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Abstract

This thesis is divided into two self-contained chapters. The first chapter is a
study of Finite State Codes. We address the question of unique decodability (UD) of
the labelled state diagram which defines the finite state machine—part of the encoder
for these codes. Bounds on the number of labels and resolving length are given for
regular state diagrams. We show that minimal convolutional encoders can be used as
finite state machines to produce UD labellings which are often optimal with respect
to number of labels and resolving length. We finish with some constructions which
demonstrate how block and convolutional codes can be integrated to obtain finite

state codes of high rate and large free distance.

The second chapter introduces and analyzes a family of shift-register sequences
which generalize the well-known de Bruijn sequences. A (g,v) de Bruijn sequence
is a periodic sequence of letters from a g-ary alphabet such that any given v-tuple
appears exactly once as a ‘window’ in a period. We introduce Generalized de Bruijn
Sequences, which involve several sequences in parallel and an irregularly shaped
window, plus the requirement that every possible window content should appear n
times per period. The existence of such sequences is proved by construction, and a
formula for their number is derived. The classical de Bruijn sequences can then be

regarded as a special case of this new family.
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Chapter 1

Labelling 1.ae State Diagram of a Finite State Code

1.1. INTRODUCTION

The two main paradigms in the theory of error-correcting coding are block coding

and trellis coding.

In block coding, the encoder receives k input symbols at the time, and con-
verts them into n output symbols. The n-tuples which can be obtained at the
output of the encoder are called codewords, the set of all codewords constituting
the (block) code. The error-correcting capability is measured by the (Hamming)
minimal distance—minimal number of places where two codewords differ. The suc-
cesive k-blocks are encoded independently—the previous inputs do not affect the

encoding of the current input.

In trellis coding, the encoder similarly receives k input symbols, but the way in
which they are encoded into n output symbols depends on the history of previously
received input blocks. The significant history is usually constrained to some finite
number of previous blocks, and hence can be expressed via a finite number of states
of the encoder. Each state represents a history, and the input causes the encoder
to change the current state and output an n-tuple. The functioning of the encoder
can thus be conveniently represented by a state diagram or a trellis (hence the

name), labelled by inputs and outputs. The codewords are the semi-infinite output
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sequences obtained by reading the output labells off every semi-infinite path in the
trellis. The error-correcting capability is measured by minimal Hamming distance
between two (semi-infinite) codewords—usually referred to as the free distance of

the code.

The theory of block codes is well developed and rich in mathematical content.
Much less has been done with respect to trellis codes. In fact, while block codes
tend to have a lot of structure and are often constructed using complicated algebraic
and combinatorial machinery, most of the good trellis codes have been found by
computer searchf. However, a class of linear trellis codes known as convolutional
codes was found to perform suprisingly well in many applications, and a considerable

body of literature has grown which describes and analyses these codes.

Inspired by work of Ungerboeck ([Un]) on channel coding, Pollara, McElliece
and Abdel-Ghaffar have defined in [PMA] the finite state codes, which seek to
combine the block- and trellis-coding approach. One of the attractions of this idea
is that it promises new uses for the well-known, powerful block codes, so that it
builds on the existing knowledge, rather that starting from scratch. Some of the
codes constructed in [PMA] to illustrate the idea have been shown to have the free

distance as large as possible.

In this chapter we develop their work further. In Section 2, the finite state
codes are introduced and issues related to decoding and distance properties are
discussed. This leads to a graph labelling problem which is addressed in Section 3.
In Section 4, we discuss the use of convolutional codes in the context of finite state

codes. Finally, in Section 5 some code constructions are proposed and compared

T Recent applications of symbolic dynamic to coding provide a mathematical basis for analysis of
trellis codes. However, the codes which were produced using this method were as a rule source codes,

not. error-correcting codes.
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with respect to rate, free distance and complexity.

1.2. FINITE STATE CODES

Following [PMA] we define an (n,k,v = log,v) finite state code. This section is

mainly a review of results from [PMA].

The input is any semi-infinite sequence of symbols from the alphabet A =
{0,1,---,¢ — 1}. The encoder maps this sequence into a codeword—again a semi-
infinite sequence of symbols from A. Two distinct output sequences differ by at
least diree symbols, thus providing the error-correcting capability. The mapping
performed by the encoder must of course be 1-1, and we shall later find it necessary

to impose additional restrictions.
The encoder consists of two parts ( Figure 1.1):

- The finite state machine (FSM) is represented by an out-regular state dia-
gram—a directed graph whose vertices represent the states, and edges the
allowed transitions between the states (the number of states is denoted by v).
From each vertex emanate ¢** edges, corresponding to all possible inputs. The
edges are labelled from the set £ = {0,1,--- M — 1} of possible outputs of the

finite state machine.

— The block encoder can encode according to any of the M disjoint (n, k2) block
codes C'éo), él), SRR CéM_l).
The input stream is broken into nonoverlapping segments of length k¥ = k; + k».
The first k; blocks drive the finite state machine, determining which of the ¢** edges
outgoing from the current state to use for transition to the next state. The label on
this edge determines the block code according to which the remaining k; symbols

are encoded into the current n-segment of the output stream.
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Figure 1.1.

Example 1.1. Let A = {0,1}, £ = {0,1,2,3,}. The (3,2,log, 3) finite state
encoder appears in Figure 1.2. The finite state machine operates according to the

rule:
— if the input is 0, go to the same state,
- if 1, go to the next larger state modulo 3.

The block codes Cl(,i) are the repetition code (Céo)) and its cosets.

The finite state machine and the entire encoder may be represented by trellises.
The ones for Example 1.1 appear in Figure 1.3. The input sequences are represented
by all semi-infinite paths in the overall trellis (starting at so), the output sequences
by the corresponding edge labels. The Hamming distance between two paths is the

Hamming distance between their label sequences.

Free distance diee of a finite state code is the smallest Hamming distance

between two nonidentical paths in the trellis. Let dz be the smallest among the
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Figure 1.2.

minimal distances of codes Cz(i), and let d; be the minimal distance of the code
C, = Uf\i 0—1 C’Z(,i) . Clearly the free distance is less then equal d2 because we can
have two paths with identical states which differ only in one edge (Figure 1.4). The
1)
1

distance between them can be d; because e; * and e?) are labelled by codewords of

the same code Céi).

Before placing a lower bound on dfree, we require that the labelling of the state
diagram be nonsingular: for any state, all the outgoing edges have different labels,
and the same holds for the incoming edges. Let egl) and 652) be the first edges where
the two compared paths differ. There are two possibilities, depending on whether

e(ll) and e§2) end in the same state or not.

When they end in the same state, the distance is at least d; (Figure 1.4).

If egl) and 6(12) lead to different states, by nonsingularity, the labels belong to



Figure 1.3. The trellis of the FSM and the overall trellis for Example 1.1

different codes C’éi) and so are different codewords of C;, at distance at least d;.
When the two paths merge again, the incoming edges to the common state will by
nonsingularity also have different labels. Thus the distance between the two paths

is at least 2d; (Figure 1.5).

What if the two paths never merge again? We need not be concerned with this
case because the condition of noncatastrophicness, which we shall impose shortly,

ensures that two such paths always have infinite Hamrrﬁng distance between them.

