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Abstract

The equations of Moore & Saffman (1971) are examined and are shown to contain
the fast time scale equations governing the core waves on a straight vortex filament.
The equations so derived are the same as those reported by Lundgren & Ashurst
(1989) except for a correction term that allows for variation of the axial velocity
structure within the vortex core. Numerical solutions of the Moore & Saffman equa-
tions are presented for various initial conditions consisting of wave-like perturbations
on a cylindrical vortex, and they all show development of a jump in the core area.
This has been advanced to be a mechanism for vortex breakdown by Lundgren &
Ashurst. A comparison of the solutions of the Moore & Saffman equations with the
solutions of the Navier-Stokes equations at high Reynolds number is presented for
three different cases. In the first case a vortex with a very small perturbation is con-
sidered. The Moore & Saffman solution shows steepening of the initial wave resulting
in the development of jump in the core area (shock). The Navier-Stokes solution
shows bulging of the core. But, there is no indication of formation of a shock. In
the second case a vortex with moderate perturbation is considered. The Moore &
Saffman solution leads to a shock similar to the weak perturbation case. As before,
the Navier-Stokes solution does not develop jump in the core area. However, devel-
opment of a bubble of reversed flow is seen. In the third case, a jump in the core
area in the solutions of the Navier-Stokes equations is seen for a strongly perturbed
vortex. But the location and the sense of jump disagrees with jump that develops in
the Moore-Saffman solution. Thus, the solutions of the Navier-Stokes equations and

the Moore-Saffman equations show qualitative disagreement.

Next, an extension of steady Kelvin waves for two different types of vorticity
profiles is considered. In the first case, steady nonlinear waves are constructed via a
perturbation method. In this case, the vorticity is nonzero inside the core and sharply
drops to zero across the boundary. The shape of the core boundary is determined as

part of the problem. The dependence of the Bernoulli function and the circulation
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function on the streamfunction are specified. This serves as the additional constraint
necessary to determine the solution uniquely. The solutions are free of any vortex
sheets. In the second case, nonlinear steady Kelvin waves on smooth vorticity dis-
tributions are constructed by means of a direct Newton method and a large order
perturbation method. Instead of specifying the dependence of the Bernoulli function
and the circulation function on the streamfunction as in the previous case, the so-
lutions are restricted such that they have the same axial mean as the base flow. In
both the approaches, regions of reversed flow are observed. This is the structure of
bubble type of vortex breakdown.

Next, an analysis of the weakly nonlinear stability of a columnar vortex is pre-
sented. It is shown that the amplitude, assumed to vary slowly in time and space,
satisfies a cubic-nonlinear Schrodinger equation. Solutions are found to be unstable
in the sense that the perturbations grow slowly in time. Solitary wave solutions are

possible in this unstable case.
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CHAPTER 1

Introduction

1.1 General introduction

A vortex filament is a slender tube-like concentration of vorticity. The size of the
cross section of a filament is small compared with other length scales in the flow field.
The region of fluid containing the vorticity is called the core. Away from the core,
the flow is irrotational. Probably the most common example of a vortex filament
found in literature is that of aircraft trailing vortices. As a result of variation of the
lifting force on the wing of an aircraft, vorticity is shed in to the wake in the form of
a vortex sheet. The vortex sheet being highly unstable to infinitesimal disturbances,
rolls up immediately into two counter-rotating trailing vortices. The structure of the
core immediately after the roll up is that of a tightly wound spiral with several turns.
Viscous action smoothes out the velocity across the several layers of the spiral and
gives rise to a continuous distribution of the velocity in the core. A mathematical
treatment of the roll up of the vortex sheet and the structure of the trailing vortex is
found in Moore & Saffman (1973). Trailing vortices associated with a heavy aircraft
contain tremendous energy and pose a threat to light airplanes. A great deal of
research activity in the 1970’s was devoted to the understanding of the motion and
decay of a trailing vortex system. A counter-rotating system of vortex filaments also
forms due to the roll up of a vortex sheet shed from the leading edge of a delta wing
at large angle-of-attack. The leading edge vortices in this case are particularly helpful
in increasing the lift on the wing.

The computation of velocity induced by a vortex filament is of utmost practical
interest since a general three dimensional flow with a compact distribution of vorticity

| may be thought of as being composed of a collection of vortex filaments. The
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subsequent dynamics of the entire flow field is then represented by the evolution of
the filaments moving under the action of the induced velocity. A discussion of this
may be found in Leonard (1985). The induced velocity of any vorticity distribution
can be computed using the Biot-Savart law. The induced velocity due to a vortex
filament can be found approximately by assuming that the vorticity is concentrated
on a line passing through the center of the core. When the induced velocity at a point
on the filament is needed, the straight forward application of the Biot-Savart law leads
to an infinite velocity. The correct induced velocity must be computed by accounting
for the core structure exactly. This is often difficult in practice. But simple cut-off
methods or a more sophisticated de-singularization of the integral (Rosenhead, 1930)
have been used.

A phenomenon most frequently encountered in relation to the dynamics of vortex
filaments is vortex breakdown or vortex bursting. Benjamin (1962) states that vortex
breakdown or bursting refers to the abrupt and drastic change of structure which
sometimes occurs in a swirling flow. Two distinct types of breakdown are observed.
They are the bubble type and the spiral type. In the bubble type breakdown, the
stream-surface diverges rather drastically to form a bubble like structure that is nearly
axisymmetric. This type of breakdown occurs only when an axial component of
velocity is present in the core. The overall direction of the axial velocity is reversed in
the bubble. In the spiral type breakdown, the axis of the vortex deforms into a spiral
with no appreciable growth in the core size. The flow downstream of the breakdown
structure in either type is almost always unsteady and turbulent.

In what follows, we first review the various theoretical and experimental work
concerning vortex motion and breakdown. We then outline the study undertaken in

this thesis and state our objective.

1.2 Theories of vortex motion

The earliest work relating to the motion in a vortex is due to Kelvin (1880). In

his paper titled “The vibrations of a columnar vortex,” Kelvin considered the effect of
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wave-like perturbations on a columnar vortex with no axial velocity. Among the cases
considered, he found that axisymmetric linear waves propagate at fixed speed. The
speed of propagation depends on the wave-length of the perturbation and is found to
satisfy a transcendental dispersion relation involving Bessel functions. These studies
were followed by studies of steady motion and vibrations of a hollow vortex ring
(Hicks, 1884; Pocklington, 1895). These studies were contributions to the vortex
theory of matter which held that atoms consist of vortex rings in an infinite perfect

liquid. The rings were either hollow or filled with a rotating liquid.

With the introduction of heavy transport aircraft in the sixties and following the
recognition that trailing vortices posed a threat to light aircraft, several researchers
focused on the motion, decay and stability aspects of trailing vortices. Crow (1970)
analyzed the sinusoidal instability which usually leads to joining of segments of vortex
pairs to form an array of vortex rings. The vortices are idealized as interacting lines,
thus neglecting the core structure. The singularity in the self induced velocity is
removed by cutting off a portion of the vortex around the singularity point. The
cut off length is taken to be proportional to the core diameter. The stability was
found to depend on the product of the vortex sepé,ration, the cut off length and the

perturbation wave number.

Widnall, Bliss & Zalay (1971) used the method of matched asymptotic expansions
to obtain a general solution for the flow field within and near a curved vortex with
an arbitrary distribution of swirl and axial velocities. The inner solution is found by
stretching the radial co-ordinate, ¥ = r/e where € is the small parameter defined to
be the ratio of core size and the local radius of curvature. The local behavior near the
axis is assumed to be that of solid body rotation. It was found that the effect of axial
velocity was to reduce the angular velocity of the sinusoidal vortex and the speed of
the ring. Physically, a larger Kutta lift is needed to sustain the axial component.
Working along the same lines, Ting (1971) examined a viscous vortex. He used the

same type of stretching for the inner region as Widnall et al., except that the small
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parameter was taken to be the inverse square root of the Reynolds number. This
gives a way to describe the decay due to viscosity. But it should be noted that the
trailing vortices often decay rapidly after a core bursting occurs or rings form after

the reconnection with the counter-rotating vortex.

Moore & Saffman (1971; referred to as MS) considered the velocity of a vortex
filament of arbitrary shape and arbitrary distribution of swirl and axial velocity dis-
tribution in the core. The necessary equation for the evolution of such a vortex is
obtained by balancing the forces on an element of the vortex bounded by a curved
surface and two plane ends. The solution is constructed accurate to second order
in a small parameter defined to be the ratio of the core radius and the local radius
of curvature. The procedure is dealt with in more detail in the following chapter.
The highlight of the calculation is that the core deformations in the axial direction
are systematically incorporated even though they are dropped in the final simplified

result.

Adopting an ad-hoc procedure, Lundgren & Ashurst (1989; referred to as LA)
also obtained equations describing the motion of a vortex tube. The cross sectional
area of the vortex was assumed to be circular but the variation of the core radius
along the axis was included. Their procedure was to model the core as a slug of
fluid moving along the vortex under the action of external forces. The external forces
were found as sums of Kutta lift, vortex tension, etc., the general forms of which
were derived by MS and others. Changes in core area were built into the dynamics
by adjusting the size of the core according to the stretching of the fluid particles on
the vortex axis. Their numerical solutions for a perturbed vortex ring showed the
development of a helical wave. The special case of a straight vortex were found to
describe vortex breakdown. This case is considered in detail in connection with the

equations of MS in the following chapter.

Fukumoto & Miyazaki (1991) rederived the results of MS using the method of

matched asymptotic expansions up to the second order in the expansion variable
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defined by the ratio of radius of the vortex core and the local radius of curvature.
They also used the fact that the changes in the core size along the axis are of higher
order. Under the assumption of localized-induction, they were able to reduce the
equations governing self induction of a vortex to a nonlinear evolution equation which
is integrable. They present some particular solutions of bending waves including

soliton solutions.

1.3 Experimental aspects of vortex breakdown

Vortex breakdown was first recognized in the aerodynamic context of flow over a
highly swept wing at high angle of attack. Experiments (Elle, 1960; Lambourne &
Bryer, 1961; Peckham & Atkinson, 1957, among many others) clearly showed that a
vortex core, marked by injection of dye, suffered drastic structural change above the
wing surface. Both types of breakdown, bubble and spiral, are observed. In order
to exercise some control, subsequent experimental studies of vortex breakdown were
conducted in a tube. Harvey (1962) was among the first to investigate breakdown
in this configuration. We briefly describe the set up used by Harvey and summarize
the observations since they are of importance to our study. The apparatus consists
of a long Perspex tube through which air is drawn by means of a fan mounted at the
‘down-stream’ end or the outlet of the tube. An initial swirl is imparted to the air at
the inlet by a set of adjustable vanes. The vortex core develops from the boundary
layer shed from a pointed center body located at the inlet. Smoke injection is used
to visualize the vortex core. Wall interference could be minimized by controlling the
core size via the application of suction on the center body. The swirl angle (defined
as the inverse tangent of the ratio of maximum axial velocity to the maximum swirl
velocity) could be changed by altering the vane angle. As the swirl angle was slowly
increased subsequent to setting up a stable vortex in the tube, a nearly axisymmetric,
almost steady bubble formation was observed, the bubble moving upstream with
further increase in the vane angle. Unlike the flow over the wing surface, the bubble

was quite nearly closed (achieving a slightly elongated spherical shape) with the
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flow downstream of it resembling the flow ahead of the bubble. This leads to the
conclusion that this type of vortex breakdown is not a result of instability but, rather,
a transition between two vortical states. The conclusion is based on the assumption
that instability leads to highly unsteady states in fluid flows. By reducing the core

size, the bubble size was reduced without any other changes in the flow structure.

In a more elaborate effort, Faler (1976) made detailed velocity measurements of
a vortex breakdown. Laser Doppler anemometry was employed (see also Faler &
Leibovich, 1977.) Faler used essentially the same type of device as Harvey except
that he used water in a slightly diverging tube in order to minimize the influence of
the wall boundary layer. Several flow configurations were observed over a range of
Reynolds number and swirl. The breakdown structure was found to move slightly
and randomly in the axial direction. Often the structure appeared to change its
form. Faler recognized seven types of structures. Type 0 (zero) is the so-called
axisymmetric mode of vortex breakdown. This is essentially the same form as found
by Harvey and was characterized by a stagnation point on the axis. The dye marking
the core expanded abruptly to form a bubble with its envelope exhibiting a high
degree of axial symmetry. In Faler’s experiment, however, the bubble is not closed in
the downstream region and is in fact asymmetric. The bubble was observed to move
upstream and shrink in size with increasing Reynolds number and/or amount of swirl.
Examination of mean streamlines calculated from the time averaged axial velocity
reveals a more complex recirculating region. Encapsuled in an enveloping bubble
are two distinct recirculating cells. A larger outer cell contains a larger amount of
circulation than the inner smaller cell. Dye injected off the axis follows a smooth and
regular helical path with no appreciable change. The type 1 structure is “bubble-like”
with a rugged asymmetric envelope. Type 2 is the spiral type structure displaying a
rapid deceleration of the core fluid followed by a formation of a kink and then by a
spiral motion. In the type 6 structure (also reported by Sarpkaya, 1971, 1974) the

| filament suffered off axis movement and the rest of the observations can be viewed as



some variants of these basic ones.

Garg & Leibovich (1979) made velocity measurements upstream and in the wakes
of vortex breakdowns fields of bubble and spiral types. They report that spectral
analysis of the data indicates prominent oscillations in the wake of the breakdown
structure at less than 10 Hz. The oscillations are found to be more energetic and the
vortex core expansions are larger for the bubble mode which, therefore, is inferred to
be the stronger form of breakdown. For a more comprehensive review of structure of
vortex breakdown and also some reference to the occurrence of the phenomenon in
tornados, see Leibovich (1978).

The basic outcome of these experiments is that vortex breakdown is a phenomenon
in which a drastic change in the structure occurs as the core flow decelerates to form
a stégnation point on the core center. The flow is strictly unsteady in any break-
down configuration. Unsteady behavior in the case of the axisymmetric breakdown
is characterized by very slow oscillations. The flow is usually turbulent downstream
of the breakdown region. As is demonstrated by Harvey (1962), the breakdown is a

transition of one flow state to the other and not a result of onset of instability.

1.4 Theoretical aspects of vortex breakdown

In his review on the theories of vortex breakdown, Stuart (1987) categorizes the
ideas into three classes: (i) theories involving considerations of hydrodynamic stabil-
ity; (ii) theories involving a natural deceleration of the core flow leading to a stag-
nation on the axis; and (iii) theories involving conjugate states of flow. We evaluate
these ideas and review relevant literature.

Stuart observes that the flow instability phenomena encountered in most fluid
flows illustrate connection between stable and unstable states depending on parame-
ters such as the Reynolds number. Further, the instability appears to be insensitive to
the downstream boundary conditions. This is contrary to the observation in a vortex
breakdown which is strongly dependent on the downstream conditions. For example,

application of downstream suction results in a vortex flow devoid of any breakdown
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structure. Thus flow instability as a mechanism is considered unimportant if not
altogether irrelevant.

The theories of stagnation of flow on the axis are based on observational facts
mentioned above in the context of experimental work and are related to the natural
tendency of rotating flows (dominantly axisymmetric) to decelerate on axis due to
axial forces. Consider for example, a nearly cylindrical vortex. The approximate

radial momentum equation states that

%) v?
L=, (1.1)

where p is the pressure, v is the swirl velocity and r is the radial co-ordinate. Inte-

grating equation (1.1) and denoting
Q=vor (1.2)

to be the circulation function one obtains

op, . Op r 902 dr
'a—zr—O)—'b—;T)-— 0 ’gﬁ, (13)

where z is the axial co-ordinate. Using the fact that Q is conserved on a given

streamline, one can show that (also see Hall, 1972)

Op Op

2:"=0=5;

(r) + a2?/r?, (1.4)

where a is related to u/w, u being the radial velocity and w being the axial velocity.
Equation (1.4) is regular at r = 0 because the circulation behaves like 2 for a
physically meaningful vortex core. The implication of equation (1.4) is that the axial
pressure gradient on the axis is higher than at locations off the axis. Thus if at some
axial location there is an adverse pressure gradient present in the flow, it is expected
to be the largest on the axis. Therefore, there is a great tendency for the flow to
decelerate on the axis.

This idea of stagnation is used by Brown & Lopez (1988) to arrive at a criterion

for vortex breakdown. They propose that the mechanism for retardation of the flow
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occurs through the action of azimuthal vorticity. We describe their considerations
here. For the axisymmetric case, the stream-function 1 is defined in terms of radial

(u) and axial (w) velocities by

U=———-—— w =

[RS
D
<
3| -

il
or’

In a steady flow the Bernoulli function H (or the total head) and €} are constant on
a stream-surface and are expressible as functions of 1 alone. (see Batchelor, 1967.)
Denoting the azimuthal vorticity by 5, the governing equation of motion can be

written

L fde dH
U AR W

This is the so-called Bragg-Hawthorne or the Squire-Long equation, also discussed in

(1.5)

part II. Now consider an upstream region of cylindrical (or nearly cylindrical) flow
with axial velocity. We can follow a particular streamline in the meridional plane, the
plane containing r and z, and ask the question as to under what conditions does it
diverge (move away from the axis). Brown & Lopez consider a streamline described

by r = o(z) on which (1.5) becomes

— Bo, (1.6)

n(z) = /;1

where A and B are constants. Suppose that in the upstream region z = zg, and that
all the information such as velocity field, value of H etc., is known on the streamline
being considered (and denoted by subscript 0). The constants A and B are found at

this location and re-inserted into (1.6) to give

D _()% _ [ 412
o (ﬂo)ﬂ (ﬂo l) oo’ (L7)

where ap and fp are the tangents of the helix angle for the velocity and vorticity

respectively. They are defined as
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where (p is the axial component of vorticity. If the axial flow retardation occurs
primarily through the action of azimuthal vorticity, as the theory proposes, then p
must become negative at some axial location. Therefore, if 5y is positive, we must
have ag/Bp > 1. Under this condition it is easily seen that as n becomes negative and
continues to grow in magnitude, the streamline continues to diverge. Up to this point
the theory says nothing about whether the streamline should continue to diverge, or
reach another cylindrical flow configuration or even that they should converge. Brown
& Lopez argue: “The development of negative 5 will induce negative axial velocity on
the axis which, by continuity, will lead to a further increase in o and correspondingly,
a further increase in negative vorticity, etc. It is this ‘positive feedback,’ driving a
form of instability, which would account for the relatively rapid divergence of stream
surfaces in the proximity of ‘breakdown’.” The proposed positive feedback mechanism
clearly fails to explain occurrence of recirculating bubbles. However, the requirement
that the ratio of helix angle be greater than unity for the streamlines to diverge is a

useful observation.

The theory of conjugate states as an explanation of vortex breakdown is based
on the idea of criticality. Parallel situations are encountered in the formation of
hydraulic jumps in water channels and shock waves in supersonic flows. This idea
forms the core of Benjamin’s theory of vortex breakdown (see Benjamin, 1962, 1967).
He explains it as an example of a general type of fluid-dynamical mechanism in which
the flows occur in conjugate pairs. Specifically, in the case of swirling flows, for a given
distribution of total head and circulation over the stream surfaces one possible flow
state is ‘subcritical’ in the sense that infinitesimal axisymmetric standing waves can
occur on it, and the conjugate state is ‘supercritical.” The two conjugate states form
part of the same overall system. He deduces that compared with their conjugates,
supercritical flows possess a deficiency of total momentum or the ‘low force’ defined
as the integral of axial momentum flux plus pressure over a section through the flow.

Thus when the flow undergoes a transition from supercritical to subcritical state
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spontaneously, it gains flow-force which manifests either as the ‘wave resistance’ of
a stationary wave train in the subcritical flow or it dissipates in a turbulent region.
At the end of this process, the flow-forces of both regions of flow are brought to the
same value resulting in a steady state. Benjamin shows that if a given primary flow
is supercritical then the conjugate flow is necessarily subcritical. A further property
possessed by the conjugate flow is that it preserves the same total head and circulation
distribution over the stream surfaces as the primary flow.

It is important to note some limitations of this theory. Both primary and conju-
gate flows are cylindrical. Hence the explanation of a bubble type of breakdown is
not addressed. The theory also does not explain the retardation of the axial flow on
the axis, and therefore does not predict reversed flow. In fact, in one of the examples
of flow in a pipe in which the upstream conditions consist of a uniform axial flow
and a swirl with quadratic distribution, the theory gives acceleration of the axial
component on the axis. Benjamin argues that this is a result due to an unphysical
nature of distribution of swirl.

However, success of the theory is demonstrated in a second example. In this
example, the primary flow is a ‘combined vortex’ consisting of a cylindrical core of
solid-body rotation immersed in a tube filled with irrotational fluid. In this case the
theory predicts a conjugate flow with a swollen core and a slower axial velocity on the

axis. Reversed flow in this example is possible if the primary flow is far supercritical.

1.5 Numerical study of vortex breakdown

As regards the numerical study of the vortex breakdown phenomenon, numerous
calculations of steady flow developing a bubble are found in the literature. Most of
them use the Navier-Stokes equations rather than the Euler equations. The geometry
chosen for the computations, compatible with the experiments, usually consists of a
vortex in a tube (Harvey, 1962). The controlling parameters are the volumetric flow
rate in the tube and the amount of swirl imparted to the vortex. Inflow conditions

usually consist of a swirl profile which rises linearly with the radial distance near the
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axis and falls off inversely in the far field. Salas and Kuruvila (1989) report existence
of several bubbles. In their solutions, with fixed swirl parameter, a single bubble
emerges at low Reynolds number, changes its shape and settles down as the Reynolds
number increases. Similar behavior is observed with a secondary bubble appearing
downstream and so on with a tertiary bubble. Thus they conclude that in the inviscid
limit, there will be an array of several bubbles. We note that for some parameters
chosen, the bubbles are situated above the symmetry axis. Beran (1989) has computed
solutions to Navier-Stokes for the case of an isolated vortex and for the swirling flow
through a frictionless pipe. For Reynolds number 200 or higher, Beran finds four
vortex states characterized by the swirl parameter. For small swirl parameter the
flow is found to be supercritical in the whole entire computational domain. When
the swirl parameter is increased, the flow is observed to become critical at some axial
location and a transition point forms. The general features of transition are seen to
be in agreement with Benjamin’s theory. Formation of transition point is associated
with the breakdown of quasi-cylindrical equations. Flow reversals are observed only

for large swirl parameter.

Hafez, Kuruvila & Salas (1986) and Leibovich & Kribus (1990) have computed
solutions to the so called Bragg-Hawthorne (also known as the Squire-Long) equations
equivalent to the Euler equations. In this equation the functional form of H and Q2
must be stated explicitly. Both the authors arrive at a bubble like structure by
continuing from a known linear solution found by solving an eigenvalue problem.
Leibovich & Kribus argue that for large amplitudes, steady periodic waves attain
characteristics of solitary waves. When a bubble forms, the streamlines inside the
bubble need not necessarily be governed by the same dependence of H and §) on
the stream-function as the streamlines outside of the bubble. Both Hafez et al. and
Leibovich and Kribus assume that the streamlines inside the bubble obey the same .
dependence of H(¢) and Q(3) as the streamlines outside. The role of H and ) is

discussed again in the next section in the context of present study. Hafez et al. also
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find a second branch of solutions which does not form any bubble for some range of
the swirl parameter. They suggest that this branch is not a solution of the inviscid
Euler equations for the following reason. When the solution of the Bragg-Hawthorne
equations is substituted into the Euler equations, the first branch yields a residual
O(Az?), where Az is the grid spacing, while the second branch yields a residual of
O(Az) over a range of Az.

1.6 Outline of present study

In this study we are mainly concerned with aspects of wave motion in a vortex with
possible connections to vortex breakdown. We restrict ourselves to the axisymmetric
flows. The study is divided into two parts. In the first part we consider dynamics
of a vortex core and in the second part we consider finite amplitude steady waves.
Also included in the second part is an analysis of the weakly nonlinear stability of a
columnar vortex.

The physical mechanism that leads to a breakdown is not well understood. It is
clear from the experiments that axisymmetric vortex breakdown is associated with
rapid divergence of core size. The axial velocity on the axis reduces as the core size
increases. Lundgren and Ashurst explain this divergence to be the result of formation
of a “shock.” The “shock” in this case signifies that the core area experiences a sud-
den jump at some axial location. The results of LA also show that the axial velocity
reduces across the jump. Therefore, the solutions of LA describe most features of a
vortex breakdown observed experimentally except the formation of a reversed flow
bubble. The most important aspect of this description is that they provide an ex-
planation as to how a breakdown occurs. Besides this, the results of LA show strong
similarity with the results of Benjamin’s theory. As mentioned before, LA adopt an
ad-hoc procedure in deriving the equations governing the core area of a vortex tube.
Their approach is to model the vortex core as a slug of fluid moving under the action
of various forces. The force terms used by LA were computed by MS correct up to

O(1/p?*) where p is the local radius of curvature of the vortex. To this order, i.e.,
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O(1/p?), it was shown by MS that the terms describing variation of the core size are
unimportant. We re-examine the MS equations for a straight vortex in Chapter 2.
We show that the LA equations are contained in the MS equations. We next perform
numerical integration of the MS equations for various types of initial conditions. The
results indicate that the MS equations lead to shock formation. Motivated by these
results, we seek a comparison of the solutions of the MS equations with the solutions
of the Navier-Stokes equations at high Reynolds number. The results of the compar-
ison are given in Chapter 4. As our initial conditions for the Navier-Stokes problem,
we consider a cylindrical vortex with a sinusoidal perturbation imposed upon it. The
initial conditions for the MS problem are derived by averaging the initial conditions of
the Navier-Stokes problem. A jump in the core area in the solutions of the MS equa-
tions is seen for very small, moderate and strong perturbations. The manner in which
the jump in the core area develops can be assessed by computing the maximum value
of the magnitude of the slope of the core wave. This shows a monotonic increase of
the slope with time. A comparison with the solutions of the Navier-Stokes equations
for a small or moderately perturbed vortex shows qualitatively different development
of the core wave. The core wave does not appear to steepen and the slope of the
core wave oscillates for the Navier-Stokes problem. When compared with a strongly
perturbed vortex, the steepening of the core wave is seen to be similar to the MS case.
The core does develop a jump. But, both the axial position and the sense of jump
are different. The numerical algorithm used to compute the Navier-Stokes solutions

is discussed in Chapter 3.

The second part of this thesis deals with the study of axisymmetric waves of
permanent form on vortex cores. Inviscid, axisymmetric flows with swirl are char-
acterized by the Bernoulli function, H, and the circulation function, Q. In a steady
flow and on a given streamline in the meridional plane, both H and ) are constants.
Thus they can be expressed as functions of 3, the stream-function, alone. This de-

pendence, however, can be completely arbitrary. Every solution of the steady Euler
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equations is then characterized by specifying the dependence of the H and ) on the
stream-function. Once the functional form is specified, the solution to the Euler equa-
tions is uniquely determined. This forms the basis for Chapter 5 wherein we consider
nonlinear extension of the Kelvin waves (Kelvin, 1880). The base flow consists of
a columnar vortex with a circular core within which the vorticity is uniform and is
directed along the axis. Outsiden the core, the vorticity is zero. For this base flow, the
dependence of H and ) on v is easily computed. The linear Kelvin waves are seen to
satisfy the same dependence of these functions as the base flow. We assume that the
nonlinear solutions are constrained such that H(v) and Q(%) are of the same form as
the base flow. The particular choice of H and §2 makes the governing equation linear.
Nonlinearity enters into the problem through the continuity conditions across the
perturbed boundary of the vortex core. The shape of the vortex core is determined

as part of the problem.

