its optimal steady-state value, more re-
cent studies have suggested that periodic control can lead to higher yields [27]. By
exploiting the excitation of intermediates on the catalyst, these highly nonlinear and
heterogeneous kinetics are optimized.

Recently there has been considerable interest in nonlinear approaches to control-
ling other chemical process systems, notably the differential geometric techniques of
feedback linearization. These schemes use measurements of the system’s dynamic
states in the construction of a nonlinear inverse for the process. Effectively, this
yields a linear dynamical system which can be treated with the rich array of linear
control tools. Previous studies have investigated the application of these techniques
to lumped parameter models of CSTRs [12] [42], bioreactors [47], and polymerization
reactors [17]. In the area of distributed parameter systems (DPS), recent work has
described the application of these techniques to a distillation column [63]. However,
there have been no reported results of application of these techniques to complex,
distributed parameter reaction systems like packed bed reactors.

In this chapter, a nonlinear control methodology for a fixed bed catalytic reactor
is developed. There were a number of restrictions and constraints encountered in
applying these techniques to a packed bed reactor, particularly with regard to the
type of reactor model employed. The control synthesis techniques require relatively
low-order nonlinear lumped parameter models. This has lead to the formulation of a

two-tier approach for the controller design:

e Develop an accurate low-order nonlinear reactor model.
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e Synthesize a feedback linearizing control law for the reactor.

In addition, there are many practical issues which arise in the application of these
techniques to complex practical systems. These include sampling effects for digital
control implementation and the treatment of implicit nonlinear control laws.

Finally, there are some fundamental analytical questions which must be addressed
concerning the effectiveness of nonlinear control. This issue is often overlooked in feed-
back linearization studies. The proposed algorithm is evaluated against traditional

linear approaches to process control.

In summary, the primary contributions of this chapter are:

e The development of an accurate low-order nonlinear model for a packed bed

reactor.
e The synthesis of feedback linearizing control for the packed bed reactor.

o The identification of practical issues of implementing feedback linearizing con-

trol for a practical system.

¢ The analysis of the comparative merits of nonlinear versus linear control for the

packed bed reactor.

Although the differential geometric techniques have been largely restricted in
study to academic examples in the literature, an industrial application has been
reported recently in France [58]. Here, the targeted process is a 42-tray depropanizer
and the results suggest strong improvements when nonlinear control is chosen to re-
place the existing linear approach. It is anticipated that future studies, such as the
one presented in this work, will help to elucidate the potential advantages for non-
linear control of chemical process units and may, in turn, lead to further industrial

implementation of such control techniques.
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4.1.1 Notation

A brief review of some of the technical terms and concepts used in the field of differ-
ential geometry is presented. The first-order approximation (Jacobian) of a nonlinear
system will be referred to as the classical linearization in contrast to the nonlinear
control scheme known as feedback linearization. Let z € ®*, and f, g, and & be real
analytic vector functions of z. The following differential operator, so-called the Lie

derivative or directional derivative, is defined as the following:
- r 0 3
Ly = fizgi+-+ fas: (4.1)
where f; is the :** component of f.

4.2 Reactor Model Development

4.2.1 Previous Approaches

The mass and energy balances for a tubular catalytic reactor with an exothermic

reaction are given by the following coupled nonlinear PDEs (homogeneous model):

ue =r(c,T)(1-¢)
C(t,O) = CO(t)
(pCo 5 +upCofs = AGE + B(T ~To) = (-AH)r(T)(1 -  (42)
T(¢,0) = To(t)

=0

The expression r(c, T') represents the reaction rate term, which is generally determined
experimentally and may be a complicated nonlinear function of ¢ and T as well as
other operating conditions (e.g. deactivation effects).

For control purposes, a system of (possibly nonlinear) ODEs is required. Hence it
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is necessary to approximate the distributed parameter system (DPS) given in Equa-
tion 4.2 by a lumped parameter system (LPS). Typical approaches to this problem
have included the numerical techniques of orthogonal collocation and finite differ-
ences [15]. In the former technique, the reactor balances are discretized in both the
radial and axial directions to result in a set of ODEs which scale in size directly with
the number of interior collocation points. In the finite difference approach, the op-
erating regime is also discretized; however, the individual regions now have uniform
properties and difference equations result.

For illustration, the results of modeling studies performed on a laboratory metha-
nation reactor [61] [90] are presented. In order to accurately model the observed
behavior, an orthogonal collocation approach required one interior radial point, 12
interior axial points, and resulted in a 49th-order LPS. Roughly the same CPU re-
quirements were obtained in a finite difference approach with 100 internal mesh points.
This led to a model with 401 ODEs.

There are two principal difficulties with these modeling techniques for nonlinear
control applications. First, the measurement of the peak temperature in the reactor
(the hot spot temperature) is often poorly represented by models with an inadequate
number of interior collocation points or too coarse of a finite element mesh. This
quantity (hot spot temperature) is typically one of the targeted variables for control
as its regulation can assure acceptable temperature profiles, thus minimizing the pos-
sibility of catalyst deactivation or reactor damage. Quite often, the peak temperature
location will vary greatly with the operating conditions.

Clearly this problem could be improved with a greater number of collocation points
or a finer finite element mesh, but this leads to a second difficulty: high-order dynamic
models. The propbsed approaches for nonlinear control require very low-order models
(typically fewer than six to ten states). Higher-order models lead to intractable

problems, even with the aid of symbolic manipulation software. Subsequently, the
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traditional approaches to packed bed reactor modeling of orthogonal collocation and

finite differences are not directly useful for feedback linearizing control synthesis.

4.2.2 Model Reduction

The goals of the present work motivate the development of a reduced-order represen-
tation of the essential process dynamics for control purposes. In this context, essential
refers to a minimal representation of the dynamics which affect the overall stability
and performance of the reactor as a function of the controlled inputs. In this manner,
the controller design problem is more tractable and the resultant control action is
effective in as much as the model captures the appropriate dynamics.

In the context of linear dynamical systems, Hankel methods for model reduction
have been widely used. Numerically stable algorithms are available for calculating
balanced realizations of high-order linear systems. These simplified models retain
their observability and controllability properties, but now in an irreducible structure.
The shortcoming of this approach, from a control engineering perspective, is the fact
that the new dynamical variables may have little physical meaning. By reducing
the size of the system model, key engineering state variables and their associated
dynamics may be lost.

More recently, there have been attempts at model reduction for general nonlinear
systems of ODEs and algebraic equations. One approach involves a so-called optimal
projection of the system trajectories onto a space of lower dimension than the original
state space. The approach is reasonably systematic. Recent work has strengthened
the theoretical results and general applicability of such techniques [59]. Using this
approach, a packed bed reactor can be modeled by a nonlinear dynamical system of
on the order of six differential equations; however a large number of additional states
may be required for operation under conditions of high parametric sensitivity (i.e.,

incipient thermal runaway). The results show great promise, but again, the principal
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weakness is the physical insignificance of the states in the reduced-order model.

4.2.3 Low-Order Physical Model - Wave Propagation

Background

An alternative approach for low-order modeling of packed bed reactors was put forth
by Gilles and co-workers at Stuttgart in thé early 1980s [32], [33], [34]. This approach
has great intuitive appeal because it attempts to identify the key dynamical variables
in the reactor from physical arguments and it results in lumped parameter nonlinear
models of very low order (two to six dynamical states). The general idea is to treat the
active transport processes in the reactor as a nonlinear wave which propagates along
the reactor bed in response to changes in the operating conditions. The mathematical
treatment of a number of chemical processes as propagating waves is described in
[62]. In this section, a few of the details of wave propagation modeling are sketched,
primarily the enhancements to the approach described in [34] for the present study.

The physical observation in packed bed reactors which suggests the wave propa-
gation approach is the fact that temperature profiles respond to changes in operating
conditions by shifting position while retaining the same essential form. This is shown
in Figure 4.1 for a typical temperature response for a change in inlet flow rate. The
temperature profile is modeled as a nonlinear wave which possesses a form stability,

which can be characterized in precise mathematical terms [33]. From an engineering
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perspective, the bed is divided into two regions: an ignition zone in which the reac-
tants begin to heat up and a semi-infinite reaction zone over which the reactions take
place and a peak temperature is observed (if present). The dividing point between
the two regions is called the ignition position, z,, and represents the key dynamic
state for this model. This is schematically depicted in Figure 4.2. If a coordinate
system moving at velocity w is constructed at z,, then the nonlinear wave can be
treated as a quasi-stationary process with respect to this coordinate system. As the
equilibrium of this system is perturbed (e.g., by changing operating conditions), the
ignition position moves (the nonlinear wave propagates) to restore the mathematical
form stability of the profile. In engineering terms, this critical condition is given by
the point where the heat production curve is tangent to the heat removal line. Thus,
the dynamical processes in the bed are captured by a low-order, physically based
nonlinear model.

The study in [34] focused on the open-loop (uncontrolled) dynamical properties of
a packed bed reactor under various operating conditions. This formulation leads to

great numerical sensitivity with respect to initial conditions, and more importantly,
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the dynamic computations are unstable for large changes in the operating conditions.
This limits the applicability of such an approach to closed-loop (controlled) studies.
An additional complication is the relative inaccuracy of the hot spot temperature
calculation for the approach in [34]. In this approach, the reaction rate is integrated
over the length of the reactor in order to calculate the energy balances and this
leads to ‘an averaging or smoothing of the temperature profiles. Consequently, as
in the case of orthogonal collocation, it is very difficult to accurately reproduce the
steep profiles associated with certain reaction conditions. This, in turn, leads to large
uncertainty between the modeled hot spot position and temperature versus the actual
calculation from more detailed models and experimental results. As this variable, hot
spot temperature, is a primary output variable from a control perspective, a more

rigorous treatment of its behavior is required.

Present Model

The following attributes distinguish the present model from the previous approaches:
e Quasi-stationarity with respect to reaction zone.
e Neglection of conductivity.
e Integration/interpolation for hot spot calculation.

The first assumption results in fewer dynamical variables in the reaction domain. The
second assumption simplified the computation of the wave dynamics and facilitated
the use of Runge-Kutta integration for the temperature profile. The last feature
results in a complex, implicit formulation of the hot spot temperature as a function
of the dynamic variables. The resultant dynamical model is computationally stable
over a wide operating range (including regions of parametric sensitivity), and yields

hot spot temperature calculations which are relatively accurate.
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The original mass and energy balances (Equation 4.2) can be rewritten in dimen-

sionless form as:

%;L = —Da r(:v,y)

¥(0,2) = yo(?)

-gT‘f + -g—:' - e%’— + B(z — zy) = ¢ Da r(z,y) (4.3)
13(0, t) = 93’0(75)
oz —
(5;)2=1 - 0

If a moving coordinate system (z’,t) centered at the ignition point is defined as in

Figure 4.2, the balances can be expressed:

% = Da r(z,y)

y(z'=0) =y,
%2 1 (1-w)& —eZ2 4+ B(c —2y) = ¢ Dar(z,y) (4.4)

z(z=0)==z,
(g%)z'=A =0

where y,,z, are the values at the ignition position, and A defines the length of the
reaction zone. w, is the propagation velocity of the coordinate system. The remaining
dimensionless variables are defined in Table 4.1.

The resultant numerical algorithm evaluates the critical energy balance for each
time step in a simulation. Assuming an initial value for the ignition position, the tem-
perature profile is integrated from Equation 4.4 for the reaction zone. The assump-
tions of neglected conductivity and quasistationarity allow this to be accomplished
in a straightforward manner using the Runge-Kutta method. From this profile, it
is possible to calculate the critical stability condition. Iterations continue until the

condition is satisfied and the desired accuracy is achieved.
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This leads to a “critically stable” nonlinear wave representing the temperature
profile in the new coordinate system. From this information, it is possible to calculate
the peak temperature (hot spot), and the accuracy of this calculation can be improved
by interpolation.

The two key calculations in this model, the energy balance and the integration
of the temperature profile, lead to implicit formulations for the desired variables in
the dynamic model. In terms of the numerical computations, this provides only a
nominal obstacle. However, it will be seen that this implicit nonlinear model will
prevent the mathematical formulation of a closed form control law for the reactor.

For control purposes, the nonlinear dynamical model is a single input-single out-
put, second-order system. The regulated output is the hot spot temperature in the
reactor, and the two dynamic variables are the ignition position and a fast lag on the
controlled input. The latter state results from the requirement that the output func-
tion remain independent of the manipulated variable. This simplifies the nonlinear

control synthesis and is justified by the physically finite propagation of changes in
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[ Table 4.2 Reducq_c_l__l_\_’[odel_\_’ép'_a}-bles |
z, | Filtered Manipulated Variable
T Ignition Position

Y Hot Spot Temperature

u || Manipulated Variable (F, co, or T,)

the feed stream or cooling jacket. The candidate manipulated variables include inlet

concentration, inlet flow rate, and jacket temperature. The model is described by the

following equations:

T = —I1+u
$.2 = 'I.U(.’Zi’l, 372) (45)
y = h(z1,12)

where the nonlinear functions w and A are complicated, implicit functions of the state
variables. w is calculated from the critical energy balance and A is solved from the

integrated temperature profile.

4.2.4 Open-Loop Simulations
Operating Conditions

The physical parameters and operating conditions chosen for this study are taken
from a paper by Van Welsenaere and Froment [88] in which they studied the issues
of parametric sensitivity and runaway for packed bed reactors. The rationale for
choosing parametrically sensitive operating conditions is as follows: clearly, regions
of mild, linear dynamical behavior can be optimally controlled with a linear controller.
It stands to reason that any potential advantages to be gained from nonlinear control
will be achieved over an operating range which exhibits highly nonlinear dynamical
behavior. The values of the physical parameters which lead to parametrically sensitive

behavior are as given in Table 4.3. In addition, the time constants shown in Table 4.4
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I Table 4.3 Physwa._l—’- rameters for Packed Bed Reactor

| D 208
To f 625K

| T | 625K

€ 0.0

D, 7.059E8
B 11.38

q 1.0

r(z,y) e ®
7 | 21.82

| Table 4.4 Time Consta.nts Tor Manlpulated Variables (Dimensionless) |

o ||| 0.025
TF 0.01
TTyw 0.1

are employed in the first state equation in Equation 4.5 for the lag applied to the

respective manipulated variables.

Inlet Concentration

Inlet concentration is the first variable studied as a candidate for the manipulated
variable in the reactor. In terms of the variables presented in the previous section, the
nonlinear steady-state dependence of the hot spot temperature (y) and the ignition
position (z2) on the inlet concentration (z,,) is investigated. This is depicted in
Figure 4.3, where the left hand vertical axis shows the peak reactor temperature and
the right hand vertical axis shows the ignition position, both as a function of the

steady-state inlet concentration. Several things are clear from this diagram:

e The peak temperature begins to run away as the concentration is increased

above 1.2 (note that a dimensionless temperature of 1.2 corresponds to an actual
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Figure 4.3. Steady-State Dependence of the Reactor Hot Spot Temperature and
Ignition Position on the Inlet Concentration

temperature of 750K).

e The ignition position exhibits a virtually linear dependence on the first model

state, even into the region of reactor runaway.

e The wavefront propagates toward the reactor entrance as the concentration is

increased and runaway is excited.

These effects correlate with the understanding that the increasing reaction rate leads
to a steeper heat production curve. Thus, in order to satisfy the critical energy
balance of the propagating wave, the ignition point migrates inward (toward the
reactor entrance) to match the gradient of heat production to the gradient of heat
removal.

Greater insights are obtained from a dynamical study of this system. Specifically,
an open-loop simulation involving a step increase in the inlet concentration from

1.16 to 1.21 is investigated. In Figure 4.4, the time trajectories of the hot spot
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Figure 4.4. Open-Loop Response of Model Variables to a Step Change in Inlet Con-
centration

temperature (y), ignition position (z;), wavefront propagation velocity (&3), and the
inlet concentration (u) are shown. In addition, a plot of the full reactor profile showing
the time history in the reactor is shown in Figure 4.5. As discussed earlier, the reactor
is being pushed from a critically stable regime towards runaway. The plots show that,
in response to the increase inlet concentration, the reactor temperature rises, causing
the reaction rate to accelerate. This, in turn, induces a movement in the wavefront

backwards (towards the front of the reactor).

Jacket Temperature

The choice of jacket temperature as a manipulated variable leads to even greater
parametric sensitivity for the packed bed reactor than that demonstrated by ¢y in
the last section. This is depicted in Figure 4.6. Again, the variables displayed are

the steady state hot spot temperature (left vertical axis) and ignition position (right
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vertical axis) as a function of the jacket temperature. Observe that the same range
in reactor temperature (20%) is represented here for a much smaller range in jacket
temperature (3%) compared to the inlet concentration in Figure 4.3 (30%). The

following observations are relevant:

¢ The peak temperature begins to run away as the cooling jacket temperature is

increased above 1.01 (631K).

e The ignition position exhibits more nonlinearity in its dependence on the first
model state; however the behavior is still very well behaved as the reactor begins

to run away.

e The wavefront propagates toward the reactor entrance as the jacket temperature

is increased and runaway occurs.
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Figure 4.6. Steady-State Dependence of the Reactor Hot Spot Temperature and
Ignition Position on the Jacket Temperature

As before, these phenomena are easily understood in terms of the dynamics of the
propagating wavefront. As the jacket temperature is decreased, the heat removal
line shifts towards the reactor inlet, forcing the wavefront to propagate backward to
reestablish the critical energy balance.

These ideas are depicted in the open-loop simulation shown in Figures 4.7 and
4.8. Here is shown the response of the uncontrolled reactor to a step change in the
jacket temperature from 1.0 to 1.013. Again, the variables plotted are hot spot tem-
perature (y), ignition position (z,), wavefront propagation velocity (&), and jacket
temperature (u). In Figure 4.8, the same simulation is shown in a depiction of the
entire bed temperature profile.

Qualitatively, the behavior is very similar to that observed by increasing the inlet
concentration. One very significant difference is the time scale over which changes
occur. This is largely attributed to the choice of time constants chosen for the lagged

input (Table 4.4). The selection of these variables is somewhat arbitrary; in this



133

111 0.15
1.09 0.14
1.07 y 0.13 %2
1.05 0.12
loml:..-lvu-y'r.rul'nﬁ—l 0,11'||rrl||||||||rr1||1|
0 1 2 3 4 o i 2 3 4
Time
Time
0.01 1.02
-0.01 . 1.018
X .
-0.03 101 -
E u
-0.08 1.006
-0.07 MRAIRS B ma ey o i T T T T ™
0 1 2 4 0 i 2 3 4
Time Time

Figure 4.7. Open-Loop Response of Model Variables to a Step Change in Jacket
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particular case, they reflect the experimentally observed difference in time scales for

thermal versus mass effects in a pilot plant methanation reactor [90].

Flow

The final choice of manipulated variable, the inlet flow rate, leads to a fundamentally
different dynamical system. It is well known that this choice of a manipulated variable
leads to a nonminimum phase system which displays inverse response behavior, as
opposed to the previous two simulations involving minimum phase systems.

