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ABSTRACT

The apparently different physical problems of lateral vibration
and elastic stability are limiting cases of a single phenomenon, the
most general expression being the mode of vibration with end thrust.
The theory of straight beams and flat plates is discussed in detail,
and it is shown that the square of the frequency of lateral vibration
is approximately linearly related to the end load. The linear rela-
tionship is exact if the mode of free vibrations is identical to the
buckling mode. In all cases, the load corresponding to zero fre-
quency is the critical buckling load. The analysis is valid only if
the boundary conditions do not change with load.

Experimental tests were conducted on elastically restrained
columns in the form of rigid rectangular frames. It is found that
the relationship between the square of the frequency and the load is
practically linear ,and that the extrapolated load corresponding to
zero frequency coincides with the buckling load. Determining the
critical load by frequency measurements seems to have the advantage
of predicting that load corresponding to the actual boundary conditions
which prevail, whereas a theoretical calculation may unjustifiably
assume certain conditions which are not exactly realized.

In the case of flat plates, tests showed that the linear rela-
tionship is not achieved in practice. It is shown that this is prob-

.

ably due to the fact that the linear plate equations are not valid due



to initial curvatures in the plate.

Rigid-joint trusses were also tested. Due to the change of
end restraint with load, in some cases the relationship between
the square of the frequency and the load deviates considerably from
linearity. The amount of deviation appears to depend on the sec-

tion properties of the members of the truss.
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PART I

INTRODUCTION

Problems which relate either to the free vibrations or to
the stability of elastic systems have received wide attention, and
both phenomena have been investigated very thoroughly. It has
long been recognized that there is in fact no real distinction be-
tween the two classes of problems; mathematically they are iden-
tical.

It is interesting to note that in addition to the similarity
between the simple problem of free vibrations and of elastic sta-
bility, some very striking analogies occur when certain modifi-
cations are introduced. A good example is provided by consid-
ering forced vibrations and the stability of an initially curved
member. To illustrate this, a uniform beam has been chosen
for simplicity.

(2) Consider a uniform beam subjected to a load that is
a harmonic function of time. The differential equation for the
deflection y of a vibrating beam is given by

%y %y _
EI 535 + P 572 =0

when there are no external forces. If the load per unit length

is equal to p(x) sinWt, the equation of motion becomes



*y >y
E7 W + P a—zz'= P(X) s ot

Separating variables, the solution can be written as

Y=wixX) sinwt
Therefore w(x) must satisfy the total differential equation

g

ei=7%a

— p?wW = pIX)

If the beam is assumed to be hinged at each end and if

p(x) = p, sin %5- , then w(x) can be written as w(x) = Wo sin-?g)i

Substituting these values into the above differential equation,

Jaxes

Er I - peo?

4
= _E_’!; /
*
or W 2 3222

S At -

W, =

An examination of the terms in this expression reveals that
pot*
(i) ZT77% is the coefficient for the deflection w(x) if p(x) is a
. .. 4 24 .
stationary load, and (ii) EIr */p£~ is the square of the funda-
mental frequency «J, of the beam.
Hence the deflection curve for a forced vibration with
frequency «J can be obtained by multiplying the static deflec-
/
tion curve by the ''resonance factor" , (_L_u_)z
wo
(b) Consider a column under the action of an end thrust
P, and which has an initial curvature given by

W=M/05/n—7{;—)-(—
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If the column is assumed to be hinged at each end, then

the equation governing the form of the strained central line is

El(d2y_ d2W —_ _P‘y‘

Ix€ axé
d°w e X
But IxZ =—V:§2 S/ﬂ?— N
% > w, 7% X
- e TEY =z sy

The solution of this differential equation is

W, 772 77X
772-52—82 S//?{

)’=Acos,8x + BsimfBx +

The boundary conditions are:
(i) y =0 whenx =0
(ii) y = 0 when x =4.

The first yields A =0.

The second requires B sinB€=0,
i.e. B=0orsingf-0O.

Hence for a finite solution put B = 0.

. Wo772 77X
Ly= e - gebe SIn g

/
or y= e (1—5‘77@2 vvosm-gi.
Bl P _ A
But o Py E

where P is the Euler load ,

Ly= [7(/—’—*5)] Wosm%)£ .



.
Hence the deflection curve for a column with initial curv-

ature can be obtained by multiplying the deflection curve of an

/
_P_ °

,—
B2
Comparing the results of examples (a) and (b), the simi-

initially straight column by the "magnification factor"

larity in form of the resonance factor and magnification factor is
evident. By extending the above simple analyses to the vibration
of a beam under an arbitrary load distribution, and to the buck-
ling of a column with an arbitrary initial curvature, it can be
shown that identically similar factors occur. (References 1 and
2). It is this similarity that inight lead one to suspect some
connection between P_ and a)oz, The suspicion can be corrobor-
ated quite readily in the case of a beam which is pinned at each
end. Without any external forces being applied to the system,
the equation governing the free harmonic vibrations is

g w
I x4+

El — PWW%= 0.

The modes of vibration are given by

w= A, sm%@—Y

and the corresponding frequencies of vibration are

n2m, [EL
="z I

Now consider an axial compression P acting along the
center line of the beam. The corresponding equation for free vi-

brations becomes
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v o‘w 2
El Tt +de2 - pwWdé=0O.

The shape of the modes is the same as before, but the frequency

- n2m? [EI(,_ P
“h= gz \/p(’ ,/_r;,)
n2meET
_22

is now

where £ =

Hence the effect of the axial compression P is to decrease the
natural frequency of vibration. In addition, the variation of the
square of the frequency with P is linear; and finally, the frequency
falls to zero when P approaches Pn which is the buckling load of
the beam.

The question naturally arises as to the generality of this
variation, énd whether such a behavior can be expected in struc-
tures other than simply supported uniform beams. Physical in-
tuition would lead one to believe that, if an axial compression
does decrease the natural freguency, then the frequency of any
structure would fall to zero when buckling is reached.

A review of the literature ;iealing with this problem re-
veals the sparseness of information which is available., By far
the most extensive work is that by Massonnet (Reference 3), which

was published in Belgium in 1940. Massonnet!s paper is entirely

theoretical, and he does derive some general relationships using
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the energy approach. The greater portion of his paper is confined
to the solution, by the differential equation method, of a large
number of particular cases. He treats uniform beams, plates,
rings and shells, and solves a great number of these with various
boundary conditions.

An earlier treatise which was restricted to the vibrations
and buckling of rectangular plates was published in Sweden in 1929
by Grauers (Reference 4). This is an exhaustive study of the vi-
brations of plates with various boundary conditions, in order to
use these modes to find the stability criteria by Ritz's method.
No attempt was made to draw any general conclusions between the

s

vibration and stability problems. -

A paper somewhat related to the present problem was
published in this country by Weinstein and Chien (Reference 5),
in which the vibrations of a clamped plate under tension were in-
vestigated. By using the variational energy approach, they showed
that the square of the frequency of vibration increased with in-
creased tension in an approximately linear manner. .

Stephens (Reference 6) recognized the similarity between
the stability and vibration problems, and proposed a method for
determining the end fixity coefficient by a frequency measurement.

His analysis, however, is based on a fallacious argument--this
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is discussed more fully in Appendix C . He also proposed the fre-
quency method for determining loads in axially stressed members,
but here again his analysis errs. His paper does contain some
useful experimental results on clamped bars.

The only other experimental work which seems to have
been conducted is contained in a thesis by Chu (Reference 7).
Guided by Massonnet!s work, Chu tested a simply supported col-
umn and also a rectangular frame. His results for the column
agreed very closely with theory. However, although he obtained
a linear relationship between «0? and P for the rectangular
frame, the extrapolated value of P did not agree with the cal-
culated lowest critical load corresp;nding to symmetrical buck-
ling, but with a higher critical load which represented the un-
symmetrical mode. Chu's work was not sufficiently complete to
explain this phenomenon satisfactorily.

From the foregoi-ng discussion, it is evident that the prob-
lem has by no means been thoroughly investigated. It is particu-
larly desirable to know the restrictions under which the linear.re-
lationship holds, and, if the relationship is not linear under certain
conditions, the deviation from linearity. In addition, some further
experimental work appeared to be necessary. Firstly, Chu's work
should be extended in order to understand the technique more fully,

and secondly to attempt to check further theory.
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The practical application of such information is two-fold.
Firstly, the members of a structure are very often subjected to
axial loads, and a determination of their natural frequency is of
some significance in order to prevent resonance. Secondly, if
such a law of variation of natural frequency with end thrust can
be est;blished, it would lead to useful practical applications in
the form of non-destructive tests for the determination of the
static buckling load.

It is the purpose of this work to explore, both theoretically

and experimentally, the effect of axial loads on the frequency of

vibration of elastic bo‘dies .
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PART II

GENERAL EQUATIONS

Before examining any specific class of elastic bodies,
it is possible to study some general expressions which describe
the vibrations of continuous systems such as beams and plates.
The differential equation for the vibrations of such a system can

be written in the general form
L[d) + SPY,= FX58) (1)

where the subscript i takes on as many values as there are space
variables. L [u] is a'linear differential expression which includes
only the unknown deflection function u and its derivatives with re-
spect to the space variables x;. For example, for the uniform

beam

L[] = v7U. (3)

2

In the above general equation, c“ is a physical constant and
f(x;;t) is proportional to the density of the external force.