So, we have

min(d2,2d1) < dfree < ds. (11)

We shall improve this bound in Section 1.4.
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Figure 1.4. Figure 1.5.

The philosophy behind the design of finite state codes now becomes apparent:
d, is typically large compared to d;. The Cgi) are often obtained from one block
code C, as its cosets. We hope to keep the free distance close to dy, while the
rate has increased from k;/n to (k1 + k2)/n, compared to using C» alone. This

improvement is payed for by the increased complexity in encoding/decoding.

We now address the issue of noncatastrophicness which was mentioned briefly
before. Noncatastrophicness of the encoder means that no two input sequences
which differ in infinitely many places are mapped into output sequences which differ
in finitely many places. Otherwise finite number of channel errors may produce

infinite number of decoder errors.

We shall actually put a stronger restriction, which is anyhow necessary for all
practical decoders. We require the code to be sliding-block decodable, which means:
given outputs at times —m, ~m+1,---,0,1,---, K —m — 1, it is always possible
to determine the input at time 0.

Hence we require the labelled state diagram to be sliding-block decodable (re-

place, in the above definition, ‘inputs’ by ‘edges’ and ‘outputs’ by ‘labels’). But

since the labelling is also nonsingular, if we can reconstruct one edge in the K-
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length block, we can also reconstruct the others. Thus we arrive at the following

condition:

The state diagram of the finite state code must be uniquely decodable, meaning
that given a sequence of K labels there is at most one path of length K (sequence

of K successive edges) in the state diagram which produces those labels.

In Example 1.3, K must be at least three, because there are two paths produc-
ing the label sequence 13, for instance. The reader may check that three labels are

always enough to reconstruct the corresponding path.
Remark 1

The finite state machine may be viewed as an encoder for a trellis code, with
the output alphabet £ and output blocks of length 1. We shall see later that
convolutional encoders may be used in place of the FSM—this is the synthesis of

trellis and block codes that was promised in the introduction.
Remark 2

Although the decoder for the code of Example 1.1 is sliding block, the encoder
is not: it is not possible to specify some fixed number of previous input blocks which
will always determine the current state. In fact, the rule is: the current state is
equal to the number modulo 3 of 1’s seen in the input so far from the beginning of
the sequence. Thus the state 0 corresponds to histories 0, 111, 0111, 1011, 1101,
1110, ---.

1.3. A PROBLEM IN GRAPH LABELLING

We shall consider directed graphs with v vertices and edges given by a relation on

the set of vertices. So, if the set of vertices is S = {s1,82,---, s}, the edges are
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given by a subset of S x 5, i.e., by certain ordered pairs of vertices. We say that an

edge (s;, s2) starts in vertex s; and ends in vertex s;.

We define a path of length [ to be a succesion of [ edges, such that the starting
vertex of each edge is the ending vertex of the previous edge. Edges can be repeated.

A closed path is called a circust.

A path 1s said to connect vertex s; to vertex s; if those are respectively the
starting vertex of the first and the ending vertex of the last edge in the path. We
shall restrict our attention to graphs such that for any given two vertices, there is a
path connecting the first vertex to the second. Such graphs are said to be strongly

connected.

To motivate the problem, let us look at a simple example.

Figure 1.6.

Example 1.2. We want to label the edges of the graph on Figure 1.6 in such a
way that, given a list of edge labels in a sufficiently long path, we can decide what
the path was. We can get a trivial solution using a different label for each edge. The

challenge is to use the minimal possible number of labels. Consider the labelling in
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Figure 1.7, which uses four labels {a,b,c,d}. Given the list abbd we can deduce
that the path was (1,2)(2,2)(2,0)(0,0). But with the list: abcabc---- (and so
on, repeating a bc) we have a problem: no matter how long the list, we cannot de-
cide whether the path was (1,2)(2,0)(0,2)(2,1)(2,0)(0,1),----or (1,2)(2,2)(2,1)
(1,2)(2,2)(2,1) ----.

Figure 1.7.

In Figure 1.8, only three labels are used, but every path of three or more edges
yields a different label sequence. Two labels are not enough for a decision: for

instance, (1,2)(2,2) and (2,2)(2,2) both give the same label list bb.
In the attempt to label this graph, several questions arose:
— what is the minimal number of labels needed;

— what is the minimal length of the label list which is sufficient for reconstructing

the path;

~ what algorithm should be used for labelling a given graph.
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Figure 1.8.

We shall consider these questions in this and the next section. To begin, we

formalize the notions which were casually introduced before.
Two paths are label-indistinguishable if they produce the same list of labels.

Definition 1.3. An edge labelling of a graph is uniquely decodable (UD) iff there
is an integer K such that any two label-indistinguishable paths of length K or more
are identical. The smallest such K is called the resolving length of the labelling,

IX’Q .

In other words, any sufficiently long path can be recovered from its label se-
quence. We shall also use the expression ‘a UD state diagram’ for a state diagram

whose labelling is UD.

Definition 1.4. An edge labelling i1s nonsingular iff all the edges that go out of

the same vertex are labelled differently, and the same holds for the edges that go

into the same vertex.

Lemma 1.5. ({PMA]) Nonsingularity is necessary for a uniquely decodable la-

belling.
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Proof: If L(so,s1) = L(so,s2) = Lo, then we can construct arbitrarily long pairs of

paths, ending in (so,s;) and (so, s2) respectively, which are label-indistinguishable

but differ in the last edge.

Similarly, if L(s1,s0) = L(s2,50), we can construct arbitrarily long label-

indistinguishable paths that differ in the first edge. |
We will henceforth consider only nonsingular labellings.

Rephrasing the Definition 1.3, we can say that a nonsingular labelling is UD iff

there do not exist two infinitely long, label-indistinguishable, nonidentical paths.

Notice that an infinite path in a finite graph need not be periodic: in a complete
graph with two states 0 and 1, an infinite aperiodic path is determined by a binary
expansion of an irrational number. However, whenever a nonsingular labelling is
not UD, there are two periodic label-indistinguishable paths. Or, since a periodic

path is a sequence of repetitions of a circuit, we have

Theorem 1.6. Let Ng be the number of edges in a labelled graph, and let r
be the maximal number of edges with the same label. A labelling is UD iff it is
nonsingular and it does not contain two distinct label-indistinguishable circuits of

length <1+ rNg.

(We shall see that this constant is not important, but simply serves to show

that only the circuits up to a certain definite length need be checked.)
Proof:

(=>) We have shown in Lemma 1.1 that nonsingularity is necessary. If we do have
two label-indistinguishable circuits, traversing them repeatedly constructs two

infinitely long nonidentical label-indistinguishable paths.

(<=) Assume a nonsingular labelling is not UD. Then there exists an infinitely long
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label sequence LiLoLjs--- that corresponds to different paths, i.e. to two se-
quences of edges. After 1 4+ rNg edges, some edge would have been repeated
in the first path r + 1 times. Let it have a label Ly. Then in the correspond-
ing places in the second path, we would have edges with the same label Lj.
Since there are r 4+ 1 repetitions of Lg, and there are at most r distinct edges
labelled by Lg, two of them must be the same. Mark these two places. The
edge-sequences between them are two label-indistinguishable circuits. They are
also distinct because of nonsingularity (in fact, no two corresponding edges in

the first and the second path can be the same). |

So, having a nonsingular labelling, it is enough to check the circuits up to a

certain length. The bound on length can be improved as the following lemma shows.