As before, the nonlinear steady-state dependence of the peak reactor temperature
and the wave ignition position on the manipulated variable (inlet flow rate) is inves-
tigated. This is shown in Figure 4.9 with hot spot temperature on the left vertical
axis and ignition position on the right vertical axis. As in the previous two cases, the

following phenomena are observed:
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e The peak temperature begins to run away as the inlet flow rate is decreased

below 0.65.

e The ignition position is fairly linear in its dependence on the first model state,

even through runaway.

e The wavefront propagates toward the reactor entrance as the flow rate is de-

creased and the temperature runs away.

These ideas are again in accordance with the proposed wavefront mechanism. As the
flow rate decreases, the initial effect (mass action) is a deceleration of the reaction
rate. However, this is offset by the slower thermal effects which lead to poorer heat
transfer and, eventually, an overall increase in the reactor temperature. This leads to
wavefront motion toward the reactor inlet to reestablish the critical energy balance.

This idea of inverse response or “wrong-way” behavior can be clearly seen in the
dynamic open-loop simulation in Figures 4.10 and 4.11. This particular simulation
shows the reactor’s response to a step decrease in the flow rate from 0.70 to 0.60.
As before, Figure 4.10 shows the hot spot temperature (y), ignition position (z;),
wavefront propagation velocity (), and jacket temperature (u). Figure 4.11 shows
the complete reactor temperature profile evolution. In this diagram it is quite easy
to observe both the inverse response effect (hyperbolic region of the surface) and the

parametric sensitivity of the reactor at the onset of runaway.

Discussion

Two key points must be stressed about the previous open-loop simulations and the

accuracy of the reduced nonlinear model in predicting the actual reactor dynamics:

e Qualitatively, the model is highly accurate. It shows the proper trends in the

reactor variables and reproduces both inverse response and parametric sensitiv-

ity.
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o Quantitatively, the model has been found to be reasonably close to the observed
data. Inaccuracies can be “fine-tuned” using a number of simple parameters

present in the model.

The qualitative behavior is clearly of critical importance in the endeavor to de-
sign a low-order model which captures the essential reactor dynamics for control
purposes. This has been demonstrated in the preceding simulations where the patho-
logical behavior of reactor runaway and the associated sensitivity with respect to
reactor parameters is accurately displayed by the low-order model. In addition, the
nonminimum phase properties associated with flow manipulation can severely reduce
the attainable performance of the closed-loop system. This has also been captured
by the model described in section 4.2.3.

The quantitative accuracy of the second-order nonlinear model presented in sec-
tion 4.2.3 cannot realistically be expected to be absolutely precise in its description
of an industrial packed bed reactor. However, it has been found that even this sim-
ple homogeneous model accurately reproduces regions of parametric sensitivity. As
discussed in [68] and [88], this is a reasonable starting point for parametric sensi-
tivity studies, but for a more detailed description, a heterogeneous model must be
employed. Then, a more accurate description of the particle interactions is possible
and the regions of multiplicity which are not observed in a homogeneous model [79]
can be reproduced. Consequently, if tight control of a complex reaction mechanism
which exhibits an optimum in a parametrically sensitive region (and may possibly in-
volve the exploitation of multiplicities) is the objective, a heterogeneous model should
be used. As a first step toward addressing this concern for the present model, it is
suggested that treatment such as that in [70] be employed. This would introduce only
two new algebraic states into the model.

The quantitative refining of the model against experimental data can be accom-

plished via the dimensionless groups in Table 4.3 or by tuning the time constants in
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Table 4.4. Clearly the values in the latter table will only affect the speed of manipu-
lated variable action. A more thorough correlation can be introduced by parametriz-
ing the Damkohler number (Da) over the operating region. This can be accomplished
by fitting the value of Da in the proposed model to match experimental data at sev-
eral operating points. This information can be utilized to propose a functional form
for the Damkohler number : (i.e. Da = f(z;,z;)).

An evaluation of the quantitative accuracy of the model is provided in appendix B.
There, experimental data collected from the Caltech methanation reactor [90] is used
for parameter fitting and fine tuning of the low-order model. The model results show
a very good match with the experimental data; however, the operating conditions in

that reactor are not parametrically sensitive.

4.3 Nonlinear Control Synthesis

4.3.1 Theoretical Issues - Feedback Linearization

The differential geometric techniques of feedback linearization will be employed as a
candidate synthesis method to be evaluated against standard linear approaches. The
idea behind feedback linearization is a transformation of a complicated dynamical
system into an equivalent but simpler (linear) dynamical system. The appeal to such
an approach is clear; the nonlinearities are treated directly, and well-known linear
techniques are applied to the transformed linear system. In the following discussion,
attention is restricted to SISO control problems. All the presented results generalize
to the MIMO case. A detailed theoretical discussion of the differential geometric
techniques can be found in [44].

There are two alternative approaches to feedback linearization, global state lin-
earization (GSL) [43], and input/output linearization (IOL) [17]. In GSL, a change of
coordinates and nonlinear feedback is calculated to yield an equivalent system which

now exhibits linear state dynamics (in the new coordinates). However, this technique
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will not guarantee that the relationship between the input and output is linear. In
IOL, a nonlinear feedback law is calculated which results in a dynamical system with
a linear mapping from input to output, and some subset of the state dynamics are
linear. If this subset has dimension less than the original system order, it is referred
to as partial linearization; if it is equal, it is referred to as exact linearization. As the
objective in this study is the maintenance of some performance specifications on the
packed bed reactor output (hot spot temperature), the technique of IOL will be used.

The general form of a nonlinear dynamical system will be given by the control-

linear structure:

g= f(z)+9(z)u
y= h(z) (4.6)

where f, g, and h are vector functions of z. This formulation is not restrictive
for most chemical engineering systems where the effect of a control variable on the
state dynamics is often linear. If the machinery described in [44] is to be applied,
the system must first be transformed to the so-called Byrnes-Isidori canonical form.
This is accomplished by calculating the system’s relative degree. Mathematically, the
relative degree, r, is defined as the smallest integer for which L,L} 'k is nonzero.
This is also equal to the number of differentiations of the output variable required to
obtain a direct dependence on the input variable. For linear systems, it can be easily
shown to be equal to the pole-excess, i.e., the number of poles minus the number of
zeros, or equivalently, the number of zeros at infinity.

The normal form for system ( 4.6) is given by:

25.1 = 9 = th

2;2 = 23 = Lih
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ali= z,= L7k
7= Lyh+uL Ly h

Zri1 = gry1(2)
Zn = qu(2)

y= 21 (4.7)

This normal form clearly illustrates the input/output linearization approach along

with its restrictions. Now a new input variable, v, is defined by
v=(8,Lsh+ BroaLi h+ -+ + Boh) + uB, L, L7 h (4.8)

and this quantity is set equal to Z,. This can be solved for u, provided that the system

has a well-defined relative degree:

u= v - (ﬂrL}h + ﬂr_lL’}"lh + -+ Boh)

4.9
ﬂ,LgL}'lh (49)

Then the relationship between v and y can be calculated as:
y 7 (4.10)

" Bes™+ Bras 4 -+ Pis + o
The system in Equation 4.7 is now partitioned into two subsystems:
¢ An r dimensional system with linear dynamics.

e A n —r dimensional system with nonlinear dynamics.

Clearly, the latter is an unobservable subsystem of the original system. It is denoted
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Figure 4.12. Schematic of Input-Output Linearization

the zero dynamics. These dynamics are the direct analog of zeros of a linear transfer
function. The stability of these dynamics can be analyzed by setting 2z, = 7n,_, (for

z > r) and setting z, = %o (for z < r)

77.1 = Gr41 (777 17,0)

Mz = gr42(7, to)

nn.-r = qn(n, "70) (4°11)

where @, is taken to be an exponentially decaying input to the system. A straightfor-
ward exercise reveals that the poles of the classical linearization of the zero dynamics
are exactly equal to the finite zeros of the classical linearization of the original system
(4.6). Consequently, the stability of these dynamics reflect the minimum or nonmin-
imum phase properties of the nonlinear system in Equation 4.6.

Schematically, the IOL is described in Figure 4.12. Here P represents the nonlinear
plant given in Equation 4.6 and ¥ is the nonlinear feedback law given in Equation 4.9.
This controller requires the measurement of the system states. It is a straightforward
exercise to show that the control law i represents a minimal order realization of
the inverse of the nonlinear plant given by P. Consequently, ¥ is an inverse-based
nonlinear controller. The internal stability of the closed loop can be guaranteed if
and only if the original system has a stable inverse, i.e., stable zero dynamics (see

[17] for detailed proof). Now, the mapping from v to Y is given by Equation 4.10, so
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an optimal linear controller, K, can be designed for this linear system.
In summary, the requirements for a system to yield an internally stable in-

put/output linearizing controller are:

e Criterion #1 : The system must possess a finite relative degree.

e Criterion #2 : The system must have stable zero dynamics.

Many process systems will violate one or the other of the above criteria. Certain
systems may satisfy the conditions locally but not over the global state space; thus

there are imposed restrictions on the range of validity of this approach.

Packed Bed Reactor Model

The packed bed reactor model developed in the previous section is now considered.
In order to apply IOL for a prescribed set of physical parameters and operating
conditions, the above criteria must be satisfied. This first involves a calculation of
the relative degree. Consider if r = 1:

_lon

o (4.12)

L,k
It is found for the physical parameters and operating conditions used in this study
that this condition is only satisfied locally. In other words, the classical linearization
yields a C' matrix in which the first element is nonzero. However, it is possible to
describe a locus away from the operating curve for which this condition is not satisfied.
Crossing this locus leads to a singularity in the control law (Equation 4.9), and this
effect must be accounted for in closed-loop operation.
If the condition in Equation 4.12 is satisfied, then the following change of coordi-

nates

zZ1 = h(:z:l, 1‘2)
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29 = Ty (413)

leads to the subsequent Byrnes-Isidori canonical form for the packed bed reactor
model:

f= 12[-hNa,2)+ul+ sew(h™ (21, 23), 25)

2.2 = W(h_l(zl,Zg), 22) (414)

The second condition for admitting IOL requires that the packed bed reactor
model is minimum phase. Clearly this limits the choice of manipulated variables to
the inlet concentration and cooling jacket temperature. It is well known and clearly
understood that flow control leads to a nonminimum phase system which exhibits
so-called inverse response. Consequently, a preliminary investigation will focus on
inlet concentration and jacket temperature as a manipulated variable. There are
new results for nonlinear control of nonminimum phase dynamical systems, and the
ramifications of these will be addressed for flow control in the reactor in a later section.

For global results, the nonlinear zero dynamics are calculated from the Byrnes-

Isidori canonical form for the packed bed reactor. These are given by
i = w(h™ (%, 7),n) = (1, %) (4.15)

where 1o is some exponentially decaying input [44] which could be arbitrarily taken
to be zero. The stability of the zero dynamics for the reactor model will be guaran-
teed (locally) by checking the zeros of the classical linearization of the model (Equa-
tion 4.6). This yields the following condition for minimum phase (locally stable zero
dynamics):

ow 56:—2 ow (4.16)

W _mI
Oz, -(%’11-8:1:1
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or in the transformed coordinates:

— <0 (4.17)

Theoretical Restrictions

In summary, feedback linearization can be theoretically applied to the packed bed

reactor model, provided that the following conditions are satisfied:
e Measurements of the states z; and z, are available.
e The operating region yields a finite relative degree (Equation 4.12).
e The zero dynamics are stable (Equation 4.16).

If these conditions are met, the following nonlinear control law can be synthesized:

y 2= (ﬂ;fif}:- Boh) (4.18)

Substituting for the values of g and f leads to:

v + firt 2 ﬁlw% — Boh

— ok
prlst

(4.19)

If this law is implemented as indicated as in Figure 4.12, then the mapping from v to

y will be given by:
v

y= m (4.20)

where 3, and [y are tuneable parameters of the nonlinear controller.

4.3.2 Practical Issues - Feedback Linearization

The study of feedback linearizing control and its implementation for a complex, prac-

tical system, like the packed bed reactor, has led to the identification of additional
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constraints regarding the application of this technique. The first consideration arises
from the sampling of a continuous-time nonlinear system for purposes of digital con-
trol implementation. It has been shown for global state linearization that sampling
can destroy the linearizability properties of the original continuous-time system [36].
On the surface, these results would appear to inhibit a generalization of the presented
ideas for a sampled data controlled reactor. The second consideration involves the
implicit formulation of the nonlinear dynamic model for the packed bed reactor and

the subsequent synthesis of a nonlinear control law.

Sampling Effects

In order to implement a control law with a digital computer, it is necessary to measure
the process signals at discrete time intervals. The speed of this sampling is related to
the microprocessor’s capability and, more importantly, to the measurement device’s
ability to translate physical measurements into useful signals. Clearly, the higher
the frequency of sampling, the closer the sampled data system will behave to its
continuous-time counterpart.

For control applications, high-frequency sampling leads to complications with the
dynamics of the discrete system. It is a well-known result in linear system theory
[1] that sampled-data linear systems can exhibit finite zeros which are not observed
in the original continuous-time system. The stability of these new zeros are directly
correlated with the rate of sampling: small sampling times lead to destabilization of
the zeros. The presence of unstable zeros clearly limits the achievable performance
for a controlled system. Furthermore, inverse-based control algorithms which were
designed for minimum phase continuous-time systems can become internally unstable
by fast sampling.

These ideas translate directly for nonlinear systems. In this context, the stability

of the zero dynamics for the sampled nonlinear system must be analyzed. In [66] it
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is shown that the dimension of the zero dynamics for a discrete system, obtained by
sampling a continuous-time system over a fixed-time interval, is always equal to n —1.
This correlates directly with the linear result that a pulse transfer function has n — 1
zeros. In effect, r—1 new dynamic states are introduced in the nonlinear zero dynamics
by sampling, which correspond to the r —1 zeros which move in from infinity to finite
measure for linear systems. And like the linear case, the resultant n — 1 dimensional
zero dynamics can have markedly changed stability properties. This is rigorously
proved in [66] by showing that classical linearization and discretization by sampling
commute and that classical linearization and feedback linearization commute. The

main result from [66] is summarized here:

Theorem 4.1 Discrete Input/QOutput Linearization

For small enough sampling periods:

1. If r = 1, then the zero dynamics for the sampled data discrete system are
hyperbolically stable (minimum phase) if and only if the zero dynamics for the

continuous-time system are hyperbolically stable (minimum phase).

2. If r > 2, then the zero dynamics for the sampled data discrete system are

unstable (nonminimum phase).

This result shows that the stability of the sampled-data reactor system under
feedback linearization is guaranteed if and only if the original system is internally
stable. This is due to the fact that the reactor model has relative degree 1 and no
new zeros will be introduced by sampling this system. In general, however, this will
not be true for more complex, higher-order models with relative degree greater than
2.

So, for the packed bed reactor problem, the system can be sampled as fast as
the measurement devices will permit. This way, the performance properties of the

continuous-time system can be reproduced while maintaining the internal stability of
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the system.

Implicit Model Formulation

The nonlinear controller described by Equation 4.18 is a function of the quantities
w(zry,z2), h(z1,z2), 5@:—1, and 53;";. As has been indicated in the discussion of the
model, there are no explicit closed-form representations for the propagation velocity
(w) or the hot spot temperature (k) and its derivatives as a function of the two
states. Therefore, the control law must be implemented as an implicit function of the
measured states and the appropriate control action will have to be calculated at each
time step.

In order to simplify the calculations, the functions w(z1,x;), h(z1,z2), a%’-‘l—, and
% will be evaluated a priori over a selected operating range. A sufficiently large
number of points (small mesh) will be considered to guarantee the accuracy of the
resultant control law calculations. Between mesh points, the functional values will be
interpolated for mild operating conditions (low parametric sensitivity). For regions of
high parametric sensitivity, the values (particularly A and its derivatives) will be fit
with exponential functions to provide a highly accurate interpolation between points.

In effect, the control law is implemented in a “look-up” fashion as a function
of the two measured states, z; and z,. The validity of such an approach has been
verified by closed-loop simulations in regions of high parametric sensitivity. Here it
is found that errors on the order of 5% in the interpolated values lead to closed-loop
simulations which were indistinguishable from those employing the exact values. In
the subsequent studies, the mesh for interpolation is chosen to limit the interpolation
error to under 1%.

It should be emphasized that such a look-up approach is, in general, a necessary

method for the application of sophisticated nonlinear control to practical systems.

In typical practical applications, the order of resultant implicit nonlinear equations
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will preclude the possibility of on-line calculations for reasonable computer power.
However, it should also be emphasized that this approach is fundamentally different
from so-called linear gain scheduling. In the latter case, static control parameters
are interpolated between the values computed for several linear plants along some
operating locus. In the present case, there is a spectrum of values, both along the
operating curve and off the locus to calculate the dynamic control action required for

the transient conditions as well.

4.3.3 Advanced Control Schemes

Recent results in nonlinear control [16], [53], [91] have enabled the synthesis of more
sophisticated nonlinear control approaches for the packed bed reactor. In particular,
it can be shown that the packed bed reactor model presented in 4.2.3 is rather versatile
and will admit solutions which overcome two of the previously discussed restrictions

to feedback linearizing control:
e Nonminimum phase systems.
e Lack of state measurements.

In the following discussion, the importance of the results in [53] and [91] for the

current study are briefly summarized.

Nonminimum, Phase Control

The presence of right half plane zeros is known to impose limitations on the achiev-
able performance of controlled linear systems. ISE-optimal systems can be found by
decomposing the linear system into a stably invertible part and an all-pass. Control
design is based upon the inversion of the former half. Such a systematic approach
to system decomposition for nonlinear systems is not currently available. However,

for a very restricted class of problems (second-order, relative degree one), there has
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been a recent result describing such a nonlinear control formulation. As the packed

bed reactor model presented in section 4.2.3 meets these requirements; the following

control law (derived from [53]) will result in an ISE optimal nonlinear controller.

Assuming that the original model is nonminimum phase (i.e. u = F), it can be

shown that the zero dynamics are unstable:

g—:‘;’ > 0 in some neighborhood of w = 0

Then the following control law can be utilized

v = v—1t —elsp
B Ly

where 1 is given by:

oh w
Y = h(zy,2,) — 25:3—1%

Substituting the value of ¢ into Equation 4.21 yields

v—1th—¢ (—%xl-@—) —€ (wi'é—)

_ EEN Oy
u= 100
T 8z
where:
W _ o _gow, (22)7 22w (20)
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dzy

)

-2 2w
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(4.21)

(4.22)

(4.23)

(4.24)

The resulting closed loop behaves like a first-order lag in series with a nonlinear

all-pass:

A § 1
z = ¢z+¢”

ﬁ = _Fl(z777)

(4.25)
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Yy = d)(z, 77)
(4.26)

This response is achieved by the replacement of the true output y by the approxi-
mate output ¥ (see equation 4.22). This new output has the useful property that it
results in stable zero dynamics. More importantly, the new nonlinear controller has a
classical linearization (Jacobian) along the operating locus which is exactly equal to
the optimal linear control for a nonminimum phase system (all-pass plus lag). The
properties of a nonlinear all-pass Fj (as defined in [53]) are that it is stable, has zeros
at the mirror images of poles across the imaginary axis, and has static gain equal to
one. If the tuning parameter € in Equation 4.21 is made infinitesimally small, then
ISE optimal behavior is obtained from the closed loop.