There is no meaningful physical reason which demands that a family of waves
defined by a parameter, say the wave-height, be connected by the same dependence
of H and 2 on 1. We view the dependence of H and ) as being the additional
constraints necessary to be able to find solutions unambiguously. It is conceivable,
therefore, that we can find unique solutions of the Euler equations by specifying
conditions other than H(v) and Q(%). This forms the basis for Chapter 6, in which
we consider steady periodic waves on a vortex filament with an initially smooth
distribution of vorticity. We find a branch of solutions such that every solution on
this branch possesses the same axial mean (taken over one period), including the
unperturbed cylindrical flow. In this case, the functional dependence of H and
varies, in general, from one solution to the other as the parameter characterizing the
branch is varied. The form of dependence is easily computed. The solutions are
computed using two methods — by using a direct Newton’s method and, by using a
perturbation approach. The two methods give the same solution. The perturbation

co-efficients are uniquely determined. Hence the solution so found is unique. A
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parameter 5 is introduced which controls the base flow vorticity distribution such
that when § — 0, the vorticity distribution tends to that of a columnar vortex
described in Chapter 5. Since the axial mean for the perturbed solution is the same
as that of the unperturbed vortex, it is evident that the solution found here as 3 — 0
must differ from the solution found in Chapter 5. In particular we show that there
must exist a vortex sheet of constant strength bound to the core boundary at the

second order perturbation solution.

Both the nonlinear Kelvin waves and the waves on a smooth distribution of vor-
ticity exhibit regions of reversed flow. This is the form of the bubble type of vortex
breakdown. Leibovich & Kribus (1990) and Hafez et al. (1986) have also found
periodic waves with recirculating regions for a vortex in a tube. They compute the
solutions for initially smooth distribution of vorticity similar to the solutions found in
Chapter 6. The important difference is that they specify the functional dependence
of H(y) and () while we constrain the base flow. When a bubble of reversed flow
forms, a set of closed streamlines inside the bubble form as well. When this happens,
an important question as to the specification of the flow inside the bubble arises.
Since the closed streamlines are isolated from the external streamlines, they need
not necessarily be governed by the same dependence of H(v)) and Q(v) as the flow
outside. In fact, one can recompute the flow inside the bubble by specifying some
other dependence of these functions, and, this can be done in infinite ways. The only
constraint is that the pressure and the normal velocity across the streamline bound-
ing the bubble (the separating streamline) must be continuous. The Euler equations
admit solutions with jump in tangential component of velocity across a streamline.
Leibovich & Kribus and Hafez et al. argue that the functional dependence of H and Q
inside the bubble is an analytic continuation of the dependence outside the bubble. In
the nonlinear Kelvin waves discussed in Chapter 5, the functional dependence is fixed
inside the core including the bubble. In the case of waves on a smooth distribution

of vorticity discussed in Chapter 6, we compute the dependence of these functions
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inside the bubble and show that they are indeed continuous across the separating
streamline.

In Chapter 7, we consider the weakly nonlinear stability of a columnar vortex via
multi scale analysis. The amplitude of the disturbance is assumed to vary slowly in
time and space. We find that the amplitude satisfies a cubic Schrédinger equation. A
derivation is presented. The stability is characterized by the sign of the constants in
this equations. The constants are evaluated numerically for various columnar vortices.
We find that the vortex is unstable for all the cases considered. By instability we
mean that a perturbation grows slowly in time. It is only in this unstable case that
solitary waves are possible. The amplitude of the solitary wave solutions depends
on the ratio of the constants involved in the Schrédinger equation. For various cases
tried, we find that this ratio remains independent of the total circulation. In contrast,
Leibovich (1970) found that the evolution of a long wave on a vortex constrained in

a pipe is governed by the Korteweg-de Vries equation.
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CHAPTER 2

Core Waves on a Vortex Filament

2.1 Introduction

In this chapter we consider waves on the core of a vortex filament. The work of
Moore and Saffman (1972) forms the starting point for our investigations. Moore and
Saffman (MS) considered the motion of a vortex filament with axial flow. In their
paper they aimed at the development of equations for the velocity of an arbitrarily
shaped vortex tube. Their procedure was to consider an element of the vortex and
compute the pressure distribution on the curved surface arising from the motion of
the fluid. The pressure was integrated to obtain the forces acting, and, since the
surface is material, the balance of forces leads to the desired equations. The various
terms arising in the force balance can be traced to different mechanisms that give rise
to them. Most important of these are the Kutta lift and vortex tension.

Lundgren & Ashurst (1989; referred to as LA) arrived at evolution equations for
a vortex tube by equating the external force terms composed of Kutta lift, etc., as
derived by MS to the rate of change of momentum of the fluid inside the element of the
vortex. This fluid is modeled as a solid body rotating about its axis and sliding along
the vortex tube with local axial velocity. Further, LA retain the variations of core size
along the axial direction without justification. Examination of their equations for a
straight vortex yields a set of equations that are similar to 1-D gas dynamics equations
and to shallow water equations. These equations describe, therefore, transition from
one flow state to another — supersonic to subsonic, for example. This is viewed as a
mechanism for the vortex breakdown process. The equations allow for the formation
of shocks across which the flow quantities jump abruptly. Core area is shown to be

one of the quantities which jumps. This provides a good qualitative description of
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vortex breakdown.

In what follows, we note that the analysis carried out by MS includes the vari-
ations of the core size along the vortex. However, they argue that these variations
take place on a time scale much faster than the time scale involved in the motion of
the vortex itself. Thus they drop the corresponding terms and simplify the resulting
equations. As we are interested in knowing whether the LA equations are derivable
directly from the MS analysis, we proceed with the MS analysis by retaining the
core size variations. Next we specialize the MS equations to a straight vortex and
show that the resulting equations contain the LA equations as a special case. The
MS equations are found to be more general in the sense that they allow for varia-
tion of velocity structure within the core of the vortex. We include in this chapter
numerical solutions of the MS equations for some typical initial conditions consisting
of a cylindrical vortex with sinusoidal perturbation. The results show that the core
area develops a “shock” which is expected from the equations. These results moti-
vate us to take up numerical simulation of the full Navier-Stokes equations at high
Reynolds numbers which is discussed in the following chapter. A description of the
algorithm used to compute the numerical solutions of the MS equations is included

in this chapter.

2.2 Equations of motion

We now develop the equations giving particular attention to the ones governing
the core deformation. Most of the equations given below appear in MS, but we include
them for the sake of completeness.

We will suppose that a vortex filament of strength I' has the parametric equation
X= R(f? t)a (21)

where X is the position vector with respect to a fixed frame, and ¢ is a Lagrangian

variable to be defined shortly. The vortex strength I' is the total circulation of the
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filament and is defined by
r= /C v-dl, (2.2)

where C is any closed contour enclosing the vortex core only once, v is the velocity,
and 1 is an element of C. Let s = 8(§,t) denote the arc length and s denote the
unit tangent vector. We then have 0s/0¢ = |0R/0¢| and s = (OR/0E)/( 0s/DE).
The velocity of the vortex is defined to be dR/3t. This is arbitrary to the extent
of a scalar multiple of s. The vortex moves because of self induced velocity and any
external velocity field. Now an element of the vortex with length ds bounded by the
curved surface and two plane ends perpendicular to the local tangents at either end of
the element is considered. The curved surface constitutes the core and separates two
fluid regions; the fluid inside the core is rotational and the fluid outside is irrotational.
A force Fg per unit length is exerted on this surface by the fluid outside and a similar
force F7 per unit length is exerted by the fluid inside. Since the surface must move
with the fluid we require that Fg+ Fr = 0. We now present the computation of these

forces.

2.2.1 Exterior forces

For each point ¢ of the filament one can associate an external velocity, denoted

by V(¢,t), which can be written
V= VE(éa t) + Vl(évt)v (23)

where Vg is the contribution from external sources and V7 is the contribution from
the vortex itself. V7 is evaluated using the Biot-Savart law at x = R. The divergent
part of the Biot-Savart integral is removed by subtracting off a divergent contribution
from an osculating vortex ring of radius p at point £&. The Lagrangian parameter ¢
is now specified so that it is constant for a point moving along the vortex with speed

V .s. Thus
OR/0Ot -.s=V .s. (2.4)
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Now a local orthogonal curvilinear coordinate is set up for analyzing the flow in
the vicinity of the element. Consider a point R({) on the filament. There is a plane
containing this point, the unit normal vector n and the unit binormal b. The vectors

n and b are defined by

JR Js n db on s
3 =9 3= b=sAn, 3 =™ Eg—:—;+rb, (2.5)

where p is the local radius of curvature and 7 is the torsion. A point P in the
neighborhood of the vortex has the coordinates x(P) = R(é(s)) + zi+ yj where, i and
j are the unit vectors such that n makes an angle ¥ and b makes an angle = /2 + ¢

with i. The velocity potential ¢(r, s, 8,t) outside the core satisfies Laplace’s equation

% 106 13°  10hd¢ 1 OhO¢ 1a<1a¢

ozt et o Y horor T 2R o000 T hds 55;)=°- (2.6)

Here r and @ are the local polar coordinates defined by
T =rcosé, y =rsind, (2.7)

and h = 1—(r/p) cos(6—1) is the metric coeflicient along s. To preserve orthogonality,
the coordinate system must rotate by an amount d¢/ds = 7. Equation (2.6) is solved

by expanding the potential ¢ and the core radius a in a perturbation series

¢=¢ot+d1+¢2+--+, a=atata+---, (2.8)

where ¢, and a,, are O(p~™). In addition the derivatives along the filament are
assumed to be O(1/p) relative to the derivatives in the r — 8 plane. It is easily seen
that ¢g = (I'/2x)0 for r > ao(s,t) and that ¢ satisfies

o 100, 1P T
or? rdr 2 002 2mpr

This is solved subject to boundary conditions to be satisfied at the core boundary ay.

sin(8 — ). (2.9)

They are derived by considering a line element ! = r — a which must move with the
fluid. This gives

(a [vqs—%l%—n/\(x—n)] .v) (r—ag—aj—ag—--) =0

5t +
on r=a(s,b,t). (2.10)
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Here, € is the angular velocity of the triad s,i, j.

Now suppose that a portion of the vortex lies in a plain and consider a typical
point P on it. The self induced velocity at P is v, = O(T'/p) and the rotation of
the triad is associated with the out of the plane motion of the vortex. Thus the
angular velocity is O(vs/p) = O(T'/p?). It is argued by MS that the term 8a/dt is
also O(1/p?) and is thus dropped. However, we retain this term as well as the terms
describing variation of the core size along the axis in the subsequent equations.

We evaluate the boundary condition on ¢;

a4 _OR

r 8a1 8a0
i *

[mcos(8 — )+ bsin(0 — V)] + 525 Fo + 5

on r =ag. (2.11)

The last term is obtained here in addition to MS. This term acts like a source. We can
examine the behavior of the contribution of this term by considering an expanding
cylinder of radius a. The potential of such a flow is proportional to da/dtalnr. Thus

we infer that

é1 = (MS terms) + agln r%. (2.12)
The pressure on the surface is calculated using the Bernoulli equation
1 0R
Pt 3 (Véo)® + Vo - Vey — 57 Voo =0. (2.13)

The additional term in ¢; does not contribute to pressure as it enters only through
the term V¢, and the variations in the @ direction drop out. Subscripts may now be

dropped and the pressure may be integrated to give us Fg (which is the same as MS)

r2 (1 8p 1) I? QJa? 2
a a 2

Fg=TQAs+ yr vt B Pl 877 n. (2.14)

The first term is the familiar Kutta lift. The second term is known as the vortex
tension. This force arises due to the curvature. When the fluid particles traverse
a curved path within the core, a net centripetal force arises in the direction of the
normal. This would have to be compensated by a difference in the forces on the plane

ends of the element of the filament. Thus it acts like tension. The third term is a



- 93—
force which accounts for motion of fluid through the core of variable area. If the core
were uniform, this term would be absent. The last term arises due to the swirl in a
curved filament. This term, however, cancels with an equal and opposite term in the

interior force. We consider the interior forces in the next section.

2.2.2 Interior forces
The interior forces are calculated by integrating the pressure equation and a
balance of momentum inside the core. The pressure distribution is assumed to be

symmetric to leading order. The final result is

z_aR Pl_l)'az
0 TP
an 2_88 a 2 9 a 83
+ 8_7r; —Ta v ﬂsa—t(a W) — 7a wsa—t lna—é- , (2.15)
where
a ‘
= F;:;z /(; rvgwodr. (2.16)

Here vg and wg are the undisturbed swirl and axial velocity profiles. An overbar

denotes the average of the quantity over the core area defined as

7= :—2 /Oa rq(r)dr. (2.17)

2.2.3 Area waves

We now derive equations governing the core variations by taking the tangential

component of the force balance equation. Force balance simply states that
Fr+ Fg =0. (2.18)

First, it is convenient to make some simplifications regarding the internal structure
of the core. We take the swirl profile to be the same as MS:

on = L
0—27rr

G(r/a), G(1)=1. (2.19)
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The exact form of G depends on the initial structure. We take the form for axial
velocity to be
wp = Wi(s,t) + %—x(r/a), with ¥ = 0. (2.20)
Here b is a length scale which can be determined from a specified profile of wg. The

average axial velocity W is given by

2 a
W= o2 Jy Two dr. (2.21)
Further we write
—_ 212 1
a*w? = a*W? + ab£ v, v= 2/0 nx2dn, (2.22)

where v is a constant determined from the given initial conditions. The continuity

equation within the core is

g_fa%( g;) f.(a @) = 0. (2.23)

Using (2.20) and expanding we get

da? 5,08 0s
_ét—+a —(1 B¢

Now the tangential component of the force balance equation gives

011 5 2] da*w ﬁ ds
63[ a‘vé — a‘w -—7rV”a —27raw lna€

- 7=—(a*w) — o —(lna?) =0. (2.25)

) + —(azW) = 0. (2.24)

Here, V}| = s - V. Making use of the definitions of averaged quantities and using the

continuity equation (2.24), equation (2.25) reduces to

ow T?v da? 0a’W ] 0s
2 2w 2 hubid 4y 2y =
Wt 75 P+ (l ag) TR s (na) =0.
(2.26)

We now specialize to a straight filament. We further assume that there is no
externally imposed velocity. Then V)| = 0 and we can take £ = s. The continuity

equation (2.23) and equation (2.26) become

Oa’

a5t —~(a2W) =0, (2.27)
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ow . ow\ 8 [rI? I2yq?
2 A 2 7. .
e (at +Was) 35 [&:2 lna®+ —5 (2.28)

Lundgren & Ashurst (1989; referred to as LA) obtain the same set of equations
(2.27) and (2.28) except the term involving v in the second equation. They assume
slug flow in the core. They model the vortex filament as a space curve along which
a mass pA(S,t) per unit length and a velocity U(s,t) are prescribed at some time.
Here, A = ma? is the area of cross-section of the vortex, U is taken to be the average
velocity over a cross-section and g is the fluid density. The conservation of mass is
modeled by

Aa? = @}, (2.29)

where ag is the initial core radius which is assumed constant and ) is the local stretch

ratio defined by
_ds

A=

(2.30)

where 7 is a Lagrangian variable (different from £). The Lagrangian variable 7 is
assumed constant for a slug of fluid moving along the vortex tube with a velocity
equal to the local tangential velocity within the core, i.e., the axial velocity. LA write

without derivation the equation of motion of an element of the vortex as

oU A (BuT 3 Our

OU o oa (2T _ . %) L rsau— 294 avp, (231
eAdgg =—eAl 5 Sas)“’s"“ 874 0" s, (231)

where u = U — Up is the velocity of the vortex relative to the surrounding fluid, Upg
is the self induced velocity given by the .Biot-Savart law (evaluated on the centerline),
and ur = u—8 u- uis the transverse part of u. Clearly, the left hand side of
equation (2.31) is a simplified version of (2.15). However, LA recognize that (2.27)
and (2.28) are similar to 1-D gas dynamics equations. Equation (2.27) is identified
with the mass conservation equation and the equation (2.28) is identified with the
momentum equation. There is however no equation for the internal energy. This
then becomes a special case of 1-D gas dynamics equations. The core area takes the

role of density while the term in brackets on the right hand side of (2.28) takes the
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role of pressure. If we define c to be the “sound speed” then from the theory of gas

dynamics we have
2 _ d (pressure)
d (density)

Using a for density and the pressure term from equation (2.28) we get

2 P2 14 F2

Then any infinitesimal disturbance would travel at this sound speed. Thus if the
flow velocity w exceeds the sound speed, we have the situation of a supersonic flow
reéulting in a shock. Thus the condition for shock formation is

w 4r2q2y

>\ e (2.33)

L1
2
where Vi, = I'/2ra is defined by LA to be the maximum swirl velocity. As noted by
LA, these equations are also analogous to the shallow water equations. Steepening of
wave-like perturbations due to nonlinearities results in the formation of a hydraulic
jump. When the solutions do break, the conditions upstream and downstream of the
breakdown region can be related via the shock jump conditions. This theory thus
displays a strong similarity with the vortex breakdown theory proposed by Benjamin
(1962, 1967). We have already noted that according to Benjamin, the vortex break-
down phenomenon is a finite transition between two steady states of axisymmetric
swirling flow which coexist as conjugate states. The flow upstream, say A, of the
breakdown point is assumed to be cylindrical and supercritical (“supersonic” state).
Thus, no stationary linear waves can be supported by A. The flow downstream, say
B, is also cylindrical but subcritical (“subsonic” state). The flow B is termed ‘con-
jugate’ to A. The cylindrical flow upstream is determined by the specification of the
total head H and the distribution of circulation C on the stream-surface. The con-
jugate states are related by preservation of the total head and the circulation across
the transition region. Because the equations derived here are averaged over the core

structure, nothing can be said about the preservation of dependence of H and C.
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We now wish to make a note on the effect of v, the parameter which accounts for
the variations across the core. Equation (2.22) can be rewritten as

b2

1
v N, N = 2/0 nwi(n)dy — w. (2.34)

vV =

Thus v is a measure of deviation of mean-square of wy from its average. Thus the
effect of v is expected to be small for a vortex with large swirl velocity compared to
the axial velocity. We expect the effect to be significant for the case of a jet with
weak swirl.

Numerical comparison may be made with a wave speed computation of Maxwor-

thy, Mory and Hopfinger (1983). They consider the following velocity profiles

w() = o= (=) [\/og,  wo(r) = Wn(l = By)e™,  (235)

where Wy, is the maximum axial velocity, y = r2/2 and « and B are parameters
determined by fitting the profiles to the experimental distribution. By considering
the linear disturbance and long wave limit of this basic low, Maxworthy et al. obtain
the speed of the waves to be 0.93W,,, £0.72V,,, for 8 =4 cm™2, a = 25 cm™2%, W,,, = 60
cm/sec and T' = 265 cm?/sec. As in equation (2.33) we define V;, = I'/27a. The core
radius is @ = 0.32 cm. Our calculations give, for the same choice of parameters, the
wave speed to be 0.82Wy, £ 0.709V;,,, while the speed computed neglecting » (LA) is
W £0.707V;,. The speeds measured with respect to a frame fixed to the laboratory
are (150.7 cm/sec, —39.1 cm/sec), (153.2 cm/sec, —33.2 cm/sec), (143.2 cm/sec,
—43.6 cm/sec) for Maxworthy et al., LA and MS cases respectively. By considering a
sinusoidal perturbation with wave number « on a vortex with base flow profiles given
by (2.35) and then numerically approaching the limit of a long wave (x — 0), we
obtained the wave speeds to be (139.9 cm/sec, —53.3 cm/sec). These speeds disagree
with the speeds reported by Maxworthy et al. The source of this diagreement could
be due to numerical errors.

Notice that the wave speed predicted by MS theory depends only on the total

circulation I' and not on the details of distribution of the circulation within the core.
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However, the actual distribution of the swirl profile and therefore that of circulation

within the core affects the long wave speed on a columnar vortex.

Maxworthy et al. (1983) measured the speed of a wave on a vortex core experi-
mentally. They report only one wave speed of —76 cm/sec. The negative value implies
that the wave moves against the axial velocity. The theoretical wave speeds shown
above were computed for the profiles (2.35) fitted with this experiment. Though the
wave speeds do not greatly disagree among the three theoretical values, they are too
far off from the experimental value. No decisive conclusions can be drawn as to the

validity of MS or LA theories.

Prior to the discussion of the numerical implementation of MS equations, we wish
to summarize the theoretical aspects. We have shown that in the case of a straight
axisymmetric flow, the MS equations indeed contain the fast scales which drive the
core waves. Further we have seen that the MS equations allow for arbitrary structure
inside the core and therefore yield generalizations of the LA equations. However, the
scope of the equations derived here is still limited in view of the assumed profiles
for the axial and swirl velocities given by (2.19) and (2.20). As a result of these
assumptions, the swirl component does not play any role in the dynamics represented
by (2.27) and (2.28) which describe the evolution of the core and the axial velocity.
This need not be true for a general case as will be seen in the numerical simulations

in the following chapters.

The mechanism of vortex breakdown represented by these equations is similar to
the wave breaking process. A wave like disturbance does not grow in its amplitude
but it steepens and ultimately breaks. The region of breaking is represented by a
shock. Across the shock, the axial velocity must necessarily undergo deceleration.
Although this does not lead us to conclude that this is associated with the bubble of
recirculating region (since the structure in the radial direction is averaged out), it does
agree with the description that a vortex breakdown occurs when the fluid decelerates

to form a stagnation point on the axis followed by the appearance of a recirculating
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bubble (Garg & Leibovich, 1979, Stuart, 1989). Thus these equations have the merit
of predicting deceleration of axial velocity which probably should be viewed as a
basic requirement for breakdown. But, as in Benjamins theory, the upstream and

downstream regions of breakdown represent some sort of cylindrical configuration.

2.3 Linear waves

We now consider linear solutions of equations (2.27) and (2.28). We do this in
preparation for the numerical implementation of the fully nonlinear equations. Let
the axis of the vortex be aligned with the z-axis. Let A and a be the area of cross

section and the radius of cross section of the vortex respectively. Then
A(z,t) = ma?(z,t). (2.36)

Let
A(z,0) = Ay, W(z,0) = Wy, (2.37)

be the unperturbed base solution of (2.27) and (2.28). Now consider a perturbation

to the base flow of the form
A(z,t) = Ag + €A1 590 (2.38q)

w(z,t) = Wo + ewy e'**=7Y), (2.38b)

where & is a given real number and € < 1 is a parameter. A;, w; and o are numbers
to be found. Substituting (2.38) into (2.27) and (2.28) and neglecting all the terms
O(e?) and higher we get

(sWo — 0)A1 + kAcW; = 0, (2.39a)
2 2
(—8-;&- + —-b—;-l-i Ao) A1+ (sWp — o)uy = 0. (2.390)

A non-trivial solution exists for (2.39) only if

= Wy % oo, (2.40)

%19
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I2 I'2y

Since o is real and is linearly proportional to the disturbance wave number «, any

where

linear disturbance of arbitrary shape propagates with speed given by (2.40). This was,
of course, expected from the linear theory of gas dynamics. If Wy > ¢g then (2.40)
yields only positive values for & and the waves propagate only to the right. That is,
the flow is supercritical (Benjamin, 1962). In the following section we consider the

numerical evolution of an initially nonlinear disturbance.

2.4 Numerical integration

As before, we assume that the axis of the vortex is aligned with the z-axis. Let z
denote a co-ordinate moving along the z axis at constant speed. We choose the speed

of the moving frame such that

T =kKkz —oit, (2.42)

where £ is a given real number and o, is found from the linear analysis outlined
in section 2.3. We consider numerical solutions of (2.27) and (2.28) in a moving
frame. We are primarily interested in wave propagation on vortex cores. We consider
an initial disturbance and follow its development in time. For simplicity the initial
disturbance will be taken to be wave like so that we may consider the flow to be
periodic in the axial direction. The variable £ can then be used to control the length
of the axial domain. The assumption of periodicity also enables us to decompose the
flow variables in to a Fourier series. Further, we add an artificial viscous term to the
momentum equation (2.28). This is done in order to suppress unnecessary growth of
high frequency oscillations that arise primarily due to numerical errors.

We rewrite (2.27) and (2.28) as
0A 0A

5 = F + T15 (2.43a)
ow Ow 0w
'5;=G+015;+ﬂ1n2%2_9 (243b)
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where y; is the coefficient of viscosity and

2 2
G:——K.w?—'ﬂ 1 0 |T I'“vA

We decompose A and w into a truncated Fourier series given by

A(z,t) = g Aj(t) cos(€z) + ; Aj(t)sin(fz),

w(z,t) = i wg(t) cos(lx) + i wy(t) sin(¢x).
£=0 =1

(2.44a)

(2.44b)

(2.45a)

(2.45b)

The Fourier modes of F' and G are computed by evaluating the nonlinear products

appearing in (2.44) in the physical domain. A fast Fourier transform (FFT) is em-

ployed to compute the modal coeflicients. We separate the Fourier components in

(2.43) to give the following evolution equations for the Fourier modes,

dAs

L = Ff + 01043,
0A9
o = Fi — o1l4g,
€
Wk _ G5 + a1t — p(t)u,
0o
aaut)t = G§ — o1bw§ — p1(k€)2wf.

(2.46a)

(2.46b)
(2.46¢)

(2.46d)

Equations (2.46) represent a set of (4m + 2) ordinary differential equations. These

equations are integrated numerically using a combination of Adams-Bashforth and

Crank-Nicolson schemes. If the solution at times ¢ and t — At is known, where At is

the increment in time, then the solution at time ¢ + At can be found from

A [A3(¢ + At) — A5 = 3 FE(t) - & Fi(t - Av)
+ 2L A+ A0+ A30),

1 3 1
A7 [A7(t + At) — A(t)] = 3 Fp(t) - 3 Fy(t — At)
bor
2

[A2(t + At) + A5(8)],

(2.47a)

(2.47b)
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5 [t + At) - wi(®)] = —mt)— 1F,(t—At)+ (¢ + At) + wg(0)

’“ [‘(t+At)+ HON (2.47¢)

la’l

< [0f(t + A8~ wf(8)] = 3 FP() — 3 F2(t — ) = "2 fu(t + Af) + wi(0)]

#1'6 l’

[wg(t + At) + wi(2)]. (2.47d)

These equations are readily solved for the unknowns at time t + At. We get

AS(t+ At) = — (Fl, + = At alngl) (2.484)
. 1 1
Ag(t+ 1) = o (FI, - A aleF2,>, (2.484)
5
. 1 1\ 1
wi(t + At) = o [(1 + 5 Atk“l yl) Gy, + 3 At Ulszl] , (2.48¢)
[)
. 1 1 1
wi(t + At) = — [(1 + L Atk2 m) G, — = At aleGZ,] , (2.484)
D, ) 5
where
D=1+ %Atzaflz, (2.49a)
1 25 21 00
D, = (1 + 5 n2 plAt) + 1 A28, (2.495)
and
[ 3 € 1 € At 4]
Fy, = AS(H) + At [5 Fi(t) - 5 Fi(t - At)] + 2 o A3(t), (2.50a)
, 3 1., At
Fy, = A3(1) + At [5 F{(t)~ 5 Fi(t - At)] - St ag(t) (2.50)

G, = w;(t)+At[ Gy(t) — —G (t — At)]+i [torwg(t) - x2urwi(e)], (2.500)

G2, = wg(t) + At [—2- Gi(t) — 3 G"l’(t - At)] - —Aé— [Za'lwf(t) + rc2£2,u1w§’(t)] .
(2.50d)
The equations stated above are applicable to all the Fourier modes ¢ = 0,...m.