In the problem under consideration the case of free vibra-

tions is of primary interest. Mathematically this means that the
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solution is given by a function u which satisfies the homogeneous

differential equation
L[U] + cPyy=o0 (4)

together with the initial and boundary conditions of the problem.
In order to find the natural modes, the variables are sep-

arated by putting
UlX; 5¢) = wWixg) (). (5)

Substituting eq. (5) into eq. (4),

LIw] _ gy
c?w g

Since the left side is a function of the space variables only, and the
right side is a function only of time, it follows that each must be
equal to a constant, say - D%

Hence the two total differential equations are obtained:

Guy + DPg=0 (6)

Lln]— W?ciw=0 . (7)

(

The first equation yields solutions which are a harmonic function
of time, while the solution of the latter (the eigenfunction equation)
determines the admissable values of the constant ¢@? and hence the

natural frequencies of the system.
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Hence in general the natural frequencies will be given by

the equation

(8)

A further and more complete treatment of the theory of eigen-
values is contained in Reference 8.

In the foregoing analysis it was assumed that no external
forces were acting on the system. Now suppose that the vibrating
system is subjected to an end load P. The only effect of this will
be to modify the differential operator L.. Denoting this modified
operator by L* and the new deflection function by v(X;), the ex-

pressions (2) and (3) now become

IV P v
L¥[Vv] = —s + T o for beams (9)
Ne % Ny 9%v

and £*[v]= v'v + (10)

D ox2 T D T9y2

for plates subjected to end loads Ny and N, per unit length. Eq. (8)

now becomes

Q) = . (11)

Hence from Eqs. (8) and (11) it can be concluded that

(%) = =28 a
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As L* is a function of the end load, the right side of this equation
will be a function of the end load. Hence Eq. (12) will give the
general relationship between the square of the frequency and the
end load. As w and v are both functions of x, Eq. (12) indicates

*1\2

that a necessary condition for (—w—';) to be proportional to the
end load is that w(x) = v(x); i.e. the mode of free vibration must
be unaltered by the application of an end load.

The value of the end load at which tfie natural frequency
is reduced to zero can be deduced from Eq. (1l}. For 60:2 to be
zero, L*[ v] must vanish. Putting this condition in Eq. (9), the
natural frequency of a beam will become zero when the end load

assumes a value given by

d4v P Py
ot T AT axe= © (13)

But the values of P given by this equation correspond to the static
buckling loads (See Appendix A). Hence the natural frequency is
reduced to zero as the end load approaches the critical buckling
load.

In precisely the same manner, if L* [ v] vanishes in the

case of plates, Eq. (10) yields

N, OV N, oV o

g
VYt 5 o T p 52 9 (14)

Again the values of Nx and Ny as given by this equation correspond
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to the static buckling loads of the plate (Reference 2).

Considering the other extreme case of the end thrust van-
ishing, Egs. (9) and (10) simply reduce to Eqs. (2) and (3) respec=
tively; viz. for normal free vibrations. From this, and the pre-
ceding results, the following conclusion can be deduced, bearing
in mind the fact that the natural frequency of vibration is a func-
tion of the end load:

The most general expression for the shape of a beam or
plate will be the mode of vibration with an end load; the free modes
of vibration and the buckling modes are special limiting cases
of this, viz. P = 0 and «J, = 0 respectively.

This reduces the apparently different physical problems
of vibration and buckling to special cases of a single phenomenon.
The mathematical similarity between the two problems has often
been pointed out, but not the fact that they are limiting cases of

the one problem.
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PART III

THEORY OF STRAIGHT BEAMS

Having derived an expression relating the square of the
frequency to the end load in very general terms, it is now advan-
tageous to examine in greater detail the form that this equation
assumes in the casé of straight beams. ‘ At the same time it can
be shown how the linear differential operators are obtained if
the problem is begun from first principles.

The free vibrations of a beam are governed by the gen-

eral beam equation

4
E %j = px) (15)

where p(x) is the loading per unit length. In the case of vibrations,

2
this loading will correspond to the inertia loading - P gt‘; . Hence

by d’ Alembert's principle, Eq. (15) can be written as

% o

Ox* C oz -

£E7

Let UX,t) = wix) g (¢)

, O o%g
AL 5xa 9T TPW o
E_I 6_4_‘/1/: i 9_23 — 602

ow ox* G o¢
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Therefore this resolves into the two equations

Gy + 929 =0 (16)
£ O’X4 —Z_% Wiw=0. (17)

Hence, in the notation of Eq. (7),

4
L= % 5 2= £ (18)

Now if an end thrust P is acting, the governing equation becomes

64U aau + a MP

£L X+ -P o2 ox2

where Mp= Bending Moment dve ¢o P=~-Pu

) % % Q%
' 5[5;7 * £ 52 = P

Putting (X, ¢)= VI(X)qg (%)

the equation becomes

GV
Elg X * g 6X2

— _pv9Q
pv ore

Similarly, this can now be resolved into the two equations

G + @G =0 (19)

Jdv P dv _ p ol
$ Rt T e 10TV « (20)

Hence in this case,



-16-

* _ dH =R Vs P
L [V]_ dX4 + £ Ix2 5 C2=H . (21)
Therefore, from Eq. (12),

d 2
ol W Sxa P o’xf)
<On - d4w (22)

odx%
where (92= Z‘_’}— .

As indicated in the previous section, the general solutions
of both Egs. (17) and (20) can be obtained by considering Eq. (20)
only, and then putting P = 0 to arrive at the solution of Eq. (17).

The characteristic equation of Eq. (20) is

A%+ (8222— c?* = o

%= _5_2 * \/(gf)z + CacO*Z'

As the radical is always positive, the two values of A% are real;

one is positive and one negative.

V= AcoshAx +Bsmnh A, X+ CcosA X+ DsinA X (23)

o \/ £ (ﬁ?) o
wa e ([ £ B ¢ e




(17)

Hence it follows that

w= Qcosh A;X + R sinhAzX +Scos A X +1smnlg X (24)

4 2
4 Ea)
where /13= V c?weé = \/ =T :

An examination of Eqs. (23) and (24) shows that the two
modes can be equal if either the hyperbolic or the trigonometric

functions vanish. In addition, for the linear relationship to hold,

oY 2 dév
Eq. (22) indicates that (3;4_ + B o2 must be linearly related
w
I x4

to These two requirements are possible if v and w are
either hyperbolic functions or sine functions. No physical bound-
ary conditions will yield purely hyperbolic solutions, hence the
sine solutions are the only possible conditions for linearity.
These correspond to simply supported ends.
Hence consider the case of a simply supported beam in
which the boundary conditions are
(i) v=0 o x=0,4L
) L
(i) gives A=C=0
(ii) gives /L—,a B sinh AP + /'\EED sin /'12-P= o
AZB sinhA,L - /"j D sinA,¥=0

=0 at x=0,2L.

(A,2+/']22)5 simh A,L=O
. B=0 .
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Hence Sv7A; f=0

& Al = nr (rn=1,2,3,---)

e

Hence v(x) = w(x) = D sin 272X

£
and Eq. (22) becomes

o
(,o,fa e ox2
)= 18—
g g
agx4
r2e
- s L% -
= TP T e T T e
*84
O )Ez __pPtF
"\ reeEl
(ﬁ?’)"‘ - L
or 60,; 1(,73 (25)
22 £1
where & = ﬂ‘%— = buckling load corresponding to

nt_l?_ mode of buckling.

This illustrates that the square of the frequency varies
linearly with the end thrust. For P =0, the frequency becomes
the natural frequency for free vibration; at zero frequency, the
end thrust is equal to the buckling load.

The experimental implications of this result are quite con-
siderable. By measuring the natural frequency of free vibration
for such a beam, first with no end load and then with an end load

which may be well below the buckling load, these two points can
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be extrapolated by a straight line to intersect the P abscissa for
zero <O°. Then this value of P will correspond to the buckling
load. Hence a non-destructive test can be conducted to establish
the experimental value of the buckling load.

Chu (Reference 7) conducted such a test on a straight bar
of rectangular cross-section, simply supported at the ends. He
measured the frequency of lateral vibration for a number of end

2--.1oad curve was verified

loads, and the linearity of the frequency
to within very close limits. The extrapolated critical load was
within 1/2 O/o of the calculated value. He did not measure the
buckling load.

If v(x)# w(x), Eq. (22) indicates that the linear relation-

~

ship between ¢«%and P will no longer be valid. However, in the
previous section it was established that even in this case the fre-
quency becomes the natural frequency for free vibration when
P = 0; and that the end thrust is equal to the buckling load at zero
frequency. The question now arises as to the magnitude of the de-
viation from linearity for other end conditions. It will be shown
in the following section how energy considerations can be utilized
to give an estimation of this deviation in general. However, at
this point, it would be instructive to examine the relationship

for particular widely differing end conditions.

Two cases chosen are a beam fixed at each end, and a
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cantilever. Introducing the relevant boundary conditions into
Eq. (23), the frequency equations are obtained as a function of
Wy \?

the end load. Hence the curves of En) against P/Pn can
be plotted. Fig. 1l shows these curves for the fundamental mode.