This look-up table for this control law requires values for the new variables in-

dw dw _d%w

. . . . 2w
troduced in Equation 4.23. These derivatives of w (azl iy m,andm) can be

readily calculated from the existing values of w in the table.

Output Feedback Control

In many cases the state measurements required for the nonlinear feedback lineariz-
ing controllers are not available. In the case of the packed bed reactor, the filtered
inlet and ignition position may be more difficult to obtain than more readily mea-
surable quantities such as axially spaced thermocouple temperature readings. Such
quantities would make it rather easy to calculate the hot spot temperature in the
reactor (by interpolation or some inferential scheme). As this quantity is the output
of the controlled process, it may be more desirable to synthesize a nonlinear control
law which only requires measurement of the output (and possibly some higher order
derivatives). Such an approach was described recently [16].

The dynamic output controller for the packed bed reactor is given by two parts,
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an error feedback linear controller

é = (ysz) -y)
v= B¢y 8(y, —y) (4.27)

and an output feedback nonlinear controller:

2:1 = 'Lb(zls y)
180+ (yap—y)~(Boy+B1 Ly h(21,9))
u= i LoAGid) (4.28)

This is equivalent to a PI controller with K, = -‘% and 77 = g—; in the outer (linear)
loop, around an inner dynamic nonlinear controller which reconstructs the state. The

resulting closed loop is given by:

y 1
E " (es+1) (4:29)

Thus, the linear input-output behavior has been achieved from solely measuring the
hot spot témpera.ture at the expense of an additional dynamic state in the controller.
Though not explored in this work, this approach shows promise for use in applications
with an actual experimental reactor where quantities such as lagged input and ignition

position may not be as convenient to measure as the peak bed temperature.

4.4 Case Studies

4.4.1 Inlet Concentration Manipulation

The first variable selected for study as a manipulated variable in both a linear and
nonlinear closed-loop configuration is the inlet concentration. Selecting ¢, as the

manipulated variable in Equation 4.5 leads to the construction of the output function
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Figure 4.13. Region of Opération (u = Inlet Concentration)

h(z1,z2) (hot spot temperature) which is depicted in Figure 4.13 and 4.14. (Note that
z; corresponds to the filtered inlet concentration, that is, the value of the manipulated
variable after a lag has been applied.) The values of the other variables are as follows:
F =1.0,T, = 1.0, and the exponential dependence of the heat transfer coeficient on
the flow rate is 0.05. Figure 4.13 shows a contour plot of the hot spot temperature in
the z; —z; plane about a nominal state position of (z;,z,) = (1.15,.124). Also shown
are two loci: the operating locus and the singularity locus. The former is the steady-
state solution of Equation 4.12. The implications for closed-loop operation under
nonlinear (IOL) control are straightforward: this locus cannot be crossed. Thus the
control action must be limited to the region around the operating curve away from
the singularity locus. Experience in simulations with this system indicate that this is

not a very restrictive condition.
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Figure 4.14. Hot Spot Temperature Profile (u = Inlet Concentration)

In Figure 4.14 is shown a three-dimensional portrait of the hot spot temperature
over the operating regime. From this diagram it is clear that the chosen operating
conditions correspond to parametrically sensitive reactor behavior. At lower concen-
trations (< 1.15), the temperature profile is fairly mild. However, as one moves along
the operating curve in the direction of increasing concentration, the temperature
quickly escalates as the sensitivity rapidly increases.

This diagram suggests three operating points for the comparative study of non-
linear versus linear control. They are: co = 1.0 (benign operation), ¢o = 1.15 (mild
sensitivity), co = 1.20 (high sensitivity). At each operating point, the closed-loop re-
sponse of the system to a set point change in the hot spot temperature of .02 (12.5K)
will be examined. To enrich the study, +£1K of white noise will be added to the

measured signal y.

In Figures 4.15 , 4.16, and 4.17 are shown the closed-loop response of the system
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Figure 4.15. Set Point Response (¢ = 1.0, Linear Controller)

under linear (PI) control. = The control parameters (K, = 10.0,7; = 20.0) were
selected as the values which drove the system bandwidth up to the point of instability
at co = 1.2. It can be observed that the speed of response accelerates as the inlet
concentration is increased. This is clearly caused by the increasing gain of the reactor
as it moves into a region of parametric sensitivity while the control gain remains

constant. It is also seen that the attenuation of the measurement noise worsens

1.09
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Figure 4.16. Set Point Response (¢; = 1.15, Linear Controller)
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Figure 4.17. Set Point Response (co = 1.2, Linear Controller)

as the speed of response increases. Again, this is a fairly intuitive idea, that the
attenuation of noise in the output is traded off against speed of response by changing
the system bandwidth.

In Figures 4.18, 4.19, and 4.20 are shown the closed-loop response of the system
under nonlinear (IOL) control with an external PI controller. The control parameters

(v = 10,60 = 0.1, K, = 50.0, 71 = 20.0) are chosen to roughly approximate the
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Figure 4.18. Set Point Response (¢o = 1.0, Nonlinear Controller)
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Figure 4.19. Set Point Response (co = 1.15, Nonlinear Controller)
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Figure 4.20. Set Point Response (co = 1.2, Nonlinear Controller)
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system behavior of the linearly controlled system at ¢, = 1.15. (Exact replication
is not possible as the reactor is a second-order, relative degree 1 system, while the
“linearized” plant in IOL is a first-order, relative degree 1 system.) As can be seen
in Figures 4.18, 4.19, and 4.20, the response of the (noisy) hot spot temperature to
the set point change is virtually identical in each case. This is as expected since
the nonlinear controller “dynamically gain schedules” to account for the changing
operating conditions so as to produce the same closed-loop input-output behavior
at each operating point. The amount of control effort required is depicted in these
three diagrams and, particularly in the third case (co = 1.2), reveals the utility of
nonlinear control. In this case, the reactor has, for whatever reason, drifted from the
nominal operating point at c; = 1.15 into a region of higher parametric sensitivity.
The nonlinear controller is self-tuning and reduces the controller gain to compensate,
ensuring uniform closed-loop behavior over the whole operating region. By contrast,
when the system drifts into a region of lower parametric sensitivity, the nonlinear

controller gain is increased to compensate for the reduced reactor gain.

4.4.2  Jacket Temperature Manipulation

The second manipulated variable studied in a closed-loop configuration is the jacket
temperature. From a practical perspective, this choice of u is far more logical than cq
for manipulation, and industrial packed bed reactors traditionally rely on tight control
of coolant temperatures in achieving optimal reactor operation. An additional modifi-
cation from the previous case study is that the linear control algorithm employed will
be IMC (Internal Model Control) [67]. This is expected to yield better comparative
results as IMC is a direct linear generalization of the nonlinear model-inverse-based
approach of IOL. Consequently, a direct comparison of “apples to apples” is possible
with each system having identical nominal response.

Selecting the jacket temperature as the manipulated variable in Equation 4.5 leads



Hot Spot Temperature

Figure 4.21. Hot Spot Temperature Profile (u = Jacket Temperature)

to the function h(zi,z;) depicted in Figure 4.21. (Note that z; corresponds to the
filtered jacket temperature, that is the value of the manipulated variable after a lag has
been applied.) The values of the other variables are as follows: ¢y = 1.0, F = 1.0, and
the exponential dependence of the heat transfer coefficient on the flow rate is 0.05.
This three-dimensional diagram shows the operating neighborhood around (z1,22) =
(1.0075,0.13). Recalling Figure 4.6, the sensitivity of hot spot temperature on jacket
temperature is much higher than on inlet concentration. Thus, a smaller region of the
operating locus is selected in order to observe a wide range in dynamical behavior.
| As opposed to the previous case (u = ¢), there are no singularity constraints on
this control law and the relative degree is well defined over the operating region.
This diagram suggests three operating points for the comparative study of nonlinear
versus linear control. They are: T, = 1.002, T,, = 1.008, and T, = 1.0115. At each
operating point, the closed-loop response of the system to a set point change in the
hot spot temperature of .03 (18.75K) will be examined. To enrich the study, +£1.5K
of white noise will be added to the measured signal y.

Figures 4.22, 4.23, and 4.24 show the closed-loop response of the system under
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Figure 4.22. Set Point Response (T, = 1.002, Linear Controller)

linear (IMC) control. The controller is designed with a first-order filter and a filter
time constant equal to 0.1. It can be observed, as in the previous case study, that
as the reactor is pushed into a region of greater parametric sensitivity, the open-loop
gain increases, which leads to a faster closed-loop speed of response. In addition, the

noise attenuation worsens as the reactor sensitivity increases.
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Figure 4.23. Set Point Response (T, = 1.008, Linear Controller)
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Figure 4.24. Set Point Response (T, = 1.0115, Linear Controller)

By contrast, the nonlinearly controlled reactor results in uniform behavior over
the operating envelope as seen in Figures 4.25, 4.26, and 4.27.  The nonlinear
controller is tuned with the parameters (8; = 1.0, = 0.1) and an external PI
controller with parameters (K, = 0.1, 7; = 1.0) to match the response of the linearly

controlled system at the nominal operating point (T3, = 1.002). As the cooling jacket
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Figure 4.25. Set Point Response (T,, = 1.002, Nonlinear Controller)
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temperature is increased and the gain of the reactor also increases, the nonlinear
controller “schedules” the manipulated variable action so that the output behavior
remains uniform (speed of response, noise attenuation).

The previous simulations all focused on nominal operating conditions. That is, the
models were all assumed to be accurate and the influence of unnieasured disturbances
is ignored. In the following two simulations, the impact of these two effects are further
analyzed.

In the first case, consider a step disturbance in the inlet flow rate. The response
of the linearly controlled reactor is shown in Figure 4.28. The controller parameters
are as before and the temperature set point = 1.0653 (corresponding to a T, value
of 1.008). At time t=0.025, a 10% decrease in the flow rate is introduced (from 1.0
to 0.9). Several interesting trends are observed in Figure 4.28. The initial gain of
the control action is opposite in sign for the linearly controlled versus the nonlinearly
controlled reactor. The direction of the nonlinear control gain is correct because the
decrease in flow rate must be offset by a decrease in cooling jacket temperature to

maintain the same hot spot temperature. This gain directionality is attributed to the
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Figure 4.29. Concentration Disturbance Response (T, = 1.008)

nonlinear dependence of the control action on the operating conditions. The resulting
effect is that the nonlinearly controlled reactor has a larger undershoot but a smaller
overshoot in the hot spot temperature response. Note that this change in the flow
rate invalidates the nonlinear look-up control table which was designed for F = 1.0.

In Figure 4.29 is shown the closed-loop response of the system to a disturbance in
the inlet concentration. The same operating conditions are chosen (T = 1.008) and
at time t = 0.025, a decrease in inlet concentration (from 1.0 to 0.9) is introduced.
Now, this represents a minimum phase disturbance and it is observed that both
controllers have the same initial gain sign but the nonlinear control action is more
aggressive and the resulting error trajectory shows less overshoot. As before, this
disturbance may be interpreted as a perturbation in a model parameter which, strictly
speaking, invalidates the exact linearization control law.

The final simulation is shown in Figure 4.30. The reactor is initialized at T, =
1.002 and at time t = 0.025, the Damkdhler number is reduced by 5%. In this
case, an unfiltered model parameter has been directly perturbed and the response
in both cases (linear and nonlinear control) is instantaneous. Note, however, that

the nonlinear control action is much more aggressive and the speed of response in
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returning to the original set point is much faster.

4.4.3 Flow Manipulation

A final closed-loop configuration is investigated in which the flow rate into the re-
actor is manipulated to control the hot spot temperature. Selecting F' as the u in
Equation 4.5 results in a nonminimum phase system and leads to the hot spot tem-
perature profile (k(z;,x;)) depicted in Figure 4.31. (Note that z; corresponds to the
filtered flow rate, that is the value of the manipulated variable after a lag has been
applied.) The values of the other variables are as follows: ¢g = 1.0, T}, = 1.0, and the
exponential dependence of the heat transfer coefficient on the flow rate is 0.5. The
grid selected for the look-up table is centered around the nominal point (0.7,0.095).
As in the previous case (v = T,,), there are no singularity constraints on this control
law and the relative degree is well defined over the operating region. The control law
in this case is complicated by the difficulties mentioned in section 4.3.3 and this is
reflected in the complexity of the look-up table for this controller. As in the previous

two cases, it is observed that the reactor has a mild profile at higher flow rates and
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Figure 4.31. Hot Spot Temperature Profile (u = Flow Rate)

that the sensitivity of the reactor accelerates as the flow rate is reduced.

A simple set of simulations is presented to demonstrate the machinery introduced
in section 4.3.3. Recall from that section that the presented approach to NMP control
for nonlinear systems yields a system with linear optimal response in a close neigh-
borhood of the operating locus. However, as opposed to the IOL for MP systems, the
off-equilibrium behavior is not linear. This can be seen in the following figures. First,
the inner nonlinear controller is synthesized from Equation 4.21 . If this inner loop
is subjected to a step in the new manipulated variable, v, (from 0.0 to —0.03) the
result is the trajectory shown in Figure 4.32. The resulting closed inner loop response
behaves like a first-order lag in series with an allpass.

Now consider the synthesis of the outer loop. An IMC controller is designed
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Figure 4.33. Set Point Response (F' = 0.7, Linear Controller)

to result in an outer closed-loop response equal to an allpass in series with a first-
order lag with time constant 0.1 (at least nominally, that is, along the operating
curve). Similarly, as a basis for comparison, a linear IMC control law for the reactor
is synthesized, which results in a closed-loop response (nominally, at the operating
point) equal to an allpass in series with a first-order lag with time constant 0.1. The
results of a set point change in hot spot temperature (from 1.0646 to 1.0706, 3.75K)
are shown in Figures 4.33 and 4.34. Not;,e the characteristic inverse response of
these NMP systems. It is also observed that the nonlinearly controlled reactor has a
small overshoot and a mild oscillation which is quickly dampened. The source of this
departure from both the ideal linear behavior and the linearly controlled nonlinear

reactor is the nonlinear allpass configuration for the IOL. As the results discussed
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in section 4.3.3 from [16] have not been evaluated in closed-loop simulations, it is
concluded that further investigations of the stability and performance of this approach
must be undertaken. The results presented here demonstrate the viability of the

approach for the IOL control of a packed bed reactor.

4.4.4 Discussion

A number of conclusions can be drawn from the preceding simulations about the
viability of nonlinear (IOL) control for a packed bed reactor and its comparative
advantages over linear control.

The dominant advantage of IOL over PI or IMC control is the ability of IOL
to “dynamically gain schedule” the control law over a wide operating envelope. It is
clear that operation in a region of high parametric sensitivity will lead to considerable
variations in the parameters of a model which describes the reactor. A simple, single
linear controller will result in a closed loop which has a varying bandwidth over the
operating envelope. This will lead to widely varying speeds of response as well as

fluctuations in the ability to attenuate measurement noise. Note that the self-tuning
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mechanism in IOL prescribes in a systematic way the control action as a function of
the reactor states. This is contrasted with so-called linear “gain scheduling,” in which
optimal linear control about a tiny neighborhood of an operating point is generalized
in an ad-hoc way to cover the operating space.

It is observed that in order to obtain a uniform closed-loop response over a wide
operating regime, the gain variations in the reactor must be offset by gain variations
in the controller. If the reactor moves away from the nominal design point into a
region of lower parametric sensitivity, the nonlinear control action must become more
aggressive. This may present a problem if rate and magnitude constraints are violated.
In contrast, if the reactor moves into a region of higher parametric sensitivity, the
plant gain increases and the nonlinear controller detunes itself. The consequences
may be catastrophic if the controller is not detuned as noise becomes amplified and
thermal runaway occurs.

The closed-loop response of the packed bed reactor to disturbances in both flow
and concentration indicate comparable performance by the linear and nonlinear con-
troller. In the case of inlet concentration disturbances, the nonlinear control action
is more aggressive and smaller overshoot is observed. Qualitatively, the behavior is
very similar for the two systems. In the case of a NMP disturbance (flow rate), the
qualitative behavior of the two systems is quite different. The linear controller moves
initially in the wrong direction (relative to the final value) and displays an overshoot
in y as a result. The nonlinear controller moves in the correct initial direction and
displays minimal overshoot, but the price paid is large undershoot in the initial tem-
perature transient. As before, it should be noted that the alteration of either flow rate
or inlet concentration invalidates the exact IOL and the resulting behavior indicates
the robustness of this approach.

A final measure of robustness is revealed by the change in the Damkdhler number.

Here the nonlinear controller proves to be very effective at returning the system to its
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original set point. However, this response comes at the expense of fairly aggressive
manipulated variable action which may be considered unacceptable.

Overall, the simulation results suggest that in the nominal case (no model uncer-
tainty, no unmeasured disturbances), the nonlinear controller has a clear advantage
in maintaining uniform reactor behavior over a region of parametric sensitivity. This
behavior is exactly the performance demanded of industrial packed bed reactors:
uniform operation over a wide region. IOL presents one approach to achieving this
performance with a self-tuning algorithm.

In terms of robustness, it is clear that many more case studies must be considered.
Presented here are some fairly representative case studies which suggest that the
nonlinear controller is more robust to NMP disturbances and errors in the physical
parameters of the reactor. However, extensive simulations must be performed with
a variety of model errors, disturbances, and operating conditions before absolute
conclusions can be drawn. A systematic, analytical approach to ascertaining the
relative robustness of the linearly and nonlinearly controlled reactor is presented in

the following section.

4.5 Robustness Considerations

This section presents the formal framework for analyzing the robust performance
properties of the closed-loop packed bed reactor. First, the system is cast in the
Byrnes-Isidori normal form (Equation 4.14), where z; is the hot spot temperature
and z; is the ignition position. From this open-loop representation, it is straightfor-
ward to derive a closed-loop representation corresponding to the application of IOL

(Equation 4.19):

éz = li)(zl,22) (430)

Yy = 2
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(Note that this represents the inner loop of Figure 4.12.) This system is linear in the
output, linear in the first state equation, and has a nonlinear, unobservable second

state equation. This will be directly compared to the original nonlinear plant:

& = —lz,+1u
Ii?z = w(a:l, zg) (431)
y = n

Each of these two plants will be closed with a linear controller in a feedback configura-
tion and the resultant performance properties can be ascertained. In the subsequent
analysis, the formulation of an uncertainty structure for each of the two plants is
carried out.

