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Abstract

In large-eddy simulations of turbulence, the large scales of the flow are resolved by
a numerical solution of the equations of motion for these scales, but the contribu-
tion of the fine-scale turbulence must be modeled. The stretched-vortex model esti-
mates the influence of these unresolved subgrid-scale turbulence fluctuations on the
resolved-scale velocities by using kinematic results for homogeneous; anisotropic tur-
bulence consisting of locally straight, unidirectional vortex structures [D. I. Pullin
and P. G. Saffman, Phys. Fluids 6 (5), 1994]. A new method is presented to dynam-
ically determine the value of model constants related to the subgrid kinetic energy.
For this purpose, a relation between the resolved-scale velocity structure function of
second order and the energy spectrum is derived based on the kinematics of the model
vortex structures, and therefore without the assumption of isotropy. Implementation
of this relation using a local, circular average allows application of the model to wall-
bounded turbulent flows without special modifications. The resulting algebraic model
is completely localized, i.e., no global How quantities like the resolved-scale spectrum
are required. This facilitates the application of the model in physical-space numerical
methods using, for example, finite differences or Lagrangian-interpolation polynomi-
als. The model includes an estimate of the subgrid kinetic energy, which is used to
compute subgrid contributions to low-order turbulence statistics of the full lowfield.
Results will be shown for the decay of kinetic energy and energy spectra of decay-
ing, isotropic turbulence, for mean velocities, root-mean-square velocity fuctuations
and turbulence-kinetic-energy budgets of channel flow up to a Reynolds number of
approximately 23000 (based on channel halfwidth and centerline velocity), and for
mean velocities and turbulence kinetic energy of channel flow under spanwise rota-
tion. The results are compared to unfiltered data from direct numerical simulations

and experiment.
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Nomenclature

Roman letters
a(.,.) Weak form of Helmholtz operator

¢ = cg +ic; (Complex) wavespeed in Orr-Sommerfeld equation, Sec. 3.3.5

D Derivative matrix, defined for GLL discretization in (3.32)
D-(.) Discrete divergence operator
Ei; Rotation matrix

€, €, €3 Eigenvectors of resolved rate-of-strain tensor S;

E'(t) Perturbation energy of small disturbances in channel flow, see Sec. 3.3.5
E(k) Three-dimensional, shell-summed energy spectrum

ey, ) Unit vector describing orientation of subgrid-vortex axis

F Second-order structure function of the velocity vector

Fy Structure function of the resolved-scale velocity vector

ES Circular average of resolved-scale structure function

gN Neumann boundary condition

G Discrete gradient operator

h Channel halfwidth

h; Lagrange polynomial through GLL points &, basis function for polyno-

mial expansion



iX

(21,%2,%3) Unit vectors spanning a cartesian coordinate system

1,015,153 Tensor invariants of S’ij, see Sec. 3.3.6
J Cutoff parameter in model energy spectrum
Jey J; Order of the explicit (J.) and implicit (J;) time integration for time dis-

cretization of Sec. 3.3.4

Jo Zeroth order Bessel function of the first kind

K Subgrid kinetic energy

k Wavenumber

Ko Kolmogorov prefactor

k. Cutoff wavenumber

14 Integral or outer scale of turbulence

L Linear diffusion operator

L Legendre polynomial of order 4

n Unit normal vector of the plane in which circular averaging is performed
N, Number of modes in coordinate direction «, resolution

N Nonlinear advection operator in the Navier-Stokes equations
P Pressure

P(o, 3,7) Probability density function (pdf) of the vortex orientation

P(a, ) Probability density function of the vortex orientation, independent of

spin angle

r Separation vector between two points for structure function
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Length of the separation vector r

Velocity correlation tensor

Reynolds number (general)

Reynolds number based on centerline velocity and channel halfwidth
Reynolds number based on wall-shear velocity u, and channel halfwidth A
Rotation number, Ro, = 2Qh/u,

Resolved-scale rate-of-strain tensor, Sj; = %(8@ [0z ; + OU;/dx;)

Instantaneous, total velocity vector in vector and component notation

(with i = 1,2, 3)

Resolved-scale velocity vector

Subgrid-scale velocity

Fluctuation around mean velocity (in Reynolds-averaged equations)
Bulk velocity

Wall-shear velocity (also called friction velocity)

Local wall-shear velocity at suction side of rotating channel

Local wall-shear velocity at pressure side of rotating channel
Discrete expansion coefficients of a discrete function u?
Component of u® which satisfies Dirichlet boundary condition
Homogeneous component of %°, vanishes on Dirichlet boundary

Vector of Fourier coefficients of a function u

Intermediate velocities in splitting methods for time integration
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Reynolds stress tensor

Weight matrix, defined for GLL discretization in (3.31)
GLL weights, see (3.16)

Non-dimensional cutoff wavenumber, X = k.n

Diagonal tensor (3, 3,0)

Greek letters

a, B, v

Yi

Yz

At

€ijk

Esgs

Longitudinal wavenumber in Orr-Sommerfeld equation, Sec. 3.3.5

Euler angles (colatitude, longitude, spin) describing orientation of vortex-

fixed coordinate frame
GLL normalization factors, see (3.17)

Implicit correction for second-order finite-difference operator, e.g., in -

direction, see (3.10)

Timestep for numerical integration

Length scale corresponding to the cutoff wavenumber, A = 7 /k,
Dirac delta function

Second-order, centered finite-difference operator for second derivative,

e.g., in z-direction

Dissipation rate per unit mass

Alternating matrix (Levi-Civita symbol)

Energy transfer from resolved scales to subgrid scale, egs = —gz‘j'rij

Auxiliary variable in the solution of the Orr-Sommerfeld equation, ¢ =

0 /0%
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xii
Kolmogorov length scale
Colatitude of subgrid vortex in local alignment model
One-dimensional energy spectrum tensor
Eigenvalues of resolved rate-of-strain tensor Sij, AL < Ao < A3
Kinematic viscosity
Gauss-Lobatto-Legendre (GLL) points, see (3.14)
Non-dimensional coefficients in the local-balance equation (2.44)
Density
Shear stress at channel wall
Model subgrid-stress (SGS) tensor
Longitude of subgrid vortex in local alignment model
Eigenfunction of the Orr-Sommerfeld equation, Sec. 3.3.5
Angle between e’ and n
Streamfunction of the perturbation in the Orr-Sommerfeld equation, Sec. 3.3.5
Boundary of domain 2
Domain boundary with Dirichlet conditions
Domain boundary with Neumann conditions
Domain
Vorticity

Constant angular velocity of rotating channel
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Other symbols

(N Expectation of a function averaged over the orientation of the vortex
structures
{ ) Expectation of a function averaged over vortex orientation independent

of spin angle

+ Denotes quantity scaled by wall variables, see Sec. 4.2.1
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Chapter 1 Introduction

Large-eddy simulation (LES) was introduced as an approach for the prediction of
turbulent flows which are inaccessible to direct numerical simulation (DNS). The res-
olution requirements for DNS, where all length scales of the flow have to be adequately
resolved, increase rapidly with increasing Reynolds number, Re, the non-dimensional
parameter which is characteristic for the equations of motion of an incompressible flow
(the Reynolds number can be understood as the ratio of the magnitude of the inertial
force to the magnitude of the viscous force). An estimate for the rapid increase can be
obtained using well-known results from dimensional analysis and basic assumptions
from Kolmogorov’s universal equilibrium theory (cf. Ref. 82): The length scale of the
smallest structures in turbulence is given by the Kolmogorov scale, which is defined
as n = (13/€)Y/%, where v is the viscosity and e the dissipation. The ratio of the size ¢

of the largest eddies to the size of the smallest can then be estimated by

3/4
¢ (“l) _ RS (1.1)

i v

where the assumption® has been made that the rate of dissipation taking place at
the smallest scales is equal to the rate at which energy is supplied from the largest
scales, so that one obtains the scaling: € oc u®/¢. Since the width of one grid cell in a
direct numerical simulation has to be of the order of the Kolmogorov scale, and the
largest dimensions (the domain size) will determine ¢, the number of gridpoints in
one dimension is of the order of the ratio £/n oc Re?*. For a full, three-dimensional
simulation the number of gridpoints required is therefore proportional to Re®*. If the
total computational cost is to be estimated, one also has to take into account that the
timestep used for the simulation is limited and depends on the meshwidth. Therefore,
the number of timesteps needed to integrate the equations of motions over a given

time interval also increases approximately proportional to Re®*. In conclusion, one



2
can estimate that the computational cost of DNS is proportional to the cube of the
Reynolds number.

These brief considerations may serve as an explanation why DNS of turbulent flows
has been limited to low or moderate Reynolds numbers, mostly in simple geometries
like a periodic box (where quite high Reynolds numbers can be reached because of
special, very efficient numerical methods available for this particular case), channel
flow, etc. (see Ref. 60 for a review on direct numerical simulation).

Large-eddy simulation tries to go beyond these limitations imposed by the resolu-
tion requirements for turbulent flows by directly computing only the larger scales, i.e.,
scales at wavenumbers smaller than some cutoff, say & = k. (k is the wavenumber),
whilst the unresolved or subgrid scales and their principal physical effect on these
large or resolved scales, that of providing an energy sink via energy cascade to the
dissipation-range scales, are modeled.

There are many different approaches to this task — see Refs. 52, 47 and 68 for
reviews. The eddy-viscosity ansatz is the earliest and remains the most widely used
basis for subgrid-stress (SGS) modeling. Smagorinsky’s model for the eddy viscos-
ity, originally developed for atmospheric turbulence, has been applied extensively
to engineering applications. The formulation with a fixed model constant has well-
known shortcomings for wall-bounded flow and this has been largely superseded by
dynamic procedures to determine the Smagorinsky constant based on double filter-
ing.'® 4% Some mathematical inconsistencies which arise in the dynamical formulation
can be resolved by casting the problem in variational form, resulting in the dynamic
localization model.? In applications, simplified solutions to the difficulties arising in

the dynamic procedure are widely used, for example plane averaging in homogeneous

9 9

directions,' or approximate localization.®

A related class of SGS models are the spectral eddy-viscosity models.*®* This
approach was extended to operate in physical space through the first use of velocity
structure functions® as a substitute for the spectral information required to estimate

the eddy viscosity. For use in large-eddy simulations,!!® this model has been com-

bined with additional filtering or a switch, which selectively turns the eddy viscosity



on and off.*7

As an alternative to eddy-viscosity models, the scale-similarity model® was pro-
posed. In tests comparing the modeled subgrid stresses with those computed from
DNS data (a priori testing), the scale-similarity model achieved much higher correla-
tion coefficients than the Smagorinsky model. But in actual LES, it has been found
that the scale-similarity model does not provide sufficient dissipation.>%2 Neverthe-
less, it has been used in combination with other SGS models (e.g., the Smagorinsky
model) which then provide the necessary dissipative effect.

A different approach was proposed by Leonard,®%® based on retaining the first
terms of a formal series which expresses the result of filtering a product of two quan-
tities solely in terms of products of the gradients of filtered quantities, thereby theo-
retically providing an exact closure for the (Gaussian) filtered LES equations. This
is often termed the ‘gradient model’. As described in Ref. 46, special regularization
techniques (e.g., using particle methods) may have to be used in the numerical meth-
ods implementing this model. Alternatively the gradient model could be included in
mixed models, for example with an eddy-viscosity term, as in the nonlinear model of
Kosovi¢.? A related idea, namely to invert the filtering operation, augmented by a
procedure to generate a range of subgrid scales on a finer mesh, leads to the subgrid-
scale estimation model,'® which was originally developed in spectral space, but can
also be applied in physical space.'® ! The present paper describes continuing work
on a different class of models, the so-called stretched-vortex SGS models.

We will consider incompressible, constant-density flow. The usual starting point
for LES are the resolved-scale Navier-Stokes equations*

oU;

. = O (1.2)

—— . . —_ P — v ,
ot Ozt pox; Oz, Ox;0x;
*Note that while here we use index notation (Ur, Us, U3) for the velocity components, we will use

(U, V,W) interchangeably if it simplifies notation. The same applies to (z,y, z) and (z1, o, z3) for
coordinates in space.

(1.3)
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where Uj is a resolved-scale velocity field and 7;; 1s the subgrid-stress (SGS) tensor,
which represents the effect of subgrid turbulence on the resolved flow.! The equa-
tions (1.2) and (1.3) can be derived formally by applying a filtering operator to the
full Navier-Stokes equations.*® This filtering operation to obtain the resolved-scale
velocity field cannot be performed explicitly in actual LES. Instead, the resolved field
is the result of the numerical integration of (1.2) and (1.3) using a given numerical
method on a grid with a given resolution whose smallest scale is much larger than
the smallest turbulence scale. This requires an SGS model, which expresses 7;; as a
functional of the resolved-scale velocity field U;.

One approach to the construction of SGS models is to apply certain formal prop-
erties of the filtering operation'®?! to all physical quantities appearing in (1.3).
Presently we follow a different path by considering a model which is motivated by
vortex/structure-based descriptions of the fine scales of turbulence. Our aim is to
construct a local model which approximates the effect of the subgrid motion on the
resolved scales in a physical way. We will not attempt to either interpret or to analyse
this model using elements of the filtering operation. Further, our goal is to obtain
estimates for the low-order statistics of a full turbulent field which can be compared
directly to results of unfiltered DNS or experimental measurement. This will usu-
ally involve an estimate of subgrid contributions to turbulence transport properties.
There will be exceptions to this, which will be noted in the sequel. In summary, we
seek to calculate the turbulence itself, for which the component filtered to the reso-
lution of the numerical method may be dominant but is not complete. In this sense
our approach might be described as Highly Under Resolved Turbulence Simulation
(HURTS). We will attempt to follow the same approach in analyzing the turbulence
transport budget.

Our model development is based on kinematics of homogeneous anisotropic tur-
bulence generated by simple vortex structures, as originally described by Pullin and

Saffmann (henceforth denoted by PS). A SGS model of this type has been developed

"We follow here the sign convention of Ref. 71 for 7ij, which is frequently used in the context of
LES, although it is different from the convention used for the Reynolds-averaged equations.
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and tested in LES of isotropic turbulence by Misra and Pullin,” henceforth refered
to as MP. This original version used the energy spectrum of the resolved scales to
dynamically determine model coefficients for the SGS model. In the present work, a
new version of the stretched-vortex SGS model has been developed and tested, which
does not require the computation of global quantities like the energy spectrum of the
resolved scales. In the new version presented here, model coefficients are estimated
dynamically using only localized information of the resolved field. This allows the
model to be implemented more easily than earlier versions, in particular in physical-
space numerical methods like finite differences where energy spectra or similar global
quantities are not directly available.

The organization of the present work is as follows: In Chap. 2, the fundamental
concepts of the stretched-vortex model are reviewed, and the new physical-space
version is described. The numerical methods used for the simulations in this work are
reviewed in Chap. 3. While a complete description of these well-known methods need
not be given here, features important in the context of the present work are described
in some detail. The test cases, for which large-eddy simulations with the new model
have been performed, are defined, and the results for these tests are presented in
Chap. 4. A discussion of the results, in particular in comparison with other SGS

models, is given in Chap. 5.



Chapter 2 The stretched-vortex model

2.1 Vortex models for the fine scales of turbulence

Vortex dynamics can be used to develop models for the prediction of turbulence
quantities, based on the hypothesis that one can describe certain ranges of the broad
spectrum of turbulence scales as being composed of ensembles of more or less co-
herent laminar vortex structures.”” Such a description is suggested by experimen-
tal evidence, both from laboratory and computational experiments, for example,
Refs. 26, 42, and 85, that the fine-scale structure consists of tubes and/or sheets
of vorticity, possibly sheet-like structures, which roll up to form vortex tubes.®® (It
is, however, not known presently how significant the role of these structures is in the
mechanisms of turbulence, i.e., what proportion of total vorticity can be linked to
the tube-like structures.) A review of vortex models for turbulence can be found in
Ref. 72. The model of interest for the present work is the Lundgren stretched-spiral
vortex,® which is of the single-vortex type, i.e., no dynamical interaction is present
between individual structures. Its dynamics are a consequence of the internal struc-
ture and evolution of the model vortices. In Lundgren’s model, the latter take the
form of unsteady, two-dimensional spiral vortices subject to axial straining by the
surrounding flowfield. This offers a richer internal structure than earlier single-vortex
models by Synge and Lin,* based on Hill’s spherical vortex, and by Townsend,®® who
used Burgers’ vortices.

In polar coordinates (r,#) in the vortex cross section, Lundgren’s asymptotic so-

lution of the vorticity equation can be written as:"?

w(r,0,t) = e (p,0,7), (2.1)

@(p,0,t) =D @n(p, ) exp(ind), (2.2)



with the coefficients given by:

onlpr7) = fulp) expl-inQp)r — PN, A0, (23)
<*:}O(p) 7—) :g(pv T)+f0(pa7)7 (24)
p(r,t) = re®/?, 7(t) = (e* — 1) /a, (2.5)
where
* L1 20(p)] = folp) +9(p),  and (26)
e p—don 9(p), -

In (2.1)(2.7), (p, 7) are stretched space and time variables, respectively, correspond-
ing to a strictly two-dimensional evolution (i.e., no vortex stretching), exp(at) fo(p) is
the 0-averaged vorticity for the spiral, and exp(at)g(p) specifies some axisymmetric
background vorticity field. The quantity a is the strain rate of the surrounding flow-
field (a is taken to be constant). For v — 0, Lundgren’s solution (2.1)-(2.7) becomes
a vortex sheet evolving dynamically according to the equation 8 = Q(p)7, which is of
spiral form if the angular velocity £2(p) is monotonically decreasing.

Lundgren further calculates the shell-summed energy spectrum for vortex struc-
tures with a vorticity distribution w(r,6,t) within individual vortices. The result can
be written in the form:

E(k) = gi Z Im, /27T l|<,?J(m)(li cos Oy, ksin Oy, t)|* dby, (2.8)

L3 — 0 K
where L is the sidelength of a cube containing the turbulence, and the vortex struc-
tures are assumed to be composed of segments of length [,,, along which the internal
vorticity distribution is independent of the coordinate along the vortex axis. In (2.8),
the vorticity distribution has been written in terms of its sectional Fourier trans-
form &™) see Refs. 70 and 76. As noted in Ref. 76, the energy spectrum (2.8) has

the important property, that it does not depend on the orientation of the structures
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(since the vorticity distribution in the structures is assumed to be independent of
their orientation).
While for the present work we will only make use of (2.8), we mention here also
the important result of Lundgren, who evaluated (2.8) for the stretched-spiral vortex,
and, using asymptotic approximations in the evaluation of the integrals, obtained the

following result for the energy spectrum of an ensemble of stretched-spiral vortices:

E(k) = Eo(k) + 437T ]\][;3{0 V33 ex P[ ZVAQ} i 4 /°° nle If/jp’ (2.9)
where N, is the rate per unit time at which structures are created by a process
outside the model, and Iy is their initial length. The term Ey(k) is the contribution
to the spectrum of the n = 0 term in the solution for the vorticity. If the second
term dominates Ej at small wavenumbers, then (2.9) has a k=% inertial range when
k(v/a)'/? < 1. The spiral form of the vorticity solution and the vortex stretching
are essential for obtaining this form of the spectrum.™ This result is based on vortex
kinematics and dynamics, and appears to be the only known result making a definite
analytical connection between a k~%/3-type spectrum and an approximate solution of
the Navier-Stokes equations. As noted in connection with (2.8), the energy spectrum
is independent of the vortex orientation. Therefore, in the Lundgren model, the k5/3
form of the spectrum does not depend on the isotropy of the small scales.

The development of vortex models, which, although resting on strong assumptions,
contain local dynamics and can be analyzed kinematically, has suggested the use of
vortex dynamics in the development of subgrid-stress models for LES, as will be

described in the following sections.
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2.2 Review of the fundamental model equations

2.2.1 Vortex structure

The concept of locally straight and nearly axisymmetric vortex structures has been
generalized for the purpose of SGS modeling by PS. These subgrid elements are vor-
tices in the sense that they provide subgrid motion only in a plane normal to the
vortex axis. Finite-length effects of these “vortices” are ignored, as is any possible
axial motion in the vortex cores. The proposed subgrid structure is extremely sim-
ple. Combined with the stretching strain provided by the local resolved flow, it may
nevertheless be sufficient to provide a viable model of the cascade physics which are
responsible for the transfer from resolved to subgrid scales.

In a vortex-fixed (Cartesian) coordinate system spanned by unit vectors (2}, 25, 3),

a vortex structure can be described in the form:

(2.10)

3

w = w(z], b, t)is

where the coordinate system was chosen such that i3 is parallel to the vortex axis,
and (2}, xh, 25) are coordinates in the vortex-fixed system. A schematic illustration
of a single vortex structure in a gridcell, which is part of a much larger computational
domain, is shown in Fig. 2.1.

The coordinate transformation between a coordinate system (2, 29,43), which is
fixed in space ( “laboratory frame”), and the vortex-fixed system (2}, 25, 23 is described
by the rotation matrix E;;, which can be expressed in terms of the Euler angles «a, 3,
and vy, where « is the angle between the z3 and 2% axes (colatitude), 3 is longitude,
and « is spin about the z% axis.