It can be seen that the deviation from linearity is small
in these two cases. For a beam with elastically restrained ends,
one would expect the deviation to be even smaller, the curve ly-
ing between those for the simply supported and clamped beams.
If this deviation can be shown to be sufficiently small for all
practical cases, then the foregoing experimental method could

be extended to cases in which the end fixity coefficients were un-

known.
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PART IV

ENERGY METHODS

As an alternative approach to the differential equation
method, the nature of the problem strongly suggests an analysis
by means of energy considerations. The results of the previous
section indicate that for any boundary conditions, the mode of
static buckling does not differ appreciably from the mode of free
vibration. Hence it would be profitable to examine the problem
in the light of Rayleigh's vpr.incip.le which requires only a mod-
erately accurate representation of the amplitudes of vibration
in the fundamental mode.

The amplitudes assumed in Rayleigh's method actually
correspond to a slightly constrained mode, the frequency of
which can easily be determined by energy calculations. The
frequency thus obtained cannot be less than the true fundamen-
tal frequency, and so the method gives an upper bound. By
using Rayleigh's principle, the approximation to the fundamen-
tal frequency will be much closer than the approximation of the
assumed amplitudes to the true amplitudes.

The energy method can also be used in a very simple
manner to determine the lower bound. This is particularly true
where a system is sirmultaneously subjected to different types

of external forces, each of which if acting separately would
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result in an eigenvalue problem. Then, in general, an inequality
can be derived which relates the combined external forces to
each of them acting separately. (Reference 9).

This method is thus appropriately applicable to the prob-
lem of the vibrations of a beam subjected to end thrust. Let a
beam of arbitrary mass distribution be subjected to an end
thrust P and hence have a lateral vibration frequency 60,7* .
The amounts of work done by the end thrust P and the inertia
forces can be represented by W and aJ;ZVVZ respectively, where
W and VVZ depend only-on the deformations. If V represents

the strain energy, the exact criitical condition is given by
2
V= PW +a' N . (26)

Let P, be the static buckling load for this beam, and J,
the natural frequency of free vibration with no end load. The

critical relations for these two cases are

’ /

V- PW (27)
n 2 /Y
and V = o, I/\/‘;
when the primed quantities are calculated from the deformations

appropriate to each type of external force. Hence it can be con-

cluded from Ryleigh's principle that



Hence
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and V; 60,’21/\/2-

v
i.e W<FT;/ and V\éng?
Vo, eV
V < PE + <, e
2
P o
or / < 72— + a)::z ) (28)

Eq. (28) gives a lower limit to the frequency of the axially

loaded beam. The equality sign will hold if the modes are iden-

tical in all three cases.- This checks the previous result obtained

for uniform beams which are simply supported.

Now Rayleigh's principle can be made to yield an upper

limit to the fundamental frequency by the use of an assumed mode

of vibration. A reasonable assumption for this purpose is to sup-

pose that the mode of vibration with end thrust is identical to the

mode of static buckling. Consider the energy expressions:

/
Strain energy due to bending =§/ £T IXE,
: o

dQV ox

/ dv\é
Work done by end thrust =2 P/ (dx
o

2y x —

b, 2
Hence total potential energy —2[51 i /P/ (g}) IxX. (29)
(=]
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On the assumption of synchronous motion,

j .
kinetic energy = 2 / pveidx . (30)
Equatmg Eqgs. (29) and (30),
0
4 / E1(Z% ox - 4P / J o < £ aD*Z pVRdx
Y4 2 -d
M fE] g V) IX = P/ )dx + 40*2/ PYedx. (31)
(=} o

This relationship is exact if v is the actual deflection
function of the vibrating strut, i.e. that which satisfies the
differential equation. However, it results in a good approxima-
tion if the differential equation is entirely disregarded and v is
any function of x which satisfies the boundary conditions and
which is a moderately accurate representation of the vibrating
mode .

In any case, if v is chosen to be a normed deflection
function, then the exact expression (31) becomes for uniform

beams

- [( & B[ (2
By using an approximate function for v(x) the relationship be~-
comes £2'< [Y(22sfor - £ [y
c20* 62 f (dv) X

[efo 7" [1era

(32)
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Eq. (32) gives an upper limit to the frequency of the
axially loaded beam. Again the equality sign will hold only if
the modes are identical, in which case it checks with Eq. (28).

‘As an example of this upper limit in a particular case,

consider a beam fixed at each end. The buckling mode is

V= /4(/- cos%z’—(

Determine A for normalization.

[P (1= cos 28 dx = 1

(=]

’4 347

av 2. ar 27X
X V3 2

"

2 | 4 21X
ﬁdxé' \/38 55 cos<fX.

- 2 7
Hence [ —;,'—I—r—(-) X = [ % S/ﬂgczrx ax

= 4
3L2

and
L 3P°

4

[ d?v /’j32‘77'4‘ cos? .:j’{zrx X

/e
3L4

J. Eq. (32) becomes

- c?w*? 2 4mwe34°
! = cn5p7 T B jeni ot

2
, 3pw*2 o £ .
Sy g ey 3 (33)
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But for a clamped bar,

- e FT
- g
2 2 £T
and a), = (22.4) ;zz .

.. Eq. (33) can be written as

W\ P
{1 > 0.966(2)41) -+ —-F . (34)

If Eqs. (28) and (34) are plotted, as in Figure 2, the true
ot

curve of Zj’;) against P/Pl will lie somewhere between the
two plots. At P = 0, it has been shown that 60,*= «) , hence an
estimate of the probable curve may be drawn. This is shown on
the figure. It is noticed that the deviation from linearity is small.

In any similar calculation, the form of Eq. (34) will be
the same. The coefficient of P/Py will always be unity, because
the assumed shape is the buckling mode., Hence for any boundary
conditions the curve corresponding to Eq. (34) can be obtained
‘simply by calculating the point A in Figure 2, i.e. the natural
free vibration of a beam using the buckling mode in the Rayleigh
approximation. From Rayleigh's principle it is known that this
point will lie very close to unity, and so it can be concluded that

£ 4 (L)

the deviation of the true curve from _? 0, is always

very small.
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PART V

EXPERIMENTAL TESTS ON BEAMS

The experimental verification of the variation of frequency
with end load for a simply supported beam was carried out by Chu
(Reference 7)., and for a fixed ended column by Stephens (Reference
6).. In both cases very satisfactory agreement with the theory was
obtained. In order totest elastically restrained columns, Chu in-
vestigated the case of a rectangular frame subjected to end thrusts.
Although he obtained a linear relationship between the load and the
square of the frequency, the results were not conclusive. Theo-
retically the frame should buckle in the lowest energy state, which
corresponds to a symmetrical mode. However, the buckling load
corresponding te the extrapolated value of Chu's curve was approx-
imately equal to the critical load for unsymmetrical buckling.

The frame in Chu's tests was excited by striking one of
the vertical members with a rubber mallet, and the frequency was
measured by recording the output of electric strain gauges on an
oscillograph. Due to local yielding at the knife edges under appli-
cation of load, the damping increased to such an extent that the
test could only be conducted up to approximately half the buckling
load. Chu remarked that although the measurements-indicated
that the struoture was stable in the unsymmetrical mode of vibra=-

tion, one could not however conclude that the structure would
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buckle in that mode first. He stated that its dominance might be
purely because of the method of excitation and the support condi-
tions ..

In view of the above tests, it was decided to carry out further
tests on a similar rectangular frame. However, the frame supports
would be improved, and a more refined technique of excitation would
be developed. It was considered desirable to conduct the tests right
up to the physical buckling load in order to correlate the vibration
mode with the actual buckling mode.

The frame was made of cold rolled steel strip, brazed to-
gether at the four corners. At each corner, on the center line of
the vertical members, hardened steel knife edge seats were soft-
soldered to the horizontal bars in order to reduce damping as much
as possible. Figure 3 shows the details of the frame. The load was
applied through 1/4 x 1/4 tool bits resting in small V-blocks. The
top knife edges were carried by a heavy I-beam which was loaded
at the center so as to divide the load equally between the two legs
of the frame.

Instead of measuring the free vibrations of the frame, it
was decided to build an oscillator which would impose an exciting
force on the frame. By varying the frequency of the oscillator so
as to develop resonance, the natural frequency could be determined

at each loading increment.
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This was arranged by constructing a magnetic circuit with
an alternating flux. The core of the magnet was made of one inch
square annealed steel with a center pole piece, and one of the vert-
ical members-of the frame formed the return path. The arrange-
ment is shown in Figure 4. The coil was made of approximately
2000 turns of 20 gauge wire wound on a cardboard bobbin. The air
gap between the core and the frame could be varied to give maxi-
mum power output ..

A 30-watt power amplifier was built as a power supply, the
output from which was connected to an audio-oscillator in order to
be able to vary the frequency. The oscillator was a Hewlett Pack-~
ard model 200D, with a frequency range from.7 to 70,000 cycles
per second. The oscillafor was connected directly to the coil. A
number of taps were arranged on the output transformer of the power
amplifier and the taps used were tested empirically in order to give
optimum power.