Consider an error in the modeled hot spot temperature function (k(z;,z2)). This
is easily plausible as the complicated packed bed reactor dynamics have been reduced
to a second-order representation in which there is bound to be uncertainty. For the
purposes of this example, consider the following simple deviation from the actual

nonlinear output:
Yy = h(a:l, :L'z) -+ [01(3:1 - :1110) + 12(&22 - :2720)] = 7;(:171,272) (432)

This investigation of the robustness properties will consider an elliptic operating
regime stretching from the operating point at (z0 = 1.0982,z4 = .11174) to
(z10 = 1.2018, 259 = .12726). If this is perturbed output substituted for the value of

h in the nonlinear control law in Equation 4.19, the original inner plant becomes

7 =50, - %"Az + WA3

o =w(21,22,44,4s) (4.33)
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where

Al = i;;}‘
Bzy
R2h
A, =2 (4.34)

R
Ay = —F

!

§
K]
KJE

and A4 and Aj are more complicated functions of w and k and k.
A first principles analysis of the output dynamics (z;) reveals the following insights

about the uncertainty elements A;, A, and As:

1. Agj is attenuated by the wave propagation velocity, which is zero on the oper-

ating locus.

2. A; corresponds to pole uncertainty in the first-order transfer function relating

v to y.

3. A, corresponds to gain uncertainty in the first-order transfer function relating

v to y.

From robust control theory [67], it is known that pole uncertainty in a first-order
transfer function does not present a robustness problem and that high gain feedback
will alleviate this problem while improving the overall system performance (speed
of response). On the other hand, gain uncertainty will cause a tradeoff between
the robust stability and robust performance of the system, leading to a sacrifice in
performance to ensure stability.

A direct analysis of the impact of the model uncertainty (Equation 4.32) on the
two candidate plants for linear control is now considered. This analysis was carried
out in the framework of chapter 3, where conic sectors are utilized to arrive at a tight

description of a linear nominal model and the associated uncertainty.
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First consider the following linear uncertain representation for the IOL inner plant:

(2':1) (-—&0-2 0.0 ) z +( 0 0 ) (zl)
2.'2 -13.8 -34.7 29 19251 50561 29
Q75 0.26,
+(”‘)v+( )v (4.35)
0 0

j = z1+ 0.016321

where 6y, 62, and 65 represent uncorrelated, conic-sector bounded, unit norm, nonlin-
ear operators. Now consider the original packed bed reactor and its associated linear

uncertainty description :

(o) = (G ) () () (2)+0)
= + + u
23 =5.36 —34.7 23 1.1926, 5.05444 T 0
T3 —0.10765 —0.28765 z
s = aam oaon(7) 4 ) (%)
T 0.10766 —0.32056 T
(4.36)

The perturbation elements (6;) can be interpreted as the uncertain deviation from

Al=

the nominal linear system description (6; = 0). They include both the effect of
uncertainty in the output function, k, and the effect of the nonlinearities in the
nominal system description.

The purpose of this derivation is to show how in terms of the uncertainty formu-
lation used for SSV calculations, lower overall deviation from nominal performance
(i.e., good robust performance) is achieved via IOL versus linear control.

Uncertainty in the hot spot temperature function leads to much ‘larger variations
from an ideal linear description for the original packed bed reactor compared with

the IOL inner plant. Effectively, the IOL action has served a two-fold purpose:
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e Eradication of the nonlinear nature of the model.
e Minimization of the perturbation from this model for plant uncertainty.

The result is less deviation from linear behavior for the nonlinearly controlled packed
bed reactor and, consequently, a better overall level of robust performance.

Note that this analysis is somewhat informal and really gives only an indication
of how linear the resulting closed loops are. Even the two nominal plants under
scrutiny have different linear approximations. A full analysis using the SSV theory
would be futile because of the complexity of the uncertainty structure coupled with
the conservativeness of those results for nonlinear systems. As discussed in chapter 3
and [24], direct comparison is not possible because the results are only upper bounds
on the attainable performance levels.

The intent here is to reveal, in a manner more formal than simulation, the impact
of IOL versus linear control on the robustness properties of the closed-loop packed

bed reactor.

4.6 Conclusions

This chapter outlines the development of a two-tier approach to synthesizing a non-
linear control law for a packed bed reactor

In the first stage, a low-order nonlinear model of the packed bed reactor is de-
signed. This model relied on a treatment of active transport mechanisms in the bed
as nonlinear waves which propagate up and down the reactor. The dynamics of the
derived model were successfully validated against results found in the literature and
results available from a laboratory methanation reactor.

The real strength of this modeling approach, for control studies, lies in its general
applicability to a variety of chemical engineering systems. These include the basic unit

operations of distillation, sedimentation, crystallization, heat exchange, adsorbtion,
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and others described in [62]. It is envisioned that such low-order modeling of process
systems will lead to a greater understanding of the control relevant dynamics and will
serve as a firm foundation for advanced control studies.

The second tier of this design scheme is the actual synthesis of a nonlinear control
law for the packed bed reactor. Using the tools of differential geometry, an input-
output linearizing control law is successfully designed and implemented on the reactor
model. Modifications to the basic control law are incorporated to facilitate the control
of NMP systems and to handle the problem of unmeasured states.

A key contribution of this work is the definition of the implementational hurdles
to utilizing these nonlinear control algorithms on an actual physical reactor. The
primary obstacles identified were the discrete sampling issues and the treatment of
implicit control laws. Although the practical side of the reactor problem has been
emphasized, one acknowledged weakness of the present work is the lack of experi-
mental verification of the presented results. This is one clear indication of necessary
future direction for this work.

Another contribution of this work is an investigation of the comparative advan-
tages of nonlinear control over linear control for a complicated system like the packed
bed reactor. Through both simulation and analysis, the relative merits of the two
closed-loop systems are evaluated with respect to nominal performance and robust
performance (disturbance handling and model uncertainty). The results are not ex-
haustive, but strongly point towards IOL as a more effective means of controlling a
packed bed reactor in a region of incipient runaway.

Further study of the comparative merits of nonlinear and linear control is vital
to an understanding of the potential applications for nonlinear control. This will
continue to be a focal point of this research. Some preliminary results for several

systems are discussed in chapter 6.
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Chapter 5

Design Considerations for Multitubular
Packed Bed Reactors

Abstract

Practical guidelines are required for the design and operation of complicated cat-
alytic packed bed reactors. Primary among design considerations is the avoidance of
operating regions of high parametric sensitivity, in which small changes in operating
conditions can lead to thermal runaway in the reactor.~ Existing criteria for predicting
these regions rely on complex mathematical formulations for differential sensitivity
between input and output variables. The present work centers on the development of
practical design criteria for avoiding reactor instability and temperature sensitivity in
multitubular packed bed reactors. A set of simple guidelines is proposed for the sizing
of reactors and proper selection of operating conditions. The implications of these
open-loop sensitivities for a controlled reactor are investigated. It is shown through
simulation studies that violation of the proposed criteria leads to control problems

and difficulty in operating at the design point.

5.1 Introduction

Multitubular packed bed reactors display a rich range of steady state and dynamic
behavior. Often, there is an economic incentive to operate near a region of paramet-

rically sensitive behavior. In these regions, small changes in inlet conditions and/or
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physical parameters can lead to catastrophically large excursions in the bed temper-
ature. Clearly it is important to establish guidelines for safe reactor operation and
it is moreover advantageous to specify a priori the design of a reactor which avoids
these dangerous operating conditions.

In this chapter, some simple design criteria for sizing a reactor and choosing
reaction conditions are described. The usual uncertainties associated with catalyst
properties and reaction kinetics suggest the formulation of conservative criteria. This
conservatism might be reduced with more detailed modeling. However, the proposed
criteria are far simpler to evaluate and provide reasonable bounds.

It is possible to formulate these design guidelines in terms of three straightforward

criteria:

e The reactor should have a mild radial temperature profile. This protects against

self-acceleration of the reaction at the center of the reactor.

e The reactor temperature profile should not exhibit sensitivity to small pertur-

bations in the inlet conditions and physical parameters.
e The pressure drop must be kept at an acceptable level.

Initially it is assumed that the catalyst particle has a single steady state, but, as
will be shown, it is possible to modify the parametric sensitivity criterion to predict
the occurrence of multiple steady states.

Of particular interest in this study is the sensitivity criterion. This property
has been described in great detail for a variety of reactors [30], [68], [69], [70], [78],
[89]. These studies focus on the formulation of normalized differential sensitivities
for describing conditions of runaway behavior. However, the direct implications of
this sensitivity theory for reactor design are not apparent. Alternatively, extensive
simulations can be used for predicting these conditions. However, there are often

large uncertainties associated with the parameters in these models. A primary goal
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of this work is the formulation of an incipient runaway condition in terms of practical
design variables which are well known (diameter, length, catalyst properties, etc.)
and can be directly incorporated into an efficient design scheme.

The preceding discussion focused on open-loop (uncontrolled) packed bed reactor
operation. There are, however, several incentives for using feedback control in a

chemical reactor (either tubular or continuous stirred tank):
e Stabilization of an unstable operation.
e Mitigation of open-loop sensitivity.
e Improvement of overall performance.

Unstable operation is characterized by the presence of multiple steady states with
hysteresis between ignited and quenched states. In contrast, open loop sensitivity is
characterized by a single stable steady state. In an ideal packed bed reactor or CSTR,
open loop sensitivity is manifested at conditions where small perturbations in oper-
ating conditions lead to huge excursions in the single stable reactor temperature. In
the ideal CSTR, the operating conditions can be further perturbed to lead to bifurca-
tions in the steady state temperature; thus introducing steady state multiplicity and
unstable modes of operation. In an ideal tubular reactor, the lack of a mechanism for
thermal feedback within the reactor’s contents precludes the possibility of multiple
steady states. However, in practice, the conduction of heat backward through the
tube wall, countercurrent cooling and feed preheating with the effluent, all contribute
to thermal feedback and lead to steady state multiplicities in the tubular reactor.
From a practical perspective, it is not important whether thermal runaway occurs
from high parametric sensitivity or ignition to a new steady state. The overriding
concern is tight control of such temperature excursions.

A number of academic studies have demonstrated that multiplicity and open-loop

sensitivity in a CSTR are easily handled with simple proportional control action (see
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[5] for earliest work in this area). The relatively straightforward design of indus-
trial CSTRs suggests that these theoretical stabilizing properties should also work in
practice (with proper mixing, etc.).

In principle, the same stabilization theory can be invoked for a packed bed re-
actor, and safe closed-loop operation can be attained in a region of open loop sen-
sitivity (see, e.g., [80]). A number of experimental studies have also focused on the
stabilizing effects of feedback control in a single tube reactor [38], [41], [64], [85].
The interested reader is referred to a comprehensive survey by Jorgensen for addi-
tional studies on packed bed reactor control [45]. However, these ideas were never
introduced into industrial practice. These theoretical and experimental studies have
largely ignored some of the key industrial issues; in particular, the consideration of
multitubular reactors. Furthermore, industrial control of tubular reactors has focused
on the maintenance of cooling jacket temperatures at prescribed steady state values.
During transient operation, key variable measurements are often unavailable. In ad-
dition, manipulated variables are constrained, thus limiting their effectiveness. These
two considerations preclude the possibility of dynamic reactor stabilization.

This brings into question the validity of these theoretical stabilization studies and
their relevance to industrial packed bed reactor control. As this article will demon-
strate through analysis and simulation, the only recourse for safe reactor operation is

strict adherence to design guidelines of the type presented here.

5.2 Tubular Reactor Design Criteria

5.2.1 Radial Temperature Profile

In an exothermic reaction taking place in a tubular reactor, the heat evolved at the
center has to be transferred to the wall. If this radial temperature difference, AT}, is
too large, the reactions will self-accelerate at the center of the reactor. Consequently,

the first design criterion will focus on the permissible size of AT}, and the translation
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of this specification into meaningful reactor parameters.

A good measure of the range of acceptable radial temperature difference is given

by the parameter:

2
0= 5}% (5.1)

Consider a Taylor series expansion of the temperature profile from the wall to the

center of the bed:
1 1 AT,

Tcenter Tw Tf}

4oee (5.2)

Then, the reaction rate can be approximated as follows:
r = koe®F f(C) ~ koe®we 8" f(C) (5.3)

From this equation, it is evident that © is a scaling parameter for AT;. Furthermore,

consider the following Taylor series expansion:

e%‘~1+Ag' _A;1_22=1_'+.,. (5.4)

+(5 )y

A reasonable criterion for avoiding self-acceleration at the reactor center is to require
that the %ﬂ term be less than unity. From Equation 5.4, it is clear that this will lead
to a reaction rate which increases at most linearly with temperature along the radial
direction in the bed. However, this criterion involves the calculation of the radial
temperature difference and is therefore limited as a design tool. From a pragmatic
viewpoint, we require a criterion which depends on such quantities as the physical
dimensions of the reactor, the catalyst properties, and the overall conversion.

We can derive a similar result from engineering insights regarding heat balances
in the reactor. In this case, however, the resulting criterion will be more useful for

design purposes. Consider the following sources for heat generation (reaction) and
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heat removal (convection, conduction) in the reactor:

Reaction r(T)AH

Convection @532

. kess AT
Conduction —%_-,&é—

Clearly, if self-acceleration at the center of the reactor is to be avoided, then the heat
produced by the reaction must be quickly removed by convection and conduction
(ignoring radiation effects). The ratio of convective forces to conductive forces is

given by the Peclet number
GC,D

(5.5
Kesy )

Pe =

which approaches 11 for high flow rates. Consider a small section of the reactor tube in
which no mixing occurs. Recall that a Peclet number of 11 implies that for a distance
of about 5.5 diameters (or 11 radii), the heat from the center does not reach the wall
(i.e., for diffusion across r, the heat is convected across 11r). Thus, if we consider a
bed of length 5.5D, no heat can reach the wall and operation is adiabatic. Clearly,
to avoid acceleration of the reaction rate at the center of the reactor, the adiabatic
temperature rise over this unmixed portion of the bed must be small. This problem
was considered by Zchlowitch and applied by Pismen [92] to the specific problem of

radial temperature uniformity in a tubular reactor. Their resulting criterion is:

1 AHr(T,)D?
<

R Fors 2 (5.6)

Rewriting this as
AT, AHr(Ty)
© AT kess/D?

<2 (5.7

shows that for a fixed ratio of heat produced by reaction to heat removed by diffusion,

the Pismen criterion also results in a requirement on the tolerable size of A—OTL.
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Let us consider the translation of Equation 5.6 into variables which are more
appropriate for reactor design. Using a Peclet number of 11 and inserting the resulting

value for ks obtained from Equation 5.5 yields:

1 AHr(T,)11D

Note that A—Ié.%gﬂ is the temperature rise per unit length and at all conditions, in-
cluding the maximum reaction rate, this inequality must be satisfied. Thus, in a
simplified form, Equation 5.8 says that the adiabatic temperature rise in a bed of this
length should be less than ©.

Equation 5.8 can be further simplified for preliminary design. If the reactor is
approximately isothermal, then basic design principles [31] for a first order reaction
lead to:

rmas(T) = (~In(1 ))& (5.9)

Now consider the adiabatic temperature rise over a distance £ = 1122 for a first order
reaction with conversion z (based on isothermal reaction). The design equation [31]

for an adiabatic bed yields:

{ () eR:r rFdT
- 5.10
A / 1+ &T) - &7 (5.10)

Assuming that % is very small (% << 1), and thus the temperature rise T'(¢) — T is

small, we can approximate the integral as follows:

¢ C, C
kot = Z—I_jeﬁ‘(T(l) ~T) = ZX—l';je%m:n,d(e) (5.11)

The adiabatic temperature rise over the full length of the reactor (for a conversion of
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z) is given by:

AT, (z) = 28 (5.12)
Co
Therefore
AT (¢=52)  11DIn(1 -2) (5.13)
ATad(x) - 2L T )
and the temperature gradient is given by:
AT,4(¢ = 12) _ _AT(z)In(1 - z) (5.14)

11D
5 L T

This maximum temperature gradient is substituted for éfg in Equation 5.8 to yield

the final result

1 AT,yIn(1 -z)11D
— -(:)- T o 3 <1 (515)

or

> 5.5 (5.16)

D~ "0

L AT, [—ln(l - x)]
z
where AT,q is the temperature rise of the total feed at conversion z. To be safe, one
might want to start with an % at least twice as large as the term on the right side.
Note that the radial temperature criterion resulted in a requirement for a minimum

% which is independent of space velocity and catalyst activity. It is just a function

of conversion and:

AT,y _ATE

o = 7 (5.17)

Up to this point it was assumed that the reactions taking place in the reactor are
irreversible. We can modify this for reversible reactions if we know the maximum
reaction rate. For a first order reversible reaction, we can simply substitute —In(1 —

Z) for —In(1 — z). In a second order irreversible reaction we get

5.0AT, 1

St (5.18)

>

o



183

3
[=]
@
2 - © Ethylene Oxidation
@ Methanol Oxidation
D 5.5ATu L I Napthalene Oxidatio?
T T B Vinylacetate Synthesis
L L A ]
0 4 Benzene Hydrogenation
e e e oo o o o o o o o o o ]
o L] LJ L] L]

10 30 50 70 90  11¢ 130

Figure 5.1. Verification of Radial Temperature Criterion

where again z is the fraction of reactant converted and AT, is the adiabatic tem-
perature rise of the total feed at conversion z. For reversible reactions or any more

complex reaction expression, Equation 5.18 becomes:

5.50T,y L

T (5.19)

L>
D

where %— is the normalized length of the reactor required to obtain the conversion in
an isothermal reactor if the reaction rate would be at the maximum rate through-
out the reactor. For practical considerations, this parameter can be measured on a
microreactor or a small pilot plant.

In Figure 5.1 are plotted values for the quantity %%‘“% versus the % ratio
for typical industrial reactor data [40]. The criterion in Equation 5.19 dictates that
%E%I“# should be less than 1 which is clearly violated for these reactors. A less

restrictive condition on the radial temperature profile will be derived in the following

section on parametric sensitivity.
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5.2.2 Parametric Sensitivity

Barkelew [7] and others have formulated criteria for the temperature sensitivity of
packed bed reactors to changes in operating conditions or physical parameters. How-
ever, these criteria are in terms of mathematical differential sensitivities which offer
little insight for a practical design engineer. Using engineering judgement, we will
show that these criteria can be reduced to a very simple form involving practical
design parameters.

In order to transfer the heat through the wall, a driving force close to the inside
of the wall is required. When the reaction rate changes, the temperature close to the
wall has to rise to compensate for the higher heat transfer required. Exercising good
engineering judgement, we require that the temperature difference T — T, is small
compared to ©. Again, referring back to Equations 5.2, 5.3, and 5.4, this is understood
as requiring the reaction rate to accelerate at most linearly along the radial direction.
In terms of the “forces” involved, we know that in a well-mixed reactor, the rate of

heat generation is balanced by the rate of heat removed by cooling through the wall:

ho(T - Ty) =rAH (5.20)
Thus our requirement becomes:
T-T, rAH
5 — e <1 (5.21)

Substituting for the heat transfer coefficient (normalized to unit volume)

s _ R (5.22)
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and using the relationship in Equations 5.9 and 5.12

ATad

rmas(T)AH = GC, =

[-In(1 - z)] (5.23)

we get
Eop e[~ In(1 ~ 2)]

<1 (5.24)
17

where AT, is the adiabatic temperature rise for the complete feed at full conversion.
As before, we can substitute ;%= for the quantity in brackets for a second order

reaction. This equation can be interpreted as a limit on the reactor diameter

4 h©

oC1n(l = 2)] CyATs (5:25)

D <Dmaa:=

where v, is the space velocity.