The orientation of the vortex structures will be described by the probability den-
sity function of the Euler angles P(a, 3,7).”" Then the expectation of any function

f(E;;) averaged over the orientations of the structures is given by:

WEN =55 [ [ [ fEP@psmadedsa. @)
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Figure 2.1: Schematic illustration of a single vortex structure in a gridcell (shown enlarged
on the right) within a large computational domain.

In the special case that P is independent of the spin angle v, it is denoted by f’(a, 3),

and the orientation average is written as:

(f(Ey)) = ﬁ/j/o Wf(Eij)fD(a,ﬁ) sin o dev df. (2.12)

2.2.2 Reynolds stresses and subgrid-scale stresses

The model subgrid structures established in the preceding section can now be used

to obtain a kinematic result for the Reynolds stress tensor wju}. (Here the Reynolds

decomposition for the velocity U; in a fixed reference frame is written as U; = U; +
u;. The double overbar denotes an ensemble average or a volume average over a
sufficiently large volume containing the turbulence.)

The vortex structures, which are assumed to generate the small-scale turbu-
lence and thereby the Reynolds stresses, each have a vorticity distribution of the
form (2.10) or, expressed in the laboratory frame, vortex m has a vorticity distri-
bution: wi(m) (x,t) = Esw™ (2}, x5,t). The vorticity correlation tensor can then be

obtained by taking the sum of the contributions of all the vortex structures in a box
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of volume L3 containing the turbulence:

e L[

x w™ (2, zh, )™ (2} + &, b + &, 1)EsEsy

(2.13)
x P(a, B,v)dz) dzy sin o do df dry.

Here, l,, is the instantaneous length of a structure.

With the help of the relation between the vorticity spectrum tensor and the ve-
locity spectrum tensor for homogeneous turbulence, cf. Ref. 5, the last equation can
be used to obtain an expression for the one-dimensional spectrum tensor ©;;. Af-
ter considerable algebra (see PS), the following expression is obtained, e.g., for the

component Os3:

1 2 T 27 oo 1
633(k3) =E2lm~/0 [; /O Ag/sina_";‘;

x "™ (K cos By, K sin By, t)]? (IiQ -

2

k2 \'"? (2.14)
sin“ o

x Psin®a dfy dodB dk.

We note that in this formula, wavenumbers for the Fourier transform in a vortex-fixed
frame are expressed in polar form (kcos 0y, ksin ) (for details see PS).

The last equation holds under the assumption that P is independent of the spin
angle . This assumption will always be used in the following. (It does not imply that
the internal and unknown vorticity distribution has to be axisymmetric. As PS note,
it is reasonable to assume that all values of spin are equally likely since the vorticity
within a structure will lead to rotation around the vortex axis, thereby leading to an
averaging effect in azimuthal direction.)

The shell-summed energy spectrum can now be introduced in the last equation,
making use of (2.8).

As discussed in the previous section, the relation (2.8) for the energy spectrum

does not introduce an assumption of isotropy. This is therefore a crucial step in
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the derivation: The integral effect of the unknown internal vorticity distribution
in the model equation can be expressed using only the energy spectrum, which is
independent of the vortex orientation, and therefore easier to model.
Now, the results for the components of ©;; can be written down. Here, we give

only the results for the diagonal terms, which we will need in Sec. 2.3.1:

k2 1/2
cos? acos® 3 (F&Q -3 )

1 s 2 00 E(K})
On(ks) = '2‘;;2‘/ / / — 2
o Jo lks/sina| K sin” «
(2.15)
k2 B2\ V2]
+sin2ﬂ% (FLQ — = ;’ ) Pdadfds,
sin“ sin” o
1 ™ 2w o0 E kQ 1/2
Oga(ks) = —2/ / / (f) cosgasiHQQ(RQ— - g’ )
212 Jo Jo o Jiks/sinal sin” «
, (2.16)

L ) k?g) -1/2 A
sin® o <I{ - sinQa) Paadp d,

+ cos? f—3
1 w 2r 0 E(H) k‘2 1/2 R
Os;(k =—// / </-;2— 3 Psin*adadfds.  (2.17
3 (k) 272 Jo Jo ks /sina| K sin? o ( )

The Reynolds stresses are obtained from the one-dimensional spectrum tensor

by carrying out the one-dimensional inverse Fourier transform wu; = [ ©;;(ks) dks,

which leads to:
U;Uj = 2/ E(k‘) dk (Epinqqu>, (218)
0

where Z;; is a diagonal tensor with diagonal elements (-;—, -;—, ). We emphasize that this
simple form of Z;; is not an assumption made for the derivation, but is obtained as a
result, if the algebra of the derivation outlined above is carried out. We also note that
if the subgrid turbulence was isotropic, we would have P = 1, and accordingly the
off-diagonal components of the subgrid Reynolds-stress tensor would vanish, resulting
in vanishing subgrid dissipation. This shows that SGS modeling clearly requires an
anisotropic subgrid structure, i.e., P # 1 at a typical time instant.

In addition to the formal derivation, however, an intuitive explanation can also be

given for this result: The velocity field generated by the vortex structure must lie in
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the plane normal to the vortex axis (#}-z)-plane). Moreover, since independence of
the spin angle was assumed, there is no preferred direction in that plane. Therefore,
in the Reynolds stress tensor, the off-diagonal components will vanish on average, and
the energy of the motion m is equipartitioned between the two in-plane directions
in the z{x) plane. In the vortex-fixed coordinate system, the Reynolds stress tensor

can accordingly be expected to take the form:

(In this reference frame, the average only needs to be carried out over the cross-
sectional plane of the structure. This average is denoted by a single overbar.) The
last equation can now be transformed into the fixed (z1,z, z3) frame, noting that
the result of the transformation is a function of E;;, and therefore the average has to

be taken over the statistically distributed orientations as defined in (2.12):
UU; = ukuk<Epinqqu>. (220)

This intuitive result agrees with (2.18), which was obtained from the kinematic deriva-
tion (with g = 2 f;° E(k) dk.)

The subgrid-stress tensor is then obtained by assuming that the action of the
unresolved subgrid scales on the resolved scales in LES is analogous to the action of the
Reymnolds stresses on the mean flow in the Reynolds-averaged Navier-Stokes equations.
That is, we use an expression of the form (2.18), but include only contributions from

the unresolved scales, i.e., scales with wavenumbers above a cutoff wavenumber k,:
O
Tz’j =2 (k) dk’ (Epinqqu). (221)
ke

This equation is the starting point for the stretched-vortex SGS model.



14
2.2.3 Model pdf and model energy spectrum

For the application of (2.21) in LES, the form of the pdf P, which enters in the
orientation average, and the form of the energy spectrum FE(k) need to be specified.
Different choices are conceivable, but to investigate those was not the focus of the
present work. Therefore, the same form of the pdf as used by MP will be applied
here, and the energy spectrum will also be the same, except for a different choice of
a cutoff parameter (see below).

For the vortex alignment, MP used a pdf given by the product of delta functions

or a linear combination of such products of delta functions of the type

4
sin o

o(a —0)5(6 — ¢), (2.22)

P(&aﬁ) =

where 6(x,t), ¢(x,t) are particular Euler angles. Defining the unit vector e, of the

vortex axis with components
el =sinfcos¢, e; =sinfsing, e; =cosé, (2.23)
one can then write (2.21) in the form
o0}
ke

Misra and Pullin®"®® tested several particular models for P(a, ) including alignment
with eigenvectors of the resolved rate-of-strain tensor S;; = —;—(8(72 /0x; + O, /0x,),
alignment with the resolved vorticity vector, and a model in which the vortex align-
ment responded kinematically to the time-varying velocity-gradient tensor of the
resolved field. Of these, the simplest model assumes that a single subgrid vortex
aligns, with weighted probability, with the eigenvectors corresponding to the max-
imum extensional and intermediate eigenvalues of the resolved rate-of-strain tensor
(see Sec. 2.3.4).

To estimate the subgrid kinetic energy K = fkoo E(k)dk, MP assume a Kol-
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mogorov form of E(k) with a sharp viscous cutoff:

ICoe?Bk=53, k< J/n
ER)=1{" / (2.25)
0, k> J/n

where K is the Kolmogorov prefactor, n = (v3/€)/4 is the “local” Kolmogorov length,
and J is a cutoff parameter. The concept of a local Kolmogorov length and accord-
ingly a local dissipation € has to be understood in the LES context: A gridcell in a
large-eddy simulation will typically be large compared to the smallest scales in turbu-
lence, and therefore the turbulent motions in one gridcell can be viewed as their own
realization or statistical sample of turbulence, which can be described (approximately)
by its own statistical quantities.

The form of the spectrum (2.25) is very simple, as is desired for the development of
a tractable SGS model. Of course, the actual spectrum, for example, in the turbulent
wall region of a boundary layer or channel flow has a more complicated form (see,
e.g., Ref. 66 for a discussion of one-dimensional spectra in the wall region). But the
test results obtained with the stretched-vortex model using (2.25) indicate, that this
simplified spectrum is sufficient for the present purposes of evaluating the integral to
obtain the subgrid kinetic energy K.

We also emphasize again that for stretched-vortex models of the fine scales there
is no assumption of local isotropy and therefore no inconsistency in combining a
Kolmogorov spectrum with local anisotropy. This is a consequence of the result
derived for the one-dimensional spectrum tensor ©;;, the diagonal elements of which
are given in (2.15), (2.16), and (2.17). As can be seen in these equations, the terms
containing the influence of the anisotropy (i.e., terms with dependence on the vortex
orientation) can be separated from the term containing the energy spectrum. The
energy spectrum in turn depends only on the internal vorticity distribution, and not
on the pdf P, see (2.8). This can also be understood physically using the well-known
relation for homogeneous anisotropic turbulence, E(k) = E,(k)/(2k*), where E,, is

the vorticity spectrum. It is clear that for a field with straight, parallel vortex lines
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(present rectilinear vortex model), the trace of the two-point vorticity correlation
tensor must be independent of the orientation of these lines. It then follows that
E,(k), and hence E(k) must be independent of the vortex orientation. Thus there
is no assumption of local isotropy and therefore no inconsistency in combining a
Kolmogorov spectrum with local anisotropy.

Alternatives to the sharp dissipation cutoff of (2.25) would be to assume that
each subgrid vortex is of the (nearly axisymmetric) stretched-spiral form, and to
replace (2.25) with the Lundgren®® spectrum (2.9), or to use an exponential cutoff
near kn = 1, as suggested by DNS*! and experiment.” The sharp cutoff is chosen
for simplicity. The quantity J is a model parameter. A cutoff at the Kolmogorov
scale kn = 1 (J = 1) is preferred on physical grounds but there is some analytical
simplification if one lets J — oc.

Equation (2.25) contains as unknowns € and Ky. MP estimated these by first
using the assumption of a local balance between the total dissipation € on one side
and the sum of the resolved-scale dissipation and the subgrid “dissipation” e, on

the other side:

€ = ZI/SijSij —+ Esgsa Esgs = “‘SijTij = —Kgij(éij — 6;)63)) (226)

More precisely, €¢0 represents the production of subgrid kinetic energy by the interac-
tion between the resolved rate-of-strain tensor and the subgrid stresses, and represents
therefore transfer of energy from resolved to subgrid scales. In using (2.26), it is im-
plicitly assumed that this energy is dissipated within the local subgrid motion, and
is not transferred elsewhere. This is consistent with an algebraic, zero-equation SGS
model. In their dynamic version of the stretched-vortex model, MP used (2.26) and a
continuity condition between resolved and subgrid spectra to obtain a (global) system
of equations which could be solved for € at each gridpoint and a global Kg, thus allow-
ing the SGS tensor to be computed from the resolved-scale quantities. For channel
flow this matching was done, with appropriate kinematics, in planes defined by the

two directions of flow homogeneity. This required the solution of coupled systems of
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equations for the e field.

One of the main objectives of the present work was to develop a localized version
of the stretched-vortex model, which would allow its application to more complicated
geometries using numerical methods other than global spectral methods. This re-
quires a new method of estimating the factor Koe?/3, which will be described in the
following section, but no other changes are necessary; in particular, the use of delta

function pdfs for the vortex alignment will remain unchanged.

2.3 Localized estimation of the subgrid kinetic en-
ergy in physical space

2.3.1 Structure-function relation for the stretched-vortex model

with delta-function pdf

The present version makes use of the relation between the energy spectrum in Fourier
space and the second-order structure functions in physical space (see, e.g., Batche-

lor®). We use the second-order structure function of the form:

Fo(r) = |U(x+r) — Ux)|2 (2.27)

(Note that the norm of the difference of the velocity vectors is used here.) The use
of second-order structure functions for the estimation of SGS parameters in LES was
first reported by Métais and Lesieur,>® who used the well-known structure function
relation for isotropic turbulence.

The present model does not assume isotropy of the small scales. As in the deriva-
tion of the model SGS tensor itself, a kinematic result valid for the anisotropic (model)
turbulence can be derived based on the assumptions about properties of the under-
lying vorticity structure which have been introduced in the previous section.

The derivation uses (2.15), (2.16), and (2.17) to compute the trace of the one-
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dimensional spectrum tensor:

27 ]{12 —-1/2 R
@11+@22+®33——/ / / (mQ— —2 ) Pdadg dk.
k3/51na| sm” o

(2.28)

As mentioned before, the delta function pdf will be used to describe the vortex align-
ment. After substituting the pdf from (2.22), the integration over the Euler angles
can be carried out:

2 [ K\ d
@11 + @22 + @33 = —/ E(Ii) <I€2 — 3 > ———i (229)
|

k3/ sin 6| sin? sin ¢

We recall that ¢ as defined in (2.23) is the angle between the three-axis (laboratory
frame) and the local orientation of the subgrid-vortex structure. Performing an in-
verse Fourier transform in one dimension, an expression for the trace of the velocity

correlation tensor for a separation (0,0, 7) is obtained:

2\ Y de
(Rll + R22 '+_ R33 0 0 T / / /{ (K,Q — — ?2’ > : K elk37‘dk3.
k3=o00 lks/ sin al sin“ 6 sin 6

(2.30)

In order to simplify this expression further, the order of integration has to be inter-
changed. The limits of integration have to be modified so that the original domain
of integration is preserved. We obtain:

2 o B ksin @ k2 -1/2 "
Ry + Rog 4+ Rag = — -—(Iﬂ/ (/%2 S > e dks d. (2.31)
k

T Jimo SO Jp sing sin? @

Using the substitution s = k3/(ksin#), the expression can be simplified:

2 o0 1 ) )
Ry + Ryy + R33 = —/ E(n)/ (1-— sz)Al/QemSTsmeds di. (2.32)
m K

=0 s=-—1
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The inner integration (over s) can be carried out analytically,?® and one obtains:
Ry + Rog + Rs3 = 2/ E(k)Jo(rksin @) dxk, (2.33)
0

where Jo denotes the zeroth order Bessel function of the first kind. This result can

be related to the structure function by using the relation:

= — — 1 =~ = =
Rii+ R+ Ry = U7 +U3+ 03— 3 [(U1 U2 4+ (U — Up)? + (U5 — Us)?

— 2/00 E(k)dk — %Iﬁ - U2.. (2.34)

Here U is the velocity vector at the location X = x + r23. The separation vector
is in the three-direction of the coordinate system because this relation will now be
used in (2.33), which was derived for a separation vector aligned with this direction.
This, however, is not a restriction in the application of these relations, since, for a
separation r of arbitrary direction, we can always choose a coordinate system such that
the three-axis is aligned with r. (The trace is invariant under rotations.) The angle
0, which appears in (2.33) and in the equations that follow, is to be understood as
the angle between the vortex orientation e, and the separation r. Substituting (2.34)

into (2.33), we now obtain:
Fy(r;x) — 4 / E(k) [1 = Jo (rksin 0] dk. (2.35)
0

We remark that for homogeneous anisotropic turbulence, F3 is a function of the
separation r only. In the present SGS modeling application, we will use (2.35) in
a local approximation at different points on the resolved-flow grid, and retain the
parametric dependence on x.

To apply (2.35) to LES, we split the structure function of the full velocity field,

Fy(r;x), into a resolved-scale contribution, Fy(r;x) = |U — U2, and a subgrid con-
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tribution, £ ¢s(r;x), where

Fo(r;x) = Fo(r;X) 4+ Fo (15 X). (2.36)

The structure-function relation can be used to express Fbg(r;x) in terms of the

energy spectrum:
Fy(r;x) = Fy(r;x) + 4/ E(k)[1 = Jo (rksin0)] dk. (2.37)
ke

Substituting this in (2.35) and collecting the two integrals into one, we obtain

Bex) =4 [ B[ — I (rksind)] dk. (2.38)

2.3.2 Model equation for Kye?/? using a circular average

Equation (2.38) serves as basis for the estimation of SGS parameters by use of a

local average over suitable directions of r at each gridpoint x. This is done presently

by averaging Fy(r;x) over a circle of radius = |r| (which will depend on the local

meshwidth of the computational grid) lying in a plane with normal f, such that r

joins the circle center to a point on its perimeter. A sketch of the geometry is provided

in Fig. 2.2. This is subsequently referred to as a circular average. Tt was chosen
Ly

=

{
=

Figure 2.2: Sketch of the geometry used in the circular average of the structure function
relation for the stretched-vortex model.
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because it is applicable equally well to both free and wall-bounded flows, and is used
for all LES reported presently. We remark that a spherical average could be used
for free turbulent flows but is not suitable for near-wall flows, owing to the large
shear combined with the suppression of turbulence in the sublayer. The spherical
average of (2.38) is given in Appendix A, where it is demonstrated that the well-
known structure-function relation for isotropic turbulence is recovered.

Applying the circular average, denoted by superscript @, in (2.38) we obtain:

— _ 2 A
F9(r;x) /q5 O/k {1 Jo (kr\/l sin? 9 cos d)ﬂ dk dg. (2.39)

The factor sin# in (2.38) has been expressed in terms of known quantities. We recall

that @ is the angle between e, and r. From the geometrical configuration illustrated
in Fig. 2.2, it follows that cos § = sin cos ¢, where cosy = e’ - 1, i.e., ¥ is the angle

between e” and . The angle ¢ is the polar angle, over which the average is taken.

2.3.3 Closure of the model

In order to make use of the last equation, we need to assume a functional form for
E(k). We use the same Kolmogorov spectrum with a sharp viscous cutoff as in (2.25).
We note that in this case the spectrum is applied over the range 0 < k < k.. But only
the integral over the spectrum enters into the model, and therefore a more detailed
description of the energy spectrum is not expected to be necessary for the purposes
of this model. We also note that convergence of the integral at the lower limit, i.e.,
k — 0, is guaranteed since 1 —Jo(z) = O(z?) as z — 0. Substituting (2.25) into (2.39)
and changing the integration variable to s = kA, where A is the length scale at the

cutoff, i.e., k, = m/A, we can solve for the unknown factor Kye?/?:

ﬂﬁ’?(r;x)
oN2/3 [T [T =5/3[1 — Jo (sL+/T — sin2hcos? )| dsdd
¢$=0 Js=0 A

Koe?/® = (2.40)

In (2.40), » and A are related to the local mesh size of the (possibly non-uniform)

computational grid (see Sec. 2.3.4). All other quantities on the right-hand side can
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be estimated from the resolved-scale velocity field. The integral in the denominator
is a function of r/A and 9. Methods for an effective implementation of (2.40) in
large-eddy simulations are discussed in Sec. 2.3.4.

The limits of integration in (2.40) apply only for k., < Jn~! owing to the viscous
cutoff in the model energy spectrum (2.25). (We recall that n is understood as a
“local,” gridcell Kolmogorov scale in LES.) In the model implementation, the cases
k. < Jn~' and k. > Jn~! have to be distinguished unless a simplified form of the
spectrum with a k=5/% range extending to infinity is used, J — co. This latter choice

simplifies the model significantly.

Formulation for J —

The group Koe?? is obtained from (2.40), which is valid at all locations for this case.

The (estimated) subgrid kinetic energy then follows from (2.25):

3

K= §K062/3/<;;2/3. (2.41)

An estimate for 7 is not required. All quantities in (2.24) are known, and the SGS

tensor 7;; can now be computed.