However, since we employ the FFT, the m*® sine mode in the representation (2.45)
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is not resolved. As a result, the evolution equations (2.46) are not strictly valid for

£ = m. We circumvent this problem by simply dropping all the equations for £ = m.

2.5 Results

Four different solutions are presented in Figures 2.1 through 2.4. For each of these

cases, the initial conditions are assumed to be of the form
W(z) = Wp + WY cos(z), (2.51a)

A(z) = Ap + Af cos(z), (2.51b)

where W) is the average of the given undisturbed axial velocity profile and Ag is the
area of the vortex. If ag denotes the radius of the undisturbed vortex then Ag = wag.
We choose some axial velocity profile and compute the average Wy. We further choose
some I' and ag. We next compute the linear wave speed ;. We choose some value for
the perturbation W) and we compute the value of A; using the linear theory. From
equation (2.39a) we get

kAp

Al = —W1. .
1 o K Wo w1 (2.52)

We define the Reynolds number for the flow to be
Re =T/u;. (2.53)

A linear wave moving with a speed of o1/« with respect to a frame fixed at infinity

takes a time of

T =k2r/oy, (2.54)

to traverse a distance of 2r. We measure time in units of 7T'.

In Figure 2.1.1a - 2.1.1c, the cross section of the vortex in the meridional plane
(the plane defined by the radial and the axial co-ordinates) is shown for different
times. The initial undisturbed axial velocity is taken to be uniform with Wy = 1.1
and the radius is taken to be ag = 1.0. T' = 15.75, Re = 1575 and W; = 0.4 were

chosen. A modal resolution of m = 64 was used. The initial wave steepens resulting
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in a shock that develops at about ¢ = 2.0. The shock seems to persist up to t = 4.0.
Beyond this time, numerical breakdown of the solution occurred. In Figure 2.1.2, the
time development of the axial velocity is shown for t = 0 to ¢ = 4. The axial velocity
shows a greater sensitivity to numerical oscillations than the core area.

An axial velocity of the form
wo(r) = We" 17, (2.55)

was chosen with W, = 10.0 and L = 1.0 for the solution presented in Figure 2.2. The
average of (2.55) gives a value of Wy = 6.32. The rest of the parameters consisted of
I' =15.75, ag = 1.0, Re = 1575 and W; = 0.5. A modal resolution of m = 128 was
used. A shock forms at about ¢ = 4.0 - later than in the previous case. The axial
velocity is shown in Figure 2.2.2 and it shows numerical breakdown at about ¢ = 5.

An axial velocity of the form
wo(r) = Wi (1= Br2/2) el (2.56)

was chosen with Wy, = 60 and § = 4 for the solution presented in Figure 2.3 as well
as Figure 2.4. The profile and the parameters were chosen to match the experiments
of Maxworthy et al. The average axial velocity of Wy, = 8.12 was computed from
given parameters. The rest of the parameters consisted of I' = 265, ap = 1 and
Wi = 30. The only difference in the solutions presented in Figure 2.3 and 2.4 is the
Reynolds number. They are Re = 2650 and 5300 for Figures 2.3 and 2.4 respectively.
A modal resolution of m = 256 was chosen. In both the cases, the shock forms rather
quickly, at about t = 0.6. The effect of increase in the Reynolds number appears to
be negligible on the core shape. But, the numerical oscillations in the axial velocity

are greatly enhanced.
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Fig. 2.1.1a The cross section of the vortex filament in the meridional plane is
shown for t = 0.0, 0.5, 1.0, and 1.5. An uniform axial velocity profile with Wy = 1.1
and core radius of a9 = 1 was used for the base flow. The other parameters were

I' =15.75, Re = 1575, W1 = 0.4 and m = 64.
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Fig. 2.1.1b The cross section of the vortex filament in the meridional plane is
shown for t = 2.0, 2.5, 3.0, and 3.5. An uniform axial velocity profile with Wy = 1.1
and core radius of ap = 1 was used for the base flow. The other parameters were

I' = 15.75, Re = 1575, W; = 0.4 and m = 64.
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Fig. 2.1.1c The cross section of the vortex filament in the meridional plane is
shown for ¢ = 4.0. An uniform axial velocity profile with W = 1.1 and core radius of
ap = 1 was used for the base flow. The other parameters were I' = 15.75, Re = 1575,

Wi = 0.4 and m = 64.
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Fig. 2.1.2 The axial velocity as a function of z is shown for various time. Shown
here are A.t =0,B.t =1,C.t =2, D. t = 3, and E. ¢t = 4. The parameters are
listed in Figure 2.1.1.
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Fig. 2.2.1a The cross section of the vortex filament in the meridional plane is
shown for t = 0, 1, 2, and 3. An exponential velocity profile (equation 2.55) with
Wm = 10, L = 1 and core radius of ap = 1 was used for the base flow. The other

parameters were ' = 15.75, Re = 1575, W; = 0.5 and m = 128.
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Fig. 2.2.1b The cross section of the vortex filament in the meridional plane is
shown for t = 4, 5, 6, and 7. An exponential velocity profile (equation 2.55) with
Wm = 10, L = 1 and core radius of ag = 1 was used for the base flow. The other

parameters were I' = 15.75, Re = 1575, W; = 0.5 and m = 128.
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Fig. 2.2.1c The cross section of the vortex filament in the meridional plane is
shown for ¢ = 8, 9, 10, and 11. An exponential velocity profile (equation 2.55) with
Wm =10, L = 1 and core radius of ag = 1 was used for the base flow. The other

parameters were [' = 15.75, Re = 1575, W7 = 0.5 and m = 128.
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Fig. 2.2.2 The axial velocity as a function of  is shown for various time. Shown
hereare A.t=0,B.t=1,C.t=2,D.t =3,E.t =4, and F. ¢t = 5. The parameters

are listed in Figure 2.2.1.
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Fig. 2.3.1 The cross section of the vortex filament in the meridional plane is
shown for ¢ = 0.0, 0.2, 0.4, and 0.6. An exponential velocity profile (equation 2.56)
with Wy, = 60, 8 = 4 and core radius of ap = 1 was used for the base flow. The other

parameters were I' = 265, Re = 2650, W; = 30 and m = 256.
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Axial velocity
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Fig. 2.3.2 The axial velocity as a function of z is shown for various time. Shown

here are A. t = 0.0, B. t = 0.2, C. t = 0.4, and D. t = 0.6. The parameters are listed

in Figure 2.3.1.
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Fig. 2.4.1 The cross section of the vortex filament in the meridional plane is
shown for ¢ = 0.0, 0.2, 0.4, and 0.6. The parameters are the same as in Figure 2.3.1

except Re = 5300.
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Fig. 2.3.2 The axial velocity as a function of « is shown for various time. Shown

here are A.t = 0.0, B. t = 0.2, C. t = 0.4, and D. ¢ = 0.6. The parameters are listed

in Figure 2.4.1.
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CHAPTER 3

Computational Aspects of Core Dynamics

3.1 Introduction

We have seen in the previous chapter that the MS equations contain the fast
scale motion governing the deformation of the vortex core. We have also seen that .
they are of more general form compared to the LA equations. More importantly,
these equations are hyperbolic in nature and therefore predict existence of shocks.
Formation of shocks can be viewed as a result of steepening of wave like disturbances
resulting in breaking. Lundgren and Ashurst have advanced this shock formation as
a possible mechanism of vortex breakdown. In this chapter we discuss the numerical
implementation of the full nonlinear time dependent equations of motion. We consider
the time dependent Navier-Stokes equations at high Reynolds number instead of the
time dependent Euler equations so that high frequency oscillations that arise primarily
due to numerical errors are suppressed by the presence of viscosity. This will enable
us to integrate the equations for longer times. In particular, we are interested in
knowing whether the initial conditions that lead to shocks in MS equations also lead
to shocks in the Euler equations. In this context, a shock in the Euler solutions means
that the “core” area jumps at some axial location. At a given axial station, the core
radius is defined as the radial location at which the swirl velocity is maximum.

We assume axisymmetry in our numerical solutions in order to compare with
the axisymmetric solutions of LA. The radial direction is assumed to be unbounded.
Boundary conditions in the radial direction away from the axis are derived by match-
ing the solution to far field potential flow. This enables us to terminate the radial
boundary at a finite distance. As our emphasis is on the wave motion occurring in

the vortex core, we consider a periodic axial domain. This enables us to use the fast
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Fourier transform thereby speeding up the numerical solution. We include in this
chapter, a description of the algorithm used as well as the results of tests to validate
the numerical procedure. The results of numerical simulation will be discussed in the

next chapter.

3.2 Navier-Stokes equations

We consider the equations in cylindrical co-ordinates 7,8 and 2. The flow is
assumed to be axisymmetric (independent of ). Let the velocity components be
denoted by u,v and w. The stream-function ¥ and the circulation function  are
defined by
I
—. 3.1
or (3.1)

S~

¥ w=

Let
T = Kz — o9t (3.2)

where ¢ denotes time. For some choice of x and o7, the frame defined by the co-
ordinates r,8 and r moves with speed o3/« along the positive z axis with respect to
the stationary frame defined by r, 8 and z. We choose o2 to be the linear wave speed.

The Navier-Stokes equations can be written

¢

5 = +mD*, (3.3a)
o0
5 =9t p2D?Q, (3.3b)
where
0 2 00 k& (94O 51/1 5(’ 2k OY

f=oge - 2%, 5 (31‘ %z "ocor)  age (B4

_ a0 0y 80 9y O
I=%% " ¥ (Br 0z 9z or ) (3.45)

2 2
g:D%p:M 16¢+ 2079 (3.5)

or:  ror = 9z2’
and p; is the coefficient of viscosity. We assume 3, Q and ¢ to be periodic in z.

Without loss of generality, we assume the period to be 2x. The period in z is controlled
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by the variable x. We then decompose v, Q and ¢ into a truncated Fourier series
given by

Y(r,z,t) = Yo(r,t) + E Yg(r,t) cos(lz) + Z Y (r,t) sin(fz), (3.6a)

=1

Qr,z,t) = Qo(r,t) + ti Qg (r,t) cos(€z) + lf; Q¢(r,t) sin(€z), (3.66)
=1 =

((ry2,8) = Co(rt) + 32 GG ) cos(l) + 3 C2(r, ) sin(le).  (3.60)

(=1 {=1
The zeroth mode is written separately for convenience. The subscripts on the Fourier

modes represent the mode number and the superscripts denote parity (e is used for
the even mode, if it is associated with cosine functions and o is used for the odd
mode, if it is associated with sine functions). The superscript e/o will be used if the

equations are same the for both odd and even modes. From equation (3.5) we obtain

%o 1 Oy

Co(?",t)= Or2 - '; or ’ (37(1)
" 52 efo 1 0 efo e/o
o (r, ) = 8117)'2 : ‘; —(sO%E°, 1=1,...m.  (3.70)

We substitute (3.6) into (3.4) and separate the modes. The nonlinear terms f and g
take on similar forms as (3.6). To compute the Fourier modes of f and g, we take
the so-called pseudo-spectral approach. In this approach, we compute the indicated
products in the physical domain. This is accomplished by first computing %,  and
¢ via a fast Fourier transform (FFT). We compute f and g and transform back using
the FFT once again. We treat the Fourier modes of ¢ and § as the unknowns. The

equations describing their time evolution are

a C/o €/o €
gt = f° + paDiS1°, (3.8)
698/0 o ejo
- = g5° + ma D}, (3.80)
where we define,
2
pp=2 190 _ (¢x)™. (3.9)
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These equations are integrated numerically. We use a combined Adams-Bashforth
and Crank-Nicolson scheme for time stepping. We treat the non-linear terms f and
g using the Adams-Bashforth scheme and treat the viscous terms using the Crank-
Nicolson scheme. Thus, if the solution at time ¢ is known, then the solution at time

t + At is obtained from

((t+ At) = {(?) g £(t) - f(t ~At) + E2 [ch(t +At) + DX(t)],  (3.10a)

At
WA= _ 350 Lo-an+ &2 [D*ac+ a0+ D). (1100

Here we have suppressed the r dependence of all the functions and also the super-
scripts and subscripts for convenience. Solving for the unknowns at time ¢t + At we
get

uzAt Dz] C(t) + ._f (3f(t) — f(t — At)), (3.11a)

[1 _ ”22At DZ] C(t+At) = [1 +

[1— 22AtD2] Q(t+At)_[1+ 22At

D2] Q)+ % (3g(t) — f(t — At)). (3.11b)
These equations represent 2m + 1 ordinary differential equations for each variable ¢
and . However, the FFT is incapable of resolving the m! sine mode. This gives
rise to an inconsistency in accurately evolving the last modes, both sine and cosine,
since the products in f and g couple the last sine and cosine modes. This is overcome
by simply dropping the m't equations. Thus the reduced set of equations are to be
solved subject to the following boundary conditions.

About r = 0 we assume that the solution is regular and the vorticity distribution
is like that of solid body rotation. This implies that ) ~ 72 and @ ~ 2 as r — 0. It

is easily seen from (3.5) that { ~ r? near the axis. We then take
P+ Aty =0, Q/°(t+At)=0, £=0,...,m, at r=0. (3.12)

Since the vorticity decays rapidly as r — oo, we assume that

ela(r t+ At)
or

=0, as r— o0, £=0,...,m. (3.13)
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The condition (3.13) accounts for the decay of both radial and axial vorticity. The

rapid decay of the swirl component of vorticity gives
cl°(t+At)=0, as r— o0, £=0,...,m. (3.14)

For numerical purposes, we assume

oG (rt+ A _
or -7

as r—oo, £=0,...,m. (3.15)

From the given ( values, we compute the streamfunction by inverting the relations

(3.7). For this we require boundary conditions on 1. We get
/ot +A) =0, £=0,...,m, at r=0. (3.16)

The behavior of Fourier components of 3 for large r is obtained by solving (3.14).
For £ =0, we get
o =aprl +by, as r — oo. (3.17a)

We take by = 0 since the streamfunction is arbitrary up to an additive constant. The
value of ag is related to the axial velocity at infinity. We fix it to be the same as the

value at the initial time. For £ = 1,...,m, we get
Pt + At) = all° Lk r Ky(trr) +5° Lk v Iy(kr), as r—oco.  (3.17b)

Here, I} and K are the modified Bessel functions and a; and b; are arbitrary functions
of time. Wetake by =0, £ # 0, since the Bessel function I; grows exponentially with
r. At any given time, the functions a; can be eliminated by differentiating equations

(3.17) once. This yields,

avel°(t + At)

. +dy(k,r) ¥t + A) = 0, (3.18)

where
Ko(xtr)

d[(ﬁ,r) = [ K K]_(Iier) b

=1,...,m. (3.19)
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The equations (3.11) that describe the evolution of { and 2 subject to the boundary
conditions (3.12), (3.13) and (3.15) and the equations (3.7) that relate 1 and { sub-
ject to the boundary conditions (3.16) and (3.18) are now solved in a radial domain
which is cut off at some convenient distance. We further consider a grid transfor-
mation so that grid points are closely spaced within the “core” of the vortex. For
the present we understand the “core” to be the region close to the axis in which the
vorticity is significant. A formal definition of the core and a procedure to compute
the core boundary is given later. Within the core, vortex lines can stretch resulting
in enhancement of vorticity. This in turn can cause large velocity gradients within
the core region. A finer grid is thus necessary in this region. Outside the core, the
flow quantities are expected to decay fairly rapidly. Thus the grid need not be very

fine in this region. We consider a grid transformation and its inverse denoted by

r=r(p), p=p(r) (3:20)
We consider a uniform grid in the new variable p. We let

dr 1 p—ay

where &y, ag and f, are the grid parameters. When p < a4, the grid spacing in
r tends to 6, times the spacing in p. By choosing appropriate values for the grid
parameters, we can make the spacing within the vortex core as small as we please.
For large p, the spacing in r is about 1+ 6, times the spacing in p. This gives sufficient
control for our purpose. The radial derivatives are replaced by
2 2
9 _%0 P _ (%), 00 (%) a2
or Ordp’ Or? or dor dp \Or
We rewrite (3.9) as
D} = P(p) 25 + Qo) — (e}, (3.29
dp? dp

where

P() = (?)2 =2l (2)- L2 (324
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We now discuss the structure of the discrete equations to be solved.

3.3 Discrete equations
In this section we describe the discretization and the method of solution of the
equations stated above. We take the distance at which we apply far field boundary

conditions to be R. We consider a uniform grid in p given by
p; =JAp, 7=0,...,J, (3.25)

where we take
_ p(R)
Ap - J ]

for some J. We replace the continuous derivatives by central difference approxima-

(3.26)

tions. Thus for some quantity ¢ we write

0q 9541 — G451
(a,,)j = om0 (3-27a)

d%q G+1— 295+ gj-1 .
(513)]— Ap2 ’ j——l,...,J—l. (327b)

The error introduced by the central differences is O(Ap?). For the outer boundary

point we take a one sided difference given by

O0q\ _ 3q7—4q5-1+qi-2
(B—;)J = 25 . (3.27¢)

We now put the equations to be solved in a matrix form. We proceed first by collecting

the quantities evaluated on the grid into the following column vectors

e = {¢e,o,¢e,1,---,¢z,J}T, Q= {Qc,o,Qz,l,---,Qe,J}T,

and

" T
(¢= {Cz,o,Cz,l, ees Cz,J} (3.28)
Further we define a matrix A with entries

Aiq:= P; Qi . 2P;
J—-l,J—Kp—g—m’ J,J——KP‘E’



- 54 -

P; Qj .
AJ.+1,J.='A_;2+ﬁJ;’ J=1...,J-1,

Ai; =0 otherwise. (3.29)

Now we define the matrices I; and I; with elements

Ilj,j =1, 53=0,...,J -1, (3.30a)
1 2 3

IlJ,J-z = 2~Ap ’ Il.l,.l-l = - Z_p’ IIJ'J = ——QAP, (3.306)
Izj,j =1, j3=1,...,J-1. (3.31)

The remainder of the matrix elements are zero. The matrix form of (3.11) becomes

(n- 222 (4= (ut2R)) Gte+ a0 = (B + 2220 (4 - (x028) ) 200

2
+ 24 670 - Fut - A1), (3320

(n- 222 (A (1)) Gt + 20 = (B + 222 (- (e028) ) Gt

At -
+ 5 (3Ge(t) — Ge(t - At)),  (3.320)
where the vectors f and § are given by

fl = {O,fl 11fl 2"",fl J—laO}T, gl = {O’gl 1:9¢25---,9¢ J—I,O}T- (333)

The inversion of the relation between ¢ and ( represented by equation (3.7)
subject to the boundary conditions (3.16) and (3.18) can be written in the following

matrix form

By dy=5L{$G, €=0,...,m, (3.34)

where we define the matrices By with the following entries,

B‘I,l =1, (3.35a)
Pj Qj 2P; 2
B(j—l,j = _A? - 2—A—p" Blj,j = —'A_pg - (Iie) ’ (35b)



'_=ﬁ+_Q_L Jj=1...,J-1, £=0,...,m, (3.35¢)

1 Op 2 (0p
t] J=2 2Ap (_7-‘_) J b B‘J,J—l - = —A—; (57-'—) J ’ (3.35d)
and finally
3 [(0p .
By, , = 285 \or ; +dg, if £#0 (3.35€)
3 dp 2
B()J,J = 2—; (a—r)J— 7‘_‘]-. (335f)

3.4 Computation of core shape

Now we give a definition of the vortex “core” and also give a procedure to compute
the core size as a function of the axial position. We define the location of the core at
some given z to be the radial distance at which the swirl profile attains its maximum.
We first find an index p such that v(rp) = vp is maximum on the grid. We consider
two adjacent points on either side of p and assume a parabolic profile for the swirl to
find a more precise location for the core boundary. In the neighborhood of point r,

we assuime

v(r)=co+c1r+co 7l (3.36)

Letting a denote the core size, we compute it as the value of r at which the local

parabolic swirl profile (3.36) attains its maximum. We get

61_101

=—— == = 3.37
@ 2¢s 2 C, ( )
where C) and C; are the following determinants,
1, vp_l, 7'12,_1 1, rp_l, 1)12)_1
Ci=|1, v, 12|, Co=|1, 1, v |. (3.38)
1, vp41, ";Za+1 1, 7p41, v§+1

This procedure is repeated for every z station to obtain a as a function of z.
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3.5 Tests
Results of test runs are shown in Figure 3.2 and 3.3. The evolution equations
(3.8) were integrated using the method described above with an initial condition of

the form
Y(r,z) = 0 + eypi(r) cos(z), (3.394)

Qr,z) = Qo + eNf(r) cos(z), (3.390)

where the profiles of (o, ¥§ and (¥ are shown in Figure 3.1. € = 0.2 was chosen.

The radial domain length of R = 5 with a radial resolution of J = 50 and a modal

resolution of m = 16 were used. The viscocity coefficient was taken to be yu; = 10~4.

The equations (3.8) were integrated up to time ¢ = 5 using three different step sizes

of At = 0.001,0.0005,0.00025. The axial velocity on the axis at ¢ = 5 using these

step sizes is plotted on the same graph. Differences, if any, are seen to be negligible.
A nonlinear steady state solution of the form

P(r,z) = § Py cos(€z), (3.40a)

1=0

Qr,z) = gi Q cos(¢x), (3.400)
{=0

was used as an initial condition for the results shown in Figure 3.3. The axial velocity
on the axis at ¢ = 0, 5 and 10 is plotted on the same graph showing negligible
dependence of the solution on time. The time ¢t = 10 corresponds to about two wave
periods of the steady state solution. The steady state solution (3.40) was generated
using the method described in Chapter 6. A modal resolution of m; = 4 was used
for the steady state solution. However, a total of 32 modal coefficients were used in
the evolution equations. This was done in order to minimize the aliasing errors since
the pseudo-spectral approach was used for the time dependent solution whereas the

steady state solution was computed using a Galerkin approach.
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Fig. 3.1a The profile of the circulation function for the unperturbed vortex used

in the test run is shown here for R = 5 and J = 50.
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Fig. 3.1b Profiles of the perturbation stream function ¢ and the perturbation

circulation function {¥§ are shown here for R = 5 and J = 50.
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Fig. 3.2 The axial velocity on the axis at ¢ = 5 is plotted for different values of At.
Here, 1) ‘= ——’, At = 0.001, 2) ‘—+—’, At = 0.0005, and 3) ‘—*—’, At = 0.00025.

A grid resolution of J = 50 with R =5 and m = 16 were used for each run.
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Fig. 3.3 The axial velocity on the axis for an initial steady state solution is
plotted for 1) ‘~0-’, ¢t =0, 2) ‘~5-",¢t = 5, and 3) ‘— + =", ¢ = 10. Negligible
variations are seen showing that the steady state is well maintained by the time

dependent code.
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CHAPTER 4
Numerical Results

4.1 Introduction

It was shown in Chapter 2 that the Moore-Saffman (MS) equations lead to shock
formation on vortex cores for a variety of initial conditions. Since the MS equations
are only approximate, the fact that a shock forms may not necessarily indicgte that
a shock also forms in the solutions of the Euler equations. Therefore, we try to
establish whether a shock forms in the solutions of the Euler equations via numerical
simulations of the Navier-Stokes (N-S) equations at high Reynolds number. The
reason for using the N-S equations instead of the Euler equations is given in the
previous chapter. The shock in this context is identified by a jump in the radius of
the vortex core. As observed in the previous chapter, the formation of a shock on
vortex cores in the solutions of MS equations is a result of steepening of a wave-like
disturbance. Therefore, we choose as our initial condition for the N-S equations a
cylindrical vortex with a wave-like perturbation imposed on it. In order to seek a
comparison between the solutions of MS and N-S, we establish an equivalent initial
condition for the MS problem. We do this by averaging the initial conditions of
the N-S problem. This appears to be the best possible comparison we can get. We
integrate the equations forward in time for both the problems and compare the shape
of the vortex core.

There are two important differences in the MS equations and the N-S equations
worth noting. First, the MS equations describe evolution of quantities that are aver-
aged in the radial direction. The second difference is the role of circulation. In the
MS case, the circulation plays a “passive” role in the dynamics since it appears only

as the total circulation which does not vary along the vortex axis. The circulation is
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dynamically uncoupled with the axial velocity. Therefore, it does not influence the
evolution of the axial velocity or the vortex core shape. But this is not the case with
the N-S equations. The axisymmetric Navier-Stokes equations can be thought of as
describing the evolution of circulation and azimuthal vorticity. These two quantities
fully describe the state of the flow. In general, the circulation field is as important as
the vorticity field within the vortex core.

In this chapter we first describe the initial conditions used for the N-S problem
and the MS problem. Then we present results of simulation for three cases. In the first
case, we consider a vortex with a very small perturbation. The vortex is seen to evolve
slowly in the sense that the vortex undergoes small changes in the structure of the flow
within the core. The wave-like perturbation shows no evidence of wave steepening
for the N-S problem. However, the MS solution is seen to develop a shock in the
core area. In the second case, a vortex with a stronger perturbation is considered. In
this case, the N-S stokes solution shows development of a region with a recirculating
bubble. The bubble eventually collapses. But, as in the small perturbation case,
the initial wave does not steepen. On the other hand, the MS solution develops a
shock in the core area. In the third case, a vortex with still stronger perturbation is
considered. The N-S solution is seen to develop a jump in the core area and so does
the MS solution. But the jump in the N-S stokes solution is opposite in sense to the

jump in the MS solution.

