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Abstract

Analytical techniques are developed to determine the performance of asynchronous
digital circuits. These techniques can be used to guide the designer during the syn-
thesis of such a circuit, leading to a high-performance, efficient implementation. Op-
timization techniques are also developed that further improve this implementation
by determining the optimal sizes of the low-level devices (CMOS transistors) that

compose the circuit.
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Chapter 1

Introduction

Fundamental to the traditional techniques used to design digital circuits is the notion
of a global clock. The computation to be performed by the system is divided into
discrete pieces, and each individual piece is performed between ticks of this clock.
Such circuits are called synchronous.

Other types of digital circuits do not use clocks. Instead of a global signal control-
ling the rhythmic pulsing of the computation, the mechanism that performs a single
step of the computation determines when it has completed, and then triggers the next
step of the computation to be performed. Figure 1.1 contains measured data from
the Asynchronous Microprocessor [23], an example of such an asynchronous digital
circuit.

‘Techniques to design these asynchronous circuits have existed for nearly as long as
there have been techniques for their clock-based counterparts. However, for various
reasons, the vast majority of the existing digital circuits are synchronous. Probably
the most compelling reason for this wide disparity in number is the perceived difficulty
of designing asynchronous circuits.

The work described in this thesis is an extension to, and relies heavily on, a
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Figure 1.1: Measured data from an execution of a program

that computes Fibonacci numbers on the 2.0um AM processor.

The oscilloscope trace shown is the request-for-instruction sig-

nal generated by the processor. Notice the irregularity of this

request.
particular method for synthesizing asynchronous digital circuits. To understand the
thesis, it is necessary first to appreciate this synthesis method, especially the reasons
why it exists and how it addresses the difficult problems associated with the design
of digital circuits.

The synthesis method developed by Alain J. Martin has made the design of asyn-
chronous circuits a simple, methodical activity. This synthesis method is based on
a series of semantics-preserving transformations: Computations described in a high-
level concurrent programming language are refined, through successively lower-level
internal representations, until an asynchronous circuit that performs the original com-
putation has been constructed. Low-level design activities that were once difficult and
time-consuming are now automatic. The circuit designer can concentrate on the de-
sign at a high level, where most radical improvements in performance can be achieved.

The synthesis method produces circuits that contain no races or hazards; in fact,
the circuits have a property known as quasi-delay-insensitivity [22]. Such a circuit

functions correctly regardless of delays within its elements, except for some necessary

assumptions about the relative delays along a few local wires. This view of delays,



except for a trivial difference in the way wires with delays are named, is equivalent
to the speed-independent delay model [27, 7], originally introduced by David Muller
in the 1950s.

There are many advantages of asynchronous circuits over synchronous circuits.
These advantages include design modularity, interchangeability of subcomponents,
tolerance to variation in power-supply voltages, tolerance to variation in temperatures,
lower power consumption, and higher performance. The reader is referred to the
literature for a more complete list of these advantages (especially [35, 8, 37, 25]).
Here we will concentrate on the possible higher performance of an implementation of
a computation as an asynchronous circuit rather than as a synchronous circuit. It
is not always the case that an asynchronous circuit will outperform its synchronous
counterpart. Which implementation is faster may depend on the relative importance
of the many factors that influence the performance of the designs, and can only be
determined by comparing actual asynchronous and synchronous implementations. We
do not perform this type of analysis here. Instead, we provide techniques to evaluate
and improve the performance of an asynchronous implementation.

The most obvious performance advantage is apparent even in the introductory
definitions of synchronous and asynchronous given above. Because all steps of a com-
putation performed by a synchronous circuit occur between clock ticks, the clock rate
is determined by the slowest step, or worst-case delay. In an asynchronous circuit,
the time needed to perform a particular step is determined only locally; thus, the
computation proceeds at a rate that corresponds to the actual delay. However, in
the asynchronous case, extra circuitry is required to perform the sequencing between
two steps, and this extra delay may outweigh the potential speedup. Probably more
important to the performance of a circuit are the numerous synchronizations that are
necessary in complex concurrent computations. These activities might be synchro-

nized in such a way that the rate at which the computation proceeds might again be



determined by the slowest step in the entire computation.

The traditional technique for determining the effect on performance of the many
synchronizations that occur in an asynchronous circuit is (event-driven) simulation.
However, simulation has two drawbacks: It is time-consuming (all concurrent events
must be executed, even those that are not rate-determining), and it only determines
the overall performance. Knowledge of the perfornia.nce of a particular design is
crucial, but it is even more important to know what is limiting the performance of
the circuit. Without this information, the designer, when confronted with a variety of
design decisions that affect performance, will be unable to make an informed choice.
In this thesis we develop techniques that expose the effects on performance of the
various interdependencies within large, highly concurrent circuits. We do this without
simulating the circuit, but rather by using analytic techniques. The designer can use
the results of this performance analysis, which includes not only the performance of
the particular design, but also information about what is limiting its performance, to

synthesize efficient asynchronous circuits.

1.1 Synthesis, Analysis, and Optimization

We espouse a methodology where synthesis, analysis, and optimization work in con-
cert. The synthesis method allows the designer to transform a concurrent program
into an asynchronous circuit through various intermediate representations. At any
of these levels, the current refinement can be analyzed for performance. Decisions
of which transformation to apply can be made at any level by comparing the per-
formance of several competing alternatives. This technique does not necessarily find
the optimal circuit, since there is some inevitable error associated with estimating
performance at a high level. However, only a few of the best alternatives need be

considered at the next synthesis level, thus signiﬁcanﬂy reducing the vast search space



of the synthesis problem. Instead of exploiting performance information to prune the
search space, existing solutions to the synthesis problem [3, 4] seek to use the same
sub-circuit template to implement each language construct.

We do not use the term optimization to refer to this searching activity, but instead
reserve that term for the final adjustment of low-level parameters, in particular, the
sizing of transistors. When designing a computer system, a good designer attempts
to optimize some combination of the speed of the system, the size of the system, and
the power consumption of the system. In a synchronous system, speed is typically
constrained, i.e., the clock frequency is fixed for the entire system, and then changes
are made to the system in order to reduce the area and power consumption while still
maintaining this speed. This strategy makes less sense for an asynchronous circuit
since there is no global clock. Instead, we constrain the area and power consumption,
and optimize for speed.

In this thesis, we provide techniques to analyze the performance of an asyn-
chronous circuit constructed using our synthesis method. At each level we can analyze
a candidate implementation. The result of the analysisis in the form of a performance
metric, an indication of the speed of the circuit. One possible performance metric is
the time between the start and the finish of a particular computation (if the computa-
tion terminates). Other possibilities include the time between consecutive occurrences
of a transition, or the time between identically-numbered occurrences of a transition
in adjacent processes. These last two metrics are called the cycle-period and the la-
tency of a system, and are particularly useful, because, for a large class of systems,
they provide simple, accurate measures of a circuit’s performance.

Frequently, the analysis to determine the performance metric can be performed
without explicit knowledge of the delays of the components that compose the circuit.
In such a case, the performance metric is expressed as a function of these individual

delays.



In this thesis, we also provide techniques for the low-level optimization of a per-
formance metric. By using a simple resistancé-capa.citance (RC) timing model, the
component delays can be approximated based on the connectivity of the components
and the sizes of the transistors within components. Composing the performance met-
ric in terms of component delays with the delay approximation of the components in
terms of transistor sizes, we get an expression for the performance of the system in
terms of transistor sizes. This expression is optimized, producing optimal sizes for

the transistors.

1.2 Contributions

The contributions made in this thesis are of three types: theory, algorithms and
applications. | |

The theory contribution is a series of definitions, theorems, and elementary proofs
that develop precise statements about the rate at which a concurrent computation
proceeds. This is done in two parts: A representation of a concurrent program at one
of the synthesis levels is transformed into another intermediate representation, called
an event-rule system, that was designed especially for performance analysis. This
intermediate form is then analyzed, producing a performance metric. Simplicity was
a major goal in developing the intermediate representation. The transformation to
event-rule systems is conceptually simple, but is actually quite involved, if it is to be
performed in a mechanical manner. We describe mechanical techniques to perform
this transformation for a certain class of computations.

The techniques we use to analyze the performance of an event-rule system are
similar to techniques advocated by other researchers for other timing analysis prob-
lems. One such alternative methodology uses timed Petri nets [31] as the underlying

description of the system. While both approaches are based on linear programming,



they are developed differently. Our development, we believe, is more elegant, and is
easily extended to include linear arrays of identical processes. We provide new proofs,
from basic principles, of the accuracy of the generated performance metrics.

The algorithms contribution includes a new technique to determine efficiently the
cycle-period of an event-rule system, and a new tool to size optimally the transistors of
an asynchronous circuit. A new low-order polynomial-time algorithm for determining
the cycle-period of a computation is developed using the primal-dual technique for
solving special-case linear programs. A non-trivial termination proof is provided.
As a means to calculate efficiently the objective function, this algorithm has been
incorporated into an effective tool for globally optimizing the sizes of the transistors
in an asynchronous circuit. This tool implements a general algorithm for minimizing
a non-linear, non-differentiable, convex function subject to any number of inequality
constraints. For many circuits, a 20-30 percent improvement in performance can be
achieved by using this tool. |

The applications contribution consists of new analyses of the performance of sev-
eral asynchronous circuits. It includes a taxonomy of the performance of various
implementations of first-in, first-out (FIFO) buffer processes. A large design, the
Asynchronous Microprocessor, is briefly described and analyzed. Two designs by

other researchers which were thought to be optimal are analyzed and improved.



1.3 Thesis Overview

The synthesis and analysis procedures are logically divided as follows:

Synthesis _ Analysis

Concurrent Program Concurrent Program
! (Chapter 4)
Event-Rule System
{ (Chapter 3) { (Chapter 2)
Performance Metric
J (Chapter 7)

Asynchronous Circuit Optimal Transistor Sizes

The transformations between the representations are described in the annotated chap-

ters. The synthesis method transforms a concurrent program into an asynchronous

circuit. The analysis method transforms a concurrent program, described in any of the

representations used during the synthesis process, into an abstract system designed

explicitly for performance analysis. This event-rule system is analyzed, resulting in

a metric that describes the performance of the original program. This performance

metric can then be optimized as a function of transistor sizes.

The two remaining chapters describe the applicability of the synthesis and anal-

ysis procedures. Chapter 5 describes methods for analyzing the performance of large

concurrent programs that have a regular structure. Chapter 6 is a collection of ap-

plications of the various analysis procedures to concrete examples.



Chapter 2

Event-Rule Systems

The analysis method that we use to determine the timing performance of an asyn-
chronous circuit is based on an abstract notion of events, and constraints between
events, called an event-rule or ER system. Most of the results are developed within
this abstract framework without referring in any way to circuits. The purpose of this
chapter is to develop these results. Later, in Chapter 4, we show how to transform
various high-level representations of an asynchronous circuit into an ER system. To-
gether, these techniques form a complete method for determining the performance of

asynchronous circuits.

2.1 General Event-Rule Systems

A (general) event-rule system is a pair (E, R), where:

E is a set of events, and

R is a set of rules defining timed constraints between the events. Each r € R is

written e v f, where

e € FE is the source of r,
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f € E is the target of r, and

a € [0,+00) is the delay of r.

Neither E nor R need be finite. When R is infinite, we require that no event depends
on an infinite number of other events. That is, the set of predecessors (immediate or

otherwise) of an event must be finite. The set of sources of an event f € E is denoted
sources(f) = {e | e f € R}.

Similarly, the set of targets of an event e € F is denoted
targets(e) = {f | e> f € R}.

Associated with each (E, R) is a constraint graph G, which is a directed, labeled graph
(multiple arcs and self-loops allowed) that contains one node per event and one arc
per rule, in which each arc is labeled with the associated delay a. For a given (E, R),

there is a set of functions T, that satisfies:
T is a subset of the functions from E to [0,400) ;

t € T if and only if

t(f)y>tle)+aforeveryer> fER. (2.1)

We call a function ¢ in the set T' a timing function of (E, R). Each t represents a
possible or consistent timing specification for the events of the system. If the set T is
empty, the constraints (2.1) cannot be satisfied by any such function . In this case,

(E, R) is called infeasible; otherwise, it is called feasible.
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Example 2.1 Consider (E, R) with

E = {a,b,c}
R = {a®b,b5a,b5 c}.

This ER system is feasible if and only if o, = 0 and a3 = 0. 0

The smallest timing function corresponds to the earliest time at which the events
of E can execute. We call this smallest timing function the timing simulation because
it represents the time values that are determined by event-driven simulation of the ER
system. The timing simulation represents the most detailed performance metric for
an ER system. We now show that such a function exists and is unique in the special
case of an acyclic system. We then prove a preliminary lemma and show existence

and uniqueness in the general case.

Lemma 2.1 If the constraint graph G of an event-rule system (E, R) is acyclic, then

there exists a unique function ¢ € T such that for every t € T,
t(e) < t(e) for every e € E. (2.2)

We call { the timing simulation of (E, R).

Proof: We propose the following recursive definition for #:

. 0 if sources(f) =0
i(f) = A ) (2:3)
max{t(e) + a | e f € R} otherwise.
Such a function is well-defined because, by hypothesis, there are no cycles in G and

thus no circular dependencies between the events in E. This # is by construction a

timing function and thus an element of T. We show, by contradiction, that this £
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satisfies (2.2). Let ¢ be a candidate smaller timing function such that the set F' of
events e that satisfy t(e) < i(e) is non-empty. Let f € F be such that there exists
no e ¥ f € R with e € F. Thus the element f is a minimal element of F under
the partial order imposed by the rule set R. Either sources(f) = @ and we have
0 < t(f) < #(f) = 0, or there exists a ¢ *> f € R that achieves the maximum in (2.3)
and we have

t(f) <i(f) =tle) +a < tle) +a < t(f).

In both cases we have a contradiction. The inequality #(e) + a < t(e) + o follows
since e ¢ F. The last inequality holds since t € T' . Therefore F' must be empty, and
t satisfies (2.2).

The timing simulation { is unique because if a smallest element of a partially
ordered set (in this case, the partially ordered set of timing functions) exists, it is

unique. §

Example 2.2 The ER system defined by the constraint graph:

e
1‘1:5
a =% p 2y 2
has the timing simulation:

t(a) = 0

te) = 0

i(b) = ma'x(a’ab,aeb)

i(c) = max(agm, aw) + o

f(d) = max(Qap, Qep) + Qe + Qg -
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O

Lemma 2.2 (E, R) is feasible if and only if o = 0 for all rules in all cycles of G.

Proof: = Let
€= (60 & €1, € ’gl €2y...,€p-2 a’:;z €n—1,€n-1 afu—_)l eO)
be a cycle in G of length n > 0. For any t € T,

t(er) t(eo) + ao,
tlez2) 2= tle)+a,

v

t(en—l) t(en-—2) +a,_g,
t(eo) 2 t(en_l) + Qp_q -

v

By summing the inequalities produced by each edge of the cycle, we get,
0>atar+...+ a9+ a,,

and, thus, o; = 0forall 0 <i < n.

<= Let SC(f) denote the set of events in the same strongly connected component of
G as event f. Let ¢ be an injection of E mapping each event in a strongly connected
component to a unique representative. Thus i(e) = ¢(f) for all e, f € E such that

e € SC(f). Define the new event-rule system (E,, R,) as

E, = {(e)le € E}
= {ue) > uf)]e™> fe RAe) #uf)}
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This system is acyclic and, thus, by Lemma 2.1, it is feasible. Let ¢, be a timing
function of (E4, R,). It now remains to show that ,(¢(e)) is a timing function of
(E, R) implying that (E, R) is feasible. By construction, ¢,(¢(f)) > t.(c(€)) + a for
all rules e ¥ f € R such that «(e) # ¢(f). If t(e) = ¢(f), then both e and f are in the
same strongly connected componenf and, thus, e = f is in a cycle. By hypothesis,

a=0so
ta(e)) =1a(u(f)) 2> ta(e(e)) +0

and t,(¢(e)) is a timing function of (E, R). &

Theorem 2.3 If the event-rule system (F, R) is feasible, then there exists a unique

smallest timing function .