Lemma 1.7. A nonsingularly labelled graph with v vertices contains two label-
indistinguishable circuits iff it contains two label-indistinguishable paths of length
(2)-
Proof:

(=>) Trivial.

(<=) Given a labelled graph G, define another graph G as follows:

If S = {s1,82,",8y} is the set of vertices of G, then S* = {(si,s;) | s: €
S,sj € S,si # s;} are the vertices of G, and there is a branch labelled ! from
(8iy, S5, ) to (8iy,85,) in G iff L(si,,si,) = L(sj,,85,) =l in G. An example is
given in Figure 1.9.

G has symmetry in the sense that whenever L((si,,s;,),($is,85,)) = [, also
L((3j,,5i, ), (Sjzy8ip)) = . It has v(v — 1) states, and every path in G corre-
sponds to two distinct, label indistinguishable paths in G. Hence we need to

show that G contains a circuit.
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Figure 1.9.

We claim: whenever G contains a path of length ('2’), it must contain a cir-
cuit. The path of this length must contain at least two vertices of the form
(vi,v;), (vj,vi) since there are only (;) distinct subsets of two vertices from G
(or else, it must contain some vertex twice, and consequently, a circuit). Let

P; be the section of the path between these two vertices:

Py i (vi,v5) = (21,41) = (%2, 42) = -+ = (Th, Y&) = (05, 04)-
Then G also contains the symmetric path

Py : (vj,v) — (y1,21) = (y2,22) = -+ — (Y&, Tk) = (vi,v5)-

But P, P, is a circuit and thus G contains two distinct label-indistinguishable

circuits. , |

As a corollary, we have:
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Theorem 1.8. A labelling of a graph with v vertices is UD iff it is nonsingular

and it does not contain two distinct label-indistinguishable paths of length > (;’)

Given this bound, an algorithm can be devised for checking whether a labelling
is uniquely decodable. One can for instance use the depth-first search to compare

all paths in the graph up to length (}).

Corollary 1.9. The resolving length Ky of a labelled graph with v vertices is

R v
Ky < <2> .

This bound is tight for v = 4 as Figure 1.10 shows. G is UD, yet the sequence

bounded by

abcde of length (;) — 1 cannot be resolved before one more label is given.

a b c d G
ﬁ{\o,z 3.1] [o 12

G

1,0 2.0 1,3 0, 2,1 2,3

Figure 1.10.

We now turn to the question of how many labels are needed for a UD labelling
of a graph. This is related to resolving length, as was apparent in the Example 1.2.
The more labels are used, the shorter resolving length can be obtained. We shall

consider a labelling to be efficient if it gives the shortest resolving length possible
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when using the minimal number of labels required to obtain a UD labelling on a
given graph.
Definition 1.10. A graph is D-regular iff every vertex has exactly D outgoing

edges and exactly D incoming edges.
In [PMA] it was shown that
o at least 2D labels are needed for a UD-labelling of a D-regular graph.

Although 2D labels are sometimes enough, that is not always the case: the

2-regular graphs in Figure 1.11 cannot be labelled using four labels.
0

Figure 1.11.

Before introducing a class of D-regular graphs which can be labelled using 2D

labels, we state a bound on resolving length of a v-vertex, D-regular graph.

Lemma 1.11. If a D-regular graph with v vertices is labelled using M labels,

the resolving length is bounded below by

log v
rd > .
Ko 2 log M —log D
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Proof : Each path of length Ko can be uniquely described by its starting vertex
and a sequence {z1,Z2, -, Tk, }, z; € {0,1,---,D — 1}, where z; determines which
of the D outgoing edges was taken at the step i. There are vg¥° such paths. Also,

there are M ¢ possible sequences of labels of length Ky. The inequality follows. ||

If M = 2D, we get Ky > log,v. This bound will be achieved for a group of

labellings introduced in the next section.

1.4. CONVOLUTIONAL ENCODERS AS FINITE STATE MACHINES

We have not given yet any examples of UD-labelled graphs which could be used to
define the finite state machine. The general problem of finding an optimal labelling
for any given graph is hard. In [PMA], a procedure is given for labelling complete

raphs with ¢™ vertices using ¢™*! labels.
grap g4q

[t was suggested by Forney ([F3]) that convolutional encoders could be used to
obtain UD labellings. We shall elaborate this idea, and analyze just what kinds of
convolutional encoders are applicable in this context, and what are the parameters
of labellings thus obtained. The first part of this section overlaps with work of
Cheung ([Ch]).

We now review some well-known facts about convolutional codes. A reader

unfamiliar with the subject can find a detailed introduction in [McE].

Let the input and output symbols belong to a finite field F' = GF(gq). At the
beggining of each clock cycle, the next k input symbols arrive in parallel to the

input of the encoder, and n symbols appear at the output.

A (n,k,v) convolutional encoder is a linear sequential circuit which consists

of k shift registers of lengths v1 > v > -+ > vt , Y v = v, and a memoryless
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arithmetic circuit which can perform additions and multiplications by constants in
F. The v symbols that are memorized in the shift registers and the k input symbols
are led into the arithmetic circuit, where the n output symbols are computed. At
the beginning of the next clock cycle, the contents of each shift register are shifted
by one place to the right, the previous k input symbols are shifted into the leftmost
cells of the shift registers, and next k symbols appear at the input. For an example,

see Figure 1.12,

jr
\)

L

—5 >
{1 -
Shift Arithmetic
Registers Circuit

Figure 1.12. A (3,2,3) binary convolutional encoder with 1 = 2, v, = 1.

Suppose that input k-tuples arrive at integer time intervals, starting at some
(possibly negative, but finite) time d, and continuing to infinity. If the input at the
time m is represented by the vector x,, = (:cg) .. zg,f)]T, then the whole input
sequence can be represented as a transform in the delay operator D:

oo
X = Z x,'Di.
1=d
X may also be viewed as a vector of k sequences in D over F. The set of all such
sequences is the field F(D) of Laurent series over F. The effect of the encoder on

the input sequence—because of finite memory and linearity—can be represented
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by a k x n-matrix G(D) whose elements are polynomials in D over F (then v; is
the largest among the degrees of polynomials in the i-th row of G(D)). The output
coprresponding to x(D)is the vector of n sequences from F(D) given by x(D)G(D).
The set of outputs when x ranges over all possible input sequences—in fact, the
row space of G(D) over F(D)—is the code. Since first of all the mapping must be
1-1, G(D) must have rank k. For the encoder of Figure 1.12,

2
G(D) = <1 R g)

We can also view the encoder as a finite state machine, and represent it by a
state diagram labelled by outputs. Figure 1.13 shows the partial state diagram for
the encoder of Figure 1.12—all states are there, but only the edges exiting from the
all-zero and all-one state are shown. The two digits in brackets at the start of each
edge are the input corresponding to that edge, and the 3-tuple in parentheses is the
resulting output. Thus there are ¢” states, corresponding to the possible contents
of the shift registers. From each state exit ¢* edges, one for each input k-tuple. The
edge leads to the state obtained by the shifting operation described above, and is
labelled by the output n-tuple. We shall call the underlying graph a Generalized de

Bruyn graph—it is analyzed in detail in the next chapter, Section 2.4.