In 'order to measure the frequency of vibration of the frame
and also to determine resonance, dynamic strain gauges were at-
tached to the vertical members of the frame as shown in Figure 4.
The strain gauges were SR-4 gauges, type Cl, manufactured by the
Baldwin Liocomotive Works. Gauges were attached to both vertical
members in order to determine whether the frame was vibrating

in the symmetrical or unsymmetrical modes. The usual method
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of measuring the strains by use of a Wheatstone bridge circuit
was discarded in favor of a potentiometer circuit, as shown®in the

sketch.

STRAIN
GAUGE

— AMPLIFIER OSC/LLOGRAPH

STRAIN
GAUGE

By having a strain gauge on each side:.of the bar, greatly increased
sensitivity could be obtained and the necessity of having balancing
resistances was obviated. A condenser in the amplifier blocks out
the D.C. component of change of potential, and only the A.C. com-
ponent due to the vibrating strain-is transmitted to the oscillograph.
The amplifiers and t?oscillograph were types-BL.202 and BL905 re-
spectively, manufactured by the Brush Development Company. The
oscillograph was a two-channel type with pen recorders, so that
both vertical members could be recorded simultaneously.

The testing machine used was a hydraulic machine manu-
factured by' the Tinius Olsen Testing Machine Company, and had a
range ap to 16,000 1b. in 20 lb. graduations. The complete set-up

is shown in Figure 5.
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The first test was conducted in order to determine whether
Chu's results could be repeated. In his test the maximum load
applied was below the critical load for symmetrical buckling. The

lfirst question to be settled was whether the frame, with an unsym-
metrical-stable vibration mode, would remain stable aboyve the
symmetrical buckling load.

L.oad was applied in 1000 1lb. increments, and at each load
the electro-magnet was energized. The frequency of the oscilla-
tor was varied until the occurrence of resonance, which was evi-
denced by maximum amplitude on the oscillograph. It was found
that the frame vibrated in the unsymmetrical mode, corroborating
Chu's results. The load was increased until it exceeded the theo-
retical symmetrical buckling load of 7330 1lb., and the frame remained
stable. Frequency measurements could be recorded above this load.
In order to determine the mode of buckling, the load was increased
continuously until instability resulted. It was found that the frame
buckled in the unsymmetrical mode. The variation of frequency
with load.is shown as Curve 1 in Figure 6, Extrapolating the curve
to zero frequency gives a buckling load of 11,150 1b., as compared
to the theoretical unsymmetrical critical load of 11,360 lb. for this
frame, The test also confirms that the deviation from linearity of
the curve for such an elastically restrained strut is so small as to

be negligible in comparison with experimental error.



-32-

Having established the fact that the mode of buckling is of
the same form as the mode of vibration, a second test was con-
ducted on a second frame of the same dimensions. Similar results
occurred; the points are plotted as Curve 2 in Figure 6. The actual
buckling load was measured as 10,250 1b., as compared with the
extrapolated value of 11,450 lb. and the theoretical value of 11,360
Ib. In this test an endeavor was made to obtain some points rep-
resenting the symmeirical mode of vibration, but at most frequencies
insufficient power was available. However, two points were ob-
tained, and these are plotted as Curve 3 in Figure 6. The fact
that this curve lies above that for unsymmetrical vibrations seems
to imply that, for some reason, it-is a higher energy state.

The third frame was constructed of similar dimensions,
except that the knife edge seats were arranged eccentrically by mov-
ing them 0.2 inch towards the center line of the frame. This would
ensure symmetrical buckling, and it was desired to determine the
correspondipg vibration modes. However, the vibrations were
still unsymmetrical, and the points are plotted as Curve 4 in Figure

S
6. The measured buckling load was 5,500 1b.

It was significant that, in all three tests, the fundamental
no-load frequency was approximately 100 cycles per second, cor-
responding to the symmetrical mode. (The unsymmetrical mode

could also be excited at no load, but required more power ) As
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soon as the first increment of load was applied, however, the stable
mode became the unsymmetrical one.

In order to discover this apparent discrepancy with theory,
it seemed logical to examine the experimental set-up in the light
of the theoretical assumptions. The boundary conditions wquld
first come under suspicion. All four knife edg‘e.s were firmly sup-
ported in V-blocks which would prevent any lateral movement of
the four corners. )Although this appeared to be a minor point,
the support system was modified. The two left-hand knife edge
supports were 90° V-blocks as previously, but the right-hand sup-
-ports were replaced by hardened steel knife edge seats.. Also, the
1/4" x 1/4'" knife edges were replaced by 1" x 1" tool steel knife
edges. Hence lateral movement of the right-hand supports was
now permitted. The modified system is shown in the following

figure,

S zzz
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The frame tested with the modified boundary conditions
was identical to those in the first two tests. Again load was ap-
plied in 1000 1b. increments. This time, however, the symmet~
rical mode became the stable configuration for all loads. The
variation of frequency with load is shown as Curve 5 in Figure 6.
Again linearity is verified to within experimental limits, the ex-
trapolated value of 7330 lb. corresponding exactly to the theoret-
ical buckling load. The frame actually failed at 6950 Ib. in the
symmetrical mode. In this test the unsymmetrical mode could
also be excited with little difficulty, and by plotting these points
the unsymmetrical buckling load could be estimated. This of
course would not be of much practical significance as the frame
is unstable above the symmetrical buckling load.

In view of the results of this test, the reason for the be-
havior of the frames tested previously now becomes apparent.
The second-order effect of maintaining the horizontal distance
between the knife edges is sufficient to cause the unsymmetrical
mode to be the stable mode both for vibrations and buckling.

The no:load frequency for the previous frames corresponded to
the symmetrical mode because the support restraint was relieved

under no load. It might be mentioned here that if the frame is

completely free at the top to move laterally, the antisymmetric
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buckling configuration is theoretically associated with the lower
buckling load (Reference 16).

These tests thus showed up the very important result that
the buckling load of a frame can be predicted by simply measur-
ing the frequency of vibration under various loads. The correct

t
mode of buckling will automatically be satisfied due to the fact
that the vibrations will also occur in that mode. For example,
Chu (Reference 7), althougﬁ he obtained the predicted linear re-
lationship in his test, was not sure why the extrapolated value
would not correspond to the theoretical buckling load. He sug-
gested that it might be due to his method of excitation. It is seen
now that his extrapolated value would in fact correspond to the
actual critical load for his boundary conditions had he continued
loading up to buckling.

Two'very important points must be realized in using this
experimental method. The first is that the members of the frame
must be long enough to fail by elastic instability, i.e. no short

- column effects. Secondly, the boundary conditions must-be such
that they will not vary with loading. This second conditions is not
important in static buckling tests, because the equivalent end fix-
ity at buckling can be computed. However, in the dynamic tests,
it is important that the boundary conditions for each vibration

test be identical to the boundary conditions which would prevail

if buckling were to occur.
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PART VI

THIN PLATES OF CONSTANT THICKNESS

In Part III it was shown how the particular equations for
a straight beam were developed, and that these equations led to

1oad-frequen<:y'2

relationships which were either exactly or ap-
proximately linear. Proceeding in a similar manner, it is pos-
sible to derive the corresponding equations for a flat plate.

The free vibrations of a plate are governed by the general

plate equation (Reference 2)

<. 4 4
4, _ OV oy oty _ g
EB

where D is the flexural rigidity = ;5(;-»2) , and q is the load per

unit area. In order to extend this equation of equilibrium to that

of motion, it is sufficient, by d' Alembert's principle, to replace
_ 0% . .

q(x,y) by -4 372 Where U (x,y) is the mass per unit area. Then

the equation for the vibrations of the plate becomes

oty *u % | _wu %y
ax+* 7 2 Ox29y? 7 oy# TS a2 @ (36)

—

Let U(x,y3¢)= wixy)g(t),

gt) viwix,y) + /—L‘;- WX, Y )G, (E) = O
. D YW gy o2

7Y g
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Resolving this into two equations,
Fpe + WO2g=0 (37)
and v¥w- £ 2w-0. (38)
Hence, in the notation of Eq. (7),
LIwl=viw ; 2= £ . (39)

If the plate is subjected to compressive end thrusts /\L and /\[y per
unit length, and end shears My per unit length, the dynamic equa-

tion becomes

/ DU Q% % Fu
vu-5 [My axdy M ox2 T gye a’fa} - oy

Putting U (X,Y;t) = V(X,)’)g(f}

the equation becomes

4 ya v v o) z] A _29.-.
gl)v wx,y)+09(t)[ k ox2 +Ny oy? ~MNey oxdy * 5 vy 2 o

4 2 4 2
viv 1 1 %y oV _ =Tt _ o*

This can be written as

Fer T “7*29 =0 (41)
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4, L oai' O | A
¢‘Vv+D[N N),a xraxay] St r=0. (42)

Hence

LIV1= viv + [M ox? +N av M)’ axay__l

£ co= /—g— : (43)

The frequency relationship, from Eq. (12), then becomes
A 2V , N, 9% 9%y |
w{v4v+ [N S LY + N, b 5ye ~Nyy ——5= ox 3y

() - o (44

If the plate is subjected to a thrust in the x-direction only, Eq. (44)

reduces to

P=4
2 4 Ny 9 V]
n v 74w

It is evident from Eq. (42) that, for a simply supported
rectangular plate uniformly compressed in one direction, the solu-
tion can be written as

7
VIX,y) = Amn S ’Zzﬂx S/7 nby .

As this mode would also satisfy Eq. (38), it can be concluded that
. . . . 2
(45) would yield a linear relationship between ¢J, and _M
However, there are less restrictive conditions under which

this linear law is still exact. Consider a rectangular plate uniformly
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compressed in the x-direction, simply supported along two oppo-
site sides perpendicular to the direction of compression, and
having various edge conditions along the other two sides. The

equation of motion is then obtained from Eq. (42):
viv= —N} %Xa +,aa9* ) (46)

Assume a solution of the form

mTx
V= £fly) S =

(47)
which satisfies the boundary conditions along the simply supported
edges x = 0, a. The f(y) will depend upon the other two boundary
conditions. Substituting the value of v from Eq. (47) into Eq. (46),

the differential equation for f(y) is obtained:

y, 2 4 22 *Z
¥ 2mwe d°F ot Ny e wd )/c=o ) (48)

gyt a? dy? et D a?