4.2 Initial conditions
Let r and z denote the radial and the axial co-ordinates respectively. Let u, v
and w denote the radial, swirl and the axial components of velocity respectively. The

axisymmetric stream function ¢ and the circulation function  are defined by

13 Q 1y

2L v w= - —.
r 0z’ ’ r Or

U=

(4.1)

r
We consider an unperturbed cylindrical vortex defined by

¥ =1o(r), Q=Qo(r) (4.2)



- 63 -
The radius of the core ag is computed following the definition and procedure given in

the previous chapter. Next we compute the average axial velocity Wy using

2 fao
Wy = ;1_(2; ‘/0 wo(r) r dr, (4.3)
where
1 dypg
wo(r) = i (4.4)

specifies the distribution of the axial velocity. The area of the vortex core is given by

Ag = mal. (4.5)
The total circulation I' is given by
[ =27 Qu, (4.6)
where
Qo = lim Qo(r). (4.7)

Next we consider a perturbed vortex of the form

Y(r, ) = o(r) + ey (r) cos(z), (4.8a)
Qr,z) = Qo(r) + ei(r) cos(z), (4.8b)

where
T =Kz, (4.9)

and ¢ is a parameter. The wave number « is used here to control the wavelength in
the axial direction. We adjust it so that the wavelength is relatively large compared
to the core size of the vortex. Since the core size is O(1), a value of ¥ = 1 is sufficient
for our purpose. If ¢ < 1, then we know from linear theory that the disturbance
given in (4.8) moves without change of form with a fixed speed when O(e?) changes
in the solution are neglected. Denote this speed by o2/x. We compute o2 and the

eigenfunctions ¥; and §2; using the linear theory. With some choice of ¢, the evolution
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of the disturbed vortex given by (4.8) is computed via the Navier-Stokes equations in

a frame moving with speed o2/«.
For the MS problem, we assume that the axial velocity and the core area of the

perturbed vortex has the form
W(z) = Wy + eW) cos(z), (4.10a)

A(z) = Ag + €Aj cos(z). (4.100)

The perturbation axial velocity Wj is computed by averaging the perturbed axial

velocity for the N-S problem stated in equation (4.8). We get

. 2 ag
W= = / wi(r) r dr, (4.11a)
at Jo
where the profile wy(r) is the perturbed axial velocity for the N-S problem and is
given by , v
1 diy

The quantity A; is computed from the linearized MS equation (see section 2.3, Chap-

ter 2). We have

Ao
A= m Wh, (4.12)
where
2 2y

0’1/!9-W0+\/8WA0 + 2 (4.13)
and

Iy 2 oo

= 53/0 w v dr — WE. (4.14)

The evolution of the disturbed vortex given by (4.10) is computed via the MS equa-
tions in a frame moving with speed o /.

The time in either case is measured in units of linear wave periods T7 and T for
the MS and Navier-Stokes equations respectively. In terms of 03 and o2 we compute

T1=27r£, T2=27r—,f-. (4.15)
ai a2
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The Reynolds number for the flow is defined by

Re = —, (4.16)

®Ii+-

where u is the coefficient of viscosity. We denote the coefficient of viscosity for the
MS case by p1 and for the Navier-Stokes case by ug. For the results presented here
we select the parameters so that Re > 1. Typical values of u; and p2 used here
are 0(10~*) and the circulation function £ is O(1) at infinity which gives a value of
I' = O(2r).

The Navier-Stokes equations and the MS equations are integrated using the initial

conditions described above.

4.3 Results

The solutions of the MS equations suggest that presence of an initial axial velocity
component is not essential for the formation of a shock. It does, however, affect the
time required for a shock to form. Since we are interested in the formation of the
shock and not the time it takes to form a shock, we simply choose ¥ = 0 in our
initial conditions. With a smaller value of ¢, it will take a longer time before a shock
forms.

Even though the initial conditions of the MS problem are derived from the initial
conditions of the N-S problem, a quantitative comparison of the solutions does not
appear to be within the reach of MS theory. This is suggested by the comparison of
the linear wave speeds for the two problems. Table 4.1 shows the values of o7 and
o9 for a cylindrical vortex of different core sizes. The circulation distribution Qg(r)
for the computation of o used is that of a Kelvin type vortex with 8 = 0.005 (see
section 6.4.1, Chapter 6 for details). This profile gives nearly constant axial vorticity
for 0 < r < ap and zero vorticity for r > ag. The fact that the values of o1 and o3
are nearly the same for ag = 1 is merely a coincidence. In general, the values differ
from each other. The speed of the linear wave for the MS case is smaller than the

speed of the linear wave for the N-S case when the core size is small. The trend is



- 66 —

Table 4.1 Comparison of linear wave speeds.

The table shows ¢y and o5 for the MS and the N-S cases respec-
tively. Total circulation Q,, = 1 and disturbance wavenumber
K = 1 were used.

ao o a2

1/2 | 1.4142 | 1.5611
1 0.7071 | 0.7059
2 0.3536 | 0.2852
3 0.2357 | 0.1560

reversed when the core size is increased.

In Figures 4.1 through 4.10 the numerical results for a run with ¢ = 0.02 are
presented. The initial profiles of £y, ¥1, Q1 and ({; are shown in Figure 4.1. The
radial domain was taken to be R = 2.5 with a resolution of J = 200 radial points.
The initial core size was ag = 0.5. A modal resolution of m = 64 was used for
the N-S case and a resolution of m = 128 was used for the MS case. The viscosity
coefficients were taken to be y; = up = 10~%. The Reynolds number for the flow
was Re = I'/p = 62830. Note that the Reynolds number based on typical velocity
and core size is much less — about 8000. The high value for Re based on the total
circulation is due to the factor 2 in the definition of I' (see equation 4.6).

The development of the shape of the vortex core is shown in Figure 4.2 for the
MS case. Gradual steepening of the core wave occurs as time passes. At about
t = 5.0, a jump in the core area begins to form. In Figure 4.3 the maximum value
of the |da(z,t)/dz|, where a is the core radius, is plotted as a function of time.
It gives a better indication of the steepening of the wave. It shows that the slope
increases monotonically with time. Numerical oscillations are evident in Figure 4.2
which depict the shape of the vortex core. The development of the axial velocity is
shown in Figure 4.4. The profile marked with A is at ¢ = 0. For profiles marked with
B through H, the time increases in steps of about 1.0. Steepening of the initial wave
is clearly indicated. After the shock formation around ¢ = 5 the axial velocity showed
numerical errors which increased with time.

The development of the core shape for the N-S case is shown in Figure 4.5. The
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core shows minimal distortion in shape with passage of time. The core wave does not
steepen to form a shock when the solution has progressed to about ¢ = 11.8 which
is more than twice the time in which the MS solution develops a well defined shock.
The maximum value of | 8a/0z | is shown in Figure 4.6. This shows qualitatively very
different motion of the core wave. The core wave undergoes periodic flattening and
steepening. The apparent small oscillations are due to the fact that the maximum
value of the slope occurs at a different axial position. In Figure 4.7, the radial average
of the axial velocity at various z locations is computed and plotted for different times.
The profiles show no evidence of steepening.

The contours of constant 13 are presented in Figure 4.8 for later times (¢t =
10.12, 10.97, and 11.81). The contours of constant £ and the contours of constant ¢
are shown in Figure 4.9 and Figure 4.10 respectively. Throughout the motion, 7 and
() show very minimal changes. Relatively greater changes are evident in the ( field.
A minor amount of concentration of constant ( lines near the axis of the vortex is
evident.

Next we describe the results of a run for a vortex with stronger perturbation.
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Fig. 4.1 The profiles of the circulation for the base flow y and the perturbation
components ¥, {; and {;. Radial resolution of J = 200 with R = 2.5 is used. The

size of the core radius is a = 0.5.
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Fig. 4.2a The shape of the vortex as a function of time for the MS problem.

The times are indicated on each plot.
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Fig. 4.2b The shape of the vortex as a function of time for the MS problem.

The times are indicated on each plot.
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Fig. 4.3 Variation of maximum value of | 0a(z,t)/0z| as a function of time for

the MS problem.
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Fig. 4.4 Axial velocity as a function of z is shown for A. ¢ = 0.0, B. ¢t = 1.012,
C.t=2.024,D.t =3.037, E. t =4.049, and F. ¢t = 5.061. This shows the solution of
MS equations.
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Fig. 4.5 The shape of the vortex as a function of time for the N-S problem. The

times are indicated on each plot.
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Fig. 4.7 Average axial velocity as a function of z is shown for A. ¢ = 5.061,
B.t=6.748, C. t =8.435, D. t = 10.122, and E. ¢ = 11.809. This shows the solution

of N-S equations.
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Fig. 4.8 Contours of constant v for ¢ = 10.122, 10.966 and 11.809. Contour

interval = 0.1. A dashed line is used for negative values.
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Fig. 4.9 Contours of constant § for ¢ = 10.122, 10.966 and 11.809. Contour

interval = 0.1. A dashed line is used for negative values.
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Fig. 4.10 Contours of constant ¢ for ¢ = 10.122, 10.966 and 11.809. Contour

interval = 0.05. A dashed line is used for negative values.
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In Figures 4.11 through 4.20 the numerical results for a run with ¢ = 0.12 are
presented. Thus, the perturbation is stronger than the previous case. The initial
profiles of Q, 11, 1 and (; are shown in Figure 4.11. The radial domain was taken to
be R = 5 with a resolution of J = 320 radial points. The initial core radius was about
one. The radial resolution is comparable to the previous case. A modal resolution
of m = 64 was used for the N-S case and a resolution of m = 128 was used for the
MS case. The viscosity coefficients were taken to be y; = 2 = 10~%. The Reynolds

number for the flow is the same as that of the previous run - Re = I'/u = 62830.

The development of the shape of the vortex core is shown in Figure 4.12 for
the MS case. Gradual steepening of the core wave occurs as time passes. At about
t = 1.36, a jump in the core area begins to form. In Figure 4.13 the maximum
value of the |Ja(z,t)/0z |, where a is the core radius, is plotted as a function of
time. It clearly indicates the the slope increases monotonically with time till ¢ = 1.6.
The apparent oscillations after this time are a result of numerical errors. Numerical
oscillations are also evident in Figure 4.12 which depict the shape of the vortex core.
The development of the axial velocity is shown in Figure 4.14. The profile marked
with A is at ¢t = 0. For profiles marked with B through H, the time increases in steps
of 0.195. Steepening of the initial wave is clearly indicated. After the shock formation

around t = 1.5 the axial velocity showed numerical errors which increased with time.

The development of the core shape for the N-S case is shown in Figure 4.15. The
core bulges with passage of time. But the core wave does not steepen enough to
form a shock. The maximum value of | da/dz| is shown in Figure 4.16. As in the
small perturbation case, this shows qualitatively very different motion of the core
wave. The core wave undergoes periodic flattening and steepening. In Figure 4.17,
the radial average of the axial velocity at various z locations is computed and plotted

for different times. Once again, the profiles fail to show any evidence of steepening.

The contours of constant 3 are presented in Figure 4.18. As time passes, the

instantaneous streamlines begin to show a gradual bulging near x = 0 similar to the
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core shape. The axial velocity on the axis begins to increase in magnitude near £ = 0
but still remains of the same sign (negative) till slightly after ¢t = 1.4. Beyond this
time, a closed streamline appears on the axis signifying reversal of the axial flow on the
axis. The bubble grows in size till ¢ = 1.8 and then it begins to shrink in size. Then
it detaches from the axis at about { = 2.3 and eventually collapses. The numerical
solution could not be continued beyond this time because of numerical breakdown of
the vorticity field.

The contours of constant {2 are shown in Figure 4.19. Throughout the motion,
the circulation field shows minor changes. No reversal of circulation is seen in any
part of the flow field. The lines show bulging similar to the contours of .

The contours of constant ( are shown in Figure 4.20. The initial elliptical contours
are sheared by the action of fluid motion. This results in a clustering of contours in
the flow domain around = = 0. The gradients in the vorticity field continually increase
in this region. The domain within z = 2 and =z = 4 shows relatively less concentration
of contours. Most of the action is restricted to the region of flow about z = 0. This
is also the region in which a bubble of reversed flow appears. The ( field suffers

numerical breakdown at about t = 2 because of lack of resolution.
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Fig. 4.12a The shape of the vortex as a function of time for the MS problem.

The times are indicated on each plot.



- 83 -

_1;/——\\; —1'—-—-/————N
-2} J -2} 4
!
-3t 1 " 1 " X i 1 " 1 " 1) -3r 2 N 1 " 1 " L s I A
] 1 2 3 4 ] ] 0 1 2 3 4 [ 8
4 b 4
Shape : time(MS) = 1.189 Shape : time(MS) = 1.384
aF T T T T L 3 F T Y T \ LI m—
2} g 2| -
1f - - 1t - —
r 4
3 3
g or - g 0[ B
-
- ——— -1} - .
-2t - -2} .
-3t " 1 2 I " A N I N I N = -3t N i " i . 1 " i " i " ]
0 1 2 3 4 8 ] [} 1 2 3 4 5 8
b 4 x

Fig. 4.12b The shape of the vortex as a function of time for the MS problem.

The times are indicated on each plot.
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Fig. 4.12c The shape of the vortex as a function of time for the MS problem.

The times are indicated on each plot.
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Fig. 4.14 Axial velocity as a function of z is shown for A. ¢t = 0.0, B. ¢t = 0.195,
C.t=0.390,D.¢t=0.585, E.t =0.780, F. t = 0.974, G. t = 1.169, and H. ¢t = 1.364.

This shows the solution of MS equations.
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The times are indicated on each plot.



_ 88 -

Shape of vortex: time =  0.780 Shape of vortex: time =  0.974
sF ™ TT Y Y T Y sF —p——— T v T
L | 1
2r b 2 -
3 4
lv IL—\___’————’/:
P | 3 J
i o} E i [ E
* 1
e 1 Y T
-2 F 4 -8 F B
-3t 1 PR | " L PR | " i N = -3t . 1 . 1 A 1 n 1 i 1 n
0 1 2 3 4 5 8 [} 1 2 3 4 5 -]
x x
Shape of vortex: time = 1.189 Shape of vortex: time =  1.364
3F ¥ v M T M T L 3F T T T T SLIRA A
]
2k 4 24 -

radius
o
¥
PR
radius
(-]
T
A

L 1 - 4
_1/ J _‘/‘—\_‘-

_2r. - -2} _

-3 . 4 " i " i M I W T 3 =3 ! " U N 1 : 1 " 1 7
4 3

Fig. 4.15b The shape of the vortex as a function of time for the N-S problem.
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Fig. 4.15c The shape of the vortex as a function of time for the N-S problem.

The times are indicated on each plot.
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The times are indicated on each plot.
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Fig. 4.17 Average axial velocity as a function of z is shown for A. ¢ = 0.0,
B.t=10.390, C. ¢t = 0.780, D. t = 1.169, E. ¢t = 1.559, F. t =1.949, and G. t = 2.339.

This shows the solution of N-S equations.
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interval = 0.2. A dashed line is used for negative values.
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Fig. 4.20c Contours of constant ¢ for t = 1.169, 1.364 and 1.559. Contour

interval = 0.2. A dashed line is used for negative values.
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interval = 0.2. A dashed line is used for negative values.
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Fig. 4.20e Contours of constant { for ¢ = 2.339 and 2.436. Contour interval =

0.2. A dashed line is used for negative values.
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In Figures 4.21 through 4.30 the numerical results for a run with ¢ = 0.2 are
presented. The initial profiles of g, 3, @1 and {; are shown in Figure 4.21. The
radial domain was taken to be R = 5 with a resolution of J = 160 radial points. A
modal resolution of m = 128 was used for the N-S case and a resolution of m = 256
was used for the MS case. Thus, this run is done at an improved axial resolution
while the radial resolution is decreased compared to the previous run. A comparison
of two runs for the previous case of ¢ = 0.12 with radial resolutions of J = 160 and
J = 320 showed negligible difference in the solution. Thus, J = 160 appears to be
sufficient. However, a jump in the core area may possibly form. A larger modal
resolution is necessary. The viscosity coefficients were taken to be u; = pp = 104,
Therefore, the Reynolds number for the flow is the same as that of the previous runs

— Re =T'/u = 62830.

Because the perturbation parameter is greater in the present run compared to the
previous run, we will refer to the present run as the “strong” case and the previous
run as the “weak” case. The development of the shape of the vortex core is shown
in Figure 4.22 for the MS case. As in the previous case, a gradual steepening of the
core wave occurs as time passes. At about { = 0.87, a jump in the core area forms.
In Figure 4.23 the maximum value of the |da(z,t)/dz|, is plotted as a function of
time. The monotonic increase of slope up to ¢ = 0.9 is seen. This is qualitatively
similar to the development of a shock in the previous cases. Soon after the shock
forms, numerical errors tend to increase. The slope does not increase without bound
because of restricted resolution. The development of the axial velocity is shown in
Figure 4.24. The initial wave marked with A at ¢ = 0 continues to steepen as time

increases.

The development of the core shape for the N-S case is shown in Figure 4.25.
The core bulges considerably with passage of time. The fattened core near z = 0
accommodates a bubble of reversed flow as can be seen from the contours of constant

¥ in Figure 4.28. A jump in the core area forms around ¢ = 0.68 behind the bubble
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unlike the MS case in which the jump forms on the front side of the location where
the bubble would be present. Also the jump is opposite in sense compared to the
MS case. Unlike the previous cases, the maximum slope increases monotonically with
time similar to the MS case. The slope reaches a maximum at about ¢ = 0.8 for the
N-S case and then it begins to decrease. The decrease is due to the action of viscosity.
The average axial velocity is shown in Figure 4.27. The axial velocity steepens in the
opposite sense and the steepening occurs between z = 3 and z = 5. The shock in
the MS case, in contrast, occurs due to steepening of the axial velocity in the region

0<z<3.

The contours of constant ¢ are presented in Figure 4.28. As the Figure for ¢t = 0
indicates, the perturbation is so strong that there is a bubble of reversed flow located
symmetrically about x = 0. As time passes, the bubble moves to the right along the
axis. The bubble deforms so that its axial extent decreases while the radial extent
remains relatively unchanged. The bubble detaches from the axis at about ¢ = 0.78
and moves off the axis as it collapses. A second bubble of reversed flow is seen
to emerge between ¢ = 0.98 and ¢t = 1.1. It is seen to grow rapidly and occupies
nearly half the axial domain by about ¢ = 1.27. Since the { field does not seem to
be well resolved during the emergence and growth of this second bubble of reversed
flow region, this feature may be spurious. However, this feature was seen for various

combinations of modal and radial resolutions.

The contours of constant {} are shown in Figure 4.29. The  field also contains
a bubble of reversed circulation region at the initial time. This bubble undergoes
remarkable deformation as time passes. While the “leading” edge of the bubble (the
edge to the right) remains bound to nearly the same axial location, the “trailing”
edge (the edge to the left of the bubble) stretches enormously until it occupies nearly

80% of the axial domain.

The contours of constant ( are shown in Figure 4.30. Similar to the weakly

perturbed vortex, a concentration of contours near £ = 0 is seen here also. The
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contours indicate that the solution is not smooth beyond t = 1.0.

In summary, we have seen that a weakly perturbed vortex fails to develop any
jump in the core area for the N-S case. The core wave periodically steepens and
flattens for the N-S case while the MS case shows monotonic increase in the magnitude
of the slope of the core radius. Therefore, there is a qualitative disagreement between
the solutions of MS and N-S.

On the other hand, a strongly perturbed vortex develops a jump in the core area
in both N-S and the MS solutions. Even though the sense of jump in the core area
disagree, a similarity is seen in the way the core steepens. The time taken for a shock
formation is about 0.87 for the MS case while it is about 0.68 for the N-S case. It
is clear from the solutions for the strongly perturbed vortex that the circulation field
plays an important role in the dynamics. However, it is not clear if this is responsible
for the development of jump in the core area. An improved model in which further

corrections due to changes in the internal structure may shed some light on this issue.
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components 1, ; and (;. Radial resolution of J = 160 with B = 5 is used. The

size of the core radius is a = 1.



-112 -

Shape : time(MS) = 0.000
a T T L T L T T T v L) v l- a_ v L) v v L T '_'

L— T 1 ' T

aF Y T T s F T Y ™)
2} . 2t i
T ] T~
%0- %o- 4
b
_1:_’_/\\_ _1;—/—\;
2| -2F 4
=3t 1 1 " s 13 -3t n 1 i 1
0 1 2 3 4 8 [ ] 0 1 2 3 4 ] 8
x x

Fig. 4.22a The shape of the vortex as a function of time for the MS problem.

The times are indicated on each plot.
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Fig. 4.22b The shape of the vortex as a function of time for the MS problem.

The times are indicated on each plot.
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Fig. 4.22c The shape of the vortex as a function of time for the MS problem.

The times are indicated on each plot.
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the MS problem.
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Fig. 4.24 Axial velocity as a function of z is shown for A. ¢t = 0.0, B. ¢ = 0.195,
C.t=10.390, D.t = 0.585 and E. ¢ = 0.780. This shows the solution of MS equations.



radius

The times are indicated on each plot.

-1

Fig. 4.25a The shape of the vortex as a function of time for the N-S problem.

- 117 -

Il
radius
©

__/\ -1

- b -2
o 1 5 1 L 1 3 -3
0o 1 2 3 4 -]
x
Shape of vortex: time = 0.185
. v ¥ T T 3
L 1 2

C 1 I 1 1 1 1]
0 1 2 3 4 5 8
x
Shape of vortex: time =  0.202
¥ v ) T Ll T_'
L




- 118 -

-1

-2 -2} 4
-3 1 i L i 1 13 -3t L i 1 1 I t
o 1 2 3 4 ] ] 0 1 2 3 4 -] 8
x b 4
Shape of vortex: time = 0.586 Shape of vortex: time =  0.882
3 Y Y T T L IF T \ T M Y
2F 2k
2
=§ oF o
e
_1._/\\ _lH
-2} 4 -2k
=3t 1 " n " " " " " i A A -3r_ . 1 . A N i . 1 . A n 1]
] 1 2 3 4 8 (] 0 1 2 3 4 5 ]
X x

Fig. 4.25b The shape of the vortex as a function of time for the N-S problem.

The times are indicated on each plot.
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Fig. 4.25c The shape of the vortex as a function of time for the N-S problem.

The times are indicated on each plot.
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Fig. 4.26 Variation of maximum value of | Ja(z,t)/0z| as a function of time for

the N-S problem.
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Average axial velocity (N.S.)

average axial velocity

Fig. 4.27 Average axial velocity as a function of z is shown for A. ¢t = 0.0,
B.t=10.195, C. t =0.390, D. ¢t = 0.585, E. t = 0.779 and F. t = 0.974. This shows

the solution of N-S equations.
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Fig. 4.28c Contours of constant 3 for ¢ = 0.585, 0.682 and 0.779. Contour

interval = 0.2. A dashed line is used for negative values.
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interval = 0.2. A dashed line is used for negative values.
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Fig. 4.29a Contours of constant  for ¢t = 0.0, 0.097 and 0.195. Contour

interval = 0.15. A dashed line is used for negative values.
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Fig. 4.29b Contours of constant Q for ¢ = 0.292, 0.390 and 0.487. Contour

interval = 0.15. A dashed line is used for negative values.
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Fig. 4.29c Contours of constant Q for ¢ = 0.585, 0.682 and 0.779. Contour

interval = 0.15. A dashed line is used for negative values.
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Fig. 4.29d Contours of constant  for ¢t = 0.877, 0.974 and 1.072. Contour

interval = 0.15. A dashed line is used for negative values.
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Fig. 4.29e Contours of constant {2 for ¢ = 1.169 and 1.267. Contour interval =

0.15. A dashed line is used for negative values.




-132 -

Fig. 4.30a Contours of constant ¢ for ¢ = 0.0, 0.097 and 0.195. Contour

interval = 0.2. A dashed line is used for negative values.
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Fig. 4.30b Contours of constant ¢ for ¢ = 0.292, 0.390 and 0.487. Contour

interval = 0.2. A dashed line is used for negative values.
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Fig. 4.30c Contours of constant ¢ for ¢ = 0.585, 0.682 and 0.779. Contour

interval = 0.2. A dashed line is used for negative values.
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Fig. 4.30d Contours of constant ¢ for ¢ = 0.877, 0.974 and 1.072. Contour

interval = 0.2. A dashed line is used for negative values.
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CHAPTER 5

Axisymmetric Nonlinear Kelvin Waves

5.1 Introduction

In 1880 Lord Kelvin considered linear stability of columnar vortices. Three dif-
ferent cases were considered by Kelvin. The first case consists of a uniformly rotating
fluid between two cylindrical surfaces. The second case consists of a hollow vortex
in a tube. Our interest lies in the third case which consists of a slightly disturbed
vortex column in a region of infinite radial extent. The vortex column consists of
a core of uniform vorticity surrounded by irrotational fluid with continuous velocity
across the core boundary. We restrict ourselves to the axisymmetric disturbances of
this basic vortex column. The results of linear analysis due to Kelvin show that there
exist only neutral waves moving at a constant speed as seen in a frame at rest at
infinity. The speed of propagation depends on the wave length of the perturbation.
In this chapter we first consider extension of Kelvin’s results to second order in an
appropriately defined wave amplitude. This leads us to the question of uniqueness
of solutions. We find that there exist infinitely many solutions at the second order
itself. Determination of the second order solution consists of two components; an
axially varying component and a mean component that corrects the base flow charac-
terizing the vortex column. We find that the mean corrections cannot be determined
uniquely. Thus there arises a need for extra conditions. At this point we notice
that inviscid axisymmetric flows with swirl are characterized by two functions; the
Bernoulli function H and the circulation function 2 (Batchelor, 1967). On a stream-
line given by ¥ = constant, both H and 2 must be constant. Thus H and § are
expressible as functions of v, the stream-function, alone. A particular solution is

obtained by specifying the functional form of H(3) and Q(%) in some region of the
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flow. The flow in the rest of the region is then automatically determined. We supply
the required additional conditions by specifying the functional dependence of H ()
and Q(+). The choice of functional forms is dictated by the base flow itself. We find
that the linear solution satisfies these constraints exactly. The particular choice of
the functional dependence of these functions makes it possible to re-write the Euler
equations into a single equation for the stream function. For the chosen distribu-
tions of H(¢) and (v), we find that this equation is linear. We take advantage of
this situation and compute the solution to arbitrary orders in wave amplitude. The
perturbation procedure adopted here is similar to Stokes expansion in the study of
water waves (Schwartz, 1974). However, the presence of vorticity makes the problem
harder as the governing equétion for the motion inside the core is no longer a simple
Laplace’s equation. This prohibits us from using a conformal map to transform the
domain in which the geometry remains fixed at all amplitudes. Therefore we choose
to work directly in the physical domain and determine, as part of the problem, the
shape of the interface separating the fluid inside the core from the potential flow
outside. A similar approach of finding a solution directly in the physical domain has
been used by Holyer (1979) for the case of two dimensional water waves.

The basic motivation of performing these calculations is to determine if there
exist solutions with a recirculating bubble. These solutions represent a bubble type

of vortex breakdown.

5.2 Equations of motion

We consider the steady, incompressible Euler equations in primitive variables.
Let r, ¢ and z denote the radial, swirl and the axial coordinates respectively. Let
u,v and w denote the radial, swirl and axial components of velocity respectively. Let
p denote the pressure. We consider a frame, fixed at infinity, in which the flow is
steady. In such a frame, we assume a base flow consisting of a cylindrical vortex
column with zero radial velocity, uniform axial velocity from right to left and a swirl

velocity distribution that gives uniform axial vorticity in the cylindrical core and an
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irrotational flow outside this core. The precise form of the base flow is given in (5.5).
The formulation of the problem in this chapter differs from Kelvin’s linear analysis.
Lord Kelvin considers a vortex on which the linear waves move at constant speed
with respect to a frame fixed at infinity. In our approach, we impose a uniform axial
velocity which exactly opposes the linear waves and hence they become steady waves.
The effect of nonlinearity in Kelvin’s approach would result in a correction of the
wave speed. In our approach, we find corrections to the imposed axial velocity.