Our next goal is to establish the conditions under which the encoder defined

by a matrix G(D) has a state diagram which is UD-labelled.

Let Go be the matrix obtained from G by picking the 0-th coefficient from each
polynomial in G(D). Similarly, G} is obtained by choosing, in the i-th row, only

the v;-th coefficient from each polynomial.

" Lemma 1.12. The labelling is nonsingular iff both G and G}, have rank k (over
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=S

(rrm

—

Figure 1.13.

Proof : We shall represent the current state by a k-tuple of polynomials in D!
s=[s"(D)s?(D) --- sV (D),

s(i)(D) = Sgi)D-—l + sgi)D—z by sf,';)D“"‘

where sgi) is the content of the j-th cell of the i-th shift register.

If x(D) is an n-tuple of polynomials, let x(D)|o be the n-tuple of the coefficients
of order zero. Let so be the column vector representing the current input k-tuple.

The edges exiting from the state represented by s(D) are labelled by
L= ((s0 +s(D)G(D)) |

= (0G(D)) |+ (s(D)G(D)) |
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where sg is the input vector corresponding to the edge. The second summand is

common to all the edges that emanate from the same state. Since
(SOG(D)) 0 = S()Go,

the edges will have distinct labels iff G¢ has full rank.

Similarly, the labels of edges entering a given state are
I = ((sdiag(D™",D™*2,-.-, D~*) + Ds(D))G(D)) '0

where diag(z1,z2,---,Z¢) stands for a k x k diagonal matrix. Again, the second
summand is common to all the edges entering the same state, so the labels will
differ in

((sndiag(D~**, D=2, -, D™)G(D)) ‘0 = s,Gh

(because the zero-coeflicients after myltiplying G(D) by the diagonal matrix will
be exactly the high-order coeflicients represented by Gj). Thus, the labels will be
distinct iff G has full rank. |

One of the most important conditions which convolutional encoders must sat-
isfy is noncatastrophicness. We gave its definition for trellis codes in Section 1.2, and
observed that a trellis of a noncatastrophic code cannot contain two paths which
differ in infinitely many edges, such that the Hamming distance between them is fi-
nite. There is a well-known criterion for catastrophicness of convolutional encoders,

first observed by Massey and Sain in [MS]:

Definition 1.13. The k-th invariant factor of a k x n polynomial matrix G(D)

is the greatest common divisor of its (}) k x k-minors.

Remark: the elements of G(D) belong to the principal ideal domain of polynomials

over F', so with stipulation that gcd be monic, it is well-defined.
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Theorem 1.14. ([MS]) A convolutionar encoder G(D) is noncatastrophic iff its

k-th invariant factor is D™, for m > 0.

Clearly, if a labelling produced by a convolutional encoder is UD, the encoder
has to be noncatastrophic (UD => sliding-block decodable => noncatastrophic).

The following lemma shows that converse also holds.

Lemma 1.15. Suppose that the convolutional encoder is noncatastrophic and

that it produces a nonsingular Iabelling. Then the labelling is also UD.

Proof : Suppose the labelling in not UD. Then, according to Theorem 1.5, there
must be two nonidentical label-indistinguishable circuits, s! C* s!, and s? C? s2. In
a convolutional encoder, we can reach any state from sg in exactly v; edges. Let

P! and P? be the paths of this length from so to s and s?, respectively. Then the

paths
soPpstetstetstet -
and
so Py s?2C?*s2C?s*C? -
differ in infinitely many edges, but have Hamming distance at most nv;. ]

So, we have proved

Theorem 1.16. The labelled state diagram corresponding to a (n,k,v) convo-

lutional encoder defined by the polynomial matrix G(D) is UD iff
(i) Gy has rank k,

(i) G has rank k,

(iii) the k-th invariant factor of G(D) is D™ for m > 0.

Actually, (i) implies that m in (iii) must be zero.
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The encoders defined by the Theorem 1.16 have a name in the theory of con-
volutional codes—they constitute the family of minimal encoders. The term was
introduced by Forney in [F1]. Since a convolutional code is defined as the row space
of a polynomial matrix, there are obviously other matrices which have the same
row space, and consequently other encoders which produce the given code. Forney
proves that for any convolutional code there exists a minimal encoder which gen-
erates it. He further argues that minimal encoders should (almost) always be used
because they are noncatastrophic, require the smallest possible number of mem-
ory elements for realization, and have other desirable properties which we shall not

discuss here.

In [F2], Forney considers the question of the longest zero-run for a given
encoder—the length of the longest path in the trellis whose labels are all zero,
and which does not touch the zero state. He arrives at the following bounds (see

[F2], Corollary 2):

Lemma 1.17. ([F2]). For minimal encoders, the longest zero-run /p is bounded

by

v
1< <v-1.
[n—k] ==Y

This will enable us to bound the resolving length of the state diagram of a

convolutional encoder.

Lemma 1.18. The resolving length Ky of the state diagram of a convolutional

encoder is by one longer than the longest zero-run.

Proof : This follows from linearity of convolutional codes. We define the differ-
ence between two states, s — s?, as the state whose shift register cells contain the
difference between contents of the corresponding cells of s! and s2. The difference

between two paths of same length is the pathv whose states are the difference be-
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tween corresponding states in the first and the second path (we assume there are
no multiple edges—v; > 1—so the states are enough to specify a path). Since the
mapping which produces the labels is linear, the labels of the new path will be the

difference (componentwise) of the labels on the original paths.

Suppose there are two distinct label-indistinguishable paths, P; and P, of
length lo + 1. Because of nonsingularity they cannot touch, so the path P; — P,,
which has all zero labels, does not touch the zero state. But such a path cannot

exist if the longest zero-run is lp, so Ky < g + 1.

On the other hand, if we take any path P of length Iy and add to it the path P,
which exhibits the longest zero-run (addition is defined similarly as subtraction), P

and P + P, are two label-indistinguishable paths of length I, so Ky > [p. |

Corollary 1.19. The resolving length of the state diagram of a minimal (k,n, )

convolutional encoder is bounded by

n_.

[”JsmSM

Let us summarize the results of this section.

A (k,n,v) minimal encoder over GF(q) produces a ¢*-regular, ¢”-vertex
UD-labelled state diagram where
— at most ¢” labels are used,

— the resolving length K satisfies

l'nik-l <Ko<v.

If n =k +1 this Ky is optimal.

Notice that for n = k + 1 the two bounds coincide: Ky = v. Let M be the
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number of labels which are actually used. According to the bound on resolving

length stated in Lemma 1.10

. log ¢ v
Ko > > -
0 TogM —loggF k) -k D

so the resolving length is minimal.

If in addition the encoder is binary, the number of labels which are used is 2¢*,

which is also minimal (as is shown in [PMA)).

For given parameters k, v and a partition of v into v; + v; + --- vk, one can

specify the generic encoder as follows:

1 D 0 ...0 0
0 1 D ... 0 0

Goy=|0 0 1 ... 0 0 (%)
0 0 0 1 Dy

It is easy to see that such encoder is minimal. So, by construction:

For given K, v>k,andany 1y 2v2 > --- 211 >0, > v; = v,
(*) defines a binary convolutional encoder which produces a labelled
state diagram which is 2%-regular and has 2” states.
The labelling is uniquely decodable and optimal with respect both

to the number of labels and the resolving length.

