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Abstract

The equations of Moore & Saffman (1971) are examined and are shown to contain
the fast time scale equations governing the core waves on a straight vortex filament.
The equations so derived are the same as those reported by Lundgren & Ashurst
(1989) except for a correction term that allows for variation of the axial velocity
structure within the vortex core. Numerical solutions of the Moore & Saffman equa-
tions are presented for various initial conditions consisting of wave-like perturbations
on a cylindrical vortex, and they all show development of a jump in the core area.
This has been advanced to be a mechanism for vortex breakdown by Lundgren &
Ashurst. A comparison of the solutions of the Moore & Saffman equations with the
solutions of the Navier-Stokes equations at high Reynolds number is presented for
three different cases. In the first case a vortex with a very small perturbation is con-
sidered. The Moore & Saffman solution shows steepening of the initial wave resulting
in the development of jump in the core area (shock). The Navier-Stokes solution
shows bulging of the core. But, there is no indication of formation of a shock. In
the second case a vortex with moderate perturbation is considered. The Moore &
Saffman solution leads to a shock similar to the weak perturbation case. As before,
the Navier-Stokes solution does not develop jump in the core area. However, devel-
opment of a bubble of reversed flow is seen. In the third case, a jump in the core
area in the solutions of the Navier-Stokes equations is seen for a strongly perturbed
vortex. But the location and the sense of jump disagrees with jump that develops in
the Moore-Saffman solution. Thus, the solutions of the Navier-Stokes equations and

the Moore-Saffman equations show qualitative disagreement.

Next, an extension of steady Kelvin waves for two different types of vorticity
profiles is considered. In the first case, steady nonlinear waves are constructed via a
perturbation method. In this case, the vorticity is nonzero inside the core and sharply
drops to zero across the boundary. The shape of the core boundary is determined as

part of the problem. The dependence of the Bernoulli function and the circulation
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function on the streamfunction are specified. This serves as the additional constraint
necessary to determine the solution uniquely. The solutions are free of any vortex
sheets. In the second case, nonlinear steady Kelvin waves on smooth vorticity dis-
tributions are constructed by means of a direct Newton method and a large order
perturbation method. Instead of specifying the dependence of the Bernoulli function
and the circulation function on the streamfunction as in the previous case, the so-
lutions are restricted such that they have the same axial mean as the base flow. In
both the approaches, regions of reversed flow are observed. This is the structure of
bubble type of vortex breakdown.

Next, an analysis of the weakly nonlinear stability of a columnar vortex is pre-
sented. It is shown that the amplitude, assumed to vary slowly in time and space,
satisfies a cubic-nonlinear Schrodinger equation. Solutions are found to be unstable
in the sense that the perturbations grow slowly in time. Solitary wave solutions are

possible in this unstable case.
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CHAPTER 1

Introduction

1.1 General introduction

A vortex filament is a slender tube-like concentration of vorticity. The size of the
cross section of a filament is small compared with other length scales in the flow field.
The region of fluid containing the vorticity is called the core. Away from the core,
the flow is irrotational. Probably the most common example of a vortex filament
found in literature is that of aircraft trailing vortices. As a result of variation of the
lifting force on the wing of an aircraft, vorticity is shed in to the wake in the form of
a vortex sheet. The vortex sheet being highly unstable to infinitesimal disturbances,
rolls up immediately into two counter-rotating trailing vortices. The structure of the
core immediately after the roll up is that of a tightly wound spiral with several turns.
Viscous action smoothes out the velocity across the several layers of the spiral and
gives rise to a continuous distribution of the velocity in the core. A mathematical
treatment of the roll up of the vortex sheet and the structure of the trailing vortex is
found in Moore & Saffman (1973). Trailing vortices associated with a heavy aircraft
contain tremendous energy and pose a threat to light airplanes. A great deal of
research activity in the 1970’s was devoted to the understanding of the motion and
decay of a trailing vortex system. A counter-rotating system of vortex filaments also
forms due to the roll up of a vortex sheet shed from the leading edge of a delta wing
at large angle-of-attack. The leading edge vortices in this case are particularly helpful
in increasing the lift on the wing.

The computation of velocity induced by a vortex filament is of utmost practical
interest since a general three dimensional flow with a compact distribution of vorticity

| may be thought of as being composed of a collection of vortex filaments. The



-9
subsequent dynamics of the entire flow field is then represented by the evolution of
the filaments moving under the action of the induced velocity. A discussion of this
may be found in Leonard (1985). The induced velocity of any vorticity distribution
can be computed using the Biot-Savart law. The induced velocity due to a vortex
filament can be found approximately by assuming that the vorticity is concentrated
on a line passing through the center of the core. When the induced velocity at a point
on the filament is needed, the straight forward application of the Biot-Savart law leads
to an infinite velocity. The correct induced velocity must be computed by accounting
for the core structure exactly. This is often difficult in practice. But simple cut-off
methods or a more sophisticated de-singularization of the integral (Rosenhead, 1930)
have been used.