We set z = xz, where & is the wavenumber of the disturbance imposed on the base
flow. The problem is treated as being periodic in z, and we take, without any loss of
generality, the period to be 2x. The equations of motion in cylindrical co-ordinates

are given by

ur + g + kwy = 0, (5.1)

v
Uiy + KWUg — — =P (5.2)
uvy + KWUg + E:—)- =0, (5.3)
uwr + KWW = —Kp;, (5.4)

where r denotes the radial co-ordinate. We have used subscripts to denote partial
derivatives.

Now we specify the base flow. The radial and the axial velocities are of the form
u(r) =ugo(r) =0, 0<r < oo, (5.5a)

w(r) = woo(r) = —co = —ap/k, 0<r < oo, (5.5b)

where ¢g = ag/x is the amount of axial velocity at r = oo that is necessary to sustain
a standing linear wave disturbance with wave number «. The value of ¢ is determined
as part of the solution. In particular, it is found from the linear theory. The quantity
¢o can be identified with the linear wave speed in Kelvin’s analysis. We find the'

pressure by integrating the radial momentum equation. The swirl and the pressure
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profiles are given by

Tozr2
voo, = Tor, pooe = 5 for r < ago, (5.5¢)
Toa? T2at
voo> = roo ’ p00> = T02a§0 — grzoo for r 2 agpo, (5.5d)

where agg denotes the radius of the undisturbed vortex core and Ty is a known con-
stant which is related to the strength of the vortex. From now on the subscripts «
and 5 will be used to denote the solutions inside and outside the core respectively.
When we consider disturbances of finite amplitude, the subscripts « and s will stand
for r < R and r > R where R will be the perturbed boundary. Thus for the base
flow, R = ago. Also, the pressure is arbitrary up to a constant. We have chosen the
convention that pressure is zero at the axis of the vortex.

Now we consider a deviation from the base flow and represent it as a Fourier

u= i ug(r)sin(kz), v= i vi(r) cos(kz), (5.6a)
k=1 k=0

w= io: wi(r) cos(kz), p= io: pi(r) cos(kz). (5.6b)
k=0 k=0

The Fourier coefficients themselves are expanded into a power series given by

U = €kuk,k + €k+2uk,k+2 +---, k=12,..., (5.7a)

k

Vp =€ Vpk + gk+2

vkip2 e, k=0,1,2,..., (5.7b)
wp = e*fwp g + g e+ -0, k=0,1,2,..., (5.7¢)

by = Ekpk,k + €k+2pk,k+2 +-- k= 0,1, 2,..., (57d)

where € is an expansion parameter and the quantities ujj, uj3 etc., are functions of
r only. We will relate € to the wave amplitude at a later stage. The particular form
assumed in (5.6) and (5.7) is a consequence of the symmetry of the solution. The
symmetry is such that the solution remains the same if we replace z by =z + 7 and

€ by —e. We substitute these expansions into the equations of motion and collect
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Fourier modes and like powers of ¢. Let, from now on, primes denote derivatives of

various functions with respect to their arguments, i.e.,

’

. " 24(.
0=F (0= e (59

When the argument of the functions is suppressed, it is assumed to be r. The argu-

ment other than r appears later with the Bessel functions.

Equating the coefficients of ¢ cos(z) and e sin(z) we get

ulll + E:.—l - kwyp =0, (5.9)
aou1l + 2—1:.02 vl — Pln =0, (5.10)
aovi1 + Boouir = 0, (5.11)
agwyy — kp11 = 0. (5.12)

Equating the coefficients of 2 cos(2z) and €2 sin(2z) we get

u;2 + % — 2kwe = 0, (5.13)

2vg0 ' 1 ' K 1 v
2o0u2 + — = w22 — Py = —Funup + S wnun - 3 —ru, (5.14)

1 / K 1
2a9v22 + Bpougg = — 5 U1ty + 3 Wi = o-unv, (5.15)
and
1 1 K 2

20qwyg — 2kp22 = — 3 unwy + 3 Wi (5.16)

Finally, equating the coefficient of ¢? we get,

' 2v92 1 K 1 v?
Poz = — Vo2 = = upun = gwnun+ 5 __7‘1_1_ : (5.17)
We define
Bgo = (v(l)o + voo/") , (5.18)

in the equations above. We solve these equations in the two regions defined by r < R

and r > R, where R denotes the shape of the perturbed boundary separating the
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fluid in the vortex core and the rest of the fluid which is irrotational. We assume the

following form for the equation of this boundary.

o0
R(z) = Y aj cos(kz), (5.19a)
k=0
where
ap=c*app+ a0 +--, k=0,1,2,.... (5.198)

The coefficients ag2, a2z etc are constants to be determined as part of the problem.
The coeflicient ay; is arbitrary and may be absorbed into the definition of . We retain
it only for the purpose of automatic implementation of the perturbation procedure
for large orders since the automatic expansion is done by a method based on the
manipulation of the indices, i.e., the subscripts. The solutions to the above equations
are to be matched across the core boundary. We may consider two types of matching
conditions. We may either make the velocity vector continuous across the boundary
or make the normal component of velocity and pressure continuous. The continuity
of the normal velocity and the pressure is implied by the continuity of the velocity

vector (see Saffman, 1991).

5.3 Boundary conditions

5.3.1 Conditions at the core boundary

We consider here continuity of the velocity across the boundary. The continuity
of velocity implies that u<(R) = u>(R), v<(R) = v>(R) and w<(R) = w>(R). Since
the equation for R is itself unknown, we proceed by expanding all the quantities in
a Taylor series about r = ago. We then collect the coefficients of like powers of ¢
and separate out the modes. This procedure is assumed valid since we are looking
for solutions which are continuous everywhere except perhaps at the boundary. A

typical expansion takes the form

v(R) = v(aoo) + vr(aco)(R — aoo) + vrr(aco) %CM +--, (5.20)
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where,
v(a00) = voo(aoo) + €%vo2(ao0) + €v11(aoo) cos(z) + - -,
vr(@00) = vgo(a00) + £2vgy(aoo) + vy (aoo) cos(z) + - - -, etc.

We further expand (R — ago), (R — ago)?, etc., into a Taylor series about € = 0
and substitute into (5.20). We evaluate expression (5.20) on either side of the core
boundary. From the continuity of velocity at the interface, we get a set of conditions

to be satisfied by the coeflicients u; ;, v; j and w; ;. They are stated below. We denote

{Q} = @>(aoo) — Q<(aoo)- (5.21)

Then, the conditions on the linear terms (denoted by subscript 1,1) are

{un} =0, (5.22)
{v11 + a11vge} =0, (5.23)
{wn} =0. (5.24)

The conditions on the second order quantities associated with subscript (22) are

{uzg + 9;—1 u’ll} =0, (5.25)

U aiy ¢/ a%l "
v22 + a22Vg + —2—— 11 + T Voo ( = 0, (526)
{w22 + %l w’n} =0. (5.27)

Finally, the conditions on the mean flow corrections associate with subscript (02) are

I} a ' a2 "
{’002 + ap2g9 + —él"l‘vll + —i—l- ’000} = 0, (528)

!
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5.3.2 Conditions at r =0 and r = oo

Very close to the axis, we assume that flow tends to that of solid-body rotation.
This means that the swirl must be linear in r. Since there is no source of fluid, there

is no radial velocity present at the axis. This leads us to the boundary conditions
u(r=0)=0, v(r=0)=0, (5.30a)

and we assume that

w(r = 0) < oo. (5.300)

As r — oo we assume that the perturbations must decay.

5.4 Linear solution

We eliminate the pressure from (5.10) and (5.12) and solve for uj; and vy in

terms of wy;. We get

2 ! [
AWy oWy,
= = - B, .
un=m=, U 0 p (5.31)
where,
D1y = a3 — Bpo2vpo /7. (5.32)

Notice that Dy; is a constant in the outer and inner regions. Eliminating the radial
component of velocity in the continuity equation (5.9), we get an equation in w only.

Evaluation of this equation in the inner and outer regions gives us,

" 1
w11> + ;wlb - K,2w11> = 0, (5.33)
" 1 2
w11< + ; wl1< + Vl w11< = 0, (5.34)
where
2 4T2 —n2
V2 = f—(—-!’-z_i’) (5.35)
g

The consistent solutions are of the form

wie = AucJo(nir),  wi, = An, Ko(sr), (5.36)
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where the constants A;;. and A;;, are to be determined and Jp and K are Bessel
functions. We reject the other linearly independent solution of (5.33) because it
grows exponentially as r — 0 thus violating the boundary conditions. A similar
argument holds for the solution outside the core. The constants may be computed by
applying the conditions (5.22) through (5.24). Using (5.22) and (5.23) leads us to a
homogeneous system of equations in the unknown constants. If a nontrivial solution
to that system exists, then the determinant of the system must be zero. This leads us

to a dispersion relation. Finally applying (5.24) determines the constants explicitly.

We get,
kD1 g
A =an ——, An, =an-—; , 5.37
< a1 Jy(v1a00) > Ky(xaoo) (5:37)
and the dispersion relation which determines ay is,
adn J(’,(ulaoo) _ K(')(K.a()()) (5.38)

kD1 Jo(riaoe) ~ Ko(kaoo)
Since only the square of ag enters into the problem, there are two solution branches

corresponding to the left and right moving waves. For a given real «, there are an
infinite number of roots to (5.38) on each branch.

If »? is negative, then the axial velocity inside the core is proportional to the Bessel
function Iy instead of Jy as can be seen from the equation (5.34). This, however, fails
to satisfy the boundary conditions. Therefore, the solution must be such that »? is
positive. Then from equation (5.35) we see that the quantity ag is bounded from
above by

lao| < 2Tp. (5.39)

Further, all the roots of (5.38) are real and distinct with an accumulation point at zero.

The eigenfunctions corresponding to the largest root exhibit no internal zeroes. Thus

if we were to denote ag, to be the p*® root of (5.38), the corresponding eigenfunction

has p internal zeroes and p = 0 corresponds to the largest root. Some roots (for the
positive branch) are given in table 5.1.

It is mentioned by Lord Kelvin (1880) that the equality of u;; and wq; at r = ago

(see equations 5.19 and 5.21) also implies equality of v1; at r = ago. This, however,
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Table 5.1 Roots of Kelvin’s dispersion relation (5.38).

This table shows the values of ay computed from the equation
(5.38) using ago =1 and Ty = 1.

No k=05 k=1.0 k=20

1 0.39027755502169 0.70590520214049 1.1409768704885
2 0.17881709329998 0.34903848551704 0.65317764970197
3 0.11494037766721 0.22752214229761 0.44161072269100
4 8.4561601890232 1002 0.16817372402080 0.33076942077432
5 6.6854178045997 10—02 0.13323687205356 0.26366406570569
6 5.5268790200782 1092 0.11027049913461 0.21893714384469
7 4.7101675816889 1092 9.4037783116883 1092 0.18707674151658
8 4.1035655843075 1092 8.1961719668731 1002 0.16326035106466
9 3.6352840385686 10—02 7.2629437942164 10~92 0.14479664026559
10 3.2628780505344 10—92 6.5202405153967 10—92 0.13006994049018

is not true as can easily be seen from (5.23). Rewriting (5.23) in the expanded form
we get
viic + auv(')o< =vi1, + auv:)o>, (5.40)

where the quantities are evaluated at r = agg. Using (5.5) we obtain
‘011<(a00) - ‘v11>(aoo) = —2a11Ty # 0. (5.41)
However, the swirl velocity is continuous at r = agg + £a1; cos(z).

5.5 Second order solution

Once again we may eliminate the pressure from (5.14) and (5.16) and using the

known linear solution we get,

2(1(2) w'22 apBgo w’22
_ - Wa2 4
where
9 ‘
D22 = 4a2 — By % . (5.43)

Note that D2 is also a constant in the outer and inner regions. Substituting these
into the continuity equation yields a second order ordinary differential equation in
wa2. This turns out to be homogeneous too since both us; and vs2 do not depend on
linear terms. We get,

" ]. 7
w22< + ;w22< - V%w22< = 0, (544)
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" 1 /
Wy, + Wi, — (26)2waz< = 0, (5.45)
where
2
2 _ K D22<
vy = Ot% . (5.46)

Thus the linear solution seemingly does not act as a forcing mechanism as is usual
in most cases. It does, however, alter the pressure field and hence the second order
velocities. Thus the effect is an indirect one.

The general solution to w32 depends on the sign of D22.. The sign of D3 in turn
depends on the core size and the magnitude of the axial vorticity of the unperturbed
vortex. For example, D22, is found to be positive for agp = 2 and Ty = 1/4 and it is
found to be negative for ago = 1 and Ty = 1. In Figure 5.1, contours on which Dy,
is constant is plotted for various values of the core size agp and Ty. It shows that
the value of D23, is zero at about ago = 1.6 and is independent of Tp. The case of
D33, = 0 is not considered here.

If Djy is positive then we have,
W, = A22< Io(llzr), woz, = A2z, Ko(2kr). (5.47)

Notice that the solution in the inner region is characteristically different from the

linear solution. Using the conditions (5.25) and (5.27) we find

9 4aoT02V2 I(I)(Vzaoo)

2kT2 Ko(2ka
A22< = _a%l aoo 0( = 00) , A22> = —aj; D22 E N (5.48)
<
where
! 20(2)1/2 ’
E = -—I()(Vgaoo)Ko(chaoo) + %Dos Io(l/gaoo)Ko(2fcaoo). (5.49)
<

Using the remaining condition (5.26) we obtain,

1 v Jo(v1ae0) . 2T3ve Ig(llzaoo)K:)(znaoo)
4ago 2 J{)(Vlaoo) Das. E

axy = —a%l (5.50)

If the sign of D22« is negative, then the solution is found by simply replacing v,
by o2, where '

o? = ¢, (5.51)
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-~

Fig. 5.1: Contours of constant Daa,. It shows that the quantity D2, becomes

zero at about agp = 1.6 and is independent of Tj.
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and further replacing I and I:, by Jo and J(', respectively in equations (5.47) through
(5.50).

A typical solution is shown in Figure 5.2. Figure 5.2a shows the linear eigenfunc-
tions. While the radial and axial components are continuous, the swirl jumps at the
unperturbed boundary. Figure 5.2b and 5.2¢c show the second order quantities for two
possible cases arising from the sign of Dj; . The parameters used for each case are
listed in the figure captions. When the quantity Dj;, is positive, the inner solution is
non-oscillatory and when it is negative, the inner solution is oscillatory. The solution

in Figure 5.1c is oscillatory with no internal zeroes.

5.6 Mean flow corrections

The corrections to mean flow (i.e., the quantities with subscripts 02) cannot be
determined uniquely from the given conditions. Whether we consider continuity of
velocity vector or the continuity of pressure and normal velocity as our conditions
at the core boundary, we would have an undetermined function leading us to an
infinity of solutions. As discussed already, this is reflected in the considerations of
the Bernoulli (H) and circulation (£2) functions. For the sake of completeness, we
briefly recount the relation of H and  to the flow variables (see Batchelor, 1967).
The Euler equation in the absence of any body forces can be written in the vector

form as

g—: +u-Vu=-Vp, (2.52)

where u is the velocity and p is the pressure. We have assumed the density to be

unity. Using the vector identity
%V(u-u):u'Vu+qu, (2.53)

where w = curl u is the vorticity and A denotes the vector cross product, we can

rewrite the governing equation as

dJu 1
u/\w—a—t=V(-2-u-u+p). (254)
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We denote the quantity in the brackets on the right-hand-side of equation (2.54) by
H, the Bernoulli function. The swirl component of the momentum equation (2.54)

can be re-written in the form

D (rv) _
Dt

where D/Dt represents the material derivative. We represent the quantity rv by 0,

0, (2.55)

the circulation function. Thus
H=p+ %— (u? + v? 4+ w?), Q=or. (5.56)

Equation (2.55) represents the constancy of the circulation round a material curve
in the form of a circle centered on the axis of symmetry and normal to it. When
the motion is steady, a material element moves along a streamline and thus moves
on the surface of revolution formed by rotating the curve in the axial plane given by
¥ = constant, about the axis of symmetry. Then, from Bernoulli’s theorem and from

(2.55), it follows that
1
pt (4t H), o =0() (5.57

where H and ) are arbitrary functions of 1». We determine the mean flow corrections
by specifying the dependence of H and Q on .
We assume that the circulation of the perturbed filament is the same as that of

the unperturbed one. This implies then
Qs = rvs = rvge, = Toady, (5.58)
which is a constant. This immediately gives
voz, = 0. (5.59)

Since the flow outside the core is irrotational, we require that the Bernoulli function
be independent of r and z. Its value, however, differs from that of the base flow and

depends on €. We assume that

Hs = Hoos> +€*Hoay + -+, (5.60)
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where Hgz,, Hos, etc., are constants to be determined. Substituting the assumed

expansions for pressure and velocities into (5.60) we get,

1 1
Poz> + woo, woz, + 7ul1, + 7 whi, = Hoa,. (5.61)

We can show by integrating (5.17) that

1 a 1
o =~ o i = § 0, + A (562

where Aoz, is a constant. Upon eliminating the pressure between (5.61) and (5.62),

we get

s
Ag2, — —lgw02> = Hpa, . (5.63)

Since Aoz, and Hpz, are constants, it follows from (5.63) that wog, is also a constant.
This is consistent with the fact that the flow at infinity must be corrected for finite
amplitude effects. In other words, this is equivalent to expanding the phase speed.
Now we consider the flow inside the core. Since this fluid is rotational, we know
that both H and §Q are arbitrary functions of stream function . The solution is made
unique by fixing the form of this functional dependence of H and € on . Since the
base flow naturally selects a functional form, we will take that function to hold for

all amplitudes. Now, from the definition of stream-function we have,
K 1
u=-—— Yg(r, z), w= - Yr(r, ). (5.64)

Evaluating (5.56) for the base flow gives us,

2xTo

2xT¢ ad
Qoo = — p”

¢00< + 2—':2' . (565)

Yoo, Hypo = - p”

Now we make the assumption that the following be true for all orders of expansion,

2Th _ 26T¢ ad
Qe = - o 123 He = - o Y+ R (5.66)

An expansion similar to (5.8) is assumed for the stream-function and is substituted

into (5.66) to get,

o2 - (5.67)
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By setting vo2, = g:,2 <» We may integrate (5.17) to get

_ ad(ad +4T3) n 1

2
Po2, = W"wll< 1 Wiy + 2Togo2< + Aoz, (5.68)

We evaluate H< using (5.56) and, as before, collect coefficients of like powers of ¢ and

separate harmonics. We obtain,
a
Hoze = 2Togozc + Anze + Torveze — — woa. (5.69)

By eliminating the stream-function using (5.66) we get Ho2, = Torvoz.. Using this
in the equation above yields woz = (26T0/a0)go2. + (£/a0) Aoz, . Since by definition

we have w = 9, /r, we can eliminate the axial component and obtain the following

equation,
" 1. 26T
Jo2. + =902 t vigoz, = — 3 2 Aoz, (5.70)
T ao
where
2kT
w= "= (5.71)
1201]
The solution of (5.70) is given by,
go2¢ = boz Jo(vor) — Ao (5.72)
< < 2T0 ’

where bgz. is a constant. Using this we may evaluate

2To
ap

wog, = boz Jo(vor). (5.73)
Now we use the boundary condition (5.29) to get
2Toboz Jo(voaoe) — Aozs + Hozy = a2,2T2. (5.74)

There remains now only one condition (5.28). Using this constraint and simplifying

we get the correction to the Bernoulli constant outside the core to be

2Tha
Hoz, = A2y + —2 Jo(voaeo)aoz
Toao Jo(voaoo) ( Jo(v1a00) 1 )}
+a?, |272 - x v = - . (5.75
1 =70 &k Jy(roano) Jo(r1ae0)  2a00 (5.75)
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The constant associated with the pressure (Agz2,) can be absorbed into the Ber-
noulli constant. We still have an undetermined constant, viz., agpz. This, however, is
to be determined at the third order in the usual manner by requiring that the solution

is free of any resonance.

Further we notice that the constant associated with pressure inside the core (A2, )
dropped out of the equations. If we were to make pressure continuous across the

interface, it would also get fixed.

The assumption made in (5.66) has been crucial in fixing the solution. This,
however, is not the only way to fix the solution branch. We could assume any arbi-
trary functional dependence of H and  on 3. Clearly, there are an infinite number
of choices. Another possibility is that assumed by Hafez et al. (1986) or by Lei-
bovich (1990) in which the circulation has a fixed functional form except for a scaling
factor which depends on the amplitude. We adopt yet another method to fix the
solution branch for the full nonlinear Euler equations in which the solution path is
characterized by each solution having the same axial mean as that of the base flow.
This forms the subject of the following chapter. If we restrict the solutions for the
present case so that the solution correct to the second order in ¢ is to have the same
axial mean as that of the base flow, we find that the continuity of velocity across
the core boundary cannot be maintained. Specifically, the condition (5.29) cannot
be satisfied. We can, however, find a solution such that the pressure and the normal
velocity across the core boundary is continuous. This yields the same second order
quantities with subscripts (2,2) as in the solution with velocity continuity condition
across the core boundary. But the form of quantities with subscripts (0,2), i.e., the
mean flow corrections, differ. It is shown in the next chapter that the solution with
the axial mean the same as the base flow gives rise to a vortex sheet bound to the core
boundary. We can extend the second order solution with continuous velocity across
the core boundary to arbitrary order in €. This is considered in the next section.

 The question of whether we can extend the solution that has the same axial mean
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as the base flow to arbitrary orders in ¢ and with a vortex sheet bound to the core
boundary, is not considered here. An answer to this question is not evident from the

second order solution.

5.7 Extension to large orders

The solution procedure discussed above may be continued to any order in the
expansion parameter ¢. However, the algebra becomes too involved and it proves to
be difficult to proceed by hand. We can make use of the conditions imposed on the
Bernoulli function and the circulation function to extend the solution to large orders.
When the flow is steady, the Euler equations may be restated in terms of the stream

function as

d
Yrr — %"‘/’r Yy = 7'2 H Q(lb) (5.76)

The above equation is sometimes called the Bragg—Hawthorne equation or the Squire-
Long equation (see Leibovich & Kribus, 1990 for a further account of this equation).
For a simple derivation see Batchelor(1967). Since the functional forms of H and

are held fixed and given by (5.66), equation (5.76) becomes,

1 2T2 4T2
Yrp — - Yy + Kzl/’xz = ‘HTzrz - —W()% ¥, for r< R(:L‘), (577)
where
WO = woo, (578)

and since the flow is irrotational outside the core we get,
1
'Q[)fr'r - ; wr + Kz’gbzx = 0, fOI‘ T > R(x), (5-79)

where z = xz and R(z) defines the core boundary. We now assume the following

form for the stream function

B(r,2) = bo(r) + 3 Ya(r) cos(ka). (5.80)

k=1

Further, each of the modes is expanded in powers of ¢ and assumed to be of the form

Vr = &F (k + e pper + - . (5.81)
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We substitute (5.80) in (5.77) and (5.79) and solve the resulting equations at each
order. The solution inside the core is either proportional to rI; or rJ; depending on

the sign of coefficient of 141 _. This sign in turn depends on the choice of parameters

ao0, To and Wy. We get,

_ r_ Ii(6kr) : 2 27,212
Y = Al 200 Ti(0raw)’ if Wy > 4T5 /K, (5.82a)
_ r Ji(fr) . 2 27,212
Yrie = Au 200 T1(0ra00)’ if Wy <4Ty5/k%k*, (5.820)
when r < R(z) and
r  Ky(xkr
Y, = By 1(kr) (5.83)

ago Ki(kkage)’
when r > R(z). The constants Ay and By are to be determined by matching the
velocity across the core boundary as before. Now we give the form of velocities. Inside

the core we have

&k
urle = Agi - Myi(r), (5.84a)
2T,
Vil = Al 0001'310 Mlk(r), (5.84b)
0
Wi, = A ;;% My (aoo) Mor(r), (5.84¢)
and outside the core we have
ck
UH> = Bkl :la le(r), (5850)
vk, =0, (5.85b)
kk
Wiy, = By E N2k(¢100)Nok(7‘)- (5.85¢)
If W@ > 4TZ/x%k? then,
Jo(0xr) Ji(0xr) Jo(0xr)
M, = —, = = s 5.86
Ok(r) JO(OkGOO) lk(r) ']1 (91:‘100) 2k (7‘) Jl(okr) ( )
where
1/2
0, = [(4T2 - 22wy W], (5.87)
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and, if W& < 4T2/x?k? then,
Io(6xr)

Li(6xr) _ To(Okr)

MOI:(T) = 70_(-0ka_00), lk(r) = m ’ gk(r) = 11(0};7‘) ’ (588)
where
2121172 2\ 2] /2
O = (KW — a1g)/WE] ", (5.89)
and finally,
_ Ko(xkr) _ Ki(kkr) Ko(kkr)
Nok(r) = Ko(rckaoo) Ni(r) = Ry (wkav)’ Nok(r) = Ry (nkr) (5.90)

Note that (5.85b) is a result of our assumption that the filament has the same cir-
culation. Also the eigenfunctions identically satisfy the boundary conditions at the
origin and as r — oo.

If k = 0 the forms given by (5.85) need to be modified. The appropriate forms
are,

ugl, =0, wois, = By, (5.91a)

and

v, =0, 1#0. (5.91b)

5.8 Method of solution

The solution at various orders is found by matching the velocity at the core
boundary. We proceed, as before, by expanding the velocities into a Fourier series
and further expanding the Fourier coefficients into a power series in €. We evaluate the
velocities on the inner and outer side of the interface and equate them. As in section
5.3, this leads us to a set of conditions to be satisfied by the expansion coefficients
of the velocities. The algebra is done via a FORTRAN code in this case. The jump
conditions set out in (5.22) through (5.29) are carried out to arbitrary order. We
skip the details of programming and focus on the structure of the linear systems to
be solved at each stage.

When k£ > 1, we find

ukle — ukl, = F1, (5.92a)
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Ve — Vki, t (U(I)o< - v(’)0>) ap = F, (5.92b)
wkl< - wkl> = F3, (5926)

where, Fy, F; and F3 are computed from the jump conditions and they depend on
the lower order solution. Using the known forms for the eigenfunctions, we rewrite

the above equations as,

kk kk

— Ay — — By =h, (5.93a)

aoo aoo

2T
M3y (aco)Ar + 2Toar = Fy, (5.93b)
aooWo

0 kk
— Mo (ao0)Ar + — Nax(aco)Bii = Fs. (5.93c¢)

aoo ago

The three equations in three unknowns, Ay, By and ay; are easily solved for k > 1.