Before going on to construct some codes with the techniques developed here,

let us refine the bound on djee.

In Section 1.2 it was stated that the free distance of a finite state code is
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bounded by:

min(2d1,d2) S dfree S dz. (11)

This can be improved if we have the information about the free distance of the
labelling, Dyiock- Dblock is the minimal number of corresponding labels in which

two distinct semi-infinite paths in the trellis of the state diagram differ.

Let us return to the proof of (1.1) in Section 1.2. In the case where egl) and
egz) lead to different states, by the time when the two paths remerge, at least Dyjock
corresponding labels would have been distinct. Hence the accumulated distance in
the overall trellis will be at least Dpjockd;. Thus, the lower bound in (1.1) can be

improved to

min(DblockdladZ) < dfree-

In [P], P. Piret introduced a class of convolutional codes, called multiple-word
correcting convolutional codes, which are constructed with the aim of maximizing
Diiock. He defines the word weight of a path as the number of nonzero labels on
it (a nonzero label being everything but (00 --- 0)). A path in the state diagram
which starts and ends in the zero state, does not have repeated edges, and does
not contain the loop at the zero state is sometimes called a fundamental path.
Because of linearity of convolutional codes, Dplock €quals the smallest word weight
of a fundamental path. Clearly this is at most equal to the length of the shortest

fundamental path, which is ¢ + 1. Thus
2< Dblock <w+1.

Piret also shows how to construct two families of convolutional encoders which are
" noncatastrophic and meet the above upper bound. We shall not repeat his results

here, but they will be used in constructing an example in the next section.
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0.1. CoDE DESIGN

We now propose a method for constructing finite state codes and discuss the issues
involved. We refer the reader to Section 1.2 for meaning of the parameters. The size
of the input/output alphabet is ¢. If an encoder accepts k and outputs n symbols

at the time, we say that its rate is k/n.

In code design, one usually starts with some requirements with respect to diree
and rate, and looks for the encoder of least complexity which will satisfy them. In

case of finite state codes, the design can be divided into two steps:

1) Finding a set of disjoint block codes with minimal distance d; close to dfree. If
we want dy > 1, then their union must also be some code C; with prescribed
minimal distance. This determines d;, ds, the number of labels M, the size of

the output n, and k;.

2) From the rate, k1 and n we get k2; Dpiock should satisfy Dpiockds = diree-
We have to find a ¢*?-regular state diagram with the least number of states,

labelled UD with < M labels and with prescribed Dy)ock-

Of course, other approaches are possible: one can start with a labelled state

diagram and then look for block codes to match it.

One way to achieve 1) is to pick a linear code for C, its linear subcode for Céo)
and for Cy) the i-th coset of Cz in Cy. Then, if a convolutional encoder is used as
a finite state machine, the overall encoder is the circuit shown in Figure 1.12. Cj
is a rate k;/n block code and there are > ¢™ cosets of C; in C;. The n; symbols
at the output of the convolutional encoder select an element of C; which is a coset
representative for C3 in Cy. This n-tuple is added to the n-tuple produced by the

encoder for Cs to get the final output.
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K ‘ N Coset n
/. Convolutional //’ Chooser /;/
Encoder
C,C
" 2
| LN n
D 45>
k Block
2,/ Encoder
7
C2 n

Figure 0.1.

Good candidates for such constructions are Reed-Muller codes (see [McW§],
Chapter 13). For any 0 < r < m, there exists a (binary) r-th order Reed Muller

code R(r,m)—an (n, k) linear block code such that

o e())+(0) ()

whose minimal distance is
dmin = 2m—r.

Also, R(r,m) is a subcode of R(r + 1,m). So we get a sequence of codes
R(0,m) C R(1,m) C -+ C R(m,m)

where the minimal distance of each code is half that of the previous one.
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Example 0.1. We shall work with the following Reed-Muller codes:

(n, k) dmin
R(1,4) (16,5) 8
R(2,4) (16,11) 4
R(3,4) (16, 15) 2

The goal is to have diree = 8, n = 16, and the rate as large as possible. So Céo) will

be R(1,4) and we want Dyjockdi = 8. Here are two ways to achieve that:

a) Dplock = 2, di = 4. Let C1 = R(2,4). There are M = 2k1—k2 = 96 cogets. We
can use the generic encoder of (¥) with k=5and vy =v2 =--- =vs = 1. The

result is a (16,10,5) finite state code with free distance 8.
b) Diiock = 4, di = 2. We now use R(3,4) for C1, and get M = 210 cosets.

For the convolutional encoder, we shall use the construction for free encoders
due to Piret ([P], Section III). Setting a =0, k = 7, m = 3 we get the encoder
whose G(D) is

/l-I—D D? 0 D? 0 0 0 0 0 O
0 1+D D? 0 D3 0 0 0 0 O
0 0 1+D D? 0 D3 0 0 0 O
0 0 0 1+D D? 0 D3 6 0 O
0 0 0 0 1+D D? 0 D} 0 0
0 0 0 0 0 1+D D? 0 D* o0

\ 0 0 0 0 0 0 1+D D?* 0 D3/

This encoder is minimal, with rate 7/10, memory v = 21 (the smallest needed

to get v = 3), and Dypiock = 4. The resulting finite state code has parameters
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(16,12,21) and diree = 8. So the rate is larger then in a), but the encoder is

more complex.
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Chapter 2

Generalized de Bruijn Sequences

2.1. INTRODUCTION

A de Bruiyn sequence with parameters (g, k) is a circular array of symbols from the
alphabet A = {0,1,...,¢~1} such that every k-tuple from A* appears once and only
once as k consecutive figures on the circle. Let B(q, k) be the set of all sequences
with this property (two sequences which differ only by a rotation are considered
to be equal). Throughout this chapter we shall refer to a member of B(q, k) as ‘a

B(q, k) sequence’. A B(2,3) sequence appears in Figure 2.1.

000 (1)
100 (2)
010 (3)
101 (4)
110 (3)
111 (6)
011 (7)
001 (8)

Figure 2.1.

In order to construct such a sequence, consider the so-called de Bruijn graph

Gp(g,k — 1). Its vertices are the ¢¥~! (k — 1)-tuples over A, and there is an edge
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from state a to state b iff the first (£ —2) coordinates of a agree with the last (k —2)
coordinates of b. There is a natural 1-1 correspondence between Euler circuits

in Gp(q,k — 1) and the sequences B(g, k): for example, the circuit in Figure 2.2

corresponds to the sequence in Figure 2.1.

000
010
N
a0 ®
Q )
N 3 o,
010
110 o]t
(4)
101
V4 \
(S\jo O(\\
1 ({1
111
(6)

Figure 2.2. Gp(2,2).

Thus, the problem is translated into one concerning graphs, where it becomes
possible to show the existence of de Bruijn sequences and to compute their number

using techniques for counting the Euler circuits in a graph. The number is

1

| B(g, k) |= g~ (g ",

This result was apparently known as far back as 1894 ([FSM]), but it was forgotten

- and rediscovered in [EB], as a corollary of more general theorems stated in that

paper.
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In engineering literature, de Bruijn sequences are often called shift register se-
quences, since shift registers are the usual hardware used for generating them. Apart
from their intrinsic combinatorial interest, they have found applications in commu-
nications and computer science as pseudo-random sequences, in period generators,
etc. A detailed review of properties and applications of shift register sequences
can be found in [Gol]. The search for good algorithms which would generate those

sequences is still on (see [Fr]).