Proof: By Lemma 2.1, we need only consider cyclic systems. Construct the cor-
responding acyclic system (F,, R,) as shown in the proof of Lemma 2.2. Let ¢ be
the unique-representative function that was used to generate (E,, R,). Now, for any
timing function ¢, it is the case that t(e) = t(f) for all e, f such that ¢(e) = ¢(f). This
follows because if e and f are in the same strongly connected component, then there
is a cycle with only zero-delay arcs that contains both e and f.

Let #, be the timing simulation of (E,, R,). We now propose i(e) = #,(:(e)) for all
e € E as the smallest timing function of (£, R). For proof, suppose that ¢ is a timing
function with t(c(e)) = t(e) < t(e) = i4(¢(e)) for some e € E. But then, t restricted
to the domain E, is also a timing function of (E,, R,), contradicting the minimality
of £,. Corresponding to the particular rule ¢ +% f' € R, is the rule e +% f € R with

e =(e) and f' = (f). Thus,

t(f') = 1)) = t(f) 2 tle) + e =t(i(e)) +a = t(e') + @
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and ¢ restricted to E, is a timing function of (E,, R,).
The proof of this theorem provides a means to transform any cyclic ER system
into an acyclic system, without altering the timing simulations. For the remainder of

the thesis, unless explicitly stated, we assume that an ER system is acyclic.
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2.2 Repetitive Systems

Many ER systems of unbounded size can be generated from bounded structures.

Consider the event set E generated from a finite set E’ by
E = E'xN.

The elements of E’ are called transitions. An event (u,i) € E is the indexed occur-
rence of the transition u € E'. The nonnegative integer ¢ is called the occurrence
index.

The rule set R is also generated from a finite set R'. The elements of R’ are

quadruples
r' = (u,v,0,¢) € R', where ' C E' x E' x [0, +00) X Z,

which we will write as

o= (u,i—g) > (v,1).

The integer € is called the occurrence-indez offset of r'. The dummy variable 7 is
replaced by a nonnegative integer no less than ¢ when r' is instantiated (an infinite
number of times) to form the generated rule set R. We require i > max(0,¢) so
that the occurrence indices of both the source and the target events of r are both
nonnegative and thus in E. We call (E, R) the (general) ER system generated from
the repetitive ER system (E', R').

Example 2.3 Ring Oscillator



Consider the repetitive ER system
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El
RI

{z1yT,2T,zlyl, 21}

!

{(zL,i-1) B (a1,9),

1) W (yl,i),
whiy B (21,i),
(z1,9) B (zl,i),
zliy  H (1,9,
(y1,1) P (z1,9)

}.

Initially, z and z are false and y is true. The events of the system, those generated

from E', represent transitions of circuit variables. Event (z T,:) represents the it*

occurrence of a transition from x = false to x = true. Similarly, (z |,¢) represents

the i occurrence of a transition from z = true to z = false. The repeated rules

correspond to dependencies introduced by the inverters connecting the circuit vari-

ables r and y, y and 2, and z and . We can represent the generated infinite sets E

and R graphically.
(z1,0)
(z1,0)
N

(z1,1)

(21,1)

@yl
—

Qyl
—_

(y1,0)

{y1,0)

(y1,1)

(y1,1)

« bl

—_—

Ayt

a,t

Ayt

(21,0)

1azi

(z,0)

(z1,1)

(zl,1)
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In this diagram, nodes represent elements of E and arcs represent elements of R.

Notice that event (zT,0) has no predecessors. In a timing simulation #({x 1, 0)) is set

to 0. The entire timing simulation £ can be constructed by inspection. (For ease of

notation, we write one-parameter functions of an instantiated repeated event as two-

parameter functions of the event and its occurrence index. For example, {({z 1,0))

will be written #(z1,0).)

t(z1,9)
#(y1,9)
#(21,1)
i(z1,9)
i(y1,9)
i(21,4)

pi

oy +pt

ay + o +pt

Qy +az + oy +pi

Oy + 0 + 0y + oy + P

oy tagtaytag+o;+pe

where p = oy + o + oz + ap + 0y + @y 0

Example 2.4 C-element

Consider the repetitive ER system constructed from a circuit containing an inverting
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Muller C-element and two noninverting drivers.

E' = {z1,y1,21,zl,yl,21}
R = {(el,i—1) & (21,i),

| (hi=1) B (z1,i),

s . (z1,9) B (z1,i),
(z1,))  # (y1,9),

1,9 B (21,9,

v hi) B (zl,i),
(zLi) B (zl,i),

(z1,1) M (yl,d)

}.

Initially z, y and z are false. We can represent the infinite sets £ and R graphically

as
(zT1,0) (z1,0)
7 N 7 N J
(21,0) (21,0) (21,1)
Qyt Qe Qyl azg Qyt
/ N /
(y1,0) (y1,0)

In this case, the event (zT,0) has no predecessors, and, thus #(21,0) is 0. The entire

timing simulation £, constructed by inspection from the constraint graph, is:

#(z1,1) = pi
f(xT,z) = azf+pi
Hy1,9) = oy +pi

f(zl,z') = max(au, o) + o, +pi
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f(.’L‘l, z) = max(aﬂ,aﬂ) +a;+ay +p1

f(ylv z) = ma'x(avaayT) +ay+ay +pi

where p = max(a,t, ayr) + ay + max(agy, ay) + ay - 0

2.2.1 Linear Timing Functions

In the previous examples, we saw that the timing simulations of two repetitive ER
systems took on a simple form that is linear in the occurrence index i. This is not
the case for all repetitive ER systems. However, as we later show (Theorems 2.9
and 2.10), a linear timing function exists whenever the timing simulation exists, and
the “best” such function is a very good approximation of the timing simulation.

We call t € T a linear timing function (of (E', R')), if
t(v,i) =1, +p,iforevery ve E' andi e N . (2.4)

Each z, and p, is independent of i. For each v € E', z, and p, are called, respectively,
the offset and cycle period of the transition v.

Because of the linear form of ¢, the timing function constraints (2.1) reduce to
linear inequalities in the offsets and cycle periods of the system. All dependence on
the occurrence index ¢ can be eliminated. For each rule r = (u,i — &) % (v,1) € R/,

we have the infinite set of constraints
t(v,i) > t(u,i—€)+ e, for each i > max(0,¢).
Replacing £ by its definition, we get

Ty+Ppt 2 Ty+pfi—€)+a (2.5)
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Ty 2 Ty—PuE+a+(pu—p,i. (2.6)

If pu > p, then equation (2.6) can never be satisfied for all ¢, since i can be arbitrarily
large. Thus, the infinite set of constraints generated by r can be replaced by the two

inequalities,

Ty — Pu€ + a + (py — py) max(0,¢), and (2.7)

Pv 2 Pu- (2.8)

8
e
v

2.2.2 Strongly Connected Systems

The collapsed-constraint graph G’ of (E', R') is the directed graph with nodes from E'
and arcs from R'. From (2.8) we see that for a linear timing function to exist, a partial
ordering between the p,’s must be satisfied. If two nodes,  and v, are in the same
cycle of the collapsed-constraint graph G’, then p, must equal p,. Thus, all transitions
in the same strongly-connected component of G’ have the same cycle period. In the
following, unless stated otherwise, G’ is assumed to be strongly connected, and we

use p to denote the cycle period of every element in E’. Thus (2.7) reduces to
Ty, 2 Tyta—ep. (2.9)

Analogously to the constraint graphs of general ER systems, the arcs of the collapsed-
constraint graph are labeled so as to specify the timing constraints. Instead of just

a, in this case the label is a — ¢ p.
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Example 2.5 Consider the repetitive ER system of Example 2.3. The labeled collapsed-
constraint graph G' is:

21 = oyl I 2

Qgt —-pI ldg‘

zlf’inf—"—xi

Notice the use of oy — p as the label on the arc from 2| to z 1. This arc corresponds

to the rule
(Zlvi - 1> fjﬂ (.’ET,Z),
which imposes the constraint inequality

Lzt > le""azT —P-

a

2.2.3 The Cycle Period As a Performance Metric

A cycle périod p found in a linear timing function ¢ is an upper-bound on the asymp-
totic performance of a repetitive ER system. The time at which occurrence ¢ of a
particular transition u fires in an actual execution of the system is #(u), where { is the
timing simulation. Since #(u,) > #(u,i) (because f is the smallest timing function),

it must be the case that for all i > 0,

Thus for any u and large enough ¢, p is not less than a number arbitrarily close to

the average time between consecutive occurrences of u. In Sections 2.4 and 2.4.3, we
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show that the minimum p is not only not less than, but is actually equal to a number
arbitrarily close to the average time between consecutive occurrences of u. Thus, p is

a good, single-valued performance metric for the system.
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2.3 Pseudorepetitive Systems

While repetitive ER systems are simple and easy to analyze, a broader class of systems
can be analyzed with a slightly more complex model. In such a model, events are of
two types, either initial or repeated. There are only finitely many initial events, and

thus after a finite period, only the repeated events occur.

2.3.1 Definitions

Pseudorepetitive ER systems consist of a finite set of initial events, an infinite set
of repeated events, a finite set of initial transitions, a finite set of repeated transi-
tions, a finite set of initial rules, and a finite set of repeated rules. In this order, a
pseudorepetitive ER system is a six-tuple (Ey, E1, Ej, E}, Ro, R{). As in the case of
repetitive systems, a pseudorepetitive system generates a general ER system. The

corresponding system (E, R) consists of the event set
E = EyUE,

where Ej is a subset of Ey x N and E is a subset of £ x N.

The elements of the initial rule set Ry are of the same form as the rules in a general
ER system. The source of an initial rule must be an initial event. The elements of the
repeated rule set R} are of the same form as the rules in a repetitive ER system. Both
the source and the target transitions of a repeated rule must be a repeated transition.
Furthermore, the elements of R} are only instantiated for those occurrence indices
such that both the source and target events are members of Ej, the set of repeated

events.
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Example 2.6 Consider the pseudorepetitive ER system:

Ey
E
Eq
E,
Ry

{a,b,c}
{a,b,c}
{{a,0), (6,0}, (b,1),{c,0)}

{(a, i) |i>0}U {(b,5) | i >1} U {{c,) | i >0}

{ (,0) ¥ (a,0),

Q

(a,0)
(c,0)
(b,1) *
}
{ (a,i-1)
(b,7+1)
(c,i—1)

R
o

C

o>

it

1

I3

!

{c,0),
(b,1),
{a, 1)

The generated general system is the pair (E, R), where

= E0UE1

RoU {{a,i—1) ¥ (b,i)|i>1}

U {(i+1) ¥ {(c,i)]|i>0}
U {{e,i—1) % (a,d)|i>1}.
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2.3.2 Approximating the Timing Simulation

While pseudorepetitive systems are more general than repetitive systems, we show
now that we can approximate the steady-state timing behavior of a pseudorepetitive

system by the timing simulation of a simpler repetitive system.

Theorem 2.4 Let P = (Ey, E1, Ey, E{, Ro, R}) be a pseudorepetitive ER system.
Let S be the general (possibly cyclic) ER system generated from P, and let S’ be
the general (possibly cyclic) ER system generated from just the repetitive part of P,
that is the repetitive ER system (E}, R}). If S is feasible, then S’ is feasible, and the
timing simulation of S differs by no more than a constant from the timing simulation

of 5.

Proof: We first show that S’ is feasible. Assume S’ is not feasible. Then by

Lemma 2.2, there exists a cycle of non-zero cost. Let

(uo,%0) & (uq,i1)

(ug, 1) B (ug,iz)

(ue—1,40-1) 3 {ug, o)

be the edges of such a cycle with at least one a; > 0. Since 5 is repetitive, we can add
an arbitrary n to each i; in the above rules. For large enough n, each (u;,i; +n) isa
member of E;, the repeated events of the pseudorepetitive system. Thus, there exists
a cycle of non-zero cost in the general ER system generated from S. By Lemma 2.2,
S is not feasible, contradicting the hypothesis.

We go on to prove the approximation part of the theorem. We start by transform-

ing both S and S’ into acyclic ER systems with the technique used in Lemma 2.2. To
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avoid cluttered notation, we denote the new acyclic systems with the same names,
S and S'. This transformation allows the simpler definition of the timing simulation
(2.3) to be used. Consider the timing simulations  of S and ' of S’ restricted to the
events (v,7) € Ej, such that (v, 1) is the target of a rule with a source in E; and not
a target of a rule with a source in Ey. All but a finite number of events are of this
type. Since S and S’ are both feasible, each excluded event that exist in both S and
S’ has a finite ¢ and #, and thus there exists a finite B such that

[{(v,1) — '(v,9)| < B for all excluded (v,4) with v € E .

We show that the two timing simulations can differ by no more on a target event
than they do on a source event. By the definition of a timing simulation on the

restricted set of events, we have

t(v,1) = max{f(u,i—e¢)+a| (u,v,0,6) € R}

(v,i) = max{f(u,i—¢)+al(u,v,a,e) € R}

Notice that for each target event the same rules apply for the two timing simulations.

We must show that
[f(v,9) = (v,9)] < max{|f(u,i —e) — #(u,i — )| | (u,v,0,¢) € R,}.

Let r = (u, v, a,€) be the rule such that (v, i) = {(u,i—¢)+a and let ' = (v, v, o/, ')

be the rule such that ¢(v,i) = #(«,i — ') + o/. If #(v,i) > #(v,7), then

t(v,1) —t'(v,i) = Hu,i—e)+a—t,i—€)—a

IA

Hu,i—€)+a—t'(u,i—€) - a
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= t(u,i~¢)—t'(u,i—¢).
The inequality above follows since, by construction,
t'(u,i—¢€)+a > t(u,i—€)+a.
Similarly, if #/(v, 1) > #(v, ), then
t'(v,49) — H(v,i) < f(u',i—€)—i@,i—¢).

Since the absolute difference between t'(v, i) and #(v, 1) is no larger for each subsequent

event,

[f'(v,4) — #(v,4)] < B for all (v,i) € E} x N. 1
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2.4 Minimum-Period Linear Timing Functions

Among the possible linear timing functions, there are those that minimize the cycle
period p. The techniques of linear programming [13, 29] can be used to find such a
minimum-period linear timing function (MPLTF). To fit our needs, we will use linear

programs in standard form:
Az >b,x>0,z=minc’z, (2.10)

where A is an m-by-n matrix and x, b and ¢ are column vectors of lengths n, m and
n, respectively. The program has a feasible solution z when both vector constraints
can be satisfied. The program has an optimal solution x when z is feasible and when
for all other feasible 2/, ¢’z < cTz'.
A fundamental result from linear programming relates the primal program (2.10)
to the dual ﬁrogram
yTA< el y>0,w=maxy’b . (2.11)

Theorem 2.5 (Duality Theorem) Exactly one the these four cases occurs:
1. Both the primal and the dual have optimal solutions, and z = w.

2. The primal has no feasible solution, but the dual has feasible solutions y with

yTh = +o00.

3. The dual has no feasible solution, but the primal has feasible solutions z with

c't = —oo.
4. Neither the primal nor the dual has a feasible solution.