A phenomenon most frequently encountered in relation to the dynamics of vortex
filaments is vortex breakdown or vortex bursting. Benjamin (1962) states that vortex
breakdown or bursting refers to the abrupt and drastic change of structure which
sometimes occurs in a swirling flow. Two distinct types of breakdown are observed.
They are the bubble type and the spiral type. In the bubble type breakdown, the
stream-surface diverges rather drastically to form a bubble like structure that is nearly
axisymmetric. This type of breakdown occurs only when an axial component of
velocity is present in the core. The overall direction of the axial velocity is reversed in
the bubble. In the spiral type breakdown, the axis of the vortex deforms into a spiral
with no appreciable growth in the core size. The flow downstream of the breakdown
structure in either type is almost always unsteady and turbulent.

In what follows, we first review the various theoretical and experimental work
concerning vortex motion and breakdown. We then outline the study undertaken in

this thesis and state our objective.

1.2 Theories of vortex motion

The earliest work relating to the motion in a vortex is due to Kelvin (1880). In

his paper titled “The vibrations of a columnar vortex,” Kelvin considered the effect of
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wave-like perturbations on a columnar vortex with no axial velocity. Among the cases
considered, he found that axisymmetric linear waves propagate at fixed speed. The
speed of propagation depends on the wave-length of the perturbation and is found to
satisfy a transcendental dispersion relation involving Bessel functions. These studies
were followed by studies of steady motion and vibrations of a hollow vortex ring
(Hicks, 1884; Pocklington, 1895). These studies were contributions to the vortex
theory of matter which held that atoms consist of vortex rings in an infinite perfect

liquid. The rings were either hollow or filled with a rotating liquid.

With the introduction of heavy transport aircraft in the sixties and following the
recognition that trailing vortices posed a threat to light aircraft, several researchers
focused on the motion, decay and stability aspects of trailing vortices. Crow (1970)
analyzed the sinusoidal instability which usually leads to joining of segments of vortex
pairs to form an array of vortex rings. The vortices are idealized as interacting lines,
thus neglecting the core structure. The singularity in the self induced velocity is
removed by cutting off a portion of the vortex around the singularity point. The
cut off length is taken to be proportional to the core diameter. The stability was
found to depend on the product of the vortex sepé,ration, the cut off length and the

perturbation wave number.

Widnall, Bliss & Zalay (1971) used the method of matched asymptotic expansions
to obtain a general solution for the flow field within and near a curved vortex with
an arbitrary distribution of swirl and axial velocities. The inner solution is found by
stretching the radial co-ordinate, ¥ = r/e where € is the small parameter defined to
be the ratio of core size and the local radius of curvature. The local behavior near the
axis is assumed to be that of solid body rotation. It was found that the effect of axial
velocity was to reduce the angular velocity of the sinusoidal vortex and the speed of
the ring. Physically, a larger Kutta lift is needed to sustain the axial component.
Working along the same lines, Ting (1971) examined a viscous vortex. He used the

same type of stretching for the inner region as Widnall et al., except that the small
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parameter was taken to be the inverse square root of the Reynolds number. This
gives a way to describe the decay due to viscosity. But it should be noted that the
trailing vortices often decay rapidly after a core bursting occurs or rings form after

the reconnection with the counter-rotating vortex.

Moore & Saffman (1971; referred to as MS) considered the velocity of a vortex
filament of arbitrary shape and arbitrary distribution of swirl and axial velocity dis-
tribution in the core. The necessary equation for the evolution of such a vortex is
obtained by balancing the forces on an element of the vortex bounded by a curved
surface and two plane ends. The solution is constructed accurate to second order
in a small parameter defined to be the ratio of the core radius and the local radius
of curvature. The procedure is dealt with in more detail in the following chapter.
The highlight of the calculation is that the core deformations in the axial direction
are systematically incorporated even though they are dropped in the final simplified

result.

Adopting an ad-hoc procedure, Lundgren & Ashurst (1989; referred to as LA)
also obtained equations describing the motion of a vortex tube. The cross sectional
area of the vortex was assumed to be circular but the variation of the core radius
along the axis was included. Their procedure was to model the core as a slug of
fluid moving along the vortex under the action of external forces. The external forces
were found as sums of Kutta lift, vortex tension, etc., the general forms of which
were derived by MS and others. Changes in core area were built into the dynamics
by adjusting the size of the core according to the stretching of the fluid particles on
the vortex axis. Their numerical solutions for a perturbed vortex ring showed the
development of a helical wave. The special case of a straight vortex were found to
describe vortex breakdown. This case is considered in detail in connection with the

equations of MS in the following chapter.