N
rNoting that, owing to some constraints along the sides y = 0, b, one

always has

2
Ny mPr? wd* 7
D @ TTp T o

and using the notations

2772 2 *2
ot = \/”7 Ny m?Pr o &

O a? O

mPre Ny m21r? w0 (49)

F=\""az D = T, >
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the general solution of Eq. (48) can be represented in the follow-

ing form:
fiy)= C coshoy + C sinhey +C cospy +C, s By - (50)

If the homogeneous boundary conditions along the sides y = 0, b
are substituted into this equation, the frequency equation is ob-
tained. It is evident that this frequency egquation will be a function
of a and 5 only, yielding non-zero solutions a; and /9-1. Hence,
irrespective of the value of the end thrust, the values of a; and

ﬂ j are determined solely by the boundary conditions. Therefore,

from Egs. (49),

cr 2
#m2Ie 4 Ny; men? _ . mPr? L[4k
22 i) Yo I3 aZ D

2 Mz, m21ré
Loop = u 7— . (51)

Also, from Egs. (49), one may write

# z /=%

2' r
+ m2772+ \/ INy m212 o« ‘Ué* 4 mPrr2 NXC 122
2@ D

cr
o2 m?me Ny (/_ M)
A ai‘( /V,;/:l‘ hd

Substituting from Eq. (51),

#*

2
(“w’t) = /- M‘d ) (52)
; N
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Hence, provided the rectangular plate is simply supported along
the two loaded edges, the linear relationship is true for any
boundary conditions along the unloaded edges-.

It was stated earlier that the condition for the linear re-
lationship to be valid is that the buckling mode of an elastic
body should be identical to the mode of free vibration. This is
true for all plates of polygonal shape uniformly compressed in
their median plane and simply supported along their edges. The
normal vibration modes of such a plate are independent of the
compression per unit length; they are identical to the normal
‘modes of vibration of a membrane of the same shape and stretched
uniformly, in addition to being identical to the buckling modes of
the plate. The proof of this, which follows, is due to Shaefer and
Havers (Reference 10).

For a simply supported plate, the boundary conditions are

v= 0
v %y _
and 5o + ¥V 555=0O.
%V _

For a rectilinear contour EYC A o,

v

L 52O -

Hence the boundary conditions can be written as the so-called

Navier boundary conditions
véy=0

53
and V=0 . (53)
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For uniform compression,
Ne=N,=N; Ny=o.

.". Eq. (42) becemes

4 N oy L 2= 54
vtV o S VRV S d O. (54)
N /4160*2
Writing B= ) and £, = o) » the equation becomes

v* + Bv?v -8B, v=0
7RV + Cv) + G (viv+CV) =0
where C +C, =25,

{:“ CC‘E = _52 -
Putting ¢ = vZv + C: 4 (55)
the equation becomes

Vg + G P=O. (56)

As B, is necessarily positive, C; and C» must be of opposite
sign. Let Cj be positive, C, negative.

The function ¢ which has to satisfy Eq. (56) is zero on the
boundary. This follows from the definition of ¢ in Eq. (55), to-
gether with the Navier boundary conditions (53). From eigen-

furction theory, Eq. (56) possesses non-zero solutions only for
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certain positive values of C,. As ‘C, has been assumed neg-
ative ,. it necessarily follows that ¢ = 0. The differential equa-
tion of the problem is then reduced to the second order equa-

tion (55):
vev + G v =0

with v = 0 on the boundary.

But this is the governing equation for the vibrations of a mem-

(57)

brane of the same shape as the plate. Eigenfunctions of the mem-

brane are thus the same as for a vibrating plate 5C1 = -CZ) , as
well as for the stability problem (C, = 0). This proves the the-
orem.

Hence the following general résult can be stated: For
any thin plate of polygonal shape and uniform thickness>which is
simply supported along all the edges and subjected to a uniform

thrust N per unit length, the frequency <" follows the relation-

ship
A N
Un | — - =Y
( aJ,,) "N

It is interesting to note that although this relationship
is exact for a polygonal plate with an arbitrarily large number
of sides, it is not valid in the limit when the number of sides
becomés infinite. The boundary would then be curved and the

Navier boundary conditions would no longer be applicable.



-44-
Admittedly, however, the deviation from linearity in the case of
a simply supported plate of arbitrary plan form would be expected
to be very small. This can be seen very readily in the case of a
circular plate; the normal modes of vibration and of buckling
have been fully investigated in classical elasticity, and differ very
little. However, it is curious that the exact linear law breaks
down in the limit.

Plates with boundary conditions other than those already
considered in this section can be treated very readily by the
energy methods of Fart IV. The lower limit of the frequency as
given in Eq. (28) is still valid for plates. The upper limit can
be computed by Rayleigh's principle, in which the energy ex-

pressions would be:
Strain energy due to bending =

50/, f[ Y o aafy"a) o0 77){ a4 -aaiy‘;— (g’%}aﬂ dx dy
Work done by end thrusts =

5 [[4(2Y) “v/g; - 2Ny & g;] Iy .

Hence the total potential energy, replacing Eq. (29), will be the
difference between the above two expressions. The procedure
would be identical to that in Section IV, viz. using'a deflection

function corresponding to the buckling mode. Hence similar
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2 curve will

conclusions can be drawn: the actual load-frequency
be bounded by lower and upper limits which, due to the nature of
Rayleigh's method, will not differ greatly. Hence the deviation
from linearity would be expected to be small. The actual limits
can be computed for any particular boundary conditions merely
by calculating the frequency of free vibration using the above

energy method and using the deflection function of the buckling

mode.
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PART VII

EXPERIMENTAL TESTS ON PLATES

A survey of existing literature failed to yield any ex-
perimental data on the vibrations of rectangular plates. It
appears that the only tests that have been carried out are on
small circular plates for microphone diaphragms. Therefore
it was decided to set up a testing program in which both un-
stiffened and stiffened flat plates could be loaded in compres-
sion while frequency measurements were made.

The plates to be used were made of 24 ST duralumin
sheet, 12" x 12" x .040" thick. With simply supported edges,
the buckling load for suth a plate is approximately 200 1b.,
hence the dial of the testing machine would not be sensitive
enough to record accurately the small load increments desired.
A special ring gauge was used for this purpose, placed be-
tween the specimen and the platform of the testing-machine.
The ring gauge was constructed by using a 3'" length of 10-3/4"
O.D. seamless steel pipe 1/4'" thick, and measuring its change
of diameter under load by mea-ns of an Ames dial gauge cali-
brated in ten-thousandths of an inch. The ring gauge was ac-
curately calibrated by loading it in increments with dead weight

and noting the corresponding readings on the Ames gauge., The
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load-deflection curve was linear, with each graduation of the
Ames gauge being equivalent to approximately one pound. The
ring gau/ge » mounted above the test specimen in the testing
machine, is shown in Figure 7.

In order to vibrate the plate, a permanent magnet speak-
er with a rating of 20 watts was modified for the purpose. The
loudspeaker was Type CMX-49155, manufactured by the Mag-
navox Company, and containing a heavy permanent magnet.
Portions of the diaphragm were cut out in order to increase its
flexibility, and an extension rod of aluminum was attached to
the center of the diaphragm. This extension rod was then at-
tached to the center of the plate by means of a rubber suction
cup, with a small coil spring placed between them. This ar-
rangement can also be seen in Figure 7. The voice coil of the
speaker was energized from a power amplifier of 35 watt rating,
with the Hewlett-Packard audio-oscillator put into the ampli-
fier. Hence the diaphragm of the speaker could be made to vi-
brate at any frequency from about 10 cycles per second up.

The frequencies of the plate were measured by mount-
ing pairs of SR-4 strain gauges on each side of the plate, and
using a potentiometer circuit as described in Part V. The sig-
nals were automatically recorded by a recording oscilloscope

manufactured by the William Miller Corporation (Model H).



-48-
The complete set-up is shown in Figure 8.

The first -s.pecimen to be tested was a simply supported
flat plate. The four supports were V-grooves, and the edges of
the plate were bevelled. As the maximum loading was to be of
the order of 20 1b. per inch, hardened knife edges were not con-
sidered necessary. Increments of load were imposed on the plate,
and at each loading the frequency of the oscillator was adjusted
to make the plate resonate. The fundamental frequency could be
detected quite readily.