The cases k = 0 and k =1 are treated separately. When k = 1, the system (5.93)
becomes singular. When k¥ = 0 we have three unknowns and only two constraints
since the continuity of the radial velocity does not contribute. The two cases of k = 1
and k = 0 are solved simultaneously. First we note that when & is even, [ is also even
and when k is odd [ is odd. We start with the linear solution which corresponds to
k =1 and [ = 1. At the second order we first determine the constants Az, B2 and
az,2. We next determine the third order constants A3 3, B33 and a3 3. The constants
Ao,2, Boz2, ao,2, A13, B13 and a1,3 are determined simultaneously. This completes
the solution to third order. Similarly we complete the solution to fifth order and so on
to some order [ — 2 where | — 2 is odd. Let | = 2p+ 1. We describe the determination
of solution to order /-1 and I. Using (5.93), we find all constants except Ao,2p, Bo2p
and ag,2p. As noted, this system associated with subscript (0,2p) lacks an equation.
We require an amplitude condition which defines the perturbation parameter . We

use the semi-wave height given by
2e = R(0) — R(~). (5.94)
On using (5.19) and equating powers of € we get

a1 =1, (5.95)
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and

all — (0'31 + asl + PP + a"), l = 2p + 1. (5.96a)

The other two equations that result from continuity of velocity are

2Ts

A Ag,2p + 2Tp ao2p = G, (5.96)
6o

o M3z Ao2p — Bo2p = Goa. (5.96¢)

The system (5.96) is still not closed because we have four unknowns (Ao 2p, Bo,2p,
ag2p and ay 2p4+1) but only three equations. We solve this together with equations for
the (1,2p + 1) system given by

K K K ’ K ’
i _* B (A * M,-B ——N) ~ Gs, 96d
" A12p+1 aoe Bropt1t (Au = My — Bn oo Vi | a0zp Gs (5.964)

2To a112Ty
A 2T, M, A
Woagg * L2pl + 210 a1,2p41 + Woagg 10 A0.2p
+ [‘111(”00< —vgo,) + (vi1 — vu>)] ag2p = G4, (5.96¢)
61

K 00 '
— M3z1 Ar2p41+ — Nojg Brgpr1 + — M21My; Aozp
ago ago aoo

0 ’ K ’
+ [An = MMy, + Bn — NZ,INO,I] ao,2p = Gs.
ago ago
(5.96f)

Here, primes denote derivatives with respect to r. All the functions and their deriva-
tives are evaluated at r = agg. The quantities G} through G5 are evaluated from the
given jump conditions. Now the system (5.96) is closed with six equations and the
six unknowns Ao 2p, Bo,2p, @0,2p, A1,2p+1, B1,2p+1 and a1,2p+1. If the system (5.96) is
non-singular, then it gives a unique solution. There may be a set of parameters for
which the system might become singular. We did not come across any for the cases
tried. Since Wp = —ao/x is an eigenvalue of the linear system, the coefficient of ag 2,

~in (5.96d) must vanish. This follows from the dispersion relation. Therefore, this
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provides us with a check on the calculations. The system (5.96) is to be solved only
after the constants (3,1) through (/,1) are found. This restriction is due to (5.96a).
Once the coefficients A;;, B;; and a;; are found, the velocity coefficients u; j,
v; j and w;; can be determined from (5.84), (5.85) and (5.91). As r — oo, the swirl
and the radial components of the velocity vanish while the axial velocity reaches a

value that is independent of z. From (5.91) it is easily seen that
rll’r{.lo w(r,z) = Wo + 8230,2 + €4Bo,4 + .-,

A typical variation of axial velocity at infinity with the wave amplitude is shown in
Figure 5.3. It shows that the axial velocity increases in magnitude with €. The series

summation is considered next.

5.9 Padé summation

Once the solution is determined in the form of coefficients of the perturbation
series, we need to construct the solution at some value of ¢ at some physical location.
This is performed by evaluating the sums by the method of Padé summation. This we
describe here briefly. For details on this and an excellent algorithm for constructing
the Padé approximants, we refer to Bender & Orszag (1978). Consider for example,
the task of finding the value of the axial velocity at r = 0 and z = 0 for some value
of €. This would first require computation of the coefficients w;. for I = 0,1,...m.
Now consider the computation of the coefficient wg. at r = 0. This term is given by
the sum

wo (r = 0) = woo. (0) + w02, (0)8 + w04 (0)8% +- -, (5.97)

where we have set § = €2. The sum represented by (5.97) is a power series in the
variable é with the known coefficients w; ;. The idea of Padé summation is to replace

the power series (5.97) by a sequence of rational functions of the form

N
n=0 A"
PAI},(5) - _Z—:Ttl—g—l;—g; ,

n=0

The coeflicients a, and b, are found by matching the first (M + N + 1) terms in the '

bo = L. (5.98)

Taylor series expansion of PJ} with the first (M + N + 1) terms in the power series
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Fig. 5.3 The axial velocity at r = oo is shown here as a function of the semi-wave

height ¢ for a vortex with core radius of agg = 1 and a total circulation of one.
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Table 5.2 Coeflicients for wo< term.

The coefficients contributing to the term wo¢ are shown here. The
parameters were ago =1, To =1,k = 1.

.j wO,j(

0 — 7.059052 10!
2 3.089275 10!
4 1.542953 10+1
6 —1.935112 10!
8 4.009085 10+2
10 — 2.777568 1013
12 2.552956 10+
14 — 2.324963 10*3°
16 2.205574 10+6
18 — 2.145395 107
20 2.133385 108

Table 5.3 Convergence of the Padé Sequence.

The convergence of the Padé sequence for the coefficients shown in
Table 5.2 is given here for the case of § = €2 = (.1.

n PA"} Sum

0 P —0.7059052
1 Py —0.6763077
2 P,: —0.7136389
3 P% —0.5618688
4 Pzz —0.5021175
5 P% —0.5162811
6 Pj —~0.5136962
7 P} —0.5143003
8 P; —0.5142114
9 P55 —0.5142323
10 P; —0.5142278

(5.97). The rational function Pff so computed is known as the Padé approximant.
The limit of P{} as N and M — oo is the required sum represented by (5.97). Table
5.2 shows the coefficients occurring in (5.97) and Table 5.3 shows the approximants
PQ, P}, Pl,.... The summation was done with § = 0.1. The Padé sequence clearly
converges. A smaller number of Padé approximants is needed for required convergence

if the value of the perturbation parameter ¢ is smaller.
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5.10 Results
The expansion coefficients were computed up to 21 orders in ¢. For a given value
of ¢ the expansion coefficients were summed using the Padé summation technique.

The values of R(z) were computed as follows. Define
dp = apk + ap k420 + ak,k+452 +---, k=0,1,...,m, (5.99)

where § = €2. Now for a fixed value of z the location of the interface can be repre-

sented as a power series in ¢ given by
m o~
R(z) = Y BreF, (5.100)
k=0
where the coefficients are given by
by = @y cos(kz). (5.101)

We compute the values of @; by employing the Padé summation on the series (5.99) in
the variable § and then compute the coefficients b;. We repeat the Padé summation
on the series (5.100) in the variable e. All other quantities such as ¥, u, v, w, etc.,
are summed in a similar way for a given r and z location.

We present some of the results in Figures 5.4 and 5.5. In each case a value of the
core radius ago is chosen and a total circulation of unity is assumed. All the solutions
found here are such that there is no velocity discontinuity anywhere in the flow field
including the core boundary.

In Figure 5.4a, the shape of the boundary for various values of ¢ for the case of
ago = 1 is shown. It shows bulging of the core about £ = 0 and flattening about
z = 7. The length of the flattened trough was more pronounced for smaller values of
ago and less so for larger values. This appears to be similar to the surface waves on a
2 dimensional layer of uniform vorticity of height h as calculated by Broadbent and
Moore (1985). The core radius ago plays the role of & in our case. But for larger values
of layer thickness, Broadbent and Moore observe development of a cusp in the wave

profile. This was not observable in our calculations. The reason could be that we do
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not have enough coefficients or that such a cusp in fact never develops. One could
compute the singularities of the series represented by (5.100) which will move around
in the (r, z) space as the amplitude ¢ is varied and perhaps make a better prediction
about the formation of a cusp, if it forms at all. This was not done, however, because

of the complexity as well as lack of availability of enough perturbation coefficients.

Figure 5.4b shows the axial velocity as a function of the radial distance at z = 0
for the case of aggp = 1, and clearly shows that flow reversal occurs when ¢ is between
0.1 and 0.15. The profile also clearly shows the continuity of w across the interface

thus serving as a check on the accuracy of calculations.

Figure 5.5 shows the streamlines for various values of agp and . The stream-
function was computed on a uniform grid extending from z = —7 to 7 and r = 0 to
R(0). In general, the recirculating bubble, after making its first appearance, grows
with €. The separating streamline is nearly circular in all the cases. Also a larger
bubble was formed for a vortex with a thicker core radius. A bubble was not formed
for the case of agg = 3. The indications are that a bubble will not form since the
stream-line closest to the axis does not tend to become more concave near z = 0

while the stream-lines in the mid core region appear to do so.

The solution in the given region was found upon specifying the dependence of
the Bernoulli function (H) and the circulation function () on 1. We only need to
specify the dependence at some region of the flow (say in the vicinity of z = 7).
The rest of the flow is exactly determined in all cases except when the recirculating
bubble appears. This is accompanied by the formation of closed streamlines inside
the bubble. These closed streamlines are isolated from the streamlines outside the
bubble. Therefore, the solution inside the bubble need not necessarily be governed
by the same dependence of H and § that govern the flow outside. In principle one
can find an infinity of solutions each giving a different flow field inside the bubble.

In the cases considered here, the region inside the bubble is also governed by the same
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Fig. 5.4a Shape of the boundary of the vortex is shown here as a function of
z for different values of €. The symmetrically located curves on the negative side
of the ordinate are drawn to give the impression of a cross section. The parameters

consisted of agg =1 and Ty = 1.
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Fig. 5.4b Axial velocity as a function of the radial distance at z = 0 for ¢ =
0, 0.05, 0.1, 0.15 and 0.2. Axial velocity increases at r = 0 with increasing €. The

corner in the profiles indicates the location of the core boundary.
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dependence of H and (2. As a side point we note that the dependence of H is linear

inside the bubble as well. But this is inconsequential.



- 170 -

2.0 ¢
1.5 }

1.0 |

2.0 ¢

1.5 ¢

1.0 ¢}

20 ¢
1.5

1.0}

Fig. 5.5a Plot of streamlines for ¢ = 0,0.05 and 0.1 for a vortex with agg = 0.5
and a total circulation of unity. The streamline with ¢ = —0.195 coincides with the

core boundary. Contour interval=0.1.
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Fig. 5.5a continued. Plot of streamlines for ¢ = 0.15 for a vortex with agg = 0.5
and a total circulation of unity. The outermost streamline with ¥ = —0.195 coincides

with the core boundary. Contour interval=0.1.
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Fig. 5.5b Plot of streamlines for € = 0,0.1 and 0.2 for a vortex with agg = 1.0
and a total circulation of unity. The streamline with ¥ = —0.352 coincides with the

core boundary. Contour interval=0.1.
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2.0 ¢

Fig. 5.5b continued. Plot of streamlines for ¢ = 0.3 for a vortex with agg = 1.0
and a total circulation of unity. The outermost streamline with 1 = —0.352 coincides

with the core boundary. Contour interval=0.1.
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Fig. 5.5¢ Plot of streamlines for ¢ = 0,0.1 and 0.2 for a vortex with agyp = 2 and
a total circulation of unity. The streamline with 1 = —0.57 coincides with the core

boundary. Contour interval=0.1.



Fig. 5.5¢ continued. Plot of streamlines for € = 0.3,0.4 and 0.5 for a vortex with
agp = 2 and a total circulation of unity. The outermost streamline with ¥ = —0.57

coincides with the core boundary. Contour interval=0.1.
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Fig. 5.5d Plot of streamlines for ¢ = 0 and 0.1 for a vortex with ago = 3 and a
total circulation of unity. The streamline with ¢» = —0.701 coincides with the core

boundary. Contour interval=0.1.
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Fig. 5.5d continued. Plot of streamlines for ¢ = 0.2 and 0.3 for a vortex with
ago = 3 and a total circulation of unity. The streamline with ¢ = —0.701 coincides

with the core boundary. Contour interval=0.1.
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Fig. 5.3d continued. Plot of streamlines for ¢ = 0.4 and 0.5 for a vortex with
ago = 3 and a total circulation of unity. The streamline with ¥ = —0.701 coincides

with the core boundary. Contour interval=0.1.
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CHAPTER 6

Kelvin Waves on Smooth Vorticity
Distributions

6.1 Introduction

In this chapter we consider the numerical solution of the equations for nonlinear
axisymmetric steady state internal waves. Qur idea is to consider a base flow similar
to Kelvin’s columnar vortex but with continuously distributed axial vorticity. Linear
stability of such a vortex reveals the existence of periodic waves moving at a constant
speed in the axial direction. In an appropriate moving frame, the linear waves become
steady. We obtain nonlinear solutions by continuing in the wave amplitude of linear
steady waves. The speed of the moving frame is corrected to account for nonlinear
effects. We compute the nonlinear solution by two different methods. In the first
method, we construct a perturbation solution adopting a procedure similar to the
nonlinear Kelvin waves described in Chapter 5. This establishes that the solution
branch so found is unique. In a second method, we compute the solution using
Newton’s method. We verify that the solution found by these two methods is the
same.

It was mentioned in the previous chapter that inviscid axisymmetric flows with
swirl are characterized by two functions: the Bernoulli function H and the circulation
function Q2. The only constraint on these functions is that they must be constant on a
given streamline in a steady flow. They can vary from streamline to streamline in an
arbitrary manner. However, a solution is fully determined once the dependence of H
and () on the streamfunction ¢ in a region of flow is specified. In the previous chapter,
we found nonlinear solutions such that on the solution branch, the dependence of H

and () on 4 was held fixed. It is not necessary that on a solution branch H(y) and
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(%) have the same dependence. The dependence can vary from solution to solution
in a specific way. Leibovich and Kribus (1990) found solutions by assuming that
Q(¥) = Af(¥) in which the functional form f was taken to be fixed but the value of
A was varied from solution to solution. In this chapter we find solutions that have
the same axial mean, the integral of the solution over one wave period, as that of the
base flow. This constraint specifies some dependence of H and  on 1 that varies
from solution to solution in general. The variation can be computed once the solution
is found.

We solve the Euler equations numerically in a domain that is periodic in the axial
direction and unbounded in the radial direction. We employ a spectral method in
the axial direction and solve the resulting Galerkin equations using finite difference
methods. The far field boundary conditions are derived by matching the solution to

the potential flow.

6.2 Equations of motion

We consider the motion of an incompressible and inviscid fluid in cylindrical co-
ordinates. Let r, ¢ and z denote the radial, the swirl and the axial co-ordinates,
respectively. We take the fluid density to be unity. Let u, v and w denote velocity
components along the r, ¢ and z axes, respectively. There is a streamfunction 1 and

a circulation function  such that

1 oy 1 1 9y
I e — V= - w =

r oz’ r ror’

Let €, x and 7 denote the components of vorticity along r, ¢ and z co-ordinates,

(6.1)

respectively. They are given by

where
¢ = Dy, (6.3)
and
D — 0* 10 d? (6.4)

ar? " ror ' 922"
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The axisymmetric Euler equations governing the motion may be written (see Gold-

stein, 1965, article 39) as
¢ 20 00 + 1 1 0(¢, C) 2 Oy

atm 8z ' ra(r,z) t 25 560 (6:5)
on  10(4,0)
3 + - _3_(;,—2_)— =0, (6.6)
where the Jacobian is defined as
0(A, B) 0A0B 0AOB (6.7)

O(r,z) Or 9z 0z or

Now we consider another frame (z, ¢,r) moving along the z-axis at a constant speed.

In particular we set

T =Kz —ot. (6.8)

so that this frame moves from left to right with speed o/« if a is positive. Assuming

the existence of steady solutions in this frame we have

0% 1a¢+ 0%

‘=% " ror T g (69)
¢ 0 k0¥, 2609
%% T —Qaz T3 o(r,z) T 2o =0 (6.10)
o k9PN
B 5;:—+ r 6(7' ) =0. (6.11)

The phase speed « is treated as an unknown and is found as part of the solution.

6.3 Method of solution

Any pair of functions g,0(r) and g g(r) will form a solution to the Euler equa-
tions (6.10) and (6.11). The functions 190 and g ¢ therefore specify a base flow that
comprises a cylindrical vortex with an axial vorticity distribution controlled by Qg .
The axial velocity is found from 9. The radial velocity for this base flow is zero.
We discuss below different forms for the base flow used in our solutions. Next we
consider linear waves and state their properties. The linear wave solution is used as

a starting solution for both the perturbation method and Newton’s method.
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We assume that the steady nonlinear waves are periodic in z with period 27.
We restrict ourselves to solutions that are symmetric about z = n. We consider a
Fourier decomposition of ¢ and  and give the structure of the Galerkin equations
to be solved. The boundary conditions to be satisfied are given together with the
Galerkin equations. Next we consider the discretization of the equations satisfied by
the Fourier modes of ¢ and 2. Newton’s method and a perturbation method are

discussed following a discussion of the discrete equations.

6.4 Base flow

We consider two different profiles for g that specify the distribution of ax-
ial vorticity. One of these gives an axial vorticity distribution that approaches the
Kelvin’s columnar vortex under a limiting condition. We refer to this as the Kelvin
type vortex. The second distribution is referred to as the Burgers-Rott type vortex.
This profile resembles the vorticity distribution in an experimental set up such as
Harvey (1964). Leibovich and Kribus (1990) also used the Burgers-Rott type vor-
ticity distribution in their solutions. In combination with swirl profile of either the
Kelvin type or the Burgers-Rott type vortex, we may consider axial velocity in the
vortex core. A simple Gaussian type of axial velocity profile is used. We give the

form of these profiles below.

6.4.1 Kelvin type vortex
Given a distribution of an axial vorticity go(r), we find the distribution of the

circulation function Qg o(r) by

,
Qo,o(r) = / n0.o(F) 7 dF. (6.12)
0
We consider an axial vorticity distribution of the form
N 1 r—a
molr) = 52 5 [1-tanh 52| s, (6.13)

where

Qo = lim o,(r), (6.14)
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F(B,a) = a? / { + Baln(2) + 2= ﬂz  + Balncosh(—a/8) 3201} (6.15)

Here, § is a parameter such that the axial vorticity distribution approaches that of
Kelvin’s columnar vortex with a core radius a as 8 — 0. The profile of the circulation
distribution and the axial vorticity for various values of 3 are shown in Figure 6.1.
We will refer to the parameter a as the ‘core’ radius even though we do not have
any identifiable core in the problem. The quantity Qs is the total circulation of the
vortex filament. We compute the integral in (6.12) and obtain

Ona(r) = 2 E DT _ g 1nconhy) - £2110)

a’
+ Balncosh(—a/B) — ﬂ2C1}, (6.16)
where
y=_ '[; g (6.17)
and
Yy
Iy) = [ 9 tank(s)dg,  Ci=—I(~a/p). (6.18)

The integral I(y) is calculated numerically by expanding the tanh function into a

series of exponentials and integrating term by term.

6.4.2 Burgers-Rott vortex
For this case we take the following form for the unperturbed swirl velocity,

wo(r) = = (1 -e—'z/ﬂz), (6.19)

r

where (), is the total circulation of the vortex. Since the circulation Qg0 = r vg o,

we get

Qoo(r) = Qoo (1 - e-'z/“Z) . (6.20)
The axial vorticity is of the form

2000 o-r?fa?.

Moo(r) = ——e (6.21)
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Fig. 6.1 Profiles of the circulation function Q0,0 and the axial vorticity 7,0 are

shown here for A. #=0.5,B. 3=0.3,C. 3=0.1,and D. 5 — 0.
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6.4.3 Axial velocity profile

For the axial velocity, we take
—7‘2/52
wo,0(r) = Wne , (6.22)

where b is a length scale which controls the decay rate of the axial velocity and W,
is the maximum axial velocity if it is positive and minimum when it is negative. The

profiles of the unperturbed v and ( are found to be of the form

2Wm 2 _,'.2/b2

Yo o(r) = (6.23)

bW ( 6_'2/62), Co0(r) =

6.5 Properties of linear waves

A study of linear waves arising in the Euler equations not only gives us an idea
of the expected structure of the subsequent nonlinear waves, but, as stated earlier,
also provides us with a solution to start off the Newton continuation. The linear

solution also forms the first order solution in the perturbation solution. We let, for

some ¢ < 1,
P(r, ) = o,o(r) + epp1,1(r) cos(z) + O(e?), (6.24a)

Q(r, z) = Qo,o(r) + £Q1.1(r) cos(z) + O(e?), (6.24b)

a = ap. (6.24¢)

Substituting equation (6.24a) into (6.9) we get
((ryz) = Co,0(r) + €(1,1(r) cos(z) + O(e?), (6.24d)

where
" 1 " 1
0,0 = Y0 — - Vo0, (11 = Y11 — - V11— ”21/’1,1- (6.25)

Here, primes denote derivatives with respect to r. For simplicity assume that the

base flow has no axial flow. This requires that %o = constant. We take

Yo,0 = 0. (6.26)
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We now substitute (6.24) into the Euler equations (6.10) and (6.11) and neglect all
terms O(e?) and higher. We get

2K
aoC1,1 — T—ZQO,OQI,l =0, (6.27a)

aoﬂl,l + i:—S-l;)’()"/)l,l = 0. (6.276)

Eliminating 11 we can combine the above into the single equation

" 1 2/62 /
of (’/’1,1 - V11— "JQ’/’I,I) t 3 0,0 29,0 1,1 = 0. (6.28)
Since for both the Kelvin type vortex and the Burgers-Rott type vortex, the vorticity
of the base flow decays exponentially, the vorticity of the perturbed system (6.24)

must also decay exponentially. In particular, we must have
(11— 0, as r— oo, (6.29)

From (6.25) we get
b1a(r) ~ Ki(k 1), as 7 — oo, (6.30)

where K7 is the Bessel function. Differentiating (6.30) once, we obtain the following

far field boundary condition

/ Ko(k 1) _
¢1,1 + K m ’Qb]’] = O, as r— Q. (631)

As r — 0, we assume that the flow approaches that of solid body rotation. From this

we obtain the second boundary condition

¥1,1(0) = 0. (6.32)

The linear equation (6.28) can be put into the form of a Sturm-Liouville eigenvalue
problem with 1/a? as the eigenvalue. Therefore, there are an infinite number of
eigenvalues and all of them are real. There are two branches of solutions to the linear
system (6.28) with

a=|agl, or a=—|agl (6.33)
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The positive branch corresponds to the right moving wave and the negative branch
corresponds to the left moving wave. We can arrange the eigenvalues on the positive
branch so that ag, > ag,,,,p =0,1,...,00. The eigenfunction ¢, 1, corresponding to
the eigenvalue ag, has exactly p internal zeroes. We mainly consider linear solutions
with p = 0. These solutions exhibit no internal zeroes. This property is highly
desirable for numerical purposes.

If 1pg,0 is not zero, then the linear system becomes
L1 11 =0, (6.34)

where the linear operator is defined as

K 7 2 d2 1 d 2
Ly = (ao— ;d’o,o) (@ el "‘)
K 1
+ (ao - ;1/’0,0) ;Co,o + -r—390,090,0- (6.35)

The boundary conditions remain unchanged. The observations made regarding the
linear solution for base flow without axial flow still remain valid for the linear solution
with axial flow. Special attention is needed if at some point ag = m[);,,o /r. However,
this situation was not encountered for all the cases considered. This appears to be
similar to the result of Chandrasekhar (1961; section 78b) which states that for a
vortex in a pipe if the swirl distribution is positive everywhere (which is true in the
present case), then, the eigenvalue is real and is either less than the minimum axial
velocity or greater than the maximum axial velocity. The eigenvalue in the case of
pipe flow considered by Chandrasekhar can be identified with ag/x. The quantity

1/)('),0 /r is the axial velocity.

6.6 Galerkin equations

We decompose ¢ and {2 into a truncated cosine series

Y(r,z) = o(r) + é Yi(r) cos(kz), (6.36a)
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m
Qr,z) = Qo(r) + Y Yu(r) cos(kz). (6.360)
k=1
Here m is some given integer that determines the modal resolution. The functions

Yo(r) and Qo(r) are held fixed and taken to equal the base flow. Therefore we have

Po(r) = too(r), Qo(r) = Qoo(r). (6.37)
Substituting (6.36a) into (6.9) we get
((ryz) = Co(r) + gjl Ce(r) cos(kz), (6.38)
with i
((r) = Dign, k=0,...,m, (6.39)
where
D} = d—‘g - % % - k%K% (6.40)

In order to find the equations satisfied by the modes of 3 and §), we substitute the
assumed forms into the Euler equations and collect the coefficients of like harmonics

and equate them to zero. Then the solution to (6.9 — 6.11) is equivalent to satisfying

fi(r)y =0, g(r)=0, k=1,...,m, (6.41)
where
B = (= 246) Gt = o — 2 Qo
- £ ZMO.0+ M@0 - M0 + 2N,
(6.42)
a(r) = (a= T00) Ot T~ - (M0 - M@ ). 649

Primes denote derivatives with respect to r. Nj is the contribution arising from
nonlinear products. It is defined as follows. Suppose there are two functions A(r, z)
and B(r,z) with representation

A(r,z) = Ao(r) + én:l Ag(r)cos(kz), B(r,z)= By(r)+ kf: By(r) cos(kz).
= =1
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Then the product A.JB/0dz is written
0B =

Ave—e == Z (kAo B + Ni(A, B)]sin(kz),
oz =
where
1 k-1 1 I<m
Ni(4,B) = 5 Y (k=NHAB_; - 3 Y. (I—k)ABi_;
=1 I=k+1
+ 3 Z (I + k)A;Bryi- (6.44)
=1

We drop all the terms contributing to (m +1) and higher harmonics with wavenumber

greater than (m + 1). Next we discuss the boundary conditions to be satisfied by the

Fourier modes of ¥ and Q.

6.6.1 Boundary conditions

The solution to (6.41) is found subject to the following boundary conditions. As
r — 0 we assume that the flow approaches that of solid body rotation. This implies
that azimuthal and radial components of the vorticity must vanish and the axial
component must tend to a constant. Equivalently, the radial and swirl components

of velocity must vanish. From this we infer
v~ Q~r? as r—0. (6.45)
This gives us two choices for the inner boundary condition. We can either take
$(0)=0, 9,0)=0, k=1,...,m, (6.46)

or

Pr(0) =0, £:(0)=0, k=1,...,m. (6.47)

In either case we found the solution to be the same. We use the condition (6.47) in
our calculations.
Since vorticity for the base flow decays exponentially as » — oo, the vorticity

must also decay exponentially for the solution assumed in (6.36). This implies that

—Zg —0, D*p—o0, as r — 0o. (6.48)
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Substituting the expansion (6.36) into (6.48) we get

G=0, k=1,...,m, as r — 0o, (6.49)

and

z/;:—%z/);—nzk{"d)k:(), k=1,...,m, as r — oo. (6.50)

Since the Fourier modes 1 decay exponentially, the consistent solution to (6.50) is
i = apr Ky (skr),

where a; is a constant and K] is the Bessel function. By differentiating this relation

we can eliminate the constant a; and get the following far field boundary condition

' _ _ Ko(kkr) _
Y+ pe(r)r =0, p(r) = ke ATk k=1,...,m, as r —oo. (6.51)

6.7 Discrete equations

The solution to the nonlinear set of equations represented by (6.41) subject to
the above mentioned boundary conditions is found by two methods. In one approach
we solve them directly by employing Newton’s method. In a second approach a
perturbation method is used which results in a set of linear boundary value problems.
In both approaches, we compute the solution by replacing the continuous derivatives
with discrete derivatives. We give the form of discretization used in either method.