Fukumoto & Miyazaki (1991) rederived the results of MS using the method of

matched asymptotic expansions up to the second order in the expansion variable
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defined by the ratio of radius of the vortex core and the local radius of curvature.
They also used the fact that the changes in the core size along the axis are of higher
order. Under the assumption of localized-induction, they were able to reduce the
equations governing self induction of a vortex to a nonlinear evolution equation which
is integrable. They present some particular solutions of bending waves including

soliton solutions.

1.3 Experimental aspects of vortex breakdown

Vortex breakdown was first recognized in the aerodynamic context of flow over a
highly swept wing at high angle of attack. Experiments (Elle, 1960; Lambourne &
Bryer, 1961; Peckham & Atkinson, 1957, among many others) clearly showed that a
vortex core, marked by injection of dye, suffered drastic structural change above the
wing surface. Both types of breakdown, bubble and spiral, are observed. In order
to exercise some control, subsequent experimental studies of vortex breakdown were
conducted in a tube. Harvey (1962) was among the first to investigate breakdown
in this configuration. We briefly describe the set up used by Harvey and summarize
the observations since they are of importance to our study. The apparatus consists
of a long Perspex tube through which air is drawn by means of a fan mounted at the
‘down-stream’ end or the outlet of the tube. An initial swirl is imparted to the air at
the inlet by a set of adjustable vanes. The vortex core develops from the boundary
layer shed from a pointed center body located at the inlet. Smoke injection is used
to visualize the vortex core. Wall interference could be minimized by controlling the
core size via the application of suction on the center body. The swirl angle (defined
as the inverse tangent of the ratio of maximum axial velocity to the maximum swirl
velocity) could be changed by altering the vane angle. As the swirl angle was slowly
increased subsequent to setting up a stable vortex in the tube, a nearly axisymmetric,
almost steady bubble formation was observed, the bubble moving upstream with
further increase in the vane angle. Unlike the flow over the wing surface, the bubble

was quite nearly closed (achieving a slightly elongated spherical shape) with the
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flow downstream of it resembling the flow ahead of the bubble. This leads to the
conclusion that this type of vortex breakdown is not a result of instability but, rather,
a transition between two vortical states. The conclusion is based on the assumption
that instability leads to highly unsteady states in fluid flows. By reducing the core

size, the bubble size was reduced without any other changes in the flow structure.

In a more elaborate effort, Faler (1976) made detailed velocity measurements of
a vortex breakdown. Laser Doppler anemometry was employed (see also Faler &
Leibovich, 1977.) Faler used essentially the same type of device as Harvey except
that he used water in a slightly diverging tube in order to minimize the influence of
the wall boundary layer. Several flow configurations were observed over a range of
Reynolds number and swirl. The breakdown structure was found to move slightly
and randomly in the axial direction. Often the structure appeared to change its
form. Faler recognized seven types of structures. Type 0 (zero) is the so-called
axisymmetric mode of vortex breakdown. This is essentially the same form as found
by Harvey and was characterized by a stagnation point on the axis. The dye marking
the core expanded abruptly to form a bubble with its envelope exhibiting a high
degree of axial symmetry. In Faler’s experiment, however, the bubble is not closed in
the downstream region and is in fact asymmetric. The bubble was observed to move
upstream and shrink in size with increasing Reynolds number and/or amount of swirl.
Examination of mean streamlines calculated from the time averaged axial velocity
reveals a more complex recirculating region. Encapsuled in an enveloping bubble
are two distinct recirculating cells. A larger outer cell contains a larger amount of
circulation than the inner smaller cell. Dye injected off the axis follows a smooth and
regular helical path with no appreciable change. The type 1 structure is “bubble-like”
with a rugged asymmetric envelope. Type 2 is the spiral type structure displaying a
rapid deceleration of the core fluid followed by a formation of a kink and then by a
spiral motion. In the type 6 structure (also reported by Sarpkaya, 1971, 1974) the

| filament suffered off axis movement and the rest of the observations can be viewed as



some variants of these basic ones.

Garg & Leibovich (1979) made velocity measurements upstream and in the wakes
of vortex breakdowns fields of bubble and spiral types. They report that spectral
analysis of the data indicates prominent oscillations in the wake of the breakdown
structure at less than 10 Hz. The oscillations are found to be more energetic and the
vortex core expansions are larger for the bubble mode which, therefore, is inferred to
be the stronger form of breakdown. For a more comprehensive review of structure of
vortex breakdown and also some reference to the occurrence of the phenomenon in
tornados, see Leibovich (1978).