Formulation for finite J

The model equations can also be closed for finite J, but the complexity of the resulting
model version is somewhat increased compared to the J — oo version. The local-

balance equation (2.26) is used. The subgrid kinetic energy is now

3IC0€2/3 ken 23 -1

= 0, ko> Jn L

K

Since the subgrid kinetic energy vanishes for k. > Jn~!, the SGS tensor will vanish
accordingly. If K = 0 for a grid cell, this means that locally all the energy is contained

in the resolved scales, i.e., all relevant turbulence scales are resolved at that location,
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and no model contribution is needed.
Since 7 is not known a priori in a cell, we first calculate the product k.n and then

test for k.n < J. For k.n < J, substituting K from (2.42) into (2.26) yields

~ o 3Kee3 En\ 3| - .
€= 21/32'3'51']' — 2k2/3 1-— 7 SZJ((Sz — e ej), kc"? < J. (243)

This can be written as
X\ 2/3
1—1LX" + 310, ;X" [1 ~ (7> } =0, X</ (2.44)

where

3\ /4 3.5
X = kn=k (”—) R L
€

_ (kev?)”
_ }C062/3 . SZJ((SU - 6?63) -
s M Temy 4

Note that the group Koe?/? is preserved in II,. The parameter II; is essentially twice
the square of the grid-scale Reynolds number. It follows from (2.26) and (2.45)
that Il < O corresponds to transfer from resolved to subgrid scales (cascade) while
II; > 0 corresponds to transfer to resolved scales (backscatter). Given Kge?/3 from
(2.40), then (2.44) can be solved for X by Newton’s method at each gridpoint, and
it is not necessary to solve a coupled system for either the whole domain, or along
homogeneous flow directions. The subgrid kinetic energy and therefore the SGS tensor
can then be computed for X < J. When X > J, the flow is estimated to be locally
resolved (k. > Jn~!) and the SGS tensor is set to zero. We remark that this is a
smooth transition at X = J with no discontinuity in 7;;. A brief analysis of (2.44) is

given in Appendix C.
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2.3.4 Notes on model implementation

The model implementation is similar for all numerical methods used, both for decay-
ing isotropic turbulence and channel flow. As input, the model needs the local U; and
aU; /0z;. The first step is to compute ﬁ2® at each grid point. This is done by approx-
imating the circular average by an average over the four neighboring grid points in
the plane. To account for non-uniform grids, we invoke Kolmogorov’s inertial-range
form® Fy ~ (er)??, which also follows from (2.25) and (2.35) without additional as-
sumptions. This method was also used by Lesieur and Métais.*” For all present LES,
the circular average is performed in a plane normal to the three-direction (wall-normal

for channel flow), and we obtain

iy o v s ()
2

][00 ~ Ol — A ( A;;)Q/T . (246)

where Az and Az are the grid spacing in positive and negative k-direction, re-
spectively (for the numerical methods used in the present work, Az} = Az, for
k = 1,2). The separation length for the structure function is set to r = Az, Az,
i.e., the geometric mean of the grid spacings in the (z1, x2)-plane where the structure
function is computed.

Next, the orientation of the subgrid-vortex structures is determined. We assume
alignment with eigenvectors of the resolved rate-of-strain tensor Sij = (0U;/ or; +
8Uj /0z;)/2. Given the eigenvectors €;, €, and &3 of S,-j, with corresponding eigenval-
ues \; < Ay < As, we will use versions of the model, where the subgrid structures are
assumed to be aligned with €3 only (€3 model), or where a fraction A = A3/(|\a| + A3)
of the structures is aligned with €;, and the remainder (1 — \) with &, (& + &3
model). These versions, which use alignment with eigenvectors of S'z-j only, do not
model backscatter. In Ref. 57, other versions which include backscatter, e.g., using

partial alignment with the resolved-scale vorticity vector, have been tested. But no
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significant improvements in the results of the simulations presented in the following
would be expected by using different alignments.

Equation (2.40) can now be evaluated using (2.46). The integral in the denomi-
nator of (2.40) depends on ¢ and r/A. Presently, an analytical approximation to the
integral is used (see Appendix B). An alternative would be to use a two-dimensional
table lookup. The angle ¢ is known from the subgrid-vortex orientation. The ratio
r/A is the ratio of the separation length r used for the structure function and the
cutoff length scale A (k. = m/A). In the present work, A = (AzT + Az7)/2 is used,
i.e., the average of the distances to the two neighboring points in positive and negative
z-direction.

When J — oo, the subgrid kinetic energy can be obtained immediately from
(2.41). A step-by-step overview for the J — oo version of the model is given in
Table 2.1.

Table 2.1: List of steps for estimating the SGS tensor 7;; with the J — oo version of the
model (assumes that plane of circular average is normal to three-direction).

Input: Resolved-scale velocity field U, )
resolved-scale rate-of-strain tensor S;; = £(8U;/8z; + OU; /0x;)

For each gridpoint:
compute resolved-scale structure function F° from (2.46)
solve eigenvalue-problem for gij: eigenvalues A\; < A2 < A3 and
corresponding eigenvectors €;, €q, €.

set alignment fraction: A =1 for é3 model,
A= s/ ([A] + Ag) for & + & model.
compute Koe?/3 from (2.40): determine alignment factor sin® v using

cos®h = /A%, + (1 — \)é3,,
determine r/A with
r = /AzAy and
A= (Azt 4+ Az7)/2,
evaluate (B.8) to approximate integral,
and then evaluate (2.40).
compute subgrid kinetic energy K from (2.41), using k. = 7/A.
compute SGS tensor: 7y = K [A(8ij — €3:€35) + (1 — A) (05 — €2:625)] -

Output: Subgrid-stress tensor 7;;
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For finite J, (2.44) has to be solved. This can be done efficiently with a Newton
solver, for which an initial value is obtained by an analytical approximation; see
Appendix C for details. When X is known, K can be obtained from (2.42) and other
quantities including Xy can be determined. The SGS stress tensor 7;; then follows
from (2.24). The steps to compute the SGS tensor using a model version with finite J
are summarized in Table 2.2.

Table 2.2: List of steps for model version with finite J (assumes that plane of circular
average is normal to three-direction).

Input: Resolved-scale velocity field U, ) )
resolved-scale rate-of-strain tensor S;; = 3(0U;/dz; + 0U;/9z;)

For each gridpoint:
compute resolved-scale structure function F from (2.46)
solve eigenvalue problem for gij: eigenvalues A\ < Ay < A3 and
corresponding eigenvectors €, €g, €3.
set alignment fraction: A =1 for &3 model,
A= /\3/('/\2} + )\3) for ég -+ ég model.
Assume k.np < J
compute Koe/? from (2.40): as in J — oo version, Table 2.1.
Compute IIy, Iy, I3, cf. (2.45).
If (2.44) has no real solution for these values of II;, ITy, IT5:
set 7;; = 0, continue with next gridpoint.
(clipping, in praxis rarely necessary, cf. Appendix C)
Obtain initial value for Newton solver, c¢f. Appendix C.
Solve (2.44) using Newton’s method.
If X > J, flow is locally resolved: 7,; = 0,
continue with next gridpoint
Compute subgrid kinetic energy from (2.42).
Compute SGS tensor from (2.24) as in J — oo version, Table 2.1.

Output: Subgrid-stress tensor 7;;
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Chapter 3 Numerical methods

3.1 Pseudospectral method for homogeneous
turbulence

The numerical method for testing the SGS model in decaying isotropic turbulence is
based on a standard finite-dimensional Fourier expansion of the velocity field. It is
based on the method used by Rogallo™ and the earlier work by Orszag and Patter-
son.%® The implementation used for the present work is the same as in Ref. 56, where
a brief description of the method can also be found.

We only note the characteristic properties of this method which make it compu-
tationally very efficient: The divergence-free condition reduces in Fourier space to
the condition k - Uy = 0, where Uy are the expansion coefficients of the velocity
field as defined in a three-dimensional, discrete Fourier transformation. This allows
to implement the divergence-free condition by using the projection operator into the
subspace orthogonal to the wavenumber vector k. The nonlinear term is computed
in physical space (hence the method is refered to as pseudospectral).

This can lead to aliasing errors, which arise when the highest, energy-rich modes
created by a nonlinear product cannot be resolved by the finite number of modes
used in the discretization, and are folded back into the range of resolved modes.
The problem can easily be investigated in one dimension:® If u(x) and v(x) are two
functions which are given by their discrete Fourier coefficients 4, and 7, and the
product w(x) = u(z)v(z) is to be computed in physical space, the result, described

by its Fourier coefficients, will be:

1 N—-1
R N S i (3.)
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with u; = ,iv:/ 2__1\}/2 e for 7 =0,1,..., N — 1, and v; defined analogously. Sub-
stituting the expressions for u; and v; into the product and using the orthogonality

relation:

1= 1 if p=Nm, m=0,+1,+2,...

N3 0 otherwise,

<
Il
=)

the product can be written as:

W= Almbnt Y Ty (3.3)
mAn=k mAn=k+tN

where the first term on the right-hand side is the representation of the product in
a finite-dimensional Fourier expansion, and the second term is the aliasing error.
As can be inferred from this expression, and confirmed in actual computations, the
aliasing error is dominated by the influence of the highest resolved modes. If the
energy contents in these modes is high, aliasing errors can have a significant, adverse
influence on the quality of the results of a numerical simulation. This applies, in
particular, to large-eddy simulations, where the smallest resolved scales are typically
far larger than the dissipation-range scales, and therefore contain significant amounts
of energy. Fully-resolved direct numerical simulations should be less affected by the
problem of aliasing errors.

For the present LES of isotropic turbulence, we follow the “3/2-rule”® to remove
aliasing errors. This technique adds additional modes, which are set to zero initially,
to the Fourier representation of the two functions u(z) and v(x) before they are
transformed to physical space for the evaluation of the product. The transform uses
now M rather than N points, with M > 3N/2. Denoting padded quantities with a

superscript *, we have:
9

= wote T p=__ = (3.4)
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with u} = éw:/i}ﬂ uie*i for j =0,1,... , M — 1, where

2|2

Uy forkz—%,..., —1
0 otherwise,

and v} defined analogously. Similarly as in (3.3), we can write for the padded product:

wp= Y L+ > ), (3.6)
m+n=k mAn=kEM
but note that the condition for the contributions to the aliasing term is different
here. Now, we recall that the range of resolved modes is k = —N/2,... | N/2 — 1.
But it is easy to see from (3.6) that aliasing errors can only effect modes outside the
range of resolved scales. We take, e.g., the worst case of the highest resolved mode
k = —N/2: The second term in (3.6) could only add an aliasing error to this mode if
m+n=—N/2+ M = N (setting M = 3N/2). This can only be true if at least one
of the two factors is a mode outside the range of resolved scales: m > N/2 and/or
n > N/2. Then, from (3.5), it is clear that at least one of the factors in the aliasing
term in (3.6) is zero. Therefore, even for the highest resolved mode, no aliasing error is
added. The aliasing errors can only affect modes outside the range of resolved scales,
and these modes are discarded after evaluating the product, since they are not part of
the discrete representation of the physical quantity, but have only been added as part
- of the de-aliasing procedure. The de-aliasing, therefore, has an important effect on
the correct representation of the nonlinear transfer across the cutoff between resolved
and subgrid scales, but no valid contributions of the nonlinear term to the resolved
scales are removed, and in that sense the de-aliasing does not introduce any artificial
dissipation.
In three dimensions, the padding at the beginning of the nonlinear step and the
removal of the additional modes at the end is performed for all three directions. In the
numerical method for isotropic turbulence, the Fourier coefficients are also subjected

to spherical truncation (cf. Ref. 8).
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The temporal integration of the equation uses an integrating factor technique for

the diffusion operator and a Runge-Kutta scheme for the nonlinear term.

3.2 Compact finite-difference method for
homogeneous turbulence

Finite-difference methods, which can be generalized if the discrete differentiation op-
erators are allowed to be implicit, have been reviewed and analyzed in Ref. 44. In this
reference, the term “compact finite differences” is used for derivative operators, which
have improved resolution characteristics for high wavenumber modes, and which rep-
resent the discrete derivatives in implicit form, but with relatively small stencil sizes
(hence the name “compact”). The implicit representation contributes to a tighter
coupling between the nodes of the stencil, which is responsible for the improved res-
olution characteristics. But it also means that a linear system has to be solved to
obtain the values of the discrete derivatives to be computed.

A code has been developed to simulate incompressible flow in a periodic box
using a compact finite-difference discretization. This code was not intended to be
an alternative to the pseudospectral method described in the previous section. Of
course, the efficiency of the pseudospectral Fourier method for this particular geom-
etry is unsurpassed. The purpose of this code was twofold: First, to test a particular
pressure-correction scheme for use with compact finite differences (which have the
theoretical potential of being applied to more general geometries), and, second, to
test the SGS model developed in this work in a numerical method operating entirely

in physical space.

3.2.1 Discretization schemes

The numerical method in the present work uses compact finite differences in all three
spatial directions. The finite-difference scheme itself is the same as described in

Ref. 77, but in this reference it was only applied in one spatial dimension.
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The first derivative on a staggered mesh, as used here in all three dimensions, is
given by:

h 7 /
ﬂ(22fk + frer + fio1) = frvrje — froape (3.7)

The leading term in the truncation error for this scheme is of fourth order, but due
to the implicit form of the scheme, the dispersion error for this scheme at higher
wavenumbers will be smaller than for standard, centered finite differences of fourth
order (c.f. Ref. 44).

For the second derivatives in the viscous term, a special treatment is used, again
following Ref. 77, to simplify the operators for the viscous term, which will be ad-
vanced by an implicit timestepping method. This fourth-order accurate expression

for the second derivative is given by:

f"=8(f) +(f), (3.8)

where 62 denotes the standard second-order, centered finite difference operator, and

v is an implicit correction using values of the first derivative:

52(f) = fk+1+];ch2—1‘2fk, (3.9)
V(fe) = Srt1 + ];1;2—1 —2fk fif;+12—hfzé~1' (3.10)

Applied to the viscous term, only the explicit part of the Laplacian, 62, + 6, + 02,
(where, e.g., 62, means that the operator 62 is applied in z-direction), is advanced by

the Crank-Nicholson scheme, while the correction terms - are treated together with

the nonlinear term using the Adams-Bashforth scheme (see below).
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3.2.2 Time integration using a splitting method with the in-

ternal iterations technique

Splitting methods, which are widely used for the numerical integration of the Navier-
Stokes equations for incompressible flow, perform the time integration of the nonlin-
ear, pressure, and viscous terms in separate steps. Typically the nonlinear term in
the Navier-Stokes equation is integrated in the first step. The resulting intermediate
velocity I]', however, is not divergence-free. Therefore, a pressure correction with a

scalar field ® is applied in the form (in general):

N N
U _ Un+1

x = -GO"H, (3.11)

where G denotes the discrete gradient operator consistent with the chosen approxi-
mation scheme for the derivatives. @ is determined by requiring that the corrected
~ntl
velocity field be divergence-free, D-U = 0 (D is the discrete divergence operator).
Applying the operator D to (3.11), one obtains an equation for ®:
1

~D- Ut (3.12)

D.Ga" ! —
The operator D - G has to be consistent with the first derivative operator used
in (3.11). But the use of compact finite-difference schemes has the effect that the
discrete operator D - G will be a rather densely populated matrix which makes it
computationally expensive to invert.

One possible way to perform the pressure correction step at a reasonable compu-
tational cost is the internal iterations technique by Schiestel and Viazzo.”" Instead of
solving the full equation (3.12), the left-hand side is replaced by a discrete Laplace
operator, which uses the explicit, centered, second-order finite-difference scheme. The
resulting matrix is sparse and can be inverted using available solvers for such systems.
However, since this equation is not consistent with the discretization scheme used for

the first derivatives, the corrected velocity will still not be divergence-free. Therefore,
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within each timestep, an iteration has to be performed until the incompressibility
condition is satisfied (within a specified tolerance level.) The viscous term is also
included in this internal iteration. To summarize, the algorithm to perform internal

iteration m — 1 — m for timestep n — n + 1 is given in the following:

fjn.+1,m . 1 " . 1 n —
— ;= 5BN"-N )+ 500 + 7 +7:)(BU" —U Y

Adams-Bashforth

-

o GPn+1,m-1

1 S n m— n
+ 2—R€(o§x + 0y, +02) (UM + U

~
Crank-Nicholson

n+l.m 1 Srn41,m
(07, + 8, + 02,) 0" 1" = =D - G
1

E(Un—kl,m . ﬂn—l—l,m) _ —GCI)n+1’m

Hon+1m . gntlm n+1,m—1
P = + P .

Here, N denotes the nonlinear term of the momentum equation (1.3) (the divergence

form is used in the present work).

3.2.3 Implementation

The numerical method described in the preceding sections has been implemented on
a fully staggered grid. The pressure correction is computed at the center of each grid
cell, while each velocity component is computed on the cell face, which is normal to
the corresponding coordinate direction.

For the interpolations made necessary by the use of the staggered grid, an implicit

44

scheme as given in** is used:

Ji+ %(fz’ﬂ + fic1) = %(fi+3/2 + fizape) + z(fz‘+1/2 + fi1/2)- (3.13)

Both, this interpolation scheme and the implicit first derivative operators require
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the inversion of a tridiagonal matrix. In the present code, which uses only periodic
boundary conditions, this inversion is performed using a fast-transform solver.

The (simplified) Poisson operator is inverted using a conjugate gradient solver with
incomplete Cholesky factorization (see Ref. 22 for a description of these methods).
For the present implementation, routines from the DLAP package™ have been used.

The compact finite-difference code has been tested by simulating the early-time
behaviour of the Taylor-Green vortex flow and comparing the results with those of

Ref. 7.

3.3 Nodal(GLL)/Fourier method for channel flow

Incompressible flow in an open channel is a widely used testcase for the behaviour
of a SGS model in wall-bounded turbulence. Tests for the present work have been
performed with versions of the code of Ref. 9.

For the two homogeneous directions, which exist in this case, Fourier expansions
can be used. Various discretization schemes have been used for the third, wall-
normal direction, e.g., Chebychev polynomials,* and B-splines.®’ For the present
work, Lagrange polynomials through the Gauss-Lobatto-Legendre (GLL) points are
used.®®" The (N 4 1) GLL points for expansion polynomials of order N are given by

Co=-1, &y=1, Ly()=0forj=1,...,N—1, (3.14)

where L; denotes the Legendre polynomial of order k. The basis functions of the

expansion are then given by:

(6= D(E+ DLy (E) N
NN OLEE-g) 0o (3.15)

hyi(€) =

where &; are the GLL points defined in (3.14). These interpolation points are defined

in the context of the quadrature rule®3° of the same name, and are associated with
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corresponding weights:

w; = NV 7 DI G 1=0,...,N, -1 (3.16)

and normalization factors:

1
= (k+ 5)_1 for k< N (3.17)

W =2/N

which will be needed in the following sections.
The basis (3.15) is called a nodal basis. Nodal bases are invariably made up of

Lagrange polynomials, which are in general form given by

N
Hq:O,q#p (I - xq)

, p=20,...,N. (3.18)
H;\fzo,qyép('rp — Zq)

b, (7) =

They have the property that ®,(z,) = 0,4, where d;; is the Kronecker delta. In par-
ticular, hy(&;) = 0pg, cf. (3.15). This means that no transforms have to be performed
to obtain the physical values at the nodes if a function is discretized using a La-
grange polynomial basis. The nodal GLL basis functions play an important role in
the context of spectral element methods. The main advantage of this particular basis
is that because of the connection with the Gauss-type quadrature, integrals (as arise
in the method of weighted residuals) can be efficiently evaluated numerically with
sufficiently high accuracy.

In particular, the inner product (h,,h,) fQ ) d€, which is known as
mass matrix and plays an important role in the method of weighted residuals, is
advantageously evaluated using the Gauss-Lobatto-Legendre quadrature rule for (N +
1) points. The resulting (approximate) mass matrix is diagonal, which is very helpful
for computational efficiency. This result is not exact, but rather corresponds to the
practice of lumping the mass matrix, which is used in finite element methods, i.e.,

summing the rows and using the sum as the entry of a diagonal matrix.?® The error
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incurred by this effective lumping due to the use of the reduced-order quadrature is

consistent with the approximation error of the expansion.

3.3.1 Spatial discretization

In the following, we describe the formulation for the advection and diffusion terms
of the Navier-Stokes equations for a hybrid Fourier/GLL-basis representation of the
solution fields. The nonlinear advection operator and the linear diffusion operator

will be denoted by N and L:

N(U) = —=[U.VU+ V- (UU)] (3.19)

L(U) = —V2U. 3.20
(V)= (3:20)
(The so-called skewsymmetric form of the nonlinear term is used, cf. Ref. 38.)

For the channel flow simulations, the polynomial expansion using basis vectors
of the form (3.15) is used in one dimension (wall-normal direction), and Fourier
expansions are used in the two homogeneous directions (streamwise and spanwise).

The numerical representation u° of any flow variable v is therefore discretized in the

form:

N, Ny/2—1  Np/2—1

a: Y Y, 2 Z Z Z umpq 27rz(ma?/Lz+py/Ly)h (X~1(2))7 (3.21)

q=0 p=—N, /2 m=~N/2

where (N,, Ny, N;) are the number of GLL/Fourier-“modes” used in the respective

coordinate directions, ug;, is the discrete expansion coefficient at node (i, §, k), and the

ijk
domain has dimensions L, and L, in streamwise and spanwise direction, respectively.
Furthermore, we have used the mapping function x which maps the standard element
[—1,1] (in one dimension) into the physical domain: z = x(§) where £ € [-1,1]. (In
general, it is advantageous to define the function x using isoparametric mapping.?®3°
This will not be described here, since for the simple geometry of the channel flow, the

upper and lower wall are typically located at z = —1 and z = 1, which is identical to
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the standard domain —1 < ¢ < 1. The mapping is therefore an identity: z = £, and

will not be considered any further in the following.)

Nonlinear term

The nonlinearity in the advection term requires an explicit time-integration of this
term in physical space for reasons of computational efficiency. Inverse Fourier trans-
forms have to be performed in the homogeneous directions to obtain the polynomial
expansion coefficients in physical space, which are equivalent to the nodal values of
U’ (because of the use of Lagrange interpolants). The values of the nonlinear prod-
ucts can then be computed at the nodes, i.e., the nonlinear term is evaluated by a
collocation-type method.

The treatment of the nonlinear term is therefore quite straightforward, except
that aliasing errors can be introduced because the nonlinear product is evaluated in
physical space and then transformed back to a spectral representation.