Since the vorticity decays rapidly in the far field, the solution is also expected
to decay fairly rapidly in the outer region of the flow. Therefore, we do not require
a high grid resolution in order to accurately compute the solution. However, within
the core of the vortex, the solution could develop steep gradients. If this happens, we
need a high grid resolution. Hence the grid on which the entire solution is computed
needs to be concentrated so that we have a denser set of points within the ‘core’
and less so in the outer region. To do this we consider the following ‘grid function’

transformation and its inverse

r=r(p) p=p(r) (6.52)
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Then we replace the derivatives in the equations above by
4_dd
dr = dr dp’

and redefine
2 dz d 2 k2

Dk"—"Pw +Qa_p—n ’ (653)
where .
_[dp _ d?2p 1dp

We now consider a uniform grid defined by the grid points
pi = jlAp, J=0,...,J, Ap=p(R)/J, (6.55)

where R is a suitably chosen radial distance at which we apply the far field boundary
conditions. The boundary condition on the streamfunction given by (6.50) takes into
account the decay rate in the outer region. The circulation function decays far more
rapidly than the streamfunction. Therefore, we can apply the conditions (6.49) and
(6.50) at R which is typically three or four times the core radii for a reasonably
accurate solution.

We evaluate (6.41) on the discrete grid using second order finite differences to

approximate the derivatives. Thus we find a solution satisfying
frj=fi(rj) =0, qj=gi(rj)=0, k=1,....,m, j=0,...,J. (6.56)

Forj =1,...,J —1, we have

K 1/ K 2K

frj = (a - %j) Cej + - Coj%hi — 3 QoM
Tj Tj T
K

"k { ;2; Nii(9,Q) + Nij(%,¢) — Nij(¢, 9) + %Nkj(c,’l/))} ,(6.57)

K 1 K ! K [ ’
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For j = 0 and j = J we make use of the boundary conditions and define

fri =¥k, gk =4, for j=0, (6.59)
and
' Ko(kkrj) ' .
fri = + kK (kn r;) Ykjy Gkj =,  for j=J. (6.60)

The quantity Ny, is given by

Ni;(A, B) = E(k ~DABra;— 3 > (1= k)AyBi,
—k+1
+3 Z (1 + k)Ai;Biy,j.- (6.61)

For interior points, i.e., for j = 1,...,J — 1, the derivatives are approximated by
central differences. Letting (-) to denote various modes of ¥,  and ¢ we have

. Vigq — () 2(. Veaq —9(.): AW
(%(;}) — ()J+12A,f )J—l, (‘2/52))= (-)j+1 Z(p)é-*-()]_l' (6.62)

At the outer boundary we need the derivative of 1. For this purpose we use

d()) _ 3()s—4()s-1+ ()2 2
( TG)J = v +0(Ap%). (6.63)

In the Newton’s method, the solution can be found assuming v and Qi as our

unknowns. We express (i in terms of the streamfunction. Discretizing (6.39) we get

Chj = ajPr i1+ (‘Yj - kzﬂz) Yy + 0%k,  J=1,...,0 -1, (6.64)

where
P _Q 2 . _ B @

YEAF Ty TTRE NS REYaa, (66

Only the first derivative of (; occurs. The discretization is given by

d 1
('ﬁ') 2Ap (k2% 5-1 + a1t

+ (41 — K262 r i1 + bigatr g2),  for j=1, (6.66a)
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(%) 1 (= aj-19mim2 — (-1 = KR)u 1 + (@541 — bjo1)oe

dp F - 2Ap
+ (it — B o1 + biarja),  for j=2,...,J -2,
(6.66b)
and
dgx 2
(—(IP_ )J = m ( - aj—1¢k,j—2 + (aJ — Yi-1 + k2n2)1/;k,j_1

+ (7 — F*6% = bj_1)y; + bj¢k,j+1), for j=J-1.
(6.66¢)

Next we consider the implementation of a perturbation method.

6.8 Perturbation solution

The approach adopted here is similar to the procedure described in Chapter 5.
We showed in that chapter that two additional constraints other than the boundary
conditions are necessary to compute a unique solution. The additional conditions were
supplied by specifying the dependence of Bernoulli function H and the circulation
function {2 on 1. As noted, a variety of possibilities exist by which we can constrain
the flow. Here we ‘supply’ the additional conditions by keeping the axial mean of v
and Q fixed. This selects a dependence of H and § on ¢ which can be calculated
from the known solution.

We solve the nonlinear equations (6.41) by expanding modes of 1, Q and ¢ into

a power series in a perturbation parameter ¢. We assume the following form

e = pp + 5 P ppn 4o, (6.67a)

O = Ekﬂk,k + 6k+29k,k+2 + - (6.67b)

We also expand the phase speed o as

a=ag+elas+etag+---. (6.67¢)
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We define € by
(¥1,%1,1) = € (¥1,1,%1,1), (6.68)

1s an inner product defined on any pair of functions u and v. We substitute (6.67) into
(6.41) and collect coefficients of like powers of €. We next compute the contribution
to the O(e') term from a typical product A,B,, where A, and B, represent Fourier
modes of some functions A and B. Firstly, the number of terms that arise in such a

product is given by
n=(I0-p-¢)/2+1, if (I—-p—q)mod2=0, (6.70)
and n = 0 otherwise. If ¢; denotes the coefficient of €/ in the product ApB,, then

=) AptBgu, t=p+2(s—1), u=1I-t. (6.71)

s=1
We employ these relations in (6.41) with an appropriate choice for A and B and after
equating coefficients of various powers of ¢ we obtain a system of linear equations.
Equating the coefficient of ¢! yields two equations in which the only unknowns would
be ¢ and ;. The other terms would have already been determined. Retaining
all the known terms on the right hand side, we can write the governing equations for

¢’k,l and Qk,l as
K ¢ K 2k
<ao - ¢0,0) Crg + = Co,0¥k,1 — ) Q0,001 = Pr s (6.72a)

K ¢ K !
(ao - = %,0) D + - Qo,0%k,1 = Gk, (6.72b)

where pg ; and g are the known right hand sides and

" 1 7
et =i =~V t+ K2k Py 1. (6.73)

Eliminating Q; ; in (6.72), we write

[ 2K
L Yr1= (ao - ;%,o) prit — Qo,09k,1, (6.74)
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k o+ \2( d2 1d
Ce = (a0 = T0) (aﬁ‘;a‘r‘“ "2)

r ) 1 2x2 /
+ (0= Z900) o0+ 2o Qoo (6.75)

where

These equations are readily solved by replacing the derivatives with central differences
and inverting the tridiagonal matrices for various values of k£ and [. The solution
proceeds from [ = 1 to | = m and k takes the values [,1+2,1+4,.... When k = 1,
the matrix to be inverted becomes singular and therefore cannot be inverted since
the operator Ly coincides with the linear operator £, defined in (6.34). For this case

we proceed as follows. We re-write the right hand sides as

pri=—a16,1 + P, Q10 = ——1$1,1 + G, (6.76)

where the tilde terms include all the known quantities. The O(&'~!) co-efficient for
the phase speed, ;_j, is a constant yet to be determined. The equation satisfied by

11, can be written
' 2K
Cldf'l,l = - [(ao it ‘:"/’0,0) Cl,l + ‘ﬁ 90,091,1] o..1
K ! ~ 2& -
+ [(ao T r ¢0,0) P+ 7z Q0,0‘11,1] . (6.77)

Using the Fredholm alternative condition, we readily establish that a solution to

(6.77) exists if and only if

<(ao — E400)B1a + 260,071,/ 1/)1,1>
(6.78)

oy =
<(ao — Ehp0) 11+ 26Q000,1/r2 1/’1,1>

Once the value of oy is found, the particular solution to the singular system (6.77)
can be found uniquely. However, we are free to add an arbitrary amount of the linear
solution since the linear solution satisfies the homogeneous equation. We restrict Y11

such that it is orthogonal to the linear solution. This is stated as

($1$11) =0, 1#£1. (6.79)
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In actual calculations, we solve the singular system (6.77) by augmenting it with
the constraint (6.79) and solve simultaneously for %, ; and o;_;. The value of o;_;
determined by this method was found to be in good agreement with (6.78).

The solution branch found by employing the perturbation method just described
can be thought of as a path in the (¢, @) plane. Instead of constraining the solution
by specifying the form of the Bernoulli function and the circulation function as done
in the previous chapter, we have constrained the solutions so that on a given branch
each of them have the same axial mean as the base flow. This is another way of
finding a unique solution. If for every ¢ we find a unique value of the phase speed
a then, the solution is unique. If there is more than one solution for some ¢, then
we will not be able to find unique values of the perturbation coefficients of the phase
speed a. Using the method described above, a perturbation solution for a Kelvin
type vortex without axial velocity was computed. The parameters defining the base
flow were assumed to be a = 1, 8 = 0.5 and Q. A value of R = 5 was used for
the length of the radial domain. The solution was generated up to 12*® order in ¢.
Table 6.1 shows the results for the expansion coefficients of the phase speed a. The
convergence of the coefficients for various grid resolutions varying from J = 20 to
J = 640 is shown. The results show good convergence. The last column of the table
shows the rate of convergence. Since the discretization is second order accurate, the
rate of convergence is expected to be 4. Since the expansion coefficients converge to
unique values, the uniqueness of the solution branch defined by a path in (¢, a) space

is established by this result.

6.9 Newton’s method

We collect the equations for f; ; and gi j (equations 6.57 and 6.58) into the vectors

Fi= {flj’fZJ'""’fmj}v gj= {glj’gzjv""gmj}' (6.80)

Next we collect equations (6.80) for various values of j into the column vector

€ = {F0,G0,F1,61,..., F1,61}7. (6.81)
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Table 6.1 Rates of convergence for the expansion coefficients of a.

The results shown arefora=1,8=0.5,Qx =1,k =1landr €
[0,5]. ! in the second column designates the expansion coefficient

a; of €.
J 1 o difference rate
20 0 0.512901127
40 0 0.513071120 0.170019 10-3
80 0 0.513188303 0.11714510-3 0.145110!
160 0 0.513223767 0.354861 10—4 0.3301 10t
320 0 0.513233125 0.935770 105 0.379210!
640 0 0.513235509 0.237621 108 0.3938 10!
20 2 0.976300418
40 2 0.103400004 10! 0.576996 10~1
80 2 0.104940212 101 0.154020 10! 0.3746 10!
160 2 0.105326355 10! 0.386140 102 0.3989 10!
320 2 0.105422676 10* 0.96329910-3 0.4009 10!
640 2 0.105446756 10! 0.240748 103 0.4001 10!
20 4 0.346679378 10!
40 4 0.308515120 10! 0.381643
80 4 0.296098423 10! 0.124167 0.3074 10!
160 4 0.292720342 10! 0.337808 101 0.3676 10!
320 4 0.291857219 10! 0.863107 102 0.3914 10!
640 4 0.291640353 10! 0.216868 102 0.3980 10!
20 6 0.510541611 10?
40 6 0.275666389 102 0.234875 102
80 6 0.189725723 102 0.859407 10! 0.2733 10!
160 6 0.165713959 10? 0.240118 10! 0.3579 10!
320 6 0.159537954 10? 0.617601 0.3888 10!
640 6 0.157982941 102 0.155502 0.3972 10!
20 8 0.111649573 10*
40 8 ~.179685001 102 0.113446 104
80 8 ~.494777740 103 0.476809 103 0.2379 10!
160 8 —.634998230103 0.140220 103 0.3400 10
320 8 —~.671592102 103 0.365939 102 0.383210!
640 8 —.680841064 103 0.924896 10! 0.3957 101
20 10 0.309555664 10°
40 10 —.202935566 10° 0.512491 105
80 10 —.458888438 10° 0.255953 10° 0.2002 10!
160 10 —.540509258 10% 0.816208 104 0.3136 10!
320 10 —.56232125010% 0.218120 104 0.374210!
640 10 —.56786824210°% 0.554702 103 0.3932 10!
20 12 0.998814375 106
40 12 —.127873575107 0.227755 107
80 12 —.269778500 107 0.141905 107 0.1605 10!
160 12 —.320765675 107 0.509872 108 0.2783 10!
320 12 —.334883475107 0.141178 108 0.361210!
640 12 —.338507275107 0.362380 10° 0.3896 10!
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We define the vector of unknowns by
U = {Po,Q0,P1,Q1,-.-,P1, s}, (6.82)

where
Pi = {15, %25, ¥mj}y Qi = {0, 25y, Umj}- (6.83)

An additional unknown not included in U is the phase speed a. To close the system,
we supply an amplitude condition. This may be done in several different ways. We
borrow the idea from the perturbation method. Thus, as before we define an inner

product on any two functions p(r) and ¢(r)

< p,qg>= /Ooo -71: p(r) q(r)dr. (6.84)

We approximate the integral by using the trapezoidal rule. Thus the discrete inner

product is denoted by

P("J)Q(TJ)
<p,qg>, god ro{dp/dr); Ap, (6.85a)

where
do=1/2, dj=1/2 dj=1, for j=1,...,J —1. (6.85)
The discrete version of (6.79) becomes

€ =< d)l’ ¢1,1 >A / < ¢l,l,¢l,l >A’ (6-86)

where ¢ is specified and serves as the continuation parameter, besides being a measure
of the wave amplitude. We seek a solution & and « subject to the condition (6.86)
so that & = 0. The set (6.81) together with the condition (6.86) is closed and hence
a unique solution can be found provided the Jacobian in the Newton iterates is non-
singular. We now discuss two continuation procedures for finding a solution branch

defined by (e, a).



-199 -
6.9.1 Simple continuation

Define a projection vector P such that
PTU =e. (6.87)
The amplitude equation (6.86) may now be restated as
A=P U-c=0. (6.88)

The Newton iterates are simply given by

(BEJU ), (0€)0a) ] [(Au) &

, 1=0,1,.... (6.89)
(dAJoU ), (0A/6a) ] | (Ac) Al

The index ¢ denotes the iterates at which all the entries are calculated. Starting

with ¢ = 0 we proceed by refining the solution till convergence is achieved. The

improvements are given by

U = U+ AU, o't = o + Ad'. (6.90)

6.9.2 Pseudo-arc-length continuation

This continuation procedure is a generalization of the simple continuation method
outlined above. It enables one to follow solution paths that may contain one or more
folds. This was used in the place of simple continuation to determine if folds existed.
The method described is a modified version of Keller’s (1987) method.

Assume that (¢%,a?) is a known solution. In place of (6.88) we use instead
Ale,a,A8) =% - e + a(a—a®) - As =0, (6.91)

where (%,a%) is the tangent at the known solution and s is the arclength measured
along the solution path. Using (6.87) we obtain

(9EJU ) (8€/0a)'] [(AuU) &
= - , i=0,1,..., (6.92)
&OPT, &0 (Aa)’ A
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which replaces the iterates (6.89). Upon convergence, the new tangent is computed

at the new point and the whole process is repeated.

6.9.3 Computation and structure of Jacobian

We now discuss the computation of the derivatives involved in the Jacobian and
the structure of the matrices given in (6.89) and (6.92). All but 9E/OU are achieved
easily. They are either row- or column-vectors as indicated. The derivative 9€/0U

is a block penta-diagonal type square matrix with entries

[ Ao,0
A1p A Ay Az
Ao A2: A2 Az3 Azs
ocjoU = | .. .. . (6.93)

Aj_2g-4 Aj_27-3 Aj_25-2 Aj_2j-1 Aj_27
Ajrg-3 Ajoyg-a Ajorg-r Ajoayg
J,J=2 Ajia Arg

where

Ofki/0V ; Ofrif O ;
Aoy = [{ frif IZJI,J} { fril 1,,}} (6.90

{6gxi/091, } { Ogri/0%; }
is a block matrix with 4 sub-blocks. Each of the sub-blocks is of size m x m. As an

example, consider computation of the (k,!) element of upper-left sub-block in A; ;

This is given by
Ofrj _ (a_ g%,j) ki & C(I) Y,
J

Oy 05 o
_ x [an,0) aNk,,(c ¥, 20N G 605
krj M5 M, r,' O; . .

The various derivatives in (6.95) are defined below.

iy _ (o 2.2
s = (v — k*6*)be1,
Oy j
— 6 ,
8¢]’] k,l

where 6 is the Kronecker delta. The derivative of nonlinear terms involves more

work. For illustration, the derivative N} ;(A, B)/0A, ; is obtained by setting

ONki(A,B) _ 1

DAL, (T1 T+ T3),
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where

Ty = (k- [)By_y;, if I<k-1,
T, = (- k)Bl_k’j, if I>2k+1,
T3 =(k+ I)Bk+l,j’ if I<m-—-k.

Similar expressions may be written down for other derivatives.

6.10 Computation of the pressure and the Bernoulli function

Since we have adopted an entirely different approach in fixing the solution branch,
Le., by keeping the base flow the same, we are naturally interested in knowing the
form of the Bernoulli function H and the circulation function . In particular, we are
interested in the variation of H(%) and Q(+) with e. We compute this variation by
evaluating H and {2 on various streamlines for each . We describe the computation
of H here.

In order to compute H, we need to compute the pressure. Since the pressure is

assumed to be of the form

p(r,z) = f: pi cos(kz), (6.96)
k=0

we obtain from the axial momentum equation

- 2 EU_,Q i’"’oo / _ _ _1_ ee
Pk = ka+ knuk+ . NE (u,w) WowWg ka (w,w), k#0. (6.97)

The equation for the constant mode of pressure is not obtainable. Instead from the

radial momentum equation we obtain
! vg €o 1, Rfoe !
Po= - = kNG (w,u) + " N§°(v,v) — N§(u,u), (6.98)
where, if k£ # 0, we have
Ngf(A,B)=+81+ 82— 83, N{°(A,B)=+81 -5, + 35, (6.99a)

N{°(A,B)=+81+ 852+ 83, Ng“(4,B) = -5+ 52 + 55, (6.99b)
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and if k = 0, we have

N§°(A,B) = % Y AiB;, N§°(A,B)= ZA,B,, (6.100)
=1
with
1 k-1 ~ 1 Ism - ll+k5m
=3 Z ABety, Sr=5 Y ABiy, Si=3 Y ABus,  (6.101)
1 k-1 1 ISm
5 E —DABx_;, S2= 3 E (- k)A;B_s,
1=1 I=k+1
and
S3 = 3 (I + k)A;Biy. (6.102)
=1

The functions Ni’s are defined the same way as the Ni’s except we use Si, Sy and

S3 in the place of S. When k = 0 we take

m m
NE°(A, B) = %ZIA,B,, NE<(A, B) = % " IAB;. (6.103)
=1 =1

In order to find pg we need to find the boundary conditions on the pressure both
at r = 0 and as r — oo, so that equation (6.98) can be integrated. But since the
pressure is arbitrary up to constant, and this is reflected in the constant mode, we
simply take

po(0) = 0. (6.1044)

Evaluating the radial momentum equation for large values of r we get our outer

boundary condition to be
Po(r) =0, as r— oo. (6.104b)

Next we consider the computation of H. The Bernoulli function is defined only
for a steady flow. The method we have adopted here is to compute the steady states
via co-ordinate transformation and not via Galilean transformation. Since the flow

can be made steady by adding an appropriate uniform axial velocity, we get

1
H-——p+§
1

- 1/ 2 2 @ 2.2
_p+§(u +v +w)—-;w+ —2-a/n. (6.105)

(u2 +vi 4 (w— a/n)z) ,
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Letting
Z Hi(r) cos(kz), (6.106)

we get upon substituting for the expansions of pressure and velocity components into

(6.105)

(84
Hp =pr — — Wk + vov + wow

+ % [N,‘c’e(u, u) 4+ N§°(v,v) + NE°(w, w)} , k=1,...,m, (6.107a)

a 1 a?
H():PO— —w0+ 9‘—5

11— — —_
+ % (o + ) + 5 [Ne(u, ) + Wg°(0,0) + Ngo(w,w)] , (6.1070)

We compute a function r(z) such that ¢ is constant along it, and, therefore represents
a streamline. Then we interpolate the values of H on to this streamline. As a check
we must find that H is constant along any given streamline. The same procedure
is adopted to verify the constancy of C' on a given streamline. Table 6.2 shows the
variation of H and C along a streamline. The results are given for a streamline near
the ‘core’ boundary. The relative error stated in per cent is given by (max — min) -
100/average. of the quantity in question. As the results indicate, the constancy of
both H and C is quite well maintained.

The variation of the functional form of H(¥) and Q(v) is discussed with the

results below.

6.11 Tests

We now establish the validity of the computed solutions and convergence via some
tests. We consider convergence of linear eigenvalues as the parameter 3 — 0 and as
the grid size is reduced. We show the comparison of the full nonlinear solution and the
perturbation solution. We also state here some tests performed for a vortex confined
in a pipe. This case is considered to compare the results with those of Leibovich and

Kribus (1990).
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Table 6.2 Values of H and C on a streamline.

The results are for ¥ = —0.317, r € [0,5},a =1, J =40, m = 10
and 8 = 0.3.

£ H avg % error C avg % error

0.01 0.87889 0.13562 0.78577 0.16289
0.02 0.87958 0.23184 0.78522 0.27461
0.03 0.88125 0.29822 0.78484 0.34726
0.04 0.88391 0.32690 0.78467 0.37628
0.05 0.88757 0.32973 0.78469 0.38551
0.06 0.89225 0.33410 0.78492 0.38947
0.07 0.89795 0.32777 0.78539 0.39943
0.08 0.90477 0.34314 0.78619 0.42302
0.09 0.91194 0.35292 0.78649 0.44096
0.10 0.91990 0.36487 0.78679 0.45264
0.11 0.92885 0.44500 0.78734 0.51341
0.12 0.93860 0.53920 0.78796 0.63576
0.13 0.94933 0.53138 0.78893 0.63117
0.14 0.96103 0.58754 0.79047 0.74597

Table 6.3 Convergence of Linear Eigenvalues.
Convergence of linear eigenvalue as 3 — 0. Relative error is given
by (Numerical — Exact) - 100 / Exact. This case is for a = 1,
Qw0 =1,8=1, re€[0,10], J = 640.

J¢] a Exact a Numerical Relative Error(%)
0.10 0.7059052 0.692063 —1.961
0.05 0.7059052 0.702189 —0.526
0.02 0.7059052 0.705271 —0.090
0.01 0.7059052 0.705731 —0.025
0.005 0.7059052 0.705852 —0.007

As the parameter 3 — 0, the flow tends to that of Kelvin’s columnar vortex
when the base flow considered is that of Kelvin-type. Under this limit the phase
speed must approach that of Kelvin waves. The phase speeds for the Kelvin’s vortex
are tabulated in Table 5.1, Chapter 5. Table 6.3 summarizes the test for the largest
eigenvalue with £k = 1. We conclude that the linear eigenvalue is indeed correct. The
same trend was observed for other eigenvalues. A relatively large number of points
in the radial directions were needed since the gradients were quite steep in the core
region.

Since we have used central differences to approximate the derivatives, we expect

the solution to be second order accurate in the radial spacing. Table 6.4 summarizes
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Table 6.4 Rate of convergence of linear eigenvalues.

Results shown are for a = 1, xk = 1, Q, = 1, r € [0,10] and
# = 0.4. ‘Rate’ is computed by dividing the successive differences.

Only the convegence of the largest eigenvalue is shown.

J «a difference Rate
20 0.5617194

40 0.5620591 3.397 10—

80 0.5623861 3.270 10—* 1.04
160 0.5624877 1.016 10— 3.22
320 0.5625146 2.690 10—5 3.94
640 0.5625214 6.800 10— 3.96

these results and the last column, obtained by dividing the successive differences,
shows the rate of convergence. The rate approaches 4 as expected since the grid
spacing is halved successively. But the convergence appears to be rather “slow”. A
grid resolution of J = 320 points in a domain with R = 10 appears to be reasonable.
The actual grid spacing within the core is smaller than 10/320 for J = 320 and R = 10
due to grid stretching.

If the flow is constrained in a pipe of radius ‘a’, then the perturbation stream-
function must vanish at r = a. Now consider the unperturbed fluid to be rotating at a
uniform rate inside the pipe. The linear wave speed a/k, where « is the wavenumber

of perturbation, can be obtained as

)1/2

an/r =20 /a® (k2 +52,)"", (6.108)

where, j1n is the n't zero of the Bessel function J; and €, is the circulation of
the vortex. Table 6.5 summarizes the comparisons of exact values of a, with the
numerically calculated values. The numbers stand in good agreement. The relative
error tends to increase as n increases because the eigen functions associated with
those eigenvalues become more oscillatory.

We also compared the linear eigenvalues for the flow configuration used by Lei-
bovich and Kribus (LK). The base flow consists of a vortex in a pipe of radius one.

The axial and swirl flow profiles are assumed to be of the form

woo =1, wvoo= (1 - e_leaz) /r.
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Table 6.5 Linear eigenvalues for a vortex in a pipe.

The table shows agreement between numerical and exact linear
eigenvalues for a uniform vortex in a pipe. Results are for a = 1,
2, =1, k=1 and J = 640. Uniform grid was used in r.

n an (Exact) an (Numer.) Rel. Error(%)

1 0.50505 0.505046 -7.9210-4
2 0.282226 0.282229 -0.0011
3 0.195646 0.195650 —0.0018

Linear waves with period L are considered. For the case of a = 1/4/2 and L = 6,
we obtained the phase speed to be 1.4424 while the phase speed computed by LK is
1.4033 for the same grid resolution. The value found by LK is about 3% off from our
case. Similar differences were found with various eigenvalues found in Table 1 of LK.

As noted earlier, the perturbation solution can be used to establish that the
solution path followed by the Newton’s method is unique. The only assumption built
into the perturbation solution is that the base flow is not altered. Apart from this, the
solution procedure is uniquely defined. If there were more than one solution at a given
value of ¢, this would be reflected in the computation of coefficients of the expansion of
a. That is to say, the system defined by the equations (6.77) subject to the constraint
(6.79) would result in a singular matrix. All the cases we looked at gave nonsingular
matrices. Therefore we infer that the perturbation solution defines a unique solution.
Figure 6.2 shows the plot of a as a function of perturbation parameter €. The upper
curve is for the full solution computed using Newton’s method. The lower curve
is the perturbation approximation given by a = ap + €2a3. As can be seen, even
just one term gives a good approximation. Higher order approximations are nearly

indistinguishable from the Newton’s solution.