Compare this with the approach used by Barkelew. In his notation, the sensitivity

criterion is given by

SCyooky _ 1

5.26
bt 8(5) (5:26)
where ®(S) is given in Figure 5.2 and
AHE

For large S, ®(.S) approaches a constant value of 2.5. In our notation, S = 9—%“ and

cokoePTw is simply r(T,). Thus, Barkelew’s criterion (5.26) becomes:

r(Ty)AH 1

e < 39 (5.28)

Following the same manipulations as before, the final design criterion can be expressed
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Figure 5.2. Barkelew’s Sensitivity Criterion (from Froment and Bischoff, 1979)

as a maximum diameter for the tube:

1 4 h@®
y (i%u) v,[—In(1 — 2)] C,AT,q

D < Dpor = (5.29)
®(S) can be taken from Figure 5.2 and it changes from 1 to 2.5.

This result is very similar to our earlier result (Equation 5.25), which was based
upon simple engineering rules of thumb. However, for large values of ®(5), Equa-
tion 5.29 is more stringent than Equation 5.25. This result should be made more
conservative by introducing a safety coefficient as we do not know our parameters

very accurately and they may change during operation. A safety factor of 2 is rea-
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sonable for both cases (i.e., D = 0.5D,,4;)-
Instead of a look-up table approach to solving for ®(S), it is possible to actually

calculate an explicit value from the following correlation proposed in [68]

® = 2.718T [1 - (:‘;ﬂ) %] (5.30)

where I is an empirical parameter given by

8.7
_ _ 31
r 7.66 + n08 (5:31)
and for n (reaction order) equal to 1, the expression for Sy is:
4
So = —1— (5.32)

where v is the dimensionless activation energy, RTL.., The advantage of such an ap-
proach is clear; one can trivially rederive the critical ®(.S) curve for different reaction
orders, feed temperatures, and activation energies. The correlation can be readily
incorporated into Equation 5.29 and thus eliminate the use of Figure 5.2.

The accuracy of the two approaches (Barkelew’s look-up table and the correlation
in Equation 5.30) are examined against experimental data in the literature for vinyl-
acetate synthesis [30] and from a university methanation reactor [90]. In Figure 5.3,

we plot Drlu)az versus —A-gﬂi, where D,,,, is taken from Equation 5.29. Four sets of data

are plotted in the diagram:

e One datum point for the Caltech methanation reactor, not parametrically sen-

sitive.

e Data for Emig’s vinyl-acetate synthesis reactor, which displayed temperature

sensitivity.
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Figure 5.3. Verification of Sensitivity Criterion

e Data for Emig’s vinyl-acetate synthesis reactor, which did not display temper-

ature sensitivity.

¢ One datum point for an industrial vinyl-acetate synthesis reactor, not paramet-

rically sensitive.
In addition, two loci are shown:
o The design criterion in Equation 5.29 using Barkelew’s look-up for ®.

e The design criterion in Equation 5.29 using the Morbidelli/Varma correlation

in Equa,tiori 5.30 for .

It can be seen that the agreement is quite good between the predicted regions for
temperature sensitivity and the experimental data. The agreement for the ® correla-
tion from Equation 5.30 is better qualitatively than the one based upon Barkelew’s

look-up for ®, although the former is slightly more conservative. The quantitative
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error could be attributed to the fact that the true order for the vinyl-acetate syn-
thesis has been reported to lie between zero and one. The utility of the correlation
in Equation 5.30 is that such changes in reaction order (or activation energy or inlet
temperature) can be readily incorporated in the computation of ®. As before, a safety
factor of 2 should be incorporated (D = 0.5D,,,7).

Finally, it should be pointed out that both the Caltech methanation reactor and
the industrial reactor have been properly designed (or even overdesigned) and exhibit
no temperature sensitivity.

More involved calculations are possible for ®(S), depending on the desired com-
plexity. For instance, the same criterion (Equation 5.29) can be used with a ® which
has been modified to incorporate particle effects. The resulting criterion can be used
as in [70] to predict the occurrence of multiple steady states in the reactor. The
drawback of this latter approach is that it is more computationally intensive than
even the Barkelew calculations.

The criterion in Equation 5.29 has been derived by assuming a simple homoge-
neous model with only axial heat conduction. A mean heat transfer coefficient can be
calculated for such a model by considering the sum of the resistances to heat transfer

in the bed and at the wall (as in [31])

1 1 D
=+

Tt (5.33)

where k. is the radial conductivity and a quadratic temperature profile has been as-
sumed. The critical assumption in one-dimensional models for parametric sensitivity
calculations is that the first term on the right hand side in the Equation 5.33 is larger
than the second term. In other words, one assumes that the jacket effects are larger

than radial conduction effects

hyD ,
o Bi< 4 (5.34)
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where Bi is the dimensionless Biot number. Let us compare this result to our earlier
criterion for a uniform radial temperature profile (Equation 5.6). Taking the ratio of
the criterion given in Equation 5.6 to the sensitivity criterion given in Equation 5.26

gives a “modified” Biot number:

AHr(T,) #Do 4h D  4Bi
il == = (5.35)
__D_?LL@ AHT(Tw) d Zkeff ®

We can interpret this equation in the following manner. Since ® ~ 2, then for
Bi <~ 0.5, the second criterion (Equation 5.28) implies the first (Equation 5.6).
In other words, the first criterion is about an order of magnitude more conservative
than the assumption given in Equation 5.34. This is easily understood since in the
radial temperature criterion we require a flat radial temperature profile. But for the
one-dimensional model used in the sensitivity criterion, we assume a mild parabolic
profile and only require the Biot number to be less than 4.

Some typical values for the Biot number are plotted in Figure 5.4 for several typical
industrial reactors [40] as well an academic laboratory reactor [30]. It is clear that
the radial profiles are fairly mild for the presented industrial data. However, in the
case of the data from Emig [30] in which they were attempting to induce parametric
sensitivity, the radial profiles were very steep and suggest that radial effects play a
significant role in the critically stable behavior observed in this case.

In light of these observations, we recommend that the requirement on the Biot
number (< 4) serve as a verification that the parametric sensitivity analysis is cor-
rect. Violation of this specification suggests the need for a more involved sensitivity

criterion which incorporates radial effects.
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Figure 5.4. Verification of Biot Number Specification

5.2.3 Practical Considerations

Equations 5.16 and 5.29 give a reasonable first estimate for the physical dimensions
of the reactor in terms of the parameters which are convenient for design purposes.
The scaling parameter © depends on the activation energy and is thus determined by
the nature of the reaction and the catalyst. The parameters which can be adjusted
include ATgq, vs, L, and D. AT,y can be lowered by adding a diluent to the feed.
v, is normally adjusted in coordination with the catalyst activity. If the activity is
lowered, the maximum reaction rate is lowered which leads to a higher residence time
in the reactor. The original conversion can be maintained by lowering v;.

In terms of the diameter of the reactor, Equations 5.16 and 5.29 indicate that
a smaller diameter yields better thermal stability in the bed. However, from an
economic perspective, it is cheaper to produce tubes with larger diameters. Economic
considerations also favor lower dilution rates and higher space velocities. Therefore,

solving for an economically optimal set of conditions which also satisfy Equations 5.16
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and 5.29 requires an iterative procedure. For instance, for fixed D, a reduction in v,
is traded off (via Equation 5.29) against less diluent and a higher AT,,. Similarly, for
fixed AT,q4, a reduction in v, is traded off (via Equation 5.16) against a larger tube
diameter and (via Equation 5.29) a longer reactor.

In the preceding analysis, it has been assumed that there is no recycle or dilution;
however, it is straightforward to account for these effects. If the recycle is unconverted
material, then it has no impact on Equations 5.16 and 5.29 as long as we remember
that v, is based on total feed to the reactor. v, is often given in terms of fresh feed

only, which is designated as v,. In this case, v, has to be adjusted accordingly
v, = Uy0(1 + R) (5.36)

where R is mass recycle per mass feed. If the recycle contains a diluent, then this
affects AT,q. This requires iteration, but it is straightforward as long as we always
use AT,; and v, based on total feed in Equations 5.16 and 5.29.

There are some practical considerations for choosing L and D. Normally, the
smallest tube diameter for large scale reactors is one inch. Smaller diameters would
be prohibitively expensive. There are also limitations placed on L by both shipping
and transportation as well as the physical support of the tubes in the reactor. In
addition, the tolerable pressure drop across the reactor limits the acceptable length
(this will be discussed in the next section). On the other hand, it is seldom economical
to have a tube length smaller than 40 feet, unless the catalyst volume required is very
small. A larger L will give a larger maximum tube diameter and fewer tubes. For
very large reactors, one can achieve this by connecting two reactors in series.

There is another aspect of the sensitivity criteria which is often overlooked. The
criteria in the previous section relate to fixed operating conditions. In practice we

have two deviations related to flow variations and maldistributions.
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First, operating conditions rarely remain fixed at their designed settings. A reactor
has to be able to operate at lower flow rates or throughputs than originally designed
for. It will also be operated at higher throughputs, but there is often objection to
provide for this in the design. An experienced designer does so but hides it in safety

coefficients.

Second, the flow rates vary from tube to tube. We therefore have to look at the
effect of variations in throughput on our criteria. If the reaction is not mass transfer
controlled, r,,,, is independent of linear velocity and only depends on inlet compo-
sition and reactor temperature. Flow rate will impact the heat transfer coefficient
in Equation 5.29 and the value of the mass flow rate G in Equation 5.8. In both
cases, thermal sensitivity is reduced by increasing the flow rate. Therefore, the cri-
teria must be evaluated at the lower bound on flow rates through the tubes. In this
respect, Equation 5.8 is more sensitive than 5.29, as the criterion in Equation 5.8 is
inversely proportional to flow rate, whereas in Equation 5.29, it is inversely propor-
tional to a fractional power of the flow rate (typically &, = h,oG* where A = 0.5—0.8).
If the criteria are conservative enough, they will protect against thermal sensitivity
arising from flow variations.

In general, if the throughput is reduced, 7., should be reduced accordingly.

5.2.4 Acceptable Pressure Drop

The foregoing calculations are only concerned with the stability of the reactor and
its sensitivity to disturbances. There is another important consideration, namely
limiting the pressure drop to an acceptable limit.

For turbulent flow, which is a reasonable assumption for most tubular reactors,

the total pressure drop is given by the Ergun Equation [31]

AP=[—21 =222 (5.37)
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where the friction factor, «, is equal to:

o= = ) [1501(213: I 1,75] (5.38)

a can be directly measured in a pilot plant and experimental values are preferred.

The friction factor correlation in Equation 5.38 holds for spherical catalyst parti-

cles.

5.2.5 Summary

Summarizing the results of the previous sections, we have the following specifications

on the reactor dimensions:

L> L,m'n =5.5D

A’én,d [— In(i - z)} (5.39)

1 4 h©
) (.A_.%'nd) vs[=In(1 = )] CpAT,q

L< Lipgs = ,3/%254’22 (5.41)
av?

The assumptions used in the derivation of these guidelines are as follows:

(5.40)

D < -Dmaz =

First Order, Irreversible, Isothermal Reaction

L
‘5>>1

Spherical Catalyst Pellets
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Let us now look at the potential conflicts between these equations. Consider an
undiluted feed and fixed conversion. This fixes AT,; and we get % from Equation 5.39.
Turning to Equation 5.40, we can adjust v, to get an acceptable diameter. These two
results yield a reactor length, which can be verified against the acceptable pressure
drop in Equation 5.41. If at the desired condition, both Equations 5.39 and 5.41 give
satisfactory answers, then there is no problem. If either L or AP are not acceptable,
we have to continue our iteration as long as Equation 5.39 conflicts with Equation 5.41.

Note that we have a separate criterion for Ly, and for L,,,,. Each of these contain
both independent and joint parameters. Since L, increases with D, and L. is
independent of D, we can change their ratio by adjusting D. A reasonable guideline
requires that L., exceed L, by a factor of 2. Otherwise, we have to modify
other parameters. These modifications invariably affect the cost. For example, we
can reduce L, by lowering = (equivalently, reducing l%) This is achieved at the
expense of heat losses in recycling the unconverted feed.

Another way to modify the conditions is by diluting the inlet stream or by recycling
the product stream. Assume we do it by keeping partial pressure constant. If the

amount of diluent added per gram fresh feed is R, and C, is constant, then:

AT,4(0)
Toa = ——= 5.42
Alu==7F (5.42)
L in in Equation 5.39 will decrease in proportion to 1+ R, but D,,,, in Equation 5.40
will not be affected as AT, v, is independent of 1 + R. If we increase the pressure to

keep partial pressure constant, then criterion 5.41 has the following dependence on R

p _ p(l+R)
P 4
v2 vzo(l + R)2 (5 3)

S
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and L,,,, is proportional to \/1'1-TR If we keep total pressure constant
P ___Po (5.44)

and L,,,. is proportional to V(llq-_re)f

Therefore, increasing R with a recycle unit will improve the design feasibility by
increasing the ratio of L4z t0 Lyin.

In many cases, the pressure drop for a reactor of 40 feet or even 60 feet is accept-
able. Thus, the pressure drop constraint applies only to reactors with very high flow
rates, such as in the case of high recycle rates. Another situation in which these con-
straints apply is the case where the reactor is large enough that there is an economic
incentive to go to larger tube diameters and build multiple reactors in series.

There are options to reduce pressure drop by choosing catalyst shapes with inher-
ently lower pressure drops [31]. Equation 5.38 gives the friction factor for spherical
catalyst particles. It is possible to select a differently shaped particle with better pres-
sure drop properties but with nearly equivalent thermal properties (e.g., ring shaped
catalyst pellets).

We should also note that the care one has to apply to keep the reactor temperature
uniform varies from case to case (i.e., the penalty for large temperature excursions
is different for each case). Higher temperatures may deactivate the catalyst, may
cause side reactions, and may cause metallurgical problems. But in most cases it
is advisable to look for conditions where temperature variations are small. This is
discussed in more detail in [27], [28], and [29].

At last we should point out that, in the vast majority of cases, the design modifi-
cations required to achieve a very robust design with modest data are not expensive.
Building a longer reactor (within the limits mentioned) has typically a very small

impact on cost. If one has to severely limit productivity, this is an obvious penalty.
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But in the experience of one of the authors (Reuel Shinnar), this happens because

the designer has not fully taken into account all the measures that ensure robust

performance.

5.3 Control Issues for Tubular Reactor Design

The sensitivity criterion (Equation 5.29) described in section 5.2.2 is appropriate for
open-loop reactor operations. However, the application of a control law will in general
significantly alter the dynamic properties of the system. This is the case for a simple
CSTR in which open-loop bifurcations and pathologies are effectively eliminated by
simple proportional control [5]. Similarly, theoretical studies suggest that accurate
nonlinear model-based control can lead to safe operation near regions of parametric
sensitivity [80]. However, as we will see in this section, there are certain complicating
features of an industrial packed bed reactor which do not allow even an advanced
control scheme to eradicate the sensitive open-loop behavior. We will focus on the
particular control problems which arise when we try to operate the reactor near the
critical values given in the design criteria.

Controlled operation of a multitubular packed bed reactor is complicated by the
temporal and spatial variations inherent in a distributed parameter system. Addi-
tional difficulty is caused by flow variations between individual tubes. The combina-
tion of these effects pose a formidable task in the placement of sensors for measuring
reactor conditions. An additional complication in control design is introduced by the
presence of large, and often uncertain, time delays in the system.

These effects are considered in more detail in the subsequent analysis. In par-
ticular, their impact upon the proposed design criteria is investigated. In the final
sections, a reduced order nonlinear model of a tubular reactor is presented for simu-
lation purposes. The resultant case studies demonstrate the controllability problems

which can arise when the reactor design criteria are violated.
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5.3.1 Multitube Flow Variations

The flow dynamics of a multitubular reactor will, in general, be quite complicated.
However, it is reasonably straightforward to show that maldistributions in the bulk
feed flow can cause significant variations in the flow rates between the various tubes.
In addition, it is likely that the packing in the tubes will be far from homogeneous,
leading to varying resistances to flow in the individual tubes. A value of 30% has been
reborted in the literature recently [65], and will be used in the subsequent analysis to
predict the peak variation from tube to tube. In some cases, all tubes are individually
tested after filling, which can reduce variability of flow to +10%.

Consider again the second criterion (Equation 5.29) for temperature sensitivity
given in section 5.2.2. In the sensitivity diagram given in Figure 5.2, the ordinate
(—IS\—’) depends on the flow rate via the heat transfer coefficient between the wall and
the bed (Equation 5.28). A reasonable empirical correlation (for high Re) is given by
[93]:

2 1 (—0.41)
h=PriCy ( oy ¢) G (5.45)

This expression gives a 0.59 power law dependence of & on flow rate (G). Conse-
quently, flow variations in the tubes on the order of 30% will give rise to %’- values
which differ by as much as 16%. From Figure 5.2, it is clear that if our margin of
safety in the reactor design is less than 16% of %’-, this flow perturbation will lead to
a crossing of the sensitivity curve (®(S)). Consequently, if the bulk of the tubes are
at a higher flow rate (large -15!.) and lower temperature, then the tubes with restricted
flow (small &) may “ignite” and undergo thermal runaway.

The effect of this change in flow rate on the hot spot temperature is depicted in
Figure 5.5. Plotted here are the values of the hot spot temperature for a condition of
high parametric sensitivity [88]. The particular values of the physical parameters used

here will be introduced with the closed loop simulations in section 5.4 (specifically
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Figure 5.5. Steady State Dependence of Hot Spot Temperature on Flow Rate and
Inlet Concentration (yo)

in Table 5.3). It can be seen in the diagram, that as the flow rate is reduced, there
is poorer heat transfer and, consequently, the hot spot temperature increases. The
condition in Figure 5.5 corresponding to an extremely steep slope (for fixed inlet
concentration and flow rate) corresponds to a point along the sensitivity curve in
Figure 5.2 (incipient runaway). As expected, higher inlet concentration (yo) leads to

greater sensitivity as the reaction rate accelerates.

5.3.2 Measurement Set

For practical reasons, it is often necessary to use secondary measurements in the
control of a tubular packed bed reactor to improve the performance of the system.
For instance, temperature sensors located axially along the reactor can be used to
“infer” the values of the other reactor variables. For multitubular reactors, one is
not only concerned with a reasonable number of accurate measurements along the

length of the tube, but one must collect measurements from enough tubes to assure
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an accurate measurement of the true bulk temperature. There will be between 1000
to 5000 tubes in a multitubular reactor [31], but for control purposes, we want our
measurement set to be much smaller. The practical implications are immediately
clear: it will be impossible to monitor every tube in the reactor bundle. As was
indicated earlier, this can be very dangerous when one operates near the cutoffs
given for parametric sensitivity. There may be a few tubes which are not measured,
have reduced flow rates, and consequently, ignite without being observed. Even if
a measurement is made of a bulk property, such as the effluent temperature of the

tubes, the diluted effect of the ignited behavior may still go unnoticed.