The basic outcome of these experiments is that vortex breakdown is a phenomenon
in which a drastic change in the structure occurs as the core flow decelerates to form
a stégnation point on the core center. The flow is strictly unsteady in any break-
down configuration. Unsteady behavior in the case of the axisymmetric breakdown
is characterized by very slow oscillations. The flow is usually turbulent downstream
of the breakdown region. As is demonstrated by Harvey (1962), the breakdown is a

transition of one flow state to the other and not a result of onset of instability.

1.4 Theoretical aspects of vortex breakdown

In his review on the theories of vortex breakdown, Stuart (1987) categorizes the
ideas into three classes: (i) theories involving considerations of hydrodynamic stabil-
ity; (ii) theories involving a natural deceleration of the core flow leading to a stag-
nation on the axis; and (iii) theories involving conjugate states of flow. We evaluate
these ideas and review relevant literature.

Stuart observes that the flow instability phenomena encountered in most fluid
flows illustrate connection between stable and unstable states depending on parame-
ters such as the Reynolds number. Further, the instability appears to be insensitive to
the downstream boundary conditions. This is contrary to the observation in a vortex
breakdown which is strongly dependent on the downstream conditions. For example,

application of downstream suction results in a vortex flow devoid of any breakdown
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structure. Thus flow instability as a mechanism is considered unimportant if not
altogether irrelevant.

The theories of stagnation of flow on the axis are based on observational facts
mentioned above in the context of experimental work and are related to the natural
tendency of rotating flows (dominantly axisymmetric) to decelerate on axis due to
axial forces. Consider for example, a nearly cylindrical vortex. The approximate

radial momentum equation states that

%) v?
L=, (1.1)

where p is the pressure, v is the swirl velocity and r is the radial co-ordinate. Inte-

grating equation (1.1) and denoting
Q=vor (1.2)

to be the circulation function one obtains

op, . Op r 902 dr
'a—zr—O)—'b—;T)-— 0 ’gﬁ, (13)

where z is the axial co-ordinate. Using the fact that Q is conserved on a given

streamline, one can show that (also see Hall, 1972)

Op Op

2:"=0=5;

(r) + a2?/r?, (1.4)

where a is related to u/w, u being the radial velocity and w being the axial velocity.
Equation (1.4) is regular at r = 0 because the circulation behaves like 2 for a
physically meaningful vortex core. The implication of equation (1.4) is that the axial
pressure gradient on the axis is higher than at locations off the axis. Thus if at some
axial location there is an adverse pressure gradient present in the flow, it is expected
to be the largest on the axis. Therefore, there is a great tendency for the flow to
decelerate on the axis.

This idea of stagnation is used by Brown & Lopez (1988) to arrive at a criterion

for vortex breakdown. They propose that the mechanism for retardation of the flow
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occurs through the action of azimuthal vorticity. We describe their considerations
here. For the axisymmetric case, the stream-function 1 is defined in terms of radial

(u) and axial (w) velocities by

U=———-—— w =

[RS
D
<
3| -

il
or’

In a steady flow the Bernoulli function H (or the total head) and €} are constant on
a stream-surface and are expressible as functions of 1 alone. (see Batchelor, 1967.)
Denoting the azimuthal vorticity by 5, the governing equation of motion can be

written

L fde dH
U AR W

This is the so-called Bragg-Hawthorne or the Squire-Long equation, also discussed in

(1.5)

part II. Now consider an upstream region of cylindrical (or nearly cylindrical) flow
with axial velocity. We can follow a particular streamline in the meridional plane, the
plane containing r and z, and ask the question as to under what conditions does it
diverge (move away from the axis). Brown & Lopez consider a streamline described

by r = o(z) on which (1.5) becomes

— Bo, (1.6)

n(z) = /;1

where A and B are constants. Suppose that in the upstream region z = zg, and that
all the information such as velocity field, value of H etc., is known on the streamline
being considered (and denoted by subscript 0). The constants A and B are found at

this location and re-inserted into (1.6) to give

D _()% _ [ 412
o (ﬂo)ﬂ (ﬂo l) oo’ (L7)

where ap and fp are the tangents of the helix angle for the velocity and vorticity

respectively. They are defined as
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where (p is the axial component of vorticity. If the axial flow retardation occurs
primarily through the action of azimuthal vorticity, as the theory proposes, then p
must become negative at some axial location. Therefore, if 5y is positive, we must
have ag/Bp > 1. Under this condition it is easily seen that as n becomes negative and
continues to grow in magnitude, the streamline continues to diverge. Up to this point
the theory says nothing about whether the streamline should continue to diverge, or
reach another cylindrical flow configuration or even that they should converge. Brown
& Lopez argue: “The development of negative 5 will induce negative axial velocity on
the axis which, by continuity, will lead to a further increase in o and correspondingly,
a further increase in negative vorticity, etc. It is this ‘positive feedback,’ driving a
form of instability, which would account for the relatively rapid divergence of stream
surfaces in the proximity of ‘breakdown’.” The proposed positive feedback mechanism
clearly fails to explain occurrence of recirculating bubbles. However, the requirement
that the ratio of helix angle be greater than unity for the streamlines to diverge is a

useful observation.