Proof: See [13]. &
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The constraints of a linear timing function (2.9) are simple linear inequalities in
the offsets z, and cycle period p. By ordering the sets E' and R’ of a repetitive ER

system, we can construct a linear program in matrix form.

min( & T ) [; = z (2.12)

(A’ 5) [: > a (2.13)

,p > 0 (2.14)

We will discuss the coefficients of the objective function, ¢y and c;, later. The elements
of the vector = correspond to the offsets (from the linear timing function) of the
transitions that make up the set E’. The matrix A’ is the arc-node incidence matrix
of the collapsed-constraint graph G'. If row j of A’ represents the constraint r; € R

and column k of A’ represents the transition u; € E', then

—1 if u; is the source transition of r;
Qj = 1 if uy is the target transition of r; (2.15)

0 otherwise

The j*h elements of the column vectors ¢ and « are the occurrence-index offset and
the delay of the constraint r;, réspectively.

The dual of (2.13) is

maxy’a = w (2.16)

T ) (2.17)
(2.18)

<
~
~—
=
™
~—
IA
—
Sy
0

@
v
o
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Example 2.7 Lazy-Active/Passive Buffer
Consider the repetitive ER system

E' = {lot,lit,rot,ril,lol,li|,r0],7i]}

R = {({il,i-1) ¥ (lo1,d),
(rol,i—1) ¥ (lot,i),
(lit,3) ¥ (lol,i),
(ri1,4) Y (rot, i),
(lo},3) Y (rol,i),
(ril,i) 3 (rol,i),
(lo1,4) = (lit, ),
(lo],1) =il 6),
(rol,i—1) ¥ (ri1,d),
(ro1,4) (ril,6)
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The corresponding primal program is:

(1 0 0 0 0 -1 o0 o) (1) (o )
1 0 0 0 0 0-1 0({mg) |1 g
0-1 0 0 1 0 0 O Tig 0 0|
0 0 1 -1 0 0 0 0] 2 0 g
000 1 01 0 0 0ffm | (0] |eq
60 0 0 0 0 0 1 -1 || =g 0 g

~1 1 0 0 0 0 0 0|/ a4 0 au
0 0 0 0 -1 1 0 0[] o 0 iy
000 0 1 0 0-1 0f\zy) |1 -

L0 0-1 0 0 0 0 1) 0] \aq )

O

2.4.1 Objective Function

So far we have left the objective coeficients, ¢y and ¢;, unspecified. Our goal is to
find the minimum cycle time, so one choice for the objective function, in the case of
a connected system, is minz = 0Tz + 1p. Thus, for a connected repetitive ER system

we have the simplified linear program:

z = minp (2.19)
Az+ep > « (2.20)
z,p > 0, (2.21)
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and corresponding dual

w = maxyla (2.22)
yTA' < 0 (2.23)
ye <1 (2.24)

y 2 0 (2.25)

The above linear program can be further simplified since A’ is an incidence matrix.
For each row, there is exactly one column with entry —1 and exactly one column with
entry 1. Thus A’1 = 0. In order to satisfy (2.23), we claim that y7A’ = 0. This
foilows since 0 = y(A'1) = (y"A’) 1 and each element of yT A’ is non-positive. The

dual then becomes

\

w = maxyTa
T A = 0
Y > (2.26)
yfe <1
Yy > 0, )
simplifying the primal to
z = minp ‘
Az+ep > a
P (2.27)
T is unconstrained
P > 0. J

While the linear programming formulation shows that z need not be constrained in
order to find the minimum period, each element of z must be non-negative if it is
to be used as an offset in a linear timing function. To form an offset vector, after

an optimal solution z,p is found, we subtract from each element of z the smallest
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element of z.

2.4.2 Cycle Vectors of a Graph

A cycle c of length £ in a directed (multi-)graph G = (N, .A) is an ordered subset
(ag,a1,...,a¢-1) of the arcs A such that target(ai—;) = source(a;) for all 0 < k < ¢
and target(ae—1) = source(ag). The cycle ¢ can be represented by a cycle vector u, a
{0,1}-vector of length |A| where u; = 1 if and only if the j® arc of A is in the set
c. For each cycle vector u, uT A’ = 0, where A’ is the arc-node incidence matrix of
the graph G. An interesting fact is that any y > 0 which satisfies y7 A’ = 0 can be

formed by the non-negative linear combination of the cycle vectors of G.

Lemma 2.6 If y > 0is such that y7 A’ = 0, then there exists §; > 0 and cycle vectors
U; such that
y= 60U0 + 01U1 + ...+ Bq._lU -1 - (228)

Proof: By induction on the number of cycles in the graph G = (N, A).

Base Case: G is acyclic. By Lemma 2.7 (following), y must be identically zero.

General Case: If G is cyclic, let A’ = {r; € A | y; > 0}. Form the graph
G' = (N, A’). Any cycle in the graph G’ is also a cycle in G since arcs are
removed, but never added, to form G'. If G’ has no arcs, then by definition of
A’, y must be identically zero. Otherwise, a scalar multiple of any cycle vector
of G' can be subtracted from y, resulting in a y* with more zero elements than

y; that is for any cycle ¢ of G’ with corresponding cycle vector u,

*

Yy = y-—0u

where § = min{y; | r; € ¢} > 0. Now let A" = {r; € Aly; > 0}. Also

form the vector y” of length |.A4”| from y* by removing the zero elements. The
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graph G" = (N, A") has strictly fewer cycles than G’ (and G) since the cycle
corresponding to u cannot be a member of G”. By the induction hypothesis

applied to G” and ¥, we get

[} q"_l "
y' = Z 6, Uy
k=0

where each 6] > 0 and each U} is a cycle vector of G”. Now each U}/ can be
expanded to a vector U;. of length A by filling in zeroes for the removed arcs.

Similarly, # can be expanded to U. Thus,

q"—l
k=0

which is the required form for y. &

Lemma 2.7 Let G be an acyclic graph with non-empty arc set. If y > 0AyTA' =0
then y = 0.

Proof: By induction on the number of arcs.

Base case: If G consists of a single arc, then the single row of A’ contains two

non-zero entries, one —1 and one 1. For y7A' =0, y = 0.

General case: If G has more than one arc, pick a single arc r; with source e such
that targets(e) = §. Now y; must be 0. By the induction hypothesis applied
to the graph formed from G by removing r; from the arc set, the rest of y is

identically 0. 1

These lemmas provide a straightforward means of determining the minimum cycle
period p. By enumerating every cycle in the collapsed constraint graph of a repetitive
ER system, and by computing the sum of the delays and the sum of the occurrence-

index offsets around each cycle, we can find the minimum cycle period p.
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Theorem 2.8 The minimum cycle period p, that is the optimal value z of the primal

max J JEC
Ufe

program (2.27) is
Uk is a cycle vector} (2.29)

if UTe > 0 for all cycle vectors Uy,

Proof: Let U be the cycle matrix constructed by concatenating the (column) cycle
vectors Up, Uy, ..., Uy-1. By construction, UTA’ = 0. By Lemma 2.6, any y > 0 with
yT A" = 0 can be represented as the product U ©, where the vector © has non-negative

elements. The dual program (2.26) reduces to

z = max0T(UTa) (2.30)
oT(UTe) < 1 (2.31)
0 > 0. (2.32)

The primal program corresponding to the reduced dual program is easily solved.

z = minp (2.33)
(UTe)p > (UTa) (2.34)
p 2 0. (2.35)

The smallest scalar p that satisfies the vector inequality (2.34) yields the desired

minimum cycle period. §

Example 2.8 We compute the minimum cycle period of Example 2.7. Two views of

the collapsed constraint graph are:
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A — P Qg
; . e ———
l 1 l i - [ :
ol P, i1 o ol P l lot - i1 P lo} p li}
Qe — P Aot t a) a4
a L Oy a i a a a
rol‘rol r1] L re] ro| : ri] 2 rot : ri]
Qrip — P ag

The view on the left uses the standard labeling; on the right, the labels denote the
numbered arcs. The three cycles through the graph can be represented by the cycle-

vector matrix:

0110111001
1010001100
0001010011

UT

l

The simplified primal program (U7¢) p > (UTa) becomes:

1 Qo + Qo) + Urg + Uro| + Qg + Qpq) Qg
1 |p 2 ot + Qo + oy + oy = | o
1 Uypgp + Urg| + Qpip + Qg Q2

Thus, the minimum p is max(ap, a1, ay). ]

We finish this section by showing that there exists a MPLTF for every feasible,
repetitive ER system.

Theorem 2.9 Let (E, R) be a general ER system with constraint graph G. Fur-
thermore, let (E,R) be generated from the repetitive system (E’, R’} with a col-
lapsed constraint graph G'. There exists a minimum period linear timing function for

(E',R)).
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Proof: By Theorem 2.8, such a MPLTF exists except possibly when Ufe < 0 for
some cycle vector U. If UTe = 0 for some cycle vector Uy, then there is a cycle in G
and by Lemma 2.2 this cycle has zero cost. But then p is not constrained in (2.34)
and the proof of Theorem 2.8 is not violated.

If Uf'e < 0 for some cycle vector Uy, then there is an infinite set of events in @
that precede an arbitrary event in this cycle and, by definition, (E, R) is not an ER

system. &
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2.4.3 Approximating the Timing Simulation

We now show that a MPLTF provides an accurate approximation to the timing

simulation.

Theorem 2.10 Let £ and # be a minimum-period linear timing function and the
timing simulation, respectively, of the connected repetitive system (E’, R’). There

exists a finite B such that for all u € E' and all > 0
Sui = H(u,1) —H(u,i) < B .
Proof: By definition for each u and ¢

t(u,i) = z,+pi

t(u,i) = x4+ pi— Sui -

Each s, ; is nonnegative because { is the smallest timing function. For the constraints
generated from r = (u,i—€) +> (v,4) € R', we define the non-negative slack variables,

Z; and z,, thus transforming inequalities into equalities:

Ty,—pet+a+32 = z, (2.36)

Ty —PE—Suieta+2; = T,—5,; (2.37)
By subtracting these equations and simplifying, we get

Zr = Bni = Sui — Sui_e - | (2.38)
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From Theorem 2.8, p ¥ <. €, = ¥, @, for at least one cycle c. Adding the constraints

on t, (2.36), for each r € ¢, we see that

DTy, =PI &t I+ E = Ty,
re€c

réc rec r€c rec

Since along any cycle Y,.c. Ty, = Y rcc Tv,, We have for all r € ¢,

Z,=0 .

By (2.38), syi—e 2> sy, for all i > max(0,¢) and all u,v on cycle c. By summing along

the cycle ¢, we see that for each u € c and 7' > 0

Suit = Sui Wherei =1+ ¢, .

re€c

Therefore, we can bound s, ;, for every u € c, by

/
B’ = max {su,,-z

ch/\i'<Z€,}

rEC

For any event, v, not on cycle, ¢, we find a path, P,, to this event from an event
u on ¢. Because G’ is strongly connected, such a path must exist and be independent

of <. Then, by summing (2.38) along that path, we get for all 7,7 > 0

Sy, + Z Zp 2 Svi

rep,

where ¢ = ¢' + ¥ ,cp €,. But ¥, cp Z. is independent of i; thus, Sy; 18 bounded by

a quantity that does not increase with successive occurrences. Thus, every Sy, With
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v € c is bounded by B where

B > max {s.,,,-

v€cAi< Ze,.} , and

repP,

v&’c} -1

repP,

B > B'+ma.x{22,
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2.5 Fast Algorithms

The method proposed by Theorem 2.8 may require exponential time to compute the
cycle period as the number of cycles in an arbitrary graph can be exponential in
the number of its arcs. Simple transformations on the graphs will often dramatically
reduce the number of cycles in the graph. We describe two such transformations
in Section 2.5.1. Theorem 2.8 does not provide the only means for determining the
minimum cycle period p. The linear program (2.27) can be solved directly by one
of the new, polynomial-time algorithms for linear programming. However, since the
linear program has such a special form, it can be solved in low-order polynomial time

by using a specialized algorithm. This algorithm is described in Section 2.5.9.

2.5.1 Graph Transformations

The two transformations described in Algorithm 2.1 can be applied to any collapsed
constraint graph even if the value of the delays are unknown. The purpose of these
transformations is to reduce the complexity of the repetitive KR system and thus
reduce the number of cycles in the system. The transformations do not change the
minimum cycle period of the system.

The first transformation eliminates an arbitrary transition (node of the graph)
from the system. It should always be applied if |[P| = [S||T| < |S | + |7, since,
when this condition holds, the rule set R’ is not increased in size by applying the
transformation. It may be desirable to perform this transformation even if R’ is
increased in size since the second transformation may then be able to be applied.
However, blindly applying the first transformation will exponentially increase the
size of R’ for certain graphs. (Remember, multiple arcs—with different ¢ values—are
allowed between the same two nodes.)

The second transformation eliminates rules (arcs of the graph) from the system.
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1. To remove the node u from the transition set E’':
(a) Form the sets
T = {{w,i—e)S(ti)eR |u#t}
S {(s,i—e)o—a—»(u,i)GR'lsgéu}
L = {{u,i—e)>(u,i)e R’}

(b) Combine each rule in S with each rule in T by summing the a and ¢ values and
remove the intermediate node u:

P = {(s,i—e—e) " (t,i) | (s,i ) % (u,i) € SA
(u,i—€') & (t,i) € T}
(c) Set R':= (R'\(SUT))uP
(d) If L = @ then set E' := E'\{u}

2. If there are two arcs with the same source and same target, and the same occurrence
offset ¢, then replace the two arcs with a single arc combining the o values. That is, if

{t,7)
(t,7)

are both members of the rule set R’, then remove both rules from R’ and add the rule

(s,i—¢)

- (s,i—¢)

Ir In

(s,i—e) B (1,4)

Algorithm 2.1: Transformations that potentially reduce the
number of cycles in a constraint graph. The first transformation
may increase the number of arcs as it decreases the number of
nodes while the second transformation always reduces the size
of the graph.
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It should be applied whenever possible as it decreases, by as much as a factor of two,
the number of cycles that visit both nodes s and ¢. See Section 6.2 for an example of

these transformations.

2.5.2 Primal-Dual Method

In this section, we develop an algorithm which solves the primal program (2.27) and
the dual program (2.26), simultaneously. This iterative algorithm is constructed by
applying the primal-dual method [29], a general technique for constructing special-
case algorithms for solving linear programs. The constructed algorithm is of the
following form: Starting with an initial feasible solution z(®, p(® to the primal pro-
gram

Arz+ep>a, p>0, z=minp , (2.39)

the algorithm iteratively produces new feasible solutions z*), p(*) to the primal pro-

gram and eventually produces a feasible solution y to the dual program
y'A' =0, yTe <1, y>0, w=maxy’a, (2.40)

such that the objective values of both the primal and dual solution are equal. Thus
z®), p*) is an optimal solution, and the iteration terminates.

The complete procedure is shown in Algorithm 2.2. At several points in the
algorithm, the a values are compared and thus must be known. Furthermore, we
assume that every cycle ¢ through the collapsed constraint graph G’ has a positive
sum of € values. We denote this by e(c) > 0.

We now describe how this algorithm is derived and give a proof of its correctness.

The algorithm is based on the two equilibrium conditions of the following lemma.

Lemma 2.11 Let z,p be a feasible solution to (2.39) and let y be a feasible solution
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1. Form the initial feasible solution z(® p®
(a) Temporarily remove all arcs with £ > 0 in G'.
(b) Topologically sort the resulting acyclic graph.
(c) Using the topological order, set

0 if vis a root
T (0 = 0 . a - / .
v ma.x{.’l:u( )t a|(u,i—e)S (v,i) € R /\ESO} otherwise

(d) Set

2,0 — 7, _ 4

p(°)=max{ (u,i—g)ﬂ»(v,i)eR’/\€>0}

—-£&

2. Decrease z,(F) by z,(® and compare with & — ep® for all arcs (u,i—€) & (v,d). If
equal, the arc is called a critical arc.