For the present LES of channel flow, a version of the code has been developed
that uses the “2/3-rule”® for aliasing removal in the Fourier expansions in the two
homogeneous directions. This technique is essentially the same as the “3/2”-rule
which was discussed in Sec. 3.1. The number of modes is not expanded for the
evaluation of the nonlinear term, however; instead, the upper one-third of the total
number of modes is used only for de-aliasing purposes, but is retained throughout the
computation. Only the lower two-thirds of the total number of modes constitute the
resolved scales. In other words, the nonlinear term is evaluated for the full N, x N,

modes, and then all those modes (p, ¢) are set to zero, for which:

2 2
P q
(z&) +<2&> > 1. (3.22)
3 2 3 2

The de-aliasing based on the “2/3”-rule can be easily implemented, especially for

a parallel code, because it does not require major changes compared to the version
without de-aliasing. This is the reason why the “2/3”-rule was used here for the

channel flow code, even though it incurs some extra computational cost for carrying
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along in the other steps the modes used for de-aliasing.

The influence and possible treatment of aliasing errors in the nodal, polynomial
expansion on the GLL points, which is used in wall-normal direction for the channel
flow LES, has not been investigated so far to our knowledge. The subject is less clear
than in the case of Fourier expansions, because the basis functions (3.15) of the ex-
pansion are only approximately orthogonal. Numerical experiments with the viscous
Burgers equations seem to indicate, however, that aliasing-like errors can indeed play
a significant role in GLL-polynomial expansions, as would be expected because of
their spectral-like properties. We propose, therefore, in analogy to the methods for
Fourier expansions, a truncation method for aliasing removal in an expansion with
basis functions of the form (3.15). It is based on a transformation to a modal expan-
sion. The product is first computed in physical space by multiplying the expansion
coefficients/nodal values (of the Lagrange interpolant) at the GLL points: F; = U;V;

(no sum), then the final result F'% is computed by:

M,

=y (5 Z FnLk@n)wn) Lu(&) (3.23)

In tests with the one-dimensional Burgers equation, this method resulted in significant
improvements of the results.

The fully de-aliased version of the code (using de-aliasing for both the Fourier- and
GLL-expansion) has been applied to the channel flow LES, and results computed with
and without de-aliasing will be compared, see Sec. 4.2. The improvements were only
small, which may indicate that the use of the skewsymmetric form of the nonlinear
term, at least in this particular case, significantly reduces aliasing errors through

cancellation effects.?®

The Helmholtz problem for the diffusion term

The diffusion term in the Navier-Stokes equations makes the solution of a Helmholtz
equation necessary, if numerical methods of the types described here are used (i.e.,

hybrid spatial discretization and/or time splitting using implicit methods for the



39
diffusion term). In this section, the Galerkin formulation of the Helmholtz problem
will first be described in a more general form and then details of the discretized system
will be given for the numerical method used in the present work.

We consider the Helmholtz equation:
Vi — Nu=f (3.24)

on a domain 2. (The problem is discussed for a scalar u, which can be a component of
the velocity vector. The function f describes the right-hand side of the equation, and
A? is a constant.) It is assumed that the boundary of the domain can be decomposed
in non-overlapping sections d€2p, on which Dirichlet boundary conditions are given,
and 0y with Neumann boﬁndary conditions. (Note that 9x may be empty. This is
in fact the case for the channel flow, but Neumann boundary conditions are naturally
included in the formulation, and therefore this term will be retained in the general
description of the Helmholtz problem in this section.) All functions are assumed to
be sufliciently smooth so that a unique solution exists.

To cast (3.24) in variational form we define the inner product over the domain

as:
(F)n = [ 1(x)glx) (3.25)
We define a test function v which has the property:
v(x) =0 on 90p. (3.26)
Taking the inner product of v with (3.24) we obtain:

(v, V*u)g — N(v,u)q = (v, fa. (3.27)
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The first term can be integrated by parts to obtain:

(Vu, Vg + A (v,u)q = / vVu-ndS — (v, fa. (3.28)
I

The integration in the surface integral is only performed over 0€2x because the test
function vanishes for 0Q)p.

The Galerkin approximation of the last equation is obtained by replacing the exact
solution u and the exact right-hand side f with their finite-dimensional expansions u°
and f°. The test function will be expanded using the same set of basis functions as

for u°, which is what distinguishes the Galerkin method from other weighted-residual

methods. The Galerkin approximation can formally be written as
a(uéa 'U(S)Q = (1767 gN)asz - (7]67 f5)97 (329)

where we have introduced the operator a(f, g)a = [,(Vf)(Vg)dx+X* [, fgdx. The
Neumann boundary condition has been written using gy = [V’ - ] ‘ P

In order to implement the Dirichlet boundary conditions, the approximate solu-
tion u’ is decomposed in a known function P, which satisfies the Dirichlet boundary
condition, and an unknown, homogeneous function u*, which vanishes on 9§p. Sub-

stituting this decomposition, we obtain:

a(u™, %) = (v°, gn)an, — (00, fP)a — a(u®,v%)q. (3.30)

For the numerical method used in the channel flow simulations of the present
work, the discretization (3.21) is used. The Fourier modes in the two homogeneous
directions are decoupled in the Helmholtz equation. Therefore, a one-dimensional
Helmholtz equation (in wall-normal z-direction) is solved independently at each (z, y)
location.

We introduce the vector W,,,, which contains Fourier coefficients t,pq, ¢ = 0, ... , N,

for fixed modes (m,p), cf. (3.21), but we will drop the indices mp in the following.
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In other words, this vector contains the coefficients for the expansion in terms of the
basis (3.15) in z-direction. The vector P contains the coefficients of u” which is con-
structed using those basis functions which have non-zero support on the (Dirichlet)
boundary. And the vector 1’! contains the coefficients of the unknown homogeneous
solution u", which vanishes at the boundary. Furthermore, the vector f represents the
discretization of the right-hand side f, and the vector I' represents the contribution
of the surface integrals in (3.30).

In order to allow a more compact formulation of the discrete system, we define
matrix operators. (This description can be extended to a general, three-dimensional

expansion, see [30, Chap. 4]). The weight matriz W is defined as:
Wi = Jyw;6;; (no sum). (3.31)

The GLL weights were defined in (3.16) and the GLL points &; in (3.14). The Jacobian
J; = dx/d€ is unity for the special case of the channel flow with walls at z = —1 and
z =1, cf. (3.21).

The derivative matrix D which, in this case, is only needed for the derivative in

wall-normal direction, is given by:

dh; (€) (3.52)

’ dg &

The integrals are evaluated by Gauss-Lobatto-Legendre quadrature using the

(N, + 1) nodes, and we obtain the discretized system:
D'WDu" + M?*Wi" = -Wf + T — (D'WDu” + X2*wWu?) (3.33)

3.3.2 Parallelization

Large-eddy simulations of channel flow, despite their strongly reduced computational

cost compared to DNS, still require the use of supercomputers. Such high-performance
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computers are mostly built as parallel machines at the present time. Therefore, the
original, sequential code had to be parallelized as part of the present work.

The version of the channel code used for all simulations in this work decomposes
the computational domain in the spanwise direction, i.e., the discretized computa-
tional domain is divided in z-z-planes, and a subset of the total number of planes is
assigned to each of the parallel processes. If there are N, spanwise modes/gridpoints
total, and there are P parallel processes, the computational domain of each process
will be comprised of N, /P such planes. Therefore, at most N, processors can be used
so that the domain of each processor consists of at least one plane; also, to avoid load
imbalances and simplify the implementation of the parallel code, we require that N,
must be divisible by P.

The parallelization is based on the message-passing model, i.e., each process has
its own, separate memory, but is able to communicate with the other processes using
special subroutines. It is implemented using MPI.%4

Each process can compute the linear pressure and viscous terms independently
on its subdomain. The nonlinear term, however, requires special treatment in the
parallel code. Because of the coupling of modes, it is most efficiently evaluated in
physical space. But this requires inverse Fourier transformations in streamwise direc-
tion (which can be performed locally to each process) and in spanwise direction. The
latter require a global transpose of the computational domain, i.e., the data has to be
redistributed over the process such that it is now divided up in streamwise direction,
and the domain of each process now comprises one or more complete y-z-planes. Af-
ter the transpose, Fourier transforms in spanwise directions can be performed locally
on each process (since all the spanwise modes for a given (z, z) coordinate are now on
the same process). After the transform has been performed, the data has to be trans-
posed back to its original distribution. Each transpose of the data requires all-to-all
communication of each process with each other process, which is expensive in terms of
communication time required, but seems unavoidable in the parallel implementation
of spectral methods.

Additional communication is required for the SGS-model implementation: When
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the structure function is computed according to (2.46), each process needs to exchange
the data at the boundaries of its domain in spanwise direction with its neighboring

processes.

3.3.3 Time discretization I

The original code by Chan® uses a fractional step method based on the scheme by

Kim and Moin.®® The semi-discrete system of equations for this time-discretization

scheme is given by:

B n 4 i—1
E*it‘U*_: Z%’k(j)v where k;) = N(U" + ]Z/lek([)) and k) = N(U"),
g=1 =1
(3.34)
QA—}Q - LU T (3.35)
p%@ — VL (3.36)

In (3.34), the nonlinear term is integrated by a four-step Runge-Kutta scheme. The
coefficients are given as: (o1 = z}, Bs1 = 0, Bag = 0, Baz = %, and v = 1, y3 =
v = 7 = 0. The integration of the linear term in (3.35) uses the second-order,
implicit Crank-Nicholson scheme. The scalar ¢, which is related to the physical
pressure, is determined such that the resulting velocity U™"! satisfies the divergence-
free condition. Taking the divergence of (3.36) and requiring V - U™*! - 0, one
obtains:

1

L U*. .
v (3.37)

v2 gbn-H —
The accuracy of splitting methods in general is strongly influenced by the type of
boundary conditions used for the intermediate step. It is well known that inconsis-
tent boundary conditions can introduce time-discretization errors of O(1). Kim and

Moin*? derive an extrapolation boundary condition of second-order accuracy for the
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intermediate velocity U*:
U* = U + AtVe" + O(At?) on  9p, (3.38)

where O€)p are the segments of the domain boundary 05, for which Dirichlet boundary

conditions are specified.
To discuss the boundary conditions for (3.37), we apply the method of weighted

residuals to this equation (see Sec. 3.3.1):

/ WV2¢dx = L / WV - U*dx (3.39)
Q At Q

8¢ 1 1
- d =—— [ VW .U dQ + — . fd
& /vaw X + agwaﬁds At/ﬂv + 5 69WU ads

(3.40)

From (3.36) we obtain: d¢/0h = —(1/At)(U""! — U*) - n. Substituting this and
cancelling the U* term, leads to the following equation for ¢:

' 1 1
—/ VWV¢dx:——/VW~U*dQ+— WU . i ds. (3.41)
o At Jo At o

This shows that no additional boundary conditions for the pressure correction ¢ are
necessary. (Of course, since computing the pressure correction is a Neumann problem,
the arbitrary constant in the solution needs to be set in a suitable way, usually by

setting the mean of ¢ in one plane to zero.)

3.3.4 Time discretization II

The original channel code by Chan has been modified in the course of the present work

1.2% This technique

to implement the time-discretization scheme of Karniadakis et a
uses a high-order-accurate pressure boundary condition and a “stiffly-stable” time-
integration scheme. These schemes have larger stability regions than standard Adams-
type explicit schemes. They are also more efficient than the discretization scheme

described in the previous section, which also has good stability properties but uses
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a computationally expensive Runge-Kutta method even though the limited overall
accuracy still imposes rather strict limits on the timestep.

The splitting method of Ref. 29 takes the form:

Ji—1 Je—1
1 " 2 o € e
q=0 q=0
U-0U
=~V .
A7 7, (3.43)
,yOUn—H _ fj 1 or ]
—_— = VU .44
At Re ’ (3-44)

where J, and J; are the order of the explicit and implicit time-integration rules,
respectively. The values of the coeflicients are derived in Ref. 29 for schemes up to
third order. For example, the values for the third-order schemes are: vy = 11/6,
ap=3, a1 =—-3/2, aa=1/3, B =3, f1 = -3, B = 1.

The pressure correction p"*! is again determined by a Poisson equation, which
here has the form:

1

~V U inQ (3.45)

V2pn+1 _

but a special boundary condition for the pressure correction is required. (The pressure
correction is the intermediate step in this splitting scheme.)

Formally, the correct boundary condition can be derived by taking the inner prod-
uct of the unit normal f with the momentum equation and evaluating the result at

the (Dirichlet) boundary to obtain (in semi-discrete form):

aﬁﬂ+1 Je—1 1 41
— . n—q T T
o =1 FZO BN(U") + - L(U™)| - on 90 (3.46)

This expression for the boundary condition contains terms at time level (n + 1),
which are unknown. Therefore, an explicit timestepping method must be applied to
this boundary condition. Numerical instabilities can be avoided by making use of

the vector identity V?U = V(V - U) — V x (V x U), see Ref. 29. The irrotational
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part is formally treated implicitly, but consistent with the derivation of the pressure
Poisson equation, the divergence at timestep (n + 1) is set to zero. Therefore, only
the solenoidal part remains, which is integrated by the same explicit scheme as the
nonlinear term. This leads to the following final form of the high-order pressure
boundary condition:

Je—1

:Zﬁqﬁ.{

q=0

aﬁn-i-l
on

1

R@V X (VxU)" 14+ N(U )| on 9. (3.47)

3.3.5 A test case for numerical channel flow simulations: lin-

ear growth of small disturbance

The initial conditions for this test case are obtained using eigenfunctions of the
Orr-Sommerfeld stability equation. We write the perturbation velocity in general
as W' (x,t) = u(z) expli(az + By — act)], but it can be shown that the problem can be
reduced to an equivalent two-dimensional problem. We then introduce the stream-
function of the perturbation ¢’ = ¢(z)explia(x — ct)], and obtain in the end the
following eigenproblem for ¢, the well-known Orr-Sommerfeld equation (for detailed

derivation, see 17):

1 H2 2 52
ior Re <5,£5 - 0‘2> ¢=U-0) (5;5 - 042) ¢—U"g, (3.48)

where U = U(z) is the mean velocity profile. The boundary conditions for rigid walls
at z=—1and z =1 are: a¢ = d¢p/dz = 0. |

To test Navier-Stokes solvers in the channel flow geometry, one can numerically
solve the eigenproblem, and use, for example, one unstable mode as a small-amplitude
perturbation superimposed on the parabolic profile of the laminar channel low. When
the evolution of such an initial flowfield is simulated with the Navier-Stokes code, the
simulation result for the growth of the perturbation (as measured, e.g., by the growth
of the perturbation energy) can be compared to the result obtained from linear theory,

as long as the amplitude of the perturbation is small enough.
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Discrete formulation of the eigenproblem

The present formulation uses the basis functions (3.15), even though other, very
efficient formulations are known, e.g. Ref. 64. But the eigenfunctions obtained with
the present formulation can be used directly to generate initial conditions for our
channel flow code, which uses the same basis functions.

To reduce the order of the problem, we introduce { = d¢/0z, and obtain a system

of equations:

% — 202% +a*p—ia ReU (% — a2¢> +iaReU"¢ = —cia Re (% - O‘2¢>
(3.49)
9% - (3.50)

0z

We use the matrix operators W and D introduced above, see (3.31) and (3.32), and

the operator for the second derivative:

DY = d22§§§> . (3.51)
&i

Moreover, we denote by ¢ and ¢ the vectors of the nodal values of ¢ and ¢, respec-
tively. And the vectors U and U” contain the values of the mean profile and of its

curvature at the nodes. Then the discrete system can be written in the form:

—DTWDW¢ — 20*°WD( — ia Re UTWD(
+0a*W¢ +ia Re(0?UT + U YW¢ = —cia Re(WD( — 0®?Wo)  (3.52)
WD¢ — W¢ =0 (3.53)

Defining the solution vector x = [¢T, ¢7]7, the system can be written in the stan-
dard form of a generalized eigenproblem: Ax = cBx. This problem can be solved

numerically using a LAPACK routine.
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Initial condition for test case

The chosen parameters have been frequently used to test numerical methods for
channel flow, see, e.g., Ref. 40. The eigenproblem for the Orr-Sommerfeld equation
is solved for @ = 1 and Re. = 7500, where Re. is the Reynolds number based on
the centerline velocity and channel halfwidth. There is one unstable mode, the value
of which is given as ¢ = cgp + ic; = 0.24989154 + 70.00223498 in Ref. 51. With
the numerical scheme described in the previous section, the computed value of this
eigenvalue is cg; = 0.24989148 + 10.00223441 for N, = 65 and cg; = 0.24989154 +
10.00223498 for N, = 97.

The corresponding eigenfunction is used to generate a perturbation velocity field
(u',0,w') which is superimposed on the laminar channel flow to obtain an initial

velocity field (U, V, W) of the form:

U=1~2>+eu (3.54)
V=0 (3.55)
W = ew (3.56)

where € is an amplitude parameter. For the present case € = 107 is used.

Results from the test case

From this initial condition, the Navier-Stokes equations are integrated forward in time

with the channel flow code, and the growth of the perturbation energy:

Lo ph
E'(t) = /_0 /_ h(u’2 +w'?) de dz (3.57)

is measured (A is the channel halfwidth and L, is the domain length in streamwise
direction). In this test only, the simulations are non-dimensionalized using the center-
line velocity and the channel halfwidth as scaling parameters. The integration time
tend — tstart = S0 corresponds to twice the time required by the disturbance to prop-

agate through the computational domain: This propagation time 7" can be obtained
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from the phase speed (as obtained from linear theory) cg/a as T = Lya/cp ~ 25. We
plot the growth of perturbation energy normalized by Ej, the perturbation energy in
the initial condition. The exact solution according to linear theory, E'(t)/E} = e*It,
is shown in the figures for comparison.

All the results shown here are computed with N, = 65. The number of Fourier
modes in the homogeneous directions were N, = 16 and N, = 4, but the resolution
in the z and y-direction has little influence on the present tests. Results with higher
wall-normal resolution (not shown) are closer to the exact solution, but the size of
the timestep has been found to have a much stronger influence on the quality of the
results. In Fig. 3.1, a comparison between the original time-discretization scheme I
(see Sec. 3.3.3) and the new scheme IT implemented in the course of the present work
(Sec. 3.3.4) can be made: The solution of scheme II (At = 5-107°) is closer to the
theoretical solution than the one computed with scheme I (At = 107%), even though
the former is computed with a five times larger timestep. Since scheme IT also requires
only about a third of the CPU time for one timestep compared to scheme I, the total
CPU time for the test with scheme II was about 15 times less than the time required

for scheme I. Both of the numerical solutions, however, are not converged completely,
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Figure 3.1: Growth of perturbation energy for a small normal-mode perturbation in a
channel, (a) complete runs and (b) enlarged for early times. - - -: time discretization I with
At =107%, - - -: time discretization II with At = 5-107%, — : time discretization II with

At =0.5-107°, o---o: linear theory.
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yet. To indicate that the accuracy of the solution can be improved by reducing the
timestep, results for a shorter runtime are shown using time discretization II and a
timestep of At = 0.5-107°. This computation (which inevitably is quite slow) has
not been carried out for the whole 50 time units, but an enlargement for the shorter
timespan in Fig. 3.1b seems to indicate that good convergence can be achieved if the

timestep is small enough.

3.3.6 Divergence errors

Non-zero divergence in the numerical solution for the resolved-scale velocity field can
be a problem in simulations of incompressible, wall-bounded flows. This is at least in
part due to the use of splitting methods for the time discretization. They are widely
used because they are computationally efficient and applicable to very general flow
conditions, but it is also well known that the splitting methods inevitably lead to
divergence errors. These errors normally manifest themselves in a layer of non-zero
divergence at the boundary. By using high-order-accurate boundary conditions, the
influence of these errors on the global solution can, however, be reduced so that the
errors are of higher order than the error of the time discretization itself.?”
Divergence errors in the solution are a particular source of concern in connection
with the stretched-vortex model. The influence of divergence errors on the model
manifests itself in their effect on the subgrid kinetic energy production term egs =
—S'Z-jnj, cf. (2.26). If this quantity is evaluated in the vortex-fixed frame (cf. Sec. 2.2.1)
and if for reasons of simplicity we assume alignment with €; only (cf. Sec. 2.3.4), we

obtain:
Esgs — —K()\l -+ /\2), (358)

where, as defined before, K is the subgrid kinetic energy and A\; < Ay < A3 are
the eigenvalues of 5’” For this alignment model, the vortex-fixed coordinate axes
are identical to the principal axes of 5}3 If the solution was exactly solenoidal, we

would have A1 + A9 + A3 = 0, and therefore A3 > 0 and A\; + Ay < 0. This ensures
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€sgs > 0, which means, with the sign conventions used in (2.26), that the model is
purely dissipative, i.e., energy is always transferred from the resolved scales to the
subgrid model. If the divergence-free condition is not exactly satisfied, and the errors
become large, the case A\; + Ay > 0 could occur, creating an inverse energy transfer
which is not consistent with the physical model for this choice of alignment, and
which could also cause numerical instabilities.

For the channel code used in the present work, the divergence error is shown in
Fig. 3.2, where we plot the instantaneous plane averages of the normalized divergence
error of velocity fields obtained from LES with and without de-aliasing, and with
the two different time-discretization schemes. (The plane average is, of course, taken
over the absolute value of the error, not the signed value.) The normalized divergence

error is given by:

V-0

IVEDYEDY

The normalization factor can be expressed in terms of the invariants of the resolved

(3.59)

rate-of-strain tensor: Af + A3+ A3 = I3 — 215, where I3 = tr(S) and I, = L[tr(S)? -
tr(S?)].