The theory of conjugate states as an explanation of vortex breakdown is based
on the idea of criticality. Parallel situations are encountered in the formation of
hydraulic jumps in water channels and shock waves in supersonic flows. This idea
forms the core of Benjamin’s theory of vortex breakdown (see Benjamin, 1962, 1967).
He explains it as an example of a general type of fluid-dynamical mechanism in which
the flows occur in conjugate pairs. Specifically, in the case of swirling flows, for a given
distribution of total head and circulation over the stream surfaces one possible flow
state is ‘subcritical’ in the sense that infinitesimal axisymmetric standing waves can
occur on it, and the conjugate state is ‘supercritical.” The two conjugate states form
part of the same overall system. He deduces that compared with their conjugates,
supercritical flows possess a deficiency of total momentum or the ‘low force’ defined
as the integral of axial momentum flux plus pressure over a section through the flow.

Thus when the flow undergoes a transition from supercritical to subcritical state
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spontaneously, it gains flow-force which manifests either as the ‘wave resistance’ of
a stationary wave train in the subcritical flow or it dissipates in a turbulent region.
At the end of this process, the flow-forces of both regions of flow are brought to the
same value resulting in a steady state. Benjamin shows that if a given primary flow
is supercritical then the conjugate flow is necessarily subcritical. A further property
possessed by the conjugate flow is that it preserves the same total head and circulation
distribution over the stream surfaces as the primary flow.

It is important to note some limitations of this theory. Both primary and conju-
gate flows are cylindrical. Hence the explanation of a bubble type of breakdown is
not addressed. The theory also does not explain the retardation of the axial flow on
the axis, and therefore does not predict reversed flow. In fact, in one of the examples
of flow in a pipe in which the upstream conditions consist of a uniform axial flow
and a swirl with quadratic distribution, the theory gives acceleration of the axial
component on the axis. Benjamin argues that this is a result due to an unphysical
nature of distribution of swirl.

However, success of the theory is demonstrated in a second example. In this
example, the primary flow is a ‘combined vortex’ consisting of a cylindrical core of
solid-body rotation immersed in a tube filled with irrotational fluid. In this case the
theory predicts a conjugate flow with a swollen core and a slower axial velocity on the

axis. Reversed flow in this example is possible if the primary flow is far supercritical.

1.5 Numerical study of vortex breakdown

As regards the numerical study of the vortex breakdown phenomenon, numerous
calculations of steady flow developing a bubble are found in the literature. Most of
them use the Navier-Stokes equations rather than the Euler equations. The geometry
chosen for the computations, compatible with the experiments, usually consists of a
vortex in a tube (Harvey, 1962). The controlling parameters are the volumetric flow
rate in the tube and the amount of swirl imparted to the vortex. Inflow conditions

usually consist of a swirl profile which rises linearly with the radial distance near the
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axis and falls off inversely in the far field. Salas and Kuruvila (1989) report existence
of several bubbles. In their solutions, with fixed swirl parameter, a single bubble
emerges at low Reynolds number, changes its shape and settles down as the Reynolds
number increases. Similar behavior is observed with a secondary bubble appearing
downstream and so on with a tertiary bubble. Thus they conclude that in the inviscid
limit, there will be an array of several bubbles. We note that for some parameters
chosen, the bubbles are situated above the symmetry axis. Beran (1989) has computed
solutions to Navier-Stokes for the case of an isolated vortex and for the swirling flow
through a frictionless pipe. For Reynolds number 200 or higher, Beran finds four
vortex states characterized by the swirl parameter. For small swirl parameter the
flow is found to be supercritical in the whole entire computational domain. When
the swirl parameter is increased, the flow is observed to become critical at some axial
location and a transition point forms. The general features of transition are seen to
be in agreement with Benjamin’s theory. Formation of transition point is associated
with the breakdown of quasi-cylindrical equations. Flow reversals are observed only

for large swirl parameter.

Hafez, Kuruvila & Salas (1986) and Leibovich & Kribus (1990) have computed
solutions to the so called Bragg-Hawthorne (also known as the Squire-Long) equations
equivalent to the Euler equations. In this equation the functional form of H and Q2
must be stated explicitly. Both the authors arrive at a bubble like structure by
continuing from a known linear solution found by solving an eigenvalue problem.
Leibovich & Kribus argue that for large amplitudes, steady periodic waves attain
characteristics of solitary waves. When a bubble forms, the streamlines inside the
bubble need not necessarily be governed by the same dependence of H and §) on
the stream-function as the streamlines outside of the bubble. Both Hafez et al. and
Leibovich and Kribus assume that the streamlines inside the bubble obey the same .
dependence of H(¢) and Q(3) as the streamlines outside. The role of H and ) is

discussed again in the next section in the context of present study. Hafez et al. also
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find a second branch of solutions which does not form any bubble for some range of
the swirl parameter. They suggest that this branch is not a solution of the inviscid
Euler equations for the following reason. When the solution of the Bragg-Hawthorne
equations is substituted into the Euler equations, the first branch yields a residual
O(Az?), where Az is the grid spacing, while the second branch yields a residual of
O(Az) over a range of Az.