3. If the graph of critical arcs is cyclic or p(*) = 0, then set 7% = 0 and exit with the
optimal solution z(*), p(*), Else,

(a) Topologically sort the graph of critical arcs.
(b) Set ¥ =1.
(c) Using the topological order, set

(k) 0 if vis aroot
¥ =) min {:i:s,k) — gp®) I (u,i —€) = (v,i) is critica.l} otherwise

(d) Set

:i:f,k) _ i&k) +ep®)

78— 2 4 ep® > 0}

(e) Set
2B+ — (k) _ gR) (k) p+D = p(F) _ 6() (%)

4. Increment k and go to step two.

Algorithm 2.2: Polynomial-complexity algorithm to find the cy-
cle period of the repetitive system (E’, R') if the delay values
are known in advance and ¢(c) > 0 for every cycle c in (E', R').




46

to (2.40). If the equilibrium conditions

yle=1 V p=0 (2.41)

(Az+ep)i=a; V y; =0, forall ¢ (2.42)

are satisfied, then z,p and y are optimal solutions, and p = yTa.

Proof: (This result and its converse follow from the equilibrium theorem [29], a direct

consequence of the duality theorem. Here, we prove the result directly.) By (2.42),
y (Az+ep—a) = 0.

Thus, y"ep = yTa. By (2.41), yTep = p. So, the objective values at the two feasible
solutions are equal, and thus the feasible solutions are optimal. &
At each iteration, we use these equilibrium conditions to construct an auxiliary

linear program that is easier to solve than the original program. Let
I® = (| (A2® +ep®), = o},

that is, let I(®) be the set of critical arcs at the k* iteration. We search for a solution
to the dual by considering only those y where y; = 0 for every i ¢ I®) | Suppose at

the k' iteration we find the optimal solution to the auxiliary linear program
E=miny, y"A' =0,yTe+y =1,4,9/ >0,y =0if i g I® (2.43)

If £ = 0, then by Lemma 2.11, y is an optimal solution to (2.40) and z®*), p®) is an
optimal solution to (2.39).
We now prove two lemmas that provide the machinery to solve this auxiliary linear

program (2.43).
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Lemma 2.12 A dual program to (2.43) is
max p®, (A'3®) + ep®); <0 for all i € I®, p® < 1,
Proof: The linear program (2.43), excluding the extra constraint
v = 0ifigI®

can be expressed in standard dual form (2.11) as follows:

(yT z/)(jz, —(;AI ;: :i) < (OT 0T 1 —1)

vy > 0.

By definition, the primal program corresponding to this dual program is:

Zo
) I
n = mln(()T 0T 1 —1)
Do
P1
Zo
A —A ¢ —¢ I 0
>
0 0 1 -1 Po -1
D1
"%07£1,ﬁ07ﬁ1 Z 07

(2.44)
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with the new variables £, 1, po, p1. Setting # = #; — %o and p = P1 — Do yields
n=maxp, AZ+ep<0,p<1.

If for some %, y; is forced to be 0, then row i of A’ can be eliminated without
changing the optimality or feasibility of the solutions to the two linear programs.
Thus, if y; = 0 for all i g I®), then only the constraints p<1and

(AZ+ep); < 0 forallie®

need to be satisfied in the primal program. g

Lemma 2.13 The linear program (2.44) has an optimal solution with * = 0 if the
subgraph of G’ containing only critical arcs is cyclic. If this subgraph is acyclic, then

this program has an optimal solution with p(*) = 1.

Proof: Let u be the cycle vector of a cycle ¢ in the critical subgraph. Since c is also

in G', we know that u"e = g(c) > 0. But from (2.44), we know that

uT(A'2® +¢5®) < 0, which implies
uTep™ < 0, which implies
p(k) < 0.

The optimal value is 0 since 2*) = 0 and p® = 0 is a feasible solution.

If the critical subgraph is acyclic, we can always build up a feasible solution to
(2.44) with p®) = 1. See Steps 3(a),(b), and (c) of Algorithm 2.2. §

From these lemmas, we know that if the critical subgraph is cyclic, then z(®, p*)
is an optimal solution to the original program (2.39). Also, if p*) = 0 in a feasible so-

lution, then the solution must be optimal. This proves correctness given termination.
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We now show that by construction, each z*), p®) is feasible. If the critical subgraph
is acyclic, then $®) = 1 and we can generate a new feasible solution to the original

primal problem (2.39) by

2®+) — 50 _ gk 5k) p*tD = p®) _ g®) 5 (2.45)

where 0%) is chosen to be as large as possible while still retaining the feasibility of

gk+D) (k1)
Lemma 2.14 The feasibility conditions

A'z® g ep® _ 0® (A2 4 gpk) ) o (2.46)

>
p(k)_g(k)ﬁ(k) > 0 (2.47)

are satisfied if %) is chosen such that

k . (A'z® + ep®)); — g N A(k k
%) = min ({ (450 + ), (A'3®) 4 gp( )),. >0 U{p( )} .

Furthermore, %) > 0V p® = 0 and §® is as large as possible.

Proof: By the definition of 6, (2.46) is satisfied for all arcs with
(A0 £ ep®), > 0. (2.48)
For the remainder of the arcs,

_g(k)(A'i(k) ¥ €ﬁ(k))i
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is non-negative, and only relaxes the previously true constraint
A'z®) 4 ep®) > o

If p*) > 0, then to prove §® is positive we must show that each element in the
large set is positive. Suppose that 2.48 holds for some i. But then, by (2.44),i g I®),
and both the numerator and the denominator are positive.

To prove that 8 is as large as possible, we need only show that increasing it will
violate a constraint. If 6%) = p() then any increase will violate (2.47). Otherwise,

for some ¢, (2.48) holds and
I (A'3® 4 ep®), = (Az® 4 p® a); .

Increasing 6%) violates (2.46) for this i. §
We proceed by proving that the algorithm terminates. Again some preliminary

lemmas are needed.

Lemma 2.15 Let
LW = {i]ieI®AA2® 4 ep®),; = 0}. (2.49)
At each iteration k£ > 0 of the algorithm,
® o &1 (2.50)
Proof: If i € I,V then

(A2® D 4 eptD) =0 A (A3ED 4 gpt-Dy, = 0,
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and, thus,
1 (k) k)Y, — 1 p(k=1) (k=1)y. _ g(k—1)( 4/ 7(k-1) -1, — o
(A’ + p'™); (A'z +epF 1) — 61 +ep\" ) =y,

which is equivalent to i € IF), g

Lemma 2.16 At each iteration & > 0 of the algorithm,

F*D >0 v k=9 (2.51)

A BV ) (2.52)

Proof: To show (2.52), we argue that each arc that determined the value of an
element of -1 in step 3c of the algorithm is still in I®, since each such arc is in
IL%1 and by Lemma 2.15, I®) D I*5 D Now either *) = 0 and we terminate
the algorithm, or we execute step 3¢ again, but with a larger set over which to take
the minimum. Thus each element of 2*) can be no greater than its corresponding
element in #(¢-D.

To show (2.52), we argue that if the algorithm does not terminate at iteration k
(in which case §® = 0), then if #*~D = 7 we could have been increased ¢~V
by 6%) without violating (2.46). But by Lemma 2.14, 8 is chosen to be as large as
possible. & .

We can now show the main termination result.

Theorem 2.17 There exists a B such that the variant function
o® = B+Y 3P

is a monotonically decreasing, integer valued, and non-negative.
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Proof: By (2.51) and (2.52) at least one element of %) decreases at each iteration or
the algorithm terminates. Thus the sum of the elements decreases at each iteration.
Each element of #*) is integral valued by construction. A possible bound B in the

variant function is

B = Zma.x{s(p)lpePu} ,

u€E

where P, is the set of paths (not cycles) ending at node u, and &(p) is the sum of the
¢ values along the path. g
Typically, the bound B is small, on the order of the number of transitions in the

system, since most paths p through the graph have a small e(p).

Example 2.9 Figures 2.2 through 2.11 show the execution of Algorithm 2.2 on a
simple example shown in Figure 2.1. The initial feasible solution, Figure 2.2, was
produced by Step 1 of the algorithm. In this figure and all other figures representing
the complete graph, the solid lines denote critical arcs and the dashed lines denote
non-critical arcs. In Figure 2.3 and all other figures representing the critical-arc
graph (the reduced primal graph), the solid lines denote critical arcs and the dashed
lines (both light and heavy) denote non-critical arcs. The light dashed arcs do not
contribute the § computation since £ — () + ¢5(® < 0.

By examining the complete and critical-arc graphs, we compute the 6 values as

follows:
0©® = mipd 0=6+11-1 0-6+411-2 0-6+11-3 0-6+11—4
= 0-0+1 " 0—0+1 ° 0—041 ' 0—0+1
5-04+0—1
0+1+0

= min{4,3,2,1,4} =1
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0-6410-1 0-6+10-2 0-6410-3
0-0+1 * 0-0+1 ' 0-0+1

4-040-1 5-140-1
0+1+0 7 0+1+0

= min{3,2,1,3,3} =1

0V = min

0-649-1 0-649-2
0-0+1 > 0-0+41

3-040-1 4-140-1 5-240-1
04140 ' 0+140 7 O+140

8® = min

= min{2,1,2,2,2} =1

0—-6+8-1
0-0+1

2-040-1 3-140-1 4—-240-1 5—3+0—1}

6® = min

0+140 * 04140 * 0+140 * 04140

= min{l,1,1,1,1} =1
O

2.6 Summary and Related Work

The theory developed in this chapter provides the necessary tools for analyzing the
performance of a computation described in the abstract formalism of an event-rule
system. Timing simulations and their approximations, minimum-period linear timing
functions, provide convenient representations of the times at which the events of
the system occur. We have shown that the timing simulation exists whenever the
underlying general ER system is feasible. We have shown that a MPLTF exists
whenever a repetitive ER system is feasible. We have provided two techniques for
determining the cycle period of a repetitive ER system. In the first technique, we
enumerate all the cycles in a graph to compute p. The second technique is less
intuitive, but provides a solution in low-order polynomial ‘time.

Timed Petri nets could also be used as the underlying formalism. Similar results to
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Figure 2.1: Collapsed-constraint graph of Example 2.9.
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‘Theorem 2.8 and Theorem 2.10 were shown by Ramamoorthy and Ho [31] for decision-
free timed Petri nets. The connection between this problem and linear programming
was established by Magott [20]. Neither work utilized a result similar to Lemma 2.6.
Magott briefly mentions that the resulting linear programming problem can be solved
by a general-purpose polynomial-time algorithm. Algorithm 2.2 represents a new
technique for efficiently determining the cycle period of a repetitive ER system (or,
if desired, a decision-free timed Petri net).

One reason for using ER systems and timing functions instead of timed Petri nets,
is that they extend easily to systems with regular arrays of processes. This advantage

is described in detail in Chapter 5.
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Chapter 3

The Synthesis Method

In this chapter, we briefly review the synthesis method developed by Martin [25] for

systematically transforming concurrent programs into self-timed circuits.

3.1 Notation and Intermediate Forms

The synthesis method is based on semantics-preserving transformations between inter-
mediate representations of a concurrent program. The highest-level representations
are in the form of Communication Sequential Processes (CSP) programs based on
Hoare’s original programming notation [16]. These representations are transformed
into handshaking ezpansions, a refined form of CSP programs where all communica-
tion actions are replaced by explicit manipulations of boolean variables. Handshaking
expansions are further transformed into sets of production rules where all explicit se-
quencing has been removed. There is a direct transformation from production rule
sets into quasi-delay-insensitive circuits, circuits that function correctly regardless of

delays in all gates and most wires [22].
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[ Syntax | Operational Description ]
skip Do nothing.
zT,zl Assign true or false to the variable z.
X, Xz, Xz Perform a communication across the port X.
S;T Perform statement S, then perform statement T
S,T Perform statements S and T’ concurrently.
XeoY Perform the two communication actions, X and Y, simultaneously.

[Bo — So Wait until at least one guard evaluates to true.
I... Perform one of the commands with a true guard.
B,_; — Su—_1] | Continue with the next command.
B] Abbreviation for [B — skip).
*[By — So Evaluate all the guards.
. If no guards are true, then continue with the next command.
|Bp—1 — Sn—1] | Perform one of the commands with a true guard.
Repeat the previous steps.
*[S] Abbreviation for *[true — Sj.

Table 3.1: Basic constructs of CSP used to describe processes.

3.1.1 Communicating Sequential Processes

The language constructs of our variant of CSP are shown in Table 3.1. Both syn-
chronization and distributed assignment are performed by communication actions.
The execution of the statement X, where X is the name of a communication port,
performs a zero-slack [24] synchronization with a communication action on port Y in
a second process. The control flow of the first process cannot pass the statement X
without the control flow of the second process reaching (and being assured of passing)
the statement Y. Distributed assignment is performed during the synchronization.
As a side-effect of the output communication action X!z in the first process and the
corresponding input communication action Y?y in the second process, the value of
the variable x is assigned to the variable y.

The control structures are sequential composition (;), parallel composition (,),

synchronized communication (e), selection among guarded commands ([.. .]) and rep-
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| Syntax | Meaning

true, false

Constant values.

-~B

Negation of expression B.

Bg A B;

Conjunction of expressions By and B;.

By V By

Disjunction of expressions By and B;.

x

Value of variable z.

X

Probe of X. Communication action on port X pending.

Table 3.2: Syntax of boolean expressions used to guard com-

mands.

etition of a guarded command set ([...]). Table 3.2 shows the syntax of the boolean

expression used as the guard for a guarded command.

3.1.2 Handshaking Expansions

Communication actions are implemented by a sequence of assignments and waits

on boolean variables. The communication channel is the physical mechanism that

connects the two processes. In the case of a synchronization communication between

a process with the port X and a process with the port Y, the physical mechanism

consists of two wires, one connecting the output variable zo to the input variable yi,

and the other connecting the output variable yo to the input variable zi. Given this

interconnection structure, we could use the following sequence of assignments and

waits on the variables zo, zi, yo and yi to implement the synchronization:

P1'=—.
P;)_E

cozol;lzi);. ..

. lwiliyoT;...

Initially all variables are false. A communication action is said to be passive if its

handshaking expansion begins with a wait and active if its handshaking expansion
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begins with an assignment. In this case, the communication action in process P; is
active and the communication action in process P; is passive. This implementation
of the synchronization communication is called a two-phase handshake.

In order to issue subsequent communications on these ports, it is convenient to re-
set the variables back to false immediately after a communication. The handshaking

sequences

P = ...;zof;[zi];zol;[~xi];. ..

Py = ...;lyi}yol; vl vol; . ..

can also be used to implement a communication action. A second synchronization is
performed during the down-going assignments of this sequence. This implementation
is called a four-phase handshake.

Multiple wires in one direction can be used to implement distributed assignments.

Implementations of this type of communication are described in Section 3.2.3.

3.1.3 Production Rules

A production rule consists of an assignment guarded by a boolean expression.
B — 27

The execution of a set of production rules has the following operational semantics:
repeatedly evaluate the guard of a production rule and if it evaluates to true, per-
form (fire) the corresponding assignment. This execution is weakly-fair. If a guard
evaluates to true and remains true, the corresponding assignment will eventually fire.
If firing the assignment does not change the value of the output variable, in this case

z is already true, then the firing is called vacuous.
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A set of production rules must satisfy the properties called stability and non-
interference. A set of production rules is stable if, during execution, it is never the
case that a guard is falsified before the assignment fires. A set of production rules
is non-interfering if, during execution, it is never the case that the guards of two
production rules—with the same output variable but assigning the opposite value—
evaluate to true.