It may seem surprising that the divergence error in the interior of the chan-
nel is higher for the version with time-discretization scheme II, which uses a high-
order boundary condition. But this is actually expected, since in time-discretization
scheme I the pressure step, which serves to enforce the divergence-free condition, is
performed last, while in scheme II the viscous step is performed last, which may in-
troduce small additional errors. The trade-off for performing the pressure step last
in scheme I is that there would be small errors in enforcing the no-slip boundary
conditions. Results which clearly indicated the positive influence of the high-order
boundary condition of scheme IT were already presented in the previous section. The
purpose of Fig. 3.2 is to give an indication of the actual divergence errors present
in the large-eddy simulations for which results will be shown below. The divergence

errors in Fig. 3.2 are small enough in the channel interior so that no negative influ-
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ence on the model performance is to be expected. The larger values very close to the
boundary seem to be unavoidable with splitting methods. Since the model contri-
bution goes to zero as the boundary is approached (see Sec. 4.2.6), these boundary

errors are not expected to have a significant influence on the LES.
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Figure 3.2: Normalized divergence error (instantaneous, plane-averaged) of channel flow

LES, - - -: Re; = 1017, no de-aliasing, scheme I; — : Re, = 1017, with de-aliasing,
scheme I; - - -: Re; = 180, with de-aliasing, scheme I; ---: Re; = 180, with de-aliasing,
scheme II.

3.3.7 Simulations with constant mean pressure gradient

The external forcing necessary to drive the channel flow can be realized as a constant
mean pressure gradient. To determine the value of the mean pressure gradient needed
to drive the flow, we employ the Reynolds-averaged momentum equations. Since all
derivatives of mean quantities in the spanwise and streamwise directions (except for
the mean pressure gradient) are assumed to be zero, the non-dimensional momentum

equations in steady channel flow for the streamwise and wall-normal direction reduce
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to:
0P d=—= 1 d®U
0P d=;
= -5 —~u? (3.61)

The coordinate system we use for the channel flow is defined as follows: the streamwise
direction is the z-direction, spanwise is y, and wall-normal is z. Periodic boundary
conditions are used in the streamwise and spanwise directions (see Sec. 3.3). The
governing equations for the channel flow simulation are non-dimensionalized based
on the wall-shear velocity u, = (7w/p)"/? and the channel halfwidth h. Here, 7y is
the shear stress at the wall, p is the density, and v is the kinematic viscosity. The
Reynolds number is then defined as Re, = u.h/v.

The wall-normal momentum equation (3.61) can be integrated with respect to z
to yield: P + ﬁ = ?0, where ?0 does not depend on z. Since ﬁ is independent
of x, this equation implies that 8?/ Oz is equal to d?o /dx. Substituting this in the
streamwise momentum equation, it can be integrated with z = —1 (lower wall) as
lower limit of integration:

1 dU 1 dU

d_ﬁo =
= —(z+ )= W & R dr|_ “
0 (2 + )dx uw+ReT dz  Re;dz|,__, -

From the definition of u,, we have (after non-dimensionalization): dﬁ/dzlz:_l =

Re,. Furthermore, at the channel center (z=0), the total shear stress (—uw'w’ +
(1/ ReT)d:—U—/dz) must be zero for reasons of symmetry. Evaluating (3.62) at z = 0,
yields the mean pressure gradient required to drive the flow:

7

= —1. .
- (3.63)



o4

3.3.8 Simulations with constant flowrate

Instead of imposing a constant mean pressure gradient, the channel flow can also be
driven by imposing a pressure gradient which is constant in space throughout the
domain but varies with time such that the (volume) flowrate through the channel
remains constant in time. To describe this method in some more detail, we define the

bulk mean velocity:

- % /_ 11 U] dz, (3.64)

where again all quantities are to be understood as non-dimensionalized using u, as
velocity scale and the channel halfwidth A as length scale. With |U| we denote
the instantaneous, plane-averaged velocity |U| = 1/(L,L,) [, OLy Udxdy. U, is
directly proportional to the flowrate.

We now use the streamwise momentum equation and perform spatial averaging

in all three directions in order to obtain an equation for U,,:
dU, 11 1 Ly 6U2 oUvV)  oUW)
- dx dyd
@t 2L/m//:-1< 8y+az>”2
1 1
= —/ / / < > dzdydz (3.65)
2L, L, S
111 Ly UV PW
*reaL g o o | (5 e ) e

This equation can be simplified by carrying out the integration and making use of

the boundary conditions for the channel flow. This yields:

%_lii/// __P dedyds+ —— (129 _|oU
dt - 2Lx Ly =0 —_1 Z' voz 2R€T az z=1 az z=—1 7

(3.66)

where the square half-brackets again denote plane averaging. This equation can be
further simplified by decomposing the pressure in a plane-averaged component, the

forcing term, and a fluctuating component such that OP/dz = —f,(t) + dp'/Ox.
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The fluctuating component and its derivative will be periodic in streamwise and
spanwise direction like the velocity field, and therefore this contribution will vanish

after averaging. We therefore obtain the result:

AU, 1 oU oU
T (5L 15 307

From this, it is clear that a constant flowrate (dU,,/dt = 0) can be achieved by

adjusting the (time-dependent) forcing function f, such that at each instant of time

it balances the instantaneous, space-averaged shear stresses at the walls.
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Chapter 4 Large-eddy simulations with

the stretched-vortex model

4.1 Decaying isotropic turbulence

Isotropic turbulence has long been a topic of great interest to theoretical turbulence
research (see, e.g., Batchelor®). This is mainly due to the great simplifications which
result from the constraints imposed by the condition of isotropy in the statistical
description of turbulence. Isotropic turbulence can also be simulated very efficiently
by numerical methods (cf. Sec. 3.1). The first attempt of direct numerical simulation
of three-dimensional turbulence was a simulation of decaying isotropic turbulence,

° Even though computers are now much

which was simulated in a periodic box.°
more powerful, the DNS of isotropic turbulence has still been of interest in more
recent years because in such DNS higher Reynolds numbers can be reached than in
simulations of other, more-complicated fows.

The concept of decaying isotropic turbulence, i.e., an infinite space of turbulent
motion, decaying in time in the absence of production of turbulence kinetic energy,
and its computational approximation by a periodic box containing the turbulence,
are, of course, very idealized. But the streamwise evolution of temporally stationary
turbulence, generated, for example, by the flow through a grid in a duct, has been
found to resemble the time evolution of ideal, isotropic turbulence. Comparison of
measurements of stationary grid turbulence, which is inhomogeneous in streamwise
direction, with the non-stationary, homogeneous box turbulence is performed by iden-
tifying the spatial inhomogeneity of statistical properties (such as kinetic energy) in
the experiment with the temporal decay of the same quantity in the box turbulence.!?

The time ¢ in the simulation is then related to the downstream distance from the grid
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in the experiment through the Taylor approximation:
X d /
t~ / - (4.1)
o U(z')

where ﬁ(:r) is the mean velocity in the experiment. This approximation is applicable

as long as the fluctuating component of the velocity is small compared to the mean
flow: ] /ﬁ < L

The availability of well-documented experimental'? and DNS! data, together with
the theoretical interest in this case, has made decaying isotropic turbulence an im-
portant testcase for subgrid-stress models in large-eddy simulations. The LES of
decaying isotropic turbulence has to reproduce the decay of the turbulence kinetic
energy correctly, and energy spectra can be compared to the spectra which Comte-
Bellot and Corrsin'? obtained from their measurements. Since LES for this case can
be performed without large computational effort, it is a useful first test for new mod-
els. It certainly must be complemented by other tests of shear flows with turbulence
energy production, but unlike standard testcases for shear flows, like channel flow,
decaying isotropic turbulence is non-stationary.

The numerical methods used for the present simulations have been reviewed in
Secs. 3.1 and 3.2. The results of the simulation are compared to the experimental data
of Ref. 12. For the computations, a cubic box with sidelength L = 11M, was used,
where M, = 5.08 m is the mesh width used in the experiment. They were performed
with non-dimensional variables, using the velocity scale U = 4/ 3u62 /2 based on
the streamwise rms velocity of the experiment \/u—g = 0.222m/s, the length scale
Lyes = L/(27), and the corresponding time scale trop = Lyer/Urer- The experimental
results are given using the non-dimensional time Ust/M,, where Uy, = 10m/s was
the freestream air speed in the wind tunnel, and the simulation results have been
converted to this time scale, too.

The initial conditions of the simulation are generated by creating a divergence-free
velocity field such that the spectrum of this initial field matches the spectrum of the

experiment at Uxt/M, = 42 for wavenumbers k < k. (k. is the cutoff wavenumber).
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Matching the spectra does not determine the phases of the Fourier coefficients, which
are therefore initially set to be randomly distributed in the interval [0, 27]. This leads
to some initial transients in the simulation until the flowfield has developed a more
realistic structure. These transients may be responsible for the larger discrepancies
visible at early times in some of the results shown below.

The tests for decaying isotropic turbulence were not only used as a first indication
of whether the SGS model is able to perform successfully in actual LES, but also to
investigate the influence of different choices for the alignment of the model subgrid-

vortex structures and for the cutoff in the subgrid energy spectrum (see Sec. 2.3.4).

4.1.1 Results obtained with the pseudospectral Fourier code

All simulations with this code (see Sec. 3.1) were performed using a resolution of
323 Fourier modes. The decay of the kinetic energy (per unit mass) is shown in
Fig. 4.1. The resolved-scale contribution of the energy is computed directly from the
resolved-scale velocity field and is shown in Fig. 4.1a. For comparison, the energy
spectra given in Ref. 12 are truncated to the resolution of the simulation, so that the
experimental data can be decomposed in resolved-scale and subgrid-scale energy. The
filtered experimental data for the resolved scales are shown as symbols in Fig. 4.1a.
From the SGS model, we also obtain an estimate for the kinetic energy contained in
the subgrid scales. This is added to the resolved-scale energy to obtain an estimate for
the total kinetic energy, which can be compared directly to the unfiltered experimental
data, see Fig. 4.1b.

The comparison of the energy decay shows that the €; + €3 model is slightly less
dissipative than the €3 model, which can be explained by the fact that the eigenvector
e;3 corresponds to the direction of maximum stretch. It can also be seen that the
J = 1 version is less dissipative than the J — oo version. The results for the
decay of the total energy are somewhat too low, especially at the early stages of the
simulation (possibly due to the initial conditions used, see above). But these results

include a model estimate for the subgrid kinetic energy and therefore somewhat larger
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(a) time (b) time

Figure 4.1: Decay of (a) resolved-scale and (b) total kinetic energy, Fourier-Galerkin code,
---1€+e3model with J=1; — : €3 with J =1; - - -: & + &3 with J — oo; -- --: €3 with
J — o0; symbols: data of Comte-Bellot and Corrsin,!? filtered for (a).

differences with the experimental results may be expected. It should also be noted
that SGS models which only generate the trace-free part of the SGS tensor are not
able to estimate the total energy without additional modeling for the subgrid kinetic
energy.

The shell-summed, three-dimensional energy spectra, including the modeled sub-
grid spectra, are shown in Fig. 4.2. The model estimate of the factor Kye2/® determines
the vertical offset in the subgrid spectrum. The estimate approximately satisfies the
requirement that the spectrum be continuous across the cutoff, even though this
condition is not enforced explicitly in the physical-space version of the model.

The results for the resolved-scale spectrum show some differences depending on the
choice of J. The results for the €; + €3 model with J = 1 show quite good agreement
with the experimental data, while the spectra for the J — oo version exhibit a larger
energy removal from modes at the highest resolved wavenumbers. This is consistent
with the model derivation since the J — oo version places slightly more kinetic
energy in the subgrid fluctuations because of the £~%/3 tail which extends to infinity.
This leads to larger subgrid Reynolds stresses which in turn result in larger energy
removal from the resolved scales. This difference between the J — oo version and

the J = 1 version is also distinguishable in the decay of the kinetic energy, Fig. 4.1,



60

107 T
|- IJ'E \
o.” E]_\
g ™
/A p. A \.
15 \ L
/g/QQe Y \I:|
a2 /7/,/{;3 o e \Dn
i /4 LRGN . .
://O . \ A AN =] ] ]
\\O N N
\ \ A Y
N \ N
NONM A N O
A O\'\\ ‘\\
h PN
N \ !
AN 6-\\ X
1073 Y| \‘\\,'\\.u.u 102 R | AN V.
10° 1lc()‘ 10° 10° 1|(()‘ 10°
(@) (b)

Figure 4.2: Energy spectra for initial and two subsequent times (including the modeled
subgrid spectra), (a) €2 + €3 model, - - - J =1;- -1 .J — o0; (b) €3 model, — : J = 1;
-+ J — o0; symbols: data from Ref. 12.

but there it has a much smaller influence since it only affects the highest resolved
wavenumbers. The results also show that the model is only weakly dependent on the

choice of alignment for the subgrid-vortex structure (€, + €3 model versus €3 model).

4.1.2 Results obtained with the compact finite-difference code

The resolution for the simulations with this code (see Sec. 3.2) was 323 gridpoints.
The results for the decay of the kinetic energy, Fig. 4.3, show that the model also
performs well within a pure physical-space numerical method. The results for the
decay of the resolved-scale energy are of comparable quality as those obtained with
the spectral method. The total kinetic energy also shows similar trends: The model
estimate for the subgrid kinetic energy is somewhat too low, especially for early times.
But this simulation was also able to give a satisfactory estimate for the decay of the
total kinetic energy. Energy spectra (Fig. 4.4) are of satisfactory quality, too, taking
into account that compact finite-difference methods inevitably have inferior resolution
characteristics compared to a Fourier method. Moreover, for the compact finite-
difference method, the spectra have to be computed by an additional postprocessing

step.
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4.2 Channel flow

Wall-bounded shear flows have been the subject of many theoretical, experimental
and computational studies, and even the simplest cases of such flows, i.e., boundary
layers, channel flows and pipe flows are still a topic of current research. Channel flow
in particular has become a preferred testcase for large-eddy simulation because this
case can be more easily simulated with highly-accurate numerical methods and the
use of periodic boundary conditions. Boundary layers, for example, are more difficult
to compute because of their spatial development (which is sometimes represented as
a temporal development in numerical simulations, see review in Ref. 60). Pipe flow,
on the other hand, has the disadvantage of the presence of a coordinate singularity,
and possibly requires very long streamwise domains because the typical length of flow
structures seems to be larger in pipe flow than in channel flow. For these reasons,
and to allow a comparison with the performance of other SGS models, we will also
use channel flow as a testcase, and will not discuss the other cases in the following.
A classical theory for turbulent channel How is the logarithmic “law of the wall.”
It is derived (see, e.g., Ref. 82) by performing an asymptotic matching between the
scaling which governs the flow near the center (with the channel halfwidth as length
scale) and the scaling in the viscous sublayer close to the wall (where a length scale
based on viscosity is relevant). This matching can be performed if one assumes that
there exists an inertial sublayer, where the viscous length scale is too small to govern
the dynamics of the flow, and the channel halfwidth is too large to be of relevance
either. In the absence of an external length scale, the distance from the wall itself is
then the only length scale in the inertial sublayer. The result of this matching is that

the velocity profile in the inertial sublayer must have the form:

1
U = —Inz+ const. (4.2)
K

where k, the so-called “von Karman constant,” is accepted as a universal constant

(this non-dimensional equation holds regardless whether viscous scaling or outer scal-
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ing is used). The existence of a logarithmic region is thus a direct consequence of
the assumption that there is an overlap region of simultaneous validity of the viscous
scaling and the scaling of the core region.”® The description of the mean velocity
profile in turbulent boundary layers has been completed by Coles,'® who summarized
the developments on the law of the wall and extended it by the “law of the wake,”
which describes the difference between the actual velocity profile in the core region
and the logarithmic law.

Even though the assumption of an inertial sublayer with a logarithmic mean profile
is widely used, it is not universally accepted. For example, Barenblatt and Chorin®
arrive at a power-law profile by arguing that a dependence on the viscosity v must be
retained in the overlap region. The presence of a logarithmic inertial sublayer is dif-
ficult to verify (or exclude) with certainty. Logarithmic or power-law dependence are
hard to distinguish in plots of experimentally or numerically obtained profiles. More-
over a logarithmic inertial sublayer can only be expected to be present at sufficiently
high Reynolds numbers.

Some of the experimental studies of turbulent channel flow are reviewed in Ref. 1.
Representative for the many studies which relied on hot-wire and/or hot-film probes
to study the channel flow, we mention only the study by Comte-Bellot, who obtained
measurements in channel flow in the Reynolds number range of 57000 to 230 000 (the
Reynolds number is based on bulk velocity and channel halfwidth). But at such high
Reynolds numbers, the finite length of the probe can become large compared to the
length scales of the flow (Wei and Willmarth® estimate that Comte-Bellot’s probe
length was as large as 36 viscous lengths for the highest Reynolds number case). This
will cause measurement results to underestimate the magnitude of the turbulence fluc-
tuations. More recently, advancements in measurement technology, which were not
available to those earlier investigations, have allowed progress towards more accurate
measurements of channel-flow statistics. Wei and Willmarth® used a high-resolution,
two-component laser-Doppler anemometer to obtain simultaneous measurements of
the streamwise and wall-normal turbulent velocity components for bulk Reynolds

numbers in the range of 13000 to 35000. But even they found in the analysis of their
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data indications that the resolution very close to the wall was not completely adequate
for their highest Reynolds number cases. For example, they computed the Reynolds
shear stress by two different methods, first directly from the velocity traces, and
secondly from the momentum balance (using their measured values for the pressure
gradient) and found that the results obtained with the two methods were significantly
different close to the wall for their highest Reynolds number cases. We will only use
the results for their second-highest Reynolds number for comparison with our LES,
which is the best available data for moderately high Reynolds numbers. In the results
for the root-mean-square velocity fluctuations and other statistics, they found a clear
Reynolds number dependence, i.e., the rms velocities at different Reynolds numbers
plotted using the viscous scales u, and v/u, did not collapse even close to the wall.

Providing accurate data at high Reynolds numbers is even more difficult in nu-
merical simulations. Some of the earliest numerical simulations of turbulence were
performed for channel flow (by Deardorfl and by Schumann, see the review by Ro-
gallo and Moin™ for details), but these simulations did not attempt to resolve the
near-wall turbulence. Rather, they used artificial boundary conditions in the inertial
sublayer, thereby avoiding explicit calculation of the wall region. A first large-eddy
simulation of turbulent channel flow (including the wall region) was performed by
Moin and Kim®® for a Reynolds number of 13 800, based on centerline velocity and
channel halfwidth. (Unfortunately, computational and experimental studies have dif-
ferent preferences for the definition of the Reynolds number, but the Reynolds number
based on centerline velocity and that based on bulk velocity are comparable in mag-
nitude for turbulent channel flow.) The LES of Moin and Kim used a subgrid-stress
model based on the eddy-viscosity assumption with a fixed model constant. This
required the use of an exponential damping function (Van Driest® function) near
the wall. The first direct numerical simulation of turbulent channel flow was per-
formed by Kim, Moin, and Moser,** for a centerline Reynolds number of 3300. Their
code uses a spectral Fourier expansion in the homogeneous directions and Cheby-
chev polynomials in the wall-normal direction. The governing equations are recast

in a velocity-vorticity formulation which eliminates the pressure. The resolution for
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this DNS was 192 x 160 x 129 gridpoints in streamwise, spanwise and wall-normal
direction, respectively. A variant of their code was used recently by Moser et al.%!
to perform DNS of turbulent channel flow up to a centerline Reynolds number of
about 12500 (Re, = 590). With present-day computers, they were able to perform
this case using a resolution of 384 x 384 x 257 gridpoints. Moser et al. also examined
the question of the logarithmic versus power-law velocity profiles in the inertial sub-
layer. Despite careful tests, the result was inconclusive (which may be attributable to
the relatively low Reynolds numbers of this DNS study). They also collected statistics
of the detailed balance for the turbulence kinetic energy. This balance can provide
some insight in the mechanisms of the turbulence in wall-bounded shear flow (see
Sec. 4.2.7). Here we mention only that another expected property of an inertial sub-
layer is that production and dissipation of turbulence kinetic energy are in balance.
Moser et al. also investigated this property by plotting the ratio of production to
dissipation. There were signs that with increasing Reynolds number a plateau at a
ratio of unity was beginning to form, but again the evidence was not conclusive. Nev-
ertheless, these simulations demonstrate that DNS can be a very useful complement
to experiments in the study of turbulence because DNS can provide very extensive
statistics of the flow, although only at relatively low Reynolds numbers. Moreover,
such DNS datasets provide invaluable reference data for the testing of subgrid-stress
models.