1.6 Outline of present study

In this study we are mainly concerned with aspects of wave motion in a vortex with
possible connections to vortex breakdown. We restrict ourselves to the axisymmetric
flows. The study is divided into two parts. In the first part we consider dynamics
of a vortex core and in the second part we consider finite amplitude steady waves.
Also included in the second part is an analysis of the weakly nonlinear stability of a
columnar vortex.

The physical mechanism that leads to a breakdown is not well understood. It is
clear from the experiments that axisymmetric vortex breakdown is associated with
rapid divergence of core size. The axial velocity on the axis reduces as the core size
increases. Lundgren and Ashurst explain this divergence to be the result of formation
of a “shock.” The “shock” in this case signifies that the core area experiences a sud-
den jump at some axial location. The results of LA also show that the axial velocity
reduces across the jump. Therefore, the solutions of LA describe most features of a
vortex breakdown observed experimentally except the formation of a reversed flow
bubble. The most important aspect of this description is that they provide an ex-
planation as to how a breakdown occurs. Besides this, the results of LA show strong
similarity with the results of Benjamin’s theory. As mentioned before, LA adopt an
ad-hoc procedure in deriving the equations governing the core area of a vortex tube.
Their approach is to model the vortex core as a slug of fluid moving under the action
of various forces. The force terms used by LA were computed by MS correct up to

O(1/p?*) where p is the local radius of curvature of the vortex. To this order, i.e.,



- 14 -
O(1/p?), it was shown by MS that the terms describing variation of the core size are
unimportant. We re-examine the MS equations for a straight vortex in Chapter 2.
We show that the LA equations are contained in the MS equations. We next perform
numerical integration of the MS equations for various types of initial conditions. The
results indicate that the MS equations lead to shock formation. Motivated by these
results, we seek a comparison of the solutions of the MS equations with the solutions
of the Navier-Stokes equations at high Reynolds number. The results of the compar-
ison are given in Chapter 4. As our initial conditions for the Navier-Stokes problem,
we consider a cylindrical vortex with a sinusoidal perturbation imposed upon it. The
initial conditions for the MS problem are derived by averaging the initial conditions of
the Navier-Stokes problem. A jump in the core area in the solutions of the MS equa-
tions is seen for very small, moderate and strong perturbations. The manner in which
the jump in the core area develops can be assessed by computing the maximum value
of the magnitude of the slope of the core wave. This shows a monotonic increase of
the slope with time. A comparison with the solutions of the Navier-Stokes equations
for a small or moderately perturbed vortex shows qualitatively different development
of the core wave. The core wave does not appear to steepen and the slope of the
core wave oscillates for the Navier-Stokes problem. When compared with a strongly
perturbed vortex, the steepening of the core wave is seen to be similar to the MS case.
The core does develop a jump. But, both the axial position and the sense of jump
are different. The numerical algorithm used to compute the Navier-Stokes solutions

is discussed in Chapter 3.

The second part of this thesis deals with the study of axisymmetric waves of
permanent form on vortex cores. Inviscid, axisymmetric flows with swirl are char-
acterized by the Bernoulli function, H, and the circulation function, Q. In a steady
flow and on a given streamline in the meridional plane, both H and ) are constants.
Thus they can be expressed as functions of 3, the stream-function, alone. This de-

pendence, however, can be completely arbitrary. Every solution of the steady Euler
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equations is then characterized by specifying the dependence of the H and ) on the
stream-function. Once the functional form is specified, the solution to the Euler equa-
tions is uniquely determined. This forms the basis for Chapter 5 wherein we consider
nonlinear extension of the Kelvin waves (Kelvin, 1880). The base flow consists of
a columnar vortex with a circular core within which the vorticity is uniform and is
directed along the axis. Outsiden the core, the vorticity is zero. For this base flow, the
dependence of H and ) on v is easily computed. The linear Kelvin waves are seen to
satisfy the same dependence of these functions as the base flow. We assume that the
nonlinear solutions are constrained such that H(v) and Q(%) are of the same form as
the base flow. The particular choice of H and §2 makes the governing equation linear.
Nonlinearity enters into the problem through the continuity conditions across the
perturbed boundary of the vortex core. The shape of the vortex core is determined

as part of the problem.