5.3.3 Nonminimum Phase Characteristics

An additional problem in packed bed reactor control is the presence of large, often
poorly characterized, time delays in the system. Their causes include propagation
rates in the bed, finite time required for actuator movement, and lags in measure-
ment devices (e.g., composition analyzers). The presence of these time delays will
have a detrimental impact on the closed loop performance. As will be demonstrated
in the subsequent case studies, there is a dynamic sensitivity associated with oper-
ation in regions of high parametric sensitivity. This also places certain limitations
on the achievable performance of multitubular reactors operating in these regions.
The combined effect of these two limitations can lead to unacceptable closed-loop
behavior, such as large temperature transients.

Additional nonminimum phase (NMP) characteristics are associated with certain
choices of the manipulated variable for reactor control. These include the inlet flow
rate and inlet temperature. The selection of these variables for control inputs leads
to right half plane zeros which are manifested in inverse-response behavior. This
places severe limitations on the achievable system performance. It also precludes the

application of advanced nonlinear techniques like input/output feedback linearization



201

[54]. In the subsequent case studies, the performance of a flow controlled reactor
(NMP) and a jacket temperature controlled reactor (MP) will be investigated for

conditions of both high and low parametric sensitivity.

5.4 Case Studies

5.4.1 Nonlinear Reduced Order Model

For simulation purposes, a simple pseudohomogeneous model is employed where all
heat and mass transfer resistances between fluid and catalyst phase are neglected. In

dimensionless form (see Table 5.1), the mass and heat balances are given by

Oy , Oy

-a—t-,- + -a—z- = —Da r(:z:, y) (5.4—6)
0z 0
8_::' + 5% = B(z — z,) — ¢Da r(z,y) (5.47)
Oz
y(0,t)=yo z(0,t) = x0 (—) =0 (5.48)
0z),_,

where z is the dimensionless temperature and y is the dimensionless concentration.
In developing a low-order model for this system, it is of critical importance to
retain the essential nonlinear dynamics. By this, we refer to the relevant dynamics
which accurately and succinctly reflect the stability of the reactor and the relation-
ship between the control inputs, outputs, and the reactor’s dynamic states. In this
manner, a control algorithm based upon this model will provide suitable closed-loop
performance. The approach adopted in this work is a treatment of transport mech-
anisms in the reactor as a nonlinear wave which propagates up and down the bed
in response to changes in the operating conditions. The model will be summarized

briefly here; the interested reader is referred to [22] for the full details of the model

derivation.
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The reactor bed is divided into two zones: an ignition zone and a reaction zone.
Processes in the ignition zone are assumed to occur instantaneously compared to the
relatively slower reaction zone. The front between these two zones propagates in
response to changes in various reactor conditions. The dynamics of the front are con-
sidered to be the essential nonlinear dynamics of a packed bed reactor operating near
ignition. The position of this wavefront is determined by a critical energy balance.
Specifically, this condition requires that the heat removal line for the ignition zone is
tangent to the heat production curve. Consequently, this zone is always at the “edge”
of ignition.

This treatment leads to a simple second-order nonlinear model for the bed dy-
namics. The two states are the filtered input and the wavefront position. The former
is a fast lag applied to the true manipulated variable, and the latter equation is given
by the critical stability condition. Various choices are possible for the single manip-
ulated variable: inlet concentration, inlet temperature, jacket temperature, and inlet

flow rate. In the following case studies, we consider closed loop operation of a reactor
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| Table 5.2 Reactor Reduced Model Variables ]
[z, [ Filtered Input
Ignition Position
Manipulated Variable (Flow or Jacket Temperature)
Hot Spot Temperature
Wave Propagation Velocity
Lag on Input

MEGIEN

with flow manipulation, and separately, with jacket temperature manipulation. The
logical choice for a controlled output is the peak temperature along the axial profile,
the so-called hot spot temperature. As discussed earlier, this will minimize unwanted
side reactions and catalyst deactivation which result from thermal runaway. The

resultant SISO model structure is:

T = —I1+u
3 = w(zy,22) (5.49)
y = h($17m2)

The meaning of these variables is summarized in Table 5.2.

The numerical computations involve iterating on the ignition position until the
critical energy balance is satisfied at a given time interval. In order to accomplish the
energy calculations, it is necessary to perform an integration of the axial temperature
profile. Once the ignition position has been determined, the wavefront velocity is

calculated from the change in ignition position from the previous time interval.

5.4.2 Simulations

For the next four case studies, a set of operating conditions is selected which vio-

lated the proposed sensitivity criterion (Equation 5.29). In particular, the diameter
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| Table 5.3 Physical Parameters for Sensitive Simulations |

Da 7.059E8
B 11.38
q 1.0
~ 21.82
A 0.5
r(z,y) ye~ =

exceeded the recommended value (Equation 5.40) by 50% ( D = 1.5Dp,.). In this
manner, we will investigate the control problems associated with a parametrically
sensitive packed bed. The particular choices of physical parameters are shown in Ta-
ble 5.3; they correspond to parametrically sensitive behavior as studied in [88]. Note
that the reaction under consideration has an irreversible first order rate law and is

exothermic.

Case Study #1 (Steady State Sensitivity, Nonminimum Phase System)

The first phenomenon studied is the effect of multitubular flow variations. As was
described earlier, flow rates from tube to tube will vary by as much as 30%. These
variations affect the sensitivity through a power law dependence in the heat transfer
coefficient. For this study, a nominal value of 0.5 is chosen for this coefficient.

In Figures 5.6 and 5.7 are shown the responses of the hot spot temperature for
two reactor tubes to a step change in the set point of the bulk hot spot temperature.
The particular simulation conditions are shown in Table 5.4. Note that the second
tube has a restricted flow and has a throughput which is 8% lower than the first
tube. The temperature in tube #1 is used as a measurement for a PI controller in
an effort to control the hot spot temperature in the bed. This is accomplished by
manipulating the bulk flow rate through the tubes. The control parameters (K, = 0.5,

71 = 0.05) are selected for a reasonable speed of response. As the figures show, tube
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|_Table 5.4 Simulation Conditions (Case Study #1) |

Inlet Concentration (yo) 1.1
Flow Rate (£) 0.85
Inlet Temperature (zo) 1.00
Jacket Temperature (z.,,) 1.00
Manipulated Variable (u) Flow Rate
Controlled Variable (y) | Hot Spot Temperature
Disturbance None
Set Point Change 8K
Tube #1 | Tube #2
Relative Throughput 1.0 0.92

#1 behaves as expected with an overdamped second-order response while tube #2
“ignites,” reaching temperatures in excess of 900 K. It is clear that the restricted flow
through the second tube leads to an unreasonably large excursion in the hot spot
temperature. Using the information in Table 5.4 and Figure 5.5, it can be seen that
the new steady state position of the second tube is in a region of ignition. Thus, we
observe a steady state sensitivity with respect to operating conditions.

Note that the behavior depicted in Figures 5.6 and 5.7 is independent of the
controller parameters. In fact, the response is independent of the controller employed
(nonlinear, IMC, etc.) and all closed loop systems will exhibit the same steady state

sensitivity for these simulation conditions.

Case Study #2 (Dynamic Sensitivity, Nonminimum Phase System)

Further insights are gained if a controlled response to a disturbance in inlet concen-
tration is investigated. The simulation conditions for this example are displayed in
Table 5.5. As before, the control configuration involves the manipulation of bulk flow
rate to regulate the hot spot temperature. Measurements are only available from tube

#1 and the controller is a PI controller with settings: K, = 0.5, 77 = 0.05. Now the
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Figure 5.8. Closed-Loop Response (Case Study #2, Inlet Concentration Disturbance,
u= Flow Rate)

controlled system is subjected to a 10% step increase in the inlet concentration. From
the steady state values at the end of the simulations in Figures 5.8 and 5.9, we can see
that both tubes have initial and final points which may be considered tolerable for the

designed reactor. However, a large transient excursion of the temperature in tube
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Figure 5.9. Closed-Loop Response (Case Study #2, Inlet Concentration Disturbance,
u= Flow Rate)
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| Table 5.5 Simulation Conditions (Case Study #2) |

Inlet Concentration (yo) 1.1
Flow Rate () 0.85
Inlet Temperature (zo) 1.00
Jacket Temperature (z,,) 1.00
Manipulated Variable (u) Flow Rate
Controlled Variable (y) | Hot Spot Temperature
Disturbance +10% Step in yo
Set Point Change 0K
Tube #1 | Tube #2
Relative Throughput 1.0 0.92

#?2 is observed for the disturbance in concentration. The peak hot spot temperature
observed is in excess of 150 K above the final steady state level. Such phenomenon
could be accurately described as Jynamz'c sensitivity.

In this case study, the controlled response is strongly dependent on the controller
parameters. As the sensitivity exhibited in this in this case study is dynamic in nature,
we can expect to minimize the size of the temperature excursion by optimizing the
control parameters. Note, however, that the magnitude of the flow restriction also

strongly affects this transient response.

Case Study #3 (Dynamic Sensitivity, Minimum Phase System)

The same sensitivities are evident in the closed loop for a minimum phase system.
The control configuration is as before, with the replacement of bulk flow rate by
jacket temperature as the manipulated variable. And as before, we only measure the
temperature in tube #1 in an effort to control the hot spot temperature in the reactor.
This effectively renders tube #2 off-line and no control action will be taken to handle
disturbances in this tube. The control settings are as before (K, = 0.5, 7; = 0.05).

The remaining conditions for the simulation are shown in Table 5.6. In this case, we
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Figure 5.10. Closed-Loop Response (Case Study #3, Flow Rate Disturbance, u=
Jacket Temperature)

consider a disturbance of a 10% step decrease in the flow rate for two tubes. The
tubes chosen for this study differ by 20% in their flow throughput. The controlled
response to this disturbance is depicted in Figure 5.10. Again, it is observed that
there is a dynamic sensitivity associated with this operating condition as tube #2

experiences a 300 K overshoot in its response.

| Table 5.6 Simulation Conditions (Case Study #3) |

Inlet Concentration (yo) 1.1
Flow Rate () 1.0
Inlet Temperature (zo) 1.0
Jacket Temperature (z,,) 1.0

Manipulated Variable (u) [ Jacket Temperature
Controlled Variable (y) | Hot Spot Temperature
Disturbance —10% Step in £
Set Point Change 0K
Tube #1 | Tube #2
Relative Throughput 1.0 0.8
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Figure 5.11. Closed-Loop Response (Case Study #4, Flow Rate Disturbance, u=
Jacket Temperature)

As in case study #2, the size of this dynamic temperature excursion is a strong
function of the control law and the magnitude of the flow restriction.

Remark (Case Studies #1, #2, #3)

As has been emphasized in the above three case studies, it is implicitly assumed
that the flow-restricted tube (#2) represented an unobserved tube from the perspec-
tive of sensor measurement. Thus, it is effectively rendered off-line and no control

action is taken to mitigate the effect of the disturbances.

Case Study #4 (Measurement Selection, Minimum Phase System)

An alternative sensor placement set might include some bulk measurements, such as
the reactor effluent temperature. However, one can envision a reasonably representa-
tive flow distribution where tube #1 represents 99% of the tubes and 1% of the tubes
are restricted to the flow levels given by tube #2. Recall the conditions in case study
#3, and now consider the effect of the disturbance on the effluent streams from the
two tubes. These results are shown in Figure 5.11. It is clear that the large hot spot

temperature excursion is extremely localized and is only represented by a 15-degree
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[ Table 5.7 Physical Parameters for Insensitive Simulations ]

Da 7.059E8
B 34.14
q 1.0
~ 21.82
A 0.5
r(z,y) , ye/®

K range in the effluent temperature. Recalling our assumption that tube #1 repre-
sents 99% of the total flow, it is clear that the effect of the “hot tube” (#2) would be
altogether lost by dilution effects in the mixed efluent stream. In this case, a mixed
stream would show a profile which is indistinguishable from the profile exhibited by
tube #1.

Case Study #5 (Insensitive Operation, Minimum Phase System)

Case studies #3 and #4 are repeated with a new set of operating conditions in
which the reactor diameter is 50% smaller than that recommended by Equation 5.29
(D = 0.5Dy,,). This is accomplished by tripling the heat transfer coefficient. Now we
have a reactor which is designed “safely” in accordance with the guidelines prescribed
in this chapter. The physical parameters which lead to this condition are shown in
Table 5.7. As before, we consider the manipulation of jacket temperature (using a PI
controller with parameters: K, = 0.5, 7; = 0.05) to regulate the hot spot temperature
in the bed. We look at two different tubes, one of which has restricted flow rate and
is not observed by the controller. Additional conditions for this simulation are shown
in Table 5.8. The results for closed-loop operation are depicted in Figures 5.12 and
5.13.

We observe the effect of a 10% decrease in the feed-flow rate on the temperatures

in the two tubes, which differ by 20% in their throughput. Figure 5.12 shows the



212

[ Tube #2
b o relative throughput = 0.8
9 ° temperature not measured
g 1
ey
g -
§- T Tube #1
& 634 © relative throughput = 1.0
§. L ° temperature measured for control
S
©
: L
638
o o e B BELEE B e e e e e o S S
] o1 (%] o3 04 o5

Time (Dimensionless)

Figure 5.12. Closed-Loop Response (Case Study #35, Flow Rate Disturbance, u=
Jacket Temperature)
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Figure 5.13. Closed-Loop Response (Case Study #5, Flow Rate Disturbance, u=
Jacket Temperature)
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|_Table 5.8 Simulation Conditions (Case Study #35) |
[ Tnlet Concentration (yo) 1.0

Flow Rate (#) 1.0
Inlet Temperature (z) 1.0
Jacket Temperature (z,,) 1.006

Manipulated Variable (u) | Jacket Temperature
Controlled Variable (y) | Hot Spot Temperature

Disturbance —10% Step in +
Set Point Change 0K
Tube #1 | Tube #2
Relative Throughput 1.0 0.8

response of the hot spot temperatures; Figure 5.13 shows the response of the effluent

temperatures. Clearly, the high sensitivity to operating conditions has been dimin-

ished, and the difference in temperature levels between the two tubes is negligible.
By designing a reactor which satisfies the proposed sensitivity criterion, we have

considerably improved the controllability of the resultant system.

5.5 Practical Control of Tubular Reactors

The previous simulations demonstrate that it is advisable to design multitubular
reactors such that they are inherently robust and insensitive to perturbations. While
it is possible to operate a single CSTR by feedback stabilization, this is not advisable
for a multitube reactor. The problem of designing a system such that it is robust and
easy to control versus relying on advanced control methods for stabilization is one
that often appears in practice [81], [82]. Regretfully, very often the problem of the
impact of design on controllability is not sufficiently recognized both in practice and
in the literature. If aware of the problem, most users will prefer an inherently robust
design over one relying on control.

In the aerospace industries, there are cases where design of inherently unstable (or
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sensitive) systems stabilized by control have demonstrated advantages. One clear ex-
ample of this is the X —29 high performance aircraft (swept forward wing fighter) [3].
The design of this plane makes possible certain high performance combat flight ma-
neuvers; however, its open-loop instability would lead to catastrophic circumstances
in milliseconds if the feedback loop is turned off. There are also cases in process
industries where such stabilization is essential ([57], [81], [82]), although the problem
has not received sufficient attention.

For the specific case of the packed bed reactor, the design criteria proposed should
allow safe robust design in most cases. Detailed computer modeling may sometimes
allow relaxing these criteria provided detailed and reliable kinetic data are available.
However, the cost of obtaining such data has to be weighed relative to the potential
savings.

The proposed criteria can also be effectively utilized to update reactor operating
conditions in response to a deactivating catalyst. The normal way to do so is to
increase the temperature of the cooling bath. Several sets of thermocouples along
the length of a tube allow the measurement of the maximum temperature difference
between the bath and the tube. If this difference is maintained at the level prescribed
by the sensitivity criterion (by adjusting cooling bath temperature), then the overall
productivity of the reactor can be safely optimized. The problem is sometimes much
more complex due to selective poisoning and deactivation of the front section in the
reactor. Here, the temperature profiles can be used to diagnose the state of the
catalyst. This allows one to predict in advance the need for catalyst regeneration.

A related approach involves profiling the catalyst activity [75]. It has been demon-
strated that if less active catalyst is employed in the region of the reactor where the
reaction driving force is greatest, then the parametric sensitivity of the bed is greatly
reduced. In practice, this selective deactivation may occur unintentionally and lead

to reduced sensitivity in a bed which may have originally been highly sensitive.



215

5.6 Summary

This chapter presents a set of simple and practical guidelines for the design of complex
catalytic packed bed reactors. The design criteria are derived from requirements on
the radial temperature profile, temperature sensitivity, and tolerable pressure drop.
The specifications are formulated in terms of the practical reactor parameters of
length and diameter, and illustrate the various tradeoffs involved in satisfying the
three requirements on the temperature and pressure drop. Thus, the proposed criteria
provide direct insights for the practical design engineer.

The stabilization of industrial multitubular packed bed reactors by feedback con-
trol is addressed. It is shown that multitubular variations and the lack of proper
measurement signals precludes the dynamic stabilization of the reactor in regions of
parametric sensitivity. Thus, stable closed-loop operation can only be accomplished
with reactors which adhere to the proposed guidelines. These ideas are demonstrated
by closed-loop simulations with a reduced order nonlinear packed bed reactor model.
Operation of a reactor which violates the design criteria is shown to lead to steady
state and dynamic sensitivity. This behavior is manifested as thermal runaway in
reactor tubes with slightly restricted flow rates. It is also shown that for a reactor
designed in accordance with the presented specifications, the behavior is stable, even
for tubes with restricted flow rates. Thus, violation of the proposed criteria leads to

unacceptable closed-loop performance.

Acknowledgements
A version of this chapter has been prepared for publication. The creative input of

the co-author, Reuel Shinnar, is gratefully acknowledged.



216

Chapter 6

The Selection of Nonlinear “Linearizing”
Control Versus Linear Control

Abstract

A comparative evaluation of the relative merits of linear versus nonlinear “linearizing”
feedback control is carried out through a series of specific case studies. The issues
of region of attraction, actuator penalties, and sensitivity to input disturbances are
investigated for several physical and several purely mathematical dynamical systems.
Based upon these results, specific recommendations are made for assessing the ap-

propriate application of simple linear versus nonlinear “linearizing” control.

6.1 Introduction

The interest in nonlinear differential geometric control methods has grown consider-
ably over the past five years. The applications of these so-called “linearizing” tech-
niques have ranged from robotics to flight control to process control. However, many
of these application studies have utilized straightforward models of the systems, and
few studies have focused on the robustness issues and saturation effects. In addition,
there has been little work done to evaluate the comparative performance of nonlinear
and linear control structures.