However, the frequency remained approximately constant
with load, increasing very slightly. For example, the fundamental
frequency of the unloaded plate was 43 cycles per second, increas-
ing steadily to 48 cycles per second at the theoretical buckling
load of 200 1b. The test was repeated for a second and third plate,
and in each case the frequency failed to decrease according to the
theoretical analysis., In an effort to determine whether the bound-
ary conditions were the cause of the trouble, steel knife edges
were fitted along all four edges, and the test was repeated. This
time the frequency did decrease slightly with load, but still bore
no resemblance to the theoretical straight line . The points are
plotted in Figure 9, Curve A.

Tests were then conducted on similar plates which, loaded

along clamped edges, had the unloaded edges supported on knife
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edges. Similar results were obtained, and these are shown in
Figure 9, Curve B. The natural frequency for zero load was cal-
culated by the method described in Appendix B. In the following
tests, all four edges were clamped, with similar results.

In order to check the reliability of the oscillator, the two
unloaded edges were allowed to deflect with no restraint, the
loaded edges only being clamped. In this case the approximate~
ly linear theoretical curve was very closely followed, a result
to be expected due to the fact that such a plate acts as a wide
simple column. These points are also plotted in Figure 9, Curve
C.

A series of tests were then conducted on a stiffened
panel. The plate was of the same dimensions as the unstiffened
plate, with the addition of a single channel stiffener rivetted long-
itudinally along the center of the plate. Tests were conducted with
various edge conditions, but the results were very similar to
those for the unstiffened plates.

As a result of the foregoing tests, it appears that thin
plates under compression do not follow the linear ,1oad-frequency2
relation in practice. A possible explanation might be that a thin
plate is never perfectly flat, so that initial curvature in the plate
may have some effect.

The effect of initial curvature may be investigated by the
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linearized equations if the deflections are small in comparison

with the thickness of the plate.

Let v (x,y) = initial deflection function,
vy (x,y) = additional deflection after the application of N_,
v(x,y) = additional deflection due to vibrations.

Under static load, the differential equation becomes

4, . D w V)
vy = 5[-]\& -——a—)'('e—“—] . (58)

If the plate is vibrating, then the differential equation is

4 e AP+ VYV, +Vb) 2.
vy +Ve)= D [‘M 06X2 s ati] (59)
Subtracting Eq. (58) from Eq. (59),
4, t [ %% _ %%
iy~ [ N oxe T4 o2z (¢0)

which is identical to Eq. (40) for flat ?lates . This proves that for
a thin plate with small initial curvature, the variation of frequency
of lateral vibrations with edge thrust is identical to that of the cor-
responding flat plate. The two systems have, in particular, the
same buckling load; and, moreover, the modes of vibration of the
two systems (measured from the mean position) are identical.

The fact that the experimental data did not verify this result
indicates that the deviation from flatness was not sufficiently small

to justify the use of the linearized equations. The tests indicated
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very clearly that the buckles grow with the beginning of loading,
and gradually increase. This fact was also borne out in a paper
by Hu, Lundquist and Batdorf (Reference 11), who showed theo-
retically that the Karman large-deflection equations should be
used in studying the effect of small deviations from flatness on
the buckling of plates in compression. The present tests also
verified their conclusion that the Southwell method of predicting
the theoretical critical stresses does not give satisfactory re-
sults, due to the fact that this method is based on the linear equa-
tions.

In a recent paper by Massonnet (Reference 12), a theoret-
ical relationship between the frequency and end thrust was ob-
tained for the case of circular plates with initial curvature. Us-
ing the Karman non-linear plate equations, Massonnet obtained
an approximate solution for a clamped circular plate uniformly
loaded around the circumference. The load-frequency relation-
ship was computed for various initial deflections of the plate, and
his results are plotted in Figure 10. The curves are plotted for
various values of a parameter proportional to the initial deflec-
tion & , viz. 5‘,/21//2{77?2_)'/7. For example, the parameter equal
to 1 corresponds to an initial deflection of 0.012 in. for 0.040 in.
sheet. Massonnet's results confirm the experimental results

as shown in Figure 9, and lend credence to the conclusion that
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the initial curvature in the plate caused the considerable deviation
from linearity.

It is therefore inferred that the justification for using the
linear equations in such cases is not upheld in practice. The meth-
od of using frequency measurements in order to estimate the buck-
ling load can not be expected to give satisfactory results in the
case of plates in compression--at least in the case of aircraft
panels, where the deviation from flatness may be of the same
order as the thickness of the panel.

A possible way to eliminate the difficulty might be to test
the plates in tension, measuring the frequency with each incre-
ment of load. In this case any initial curvature will be decreased
with increasing load, and the linear equations may be valid. Ex-
trapolation to zero frequency along the negative load axis would

thus give the theoretical buckling load.
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PART VIII

APPLICATION TO RIGID-JOINT FRAMES

In the previous sections it was pointed out that the approx-
imately linear relationship between the load and the square of the
frequency could only be expected to apply to elastic bodies whose
boundary conditions did not vary with load. The rectangular frame
which was tested (see Fart V) complied with this condition as the
horizontal members carried no load, and hence the buckling vert-
ical members were restrained by the constant elastic restraints
provided by the horizontal members. In the case of a rigid-joint
truss, however, the axial force in each member increases with
increasing load, and hence the effective rigidity at the end of any
particular member does not remain constant. Consequently the
deviation from the linear relationship cannot be expected to re-
main small in such a structure.

In order to ascertain the effect of the change of end re-
straint with load, it was decided to conduct tests on simple rigid-
joint trusses. The truss configuration which was chosen is shown

diagramatically in the following figure:

At 18
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The members were all of the same length and rectangular in sec-
tion. As the theory applies only to purely elastic instability, the
length of the members was chosen with an .f/,‘ ratio of at least
120 based on an effective length of(3/4)f . This resulted in the
length being 12 in. for a thickness of 1/4 in. The width of the first
frame tested was also 1/4 in. The material was mild steel, and
all joints were brazed to make rigid connections.

Hardened steel knife edge seats were soldered to the hori~
zonta} bars at A, B, C and E, and 1/4 in. square tool steel bits
were employed as knife edges. The knife edges at A and C were
fixed, while those at B and E were allowed to pivot allowing lat-
eral motion at those points. In the construction of the frame, con-
siderable care was taken to ensure that the center lines of all mem-
bers meeting at a joint did intersect at one point, and the knife edge
seats on the frame were attached exactly above these points of in-
tersection. The distance between knife edge seats on the loading
platforms were adjustable so as to make certain that the load was
being applied exactly vertically.

The frame was excited by attaching the vibrator described
in Part VII to the center of, and normal to, the member AE in the
plane of the truss. The frequency of vibration was measured by
dynamic strain gauges attached to the members AB, BC and BD,

and recording the output on the Miller oscillograph. The complete
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test set-up is shown in Figure ll.

The frame was then loaded in 200 lb. increments, and
the lowest resonant frequency recorded at each load. It was
found that each of the instrumented members had a different res-
onant frequency for a particular load on the truss, but in addition
there was one frequency at which all the members resonated.
This resonant frequency for the complete truss was the one which
decreased systematically with load, while the individual fre-
::luencies seemed to vary little. The load was increased until,
at 1880 1b., the frame suddenly failed by torsional instability
out of its plane. This unexpected failure prevented the test from
being continued to the desired failure in the plane of the truss.
The test results are plotted in Figure 12 as Curve 1.

A second frame was then constructed identical to the
first, with the exception that the members were twice as wide,
viz. 1/2 in. x 1/4 in. In addition, lateral restraint was provided
by denying the top loading bar any possible angular rotation.
These restraints can be seen in Figure ll. The frame was loaded
in 400 1b. increments, and again the lowest resonant frequency
for the complete frame was recorded at each léad. The frame
failed at 4945 lb., when the member AE began buckling in the
plane of the truss. The test results are plotted in Figure 12 as

Curve 2,
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As would be expected, in analyzing the data it was found that at
resonance all the members vibrated either in phase or 180° out
of phase. From the diagram, it will be noticed that the frequency
corresponding to 4400 lb. does not lie on the curve. This is due
to the fact that at this load the exact resonance frequency was ap-
parently not recorded, as the record showed that the vibrations
for the members were definitely out of phase. As the square of
the frequency is plotted, such sr;nall errors are considerably mag-
nified.

The actual buckling load was lower than the extrapolated
value of approximately 5)2600 Ib., and this is apparently due to
slight imperfections in the truss. It will be recalled that in the
tests on rectangular frames, the actual buckling load was always
lower than the extrapolated value. However, the latter value al-
ways agreed very closely with the theoretical buckling load. The
theoretical buckling load for this truss was computed by a method
developed by Winter (Reference 13) and extended by Bijlaard (Ref-
erence 14), and yielded a value of 4150 1Ib. That the carrying cap-
acity of this truss would exceed this value was again to be expected
in view of the fact that the two points A and C were prevented from
.moving, whereas the theory assumes only one restraint. The two
restraints were necessary in order to prevent undue complication

in the test set-up.
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An examination of Figure 12 yields some interesting re-
sults. As predicted, the relationship is not linear. But more
significant is the fac't that the deviation from linearity is consid-
erably larger in Curve 2. It might seem reasonable to deduce
from these tests that the deviation from linearity increases as
the section modulus of the members increases. This could be
interpreted physically as follows. For a given moment of inertia,
as the depth of the members is increased, the change in the end
restraints due to axial loads in adjoining members is decreased.