Finally, it must be mentioned that even though the theory of the logarithmic veloc-
ity profile for the inertial sublayer has been discussed extensively, it does not address
at all the question of the detailed physical mechanisms which generate and support
turbulence in wall-bounded shear flows. The structure of the near-wall turbulence
seems to be composed of elongated “streaks” of high-speed and low-speed streamwise
velocity. These streaks are surrounded by streamwise vortices, which were assumed
to be equally elongated and to be occurring in counter-rotating pairs.>?> According
to DNS results, however, (see review of Moin and Mahesh®) these streamwise vor-
tices are of shorter extent than the velocity streaks and do not necessarily occur in

pairs. Another question is the structure of the turbulence outside of the near-wall
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region. Hairpin-like vortex structures with a preferred inclination of about 45° to the
wall have been identified in this region. But these hairpin vortices have also been
observed in homogeneous shear flow simulations, and may not be a special feature of
wall-bounded turbulence.®®

It is unclear whether LES can provide answers to questions about the detailed
structure of wall-bounded turbulence. If LES velocity fields are used for this purpose
(for example, through visualizations of velocity or vorticity fields), it must be kept in
mind that these fields represent only the resolved-scale contributions. Therefore, LES
will necessarily have difficulties to correctly reproduce structures which can have very
small length scales near the wall. For example, the velocity streaks mentioned above
have a mean spacing (in spanwise direction) of about Az" = 100 (see the compilation
of data in Ref. 32), i.e., one streak is about 50 viscous length scales wide. This is
to be compared to the spanwise grid spacing for typical LES (see below, Table 4.1),
which is about of the same size.

In the present work, which focuses on validating the new version of the stretched-
vortex subgrid-stress model, we will limit ourselves mostly to the comparison of sta-
tistical quantities, which LES seems to be able to reproduce quite successfully, partly
because the modeled SGS tensor can be used to estimate some of the contributions
of unresolved subgrid-scale velocities to the turbulence statistics. Results like the
turbulence-kinetic-energy budgets may also be useful in shedding light on the physi-

cal mechanisms of turbulence in wall-bounded shear flows.

4.2.1 Simulation geometry and parameters

The numerical method used for the simulations reported here was reviewed in Sec. 3.3.
The simulations of the channel flow without rotation relied on the time-discretization
scheme I (Sec. 3.3.3).

The non-dimensionalization for the channel flow simulations was described in
Sec. 3.3.7; it is based on wall-shear velocity, u,, and channel halfwidth, h. For the

presentation of the results, the wall-normal coordinate is also given in wall units:
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2t = zu, /.

The simulations were run until a statistically steady state was reached, as verified
by symmetry in the obtained mean and rms velocity profiles, and by the time evolution
of the wall shear stress. The simulations were then run further to collect statistics
computed using plane- and time-averaging. For the Re, = 590 simulation (Re. &~
12500), traces of the shear stresses dﬁ/ dz at the walls, normalized by their average

value (Re; actual = 584, see below), are shown in Fig. 4.5, for the time period during

which statistics were collected.

1.100

j—y
o
~
3]

1.050F
1.025 1Y
1.000F

0.975F

T

0.950

normalized wall shear-stress

0.925

jf [ IR [N TR SRR TR SR [N TN NS NN NN NN TN SO S N NN T SR AN) 3
0.900 616 618 620 622 624
t

Figure 4.5: Normalized wall shear stresses for Re, = 590 (case 9), — : bottom wall,
- - -: top wall.

Parameters for the different simulations are shown in Table 4.1. Simulations
were performed for three different Reynolds numbers: Re, = 180, Re, = 590, and
Re, = 1017. If the Reynolds number is defined using the centerline velocity instead
of the wall-shear velocity (Re,), these values correspond to Re,. =~ 3300, Re. ~ 12 500,
and Re, ~ 22800. The column “LES” indicates whether the model has been turned
on (Y) or off (N) in each case. (Runs without model, i.e., underresolved simulations,
have been performed for comparison.) We also compare cases with and without the
de-aliasing described in Sec. 3.3.1. The resolution is given in a way that accounts

for de-aliasing. We call this the “effective” resolution. If no de-aliasing is used, the
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numbers given in the table are simply the number of modes used in the simulation.
When de-aliasing (using the “2/3”-method) is turned on, however, the number of
modes used in the simulation is 50% higher than the numbers given here, with the
upper 1/3 of the modes in the Fourier and polynomial spectra set to zero for de-
aliasing. The number of modes retained after de-aliasing is given in the table as
“effective” resolution.

The Re, = 180 and Re, = 1017 cases were performed using a constant mean
pressure gradient to drive the flow. In this case, the (mean) shear stress at the wall
will always go to the nominal value determined by Re, when the flow reaches steady
state. For the present simulations (cases 1 to 8), the mean value was within one to
two percent of the nominal value, with fluctuations typically less than ten percent of
the mean. The negative influence of underresolution and the positive influence of the
LES model can clearly be assessed in terms of the deviation of the centerline velocity
from the correct value. For the Re, = 590 case, the constant flowrate version of the
code was used. (The flowrate was set to the value computed from the mean velocity
profile of the DNS.%) This method of driving the flow is known to significantly reduce
the time required to reach a steady state. With constant flowrate, the influence of the
model is less pronounced in the mean profile (though still clearly visible) since the
control simulation without SGS model (case 10) was forced to have the same flowrate
as the LES (case 9). A good indication of the quality of the results in this case is the
actual Re, as determined by the wall shear stress measured in the simulation results.
The error in the wall shear stress for the LES (case 9) was only one percent, but
without the model it was about seven percent.

Most of the channel flow simulations were performed with the €3 model version,
except where otherwise noted in Table 4.1. For the Re, = 1017 case, results for
both the €3 and the €, + €3 version (case 8) were available. It was found that the
results of case 8 for the mean and rms quantities (not shown) are very close to the
results obtained for alignment with €3 only. Case 8 was used to collect additional
statistics for the turbulence-energy balances, which will be shown here. All channel

flow large-eddy simulations presented here used the J — oo version of the model,
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which is less complicated and computationally less expensive than a version with
finite J. The results of the decaying isotropic turbulence test indicate that the sim-
pler J — oo version performs sufficiently well for this application. This may not

be true for all cases, especially when Reynolds-number effects become significant.

Table 4.1: Important parameters for the channel flow simulations.

Case Re; Domain LES De- Effective Res. Grid spacing
Lo % alias Ny x Ny x N, Azt Ayt Azf Azf,,

1 180 4m 2 Y Y 32 x 32 x43 71 35 0.73 13.3
2 180 47 27 Y N 32 x 32 x65 71 35 0.32 8.76
3 180 47 2x N Y 32 x 32 x 43 71 35 0.73 13.3
4 1017 3¢ 7w Y Y 48 x 64 x 65 166 50 1.79 49.5
5 1017 27 9w Y N 48 x 64 x 65 166 50 1.79 49.5
6 1017 27 « N N 48 x 64 x 65 166 50 1.79 49.5
7™ 180 47 27 Y Y 32 x 32 x 43 71 35 0.73 13.3
8° 1017 2x w Y N 48x64x65 166 50 1.79 495
9bc 590 2r 9w Y N 64 x 64 x 97 58 29 0.46 19.2

10%¢ 590 2r =« N N 64 x 64 x 97 58 29 0.46 19.2

8 (Case 7 is a realization of the same flow as case 1 at a different time.
b Uses the &9 + &3 model version

¢ Run with constant flowrate

4.2.2 Reynolds averaging and LES

When computing the rms velocity fluctuations, it is necessary to distinguish between
two different decompositions which are used in this context: On one hand, a flow
quantity U can be subjected to the LES decomposition in resolved-scale contribu-
tion U and subgrid-scale component u. On the other hand, Reynolds averaging can
be performed to decompose U in a mean quantity U and the fluctuating component
U'. The double overbar denotes an ensemble average (which will in practice be com-

puted using spatial and temporal averages). Combining these two decompositions,
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we can write,
U=0U+0 +u, (4.3)

and we assume U = U and v = u.

Now consider the correlation tensor of the turbulent velocity fluctuations U;U; =

U;U; — U;U;. Using (4.3), we obtain

UlU! = ULU; + Uty + Ul + ufud. (4.4)

The first term is known, but the cross terms (correlation of resolved-scale, fluctuating
velocities and subgrid-scale fluctuations) and the subgrid-scale correlation term are
unknown in the context of LES. Only the last term is modeled. The best estimate for

the rms quantities, which can be obtained from large-eddy simulations, is therefore,

U, ~ U0, + 7. (4.5)

We use this LES estimate for the rms velocity fluctuations (which requires knowledge
of the full 7;;, not only the trace-free component of the tensor) and compare it with
the (unfiltered) results from DNS and experiment. Thereby we avoid applying a
filter defined only in the context of large-eddy simulations to DNS and experimental
results. For experimental data, it may often not be possible at all to compute filtered
rms velocities because the data necessary to perform the filtering operation may not

be available.

4.2.3 Mean and rms velocities for Re, = 180

Results for the Re, = 180 flow are shown in Fig. 4.6. Time averaging for these
results was performed over a simulation time of (fenq — tstart)ur/h = 30. The mean
velocity (Fig. 4.6a) of the de-aliased LES (case 1) shows good agreement with the

DNS data by Kim, Moin, and Moser.>* Comparison with case 3 (no model), shows
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the significant contribution of the LES model. The results from the LES without
de-aliasing (case 2) are little different from those with de-aliasing, although there is
some improvement noticeable in the buffer region and near the center of the channel.
The differences between case 1 (with de-aliasing) and case 2 (without de-aliasing)
are slightly larger in the root-mean-square velocity fluctuations (Fig. 4.6b, shown for
the near-wall region). In particular, streamwise fluctuations show some improvement
when the de-aliasing is used. But both LES estimates, with and without de-aliasing,
are somewhat too high for the spanwise fluctuations v,ys. As described in Sec. 4.2.2,
these are LES estimates for the total velocity fluctuations, which are compared to the

unfiltered results of DNS in Fig. 4.6b.
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Figure 4.6: Channel flow at Re,; = 180, (a) Mean velocity and (b) root-mean-square
velocity fluctuations (resolved plus subgrid). —— : LES, with de-aliasing (case 1); - - -: LES,
no de-aliasing (case 2); - - -: no model, with de-aliasing (case 3); symbols: data (unfiltered)
from DNS by Kim, Moin and Moser,34 o U; O : Upms; € 2 Vims: & 1 Wims.

4.2.4 Mean and rms velocities for Re, = 590

The mean and rms velocity profiles of the LES at Re, = 590 (case 9) show simi-
larly good agreement with the corresponding DNS results®® as in the lower Reynolds
number case. Comparison with case 10 (no model, same resolution) again shows the

influence of the model. We note that for this Reynolds number, the flow was driven
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using a constant flowrate, and for both cases 9 and 10, the same flowrate was pre-
scribed. Therefore, the influence of the model on the mean profile is less pronounced,
but still clear. The success of the model for this case can also be judged by looking
at Re, achieved in the simulation: In the LES, it was Re; actua = 584, while without
the model it was Re;actual =~ 633. Time averaging for case 9 was performed over
(tend — tstart)Ur/h = 9.75, and for case 10 over (fenq — tstart)us/h = 8. For Re, = 590,

no de-aliased runs were performed.
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Figure 4.7: Channel flow at Re; = 590, simulation with constant massflow, (a) Mean
velocity and (b) root-mean-square velocity fluctuations (resolved plus subgrid). - - -: LES,
no de-aliasing (case 9); - - -: no model, no de-aliasing (case 10); symbols: data (unfiltered)
from DNS by Moser, Kim and Mansour,%! o : U (only every second point, near centerline
every fourth point shown); O : Upms; O @ Vims; & ¢ Wems.

4.2.5 Mean and rms velocities for Re, = 1017

The mean and rms velocity profiles for Re, = 1017 are shown in Fig. 4.8. The time
averaging for these results was performed over (fepq — tstars)ur/h = 10. No DNS
has been performed for a channel flow with comparably high Reynolds number. We
compare our results with the experimental data by Wei and Willmarth.»% Again
the mean velocity profiles (Fig. 4.8a), both with and without de-aliasing, show good
agreement with the reference data. The comparison with case 6 (no model, same

grid resolution) shows the large influence of the model at this Reynolds number. The
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agreement of the LES estimates for the total rms velocities with the experimental
data is not as good as for the mean velocities. In particular, the de-aliased result
for the streamwise fluctuations overestimates the peak value and the error is larger
than for the case without de-aliasing. The de-aliased result seems to show some
improvement in predicting the wall-normal coordinate of the peak. Note that there

is no experimental data for the spanwise fluctuations in this case.
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Figure 4.8: Channel flow at Re, = 1017, (a) Mean velocity and (b) root-mean-square
velocity fluctuations (resolved plus subgrid). — : LES, with de-aliasing (case 4); - - -: LES,
no de-aliasing (case 5); - - -: no model, no de-aliasing (case 6); symbols: data (unfiltered)

from experiments by Wei and Willmarth,?6 o : U; O : Upns; & ¢ Wins.

4.2.6 Model “dissipation”

The behavior of the model, in particular in the region very near to the walls, and its
influence on the resolved scales can be illustrated by plotting the ratio €sgs/ (€sgs +Evisc)
as a function of the wall-normal coordinate (Fig. 4.9). ey, was defined in (2.26), it has
the effect of a model “dissipation” on the resolved scales. The resolved-scale viscous
dissipation is denoted by €yisc = 2V§i]~ ,SN’” For the highest Reynolds number, the model
contribution to the correct energy removal from the resolved scales is very significant,
except for the region very close to the wall. For 2t — 0, i.e., when approaching the

wall, the model contribution rapidly decays to zero, due to the dynamic estimate of the
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factor Koe?/® using local circular-averaged structure functions. This vanishing model
influence in the region very near to the wall, in connection with a reduced grid-spacing
at least in the wall-normal direction, is typically required for large-eddy simulations
of wall-bounded shear flows. This is probably one of the main limiting factors for
large-eddy simulations of wall-bounded shear flows: The SGS models available today
will not function correctly in the near-wall region, where shear stresses become very
high, and length scales become very small, if the resolution is not increased near the
wall so that the model contributes less and less to the dynamics of the flow as the
wall is approached. But such high resolution requirements near the wall make LES
of wall-bounded flows at very high Reynolds numbers prohibitively expensive. One
possible solution could be the development of specialized models which are able to

represent the physical mechanisms of the near-wall region.
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Figure 4.9: Model “dissipation” ratio esgs/(€visc +€sgs), — : Rer = 1017; - - -1 Re; = 590,
- --: Re, = 180.

4.2.7 Turbulence-energy balance

The investigation of the turbulence kinetic energy balance, i.e., of the contributions

of the individual terms in the evolution equation for the turbulence kinetic energy,
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can provide information on questions like where turbulence energy is created and
where it is dissipated, and how it is transported between regions. These questions
are all relevant if one wants to understand the general mechanisms how, for wall-
bounded shear flows in the present case, turbulence is generated and sustained, i.e.,
how energy input in the flow from external forcing (pressure gradient), which occurs at
large scales, is converted to turbulence energy, i.e., energy contained in the fluctuating
velocities at small scales, where energy is ultimately dissipated. In the present work,
we will mainly investigate how well LES with the stretched-vortex model is able to
estimate the contributions to the turbulence-energy balance by comparing LES results
to DNS results.%! Examples of the kind of information which can be obtained from
such results will be discussed below.

In LES simulations, only the balance of the resolved-scale turbulence energy can
be determined completely from the resolved quantities. For the channel flow, the
following resolved-scale turbulence-energy equation is obtained, after averaging over

homogeneous directions and time averaging:

d (1~ - O |-, (P 1.
2 (07%) = |5 (5 +20)

_,_ﬁ + ZV% (1’ Nz{S) - % (ﬁi[Ti?’)'

—— 1] —
- U{Ug(?TU; — w85 (4.6)

7~

For steady state, the left-hand side vanishes — note that d/dt denotes the material
derivative, but the convective terms vanish for a steady channe! low — and the terms
on the right-hand side must be in balance. The first term on the right-hand side is
the convective diffusion of the total turbulence energy, which consists of the internal
energy (pressure term) and the kinetic energy, the second is the production term, the

3

third is viscous dissipation, the fourth term is subgrid “dissipation,” i.e., the energy
transfer rate from resolved scales to the subgrid scales, the fifth term is the surface
work done by the viscous shear stresses of the turbulent motions, and the last term is
the surface work done by the subgrid stresses. Those terms are shown for Re, = 180

(case 7) in Fig. 4.10a (the two dissipation terms are lumped together, as are the two
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surface work terms). In Fig. 4.10b, the ratio of the production term to the dissipation
term (absolute values) is plotted. Unfiltered results from the DNS by Moser, Kim,
and Mansour®® are also shown in the figures. This allows the identification of those
terms in the resolved-scale energy balance where significant contributions are missing
compared to the energy balance for the full flowfield. Particularly large differences

are visible in the production term and the convective-diffusion term of the kinetic

energy.
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Figure 4.10: Turbulence-energy equation, (a) Terms of resolved-scale balance (see text)
for Re; = 180: - - -: production; - - -: dissipation; — : surface work; - - - -: convective
diffusion of turbulence kinetic energy; — —: convective diffusion of the internal energy

(pressure term), +: sum of all terms. Also shown: DNS results (unfiltered) by Moser, Kim
and Mansour,%! 7 : production; > : dissipation; O : work of the tractions; o : diffusion
of turbulence kinetic energy; < : diffusion of internal energy. (b) Ratio of production to
dissipation (absolute value), — : Re, = 1017; - - -: Re, = 590, - - -: Re,; = 180, symbols:
DNS,% O : Re,; = 180; > : Re, = 395; < : Re, = 590.
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For those two terms, additional contributions from interactions with the subgrid

scales can be estimated using the modeled SGS tensor:

=oU, - oU,
— Ti13—— and

Production ~ -U} v 5
L3 T3

Convective diffusion of kinetic energy = _31353 {Ug <%U]’ (73’ + %Tkk>] .
These are not exact expressions for the full production and kinetic-energy diffusion
terms because their decomposition in resolved and subgrid component has additional
contributions, but those cannot be estimated with a model for the SGS tensor. Includ-
ing the known additional contributions, the terms of the turbulence-energy balance
are plotted again in Fig. 4.11 for all three Reynolds numbers investigated here. The
production term with the subgrid contribution in the Re, = 180 case now matches
the DNS result better. The significant disagreement remains, however, for the dif-
fusion of turbulence kinetic energy. The LES estimate, even though it includes a
subgrid contribution (the convective diffusion of the subgrid kinetic energy by the
resolved-scale velocity), looks qualitatively similar to the result for the resolved scales
only, which was obtained by Moin and Kim."

To assess the quality of the numerical results, the sum of the terms which appear
in the right-hand side of (4.6) was computed (i.e., without the additional subgrid
contributions which are included in the Fig. 4.11). The value of the sum, which
should go to zero for a sufficiently large number of statistical samples, is plotted
with “+” symbols. In the low and medium Reynolds number cases, this condition is
satisfied to acceptable accuracy, but in the high Reynolds number case (Fig. 4.11b),
errors are visible very close to the wall. These errors have to be attributed to the
relatively poor near-wall resolution at Re, = 1017.

Some general observations for turbulence in wall-bounded shear flows can be made
from these balances: The production and dissipation terms are clearly the dominant
ones. But very close to the wall, the production becomes small because the increasing

influence of viscosity dampens the turbulent fluctuations. To balance the viscous dis-
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Figure 4.11: Turbulence-energy balance including known additional subgrid terms (see
text), (a) Re; = 180 (case 7), (b) Re, = 590 (case 9), (¢) Re, = 1017 (case 8). - - -: pro-
duction with subgrid contribution; - - -: dissipation; — : surface work; - - - -: convective
diffusion of turbulence kinetic energy with subgrid contribution; — —: convective diffusion
of the internal energy (pressure term), +: sum of the resolved-scale terms, i.e., right-hand
side of (4.6). Symbols (DNS) as in Fig. 4.10a: (a) Re, = 180, (b) Re, = 590.



79
sipation, energy must be carried towards the wall by the work of viscous shear stresses.
The peak of the turbulent production occurs in the buffer layer,3? which is the region
between the viscous sublayer and the inertial sublayer (if it exists). In the region,
where an inertial sublayer would be expected, all the other contributions become very
small, and production and dissipation should be (approximately) balanced.

In Fig. 4.12, the ratio of production, including the subgrid contribution, to the
absolute value of dissipation is shown. The LES estimate for Re, = 180 (Re. =~ 3300)
and Re, = 1017 (Re, ~ 22800) is too high in the near-wall region compared to the
DNS data. For the Re, = 590 case (Re, =~ 12500), this overestimate near the wall
is reduced significantly. A somewhat finer grid (see the grid spacing in wall units
in Table 4.1) was chosen for this Reynolds number. Improvements in these higher-
order statistics can likely be attributed to this higher resolution. For the two higher
Reynolds number cases, it is interesting to note that in the region where an inertial
sublayer may be expected the ratio of production to dissipation is approximately
unity, although the curve does not have an exactly horizontal plateau, and values
are slightly above unity. The DNS data for intermediate Reynolds numbers seems to
approach approximately the same value, however. But given the expected inaccuracies
in this high Reynolds number LES, it cannot be conclusively determined if there is a

region in turbulent channel flow where production and dissipation are balanced.

4.3 Rotating channel flow

The occurrence of rotating flows in engineering applications (e.g., turbomachinery)
has motivated many studies of simplified flow configurations under rotation. One such
configuration is the channel flow under spanwise rotation. Qualitative and quanti-
tative results for this flow were obtained by Johnston et al.?” for bulk Reynolds
numbers of 5500 and 17 500 and moderate rotation rates. A more recent experimen-
tal investigation®® was performed for low Reynolds numbers and very low rotation
rates. Experimental investigations of rotating flow are not easy to perform because

typically the whole channel assembly with instrumentation must be mounted on a
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Figure 4.12: Ratio of production (including known additional subgrid contribution) to
dissipation (absolute value), — : Re; = 1017 (case 8); - - -: Re; = 590 (case 9), - - -: Re; =
180 (case 7), symbols: DNS by Moser, Kim and Mansour,%! O : Re, = 180; > : Re, = 395;
& Rer = 590.

rotating table.