In this chapter, we propose some simple guidelines for the assessment of which sys-

tems benefit from the more complex differential geometric control schemes as opposed
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to simple optimal linear controllers. Consideration is given in this work to realistic
performance weights, which include not only a penalty on tracking error but also a
penalty on manipulated variable action. In general, the improved dynamical behav-
ior of a “linearized” system is at the expense of large manipulated variable action.
Clearly these actions may be excessive or may be limited by actuator constraints.
Furthermore, a selection of natural performance weights, which vary from one oper-
ating point to another, is shown to require adaptive gain scheduling for the nonlinear
schemes in order to achieve comparable performance to a single linear controller.

Through an analysis of phase portraits and regions of attraction, some of the
robustness and performance tradeoffs are evaluated for various nonlinear systems.
Case studies are documented which show an improvement in robustness properties
with nonlinear control for certain classes of systems. A class of systems is outlined
for which sensitivity in the zero dynamics leads to poor robustness properties. It is
also shown that the control structure of “linearizing” techniques leads to increased
sensitivity to input disturbances.

These case studies form the basis for a set of proposed guidelines for the judicious
selection of nonlinear “linearizing” control over straightforward optimal linear con-
trol. Thus, we formulate qualitatively the degree of nonlinearity for a system, based

upon the warranted control action to achieve a certain level of performance.

6.2 Performance Evaluation for General Closed Loop

6.2.1 Region of Attraction

The standard mathematical definition of a region of attraction for a point z; is the
set for which all trajectories originating in that set eventually converge to the point
o [37]. Clearly, a large region of attraction around a process operating point enables
the effective handling of perturbations in the system’s physical parameters as well as

external disturbances. Effective control action will preserve the asymptotic stability
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of the point in some neighborhood despite the effects of these perturbations. Strictly
speaking, this property is more closely associated with the overall robust stability of
the dynamical system rather than its robust performance. However, the limitations
imposed by the size of the region of attraction impact directly the tolerable range
of operation, and consequently, the resulting performance. Thus, this measure will
serve as a useful benchmark in evaluating competitive control structures (nonlinear
versus linear).

In the following two case studies, the region of attraction about a nominal point in
a dynamical system is investigated as a function of the feedback control law which is
applied to the system. Two examples are considered: a purely mathematical system
(though similar in structure to the van der Pol oscillator) which has a convenient
phase portrait, and a simple process system (CSTR with Van de Vusse kinetics).
The comparison is carried out in the phase plane for these second-order systems and
consideration is given to the stability of various initial conditions. This is equivalent

to considering impulse disturbances to the respective state equations.

van der Pol Oscillator

Consider the following dynamical model which is a slight modification of the equations

describing a van der Pol oscillator [37]

i = —z1(a® -2 -1d) -z,
i = u(a? -z -2+ (6.1)
y = T2

where y represents the controlled output and u represents the manipulated variable.

The two candidate control algorithms which will be investigated are input-output
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linearization (IOL) with an external proportional controller

B_III{NLJ:Z - T — %22

U=

6.2
a? —z? -z (6.2)

and proportional linear control:

u=—-Krz, (6.3)

The choice of parameters (a = 1.0, 5; = 1.0, K, = 1.0, and Kxz = 1.0) leads to the

following two closed-loop systems:

Linear z#; = —z;(0® — 22 —22) — 2,
3 = —z3(c? —22 —22)+ 1 (6.4)
y =2
Nonlinear #; = —z;(c® — 22 —22) — =z,
T3 = —(1+ fo)z, (6.5)
y =22

(6.6)

This particular system was chosen for the fact that both the open- and linear closed-
loop dynamical systems have a region of attraction about (0.0,0.0) precisely equal to
the unit circle. This can be seen in the phase portraits of Figures 6.1 and 6.2. If the
gain of the linear controller is increased, this merely increases the speed of response
as the system moves to the origin without changing the region of attraction.
Application of nonlinear control significantly alters this region of attraction as
shown in Figures 6.3 and 6.4 for two different values of the parameter f,. In
the case where f, = 0.2 (Figure 6.3), it can be seen that the portions of the unit
disk in two of the four quadrants are excluded from the region of attraction for the

nonlinearly controlled system. If this gain is increased B, = 1.0 (Figure 6.4), the
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Figure 6.1. Phase Portrait for van der Pol Oscillator (Open Loop)

Figure 6.2. Phase Portrait for van der Pol Oscillator (Linear Control)
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Figure 6.3. Phase Portrait for van der Pol Oscillator (Nonlinear Control, 8, = 0.2)
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Figure 6.4. Phase Portrait for van der Pol Oscillator (Nonlinear Control, 5, = 1.0)
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region of attraction expands in the positive and negative z; direction and includes
virtually all of the unit disk.

Clearly there is a tradeoff in the system between the occluded region of the unit
disk and the increased region of attraction along the x-axis. In a physical plant, these
considerations must be evaluated for a particular process. The point to be made here

is that the two approaches result in different regions of attraction.

CSTR - Van de Vusse Kinetics

Consider the Van de Vusse reactions taking place in an isothermal CSTR (see Chapter

3) with physical parameters leading to the following dimensionless mass balances

= =251+ 2.5.1:% —-u
.’i?z = —zy+ .'Zg +u (6.7)
y = o

where the output represents the concentration of the product and the manipulated

variable is the dilution rate. Two control algorithms will be investigated, IOL with
an external proportional controller

—I(NL:IQ - IB% - ‘%‘Zg

= (6.8)

° =

and proportional linear control:

The choice of control parameters (8, = 1.0, K1, = 1.0, 8 = 0.5,and K, = 0.5) leads

to the following closed-loop systems:
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Figure 6.5. Phase Portrait for Van de Vusse Reactor (Open Loop)

Linear z; = —2.5z; + 2.59:3 + 4

Iy = —2z; + z? (6.10)
y =T

Nonlinear #; = —2.5z; + 3.5z% + z;
Ty = —2z, (6.11)
y =T

Consider the operation of the reactor at the origin and the surrounding region of
attraction for each of the three cases (open loop, linear control, nonlinear control).
In the open-loop case, Figure 6.5, we observe a stable manifold along the line z; = 1,
which attracts all points along this manifold to the critically stable fixed point at

(21, 22) = (1.0,1.0). This manifold divides the state space into a region of attraction
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Figure 6.6. Phase Portrait for Van de Vusse Reactor (Linear Control)

to the origin and a region of repulsion. Thus, we will refer to this as the dividing
manifold. All trajectories originating to the left of the manifold will be eventually
attracted to the origin; those originating to the right will be repelled.

This dividing manifold for the linearly controlled reactor is sketched in Figure 6.6
by with a dotted curve. Points along this manifold now converge to the fixed point
(z1,2) = (0.833,0.347). As the control gain is reduced to zero, this manifold becomes
the line at z; = 1. As the control gain is increased, the manifold folds and moves in
the negative z; direction. The attracting point in the dividing manifold follows the
family of parabolas z; = ﬁzf

For nonlinear control, the situation is quite different. Now the dividing manifold
passes through the fixed point (z;,z;) = (0.714,0.0) for all values of the controller
gain, fy. Varying the gain S, will fold the dividing manifold around this point; how-
ever, the manifold is fixed at this point. Consequently, the region (z; > 0.714,z; ~ 0)

will always be repelled from the origin. The dividing manifold for 8y = 0.5 is shown
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Figure 6.7. Phase Portrait for Van de Vusse Reactor (Nonlinear Control)

in Figure 6.7 as a dotted curve.

As in the previous case with the van der Pol oscillator, we observe two different
regions of attraction corresponding to the selection of linear or nonlinear feedback
control. In this case, linear control offers a more flexible tuning of the region of
attraction through the controller gain.

It should be pointed out that there are several variables which could be tuned
for the nonlinear controller (rather than ;). In addition, one could consider more
complex linear architectures such as PID or IMC. The point of this particular study
was to demonstrate that the phase portrait behavior (as a function of a single tuning
parameter) is fundamentally different for the nonlinear and linear control algorithms.
The particular application of interest will determine if these trends favor the use of

nonlinear or linear control.



Figure 6.8. Block Diagram for Loopshaping

6.2.2 Loopshaping and Meaningful Performance Weights

A commonly cited fault of differential geometric linearization techniques is the ex-
cessive control action required to achieve the linear output response. The obvious
question here is: what exactly is a meaningful performance specification for evaluat-
ing a closed-loop system? It stands to reason that merely weighting the output error
function is not enough. In this section, it is shown that a reasonable performance
measure which balances the tradeoffs between actuator movement and output error
response has interesting ramifications for the relative merits of linear and nonlinear
control.

Consider a performance specification which balances the tradeoffs between robust
stability and robust performance by the following weights on the sensitivity (S) and

complementary sensitivity (T) functions [20]:
I(IWASP + [WaT[)3 oo (6.12)

The infinity norm is chosen as an convenient measure for the manipulations which
follow. Consider the block diagram in Figure 6.8, where d represents input distur-
bances, n represents measurement noise, r is the setpoint, e is the output error, and u
and y are the usual manipulated and controlled variables, respectively. If e and u are

selected as outputs, and d and n as inputs, then a reasonable performance criterion
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would be to minimize a measure of the matrix (with weightings) which relates (d,n)%
to (e,u)T. A minimization of the norm of this matrix can be shown to be equivalent
to the performance specification in Equation 6.12 with appropriately chosen weights.
Putting a constant weight of 1.0 on d and n and a weight of 0.5 on e and u results in

the following expressions for W; and W, (See [20] for details):

Wy =05(|P]P+1)z
W, =05(|P|2+1)2 (6.13)

By minimizing the specification in Equation 6.12 with respect to the controller and
with the weights defined in Equation 6.13, an optimal controller is synthesized which
achieves a reasonable balance between noise suppression, disturbance rejection, and
actuator movement. It is easy to show that the controller which achieves the optimum
has approximately unit norm.

In order to demonstrate this approach to loopshaping, consider the following sim-

ple nonlinear example:

y ==z (6.14)

This system represents an integrator with a nonlinear gain. At a given operating

point (), the linear approximation of this plant is given by:

Z0
y = fs—u (6.15)

The previously described loopshaping procedure will be evaluated for this system
using both a linear and a nonlinear (IOL) control law. The linear controller and the

outer linear loop in the IOL are chosen to be proportional controllers for simplicity.
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Figure 6.9. Weighting on Sensitivity (W;), Complementary Sensitivity (W3)
(zo = —0.693)

The following control laws are selected:

Linear u =[-Kj]e (6.16)
Nonlinear u = [K—gﬁe“‘”] e= [—(RNLe-z)] e (6.17)

The objective of this study will be to determine the optimal value of the respective
gains, (K, KnL), in a neighborhood of two operating points. Optimality here refers
to a minimization of the performance specification given in Equation 6.12 for the
linear approximation of each closed loop around the operating point. Locally, the
nonlinear controller can be treated as a linear controller with gain K vL = Kype .

The first operating point considered is (zg = —0.693). The weights on S and
T (defined in Equation 6.13 as functions of P) are plotted in Figure 6.9. Adding
the weighted S and T together, one can see the influence of controller gain on the
overall performance specification (Figure 6.10). Plotted here are the values of the
performance specification versus frequency for three different controller gains (K =
0.5,1.0, and 2.0). It is easily seen that the optimal gain for the controller is 1.0. This
can be understood as requiring the loop transfer function to have magnitude roughly
equal to the plant magnitude. This means that the linear controller must have gain

1 and the outer linear controller for IOL must be tuned with gain equal to e* = 0.5.
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Figure 6.10. Performance Specification (Control Gain = (1) 0.5 (2) 1.0 and (3) 2.0,

zo = —0.693)

Suppose the nonlinear controller has been improperly tuned with a higher or lower

value than 0.5. The results are found in the simulations depicted in Figures 6.11 , 6.12,

and 6.13. Figure 6.11 shows the response for a setpoint change of —0.5 (all variables

are in deviation form). Both linearly and nonlinearly controlled systems show a

balance between the error and the actuator movement required to reduce it. Also

shown are the responses of the nonlinearly controlled system when the proportional
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Figure 6.11. Set Point Response (K = 1.0, Kyz =1.0)
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Figure 6.13. Set Point Response (Knz = 2.0)

gain in the outer loop is too low (Figure 6.12, Kn; = 0.5) or too high (Figure 6.13,
Knp = 2.0). In the former case, the speed of response is too sluggish because the
system has been detuned. In the latter case, the control action is too aggressive
and possibly excessive. These effects can also be clearly seen from a plot of the
sensitivity (S) and complementary sensitivity (T') functions at this operating point
for the different control gains (Figure 6.14). As the controller gain is reduced, the
S function rolls off sooner, leading to less manipulated variable action but also to a
slower response.

To understand how the two control approaches compare, we must investigate
another operating point. Let us consider zo = 1.609. A completely analogous con-
struction to the one above leads to the weightings on S and T in Figure 6.15. The
control gains influence the overall performance specification as shown in Figure 6.16.
Once again, as expected, the optimal proportional gain is one. This leads to a unity

gain linear proportional controller and IOL with an outer linear loop having propor-
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tional gain e® = 5.0. For brevity, we omit the simulations, but, it is possible to show
how this gain in the outer loop optimally balances the tradeoff between manipulated
variable action and error response.

This simple example has demonstrated that a perfectly reasonable performance
specification (Equation 6.12) has led to either a single proportional linear controller,
or to an IOL controller which must be gain scheduled in the outer loop to maintain
a unit gain on the combined control action. This clearly diminishes the utility of the
IOL approach (as measured by the proposed specification).

From a practical perspective, the idea of performance weights which are a func-
tion of the plant itself, and in the case of a nonlinear plant, the operating point, is
quite relevant. In many process systems, the performance objectives will vary from
operating condition to operating condition. One clear example of this is a variation in
the disturbances which affect a unit operation differently at different conditions. The
demand for an operating-condition-dependent performance specification necessitates
a careful evaluation of the various tradeoffs present. An approach such as the one
presented here logically compromises between system response and effort required to
achieve it. The result of the present study is that a simple proportional controller

with unity gain will outperform an IOL controller.

6.2.3 Input Disturbance Sensitivity

The sensitivity of closed-loop properties to disturbances in the manipulated variable
is of equal concern for both linearly and nonlinearly controlled nonlinear dynamical
systems. In the following section, the impact of step disturbances in the manipulated
variable on the output will be investigated through an analysis of the steady-state
behavior of the process.

Consider a general first-order nonlinear system subject to disturbances in the
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manipulated variable:

¢ = f(z) +g(z)(u +d)
y = h(z) (6.18)

Application of the following nonlinear control law (IOL with linear proportional con-

trol in the outer loop)

_K(y - ysp) - b %f(:t) - ﬂoh(&‘)
Bi15tg(z) (619)

U=

leads to the following closed-loop system dynamics:

i= gt = Saa(a)d = (5 + 5 4 ) (6.20)

At steady state, the following relationship is valid:

Yss — ysp = das (6 21)
Z9h () (£ + 2

In the case of simple linear control (u = —KAh(z)), the following closed-loop

dynamics result

= [(f(w) = 9(z)K(y — ysp) + 9(z)d] (6.22)

and at steady state, the following relationship holds:

— (R (Yss)) dss

AR \Jes)) 55 — Ysp) = — 6.23

Kot i) TV T = K (6:2)

The main point of this section is this: the solutions to Equations 6.21 and 6.23
for y,s,, given d,, and functions f, g, and A, do not always exist. This means that for

a fixed disturbance level, say a step disturbance, it may be possible to destabilize a
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nominally stable plant.

For example, consider the case where f(z) = z?, g(z) = 1, and k(z) = z. This
leads to a quadratic function in Equation 6.23 with solutions that are functions of d,,
and K. For an improperly tuned controller, this could lead to physically unrealizable
values for y,, in response to a particular disturbance level.

Let us consider in greater depth another simple example, namely the variable gain
integrator from the last section. Recall that for that system, f(z) = 0, g(z) = €7,
and h(z) = z. Consider the application of both linear and IOL as discussed above to

yield the following steady state equations:

Linear (Yss — Ysp) = % (6.24)
Nonlinear Ly’;y;,f"ﬁ = %‘:'_pl = ﬁ (6.25)

As the control action on the error signal in each case is only proportional control, we
must tolerate some offset (yss — ysp = A,;) in the final solution. Rewriting the two

equations above, we get:

Linear Ay =2 (6.26)
Nonlinear A,e~4s = &prdu (6.27)

The implication for linear control is straightforward: there will be an offset directly
proportional to the disturbance magnitude and inversely proportional to the controller
gain. So we can increase the gain to minimize the impact of disturbances.

For the nonlinear case, the situation is more complicated. Consider a plot of the
function y = ze™ given in Figure 6.17. Clearly, for values of y greater than about
0.4, we cannot solve for z. Return now to Equation 6.27 and note the similarity. The
implication is that for large enough values of the right hand side, there will be no

solution for the steady state output variable.
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We will motivate this with the following series of simulations. Consider operation
at y = 1.609 and controller parameters K1, = 1.0, Ky = 5.0. Figures 6.18, 6.19, and
6.20 show the closed-loop response of the systems to increasing step disturbances in
the input variable. Figure 6.18 depicts the response to d = 45, The systems show
nearly equivalent behavior. In Figure 6.19, where d = 22, one observes that the offset

for the nonlinear case is larger by about 40%, but both systems are stable. If we now
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Figure 6.18. Disturbance Response (zo = 1.609, d = %)
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increase d to 2 (Figure 6.20), it is seen that the linearly controlled system is stable
but the nonlinearly controlled system goes unstable. This is due to the fact that there
is no steady state value of y which will satisfy Equation 6.27.

We have underscored through this simple example the importance of input distur-
bances for nonlinear systems. While the chosen example was for a sensitive nonlinear
control law, the form of Equations 6.21 and 6.23 suggest that both linearly and
nonlinearly controlled nonlinear systems may suffer from sensitivity to input distur-
bances. In both cases, high proportional gain (K, or Ky ) will help to minimize the
sensitivity, but this can lead to other robust stability problems.

In the particular case of chemical reactor systems, typical f(z) functions are poly-
nomial (for mass law in kinetics) or exponential (Arrhenius temperature kinetics);
g(z) is either constant or linear in z (depending on the manipulated variable); and
h(z) is typically linear in z. Based upon these simplifications, one could conclude
that input sensitivity for chemical reactors might be amplified by linear control. We

need to be very careful about how this conclusion was drawn.

e This analysis only considers instability and not more benign deteriorated per-

formance.
e This conclusion is based upon the broad generalizations for f, g, and h.

For a particular process system, it is very important to carefully examine the
relevant process dynamics and the impact (both steady state and transient) of dis-
turbances in the manipulated variable on the system behavior. This is clearly an area
for fruitful research and can serve as a valuable benchmark for comparing the relative

merits of nonlinear and linear control.
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6.2.4 Actuator Constraints

This final case study incorporates both the effect of regions of attraction mentioned
earlier with the imposition of hard constraints on the level of the actuator signal. As
was discussed earlier, a common argument against differential geometric controllers
is that the “perfect” output response (i.e. linear) is achieved at the (potentially)
expensive cost of large excursions of the manipulated variable. Many of the academic
examples published in the literature ignore this effect and result in closed-loop simu-
lations which require physically unrealizable actuator signals. Through the case of a
simple mathematical example, we will highlight this phenomena.