In the following sections, in an attempt to generalize the concept of a de Bruijn
sequence, we propose two new families of Generalized de Bruijn (GDB) sequences :

Type 1 and Type 2.

Type 1 GDB sequences are obtained by introducing ‘phases’ on the circle, which
correspond to positions modulo m on it. We require that each k-tuple appears
exactly once in each phase. In Figure 2.3 we have an example over alphabet A =

{0,1}, with k = 2 and 4 phases.

Type 2 GDB sequences will be formally defined in Section 2.3; for now, the
example in Figure 2.4 will suffice. There are two concentric circles, same number
of positions on each. We observe an irregularly shaped “window” and require that
each of the eight possible window contents be displayed exactly once as it slides

across the circles.

By relating the above sequences to Euler circuits in certain graphs, we will,
using the results from [1], prove existence and derive formulae for the number of

sequences of Type 1 and 2.

In Section 2.5, the Generalized de Bruijn sequences are finally obtained. They
include the sequences of Type 1 and 2. We give the formula for their number, which

contains the previously derived formulae as special cases.
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Ph2

Phase 1 Ph 2 Ph 3 Ph 4
00 00 00 10
P 11 01 00
1o 0 10 1
01 10 = 01

Figure 2.3.

2.2. EULER CIRCUITS IN DIRECTED GRAPHS

In this section, we introduce the notions and results of graph theory which will be

used in the sequel.

Definition 2.1. A graph G = G(V, E, 1, ) is determined by two finite sets, V

and E, and two mappings, 7 and x : E — V.

The elements of V are called vertices, the elements of E edges, and in the usual
pictorial representation, an edge is an oriented arc from vertex 7(e) (tail of €) to
x(e) (head of e). The definition thus allows more than one edge from vertex v; to vj,

and also edges whose head and tail is the same vertex. Such graphs are sometimes
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0 [o |
0
"] 5T
1
1] 0]
0
of 1}
1
t] o]
1
IR
1
NN
0
o] 1]
0

Figure 2.4.

called multigraphs with loops.
Definition 2.2. Two graphs, G1(V, E, 1, x1) and G(W, F, 12, x2), are isomor-

phic iff there are bijective maps

o: VoW

v:E—->F
such that
r2(¥(e)) = ¢(m1(e)),
and similarly for x. We denote this relation by G1 = Gs.

Two edges e1, ep are consecutive if x(e;) = 7(e2). A sequence of consecutive

edges is called a path; a closed path is a circuit. A graph is strongly connected iff
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for any two vertices vi, vy there is a path from v; to v;. We shall assume that all

graphs in this chapter are strongly connected.
We shall be interested in circuits with a special property:

Definition 2.3. An Euler circuit in G is a circuit which contains every edge of

G exactly once.

For a given vertex v, its out-degree 0,(v) is the number of edges with tail at v,
and in-degree o;(v) is the number of edges with head at v. A graph in which for
each vertex v, 0,(v) = 0i(v), is pseudosymmetric. A graph such that o(v) = o for
all v is o-regular. There is a well-known, easy criterion for determining whether a

graph posesses an Euler circuit (see, e.g., [Ber]).
Theorem 2.4. A graph has an Euler circuit iff it is pseudosymmetric.

We now define three operations on graphs: doubling, higher edge and product.

The first two operations are unary, while the third acts on two graphs.

Definition 2.5. The doubling operation:

For a positive integer A, let G* be the graph obtained by replacing each edge
in G by A edges between the same vertices, with the same orientation. In terms of
Definition 2.1, if G is given by (V, E, 7, x), then the set of vertices of G' is V, for
each edge e € E there are A edges e),ez,--,ex in E', and the two mappings are

defined by:
m(e) =7(e), X&) = x(e).
Notice that (G*1)*2 = GM 22,

Definition 2.6. The higher edge operation:
For a given graph G, let G' be the higher edge graph, obtained from G as

follows: the edges of G are the vertices of G', and there is an edge from vertex :
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to vertex j in G' iff edge j follows edge ¢ in G. So if G = G(V, E, 1, x), we define
G'=G'(V',E' 7', x') as follows:
V' = E,
E' = {(61,62) l €1 € Ea €2 € Ev X(el) = T(Cz)},
T(e1,e2) = e1, x(er,e2) = eq.

Definition 2.7. A product of graphs G1(V, E, 11, x1) and Go(W, F, 12, x2), de-
noted G1 x G2, is the graph G(U, H, 7, x), where

U=V xW,

H=FE x F,
7(e, f) = (1(e), 2(f)),
X(C, f) = (XI(C), X2(f))

The product operation is associative, so the above definition extends induc-
tively to a product of finitely many graphs. Also the product is commutative up to

a graph isomorphism.

We now give several well-known theorems about Euler circuits in graphs, which
were originally stated in [EB]. Let | £(G) | denote the number of Euler circuits in
G. Two circuits are considered the same if one can be obtained from the other by
a cyclic shift of edges. We formulate the theorems for the special case of regular

graphs, since other graphs will not appear in the sequel.

Theorem 2.8. ([EB]) Let G be a o-regular graph with N vertices, and G' the

higher edge graph. Then

| E(G") |= a7 M (YN 1 ¢(G) |.
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Theorem 2.9. ([EB]) Let G be a o-regular graph with N vertices and G* as in
Definition 2.5. Then

N
e =2 o,

g

2.3. SEQUENCES OF TYPE 1

We start with a formal definition of these sequences.

Definition 2.10. Let g,k,n be positive integers. A Generalized de Bruijn se-
quence of Type 1 (a Bl(q,k,n) sequence) is a circular array of letters from the set

A ={0,1,...,qg — 1} with the following property:

Enumerate positions on the circle 1,2,3,- -, and consider a k-tuple of consec-
utive symbols to belong to phase ¢, 1 = 0,1,...,n — 1, if the position of the first
symbol is equal to 2 modulo n. We require that in each phase, every k-tuple of

AF appear exactly once.
Again, the sequences can be corresponded to Euler circuits in certain graphs.

Definition 2.11. A Cycle graph of order n, C, is the graph with vertices V' =
{0,1,....,n = 1} , edges E = {(0,1),(1,2),...,(n — 1,0)}, and the two mappings
defined by: x(i,1+1) =i+1, 7(¢,¢+1) =1 (addition is mod n). (See Figure 2.5.)

Definition 2.12. For positive integers g and k, de Brutjn graph with parameters
q and k, Gp(q, k), is the graph with vertices V = A* (where A = {0,1,2,...,¢—1})

and edges E = A**!. The mappings x, T are
x(Z1, %2,y Tht1) = (21, T2y .0, Tk),

T(.’I:l, T2y eeey -Tk+1) = (272, T3yaeey .’Ek+1).
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Figure 2.5.

We also define Gp(g,0) to be the graph with one vertex and ¢ edges-loops.

For ¢ = 2, the first few graphs of this kind are given in Figure 2.6. A Gp(q, k)

has ¢* vertices, and is ¢-regular.

<o>©©m
(0,0

65‘2-@) (o,o,,0,0>

(0,1 (0,1 (1,0)

(0,0) 0 | (1,1)
(o, 1,1)
(1,0)
Gg2,1) 62,2}

Figure 2.6.