In conclusion, some general remarks are in order re-
garding the applicability of the method as an experimental tech-
nique in practice. Provided that the end conditions do not vary
with load, a straight 1ine'ext.rapolation will give good approxima-
tions to the buckling load of beams with arbitrary boundary con-
ditions. On the other hand, the method does not seem to have
any practical application in the case of flat plates because of the
relatively large initial deflections encountered in practice. Ten-
sion tests may be successful. In connection with rigid-joint
trusses, the method might be applicable under restricted con-
ditions. Specialized research in this direction would be valuable
in determining these limitations. For example, if some sort of
symmetry could be established for the curvature of the load-fre-
qu.ency2 curve, then the buckling load could be predicted from

tests up to approximately half that load.



10.

11.

-58-

REFERENCES

Karman, Th. von & Biot, M.A.: Mathematical Methods in Eng-
ineering. McGraw-Hill Book Company. 1940.

Southwell, R. V.: Theory of Elasticity. Oxford University
Press. 1941.

Massonnet, Ch,: Les Relations entre les Modes Normaux de
Vibration et la Stabilite des Systems Elastiques. Bulletin
des Cours et des Laboratoires d'Essais des Constructions
du Genie Civil et d'""Hydraulique Fluviale. Tome I, Nos.

1 & 2. 1940. Brussel.

Grauers, Hugo: Transversalschwingungen rechteckiger
Platten mit besonderer Riicksickt der Knickung. Ingeniors-
vetenskapsakademiens, Handlinger Nr 98, 1929. Stockhoim.

Weinstein, A. and Chien, W. Z.: On the Vibrations of a
Clamped Plate under Tension. Quarterly of Applied Math-
ematics, Vol. 1, No. 1, 1943,

Stephens, B, C.: Natural Vibration Frequencies of Structural
Members as an Indication of End Fixity and Magnitude of
Stress. Journal of the Aeronautical Stiences, Vol. 4, No. 2,

1936.

Chu, T. H.: Determination of Buckling Loads by Frequency
Measurements. Thesis at the California Institute of Tech-
nology, 1949.

Courant, R.: Advanced Methods in Applied Mathematics.
New York University, 1941.

Temple, G. and Bickley, W. G.: Rayleigh's Principle. Oxford
University Press.1933.

Schaefer, H. and Havers, A.: Die Eigenschwingungen der in
ihrer Ebene allseitig gleichmHssig belasteten gleichseitigen
Dreiecksplatte. Ingenieur-Archiv, Vol. 7, No. 1. 1936.

Hu, P. C., Lundquist, E. E. and Batdorf, S. B.: Effect of
Small Deviations from Flatness on Effective Width and
Buckling of Plates in Compression. N.A.C.A. Technical
Note No. 1124, 1946,



12.

13.

14.

15,

16.

-59.

Massonnet, Ch.: Le Voilement des Plaques Planes Sollicitees
dans leur Plan. Final Report of the Third Congress of the
International Association for Bridge and Structural Engin-
eering. Liege, September 1948.

Winter, G., Hsu, P. T., Koo, B. and Loh, M. H.: Buckling
of Trusses and Rigid Frames. Bulletin No. 36, Eng. Expt.
Station, Correell University, April 1948.

Bijlaard, P. P.: Investigation on Buckling of Rigid Joint
Structures. First Progress Report, Department of Struc-
tural Engineering, Cornell University, November 1949.
(Unpublished).

Timoshenko, S.: Theory of Elastic Stability. McGraw-Hill
Book Company. 1936.

Hertwig, A., and Pohl, K.: Die Stabilitdt des Bruckenen-
drahmens. Stahlbau, Vol. 9, 1936, p. 129.



-60-
APPENDIX A

ELASTIC STABILITY OF STRUTS

Invariably the texts in Elasticity and Strength of Materials
derive the stability criteria for struts by first setting up the beam

bending moment equation
<7/2
EIZY =~ Mx) (A.1)

Depending upon the end fixity, the bending moment M is determined
as a function of x. This equation is then solved as an eigenvalue
problem for non-zero solutions, the boundary conditions provid-
ing the eigenvalue equation. In general, however, this procedure
is too limited both physically and mathematically, and in some cases
the correct approach yields additional results which normally would
not become evident by using the classical method.

The lack of generality in Eq. (A.1) can be appreciated when
it is realized that for any beam problem four boundary conditions
are always available-=-two at each end. For example, the boundary

conditions corresponding to the usual cases encountered in the

testsare:
2,
(a) pinned end: v=o0 %X—V =0 (A.2)
I\
(b) fixed end: v=0; L -0 (A.3)
(c) free end: IV _o ; &1 =i +PIL —o, (A.4)

IxE X3 52%
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Being a second order differential equation, Eq. (A.l) is
too limited to provide a general solution. Instead, the fundamental

fourth order beam equation

2 v
jxa(gz I ) = px) (A.5)

should be used. This makes the problem mathematically consis-
tent, and also allows a general equation to be set up which is inde-
pendent of the boundary conditions. This is important because it
allows an equation to be formulated which is also independent of
the mode of buckling. The only assumption regarding the mode is
that equilibrium is possible for some shapé other than the originél
straight form, provided the displacements are small.

In order to use Eq. (A.5), the axial force P must be re-
placed by an equivalent transverse load p(x) . The axial force in-
duces a bending moment Pv in the deflected column, and the load

corresponding to this bending moment distribution M(x) is equal to

- LM
P(X) - d)(g

Hence the equivalent lateral load which would produce a moment

Pv i;equal to

- IV
LX) = dea .

Therefore Eq. (A.5) becomes

IV J%v
o’_x?(EI c/xf) £ dx? ° (4-6)
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This equation, together with the relevant boundary conditions
(A.2), (A.3) or (A.4), should be employed for the general solu-
tion of the column problem.

For a beam of constant section, Eq. (A.6) reduces to

v ol
ot T B ke =9 (A.7)

so that Eq. (A.7) is the fundamental equation for a uniform beam.
This agrees with Eq. (20) in Part III if «J=O in that equation.

A good example of the principles involved is provided by
the case of a column fixed at both ends. Without considering any
specific mode of buckling, the problem can be stated mathemat-
ically as the differential equation (A.7) together with the boundary

conditions (A.3), i.e.

adv) _(dv) _
(V)ieo = (V)X=[=Og (a;(-)xzo —“(dxl-f =0 . (AS)
From Eq. (A.7),
IV _ g + Bsingx
xe — fi€os Bx B
b V=—;642 cosﬂx—g—z singx+ Cx +D . (A.9)
Putting in the boundary conditions at x = 0,
o =—(§2 + D
o--2 +c
[

V= ﬁa(/—cosﬁ)()vkﬁ—‘??(,3)(~ simBx). (A.10)
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Putting in the boundary conditions at x =L,

o = ﬁ; (1-cosBf) + -:9% (Bl—sinBL) (A.11)
O-——?" Sln/f/-/- ?(/—-COS/&?) . (A.12)

For a solution, the determinant must be equal to zero.

~o(1- cosﬁ?)a - (BE- sinfl)sm B =0

i.e. 2V—2cos/5f—,6’fsm/g—?=0. (A.13)

The solution of this transcendental equation will give the values of
P leading to the critical loads. Fig. 13 shows a plot of this equa-
tion, the zeros corresponding to the eigenvalues. Note that there
is a sequence of solutions alternating with the classical solution of
pt=2mn.

The two sequences can be separated by rewriting Eq. {A.13)

as
S/nf%“p(é’sm%p— ﬁé’cos-%:p)= O.
.".  either ,5,,7%6,:, o (A.14)

or Zan -%f = %{) . (A.15)

Eq. (A.14) yields the usual values of the critical load, viz.

='. L mrentE]

cr e (/7:/,2,3,"') (A.16)
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Eq. (A.15) yields an additional sequence, the first three values
of which are

A~

%—0 - 4.494, 7.725, 10.904 ,-~- (A.17)
&.18 reET 24.19 m2ET 48.19 772 E]
chr = 22 ? L2 ’ /2 LA (A.lS)

The shape of the modes can be obtained directly by the
usual methods. First consider the eigenfunctions obtained from

Eq. (A.14). This equation leads to the eigenvalues

8 _,,

. _ 2n1r
"5’7— f -

Substituting these values of g in Eq. (A.ll)

= ‘42 (/- cosZnir) + -%(2/777—5/02/772’)

& £

.". Eq. (A.10) becomes

A

V= Ea(/—cos—‘gf’—”i) : (A.19)

£

These modes are shown in Fig. 14, in which P, represents the

Euler critical load 77’25./%22 . They are the modes corresponding
to the classical critical loads. Note that as the bracket in Eq. (A.19)
is always positive, the deflections must necessarily lie on one side

of the undeflected shape.
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Next consider the eigenfunctions obtained from Eq. (A.15).
Let the sequence of numerical values for ,5'{/2 be ¢,, [Ref. Eq.
(a.17)].

“Br= %@7 .