There is no meaningful physical reason which demands that a family of waves
defined by a parameter, say the wave-height, be connected by the same dependence
of H and 2 on 1. We view the dependence of H and ) as being the additional
constraints necessary to be able to find solutions unambiguously. It is conceivable,
therefore, that we can find unique solutions of the Euler equations by specifying
conditions other than H(v) and Q(%). This forms the basis for Chapter 6, in which
we consider steady periodic waves on a vortex filament with an initially smooth
distribution of vorticity. We find a branch of solutions such that every solution on
this branch possesses the same axial mean (taken over one period), including the
unperturbed cylindrical flow. In this case, the functional dependence of H and
varies, in general, from one solution to the other as the parameter characterizing the
branch is varied. The form of dependence is easily computed. The solutions are
computed using two methods — by using a direct Newton’s method and, by using a
perturbation approach. The two methods give the same solution. The perturbation

co-efficients are uniquely determined. Hence the solution so found is unique. A
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parameter 5 is introduced which controls the base flow vorticity distribution such
that when § — 0, the vorticity distribution tends to that of a columnar vortex
described in Chapter 5. Since the axial mean for the perturbed solution is the same
as that of the unperturbed vortex, it is evident that the solution found here as 3 — 0
must differ from the solution found in Chapter 5. In particular we show that there
must exist a vortex sheet of constant strength bound to the core boundary at the

second order perturbation solution.

Both the nonlinear Kelvin waves and the waves on a smooth distribution of vor-
ticity exhibit regions of reversed flow. This is the form of the bubble type of vortex
breakdown. Leibovich & Kribus (1990) and Hafez et al. (1986) have also found
periodic waves with recirculating regions for a vortex in a tube. They compute the
solutions for initially smooth distribution of vorticity similar to the solutions found in
Chapter 6. The important difference is that they specify the functional dependence
of H(y) and () while we constrain the base flow. When a bubble of reversed flow
forms, a set of closed streamlines inside the bubble form as well. When this happens,
an important question as to the specification of the flow inside the bubble arises.
Since the closed streamlines are isolated from the external streamlines, they need
not necessarily be governed by the same dependence of H(v)) and Q(v) as the flow
outside. In fact, one can recompute the flow inside the bubble by specifying some
other dependence of these functions, and, this can be done in infinite ways. The only
constraint is that the pressure and the normal velocity across the streamline bound-
ing the bubble (the separating streamline) must be continuous. The Euler equations
admit solutions with jump in tangential component of velocity across a streamline.
Leibovich & Kribus and Hafez et al. argue that the functional dependence of H and Q
inside the bubble is an analytic continuation of the dependence outside the bubble. In
the nonlinear Kelvin waves discussed in Chapter 5, the functional dependence is fixed
inside the core including the bubble. In the case of waves on a smooth distribution

of vorticity discussed in Chapter 6, we compute the dependence of these functions
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inside the bubble and show that they are indeed continuous across the separating
streamline.

In Chapter 7, we consider the weakly nonlinear stability of a columnar vortex via
multi scale analysis. The amplitude of the disturbance is assumed to vary slowly in
time and space. We find that the amplitude satisfies a cubic Schrédinger equation. A
derivation is presented. The stability is characterized by the sign of the constants in
this equations. The constants are evaluated numerically for various columnar vortices.
We find that the vortex is unstable for all the cases considered. By instability we
mean that a perturbation grows slowly in time. It is only in this unstable case that
solitary waves are possible. The amplitude of the solitary wave solutions depends
on the ratio of the constants involved in the Schrédinger equation. For various cases
tried, we find that this ratio remains independent of the total circulation. In contrast,
Leibovich (1970) found that the evolution of a long wave on a vortex constrained in

a pipe is governed by the Korteweg-de Vries equation.



—18 -

CHAPTER 2

Core Waves on a Vortex Filament

2.1 Introduction

In this chapter we consider waves on the core of a vortex filament. The work of
Moore and Saffman (1972) forms the starting point for our investigations. Moore and
Saffman (MS) considered the motion of a vortex filament with axial flow. In their
paper they aimed at the development of equations for the velocity of an arbitrarily
shaped vortex tube. Their procedure was to consider an element of the vortex and
compute the pressure distribution on the curved surface arising from the motion of
the fluid. The pressure was integrated to obtain the forces acting, and, since the
surface is material, the balance of forces leads to the desired equations. The various
terms arising in the force balance can be traced to different mechanisms that give rise
to them. Most important of these are the Kutta lift and vortex tension.