Lemma 2.13. For given ¢ and k, there is a 1-1 correspondence between sequences
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B1(q, k,n) and Euler circuits in Cr x GB(g,k — 1).

Proof: Consider the product C, x Gpg(g,k). The new graph is regular, and so
has an Euler circuit. According to the notation introduced in Definitions 2.10, 2.11
and 2.12, and assuming w.l.o.g. that the first edge is fixed, any Euler circuit is a

sequence of edges s, $2,...5|g| Where

si=(e' € Ec,, f € Ecp) = ((tmodn, (i + Dmodn), (€1, T2, ...Tk+1)) ,

that is, the first indices e’ go cyclically modulo n. Looking at the second indices f?,
we get a succesion of k-overlapping k + 1-tuples; moreover, for given ¢, 0 <: < n-1,
if we fix the first coordinate of the first index to be 1, every possible k + 1-tuple will
appear exactly once as the second index. But this looks like a sequence of type two,
and indeed we get such a sequence if we take as its :-th member the last coordinate
of the second index of s;. This mapping is easily seen to be invertible and onto, and

we have thus established the required 1-1 correspondence. ]

In order to determine the number of Euler circuits in a direct product of Cycle

and de Bruijn graph, we first establish some preliminary results.

Lemma 2.14. GpB(q,k + 1) is the higher edge graph of Gg(q, k), i.e.,
Ga(g,k+1) = (Ga(g, k))".

The proof is straightforward, and we omit it.

Lemma 2.15. The higher edge graph of the product of two graphs is the product

of their higher edge graphs:

(G1 X Gz)’ = (Gll) X (Glz)

Proof : Let G1 = G1(V, E, 71, x1), G2 = G2(W, F, 12, x2).
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Consider the left-hand side first. It is a graph whose vertex set is E x F', and
whose edge set is the subset of ((E x F) x (E x F)) given by

{((617f1)7(627f2)) ' XGl(el) = TG1(62)7 XGz(fl) = TGz(f2)}'

The mappings are
x((ex, f1), (e2, f2)) = (e2, f2),

T((e1, f1),(e2, f2)) = (ex, f1).

The right-hand side graph has for the vertex set also E x F, and for the edge set

the direct product of the subset of E x E of the form

{(e1, e2) | x(e1) = m(e2)}
with the similar subset of F' x F. The two functions are
X((el, 62)7 (fla f2)) = ,(627 f2)3

7((e1, €2)), f1, f2)) = (e, f1).

Now it is easy to see that the mappings
(e, f) = (e, f)

((e1, f1), (€2, f2)) = ((e1,€2), (f1, f2))

establish the required isomorphism. |

Corollary 2.16.

(Cn x GB(g, k) = Cp, x (GB(g,k))' = Crn x Gp(g, k +1).

Proof : After observing that C; = Cp, the proof is immediate from Lemmas 2.14

and 2.15. i
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We now proceed to determine the number of Euler circuits in Cn x GB(g, k).

Lemma 2.17.

l E(Cn X GB(q,k)) |= q_k'—l(q!)"qk.

Proof : We use induction on k. For k = 0, we have the graph C, x Gg(q,0) = C)
with A = ¢. It is easy to see that the number of Euler circuits here is ¢~1(q!), which
agrees with the formula.

Suppose the claim is true for k. By Corollary 2.16 and Theorem 2.8,

| €(Ca x GB(g, k +1)) |=] £((Cn x GB(g, k))') |=

= q—l(q!)nqk(q-l) | €(Cn x GB(q,k)) |= q—(k+1)—1(q!)nqk+1.

We summarize the results of this paragraph in the following theorem:

Theorem 2.18. For a given triple of positive integers ¢, k, n, there are exactly

—k k-1
| Bl(g, k,n) |= ¢ (¢)™
distinct sequences of Type 2. These sequences are in 1-1 correspondence with the
Euler circuits in the graph C,, x Gg(g,k — 1), so that given one, we can determine

the other.

Example 2.19. A B1(2,2,4) appeared in Figure 2.3. The corresponding Euler
circuit can be found in the graph Cy x Gp(2,1) (Figure 2.7). There are 64 different

B1(2,2,4) sequences.
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0,1 \
(0,0) 0 f | (LN 1,0
(1,0)
2,0
GB(Z,D 0,0 q

! .
0,1 ¢«
0 2
(o
Cx
a 3 A GBKZ,.TI)
Figure 2.7.

2.4. SEQUENCES OF TYPE 2

Before introducing sequences of Type 2, we give the definition of partition.

Definition 2.20. A partition of a positive integer v into m parts, m < v, is a set

of integers v1 > v3 > ... 2 vy, > 1 such that vy + v 4 ... + vy = 1.

Ul —9
UZ =8

Figure 2.8. The Ferrers diagram of the partition of 29 into 9+8 +6 +6 + 2 + 1.
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A convenient way to represent a partition is by the so-called Ferrers diagram
(Figure 2.8). The number of squares in the first row is 14, in the second vy, etc.
The area (i.e., number of squares) of the whole picture is v. We could equally well
describe this diagram by counting the number of squares in columns instead of rows.
For the sake of simpler notation in the sequel, we number the columns from right to
left, so that we have the conjugate parameters nx > nx—1 > .. > m > 1. Naturally,
Y. ni = v, nx = m, k = v1. In the rest of this section and in the next, we shall
always denote the original parameters of a Ferrers diagram by v;, and the conjugate

parameters by 7;.

Suppose now that the squares of a given Ferrers diagram are not empty, but
each contains a letter from an alphabet A = {0,1,...,¢ — 1}. We call such a config-
uration a Ferrers crossword . There are ¢ Ferrers crosswords corresponding to a

given Ferrers diagram of area v.

Let an m x ¢” matrix of letters from A be given. If we position a Ferrers diagram
with m rows so that its leftmost column covers the i-th column of the matrix, the
letters which are thus covered constitute the Ferrers crossword at position 1 of the
matrix. Suppose that the matrix continues periodically to the right so that Ferrers
crosswords are defined for all ¢ positions (Figure 2.9). If all Ferrers crosswords
of such a matrix are distinct, we have a Generalized de Bruijn Sequence of Type
2 (with the given parameters). The name is motivated by the connection to de
Bruijn sequences, although this is not a sequence but a matrix, or a collection of m

sequences.
We are now ready for the definition.

Definition 2.21. An alphabet A = {0,1,...,¢ — 1} , positive integers v and m,

m < v, and a partition of v into m parts, v1 > vg > ... 2> vy > 1, are given. An
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Figure 2.9.

m X ¢¥ matrix of letters from A is a Generalized de Bruijn Sequence of Type 2,
GB2(q7 m,V,Vvy, V2, ---Vm),

iff the Ferrers crosswords (corresponding to the Ferrers diagram of the partition) at
positions 1,2, ...,¢" are all distinct.

Alternatively, we shall use the conjugate parameters and denote the sequence
by GBa(q, k, v; Nk, k=1, ---71)-

Corresponding to a sequence with a specified set of parameters, we introduce

the Generalized de Bruijn graph.