Consider the following mathematical system:

& = —z(d—2? -1 -2 -z + 2,
g = —zy(4 -2 -22)(1 —2% —22) -z, +5u
3 = 20x129 — 23+ U
Yy = z3 (6.28)

If the system is put in Byrnes-Isidori canonical form, the following zero dynamics are

evident:

o= —m@E—nf-n)1—-nl—-nd)+n

e = —n2(4—nf —n3)(1 —ni —n3) — 1 — 100m;7; (6.29)

Removing the 1007,7, term results in a system with two concentric limit cycles: an
attracting orbit at » = 2.0 and a repelling orbit at r = 1.0. Consequently, although
the zero dynamics in Equation 6.29 are locally stable at the origin, they are “fragile”
in the sense that perturbations would be expected to drive the system into a stable

oscillating mode far from the operating point.
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Figure 6.21. Closed-Loop Response (I.C.’s = (0.25,0.25,0.0), No Constraints)

The linear approximation of the system in Equation 6.28 about the origin is given
by the transfer function ﬁ relating u to y. This suggests a nonlinear controller (for

comparison purposes) with the following parameters
u=v— (20z,23 — z3) — 23 (6.30)

which yields an inner loop with the transfer function if from v to y.

Now if we apply linear PI control to both the open loop and IOL inner loop (with
K, = 1.0 and 77 = 1.0), then the nominal responses would be expected to be similar.
We consider the response of the system to a perturbation away from the nominal
operating point. Initially, we ignore constraints.

In the first case (Figure 6.21), the system is started with the initial conditions
(0.25,0.25,0.0). It is observed that the nonlinearly controlled system shows no per-
turbation in the output, but requires a reasonably large actuator signal to drive the

system to equilibrium. This is because the two perturbed states (z;, z;) are effectively
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Figure 6.22. Closed-Loop Response (I.C.’s = (0.5, 0.5,0.0), No Constraints)

decoupled from the output via the nonlinear control law. The output only responds
to changes in v. The dynamics of z; and z, are restricted to the unobservable zero
dynamics.

The case is quite different for the linear controller. Here the output is disturbed
as the controller works to restore equilibrium. However, the magnitude of the control
effort is nearly an order of magnitude smaller.

Similar trends are apparent in Figure 6.22, where now the initial conditions are
(0.5,0.5,0.0). Once again, the perturbed states evolve back to equilibrium on the
unobservable zero dynamics (IOL case).

Finally, in Figure 6.23, we observe that a sufficiently large perturbation in z; and
Tz away from the origin drives the unobserved states onto an oscillating trajectory.
This is not manifested in the output, but the manipulated variable oscillates wildly
in a clearly undesirable way. Because the linear controller is less aggressive (in a
“nonlinear” way), the manipulated variable is able to drive the system back to its

equilibrium point with mild actuator dynamics.
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Figure 6.23. Closed-Loop Response (1.C.’s = (0.725,0.725,0.0), No Constraints)

Now we consider the effect of magnitude constraints on the manipulated variable.
Returning to the second example from above, Wé now apply a hard constraint of £0.5
on the manipulated variable and repeat the simulation (Figure 6.24). This constraint
effectively recouples the nonlinearly controlled system with its zero dynamics and
we now observe a perturbation in the output signal as the constrained dynamics
are driven back to equilibrium. By comparison, the behavior of the two systems
(nonlinear control, linear control) are virtually indistinguishable.

Similarly, we reexamine the third example from above (initial conditions of
(0.725,0.725,0.0) and apply a hard constraint of 1.0 on the manipulated variable
(Figure 6.25). The coupling is observed once more between the output and the con-
strained system’s zero dynamics as the output is perturbed. And once again, the
performance level in the two systems (as measured by y and u) are very similar.
Furthermore, the constraint on the manipulated variable has stabilized the fragile

zero dynamics of the nonlinearly controlled system and the actuator is not driven to

oscillate.
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Although this example is purely mathematical with little direct correlation to a

process system, it highlights two important considerations in the selection of nonlinear

versus linear control:

e Actuator constraints can erase the desirable properties of IOL (linear response,
decoupled disturbances) and can make the behavior indistinguishable from a

linearly controlled system.

e While the region of attraction property discussed earlier is important for the
stability of a system’s output, it is also important to evaluate regions of attrac-
tion for nonlinear systems zero dynamics and evaluate their global properties.

Failure to do so may result in undesirable actuator dynamics.

6.3 Conclusions

The preceding case studies have highlighted several properties of a closed-loop sys-
tem’s behavior which are useful benchmarks for assessing the relative merits of com-
petitive control strategies. These include region of attraction, actuator penalty, and
input sensitivity. Unfortunately, many of the differential geometric control studies
in the literature do not address these robustness issues. In this chapter, we take a
careful look at some of the limitations and weaknesses of input-output linearization
(IOL), and sketch some general guidelines for evaluating cases where its utilization is
warranted.

There is a bias in this chapter in favor of linear approaches. The justification
for this is simple: the meritorious use of “linearizing” control has been described in
great detail in the literature (as well as earlier chapters in this work) in the fields of
process control, flight control, and robot control. The work presented here represents
an effort to balance the perspective on this subject. Clearly, there are systems which

require nonlinear control for stabilization over an appreciable operating range. An
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example of this, presented in [26], is a CSTR which exhibits a gain change at optimum
levels. No linear controller can stabilize this region. IOL is also inappropriate for
this application because of the singularity at the optimum. Work is underway in
this group to investigate nonlinear approximate linearization (AL) solutions to this
problem. Thus, the analysis presented in this chapter must be extended to include
nonlinear controllers other than IOL.

The case studies in this chapter are by no means exhaustive and the guidelines
presented are far from systematic. Nevertheless we consider this work to be a first
and very important step in precisely defining meaningful criteria for control structure
selection (linear, nonlinear) and effectively identifying the degree of nonlinearity of a

dynamical system.



245

Chapter 7

Conclusions

7.1 Summary of Contributions

Novel tools are presented which facilitate the computation of bounds on the robust
stability and robust performance of a general nonlinear system. These techniques
precisely quantify regions in the operating space over which the robustness properties
hold. This compares favorably to previous linear approaches which are valid over a
vague neighborhood of the operating point in which a first-order approximation is
accurate. Furthermore, conservative yet systematic approaches are presented for the
calculation of bounds on the systems performance. While norms on linear operators
allow the calculation of linear system performance, there has been no equivalent
result for nonlinear operators and thus no previous nonlinear performance results.
These new tools utilize conic sectors as approximations of the nonlinear operator.
An algorithm is presented for calculating optimal conic-sector bounds on a general
nonlinear operator. Optimality is measured by the conservativeness of the resulting
performance result. The first application of these new advances in control theory are
presented for several chemically reacting systems.

Formal criteria are defined and an objective comparison of exact linearization,
approximate linearization, and linear control is carried out. Extensive simulations
and case studies are carried out to support the theoretical results. This work is

the first stage in the definition of meaningful performance criteria for the judicious
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selection of nonlinear “linearizing” control versus linear control.

The application of input-output linearizing control to a packed bed reactor is
reported in this thesis. In the design of this controller, a low order nonlinear model
of the reactor has been developed for control purposes. The difficulties associated
with the implementation of differential geometric techniques on a practical system
are identified and comparisons are drawn between this approach and robust linear
- methods for packed bed reactor control.

Simple guidelines are formulated for the design of a packed bed reactor in terms of
practical engineering variables. This represents an improvement over the mathemati-
cally formulated conditions for parametric sensitivity. Furthermore, the implications
of the proposed guidelines for the control of multitubular industrial reactors are dis-

cussed.

7.2 Directions for Future Research

The tools presented here provide a meaningful, albeit conservative, measure of a
nonlinear systems performance. The following improvements are recommended to

reduce this conservatism:

e More precise nonlinear uncertainty characterization — The conic-sector
bound presented here suffers from the fact that it includes many additional non-
linear operators in its uncertainty description. This is dramatically illustrated
in the case of a saturation element which is bounded by a cone containing all
operators from gain 0 (open loop) to gain 1. It may be possible to incorporate
specific information about the nonlinearity into the D scalings used in the SSV
calculations and thus increase the size of the class of D scalings and reduce the

conservatism.
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¢ Real versus complex A structure — As the nonlinearities treated in this work
are real-valued (memoryless) perturbations, the current treatment of them as
complex-valued is conservative. New software developed for real-u problems

should help reduce this conservatism.

The synthesis tools of exact and approximate linearization have been investigated
and conclusions made about their utility in chemical process control. The follow-
ing suggestions are made for continued research in the area of differential geometric

control synthesis:

e Approximate input-output linearization — The technique of approximate
linearization has been shown to have superior robustness properties to exact
state linearization. However, it is also clear that input-output linearization is
a more useful tool for process applications. As of yet, there is no systematic
approach to the design of a controller which yields an approximate input-output
linearization in some neighborhood of the operating locus. This promises to be

a fruitful area of research for the design of robust nonlinear controllers.

e Nonminimum phase systems - Severely restrictive results are available in
the literature for calculating a nonlinear input-output linearizing controller for
a nonminimum phase system. Though no results exist to date, a systematic
decomposition of the nonlinear system into an allpass and an invertible factor
remains a goal of future research. One of the chief obstacles here seems to be a

meaningful definition of a nonlinear allpass operator.

e Robust synthesis - Optimal linear methodologies for robust control synthesis
are available (¢!, Hy,), but no clear methodology has emerged as an optimally
robust methodology for nonlinear systems. The method of sliding mode control
shows promise as a robust synthesis technique for handling nonlinear parameter

uncertainty.
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e Nonlinear identification — The importance of identification for control pur-
poses has been highlighted at a number of recent conferences. This is especially
important for the presented technique of input-output linearization as it explic-
itly requires a nonlinear model for inversion. The case studies in the literature
rely on first principles models for engineering systems. However, in many ac-
tual cases, there is also plant data available for analysis. As engineers, we are
reluctant to discard either of these two pieces of information. It remains an
ambitious task for future work to optimally integrate the actual data with the
first principles model to identify a realistic model. A first step in this direction
might focus on the identification of higher order terms in a series expansion for

use with approximate linearization.

The target application in this work, the packed bed reactor, revealed the utility of
nonlinear control approaches for very complicated, practical systems. The following

ideas suggest improvements to the current work in this area of application:

¢ Nonlinear model - A fairly simple (second order) model has been derived to
model this complex system. The assumptions of quasistationarity and homoge-
neous kinetics used in its derivation might be relaxed to improve its accuracy.
The former will result in additional dynamic states while the latter could be
treated through algebraic states. It seems reasonable that this improvement

may yield improved dynamic accuracy at a modest computational expense.

e Experimental work — Although the work presented has focused on practical
aspects, it remains untested in an actual reactor. Some of the key implemen-
tational issues have been addressed, but work remains to be done on the issues
of measurement sensors which are appropriate for this control configuration.
Furthermore, it is envisioned that an on-line optimization might be constructed

for continuous updating of the wave-propagation model.
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e Other chemical engineering applications — The utility of the differential
geometric techniques has been investigated for a packed bed reactor as well
as several CSTR configurations. The results show great promise for effective
control of these highly nonlinear processes and suggest their application to other
complex, nonlinear chemical engineering applications. One potential area of
application is in the emerging area of microelectronics. The crystal growth

processes in this area are characterized by highly nonlinear batch dynamics.

In the previous chapter, some informal guidelines were presented for compari-
son of nonlinear versus linear control systems. Although all chemical processes are
nonlinear, it remains to be clearly defined as to what degree of plant nonlinearity war-
rants nonlinear control action. The work in chapter 6 makes some recommendations
along these lines; however, this remains a particularly fruitful area of research with

important practical ramifications.
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Appendix A

» - Optimal Uncertainty Formulation

A.1 Introduction

In chapters 2 and 3, the conditions derived on the robustness performance of a nonlin-
ear system are in the context of the structured singular value (SSV). The signals are
bounded in energy or power and the resulting induced norm for the operator relating
these signals is the infinity norm. The algorithm for computing robust performance
in the H,, setting is discussed in detail in these chapters, as are the limitations and
conservativeness of this approach.

An alternative approach involves the treatment of magnitude-bounded signals
which lead to an ¢'-optimal structured uncertainty problem. Recent results in this
area [50], [51] have shown a non-conservative (necessary and sufficient) result for
the robust stability/performance of a general interconnection of a nominal discrete-
time plant and controller together with structured, conic-sector bounded, nonlinear
perturbations.

In this appendix, the relative merits of the two approaches are outlined in terms

of the following properties:

e Performance description.

e Computational efficiency & resultant conservativeness.

The particular class of problems of interest is nonlinear process systems which contain

static nonlinearities. Conic-sector bounds are employed to envelop the nonlinearities
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and express the resulting system as an interconnection of a nominal linear closed loop
together with structured, norm-bounded nonlinear perturbations. Once the problem
has been formulated in this manner, it is possible to apply either H., or #!-optimal
performance objectives and utilize the respective software to calculate robust stability

and robust performance properties.

In conclusion, a simple example is presented for a comparative investigation of

the two approaches.

A.2 Performance Description

A quick review of the two relevant norms is presented. The operator norm induced

by the 2-norm (power norm) is

Gv N
wp Il —sups(aio 2ol (A1)
vE€Ly(Lp)

where £, (£,) is the space of functions with bounded 2-norm (power-norm). In

discrete-time, £, space is defined as the set of all bounded sequences with associated

signal norm:

60l = sup o(k) (A2

The operator norm induced by the £.,-norm is

G|l
sup 1% _ o 2461, (A3)
220 vlle

where g is the pulse response of G. The resulting .4-norm will be used for subsequent
computations.

In H-optimization, the worst error resulting from an input signal of bounded
energy (or power) is minimized. Modifications allow the treatment of steps and other

signals of unbounded energy, provided the signals are well characterized. Conse-



252

quently, unknown, persistent disturbances cannot be treated in this framework. In
general, performance weight specifications remain somewhat ad-hoc but can be used
to shape the class of expected inputs and to express reasonable performance objec-
tives. For instance, a frequency dependent weight of “—’;’i on the sensitivity function
can be used to anticipate slowly varying inputs as well as to force the closed-loop
sensitivity to be small when large inputs are expected [67].

In £!-optimization, the worst error resulting from an input of bounded magnitude
is minimized. In this case, the treatment of unknown but persistent disturbances is
possible, but signals of unbounded magnitude (such an impulses) cannot be handled.
As before, the performance weight specification is not systematic. But engineering
judgement can be loosely translated into performance weights. For instance, low
frequency inputs can be modeled with low-pass FIR filters, and high-pass FIR filters
can be applied to the plant uncertainty to emphasize high frequency uncertainty.
Recent work [49] suggests that more flexible weights are possible in this framework,
including magnitude and rate bounds.

It is clear that the application of interest will dictate the appropriate class of
signals to be used. Traditional chemical engineering applications have focused on
bounded-energy type performance specifications on the error signals. But time-
domain magnitude bounds on variables like temperature and concentration are also

quite relevant.

A.3 Computational Issues

The details of the numerical computations for the H,-optimal case have been de-
scribed in chapter 2. The ¢!-optimal case involves the calculation of the 4-norm for
the various transfer functions in pulse response of the matrix M in the general for-
mulation (Figure 2.4). Given the z-transform of a certain sequence, the algorithm for

approximating the .A-norm converges quite rapidly. Details of this algorithm can be
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found in [51]. Both approaches require calculations in the discrete-time framework.
The subsequent single calculation, (A-norm or ), for the discrete system is found to
scale equally in difficulty for the two approaches over the limited range of applications
investigated (dim(A) < 3).

The present work addresses the analysis of closed-loop properties given a plant
and a controller (both potentially nonlinear). As such, there has been little considera-
tion given to the synthesis of optimal controllers in this framework (robust synthesis).
Results in each area indicate continued improvement in the formulation of compu-
tationally efficient algorithms for calculating optimally robust controllers [21], [51].
Evaluation of the relative merits of these two approaches for robust synthesis remains
as a topic for future research; however, preliminary results indicate the strength of
£'-optimal synthesis [73].

The primary advantages of the ¢!-optimal approach for analysis is that the re-
sultant calculations are necessary and sufficient for nonlinear perturbations. This
is directly contrasted with the He-optimal approach, which uses the Small Gain
Theorem to derive conservative results. A point of caution is required here. The
conservativeness of the results are for all the nonlinear operators contained within
the conic-sector bounds. This introduces the most conservative step in the problem
formulation. Whether in the H,, or ¢! setting, the conic sector envelops a myriad of
operators, many of which are potentially more pathological than the original nonlin-

earity. This point will be illustrated by an example in the next section.

A.4 Illustrative Example

Consider the following problem taken from [14]. The anti-reset windup problem

(Figure A.1) is investigated with the plant:

1

P=103+1
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Figure A.1. Anti-Reset Example

and controller with the following state space representation:

~£|x(E-2) 2
YR

corresponding to the PI controller with settings (K, ;1;) in the absence of constraints
(u = u’). The constraint |u| < 2.0 is applied, which means that |u’| = maz(|u|,2.0).
The problem involves solving for the optimal value of 7,. The values (K = 10.0,7; =
10.0) are used in this study. It is shown in [14] that recent anti-windup theory yields
an optimal value of 7; equal to 7., and that this is in agreement with earlier work
in constrained-control theory. Simulations of set-point change responses confirm that
for 11 > 7., the response is sluggish, and for 7; < 7, the overshoot (from classic
integrator windup) is excessive. However, all values of 7, in the range from 2 to co
yield a stable closed-loop response.

Using a performance weight equal to a scalar (0.5) times the inverse of the sen-
sitivity function at 7. = 10.0, the software for the .4-norm is used to compute the
robust stability and robust performance for the closed loop as a function of the pa-
rameter 7,. The perturbation element is the conic sector which envelops the nonlinear
actuator constraint. The results are summarized in Table A.1. In interpreting these
results, recall that the robust stability measure must be less than 1 to ensure stabil-

ity. The nominal performance measure was arbitrarily selected to give a 0.5 nominal
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Table A.1 Robustness Calculations

Nominal Performance | Robust Stability | Robust Performance
T, Measure Measure L Measure
2.0 2.0 } 033¢ [ 48.5
10.0 | 0.5 0.819 48.8
o | 1.0 1.0 )

performance measure at 7, = 10.0.

Several conclusions can be drawn from these results.

e The robust stability measure is very conservative as simulations have shown

that this system is well-behaved for all values of 7,.

e The robust performance measure is not very indicative of the performance trend

observed in simulation.

Furthermore, if the SSV is used to calculate the same system properties, it is found
that the robust stability measures are identical ! Therefore the conservatism in this
problem is concentrated in the conic-sector bounding of the actuator constraint, and

the two algorithms yield the same result.

A.5 Concluding Comments
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