Lundgren & Ashurst (1989; referred to as LA) arrived at evolution equations for
a vortex tube by equating the external force terms composed of Kutta lift, etc., as
derived by MS to the rate of change of momentum of the fluid inside the element of the
vortex. This fluid is modeled as a solid body rotating about its axis and sliding along
the vortex tube with local axial velocity. Further, LA retain the variations of core size
along the axial direction without justification. Examination of their equations for a
straight vortex yields a set of equations that are similar to 1-D gas dynamics equations
and to shallow water equations. These equations describe, therefore, transition from
one flow state to another — supersonic to subsonic, for example. This is viewed as a
mechanism for the vortex breakdown process. The equations allow for the formation
of shocks across which the flow quantities jump abruptly. Core area is shown to be

one of the quantities which jumps. This provides a good qualitative description of
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vortex breakdown.

In what follows, we note that the analysis carried out by MS includes the vari-
ations of the core size along the vortex. However, they argue that these variations
take place on a time scale much faster than the time scale involved in the motion of
the vortex itself. Thus they drop the corresponding terms and simplify the resulting
equations. As we are interested in knowing whether the LA equations are derivable
directly from the MS analysis, we proceed with the MS analysis by retaining the
core size variations. Next we specialize the MS equations to a straight vortex and
show that the resulting equations contain the LA equations as a special case. The
MS equations are found to be more general in the sense that they allow for varia-
tion of velocity structure within the core of the vortex. We include in this chapter
numerical solutions of the MS equations for some typical initial conditions consisting
of a cylindrical vortex with sinusoidal perturbation. The results show that the core
area develops a “shock” which is expected from the equations. These results moti-
vate us to take up numerical simulation of the full Navier-Stokes equations at high
Reynolds numbers which is discussed in the following chapter. A description of the
algorithm used to compute the numerical solutions of the MS equations is included

in this chapter.

2.2 Equations of motion

We now develop the equations giving particular attention to the ones governing
the core deformation. Most of the equations given below appear in MS, but we include
them for the sake of completeness.

We will suppose that a vortex filament of strength I' has the parametric equation
X= R(f? t)a (21)

where X is the position vector with respect to a fixed frame, and ¢ is a Lagrangian

variable to be defined shortly. The vortex strength I' is the total circulation of the
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filament and is defined by
r= /C v-dl, (2.2)

where C is any closed contour enclosing the vortex core only once, v is the velocity,
and 1 is an element of C. Let s = 8(§,t) denote the arc length and s denote the
unit tangent vector. We then have 0s/0¢ = |0R/0¢| and s = (OR/0E)/( 0s/DE).
The velocity of the vortex is defined to be dR/3t. This is arbitrary to the extent
of a scalar multiple of s. The vortex moves because of self induced velocity and any
external velocity field. Now an element of the vortex with length ds bounded by the
curved surface and two plane ends perpendicular to the local tangents at either end of
the element is considered. The curved surface constitutes the core and separates two
fluid regions; the fluid inside the core is rotational and the fluid outside is irrotational.
A force Fg per unit length is exerted on this surface by the fluid outside and a similar
force F7 per unit length is exerted by the fluid inside. Since the surface must move
with the fluid we require that Fg+ Fr = 0. We now present the computation of these

forces.

2.2.1 Exterior forces

For each point ¢ of the filament one can associate an external velocity, denoted

by V(¢,t), which can be written
V= VE(éa t) + Vl(évt)v (23)

where Vg is the contribution from external sources and V7 is the contribution from
the vortex itself. V7 is evaluated using the Biot-Savart law at x = R. The divergent
part of the Biot-Savart integral is removed by subtracting off a divergent contribution
from an osculating vortex ring of radius p at point £&. The Lagrangian parameter ¢
is now specified so that it is constant for a point moving along the vortex with speed

V .s. Thus
OR/0Ot -.s=V .s. (2.4)
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Now a local orthogonal curvilinear coordinate is set up for analyzing the flow in
the vicinity of the element. Consider a point R({) on the filament. There is a plane
containing this point, the unit normal vector n and the unit binormal b. The vectors

n and b are defined by

JR Js n db on s
3 =9 3= b=sAn, 3 =™ Eg—:—;+rb, (2.5)

where p is the local radius of curvature and 7 is the torsion. A point P in the
neighborhood of the vortex has the coordinates x(P) = R(é(s)) + zi+ yj where, i and
j are the unit vectors such that n makes an angle ¥ and b makes an angle = /2 + ¢

with i. The velocity potential ¢(r, s, 8,t) outside the core satisfies Laplace’s equation

% 106 13°  10hd¢ 1 OhO¢ 1a<1a¢

ozt et o Y horor T 2R o000 T hds 55;)=°- (2.6)

Here r and @ are the local polar coordinates defined by
T =rcosé, y =rsind, (2.7)

and h = 1—(r/p) cos(6—1) is the metric coeflicient along s. To preserve orthogonality,
the coordinate system must rotate by an amount d¢/ds = 7. Equation (2.6) is solved

by expanding the potential ¢ and the core radius a in a perturbatio