Definition 2.22. Given positive integers v and m, a partition of v into m parts,

and an alphabet A = {0,1,...,¢g — 1}, we define a graph such that:
— the set E of edges is: all Ferrers crosswords over A corresponding to the par-
tition;
~ the set V of vertices is: all Ferrers crosswords over A corresponding to the

above Ferrers diagram with the leftmost column removed;
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— the 7 function is: ‘remove the last square from each row’;
- the x function is: ‘remove the first square from each row’.

We name it Generalized de Bruijn (GDB) graph, and denote it by

GGpa(g, m, v v1, V2, ...Vm),

or via conjugate parameters, by
GGDB(Q) k, Vilk,Nk—1, .-y 771)‘

The GDB graph with ¢ =2, m =2, v = 3; 11 = 2, v, = 1, appears in Figure

2.10.

aa
9]

Figure 2.10.

Given this definition, the following is almost obvious:

Claim 2.23. There is a 1-1 correspondence between Euler circuits in a GDB

graph and sequences of Type 2 with same parameters.

There is an equivalent, more elegant definition of GDB graphs, which we shall

not, however, use in the sequel.



-48-

Definition 2.24. GDB graph is a product of ordinary de Bruijn graphs:

Gepal(q,m,viv1, v, ...svm) = GB(g,v1 — 1) x GB(g,v2 — 1) X ... x GB(q,vm — 1).

Notice that multiplying by Gp(g,0) amounts to “doubling” by a factor A = q.
Thus in general a GDB graph will have either 0 or ¢"*7"*-1 edges between any two

vertices.

Lemma 2.25. Any GDB graph over a g-ary alphabet can be obtained from a
suitable 1-vertex graph by a sequence of higher edge and doubling operations, as

follows:

GaepB(g, k, vk, Mk—1, s m1) = (GopB(g, k — 1, v = k3 k1, Mh—2, oy 1)),

where

)\ _ an—nk—l .
The proof is obtained by bookkeeping according to the definitions of the two
operations, and by verifying that the two graphs are indeed the same.

Lemma 2.26. The number of Euler circuits in a GDB graph is
I é(GGDB(q’ ka ViTky ey 771)) l: q‘"((q"" )!)qu—nk .

Proof : Induction on k.

For k = 1, we have a 1-vertex graph with ¢™ loops. The formula gives

((g™ — 1)!), which is true.

Suppose the formula is true for ¥ — 1. We use the Theorem 2.9 together with

Lemma 2.24 and obtain

@) 1= A QY g((Ga)) |

o!
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where
A= g~k
—_ k—
o= q7l 1,
N =gV ™

By Theorem 2.8,
| €((Gr=1)") |= o1 H o)M=V | €(Gxa) |,

where

o1 = an-17

‘N1 — qV—ﬂk-ﬂk-l‘

Substituting the formula for ¥ — 1 according to the induction hypothesis, the

correct formula for k is obtained. ]
We end this paragraph with the theorem which summarizes the main result.

Theorem 2.27. There are exactly

m

¢ (@™

distinct sequences GBz(q, m, v; v, Ve, ..., Vm); they correspond to all Euler circuits

in the GDB graph with the same parameters.

Example 2.28. The B(2,2,3;2,1) sequence that appeared in Figure 2.4 can be
easily traced using the edge labels in Figure 2.10. According to the formula, there

are five more sequences to be found in the graph.

2.5. GENERALIZED DE BRUIIN SEQUENCES

As was said in the Introduction, these sequences combine the generalizations of de
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Bruijn sequences which yielded the Type 1 and Type 2 sequences. The methods

used in the previous two paragraphs will readily extend to this case.

We start with a sequence like one of Type 2, but now we introduce n phases.

A Ferrers crossword at position i belongs to phase ! iff (¢ = [)mod,,.

Definition 2.29. Given a g¢-ary alphabet A, positive integers n, v, m, and a
partition of v: (vq,vg,..., vy ) We say that an m X ng”-matrix of letters from A is a

Generalized de Bruijn sequence
GB(q,m,v,n;v1, V2, ..y Um)
iff for each of the n phases, all ¢” Ferrers crosswords belonging to that phase are

distinct.

After the discussion in the previous paragraphs it is easy to see that the fol-

lowing is true:

Lemma 2.30. The GDB sequences with n phases are in 1-1 correspondence with
the Euler circuits in the product of Cycle graph of order n with the appropriate

Generalized de Bruijn graph, and so

| GB(q, m,v,n;v1,v2,...,vm) |=| §(Cn X GgpB(q, M, v;v1,...;vm)) | .

Before proceeding to the main lemma, we need another property of the product

operation.

Lemma 2.31. Let G; = Gi(V,E,m1,x1) and G2 = Go(W, F, 72, x2) be two

graphs and let G* denote the doubling operation. Then

(G1 x G2)* = G1 x ((G2)™).
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Proof : Consider the left-hand side first.
The set of verticesis V x W.

Edges are
(ExF)YN ={(e,))D |ecE, feFi=12,.,A).
The two mappings are
(e, /)) = (r1(e), 2 ),

x((e, )P) = (na(e), ma( £)).

On the right-hand side, the vertices are V x W,
edges
(Ex FOY = {(e,f{9) |e € E, fe Fi=1,2,..\},

the mappings

(e, )) = (ru(e), 72(£)),
x((e, £)P) = (r1(e), 2(f)).

Then, the required graph isomorphism is established by
(e, )P = (e, f9).

The next lemma gives the inductive step for building the larger graph from a

smaller. We are using the conjugate parameters.

Lemma 2.32.

Cn X GGDB(Q? kv Vink, '--,771) = ((Cn X GGDB(Q7k - 17 V—Nk;Mk~1,.- 771))'))\,
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where A = ¢~ -1,

Proof :
((Cn x Gi—1)) = (Ch X G_y)* = (Cn X Gi_1)* = Cu x (G4_1)*) = Cn x G

Lemma 2.33. The number of Euler circuits in the product of Cycle and Gener-

alized de Bruijn graph is

m

| £(Cn x GaDB(g, M, v3 V1, ooy vm)) |= 47 ((¢™))™

Proof : Using the conjugate parameters and induction on k we have, for k =1, a
doubled Cycle graph with n vertices and A = ¢" edges between successive vertices.

The number of Euler circuits in this graph is obviously
AT

which agrees with our formula.
For the induction step, if Lemma 2.30 is used, the proof is completely analogous

to that of Lemma 2.25. |
The main theorem of this chapter follows.

Theorem 2.34. There are exactly

¢ (g™

distinct sequences GB(gq, m, v, n;v1, vy, ...,Vm), and they correspond 1-1 to the dis-

tinct Euler circuits in the graph

Crn x GgpB(g, M, V;v1,V2, ..., Um).
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For m = 1 we get the sequences of Type 1, for n = 1 those of Type 2. Finally,

if both m = 1 and n = 1, we are back to the original de Bruijn sequences.

REMARK

The ordinary de Bruijn sequences have a two-dimensional counterpart: the r x v-
periodic sequences in which each possible content of an n x m-window appears
exactly once per period. E.g., in Figure 2.11, the 16 binary 2 X 2-matrices all
appear in a 4 X 4-periodic array. The two-dimensional de Bruijn sequences have

found applications in optics and communications (see e.g. [Etz] ).

A natural extension of the work done here would be to investigate the existence
of two-dimensional Generalized de Bruijn sequences. Stating this problem, we end

the chapter.

Figure 2.11.
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