Requiring stability and non-interference means that computations requiring arbi-
tration cannot be described completely as production rule sets. In such cases, special
arbiter and synchronizer processes (describable in handshaking expansion form) are

transformed directly to operators.

3.1.4 Quasi-Delay-Insensitive Circuits

A circuit is a collection of operators connected by wires. A circuit is delay-insensitive
(DI) if it functions correctly regardless of delays in both its operators and its wires.
The class of computations that can be performed without making any assumptions
about wire delays is very limited [22].

A circuit is speed-independent (SI) if it functions correctly regardless of delays in
its operators. The wires in a SI circuit are assumed to be instantaneous or isochronic.
A circuit is quasi-delay-insensitive (QDI) if it functions correctly regardless of delays
in its operators and in all its wires except those labeled as isochronic forks. A circuit
is SI if and only if it is QDI, since every wire can be labeled as isochronic. A non-
isochronic wire can be introduced into a SI circuit by an explicit wire operator. In
the circuits we synthesize, there are fewer isochronic forks than non-isochronic forks,
and thus it is more convenient to label a small number of wires than it is to introduce

a large number of extra operators. For this reason, we adopt the QDI model.
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Operator Sets

An operator is a group of production rules with the same output variable. Often it
is convenient to describe collections and interconnections of operators in schematic
form. If an operator can be viewed as a combinational logic gate, such as an AND
or an XOR gate, or as an inverter, we use the traditional logic symbol. Bubbles are
used to indicate inversion.

Operators that are not combinational are called state-holding. Many operators
are a slight modification of the Muller C-element and we use a special convention
for naming these operators. The symbols for a C-element and other generalized C-
elements are shown in Figure 3.1. The two production rules corresponding to these
elements both have simple conjunctive guards. If an input z to one of these operators
is not annotated with either a “4” or a “—”, then the literal x appears in the guard
of the production rule for 21 and —z appears in the guard of the production rule for
z|. If the input z is annotated with “+”, then = appears in the guard of 2T but -z
does not appear in the guard of z |. If the input z is annotated with “—”  then -z

appears in the guard of 2z | but x does not appear in the guard of 2.

CMOS Implementation
Figures 3.2 and 3.3 show two alternative CMOS implementations of the production

rules:

wAzAy — 27

Az Ay — zl

In both implementations, series chains of transistors are used to implement the con- |

junctive guards of the production rule. The implementations differ in how the output
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. 2 TAy — 27
TAy — 2]

Y

z 2 z — 27
Yy — Zi

Y

w
z 2 TAYAw — 27
TAYy — 2]

Y

Figure 3.1: Schematic symbols for various generalized C-
elements. The first state-holding element is the Muller C-
element. The second element is a set /reset flip-flop.
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Figure 3.2: Weak-feedback CMOS Figure 3.3: Fully-static CMOS im-
implementation. plementation.

—h—

value is retained when the guards of both production rules evaluate to false. In Fig-
ure 3.2, a weak inverter is used to feed the output signal back to the storage node.
The correct functioning of the circuit shown in Figure 3.3 is not dependent on the

ratio of transistor strengths.

3.2 Transformations

We now briefly describe the transformations of the synthesis procedure and mention

the possible effect of the transformations on the performance of the resulting circuit.

3.2.1 Process Decomposition

At the CSP level, any single program statement S can be replaced by: i) a pair of
communication actions on a single port C and ii) a new concurrent process imple-
menting just that statement surrounded by a pair of communication actions on the

single port D. Ports C' and D are connected to form a channel. Variables and ports
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must be shared between the original process and the newly created process. The

decomposition can be written as
S50;8;81 > (So;C;C; 81 || %[D; S; D)) channel (C, D).

The symbol > should be read as “compiles into” [5]. (In previous work [4, 5], process
decomposition has been performed by replacing S with a single communication and
surrounding S in the new procesé by a single probed communication. The techniques
are identical if C is active and D is passive. However, the probed communication
cannot be implemented if D is active, so we will exclusively use the more general

technique.)

3.2.2 Reshuflling

One of the two synchronizations done during each four-phase communication is not
necessary. The term reshuffling is used to describe the procedure of interleaving
the unnecessary synchronization (usually the down-going one) with other activity
performed by the process. Reshuflling has a profound effect on the performance of
the resulting implementation, usually resulting in a trade-off between area efficiency
and time efficiency. One of the major uses of the performance analysis techniques
of Chapter 2 is to determine when reshuffling can be performed—thus producing a

smaller circuit—without sacrificing performance.

3.2.3 Decomposition into Control and Data Parts

Communications involving data are implemented using process decomposition. It is
_convenient, though not necessary, to implement the pair of communication actions

C; C with a single four-phase handshaking of the same type (active or passive) as
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the port X. What we describe here is just one possible scheme for inserting data
processes into the control communications. The reshufled handshaking expansions
given represent possible, although not necessarily optimal, implementations of a data,
communication. Operator-level implementations of these processes are shown in Fig-

ures 3.4 through 3.7.
Passive X!z

*[[X); D; X'z; D] © #{[zi];doT;[di]; [z — zl0T |~z — 2001];
[~zi];z10],200];do |; [~di]]

> «[[zi]; doT;[di]; [z — zloT |nz — z001];
[nzi]; dol; [~di]; z10], 200 ]

Active X!z

*[D; X!z; D] > #*[[di];doT;[r — zloT [~z — z001];
[z1]; 210 ], 200 |; [~zi]; [~di]; do |]
> *[[di]; [z — zloT |~z — 2001];

[z1]; doT; [di]; 210 |, 200 ; [~zi]; do ]

Active X7z

*[D; X?z; D] o «[[di];dot;zot;[xli — =1 [20d — z {];
zol;[-z1i A —~z0i]; [di); do ]
> *[[di];zol;[z1li - z1 |20¢ — z [];
doT;[~di]; zo |; [~xli A —207]; do |]
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Passive X7z

*[[X]; D; X?z; D] > #[[zliV z0:}; doT;[di]; [z1i — =T |20 — z |];
zoT;[~zli A ~z0i]; zo|; do |; [di])

> «[[z1liV 20i]; dot; [di]; [x1i — 2T |20i — 2 |];
zof; [~zli A ~z0i]; do |; [~di]; zo |]

Figure 3.5 shows an alternative implementation of the handshaking expansion for
an output unit. (The circuit is the same in both the active and the passive cases.) In
this implementation, the value of the data variable x can be changed at any moment
after one of the output wires becomes high. This implementation avoids an isochronic
fork between the control and data parts when sophisticated sequencing is employed
in the control part. See Chapter 6.

Figure 3.9 shows an alternative to the standard implementation (Figure 3.8) of a
one-bit datapath using a passive-input and an active-output. Because of its simplic-
ity, we will use this implementation whenever a passive-input/active-output unit is

required.

3.2.4 Multiple-Bit Datapaths and Completion Trees

The above handshaking expansions and circuits implement a single-bit datapath.
Multiple-bit datapaths can be derived through another application of process decom-
position. The resulting implementation is an instance of a single-bit datapath process
for each of the multiple-bits, and a completion detection process that is used to col-
lect the acknowledgment signals returning to the control part. A completion-detection

process consists of a tree of C-elements.



do i

Figure 3.4: Implementation of an
output unit. The circuit is the same
for both the active and passive cases.

Figure 3.6: Implementation of an
active-input unit.
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do zi

Figure 3.5: Alternative implemen-
tation of an output unit. The data
variable = can safely change as soon
as zlo or z00 rises.

Figure 3.7: Implementation of a
passive-input unit.
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Figure 3.8: Standard implementation of a passive-input/active-
output datapath.

p.di n.do

p.do

Figure 3.9: Alternative implementation of a passive-
input/active-output datapath. This implementation eliminates
one OR gate and two state-holding elements per bit, and elimi-
nates a completion tree.
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3.2.5 Strengthening the Production Rules

Handshaking expansions are transformed into production rules by restricting the firing
of an assignment until after the previous assignment in the sequence has fired and
the boolean expression in the intervening wait evaluates to true. To ensure that the
assignments are not performed out of order, the current position in the handshaking
sequence is also needed to restrict the firing. Sometimes, the existing variables of the

process can be used to distinguish between the positions in the handshaking sequence.

3.2.6 Introducing State Variables

Sometimes there are insufficient variables in the process to distinguish the states of
the handshaking expansion. New variables called state variables are introduced. The
position in the handshaking expansion where these variables are introduced can have
an effect on the performance of the system. From the point of view of performance,
a good place to add a state variable assignment is after the raising or lowering of an
output variable of a communication action. Then, the delay in changing the value of

the variable is concurrent with the delay of the communication action.

3.2.7 Bubble Shuffling

Before production rules are mapped into operators, it is desirable to change the sense
of the variables in the production rules so that all inputs constraining a downward
transition on the output variable are negated and all inputs constraining an upward
transition are non-negated. This facilitates the translation to a CMOS circuit. This
transformation is called bubble shuffling, because the “bubbles” representing the nega-
tion of a signal are “shuffled” back and forth from the input of one operator to the
output of another. The quality of this transformation also has a large impact on

the performance of the system since extra operé,tors and thus delays are required to
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implement the inversion of signals.

3.2.8 Decomposition of Large Elements

The particular technology used limits the allowable size of the boolean expression that
guards the firing of a production rule. For a CMOS implementation, the maximum
number of literals in a conjunction is from four to six literals. In some GaAs logic
families, the limit is one or two literals in a conjunction. The existing techniques
for decomposing large elements consist of introducing new state variables into the

handshaking expansion and then rederiving the production rules.

3.2.9 Resetting to the Initial State

Extra circuitry must be added to force the circuit into the correct initial state. Pro-
duction rules for raising or lowering a circuit variable must be added. To ensure non-
interference, some production rules must be prevented from firing while the circuit is
resetting. Which production rules are cut can have an influence on the performance

of the resulting circuit.
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A third class of programs cannot be transformed into repetitive ER systems.
Programs in this class describe inherently disjunctive computations, and are explained

in Section 4.5.

4.1 Modeling Delays

In the remainder of this chapter, we restrict the program representations to handshak-
ing expansions and production rule sets. We do this so that the primitive actions of
the programs are assignments to boolean variables. The act of performing an assign-
ment that changes a boolean variable, that is performing a non-vacuous assignment,
is called a transition. A transition on a boolean variable v is denoted by v T if the
transition is from false to true and v ] if the transition is from true to false. This
use of the notation v T should not be confused with the assignment v := true. A
transition defined this way corresponds directly to a transition of a repetitive KR sys-
tem. An occurrence of a transition corresponds directly to an event in the (general)
ER system generated from a repetitive ER system. For example, occurrence 7 of an
up-going transition on variable v is denoted (v 1, 7).

A handshaking expansion or a production rule set imposes an ordering on these
indexed occurrences of transitions. Ordinarily, only an ordering is imposed, but
because we are interested in the performance of the program, we introduce delays
in addition to the ordering. We typically do not know exact values for the delays
we introduce. Therefore, we denote the delay value with a parameter. We have two

conventions for naming the delay parameters. Consider the rule
(ut,i—¢€) = (v1,i)

In the target-name convention, we use o, as the name of the delay. In the full-name
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convention, we use ay as the name of the delay.
If the full-name convention is used, rule e a4 f cannot always be removed from

the collection:

{e f, e®t g, gt f}.

This is because if a.; > g+ 0y, event f will not be properly constrained if e o fis
eliminated. However, using the target-name convention, a.f = agf = ay, rule e s f
can be safely removed. The target-name convention is used when modeling hand-
shaking expansions and the full-name convention is used when modeling production

rule sets.

4.2 Modeling Handshaking Expansions

We now transform two example handshaking expansion into repetitive ER systems
using ad hoc techniques. In Section 4.2.1, we develop a general algorithm.

As a simple example, we will transform a program composed of three concur-
rent handshaking expansions that behave in a completely sequential manner, into a

repetitive ER system.

Example 4.1 The handshaking expansion for a sequencing process (D element) is

as follows:
D = «[is];loT;[Hlif;rot; [ri];rol; [ori];lo]] .
In order to make a closed-system, we add the two processes

E; = «{li1;[lo};1i];[-l0]]
E. = «fro];rif;[-ro];ri}]
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that describe the environment connecting to the left and right ports of the D-element,
respectively. Initially, all program variables are false. We will execute this closed
system of handshaking expansions in order to construct the corresponding ER system.
The first event that can fire is (li 1,0) in process Ei, to be followed by (lo 1,0) in
process D. Continuing, we see that the execution of this closed system is completely

sequential:
.- {li],0);(roT,0); {ri1,0);(rol,0); {ri|,0); (lo},0); {ii T,1); (loT, 1) ...

In such a simple example, the repetitive nature can be immediately recognized, and

we get

(lol,i—1) ¥ (1i1,4),i>0
(it dy ¥ (lot,d)
(lo,3) V5 (li},d)
(1il,9) ¥ (rot,i)
(rot,i) ¥ (ri1,q)
(rit,i) ¥ (rol,i)
(rol, i) ¥ (ril,d)
(ril, iy ¥ (lol,d)

as the rule set of a repetitive ER system. 0O

In the next example, we consider a more concurrent computation. Although each

process is sequential, the activity of the closed system is highly concurrent.



76

Example 4.2 Consider the closed system

o
)
u

«[[l2); loT; [ori); rot; [Hli); lo; [ri); ro ]
*[lit; [lo]; 1i |; [-lo]]
E, = «f[ro];rit;[-ro];ril]

S
Il

where initially all the variables are false. We cannot write down a sequential execution
of this closed system as we could in Example 4.1. However, we can generate the
constraints separately for the process BD and for the two environment processes. By
examining this handshaking expansion, we see that {lo7,0) is constrained to fire after
(12 1,0). Then (ro1,0) can only fire after {lo 1,0). An occurrence of ri | does not
constrain (roT, 0) because =i is true in the initial state. The next assignment (lo |, 0)
is constrained by thé two events (ro1,0) and (li |,0), and similarly (ro |,0) occurs
only after (lo |,0) and (ri 1,0). Starting over at the beginning of the repetition,
the assignment (loT,1) depends on both (ro |,0) and (li ,1). In this case there is
a dependence between a 0™ occurrence of transition ro | and the 1% occurrence of
transition lo]. And finally, we see that (roT,1) depends on both (loT,1) and (ri |, 0).

Continuing the execution adds no new dependencies. The environmental processes
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are easily transformed, resulting in the complete rule set

(lo1,i) ¥ (rot,i) (lo],i—1) ¥ (li1,i),s>0
(ro1,i) V3 (lol,d) (lo1,i) V= (ii},q)

. . Aol 3

(hl"_) : (lol"? (rot,i) V3 (rif,i)
(lo],i) V- (rol,i) (roli) S (rili)

(rit,d) ¥ (rol,i)
(rol,i—1) ¥ (lo1,i),i>0
(i1, 9y ¥ (lo1,i)
(ril,i—1) (roT,i),z’>O.

for the repetitive ER system corresponding to the closed system.

4.2.1 Straight-Line Handshaking Expansions

A straight-line handshaking ezpansion (SLHE) is a handshaking expansion where each
select statement is of the form [C' — skip], with C being a conjunction of literals,
and each repetition statement is of the form *[true — S]. A SLHE has a vacuous
wait on the literal £ if £ is true in the initial state, and if as the process is executed
starting from the initial state, the control flow of the process crosses a wait [ A C']
without ¢ ever having been falsified. Similarly, a SLHE has a vacuous assignment
if during the execﬁtion of the process there is an assignment that does not change
the program state. A SLHE has a repeated assignment if within the same repetition

statement, there are two assignments of the same value to the same variable.