Substitute these values of g in Eq. (A.12).

O = 4 sn2¢, + B (1= cosagp,)
5n n

A

-5=—tor7¢,7

.".=Eq. (A.10) becomes

v= C [é—gﬁﬁ—smé%l‘—éanﬁn (/—coség’al)]. (A. 20)

These modes are shown in Fig. 15, in which again P'1 represents
the Euler critical load. They are similar to the modes of a strut
of which both ends are constrained to remain on a fixed line, one
end being "fixed' and the other 'pinned".

An important practical point immediately becomes apparent.
Suppose such a clamped strut is to be used to carry a load greater
than the lowest buckling load, and this is to be accomplished by
restraining the center from lateral disPlacement.‘ According to
the classical formula, the strut will then carry a load of
/16 772E1 /&% [n=2in Eq. (A.16)] . Actually, however, it

will carry only 8.18 e EI/Z2 and buckle into the shape shown in
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Fig. 15(a). This can be shown to represent a lower energy state
than the mode of Fig. 14(b). Similarly, for all modes higher than
the fundamental, the beam may buckle in the series given by Fig.
15 rather than Fig. 14 if only the stationary points are restrained
from lateral displacement.

From a mathematical point of view, the‘ reason has al-
ready been stated to explain why the classical approach fails to
yield the complete solution. A fourth order differential equation
must always be used in order to satisfy the four possible boundary
conditions of a beam. From a physical point of view, the limita-
tion was imposed on the original diagram from which the forces
and moments were obtained. Fig. 16(a) shows this complete dia-
gram. But consider a mode of the second sequence as shown in
Fig. 16(b). Here the end moments are in the same direction,
and shear reactions are necessary for equilibrium. If these re-
actions are included in the second order moment equation, this
second type of mode will become apparent--but not the first.

Only the fourth order equation will yield all possible modes.
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APPENDIX B

NATURAL FREQUENCY OF RECTANGULAR
PLATES WITH TWO OPPOSITE EDGES SIMPLY SUPPORTED

From a review of the literature it appears that very little
work has been done on the vibrations of plates with mixed bound-
ary conditions. Grauers (Reference 4) did consider some of
these cases, but his method of presentation appears to be too
cumbersome to be of practical use.

In view of the fact that the frequency and buckling prob-
lems for a plate are identical eigenvalue problems, it would
seem very profitable to utilize for the vibration problem the
large amount of data that the N.A.C.A. has computed for the
buckling of plates. In particular, if two opposite edges are simply
supported the analogy is extremely simple, no matter what the
other two boundary conditions may be. In this Appendix the
natural frequency will be determined as a function of the plate
buckling factor k.

Let the rectangular plate be simply supported along the

two edges x = 0 and x = a, and have various edge conditions along

¢
the other two edges y = 0 and y = b. From Eq. (48), the differ-

ential equation for f(y) for buckling is

i 2mere d‘?f‘ m47T4 m2772)
- = .1
dy4 a? 4 ( az )= ° (B-1)
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while that for free vibrations becomes

4 2 4,4
T 2mPn? I +(m7T_ /(1602)7[»=O. B.2)

Equation (50) will represent the general solution for both Egs.
(B.1) and (B.2) with the corresponding values for a and 8 . For

buckling,

m2ire mélf‘? m2Ie ZrZ
X = cz? 7 D CZ2 )8 az + D ag B 3)

and for free vibrations,

oc=\/m-=—’77‘? 1/ \/ m‘9772 1_457_2.. (B.4)

Considering the two edges y = 0 and y = b to have the same boundary

conditions in the vibration case as in the buckling problem, the con-
stants of integration in Eq. (50) will be identical in terms of a and ,8

for the two problems. Hence, for equivalence, let

/(,ca)zm _j\_]& 17727

0D D a® - (B.5)

The coefficient k for critical buckling (Reference 15) is defined as

M=/?%22Q : (B.6)

Substituting Eq. (B.6) into Eq. (B.5) yields

7Tt D R

P (ab)

6()2= (B.7)
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Hence for any boundary conditions along the edges y = 0 and y = b,
the value of k can be obtained from Reference 15 or the various
N.A.C.A. reports, and the natural frequency computed from
Eq. (B.7).

In one respect the vibration problem differs from the
buckling phenomenon, viz. that for the former the fundamental
mode always corresponds tom = 1. Hence for the fundamental

frequency Eq. (B.7) becomes

4
2= faD (__?fb) (B.8)

where k is the buckling constant for m = 1. This may not neces-
sarily correspond to the lowest value of k for a given a/b ratio,
whereas in the case of buckling k and m are always chosen to

give the lowest value of k.
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APPENDIX C

END RESTRAINT AND NATURAL FREQUENCY

In Reference 6, Stephens proposed that the end restraint
of a beam could be found by measuring the natural vibration fre-
quency of the beam. The coefficient expressing this restraint

. t
is defined as the constant c¢ in the basic Euler buckling equation

LT
'Fc)r= QZ_Z_ * (C°1)

To correlate the degree of end fixity with the natural frequency,
Stephens used the value of ¢ for the following four different types
of end restraint:

(a) one end fixed, one end free (c=/4),

(b) both ends pinned (c=1),

(c) one end fixed, one end pinned (Cc=2.047),

(d) both ends fixed {C=4).

The frequency equations for these four types of restraint

-

were then calculated, and the first eigenvalue determined for each
case. The square of the eigenvalue was called the 'frequency con-
stant'', denoted by K. The values for K are 3.516, 9.870, 15.421
and 22.373 respectively for the above four cases. By plotting K
against ¢, Stephens obtained a single curve. Thus to determine
the degree of end restraint he stated that it was only necessary
to determine the natural vibration frequency by test, after which

K could be determined from the equation
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pa 2 £T
2\ e
The corresponding value of ¢, which is the measure of the end
fixity, could then be found from the curve of K against c.

However, his proposed relationship between K and c is
not unique, as there may be more than one value of K corres-
ponding to each value of ¢c. This might be suspected from the
physics of the problem. It is quite feasible for two identical
bars with differently restrained ends to have the same resultant
fixity coefficient c. However, different modes of vibration, and
hence different frequencies, would be anticipated. -

A simple example will illustrate “this . Consider a strut
elastically restrained at each end, and suppose the restraint is
such as to give an e?xd fixity coefficient equal to 2.047 (the same
as for one end fixed, one end pinned). The value of K for such a
beam may be calculated. Suppose the spring constant at each end

is the same, and denote it by a. Taking the origin of coordinates

at the center of a beam of length 2L, the boundary conditions are:

(a) V=0 at x=1%[ (C.2)
(b) Elv'= v’ at x=2L .
The general solution of the buckling problem, as given

by Eq. (A.9), is



-7 L=

V= Acos@x + Bsingx+Cx+[

where {82= Z—‘F‘T
_ crr?ET
As = 172 ’
&
. B 57 -

By symmetry, B= C = O

- V=Acosgx + D .

Putting in the boundary conditions (C.2),

D =-A COS/SL
and

’sEIo{' (-AﬁzcosﬁL) = —AlB S/NﬁL

. £T
L2

= tan gL .
Substituting the value for 8 from Eq. (C.4),

7 £l v VT
5, ot -

(C.4)

(C.5)
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The general solution for free vibrations, from Eq. (24),

is

V= A cosAx + Bsinix + CcoshAx +DsinhAx (C.6)
2_ ‘/_ﬁ .
where A= ) Z7

By symmetry, B=D=0 .

2 V= AcosIAx + C coshAX.

Putting in the boundary conditions (C.2),

cos AL

£ L (AR PcosAL + CHeoshIAL) = -AQd sin AL +CAsmh AL

—é;# (2coshil) = torn Al coshAl + sinhAL

2L A
- i C.7
x ton Al + tanh AL (€.7)

As the value of a is to be the same for buckling and vibrations,
Z

Eqs. (C.5) and (C.7) may be equated

24L = Mcof%"@ ] (C.8)

tondl. + tanh AL a 2

Taking ¢ = 2,047 as for the fixed-pinned strut, Eq. (C.8) becomes



-T4-

PAL
tanAl. + tonh Al

= —/.8052

L 2AL=3.776

S K= (2AL) = 14.258.

Hence for a symmetric strut with elastically restrained ends,
an end fixity coefficient of 2.047 corresponds to a frequency
constant of 14.258; whereas for a fixed-pinned strut with the
same end fixity coefficient, the frequency constant is 15.42].
It may be concluded that Stephen'’s single curve relating c to K
is not justifiable.

In the same paper, Stephens derives the relation between

end thrust and vibration frequency as

£ na |- (f)

where m is a constant depending on the end restraint. He lists
Y

m for various end conditions. This again is erroneous, as m

is actually a function of P if the ends are not pinned. The con-

stant m was determined by the energy method, which would nat-

urally give the upper curve of Fig. 2. According to the above

formula, P # P., when f = 0. However, it was proved in Part

II that as P is increased, f decreases until it finally vanishes at

P = F..-
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FIG. 4

MAGNETIC OSCILLATOR AND FRAME
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FIG

RECTANGULAR FRAME TEST SET-UP
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FIG.

FLAT PLATE AND OSCILLATOR
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FIG. 8

FLAT PLATE TEST SET-UP
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