In computational studies of flows under rotation, the flow is simulated in a refer-
ence frame rotating with the channel. A direct numerical simulation was carried out
by Kristoffersen and Andersson®*! for a bulk Reynolds number of about 2900 (i.e.,
about the same as the non-rotating channel low DNS by Kim et al.??) and low to mod-
erate rotation rates, using a second-order finite-difference code with 128 x 128 x 128
gridpoints. Their comparison of results for the non-rotating channel with the results
of Kim et al. indicates that this resolution was sufficient, although the rms velocity
fluctuations exhibited some small differences. Direct and large-eddy simulation (us-
ing a version of the dynamic eddy-viscosity model) of rotating channel flow was also
carried out by Piomelly and Liu.%®® The interesting physical effects of rotation on the
flow make it a useful testcase for large-eddy simulations. As will be discussed below,
the effect of rotation is a suppression of the turbulent fluctuations on one side of the
channel and an enhancement on the other. The SGS model has to react to both of

these effects correctly for the simulation to produce good results.
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4.3.1 Flow configuration and governing equations

The turbulent flow in an open channel under spanwise rotation is simulated in the
reference frame of the channel, i.e., the coordinate system rotates with a constant
angular velocity £ = (0,€,0)T about the spanwise or y-axis. The configuration is

illustrated in Fig. 4.13. The Navier-Stokes equations (for incompressible flow) in a

Pressure side

Suction side

Figure 4.13: Channel flow under spanwise rotation: geometry and coordinate system.

reference frame rotating with constant angular velocity can be written in the non-

dimensional form:

oU;
—0 :
3, (4.7)
ou, o oP* 1 8 Q,
o T 8_;1:j(Uin) T Oz + Re, 9z,;0; ROTEU}{ﬁUk' (48)

The alternating matrix €;;;, is used to represent the cross product in the Coriolis-force
term. The Reynolds number is defined as Re, = u.h/v, where h is again the channel
halfwidth. Since the flow is not symmetric anymore for the rotating case, the defi-
nition of the velocity scale u, has to be generalized. We introduce local wall-shear

2

velocities u2, = (Tw

:=-1)/p at the lower wall and u?, = —(rw|.—1)/p at the upper
wall. (These definitions are in terms of dimensional quantities.) Returning to the inte-
grated, Reynolds-averaged momentum equation in streamwise direction (3.62), we can

rewrite the boundary term using the definition of u,s. After non-dimensionalization
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(by formally introducing a velocity scale u, ), we obtain:

Py =— 1 dU 2,
O-—-—(z—i—l)d—xo—u’w’—l—Re -~ 5 (4.9)

At the upper wall, z = 1, this reduces to:

u72's + u72'p _ _2d$O

— 1
u2 dz’ (410)

where we have used the definition of u.,. This equation indicates that, for consistency

with the non-rotating case, the generalized definition of the velocity scale, u,, must

be:

u? = (U, +uly). (4.11)

RO | —

In particular, for the case of a constant pressure gradient, this reduces (4.10) to
dPy/dz = —1.

The other non-dimensional number which characterizes this problem is the ro-
tation number Ro, = 20Qh/u,, where Q@ = |Q|. (The rotation number, which is

41,48,69 is the inverse of the

commonly used in the literature on rotating channel flow,
Rossby number.) The centrifugal force term —€ x (€2 x &) has a potential, and can

be absorbed in the pressure term by defining P* = P — 1 RoZr? (with r? = 2% + 2%).

4.3.2 Effects of spanwise rotation on turbulent shear flows

The effects of spanwise rotation on (approximately unidirectional) turbulent shear
flows have been investigated extensively, see, e.g., Refs. 6,27,41. Johnston et al.?’
analyzed the influence of rotation with the help of the transport equation for the
turbulence velocity correlation tensor (Reynolds stress tensor). According to this

analysis, the non-dimensional parameter

Ro,

S ==,
(dUl/dﬂf;g)

(4.12)
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which is related to the gradient Richardson number Ri = QQ(dﬁl Jdxs—28)/ (dﬁl /dz3)?
by Ri = S(S+1), determines the effect of rotation. The turbulence intensity may be
expected to be reduced for Ri > 0, and increased for Ri < 0. A negative Richardson
number corresponds to —1 < .S < 0, but close to the wall in a shear flow, the gradient
(dﬁl /dx3) is very large, and therefore Ri ~ S. For the channel flow configuration
investigated here, we have S > 0 at the lower wall (we will call this the suction side),
and S < 0 at the upper wall (pressure side).

This approach using the turbulence-kinetic-energy budget based on Reynolds-
averaging does not distinguish between velocity fluctuations caused by actual small-
scale turbulence and those caused by large-scale secondary flow structures, which have
been observed both in experiments*® and computation.#! Nevertheless the analysis
based on the Richardson number describes the basic tendency towards stabilization or
destabilization in accordance with observations. But as will be seen in the discussion
of the observed values for the turbulence kinetic energy (see below), additional effects
must be taken into account.

The presence of system rotation will also affect the turbulent energy cascade. The
existence of an inertial subrange with a k53 energy spectrum presupposes that no
external length scale or time scale influences the dynamics of the turbulence in this
range. But clearly system rotation with a constant angular velocity 2 imposes a
time scale 1/Q. Therefore, the mechanism of energy transfer from large scales to

small scales can be expected to change, which will also affect the form of the energy

spectrum.

4.3.3 LES of rotating channel flow

In the computations reported here, we have used the stretched-vortex model as de-
scribed in Table 2.1 to perform LES of (4.7) and (4.8). (The resolved-scale equations
for this non-inertial frame correspond to (1.2) and (1.3), except that they include the
Coriolis term for the resolved-scale velocity field.) Future research may lead to im-

proved models for the vortex alignment or the functional form of the energy spectrum
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in turbulence subject to rotating, but this is beyond the scope of the present work.
We note, however, that the use of a k=%-spectrum as given by (2.25) in the integrals
for the subgrid kinetic energy and the structure-function relation may not be a very
good model for turbulence subject to rotation, as discussed in the previous section. It
has been suggested that dimensional analysis leads to a k~2-spectrum for turbulence
subject to strong rotation.®” We have performed tests for the rotating channel using
the stretched-vortex model with the energy spectrum of Ref. 87, but the results (not
shown) obtained with the new spectrum were of poorer quality than those obtained
with the £~%/3 spectrum. Therefore, all the results presented here were computed
using the model of Table 2.1 without any changes.

The parameters for the present LES were chosen to reproduce the DNS results of
Kristoffersen and Andersson,!*?%" who simulated rotating channel flow at Re, = 194
for several different rotation numbers. We performed LES for three of those cases:
Ro; = 1.56, Ro, = 3.046 and Ro, = 7.625. All cases were run using de-aliasing
and with an effective resolution of 48 X 64 x 43 in a domain of size L, X L, X L, =
4dmh x 2rh x 2h. Constant flowrate was enforced (matching the flowrate of the DNS
in each case) to drive the flow. The mean velocity profiles are compared to the DNS
results in Fig. 4.14. The agreement is quite good for all three cases, but seems to
become better with increasing rotation number. At the lowest Ro,, the LES shows
some difficulties matching the slope of the profile in the middle of the channel. For
Ro, = 3.046, a simulation at the same resolution, but without SGS model, has
been performed. As described before, the differences in the mean profiles are not
very pronounced in this case because the flowrate was forced to be the same in all
cases, but the contribution of the model can still be distinguished. For constant
flowrate simulations, it is important to compare the wall shear stress, which is a
result of the simulations, to the values of the reference data (see Fig. 4.15). Here, it
is visible, too, that the SGS model improves the results compared to the case with no
model. The differences are not big, however, probably because at this relatively low
Reynolds number the simulation without model is still marginally well resolved. The

turbulence kinetic energy (TKE) (%U]’-U ]’), i.e., the kinetic energy of the fluctuating
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Figure 4.14: Channel flow under spanwise rotation for different rotation numbers, mean
velocity profiles, — : LES; - - -: no model (only for Ro, = 3.046); symbols: data from DNS
by Kristoffersen and Andersson.*!
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velocity field (possibly including secondary flows caused by roll cells), for the three
rotation numbers has been estimated using (4.5), and compared to DNS results in
Fig. 4.16. (The datafiles' available to us from the DNS of the rotating channel do
not include rms values for the individual velocity components, which we had available

for the non-rotating case.) Kristoffersen and Andersson observed that, as expected,
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Figure 4.16: Turbulence kinetic energy (TKE) of channel flow under spanwise rotation,
(a) Ror = 1.56, (b) Ro, = 3.046, (¢) Ror = 7.625. — : LES, - - -: no model (only for

Ro, = 3.046); symbols: DNS.*

the turbulence intensity on the suction side is increasingly suppressed with increasing
rotation number. In particular, one can see that for the highest rotation number
investigated, the maximum of turbulence kinetic energy in the buffer layer has almost

completely disappeared on the suction side. On the pressure side, an increase in the
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peak of turbulence energy for increasing rotation number can be observed, but only
in the regime of weak rotation. For higher rotation numbers, this trend levels off,
and for the highest rotation number, Ro, = 7.625, the turbulence kinetic energy on
the pressure side falls below the values for intermediate rotation numbers. A possible
explanation may be that the significant increase in the kinetic energy of the fluctuating
field observed at lower rotation numbers on the pressure side is caused by the onset of
roll-cell instability.® These roll-cell instabilities seem to be less pronounced at higher
rotation numbers.

The LES results for the turbulence kinetic energy reproduce the basic trends
observed in the DNS. Some larger discrepancies occur, however, on the suction side
for the lowest rotation number. For the intermediate rotation number (Fig. 4.16b),
the result without SGS model at the same resolution is also shown. In comparison
with that, the LES result with the SGS model is significantly closer to the DNS result,
especially at the suction side, although it still deviates somewhat from the correct
result closer to the pressure side. But the positive influence of the model is more
clearly visible in the turbulence energy than in the mean profile.

For the present work, we did not try to identify the possible presence of roll cells.
Since we used the data of Kristoffersen and Andersson-? for comparison, we collected
the statistical data presented above in the same way as was done in this reference, by
averaging over planes parallel to the wall and over time. This means that the velocity
fluctuations may include contributions from the large roll cells as well as from the
turbulence fluctuations.

It should be noted that, as a consequence of the development of longitudinal roll
cells in rotating channel flow, the periodic boundary conditions used in DNS and LES
of this flow may not be a good model anymore of laboratory flows with uniform inflow
conditions.*! It might be interesting for future work to investigate the presence of
roll cells by trying to extract their patterns from the flowfield and separate out their
influence in the statistics.

The influence of the SGS model would most likely be more pronounced at higher

Reynolds numbers. But to our knowledge there is currently no reliable data (ex-
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perimental or computational) available for rotating channel flow at higher Reynolds

numbers and moderate rotation numbers, to which LES results could be compared.

4.3.4 Flow visualizations

The effects of rotation can also be illustrated by comparing flow visualizations of
rotating and non-rotating channel flow. Isosurfaces of constant vorticity magni-
tude |w| = 4bu,/h for channel flow with and without rotation at approximately
the same Reynolds number are shown in Fig. 4.17. (The value of the vorticity mag-
nitude was chosen solely by visual criteria.) We note again that these visualizations
only show the resolved-scale field, but they can nevertheless give a good qualitative
impression of the effects of rotation on the channel flow. For the case with rotation
(Ro, = 7.625), the increased turbulence intensity at the pressure side (top wall) com-
pared to the non-rotating case manifests itself clearly in the figure. The vorticity
structures extend from the top wall far into the center region of the channel. The
suppression of turbulence on the lower wall in the rotating case is also visible: The
vorticity isosurface is much smoother than in the non-rotating case, which indicates
the tendency to re-laminarization on the suction side.

As was mentioned above, a characteristic feature of near-wall turbulence is the
presence of alternating streaks (i.e. thin, elongated structures) of high- and low-speed
fluid in connection with elongated, streamwise vortices.3? In Fig. 4.18, we have plotted
contours of streamwise vorticity, again for cases without rotation (top), and with
rotation (bottom). In the non-rotating case, the elongated, streaky structures appear
to be visible at the chosen contour level in several spots interspersed between areas
with no activity or less-organized vorticity patches with smaller length scales. In the
rotating case, the entire top wall (pressure side) appears to be covered with streak-like
structures, which also extend far into the interior of the channel. The bottom wall
(suction side) shows almost no activity in the streamwise vorticity. The disappearance
of the characteristic structures of a turbulent wall layer is consistent with the expected

suppression of the turbulence on this side.
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The strong spanwise variations in streamwise velocity caused by the streaks should
also be observable in the wall-normal component, w,, of the vorticity vector. Isosur-
faces of positive and negative w, are shown in Fig. 4.19. The streak structure is
clearly visible at both walls in the non-rotating case. With rotation, the streaks are
also present at the pressure side, but are again completely absent at the bottom wall
(suction side). In Fig. 4.19, it can also be observed that the streak structures on the
pressure side of the rotating channel have a smaller spanwise length scale than in
the non-rotating case. It must be noted that the spanwise resolution in the rotating
case was significantly higher than in the non-rotating case (64 versus 32 modes). It
can therefore not be excluded with certainty that such finer structures would also
be visible in the non-rotating case, if the resolution of the resolved field was high
enough to capture them. But nevertheless the smaller streak spacing in the rotating
channel is consistent with the expectation that the turbulence intensity is increased
on the pressure side, and may explain why a higher spanwise resolution was required

to obtain good results for the LES of the rotating case.
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Figure 4.17: Isosurfaces of vorticity magnitude |w| = 45u,/h, top: Re, = 180, Ro, = 0
(case 1, see Table 4.1); bottom: Re, = 194, Ro, = 7.625. (Note that aspect ratio of channel
has been modified for visualization purposes.)



92

Figure 4.18: Isosurfaces of streamwise vorticity w, = 25u,/h (green) and w, = —25u./h
(red), top: Re; = 180, Ro, = 0; bottom: Re, = 194, Ro, = 7.625.
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Figure 4.19: Isosurfaces of wall-normal vorticity w, = 15u,/h (purple) and w, = —15u,/h
(yellow), top: Re, = 180, Ro, = 0; bottom: Re, = 194, Ro, = 7.625.
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Chapter 5 Discussion

5.1 Numerical requirements for large-eddy simu-

lations

In agreement with the conclusions of Kravchenko and Moin,*® it has been found in
the course of the present work that large-eddy simulation requires highly-accurate
numerical methods. This is particularly true for the stretched-vortex model which
relies on information from the resolved scales to estimate parameters for its model of
the fine-scale turbulence. Large numerical errors in the resolved scales can therefore
lead to unphysical model estimates, as can be seen from the influence of divergence
errors, which has been discussed in Sec. 3.3.6. But as Kravchenko and Moin showed,
LES with low-order numerical methods will always be problematic, independent of
the choice of SGS model, because in that case the discretization errors of the nu-
merical methods may be of the same order of magnitude as the subgrid term in the
resolved-scale Navier-Stokes equations. Good candidates of highly-accurate numeri-
cal methods, which can also be applied to more complicated domains, appear to be
the B-spline-based zonal-embedded-grid method by Kravchenko et al.,* or the spec-
tral element method, see, e.g., Refs. 30 and 25. Currently, the use of these methods
for LES in more complicated geometries appears to be inhibited by the large compu-
tational cost in the case of the B-spline method, and by the large divergence errors at
domain boundaries in the interior of the domain for present implementations of the
spectral element method.

An impression of the capabilities of the stretched-vortex model in combination
with the numerical methods used for the present work can be gained by the following
estimate: If one were to undertake a LES of channel flow using the same number of

gridpoints (384 x 384 x 257) as Moser et al.®® used for their DNS of channel flow at
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Re. = 590 (Re, ~ 12500), a Reynolds number of Re, ~ 4000 (Re, ~ 100 000) could
be achieved in the LES. This estimate was based on the assumption that the size of
the near-wall structures, which have to be resolved by the numerical method, scales
with the wall variables. The grid spacings in wall units, which have been found to
be adequate for successful LES in the present work, see table 4.1, can then be used
to obtain the above estimate for the Reynolds number in wall units. In this case, we
required the grid spacing in streamwise direction to be Az™ = 100 and in spanwise
direction Ayt = 30. In wallnormal direction, we required that the first point away
from the wall is located at Az™ = 0.5. This leads to the estimate of Re, = 4000.
The centerline Reynolds number is then obtained based on the logarithmic law of the
wall using well-documented values for the constants.??

This example illustrates the main limiting factor for LES of wall-bounded flows:
The structures very close to the wall, which have very small length scales, have to be
adequately resolved by the numerical method since standard SGS models by design
cannot correctly represent the region very close to the wall. Therefore, the grid
spacing close to the wall has to be small enough to capture the important structures
in this region, while the model contribution to the energy removal from the resolved
scales goes to zero as the wall is approached. Simulations of wall-bounded turbulence
at very high Reynolds numbers will require the development of special models for the

wall layer.

5.2 Some properties of the fundamental equations
of the stretched-vortex model in comparison

with other SGS models

The model equation (2.24) for the SGS tensor, 7;; = K(d;; — e¥e?), is the centerpiece
of the stretched-vortex model, see Sec. 2.2. The tensor term (d;; — efe}) is related to
the orientation of the anisotropic vortex structure which is used to model the subgrid

turbulence. The orientation of these structures in turn is coupled to the resolved-



96

scale flowfield. Furthermore, the SGS tensor is a function of the kinetic energy K
contained in the subgrid-scales, which is modeled using the physical-space method
described in Sec. 2.3. Clearly, the expression for 7;; and its derivation is substantially
different from the widely used eddy-viscosity ansatz for the SGS tensor, which is of
the form: 735 — d;375, = —2v,S;;. This can already be seen by an examination of
the simplest possible version of the stretched-vortex model using alignment only with
the eigenvector €; corresponding to the largest extensional eigenvalue of S’w For
reasons of simplicity, this brief discussion will therefore be limited to the €5 version.
One can see that, in this case, the SGS tensor obtained from the stretched-vortex
model and the one obtained from an eddy-viscosity ansatz have one eigenvector in
common because in the eddy viscosity ansatz, 5’2-]- and the SGS tensor have the same
eigenvectors, and e3 is also an eigenvector for 7;; in this version of the stretched-vortex
model, as can easily be verified. But the corresponding eigenvalue is different for the
two models, and in general the other two eigenvectors are also different.

The proportionality factor multiplying the tensor term in eddy-viscosity mod-
els is most frequently taken to be of the form proposed by Smagorinsky:™ 1, =
(Csl)?(2515)" /2, where C; is a model parameter and [ is the characteristic length
scale of the grid. In the stretched-vortex model on the other hand, the subgrid kinetic
energy multiplies a tensor term, which can be interpreted physically as describing the
partitioning of the subgrid kinetic energy between the components of the subgrid
Reynolds stresses.

Moreover, the estimate for the subgrid kinetic energy, which is part of the stretched-
vortex model, allows to compute the complete SGS tensor 7;;, while the eddy-viscosity
ansatz can only provide the trace-free component of the SGS tensor. This limits the
ability of eddy-viscosity-based models to provide estimates for statistical quantities of
the full turbulent flowfield, like root-mean-square velocities or the turbulence kinetic
energy. But obtaining such estimates should be the goal for large-eddy simulations,
in particular, if it is desired that LES results can be compared to laboratory measure-
ments, which in general cannot be subjected to a filtering operation defined only in

the context of a numerical procedure. Obtaining, for example, filtered rms velocities



97
from an experiment would require knowledge of the two-point velocity-correlation
functions for separation lengths in the range of zero to two times the halfwidth of
the filter.! Such a large dataset is typically not available from experiments like the
channel flow measurements by Wei and Wilmarth.®6 We also note that, e.g., for the
LES of decaying isotropic turbulence performed in the present work at a resolution of
323 modes, the subgrid scales still account for 20 to 30 percent of the total turbulence
kinetic energy at an intermediate time (Uyt/M, = 98) of the run, cf. Fig. 4.1. Thus
a significant part of the full flowfield may be missing in large-eddy simulations which
provide only results for the resolved scales.