Example 4.3 The buffer process

delayedC = #[lo1;[li A —ri];rol;lol;[-li A ri];rof]
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has one vacuous wait on literal —ri and one vacuous assignment (ro |). The toggle

process
toggle = «[[li);loT;[li);lol; [li);loT;[Rli); lo); rot; [ri]; ro|; [-ri]]

has two repeated assignments (loT and lo]).

To ease the translation to an ER system, we restrict the class of SLHE collections

to those that satisfy the following conditions:
1. The collection is deadlock-free.

2. Each process P is of the form S;«[T] and contains no vacuous waits (on any

literal) or assignments.

3. § and T are sequences of alternating waits and assignments. (If ag;a; and

[co); [e1], then replace with ag; [true];a; and [cy A ¢;], respectively.)
4. S begins with a wait and ends with a wait (could be just [true]).
5. T begins with an assignment and ends with a wait.

6. Each variable appears in one process only and is either a local variable or a

variable of a communication action.

7. If a variable v appears in a wait of one process, then v is either local to this
process or else not assigned to in any process and is the input variable of a
communication action with its corresponding output variable assigned to only

in this process.

8. All variables are initially false.
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A collection of straight-line handshaking expansions satisfying these restrictions is

said to be in standard form.

Example 4.4 The collections of handshaking expansions in Examples 4.1 and 4.2
are not in standard form. In particular, they both violate Rules 6 and 7 because
input variables of a communication action are directly assigned to in the environment

processes. We now put the closed system of Example 4.1 in standard form.

D = [li];*[ioT;[ﬂli];roT;[rz'];rol;[—uri];lol;[li]]
E,

i

[true]; x[zoT; [zi]; zo |; [~zil]

E,

i

[yil; x[yoT; [-yil; yo L; [yil]

The handshake variables l7 and lo are connected to zo and zt, respectively. Similarly,

ro and ri are connected to yi and yo.

Example 4.5 The handshaking expansions from Example 4.3 correspond to these

standard form expansions:

delayedC = [true];loT;[li]; *[lo}; [-li A ri];rol; [true];lof; [li A =ri];rol; [true]]

toggle = [li];*[lo1; [~li];lol; [ld]; loT; [ld]; Lo |; [true]; ro1; [ri]; ro; [-ri A i)

O

The events and rules of the ER system are generated individually for each pro-
cess directly from the handshaking expansion. Events and rules are also added to
implement the constraints corresponding to the communication actions.

We begin by generating the events and rules contributed by a single handshaking
process P = S; *[T]. We attach to each assignment a of the handshaking expansion

the occurrence index i, of that assignment; that is, the number of times an identical
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assignment (on the same variable and to the same value) precedes a in the sequence
S;T. For the first assignment a of the loop we will attach a second occurrence index
corresponding to the number of times a occurs in S;T. This second index represents

the occurrence of assignment a on the second trip through the loop.

Example 4.6 Continuing with the previous example:

delayedC = [true]; 109 1; [13]; #[1o@D |; [-li A 7i]; 70 T; [true];
106D 1; [li A =ri]; 7@ |; [true]]
[ld]; #[10© 1 [=ld]; 16 {;
[13]; 160 1; [li]; 10 |5
[true]; 7o 1; [ri]; 7@ |; [ri A L]

It

toggle

O

We now determine the occurrence indices of the literals in the waits. For each literal
£ of wait w, we define ¢, in terms of the occurrence indices of the assignments. If the
variable v of £ is local, then we look backwards from w in the sequence S; T until we
find the assignment v 1 if £ = v or the assignment v | if £ = —wv, and then use the
occurrence index previously found for that assignment. If vs is the variable of ¢ and
is the input variable of a communication action V, then we can use the occurrence
indices of the assignments to the output variable vo of V' in order to determine the
occurrence index i,;. Now there are four cases to consider, as shown in Table 4.1,
which correspond to whether the communication action is passive or active, and to
whether the input variable is non-negated or negated. In every case except the first,
we use the occurrence index of the last assignment on vo. In the first case (passive,
non-negated), we use one plus this number, because the transition on v is the first
transition of the communication action. In this case as well, it is possible that no

previous assignment to vo exists. If this is so, we use 0 for the occurrence index of vi.
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[ Type | Fragment of Handshake Sequence |

Passive | ...;00%) |;. . ;i A ) .
Passive | ...;vo® ;... [oi® 7 N
Active ...;vo(")T;...;[vi(")/\...];...

Active |...;v0® 1;...;[—\111'(") A

Table 4.1: Correspondence between occurrence indices of the
input and output variables of a communication action. This
correspondence is only valid if all handshaking variables are false
in the initial state.

Example 4.7 Continuing with the previous example:

delayedC = [true]; 10 1; [liO]; +[16@D |; =1 A ri®]; 70 1; [true];
10 1; [lEM A =ri®; 70 |: [true]]
toggle = [li9); {16 1; [<1i®]; 16©® |;
0160 1; (O] 16D
[true]; ro©@ 1; [ri®]; 70® {; [-ri® A 1]

O

We are now in a position to determine the contribution to the event set E and rule
set R that corresponds to each assignment a in S; #[T]. To determine the assignment
a’ and the wait w that constrain the firing of a, we refer to Table 4.2. We form the

sets E* and R* for each assignment a in the handshaking expansion:

E* = E,UE.U{(a,i)}

"R* = {e® {(a,i,)|e€ E,UE,}
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Type of Assignment Matches WithS; x[T] |
first assignment of S w; a; S"; *[T]
subsequent assignments of S S’ a';w;a;8"; [T

first assignment of T' (first trip) w; *[a; T"]

S'; d'; w; *[a; T")
subsequent assignments of T' S;*[T; a'; w; a; T"]
first assignment of T (second trip) | S;*[a; T"; a’; w]

Table 4.2: Possible assignment and wait patterns of a SLHE in
standard form. We use this table to determine the wait w and
previous assignment a’ that constrain a particular occurrence
of assignment a.

| Type | Literal ¢ | Event {u,7) | Subsumes |

Passive | vt (vit,1) (vol,7 — 1) and (vot,7 — 1)
Passive | —wi (vil], 1) {vo?,i) and (vo],i — 1)
Active | vi (vi1,7) (vo1,4) and (vo},i —1)
Active | —wi (vi],7) (vol,i) and (voT,1)

Table 4.3: Subsumption of rules under the target-name conven-
tion for delays. The subsumes column shows the latest assign-
ments on vo that are subsumed by (u,{) under this convention.
Under the full-name convention for delays, no subsumption is

possible.
where
E, = {(u,4,)|¢is a literal of w and transition u corresponds to ¢}
. {{d',i,)} if @' exists and is not subsumed by e € E,,
al =

0 otherwise

Event (o', iy) is included in E, if it is not subsumed by one of the events in the wait.
The subsumption rules are summarized in Table 4.3. The contribution to sets E and

R from the current assignment a can be easily generated from sets E* and R*. For the
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initial assignments—those in S or the first assignment of T (first trip)—sets E* and
R* are included into sets E and R by the set-union operation. For the other (repeated)
assignments, sets E* and R* are instantiated for all trips through the loop and are
then included into sets E and R. So if {a,i,) is a member of E*, then we include
in E all the events {(a,1, + n,i) for all ¢ > 0, where n, is the number of assignments
identical to a that occur in the loop body T'. Furthermore, if (u,i,) 3 {a,i,) is a

member of R*, then we include in R all the rules (u, i, + n.i) =3 {a,i, + n.i), again

for all z > 0.

Example 4.8 Continuing with just the toggle process:

toggle = [l@]; +[10O® 1 [~ O]; 16 |
O 160 1 (1O 160 )
[true]; ro® 1 [ri®]; rol® |; [~ri® A 1i®)]]

The first assignment, [0(? 1, is constrained by the last wait of the head:

E,

{(1i1,0)}

Ey = 0

E* = {{li1,0), (lo1,0)}
R = {(ii1,0) ¥ (lo1,0)}

i

The second assignment, [0o(® | produces:

E, = {{l:],0)}
E, = 0, event (loT,0) subsumed.

E* = {(lil,0),(lo],0}}
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R = {(hl,O)?"‘o’laol:O)}

Continuing, we see that the subsequent assignments, lo®) 1, lo® |, ro®@ 1, ro©® | and

10® 1, generate the following R* sets:

for o1, R*={{li1,1) ¥ (lo1,1)}

for oM |, R*={(li},1) ¥ (lo},1)}

for @1, R*= {(loi, 1) ¥ (rot,0)}

for ro® |, R* = {{ri,0) P (rol,0)}

for 16® 1, R* = {{ri],0) ¥ (lo1,2),{li1,2) ¥ (lo1,2)}

The rules for all subsequent trips through the loop are formed from the rules generated
during the first trip through the loop. All the rules except the rule using constraining
events from the head S are replicated for each ¢ > 0. The repetition factor, n,, is
multiplied by the loop index ¢ and added to occurrence indices determined previously.
All transitions on the handshaking variables l7 and lo have repetition factor 2. The
transitions on r¢ and ro have repetition factor 1. Thus, the complete rule system

contributed by this process is composed of the single rule

{1i1,0) ¥ (lo1,0)
and the rules

(1i1,20+0) = (lol,2 +0)
(i1, 26 4+1) ¥ (01,2 + 1)
(lil,2i4+1) ¥ (lo],2i+1)
(l0],2i +1) ¥ (rol,i+0)
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(rit,i+0) % (rol,i+0)
(ril,i+0) ¥ (lo1,2i +2)
(11,2 +2) ¥ (lo1,2i +2)

instantiated for all ¢ > 0. N

4.2.2 Communication Between Processes

We must now add the events and rules corresponding to the synchronization between
processes. If I7 and lo represent the handshaking variables of a communication action
in one process and, if 7¢ and ro represent the corresponding handshaking variables
in a second process, then for all ¢ > 0, the following should be added to the rule set,

regardless of which port is active and which is passive:

(lo1,3) V5 (ri1,s)
(lol,i) ¥ (ril,i)
(ro1,i) = (li1,i)
(rol,iy V% (lil,i) .

4.2.3 Conversion From a General FR System to a Pseudorepet-

itive FR System

The constructions up to this point produce general ER system. Most of the time the
transformation into pseudorepetitive form is trivial. However, if there are repeated
assignments in some processes but not in others, we cannot always find a simple
correspondence between the events of processes connected by a communication chan-

nel. To ensure the existence of this correspondence, we must replicate the repeated
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1. Partition the ¢ processes Py, Py,..., P, into singleton partition blocks.

2. For each communication action between a port L in process P; and port R in process
P;

(a) If P; and P; are in the same partition block and nig # %, then abort. (The
system is not deadlock-free.)

(b) Let n = lcm(nig, nrq)-

(c¢) Unroll ;:-‘;t- times the loop of each process in the partition block containing P;

(d) Unroll ;2 times the loop of each process in the partition block containing FP;

(e) Merge the partition blocks containing P; and P; into a single block.

Algorithm 4.1: Algorithm to produce an equivalent set of pro-
cesses with no repeated assignments.
parts of the processes—the T' sequences—until the number of occurrences in 7" of a
communication action C is the same for both of the processes paired by C.
Algorithm 4.1 can be applied to any collection of straight-line handshaking ex-
pansions in standard form. Please note, however, that the size of the collection of
unrolled processes may be exponentially larger (in the number of communication

channels) than the original collection.

Example 4.9 Consider the SLHE collection in standard form:

Py

il

[true]; #[r0oT; [r0i]; 00 |; [r0i]]

i

P [103]; x[l00 T; [103]; 100 | ; [101]; 100 T; [104]; 100 | ; [true);

rloT1;[rld);rlol; [-rli A 104]]

P, = [ld];+[lloT;[-14];110; [11d];1101; [l1d]; 1o |; [true];
r2o01; [r2i]; r20]; [-r2i A 114))

Py = [12); %[l201; [12i);120; [124]]
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where RO connects to L0, R1 connects to L1 and R2 connects to L2. For the pair of
ports R0 and LQO, we see that

n = lem(n,9q, o) = lem(1,2) = 2.
Thus the loop of Py should be duplicated.
Py = [true];*[r0of;[r0d];r00]; [-r0i]; r001; [r0O¢]; 100 |; [-r07]]
For the pair of ports R1 and L1,
n = lem(n.q, nq) = lem(1,2) = 2.
The loops of Py and P; are now duplicated.

Py = [true]; x[r0oT; [r0i}; r00|; [-r0i}; rOoT; [r0i]; rO0 | ; [-r0i];
r007; [r0]; 700 |; [-r0:]; 700 T; [r0:]; 700 |; [-701]]
Py = [10d];%[l00T; [104]; 100 | ; [10:]; 100 T; [~102]; 100 | ; [true];
rlot;[rli];rlol; [-rle A 103];
1007; [-104]; 100 ; [10]; 100 T; [~107]; 100 | ; [true];
rloT;[rli];rlo; [-rli A 10d]]

i

For the final pair of ports R2 and L2,

n = lem(n,94, Niag) = lem(1,1) =1

and no loops need further unrolling. Now all the assignments with n, > 1 are made
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unique by attaching a distinguishing subscript:

P, [true]; %[r0og T; [r0ig]; r00p |; [-70i];
00y 1; [r0%1]; 7001 |; [-r04;];
100, 1; [r0i3]; 7002 |; [r0ia];
7003 T; [r03]; 7003 | ; [-r0i3)]
[1040]; #[100q T; [107¢); 100 {; [1024]; 100y T; [-1074]; 100, {;
[true]; rlog T; [rldo); rlop |; [-rlig A 1025);
1004 T; [11045]; 1002 |; [1043]); 1003 T; [1033]; 1003 |;
[true]; rlo; T;[rld1]; rlog |; -1y A 104g]]

P

P,

I

[1120], *[1100 T, [‘ﬂlll()], llOO l, [llzl], llOl T, [—1[121], 1101 l,
[true]; r2071; [r2i]; 720 |; [-r2¢ A 114g))
Py = [12i];#[1207; [-12];120 |; [124]]

Subscripts are eliminated when generating the names for the delays. Thus the rule

for the first assignment in Py (after the first trip through the loop) is:

(r0ig{,i — 1) %" (r00y 1,%)

a

4.2.4 Vacuous Firings

The restriction to SLHE collections without vacuous waits or vacuous assignments is
artificial and is done only to eliminate special cases from the transformation rules. For
each vacuous wait or assignment, we can use an occurrence index of —1 and proceed
as before. When generating the sets E and R, we do as before but do not include

any events (or rules containing events) having negative indices.



89

Example 4.10 The original SLHE for the delayedC process (with vacuous waits and

assignments) has the following occurrence numbering;:

delayedC = *[loOV 1, [1{©® A —-ri('l)]; o1 |: 16© | [~1©@ A ri®]; ro© 1]

O

4.2.5 Other Initial States

The only thing that must change if the variables of the handshaking expansion are not
all initially false is the definition of the active and passive handshaking sequences for
a communication action. For example, if vo is initially true, then the handshaking
sequence

-3 v0T; [vil;vo |; [-wi]; . ..

becomes a passive sequence with the first assignment (vo1) being vacuous. The roles

of voT and vo| must also be interchanged in Tables 4.1 and 4.3.