6.12 The limit of 5 — 0

Under the limit of 3 — 0, the base flow profile approaches that of Kelvin’s
columnar vortex. The natural question that arises is whether the nonlinear solution
approaches the solution computed in Chapter 5. The nonlinear Kelvin wave solutions

found in the previous chapter have the property that the velocity is continuous across



- 207 -

Comparison of a
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Fig. 6.2 Comparison of « for full solution with o for perturbation solution. The
lower curve is the quadratic approximation a = ag + €2a2. Higher order approxima-
tion curves collapse on the the upper curve of Newton’s solution. Here a = 1 and

J = 160.
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the core boundary. Thus the solutions are free of a vortex sheet at the core boundary.
In order to maintain velocity continuity, the base flow must be corrected. But since
the base flow remains unchanged in the present solutions, it is impossible to maintain
velocity continuity at the “core boundary” as is clearly implied by equations (5.28)
and (5.29). Thus a vortex sheet bound to the core boundary must exist at the second
order. However, the linear solution is not affected by this. The shape of the “core
boundary” is not computed explicitly when 8 # 0. Now we show that a vortex sheet
does indeed arise in the limit # — 0 by evaluating the normal and tangential velocities
at the “core boundary.” We make use of the perturbation solution to establish the
result. Assume that as § — 0, an interface (core boundary) begins to form and has

the representation

R(z) = @ + €dyy cos(z) + O(e?).

Clearly @ = a, which is the radial distance at which the interface is located for the
unperturbed flow. The normal (¢,) and the tangential (¢;) components of the fluid

velocity at the interface are given by

dR dR =
q,,(r,x):u—rc-(—i—x-w, qt(r,x)=n-c—1}-u+w, at r=R. (6.109)

Assuming that the base flow is fixed, we obtain, upon using expansions for u and w,

gn(R) = € [u11(a) + a11xwo(a)] sin(z)

Liiy(a) 52 wn(a)] sin(2z),  (6.110a)

+ &2 [uzz(a) + 5

q¢(§) = wo(a) + ewi(a) cos(z) + 2 ‘—1-21—1— [w'n(a) - nuu(a)]

ai a

+ g2 [___2_1 kuji(a) + wae(a) + 5 w’u] cos(2z). (6.1100)

From Figure 6.3 we infer that the normal velocity must be continuous since all the
terms are continuous at @. From Figure 6.4 we infer that the component of ¢; con-
tributing to €2 cos(2z) is continuous even though wy; and woe jump at a. But since

u11 is continuous and w’u jumps at a, the tangential velocity jumps at a and is
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independent of z but is O(e?). Similar conclusions can be drawn about the swirl

component of the velocity.

6.13 Results

Results of steady waves are presented in the Figures 6.5 through 6.9. We present
here the contours of ¥,  and ¢ and the swirl and axial velocity profile and the
variation of the Bernoulli function and the circulation function. We wish to point out
that ¢ is a quantity related to azimuthal component of vorticity (cf. equation 6.2).
We chose this quantity because it occurs as a natural variable in the given form of
Euler equations. Since it is simply off by a factor of r in relation to true vorticity, it
remains a useful diagnostic of the azimuthal vorticity field. The contours are shown
in the r — z plane.

Figures 6.5 shows the result for a = 1/2 and # = 0.3. As the amplitude of the
wave increases, the streamlines around z = 0 show divergence away from the axis.
This effect continues monotonically as ¢, the wave amplitude is increased. A closed
streamline containing reversed flow appears around ¢ = 0.05. Within the bubble,
the circulation also reverses its sense as is shown by the contours of . The ¢ field
shows a definite concentration near the vortex axis. The axial and the swirl velocity
profiles reveal that the transition from the flow without closed streamlines to the
flow with closed streamlines is reasonably smooth. In spite of this smoothness, we
could not continue the solution forever. The Newton’s method began to lose its
quadratic convergence and when the arc-length continuation was employed with step
size control, the solution seemed to simply wander within a very narrow region about
the solution shown. The reason is far from evident. We believe it is a consequence of
discretization. In some cases, the solution path in the (a,¢) space showed formation
of a fold. On closer examination of the Fourier modes of {, grid oscillations were
found. Therefore, these solutions perhaps need to be confirmed by employing the
same constraints but a very different numerical approach.

The appearance of a bubble is of significance. Leibovich & Kribus (1990), Hafez
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et al. (1986) and others have also found reversed flow solutions but for a vortex in
a pipe. Experiments of Harvey (1962) in a pipe and flow over highly swept wings
show formation of bubbles. Appearance of reversed flow is generally accepted as
an indication of a vortex breakdown. Benjamin (1962) also infers that a tendency

towards stagnation on the axis is associated with the breakdown phenomenon.

An axial flow with W,, = 0.5 and b = a was added to the vortex considered
above. The results are shown in Figure 6.6. The addition of axial velocity reinforces
the formation of the reversed flow region. The bubble is much wider in this case. The
apparent corners are a result of contouring method used. The axial and the swirl
velocity profiles again indicate a smooth transition as in the case above except that

the axial profile is slightly wavy near the axis.

Figure 6.7 shows results for vortex with axial flow that is opposite to the case
shown in Figure 6.6. That is, Wy, = —0.5. Changing the direction of the axial flow
suppresses the formation of the bubble. But the most interesting feature is the ¢ field

which develops a “circular patch.”

Figure 6.8 shows the results for a Burgers-Rott type vortex with core size a =
1/v/2. This is similar to the case considered by Leibovich and Kribus with the
exception that the radial domain is unbounded. This also shows a bubble at finite

amplitude, but the size appears to be smaller than in the previous case.

Figure 6.9 shows the result for a = 1, # = 0.3 and a zero axial flow. The same
trend of bulging of streamlines and a concentration of ¢ are seen. But for larger values
of ¢, the ( field suffered numerical breakdown. For a smoother initial distribution,
that is for larger value of 3, the vorticity variable ( still breaks down. This appears to
be due to a lack of resolution. However, an increase in the number of points along z
or r-did not appear to improve the solution. We speculate that the number of points
needed may be very large. In spite of this severe breakdown in ¢, the contours of ¥

and () appear to be very smooth.

We have discussed at length the indeterminacy associated with axisymmetric flows
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with swirl in the presence of closed streamlines as is the case when the bubble forms.
It was quite clear in the sharp interface calculations that the dependence of H and
C inside the bubble has the same character as the flow outside the bubble. In the
solutions obtained here, the constraints are different. The numerical solution selects
a form of dependence of H and C. The variations are shown for each case considered
above. The functions H(1) and (%) extend continuously into the bubble region as
shown in Figure 6.5.5b, 6.6.5b and 6.8.5b. The variation of (1)) with ¢ is seen to be

small compared to the variation of the Bernoulli constant.
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Fig. 6.5.1 Contours of 3 for ¢ = 0.02, 0.04, 0.06. Base flow is Kelvin type
with a =1/2, Qo =1 and Wy, = 0. Contour interval = 0.1.



- 215 -

2 _
1 L
. 6008 . 600
O "
-2 0 2
2
1 |
60— T ———— 400
O A
-2 o] 2
o
1}
.6ggﬁ\.6g
; Y

Fig. 6.5.2 Contours of Q for ¢ = 0.02, 0.04, 0.06. Base flow is Kelvin type
with ¢ = 1/2, Q5 = 1 and W,, = 0. Contour interval = 0.2.
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Fig. 6.5.4 Axial and swirl velocity at ¢ = 0 for A. ¢ = 0.02, B. ¢ = 0.04,
C. € = 0.06. Base flow is Kelvin type with a = 1/2, Qs = 1 and Wy, = 0. Axial

velocity increases at r = 0 with €. The swirl decreases inside the core with increase

in €.
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Fig. 6.5.5a Variation of H(y) and (%) for A. ¢ = 0.02, B. £ = 0.04, C. ¢ = 0.06.
Base flow is Kelvin type with a = 1/2, Qe = 1 and Wy, = 0. H(%) increases with «.
Variation in () is small.
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Fig. 6.6.1 Contours of ¢ for ¢ = 0.01, 0.03, 0.05. Base flow is Kelvin type
with a = 1/2, Qo =1 and Wy, = 0.5. Contour interval = 0.1.
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Fig. 6.8.2 Contours of Q for ¢ = 0.01, 0.03, 0.05. Base flow is Kelvin type
with a =1/2, Qo = 1 and W,, = 0.5. Contour interval = 0.2.
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Fig. 6.6.4 Axial and swirl velocity at z = 0 for A. ¢ = 0.01, B. ¢ = 0.03,
C. € = 0.05. Base flow is Kelvin type with ¢ = 1/2, Qo = 1 and W,,, = 0.5. Axial
velocity increases at r = 0 with €. The swirl decreases inside the core with increase

in €.
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Fig. 6.6.5a Variation of H(v) and Q(¢) for A. & = 0.01, B. ¢ = 0.03, C. ¢ = 0.05.
Base flow is Kelvin type with @ = 1/2, Qo = 1 and W,, = 0.5. H(%) increases with

€. Variation in () is small.
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Fig. 6.7.1 Contours of ¢ for £ = 0.03, 0.05, 0.07. Base flow is Kelvin type
with a =1/2, Qs =1 and W,;, = —0.5. Contour interval = 0.1.
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Fig. 6.7.2 Contours of  for ¢ = 0.03, 0.05, 0.07. Base flow is Kelvin type
with ¢ = 1/2, Qoo = 1 and W,, = —0.5. Contour interval = 0.2.
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Fig. 6.7.3 Contours of ¢ for ¢ = 0.03, 0.05, 0.07. Base flow is Kelvin type
with ¢ =1/2, Qs =1 and Wy, = —0.5. Contour interval = 0.02.
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Fig. 6.7.4 Axial and swirl velocity at £ = 0 for A. ¢ = 0.03, B. ¢ = 0.05,
C. € = 0.07. Base flow is Kelvin type with a = 1/2, Qoo = 1 and W, = —0.5. Axial
velocity increases at r = 0 with €. The swirl decreases inside the core with increase

in €.
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Fig. 6.8.1 Contours of ¢ for ¢ = 0.02, 0.04, 0.065. Base flow is Burgers-Rott
vortex with @ = 1/v/2, Qs = 1 and W,, = 0. Contour interval = 0.1.
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Fig. 6.8.2 Contours of  for ¢ = 0.02, 0.04, 0.065. Base flow is Burgers-Rott
vortex with @ = 1//2, Q0 =1 and W, = 0. Contour interval = 0.2.
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Axial velocity at x=0.
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Fig. 6.8.4 Axial and swirl velocity at z = 0 for A. ¢ = 0.02, B. ¢ = 0.04,
C. € =0.065. Base flow is Burgers-Rott vortex with a = 1/\/5, Qoo =1 and Wy, = 0.

Axial velocity increases at r = 0 with €. The swirl decreases inside the core with

increase in €.
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Fig. 6.8.5a Variation of H(v) and Q(v) for A. € = 0.02, B. ¢ = 0.04, C. ¢ =
0.065. Base flow is Burgers-Rott vortex with a = 1/v/2, Qs = 1 and W,,, = 0. H(y)

increases with €. Variation in (%) is small.
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Fig. 6.8.5b Variation of H(¢) and Q(3) inside the bubble for A. ¢ = 0.02,
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Fig. 6.9.1 Contours of ¢ for ¢ = 0.04, 0.08, 0.12. Base flow is Kelvin type
with a =1, Qo =1 and W, = 0. Contour interval = 0.1.
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Fig. 6.9.2 Contours of 2 for ¢ = 0.04, 0.08, 0.12. Base flow is Kelvin type
with a =1, Qs = 1 and W, = 0. Contour interval = 0.2.
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Fig. 6.9.4 Axial and swirl velocity at z = 0 for A. ¢ = 0.01, B. ¢ = 0.04,

C. € =0.08, D. ¢ = 0.12. Base flow is Kelvin type with a =1, 0 =1 and W, = 0.

Axial velocity increases at r = 0 with €. The swirl decreases inside the core with

increase in €.
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Fig. 6.9.5 Variation of H(¢) and Q(¥) for A. ¢ = 0.01, B. € = 0.04, C. & = 0.08,
D. € = 0.12. Base flow is Kelvin type with a = 1, Qoo = 1 and W,, = 0. H(y)

increases with €. Variation in (%) is small.
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CHAPTER 7
Weakly Nonlinear Stability of a

Columnar Vortex

7.1 Introduction

In this chapter we consider weakly-nonlinear stability of an axisymmetric colum-
nar vortex with smooth vorticity distribution. The analysis is similar to the nonlinear
stability of plane Poiseuille flow (Stewartson and Stuart, 1971). Using the same ap-
proach as Stewartson and Stuart, Leibovich (1972) has shown that the weakly nonlin-
ear bending waves on vortex filaments are governed by a cubic nonlinear Schrédinger
equation. The weakly-nonlinear analysis is usually based on the fact that there ex-
ists a critical parameter such as Reynold’s number or wave number of perturbation
at which the linear perturbation becomes unstable. In the case of an axisymmetric
columnar vortex, the main difference as well as a great difficulty is the lack of a crit-
ical parameter. A similar difficulty arises in the case of plane Couette flow wherein
one finds that the disturbances are stable for all Reynolds numbers. According to
Stewartson and Stuart, the difficulty, in the absence of any critical value of Reynold’s
number, lies in the fact that no parameter seems to exist. Only in the presence of
a parameter and when it is ‘small’ can one give meaning to the amplitude equation.
The Reynolds number does not enter into our analysis since we consider inviscid fluid.
Further, we have seen in the previous chapters that a columnar vortex sustains linear
waves of permanent form. Therefore, linear stability does not yield a critical param-
eter. Hence we face a similar difficulty. As in the case of plane Couette flow, we can
pursue the evolution of the amplitude of a linear wave if the amplitude which char-
acterizes a “disturbance” is big enough. We implicitly assume that the “parameter”

is the size of the disturbance and refer to it by €. This parameter can be thought of
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as the wave height.

Leibovich (1970) considered evolution of a long wave of small but finite ampli-
tude on a vortex confined to a tube and showed that the amplitude satisfies the
Korteweg-de Vries equation. This equation permits soliton solutions. The method
used by Leibovich fails when the tube wall is moved to infinity. In contrast, we con-
sider evolution of a wave of moderate wave length on a columnar vortex of the type
described in Chapter 6. Further, the radial domain is unbounded. We find that the
wave amplitude satisfies a cubic nonlinear Schrédinger equation which also permits

solitary wave solutions.

7.2 Linear waves

We consider incompressible, inviscid fluid with unit density. The governing Euler
equations are stated in Chapter 6 in terms of a stream function v and a circulation
function ) (equations 6.5 and 6.6). Any pair of functions ¢g(r) and Qp(r) form a

solution to the Euler equations. Linear waves are of the form
Y(r,z,t) = Po(r) + €1, Qr,z,t) = Qo(r) + ey (7.1)

where ¢ is the approximate size of the disturbance. The disturbance is assumed to
be of the form
1= Aigna(r)E, O = A (r)E, (7.2)

where

E = ei(nz—aot) (73)

and A; is some constant. We recall that for a given real value of x, there are an

infinite number of eigenvalues ag and corresponding eigenfunctions t1; and ;.

7.3 Nonlinear stability
Now we wish to examine how the linear wave evolves if the perturbation is large
enough to excite nonlinearity. We assume that the effect of nonlinearity is to modulate

the given linear “carrier” wave both in space and in time. The amplitude of the carrier
g p
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wave is assumed to evolve ‘slowly’ in time and space. As a first trial, we consider the
“amplitude” A; to depend on a slow time variable 7 = et and a slow space variable
Z = ez. We find the equation satisfied by A; by considering the contribution to 2.
We get
A, + 1A, =0

suggesting that A; o« e¥Z-217), The constant a; is determined from a consistency
condition. This is an uninteresting case as it gives us a wave which gives rise to
only a trivial modulation of the amplitude. Therefore we consider still higher order
disturbances. We ‘eliminate’ the behavior exhibited at €2 by introducing the following

set of slow variables,

Z=¢(z—at), T =¢. (7.4)

The spatial and temporal derivatives are replaced by the following

9 9 8 , 9

5t———+5t-—€ala—Z+€ F (7.5)
F) 9 9

& Y 9 , O

37 a2 T %Fazt e (1)

For simplicity we take 19 = 0 (which gives zero axial velocity) and decompose the

solution as follows

p=0+er+elo+ed h3+---, (7.8)
Q=+l +e2 W+ 0+, (7.9)

where the perturbations are functions of r,z,¢,7 and Z. The variable { that occurs

in the Euler equations is defined as

O 1w o (7.10)

— D2 . 2 ¥ _ = halh o
g—Dt'b—ar? ror 022

We decompose ( in the same manner and write

(=0+ecCi+e? o+ G+---. (1.11)
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After substituting for ¥ and collecting coefficients of various powers of € we get

(1 = Dy, (7.12a)
(2 = Dby + 24,4, (7.12b)
C3 = D2¢3 + 2¢2,z + 1I)lzz- (7.126)

Expressions for (4, (5 etc., are similar to (7.12c). We substitute the above expansions
into the Euler equations. The equations obtained by equating coeflicients of E are
given by

1 + ;259091, =0, (7.13)

1
0, - ;leﬁlz =0. (7.14)

Primes denote derivatives with respect to r from now on. The linear solution governed

by (7.13) and (7.14) has the representation

Pi(r,t,7,2,Z) = Ai(7, Z) ¥na(r) E + A} ¥}, E71, (7.15)
Ql(r,t,‘r,z, Z) = Al(T, Z) Qu(r‘) E + AI ’{1 E—l, (7.16)
Cl(raty T,Z, Z) = Al(Ta Z) Cll(r) E+ A; Cfl E-l' (717)

A superscript * denotes the complex conjugate and is added here so that the resulting

solution is real. Back substitution into (7.13) and (7.14) yields

7] 1 /
¢ = ¢11 - ; '/’11 - "?2¢'a (7-18)
2
—aoCn + ;:é- QoQu = 0, (7.19)
-1 — -:19811111 =0. (7.20)

Similar equations are obtained for the conjugate functions. The eigenfunctions 11
and 213 are determined along with the eigenvalue ap. A discussion of the linear wave

solution is given in Chapter 6. The equations obtained by equating powers of £2 are
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given by
2 2 2
(D ¢2)t t 2%, = -2Yznte1Ciz - 5 Dz
2 1 9(¢1, 2
- [;‘-z-ﬂlnlz'l' _—M+ ;Ed,lZCl] ) (7.21)

r Od(r,z)

1 1 1 3(1,Q
e — - Motz =1z + Dbz - ;_(6(—;,71)'

We substitute the linear solution on the right hand side and conclude that Y2 and ),

(7.22)

must be of the form

Yo=—tAi1z9n FE + A;? P22 E? + c.c., (7.23)
Dy =—iA1201 E+ A2 Qg E? + c.c., (7.24)
(e=—-1A17(0 E+i2c A1z 911 E + A% (22 E? + c.c.. (7.25)

Here, c.c. denotes the complex conjugate terms. We notice that the above form does
not contain any terms proportional to E°. This is because all terms contributing to
E° cancel each other since the linear eigenfunctions are all real and the terms are

symmetric in nature. We substitute (7.23) - (7.25) back into (7.21) and (7.22). After

equating the coefficients of E we get

" 1 1
Cot = o1 — — by — K¢, (7.26)
2 2
—ag (21 + 7,;- Qo Q21 = a1 (1 — =2 (ol - 2k g Yy, (7.27)
! 1 ’
—ap flg1 — ;Qo Yo = a1 1 + ~ oY (7.28)
Equating the coefficients of E? we get,
" 1 !
2= — ~¥2 — (2x)% 922, (7.29)
—eotat 35 Q== 5 [ Z 0P+ L0t —puci) + 5 vncu
@062+ il =—3 | 50"+ - (¥l —vuln) + 5 ¥uduf,
(7.30)
—ag (g — ;QS Ya2 = — 2% (1 — ¥ yy). (7.31)

A unique solution to (7.30) and (7.31) can be found because the linear operator on

the left hand side is different from that arising in the linear solution. The differential
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operator in (7.27) and (7.28) is the same as the linear operator given in (7.13) and
(7.14). Therefore a nontrivial solution is not possible unless a; satisfies a solvability
condition. It is found easily by employing the Fredholm alternative theorem. We
state it in a separate section below. We notice that the functions with subscripts 21
and 22 are all real. Therefore, o, is also real.

Next we consider the equations obtained at £3. We get

2
(Dziﬁs)t + ;2-90 3, =P, (7.32)

1
Q34 — - Qo 3, = Qs, (7.33)

where

2
Py =—C, =122 —2¢%2,2¢ + 1 {2z — 3 1z G

- 7 (Mg 4 0y ) - 1 A0
1 3(¥1,¢2) | 10(2,¢1) | 2
- [;';9?;"2)_"‘ r Oz TR (¥1. G2 +¢2;C1)}
- 7,32 (Ql Q2z + QZ le)y (734)
Qs=-M,+o N2z + %Q;ﬂbzz —_ %%{:—’Z-Q)L)

_ 1[0, ) | (2, )
r [ a(r,z) ar,z) | (7.35)

After substituting for 11, ¥, etc., the form of the right hand sides can be written as
Py =p3 E+ P32 E? + .-+ c.c., (7.36)

Q3 = q31 E + q32 E2 +-.--+4c.c.. (737)

The functions p3; and ¢3; are the only ones of interest to us. Calculations show that
P31 = —(1 A1, +mp31 1 A1z, +npa1 i Ay |Ar)?, (7.38)

q31 = —QIIAI,. + mMg31 1 AIZZ + Ng31 ] Al IAllza (739)
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where
2
mp31 = ag P11 + 2 K ap 1 — oy (o1 + = Qo Q21, (7.40)
2k 2x ! .
nps1 = — 3 0 Q22 — - (¢’f1 C22 — Y22 (7 )
K [, ' 2k , .,
- ('»[’11 (a2 — a2 Cfl) tZ (V11 G2z — 2922 (1) » (7.41)
1 .
mgs1 = —n a1 — ~ Dy ¥, (7.42)
and
K ! ! ! * « !
nga1 = [—2 Y11 Qa2 — 911 Qo + 9 Q) + 2922 OF ] . (7.43)

There is no need to keep the superscript * on the above functions as they are all real.
We have retained them simply to show the origin of the contributing terms. Once
again we employ the Fredholm alternative theorem and obtain the following evolution

equation for Ay,

i A1+ Ai1zz + 2 AL |42 =0, (7.44)

where ¢; and ¢ are constants found in the following section.

7.4 Evaluation of constants

P21 Y uy
= ? = b2 = [] 7-45
i (fm) fu (911) o (vn) (7:45)

where pg; and ga; are the right hand sides of (7.27) and (7.28) respectively. fi; and

We define

g11 represent the linear and its adjoint solutions respectively.

If L denotes the linear operator and L* its adjoint, we must have

/ 9 (Lfll)“ d"—/ f11 (L*gn - (7.46)

The operator L and its adjoint are given by

d? 1 d 2] 2&9
-« - = - K
L=( "[d_" rdr & °), L*=LT. (7.47)
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We also find
un = Yi1, (7.48)
2k Qo
V11 = r—2 a—0¢11. (749)

Solution to (7.27) and (7.28) exists only if [§°rqg%,/r dr = 0. This yields us the

value of a; defined by

oo . ! o0 2 .
QI/O (Cll uy; + On Uu) ; dr =/0 [(r—zﬂo Mi+2ca 1)[’11) Uy
1

r

) 1
Qo P11 vfy = dr. (7.50)

Since the vector (p31,¢31) " is required to be orthogonal to g11, we get, after integrating

and comparing with (7.44),
*° * * 1 had * * 1
¢ /0 (¢11 ui; + Qa1 vy,) = dr =/0 (mp31 ul; + mg31 ;) - dr, (7.51)

oo 1 o 1
C2 /0 (Cu ’u;] + Q11 ’DII) ;— dr =/0 (np31 u’{l + ng31 vfl) ; dr. (7.52)

A check can be made at this point for the constant c;. If we suppose that the

amplitude A; depends only on r then from equation (7.44) we must have
iA1, + coA1|A1]2 = 0. (7.53)

This has a solution

A= Aeiczr, (7.54)

where A is some constant. From (7.8) we see that the solution takes the form
Y = e¢11(r)E + €2¢22(T)E2 +---+c.c, (7.55)

where

E= ei(nz—at), a=ay+ 6202 4., € =—as. (7.56)

The constant A has been absorbed into €. The quantity —c2 is thus the correction
to the wave speed due to nonlinearity whose value was found using a perturbation

method in Chapter 6. It is easily verified that equation (7.52) and equation (6.78)
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Table 7.1 Values of constants.

The values of ay, ¢; and ¢3 are shown for various @ and Q.

a Noo a; c1 c2 ci/e
0.50 0.50 0.46549267 —0.99090 102 —0.29281 10+3 0.3384 104
0.50 1.00 0.93098534 —0.19818 10-1 —0.58562 1013 0.3384 10—4
0.50 2.00 1.86197067 —0.39636 10-1 —0.11712 10*4 0.3384 10—4
0.75 0.50 0.32923588 —0.97280 10-2 —0.33504 102 0.2904 103
0.75 1.00 0.65847177 —0.19456 101 —0.67007 10*2 0.2904 103
0.75 2.00 1.31694353 —0.38912 101 —0.13401 10+3 0.2904 10—3
1.00 0.50 0.23760486 —0.92697 10~2 —0.59974 10! 0.1546 102
1.00 1.00 0.47520971 —0.18539 101 —0.11995 10*2 0.1546 10—2
1.00 2.00 0.95041943 —0.37079 101 —0.23990 10*2 0.1546 102
1.50 0.50 0.13255434 —0.80461 102 —0.47670 10%° 0.1688 101
1.50 | 1.00 | 0.26510869 | —0.1609210~! | —0.95340 10*° | 0.1688 10-!
1.50 2.00 0.53021738 —0.32184 101 —0.19068 10! 0.1688 10!
2.00 0.50 0.07966699 —0.67927 102 —0.78509 10! 0.8652 10~}
2.00 1.00 0.15933397 —0.13585 10! —0.15702 1010 0.8652 101
2.00 2.00 0.31866795 —0.27171 101 —0.31404 1010 0.8652 101!

with £ = 3 determine the same constant except for sign. The constant c; must equal
—a3 even when the amplitude depends on Z and 7 since equation (7.52) is unaffected
by this.

Constants ay, ¢; and ¢, were computed for a columnar vortex with a Kelvin type
vorticity distribution described in Chapter 6. The parameter 8 was fixed at 0.3. The
results for various values of the core size a and the total circulation Qo are shown in
Table 7.1. All the cases show that the constants ¢; and c; are negative. The stability
is determined by the sign of product of ¢; and ¢;. If the sign is positive, as in the
present case, the linear wave train is unstable (see Whitham, 1974). By instability it
is implied that the perturbations grow in time. It is only in this unstable case that

solitary waves are possible. They can found by assuming that

Ay = P2 B(X), X =2Z-—cUr, (7.57)

where
U2
A= T

T K

’ 0 = -. (7.58)
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Here, U and 7 are parameters. The quantity B; has the form
B = (27703-) sechy}/?(Z — ,Ur). (7.59)
2

Thus, the amplitude of the solitary wave is proportional to the square root of ¢; /ca.
From Table 7.1 it is evident that this ratio remains the same for a vortex with fixed
core size but variable total circulation. It appears therefore, that the total circulation
scales out of the equations. But, the change in core area has significant effect. The

ratio increases significantly with increase in core size.
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