The Smagorinsky model has more recently been combined with a method to dy-
namically estimate the model parameter Cs with information from the resolved scales.
This dynamic procedure, which was proposed by Germano,!® is based on properties
of filtering. Using a testfilter with a filterwidth larger than the smallest resolved
scales, it provides a formal mechanism for computing a parameter in a subgrid model.
The physical-space version of the stretched-vortex model also estimates an important
model quantity dynamically, in this case the factor ye?/3. But this method is based
on a structure-function relation which is obtained as a kinematic result within the
framework of the stretched-vortex model. Another difficulty with the testfiltering
procedure is that the identity relating subgrid stresses and stresses at the testfilter
level leads to an overdetermined system of five independent integral equations for
the one unknown, the Smagorinsky factor Cs;. While the problem can be solved in
a mathematically consistent way by casting it into a variational formulation,?® the
computational complexity of the resulting dynamic localization models has in praxis
led to the development of a variety of approximate solution methods, frequently in-
volving the strong assumption that C; as obtained from the dynamic procedure is
constant in space.?’ Numerical instabilities arising from persistent negative values of
Cs in actual LES have been addressed by ad hoc procedures like averaging in homo-
geneous directions,' or clipping.®® Improved approximations have been proposed to
address these shortcomings, for example a localization procedure®® based on extrapo-

lation in time (e.g., using an explicit Euler method), which, however, raises questions
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about stability properties, if this version is to be applied to non-stationary flows like
decaying isotropic turbulence. Another alternative uses averaging over flow pathlines
by backwards time integration, resulting in the Lagrangian dynamic model,>® which,
however, requires the introduction of several additional model assumptions: An ex-
ponential weighting function is used in order to control the relative importance of
events near the current simulation time to those at earlier times. Then a choice for
the time scale in this weighting function has to be made. This introduces a new model
parameter so that, despite the dynamic procedure, this version is not parameter-free.
(Meneveau et al.®® note, however, that they did not have to adjust their value for
this parameter in the different testcases they performed.)

The eddy-viscosity ansatz is also used in the spectral eddy-viscosity model. A
spectral expression® for v, can be obtained by using the Eddy-Damped Quasi-Normal
Markovian (EDQNM) approximation (see Ref. 63 for a review of some of the devel-
opments). Large-eddy simulations based on this spectral eddy-viscosity model and
variations thereof have been carried out, among others, by Lesieur and co-workers
(for example, Refs. 43, 47, and 54). The basic form of the model equation for the
subgrid-stress tensor in these models is the same as in other eddy-viscosity models.
This is also true for the physical-space version® of the eddy-viscosity model, which is
therefore very different from the present model, even though both use structure func-
tions. Moreover, the physical-space version of the spectral eddy-viscosity model uses
the structure-function relation for isotropic turbulence. As mentioned in Sec. 2.2.2,
the assumption of isotropy is questionable in the context of LES, since it would imply
vanishing Reynolds shear stresses and vanishing subgrid dissipation —-Tijgij. Fur-
thermore, the expression for the spectral viscosity contains the Kolmogorov factor
as parameter (not in the combination Koe?/® which appears in a Kolmogorov-type
energy spectrum), and the fixed value for this parameter has to be specified as an
input to the model, even in the structure-function version.

Other models which have been mentioned in the introduction are not discussed

in this section since their approaches are clearly different from the stretched-vortex

model.
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5.3 On the comparison of model performance in

actual LES

Evaluation of the merits of a particular modeling approach in comparison with other
models would optimally consist in directly comparing the quality of the results of
large-eddy simulations performed with the various models for the SGS tensor.

So-called a prior: testing, i.e., the comparison of exact subgrid stresses obtained
by filtering DNS data with the model predictions, which are computed using the
filtered DNS velocity field as model input, has been found to give poor predictions
of the success or failure of SGS models in actual LES. This, at least, is the case
for traditional a priori testing methods, which try to compare model prediction and
DNS data point-by-point. Newer approaches to a priori testing, which, for example,
try to compare probability density functions of certain flow quantities, may be more
promising. One fundamental problem remains, however, namely that a filtered DNS
field is not the same as the resolved-scale field in actual LES, even at the same
(filtered) resolution, because of the influence of the subgrid scales, which are not
known exactly in actual LES.

The more desirable comparisons of results from actual large-eddy simulations
would be very difficult to carry out, however, because ideally it would require perform-
ing simulations with different models for the same testcases with the same numerical
method in order to exclude influences unrelated to the model performance, like the
influence of different discretization methods or different grid resolutions. Such a com-
parison, however, would require a very large computational effort. Therefore, we will
limit ourselves to some qualitative comparisons based on the information available in
the literature.

Dynamic eddy-viscosity models have been applied in various large-eddy simula-
tions. The large number of different model versions, however, makes a comparison
difficult, since rarely one and the same model version has been applied to several
different testcases. The first versions of the dynamic eddy-viscosity model using av-

eraging in homogeneous directions have been applied to various LES of channel flow:
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The results are typically in fair agreement with DNS and experiment, but both Ger-
mano et al.!® and Meneveau et al.>® show overpredictions of the centerline velocity.
Piomelli®” reports good agreement with reference data for his channel-flow LES us-
ing a plane-averaged dynamic eddy-viscosity, although it is difficult to verify in the
published figures. We are not aware of decaying isotropic turbulence simulations per-
formed with these simplest versions of the dynamic eddy-viscosity model. Piomelli
and Liu® later proposed an improved dynamic eddy-viscosity model using an ap-
proximate localization as outlined in the previous section. They now chose rotating
channel flow as testcase, for which they seem to achieve good agreement with DNS
although again it is hard to verify in the published figures. Meneveau et al.®® tested
their proposal for an improved dynamic eddy-viscosity model, the Lagrangian dy-
namic model, both for decaying isotropic turbulence and channel flow. (In addition
to the fully-developed channel flow, they also performed simulations for a transi-
tional channel flow.) Their decaying-isotropic-turbulence simulation, following the
Comte-Bellot and Corrsin experiment, gives quite good agreement for resolved-scale
kinetic energy and energy spectra. Their simulation of fully-developed channel flow
at a nominal Reynolds number of Re, = 650 with the Lagrangian dynamic model
shows improvements over simulations they performed with the plane-averaged dy-
namic model for the same case. But the mean profile is now somewhat too low in
the buffer layer, and their is still an overprediction in the peak of the streamwise
rms velocity. Overall, the Lagrangian dynamic model has been tested for different
flows with good results, but the disadvantage remains that a weighting function has
to be chosen, and a new model parameter is introduced, as described briefly in the
previous section. Ghosal et al.?® tested their dynamic localization models (DLM) for
decaying isotropic turbulence with good results. One version of the dynamic localiza-
tion model also includes an estimate for the subgrid kinetic energy, which is in good
agreement with the reference data for the decaying-isotropic-turbulence test. But
this model version has to solve an additional transport equation for the turbulence
kinetic energy. No tests of the DLM for channel flow seem to have been performed,

but Ghosal et al. performed an LES of backward-facing step flow, which is a very
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challenging test. In this case, however, they used a simpler DLM version without an
additional transport equation for the turbulence energy. This version of the DLM
imposes the somewhat arbitrary constraint that the Smagorinsky constant does not
depend on the coordinate in the homogeneous spanwise direction, which is similar to
the averaging performed in earlier versions of dynamic eddy-viscosity models, except
that the variational formulation of the DLM provides a more rigorous mathematical
framework. Their comparison of the results for the LES of the backward-facing step
flow with experimental data shows good agreement for the mean velocity. Turbulence
velocity fluctuations are also shown in Ref. 20, but a comparison is difficult since their
LES inevitably provides results only for the resolvable component of the fluctuations,
while the experiment, of course, measured the fluctuations of the full flowfield.

Different versions of the spectral eddy-viscosity model have been applied in various
LES (see Ref. 47 for a review). Few results, however, are available for quantitative
comparisons in standard testcases. The structure-function version of the spectral
eddy-viscosity model has been applied to forced isotropic turbulence,? but we are not
aware of tests in decaying isotropic turbulence. Lesieur and Métais*” report difficulties
in the application of one version of the structure-function eddy-viscosity model to
channel flow. Lamballais et al.** propose a new dynamic version of the spectral eddy-
viscosity model, which operates in Fourier space. Using two-dimensional spectra of
the resolved-scales, they obtain a dynamic estimate for the power-law exponent in
the model energy spectrum, which is used to compute the spectral eddy viscosity.
Their model, however, still contains the Kolmogorov factor as a parameter, and a
localized version, which could operate in physical space only, has not been presented,
yet. The spectral version of the model has only been tested for channel flow, with
and without rotation. Results for the non-rotating case at Re, =~ 180 and Re, ~ 395
show overestimates of the centerline velocity. Comparison of fluctuating velocities is
again made difficult because their LES only provide resolved-scale quantities, which
are plotted together with unfiltered DNS results.

Among other, more recent developments in SGS modeling, we mention here only

the subgrid-scale estimation model by Domaradzki and co-workers. Both the original
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formulation in spectral space!® and the physical-space version'® have been tested in
channel-flow LES at Re, = 180 and Re, = 1017. In particular, the physical-space
version gives good agreement with reference data for the mean profiles. Turbulence
velocities for the lower Reynolds-number case are compared with filtered DNS results.
For the higher Reynolds number, Domaradzki and Loh'® added the respective diago-
nal terms of the SGS tensor as computed by the estimation model to the resolved-scale
fluctuations, so that a comparison with the experimental reference data for the tur-
bulence fluctuations of the full flowfield is possible. These LES results are of similar
quality as those in Fig. 4.8b. The spanwise resolution in the LES with the estimation
model, however, effectively was twice as high as in the present work. The estimation
procedure creates a subgrid-scale velocity field for wavenumbers up to two times the
cutoff wavenumber. This range may be sufficient to represent the transport of energy
across the cutoff, but does not actually constitute a model for the complete subgrid
Reynolds stresses. Moreover, the estimation procedure requires a second, finer grid
with twice the number of gridpoints, which increases the computational cost of the
method. Forced isotropic turbulence calculation have been carried out with a differ-
ent version of the estimation model,'® but results for decaying isotropic turbulence
simulations with the estimation model do not seem to be available.

In summary, it can certainly be said that the results obtained with the physical-
space version of the stretched-vortex model are at least of equal, if not superior quality
to those obtained with other models for the cases where comparisons are possible.
Moreover, it appears that very few other SGS models have been successfully applied
to a number of different testcases in exactly the same version, as was successfully

done with the physical-space version of the stretched-vortex model.
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Chapter 6 Conclusions and future work

The stretched-vortex model offers a promising alternative to other current subgrid-
stress models for LES. It is distinguished from other models by its new approach,
based on the physics of fine-scale turbulence, to the subgrid-modeling problem itself,
even if the physical model necessarily is of extremely simple form. The information
about the subgrid scales provided by this approach allows to obtain estimates for
those statistical quantities of the full flowfield for which the second-order single-point
product averages of the subgrid velocity field, i.e., the components of the SGS tensor,
are the sole or dominant contributions from the fine-scale turbulence. An example
is the subgrid kinetic energy, which is obtained as the trace of the SGS tensor in
the stretched-vortex model, without solving an additional transport equation. Fur-
thermore, the SGS model can be derived within the framework of the kinematics of
the stretched-vortex structures without the need for ad hoc assumptions and without
invoking isotropy of the subgrid scales. The important model parameter Koe?/® for
the subgrid energy spectrum can be estimated with a dynamic procedure based on
the stretched-vortex kinematics. A suitable vector quantity of the resolved field has
to be chosen to determine the vortex alignment, and the form of the model energy
spectrum has to be specified. But the results of decaying-isotropic-turbulence sim-
ulations are only weakly dependent on different choices. It was shown that all the
testcases in the present work can be successfully simulated with the same version of
the stretched-vortex model. With the use of a k= 5/3-spectrum for the whole subgrid
range (extending to infinite wavenumbers) this version of the model does not contain
any free model paramters.

The contribution of the present work consists in the development and testing of a
physical-space version, which does not require global information of the resolved-scale
field. Instead, it uses a structure-function relation derived from the kinematics of the

stretched-vortex model. Estimating the resolved-scale structure functions in a circular
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average ensures that this localized model is also applicable to wall-bounded flows. It
has been tested for three different testcases, using both a Fourier spectral method
and a compact finite-difference method to simulate decaying isotropic turbulence,
and a hybrid polynomial/Fourier method to simulate channel flow with and without
spanwise rotation. The results in all cases show good agreement with reference data
from DNS and experiment, demonstrating that the model promises to perform well
with different numerical methods and for different turbulent flows. The comparisons
in the present tests were performed using the LES estimates for statistical quantities
of the full turbulent flowfield, e.g., rms velocities and the kinetic-energy balance for
the channel flow. To our knowledge, no other large-eddy simulation has attempted to
provide estimates for the kinetic energy balance of the full flowfield. Our model results
for these quantities were in good agreement with DNS data for most of the terms of
the balance. The only exception was the term representing the convective diffusion
of turbulence kinetic energy, which cannot be modeled using the SGS tensor because
it contains third-order product averages (triple correlations) of velocity components.

Additional tests with the stretched-vortex model will have to be carried out to
evaluate its performance for other important flow configurations, which could not be
investigated within the scope of the present work, for example, flows with separation.
Possible testcases are the backward-facing step, where the separation point is fixed, or
flow over a cylinder or a sphere, which are even more challenging because the location
of the separation point has to be predicted correctly by the simulation. The model
has not yet been tested in flows with transition either, for example, in a boundary
layer which undergoes transition from laminar to turbulent flow. The challenge for
the model in this case is not to damp out the developing large-scale instabilities,
which would therefore have to be sufficiently well resolved by the numerical method
alone.

But given the good results obtained so far, and presupposing that it will also be
applicable to other types of turbulent flows, the stretched-vortex model is expected
to provide a good framework for LES of scalar transport, compressible flows, and

ultimately flows with mixing and combustion, where information about the structure
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of the subgrid turbulence is particularly important because of the dominant influence

of the fine-scale motions on the molecular mixing process.
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Appendix A Structure-function relation

using a spherical average

We use the structure-function relation (2.38), but instead of averaging on a circle,
we take the average over all possible directions of the separation vector r with fixed
length r from a given location x. As before, the coordinate system is chosen such
that the three-axis is always aligned with r, i.e., it will rotate with r over all possible
directions as the average is taken. The angle 8 in (2.38) is the polar angle of the vector
e, describing the orientation of the vortex structure, cf.22.23). We note that (2.38)

does not depend on the azimuthal angle; therefore, the spherical average, denoted by

superscript *, reduces to
B T ke
Fx) = 2 / / B(k)[1 = Jo (rk sin 0)] sin 0 dk do. (A1)
6=0 J k=0

Here, the integral over § can be performed analytically, see, for example, Ref. 23, and

F(x) = Q/Okc E(k) [2 —7l_ <%f> I, (521)} dk.

Using the properties of Bessel functions,?® that J%(z) = +/2/(7z)sin z and J_%(z) =
\/2/(mz) cos z, this can be transformed into:

we obtain

T

Fy(x) = 4/Okc E(k) [1 - Shz kr} dk. (A.2)

As required for consistency, taking a spherical average over the structure-function
relation for the anisotropic stretched-vortex model recovers the functional form of the

structure-function relation for isotropic turbulence, cf. Batchelor.?
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Appendix B Analytical approximation

for the integral in the structure-function
equation

An analytical approximation for the integral in the denominator of (2.40) is derived so
that the evaluation of this equation for Kpe?/3 can be simplified in actual simulations.

The integral to be discussed is

Q(d, o) z/:; /8;5*5/3 [1 — Jo (sd\/m)] ds do, (B.1)

which is a function of d = r/A and o = sin®¢. We first consider d small. Then the
whole argument of the Bessel function is small, and we use the power series expansion
of Jy truncated to second order. Substituting this in the integral and performing the
integration we obtain for small o:

3n7/3
16

Qd,o) ~ (2 —o)d?, for d < 1. (B.2)

For large d, we substitute v = sd. Then we have for ():
27 wd
Q= d2/3/ / v [1 . (m/1 0 cos? ¢)] dv dé. (B.3)
¢=0 J v=0
But for large d we can, to a good approximation, set the upper limit of the v-

integration to infinity. Introducing the change of variable w = v\/1 — o cos? ¢ we

obtain

oo

27
Q ~ &2 / (1 — 0 cos? 6)2 dg / w551 = Jo (w)] duw. (B.4)
¢

=0 w=0
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The integration over w can now be carried out analytically to give

w31 = Jo (w)] dw =

Cl = /w:O m (B5)

The integrand in the ¢-integral can be expanded in a power series for ¢ around o = 0,

and then the integral can be performed to obtain:

27 9 1
G(o) = / (1 —ocos? @) /2 dg ~ 2m — go — %02 — 62—78ra3 — %04 + O(c®).

For large d we, therefore, have the approximation:
Q(d,0) = C1G(a)d*?®  for  d>1. (B.7)

For the implementation, we use a composite formula which blends the two asymp-
totic results for small and large d. This approximate expression for the integral (B.1)

in the structure-function relation is defined as follows:

322 — 0)C1 G (o) d?
Qapprox(d, 0) c Gl6 377/3 13"
1G(o) + (2 —o)dV

16

(B.8)

Il

This expression is asymptotic to (B.2) for d < 1, and to (B.7) for d > 1. Comparisons
of this approximate relation with results from the numerical integration of the exact
expression (B.1) are shown in Table B.1 and Table B.2. The error can become quite
large (up to 20%) for d — 1. But in the important near-wall region one typically has
d > 1 because of smaller grid spacing in the wall-normal direction in this region (i.e.,
A < r, cf. Sec. 2.3.4). If the use of more precise values of the integral was desired, a
two-dimensional table lookup of precomputed values from the numerical integration

of () could be used instead.
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Table B.1: Comparison of the approximate relation Qapprox, given by (B.8), with numerical
integration results Qrer for the integral in the structure-function relation, o = %

d CQref Qapprox IQref - Qapproxl/ lQrefI
1.0 3.37 2.71  0.196
2.0 8.62 7.19  0.165
5.0 1938 19.26 0.006
10.0  33.34 34.54 0.036
20.0 55.49 57.78 0.041
50.0 105.92 109.17 0.031

Table B.2: Comparison of the approximate relation Qapprox, given by (B.8), with numerical
integration results Qs for the integral in the structure-function relation, o = 1.

d Qref Qapprox ‘Qref N Qapproxl/|Qref‘
1.0 227 194  0.146
20 6.01 542  0.097
5.0 14.45 1546  0.071
10.0 25.45 2847  0.119
20.0 4293 4825 0.124
50.0 82.76 91.75  0.109
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Appendix C Approximate solution of the

local-balance equation for the dissipation

The balance equation (2.44) may be written in the form

X14/3

72/—3— =0, X < J, (Cl)

F(X)=1- (I, —3M0,)X* - 31,
where Il = II, II;. Here we briefly discuss the properties of (C.1) when the parame-
ters 1I; and Il are given. Note that II; > 0 but II4 can be of either sign. Solutions of
(C.1) are used only when X < J. Otherwise, the stress tensor is set to zero because
K = 0. When IlI; > 0, there is only one real positive solution for (C.1). This satisfies
X > J when II; < J % and X < J when II; > J~* When II, < 0, there are either
two real positive solutions for (C.1), which we denote by X4 and X respectively, or
no real solutions. The solution of physical interest, X 4, is that on the branch which
is a continuation of the solution X4 = Hfl/ 4 for II4, = 0. The second real solution Xp

is a bifurcation from infinity. There are no real solutions inside a region R defined by

7

6/7
(2 !]2/3)6/7'1_'[4’ / 3 H4 < 0. (CZ)

0 <TII; < =3|ILy] +
In IT; —I14 space the boundary of R passes through the origin and the point [IIy, I1;] =
[0, —(7/3)7/(2 J%%)%], and has a turning point at [II;,11,] = [J~% —2.J7%. When
[I1y, I14] falls inside R the stress tensor is set to zero (conditional clipping). For J =1
used presently for some decaying-turbulence runs, this requires II; < 1, and a range
of I satisfying (C.2). From (2.45) II; is the order of the square of a cell Reynolds
number. When II; < 1 the SGS stresses are dominated by the resolved viscous stresses
and clipping in a small fraction of cases has little effect on the overall calculation.
Extensive experience with application of the model for 322 box turbulence shows that

the incidence of clipping events maximizes at about 2% when Ry =& 27 (marginal
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resolution) and are O(107°) at Ry = O(100).

When J — oo with v finite — used for all present channel calculations — (C.1)
can be solved analytically. For II; — 3II; > 0, the first two terms of (C.1) are in
balance, giving X = (II; — 3I1;)~'/%. Then € and Ky can be calculated because KCoe?/3
is known. The subgrid kinetic energy K follows from (2.41) and does not require X.

When II; — 3I1; < 0, the second and third terms are in balance, giving, for large J,

M1 H1)3/2 (C.3)

X=~J
( 310,

When J — oo then X — oo and the local resolved dissipation and the backscatter

are in exact balance. A short calculation then shows that

(C.4)

Sij(8s; — eje})

and 7;; can be evaluated. The line II; — 3II4 = 0 is a discontinuity in X but it is
straightforward to show that 7;; remains continuous.

When J is finite, the above expressions for X can be used as the zeroth order basis
for either linear or quadratic expansions giving approximate analytical solutions to
(C.1). These can be used directly or as initial approximations for numerical solution
of (C.1) by Newton’s method.

For example, we develop an approximate solution of the form X = m( 1+
0X) with 6X <« 1 for IIy < 0. We set J = 1 and define the ¢}y = II; — 314 and
()» = —3I14. Then we can write the equation in the form: 1 — Q;X* + QX /3 = 0.

Expanding for small 6 X and retaining terms up to second order, we obtain:

16 14Q5 77Q
Q77" + ( - 4) 6X + ( - 6) (6X)2+0(6X)* =0 (C.5)
el 9Q;'°

Solving the quadratic equation for 6.X, we obtain the following approximate solution

for X (again, only one of the two possible solutions is of physical interest, namely the
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one which is a continuation of the solution for II; = 0, see above):

36Q7/° ~ 560 + 31/36Q7° - 30Q1°Q, — 283

approx — fOI'
- QY (54Q1° — 77Q,)
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