4.2.6 Multiple Assignments

The single assignments considered previously could just as well be multiple assign-

ments. Consider the fragment of the handshaking expansion
LA w AL L

where A’ and A are sets of primitive assignments instead of the single primitive

assignments a’ and a as before. In this case the set of events constraining each
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primitive assignment in A4 is E,, U E 4, where
Eq = {(d,in)]d' € A not subsumed by e € E,} .
Thus the events and rules contributed by primitive assignments in A are:

E* = E,UE4U{(a,i,)|ac€ A}
R*

{e&?(a,z’aHeEEwUEA:AaEA}

4.2.7 General Parallel Composition Statements

If two general statements (other than simple assignments) are joined by a comma, we

can still generate an ER system. Consider the handshaking expansion fragment
v (G alsw), (ca W)z a; .

where a', a” and a are simple assignments. The set of events constraining a is E,, U
EyUEg U E,., where E,, and E, are generated in the usual manner, as are E,
and Egn, except that the events in E, (and similarly for E,#) can be subsumed by
elements in either E,s or E,u or E,u.

In the case of the first assignment in one of the branch statements, we use exactly

the same rules as for sequential composition.

4.2.8 Conversion to Simple Repetitive Systems

From Theorem 2.4 we know that to determine the steady-state timing of a pseu-
dorepetitive ER system we need only consider the repetitive part of the system. Thus
if only steady-state timing is desired, the head sequence of a SLHE can be ignored

except when determining the occurrence-index offsets.
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4.3 Modeling Production Rule Sets

The techniques of the previous section are sufficient to translate all collections of
straight-line handshaking expansions into ER systems. The following example illus-
trates how to translate production rule sets derived from straight-line handshaking

expansions into ER systems.

Example 4.11 Consider the lazy-active/lazy-active buffer:

l

LALA = «[[Slilot;z1; [l lol; [-ri];roT; 2 |; [ri]; o] .

By applying the Martin synthesis procedure, the following production rules for process
LALA are derived:

roA-liA-z — lol
lo - z1

linz — lo]
SloA-riAz — rof
ro — x|

TTA-T — 1o

These production rules immediately provide the structure of the corresponding ER
system. There is no need to determine which assignments and waits influence a given
firing through examination of the handshaking expansion. However, to determine
the correct ¢ values for the various rules, information is required about the order in
which the production rules fire. Since the rules were synthesized from a sequential
specification (the handshaking expansion), we can use this specification to determine ,

the between-occurrence-number dependencies. We can assign the following consistent
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occurrence numbering to the variables of the handshaking expansion:

LALA = «[[-li-);10© 1; £© 1, [1i©]; 16 |;
[_.,-,'(—1)]; ro® 1; z©® IR [,.,'(0)]; ro® l] .

The first event lo 1 is constrained by ro |, Ii | and z l. To determine the occur-
rence indices, we use the consistent occurrence numbering from above modified by
subtracting one if the constraint crosses a loop boundary. Thus we get the three
rules constraining lo 1 all with € = 1. All the other rules, with the exception of ri |

constraining roT, have ¢ = 0, resulting in the following ER system:

(rol,i—1) " (lof,4),i >0

(lil,i—1) “®' (01,i),i >0

(zl,i—1) &' (lo1,i),i >0
(lo1,d) “&&" (z1,i)
(tir,i) " (lo], i)
(@1,d) "B (lol,d)

{lol,5) "5 (rot,d)
(ril,i—1) "B (rot,i),i>0
(@1,9) BT (rot,i)
(rot,i) "B (z],q)

(ri1,i) "B (rol,i)
(zl,3) "B (rol,i)
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O

The important thing to notice in this example is that the rules (rol,i—1) et (lo1
,8),1> 0 and (lo|,3) "5 (ro1,i) have different values of ¢ because lo1 fires before
o7 in all executions allowed by the handshaking expansion and thus the production
rule set. Without independent knowledge of this execution order, determining the
occurrence-index offsets from a production rule set requires simulation of the system.

As a second example, we will consider the case of the toggle process.

Example 4.12 Applying Martin synthesis to the handshaking expansion

toggle = «[[li];loT; [=li; v 15 lol; [li]; uT;loT; [—li];v ;1o |;

rof;[ril;ul;rol;[-ri])

yields the production rule set:

LA-vA-uA-ri — lot
SliAloA-u — o]
vA-u — lo|

liANv - ut

vAu — ol

-liAu — v

“vAu — lo]
=loA-vAu — rof

T — ul

U — rol



From the production rule set and the handshaking expansions we generate the fol-

lowing rules for all 7 > 0:

(i1, 2i)
(vl,i-1)
(ul,i—1)
(ril,i—1)

{1i |, 23)
(loT, 2i)

(v1,7)
(uLi - 1)

(1it,2i + 1)
(v1,1)

(v1,4)
(ul,d)

(i, 2 +1)
(ul,9)

(vl,7)
(ul,9)

(lo],2i + 1)
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i
Cyllot
g

g

e

1

e

Ayt o)
>

(lo1,2i)

(lo1,2i),i > 0
(lo1,2i),i > 0
(loT,2i),i > 0

(v1,1)
{v1,1)
(v1,4),i>0

(lo},2i)
(lo},2i),i > 0

(ul,9)
(ul,1)

(lo1,2i + 1)
(loT,2i + 1)

(vl,3)
(vl,7)

(lol,7)
(lol,4)

(ro1,1)



(’Ul,. a::')o

i) 57 (rof,i)

(ut,) 7 |
(rof,i)

(rityi) B (ul,i)

(ul,d) "B (rol,d)
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4.4 Data-Dependent Computations

Many non-straight-line programs can be transformed into straight-line programs,
given a limited amount of extra information. This extra information is a trace of
the control flow through each process for a particular execution of the computation.
It is used to determine which events of a disjunction occur first (or occur at all), and
to decide which rules constraining these events should be added to the ER system.
Data-dependent computations expressed as handshaking expansions can be trans-
formed into ER systems by unrolling the loops of the processes until the data depen-

dence has been eliminated.

Example 4.13 Consider the asynchronous kill-propagate—generate ( KPG) adder pro-

CEess:

adder = «[[k— d0T,[c0 — 507 [c]l — s11]
[g — d171,{c0 — 507 el — s11]
IpAcl —dl11,s07
[pAcO— dOT,s17
]; ([=k A =g A=pl;dl],d0]),([-c0 A —cl];s0(,s11)] .

The inputs £, p and g are a triple-rail encoding of the kill, propagate and generate
values. The inputs cl and c0 are a dual-rail encoding of the carry-in value. The

outputs s1 and s0, and d1 and d0 are dual-rail encodings of the sum and carry-out,
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respectively. Assume this adder process is connected to a trivial environment:

env = x[[true — k7 |true — g7 |[true — pT],
[true — 0T [true — cl11];
[(sOV s1)A(dOV dl)];

kl,pl,gl,c01l,cll;
[—-so A 81 A=dOA ’ﬂdl]]

and assume that the environment repeatedly chooses the guarded commands k7,07
followed by the guarded commands p{,clT. Then by unrolling both processes we get

‘the straight-line handshaking expansions:

env = x[k1,c01;[s0Ad0];k|,c0l;[~s0 A —dO];
p1,c11;[sOA dl];"p'l, cl §;[s0 A —d1])

adder = «[[k];(d0T,([c0]; s0T)); (([-K]; d0 1), ([c0]; 50 1));
[p A cl]; 50T, d1T;(([-p}; d1 1), ([mel]; s01))]

After removing the repeated assignments, we can transform this pair of expansions

into a repetitive ER system upon which we can apply performance analysis.

Given which guarded commands are selected during each trip through a process,
we can generate the ER system. It is the timing of this particular execution of the
program that is being determined. No attempt is made to determine the timing of
an arbitrary execution or worst-case execution of the program. This is because the
timing of different executions can vary tremendously, and a loose upper bound on the
execution time is not an interesting metric for the performance of the computation.

Tight timing bounds are necessary to compare competing designs.
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4.5 Inherently Disjunctive Computations

Up to this point, the translations from program to ER system have been independent
of the actual values of the delays. Some computations cannot be translated into ER

systems unless the actual values of the delays are known.

Example 4.14 Consider the process P connected to a standard environment.
P = «[[ai V bi]; coT;[ci]; [ai A bi); aoT,boT;[—ai A —bi]; col; [—ei); a0, bo )

The rule constraining the firing of {coT, ) is either:

(ait, iy ¥ (col,i), (4.1)
or

(Bit,i) * (eot,i) (4.2)
depending on whether

Uaol + Qg > Qg + Qpit -

a

Inherently disjunctive processes have not been encountered in any of the circuits
fabricated by Martin’s group at Caltech, including the Caltech Asynchronous Mi-
croprocessor [23]. If they are needed, we suggest two techniques for modeling such
processes.

First, in the previous example, we can simply choose one of the two rules (4.1) and

(4.2) as the constraining rule for coT. Now we have an upper bound on the timing
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performance of the actual system. However, tight bounds are needed to compare
competing designs, and, thus, this technique is not attractive.
Second, we could redefine ER systems to allow disjunctive rules. Thus, for each

target event f, there is a collection of sets of events,
Cf = {So, Sl, ceey Sq__l}

such that event f is constrained by the events in one of the sets S;.

Example 4.15 Consider the prdcess from Example 4.14. The collections of source

event sets are:

Cleay = {{{ail,9)}, {(bi1,)}}
Cladtiy = Cipaty = {{{ciT,4),(ai1, ), (bi1,4)}}
Cleay = {{{ail,d), (bil,)}}

Clacp) = Coaty = {{{cil,)}}

O

In a disjunctive model, a timing function must satisfy:

t(f) 0

2
t(f) > t(e)+ acs forsome S € Cyand foralle € S .

A timing simulation is the smallest such timing function, and, if the dependencies are

acyclic, satisfies:

i(f) = oifbecy (4.3)
#(f) = min{max{f(e) + acs|e€ S}|S € Cr} (4.4)
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Example 4.16 Continuing Example 4.14 and using the target-name convention for

naming delays, we get:

#(ait,0)
{(bi1,0)
#(coT, i)
t(ci1,1)
t(aoT,i)
t(boT,1%)
t(ail,i)
t(bil,q)
t(col,i)
t(cil,q)
t(aol, 1)
t(bol,?)
t(ait,)
#(bi1,1)

O

0

0

min{#(ai1,1) + e, t(0i T, 1) + Qeqt }

t(cot,i) + aq

max{t(ci1,) + Qao, (i, 1) + Cact, H(bi T,7) + Caqt }
max{t(ci1,) + ong, H(ai T,1) + e, (82 T,2) + et }
f(aoT, 1) + 0y

{(bo1,%) + amy

max{t(ail,i) + ey, t(bi ], 1) + 0o }

t(col,i) + aq

t(cil,i) + aag

t(cil,?) + apg

f(aol,:z' — 1)+ g, >0

f(boi,z' - 1) + apy,t >0

However, linear programming cannot be used effectively to find the minimum-

period linear timing function in the disjunctive model. The constraint of any timing

function contributed by the set

Cf = {{800, €01y - - an,no—l}a {610,611, “ea ,el,nl—l}y ceny

{em—l,()s €m—-1,1y---, em—l,nm_l—l}}
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is
m—1n;—1

\Y /\ t(f) = tleij) +ae,s-

i=0 j=0

The conjunction of these constraints for each event f is the complete constraint
on t. If the system is repetitive, we can, using a linear formulation of the timing
function, reduce the number of constraints from an infinite number to the number
of transitions in the system. But the resulting constraint is in AND-OR-AND form,
not the AND form used in linear programming. OR-AND constraints can be solved
by finding the minimum of the optimal solutions to the linear programs expressed
by each AND term individually. The AND-OR-AND form can be transformed into
OR-AND form but the transformation is, in general, intractable since the resulting
OR-AND form can be exponential in the number of transitions in the system.

Because of these computational difficulties, it is best not to use a linear program-
ming formulation to analyze the performance of an arbitrary disjunctive ER system.
Instead, direct construction of the timing simulation using (4.3) and (4.4) will more
efficiently produce performance information. However, simulation must proceed until
the circuit has reached a steady-state in order to determine a performance metric

such as the cycle period.
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Chapter 5

Linear Arrays of Processes

The power of the theory introduced in Chapter 2 emerges when we extend the tech-
niques to include regular arrays of processes. Concise, accurate statements can be
made about the performance of large systems that contain regular structures, by an-
alyzing a structure whose size is comparable to a single process. Here, we extend the
notion of a linear timing function to include a term that relates the time at which a
particular occurrence of a transition in one process of the array occurs with the time
at which the same occurrence of the same transition occurs in the adjacent process of
the array. We call this time the latency of the system. In this chapter we show how

to determine simultaneously the latency and cycle-period of a system.

5.1 Regular Systems

To begin, we consider an array of n identical processes. The array may be of arbitrary
size. Special processes are connected to the two boundaries of the array. For now,

we ignore the boundary processes. We treat them separately in Section 5.3. Such a
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regular system is modeled as the pair
( E”, RII)

where the elements of E” represent the transitions in the process form that is repli-

cated, and where the elements of R” are five-tuples
{9,h,&,p,0) EE" X E" XZ xZ x [0, +0) , (5.1)

usually written,

(gai —E,j _P) ,__‘i) (h,‘l,])

that constrain the timing behavior of the system. As before, the dummy parameter
1 represents the occurrence index. The dummy parameter j represents the process
index, denoting the individual process in the array to which this event corresponds.
The €, p and o above denote the occurrence-index offset, the process-index offset and
the delay associated with that rule. For a given n, this regular system generates the

repetitive system (E’, R') where

B = {(g3)|9€ B"AOSj <n)
R, = {((g,] _p>1<h’j)1€,a) l (g’h767p’a) € R”A
max(0, p) < j < min(n,n + P)}

Example 5.1 The linear array of the lazy-active/passive buffers described in Fig-

ure 5.1 and by the handshaking expansions

lap = =[lot;[li];lo|; [ri];roT; [-ri];ro ;1))

lenv = #[[zi];z0T;[~zi]; z0]
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lenv lap lap lap lap lap reny

zo li ro i ro i rop—~ li ro li ro yi

i lo 7t lo ri lo rife— =<—lo ri lo ri yo
j=0 ij=1 j=2 A j=n—-2 j=n-1

Figure 5.1: Regular linear array of n lap processes including a
left boundary process lenv and a right boundary process renv.

renv = x[yoT;[yi];yol;[-yi]]

has the regular system (E”, R"):

E" = {loT,lol,roT,rol,liT,lil,TiT,Til}
R" = {(rol,i—l,j) [ (loT,1,3),
(lil,i—1,7) ¥ (lo1,i,5),
(tit,i,5) ¥ (lol,i,5),
(lol,i,5) V¥ (ro1,i,5),
(rit,i,j) ¥ (ro1,i,j),
(ril,i,j) V3 (rol,i,3),
(lot,i,j +1) W (rit,i,5),
(lol,i,j +1) % (ril,i,j),
(rot,i,j —1) & (li1,i,5),
(rol,ii~1) ¥ (til,i, 5}

The first six rules come from the internal constraints within the process lap. The next
four rules come from the interconnections between the processes. (The additional

rules corresponding to the boundary processes are described in Example 5.5.) ]
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5.1.1 Linear Timing Function

In the context of regular systems, a linear timing function takes on the following form:

t((9,1,5)) =

(g,4,7) = z,+pi+¢j forge E",ieNand 0< j <n,

where z, is an offset independent of i and j; p is the cycle period independent of
g, v and j; and £ is the latency independent of g, 7 and j. The existence of such a
function is not ensured by the feasibility of the generated ER system as was the case
for standard repetitive systems. Instead, a linear timing function exists for a regular
system if the generated repetitive systems with an arbitrary number of processes have
a property known as constant response time [18, 34]. A regular system has constant
response time (CRT) if after sufficiently many occurrences of a transition, the time
between consecutive occurrences is bounded by a constant regardless of the number

of processes in the array.

5.1.2 Linear Program

The timing constraints (2.1) for the rules generated from R” become

Thtpi+ll > zo+p(i—e)+ 0 —p)+a
T 2 zg—ep—pl+a : (5.2)
for each rule (g,i — €, — p) > (h,4,5) € R".
The collapsed constraint graph for the regular system (E”, R") is, again, the la-
beled directed graph with nodes from E” and arcs from R”. To avoid confusion with

the collapsed constraint graph of a repetitive system, we frequently refer to such
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Qst — P

Qyro)

T

an — V4

Figure 5.2: Latency/period constraint graph of a regular-array

system for the lazy-active/passive buffer of Example 5.1.
graphs as latency/period graphs. The labels on the arcs correspond to the collapsed
linear timing function constraints. The arc of the rule corresponding to (5.2) is labeled

with a — ep — pf.

Example 5.2 The latency/period graph of the regular system of Example 5.1 is
shown in Figure 5.2. ]

The constraints of the linear timing function (5.2) can be rewritten in standard

linear programming form:

mincgp+ ¢4 = =z
Az+ep+pl > « (5.3)
r,p,t > 0

In some cases, the process numbering may have to be reversed in order for ¢ > 0.
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The dual program to (5.3) is

maxy’a

i
g

c¢"]
e
IA
(=)

co ¢ (5.4)
C1

0

ec'~]
M
IA

Q’i
)
IA

@
v

P

As in Section 2.4.1, yT A’ = 0 because A’ is an incidence matrix of a directed graph.

As a consequence, = can be unrestricted in the primal equation (5.3).

5.2 Minimum-Period/Minimum-Latency Linear Tim-
ing Functions

Our goal now is to find simultaneous optimal solutions for the objective functions
min p and min/. Optimiza;tion problems of this type are called multi-objective linear
programming problems [13]. A simultaneous optimal solution exists if there exists a
feasible x, p, £ that is optimal for every objective function cop + ¢;£ with non-negative
co and ¢;. We now construct an algorithm that produces this simultaneous optimal
solution, or decides that no such solution exists.

The dual linear program (5.4) can be rewritten as

Y

max 0T(UTa) w
oT(UTe)
0T(U”p)

o

IA

. (5.5)

IA

a

0

v

J

by introducing the cycle vector matrix U and applying Lemma 2.6. Converting back
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to primal space, we get:

min cgp + ¢; ¢ z
(UTelp+ (UTp)t > (UTa) ¢ (5.6)

pt > 0

This linear program has two variables (p and ¢) and as many constraints as there are
cycles in the graph corresponding to A’. The constraints corresponding to cycle ¢ (row
i of UT) can be classified into four categories depending on the values of e(c) = (U Te);

and p(c) = (UTp)i:

Case 1. p(c) > 0,e(c) <0 Case 2. p(c) < 0,e(c) > 0

Case 3. p(c) > 0,e(c) > 0 Case 4. p(c) < 0,e(c) <0
Case 1 constraints are £-determining and CaSé(? constraints are p-determining. A
Case 4 constraint cannot be satisfied unless a(c) = 0. All non-degenerate optimal
solutions to (5.6) must occur at the intersection of a pair of constraints. All other op-
timal solutions (degenerate) occur along a line connecting a pair of these intersections.
However, since we are looking for solutions which minimize both p and ¢, we need
only consider the intersections of Case 1 with Case 2. (See Figure 5.4.) Furthermore,
the slope of the line bounding the Case 1 constraint must be larger than the slope of
the line bounding the Case 2 constraint. If this is not the case, the intersection is in
the negétive p and negative ¢ quadrant, and the linear program is infeasible.

If one of these intersection points is at least as large, in both p and ¢, as all other
intersection points, then we choose this point as the candidate optimal solution. If
the candidate optimal solution is also a feasible solution, then we have found the
optimal solution to the linear program. This can be done simply by checking that
each constraint is satisfied at the candidate optimal solution. If this solution is not

feasible, then no optimal solution minimizes both p and ¢. This solution can be found
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Case 3 l Case 4 V4

Figure 5.3: The four types of constraints imposed by the re-
duced primal linear program (5.6).
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Case 2

Case 3
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Case 1

Figure 5.4: The six types of intersections of constraints imposed
by the reduced primal linear program (5.6). Only the intersec-
tions of Case 1 with Case 2 can represent an optimal solution
to both minp and min £.
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Qg
Qg P

Qg — Oy
Qg — Qy;

Figure 5.5: Graphical depiction of constraints imposed in Ex-
ample 5.3. There are two possible optimal points depending on
the relative values of a3 and ayy.

by using Algorithm 5.1.

Example 5.3 We apply Algorithm 5.1 to the regular system of Example 5.1. There
are three cycles through the corresponding latency/period graph (Figure 5.2). The

Case 1 cycles are:
¢ > ag+og+og = a3
The Case 2 cycles are:

P 2 g+t Qg + 0t + Quop + 0y + Qg gy = ag

p—l 2 aug+omtang ot o o = ag—ay

These constraints are shown graphically in Figure 5.5. The optimal solution occurs

at either:

(a3, ag) or (a3, a8 + az — agy)
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. Construct the set C of cycles through the graph corresponding to 4’. Compute for
each cyclece C

gle) = Ze,-, p(c) = Zp,, and a(c) = Za,..

r€c rec rcc

. If p(c) is negative for all cycles ¢ with €(c) < 0, then reverse the numbering of the
processes and start over again. If some are positive and some are negative, no feasible
solution with positive £ exists.

. Compute the intersection points
I = {{t(cr,c2),p(c1,c2)) | c1 € C1 Ay € CyaAd(cy,cz) > 0}

where

_ a(e)e(ez) — e(er)a(ez)
Lerye2) = d(cy, c2)

pler,ez) = a(Cz)p(zl()CI—, :;()Cz)a(cl)
d(cr,c2) = pler)e(ez) — e(er)p(cz)
Cy {c|ce CAe(c) <0Ap(c)> 0}
C, = {c|lceCAe(c)>0Ap(c) <0}

If d(c1, c2) < 0 for some pair ¢; and ¢z, then no feasible solution with positive p (or £)
exists.

. Find a point (¢, p) € I such that for all {¢,p’) € I, p > p’ and £ > ¢'. This point may
not exist, in which case there is no optimal solution.

. Check that
ele)p+p(c) > alc)

for each cycle c. If this is the case, then p and £ represent the optimal solution to the
multiobjective program. If not, there exists no optimal solution to the multiobjective
program.

Algorithm 5.1: Algorithm to find, if it exists, the optimal solu-
tion of the multiobjective linear programming problem (5.3).
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Thus, the optimal values are

£ = o+ g+ g (5.7)

P = Oug + Qey + Qe + i + 0uq + 0y + Qg + (04 max oy + agop + r [5.8)

O

The following lemma shows that the cycle period determined by Algorithm 5.1
provides an accurate approximation to the cycle period of the generated repetitive

system.

Lemma 5.1 Let p be the minimum period and ¢ be the minimum latency corre-
sponding to the optimal solution of the multiobjective linear program (5.3). Let ¢,
be the critical Case 1 cycle generated by Algorithm 5.1. Let ¢, be the critical Case 2
cycle. Let S be the generated repetitive system with n processes. If n is large enough,

and if either

1. p(ep) =0, or

2. cycles ¢; and ¢; have a node in common,
then the cycle period of S is equal to p.

Proof: We first argue that p can be no smaller than the cycle period of S. The
timing function from which p is defined is more restrictive than that defining the
cycle period of S. The offsets x, must be related for all j though the latency. Thus
the linear program has more constraints, and p is no smaller than the cycle period of
S.

Now, we argue the reverse. We use the cycles of rules that constrain p and ¢

with equality, and from these cycles, we generate a cycle of the same period in S.
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If p(cy) = 0, then ¢y immediately produces a cycle of period p in S. Otherwise,
plc2) < 0; and if cycles ¢; and c; have a node in common, then we can build up the

necessary cycle. This is done by walking cycles ¢; and ¢y

_lem(—p(cy), p(e1)) I lem(—p(c2), p(c1))
o= —p(ca) and my = plcr)

times, respectively. i

Example 5.4 Figures 5.6 and 5.7 show how to instantiate the critical cycles pro-
duced during the analysis of the regular array system in a corresponding repetitive
system. Nodes roT and ro | are common to both critical cycles, so by Lemma 5.1, (5.8)
represents the actual cycle period of a large enough array. Arrays with at least three
elements will have this cycle period regardless of the a values. If gy > ayp+ o)+ e,

then arrays with at least two elements will also exhibit the cycle period of (5.8).

The hypotheses of Lemma 5.1 are typically satisfied. In the case where there is no
common node between the critical cycles, we must use a different argument. Since it
occurs infrequently, we do not discuss it here. The restriction that n be large enough
is needed so that when the critical cycles are replicated, there are enough processes
in S so that the composite cycle can be constructed. The restriction that the optimal
solution must minimize both p and £ is not necessary for the determination of the cycle
period. This theory could be developed with the minimization of p only. A minimum
latency is required if the linear timing function is to be used as an approximation of
the timing simulation of the generated general ER system. The following lemma is a
(slightly weaker) analog of Theorem 2.10, the approximation theorem for repetitive

systems.

Lemma 5.2 Let ¢ be a minimum-period/minimum-latency linear timing function of

the regular-array repetitive ER system (E”,R"). Let G" be the strongly-connected
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lo1 lo) —rot ro]
-P
1] it 71T ri]

lot lo] — ro7 rol
]
P
li] li1 ril ri]

lot lo] ——ro1
P
li] i ri]

Figure 5.6: Three instances of processes for the lazy-
active/passive buffer. The bold line represents the critical cycle
determined by the Case 2 constraint alone. The cycle visits
nodes in two processes of the array.

ro]

ri]



lo]

—p
li|

116

lo} —=ro? ro}
X e T Tt
\—p
lot lo| w—ro1 rol
P
Iz} L ril ri]

lo1 lo] —ro1
P
li] A ri]

Figure 5.7: Three instances of processes for the lazy-
active/passive buffer. The bold line represents the critical cycle
determined by the Case 1 and the Case 2 constraints together.
The cycle visits nodes in all three processes of the array.

ri]
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latency/period graph of (E”, R"). Let f be the timing simulation of the general ER
system with n processes generated from (E”, R"). If n is large enough, and Case 1 and
Case 2 critical cycles exist (¢; and ¢, respectively) and have a node go in common,
then the difference between £ and £ for all events generated from go is bounded by a

constant:
Sgosij = {(907 11-7) - {(907 ia j) S B
Proof: By definition for each g € E”, and each ¢ and j, we have

#9,4,5) = zg+pi+0j

f(gv Za]) = Iy +pi+45— Sg,i.i
where sg;; is non-negative. For the constraints generated from the rule
r={gi—ej—p) (hij)eR",

we, as in Theorem 2.10, define the non-negative slack variables Zri; and Z,. and

produce the constraint equalities

Tg—pe—Llpt+a+z = (5.9)

Tg—PE—Lp—Sgicjpta+Zi; = Th—Spi; . (5.10)
Subtracting equation (5.10) from (5.9) yields

Zr—Znij = Shij — Sgi-cj—p - (5.11)



118

For any critical cycle ¢, we know that
elp+plc)t = ofc),

and thus, that (5.9) reduces to

for all the rules r in c. For each rule r in a critical cycle, (5.11) reduces to

> Sh (5.12)

sgri_sﬂ'"'f’ X R)

for all 7 and j such that ¢ > max(0,¢) and min(n,n — p) > j > max(0, p).
Concentrating on the node gy that is in common between the two critical cycles,
we see that we can construct a no-slack path (2, = 0 for each rule) through the
generated (general) ER system by instantiating k; copies of ¢; and ky copies of c,.
Multiple copies of c; increase the j coordinate and possibly decrease the i coordinate.
Multiple copies of c; increase the i coordinate and possibly decrease the J coordinate.

Thus for each non-negative k; and k, we have
Sgo.i'it 2 Sgojino
where

i = i’ + k1€(61) + k2€(62), and

J o= 3 +kip(er) + kap(cs).

Only a finite number of the Sg0,i,j are unconstrained, and thus B—equal to the max-



119

imum unconstrained difference—is finite. g
We have just shown that there is at least one tramsition in each instantiated
process for which the difference between the best linear timing function and the

timing simulation is bounded. We would like to relate this result to all transitions.

Conjecture 5.3 Given the hypotheses of Lemma 5.2, we can find a bound B’ in-
dependent of n such that for every g and j there exists an 7 large enough so that

Sgij < B foralli> 7.

5.3 Boundary Processes

The regular array of n identical processes is terminated with two, presumably differ-
ent, special processes. By ignoring these processes, we have constructed lower bounds
on the cycle period and latency of the system since the additiona) rules contributed
by boundary processes would only further constrain the generated repetitive system.

We now define the structure of these boundary processes, and the additions to the
system (E’, R'). The transitions in the two boundary processes should have distinct
names with each other, and with the transitions in E”. Let Ej and Ej be transitions
in the left and right boundary processes, respectively. Rules between the transitions
in Ej, or between a transition in Ej and a transition in a particular process in the
array, are specified in the repeated rule set Rj. And similarly for the rules in R}.
There are no rules between Ej and E} in either rule set, nor are there rules between

two transitions in E”.

Example 5.5 Continuing Example 5.1, the boundary processes contribute the fol-

lowing additional transitions and rules.

Ey = {xoT, zol,xiT, xil}
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S

= {yol,yol,yi1,vil}
Ry = {(zil,i—-1) & (zo1,i),
{zit,i) ¥ (z0l,i),
(zot,i) V& (1i1,i,0),
(zol, i) ¥ (li],i,0),
(lo1,i,0) ¥ (zi1,d),
(lol,i,0) ¥ (xil,i)}
R = { (Witii) ¥ (yot,i),
| (il,i) ™ (yol,d),
(yoT,3) ¥ (rif,i,n—1),
(yol,i) V¥ (ril,i,n—1),
(rof,i,n—1) ™ (yit,3),
(rol,i;n—1) ¥ (yil,i)}

a

The timing constraints for the rules generated from R} and R} are just

Ty+pi > T,+p(i—€)+a

To > T,—ep+a (5.13)
for each rule (u,i — &) ¥ (v,7) € R4,

Ty+pt > zo+p(i—€)+Ljo+a

T, > zg—ep+Lljo+a (5.14)
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for each rule (g,7 — €, jo) ¥ (v,1) € R}yynq, and

Thtpi+ljo 2> zu+p(i—€)+a

T 2 Ty—ep—Ljg+a (5.15)

for each rule (u,i—€) ¥ (h,%, jo) € R}, 4. All these inequalities are linear constraints
and can be included in the linear program. Latency/period analysis can be used to
determine optimal solutions to p and £.

However, not every cycle in this system corresponds to a cycle in the generated
repetitive system S. For example, a cycle cannot contain nodes in both boundary
processes if p = 0 for every arc. In order to accurately determine the cycle period of

S, we must not use such cycles when determining the optimal values of pand /.

Example 5.6 Of the five cycles created by the addition of Ej, E{, R} and R} to the

system of Example 5.1, only the four cycles that produce the constraints

v

Qzit + Qzop + Uy + QU + Qi + 0o + iy + Qg

v

Qrit + Qrop + Quip + Qo + Qrip + Qrgp + iy + 0y

Qzip + Qg + 0t + Qo) + Qg + €+ 0 + g

- T~ T - S~
v

v

Qrip + €+ Qg + Oyt + Oy + Oy + g + Qg

can be instantiated in S. The cycle (denote by a list of nodes):

(loT,ziT,zo0T1,liT,l0],r01,yiT,yol,ri|,r0])

cannot exist in S. It includes nodes from both boundary processes, and all arcs have

Zero p.
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Chapter 6

Case Studies

6.1 FIFO Queues

The techniques for determining the performance of linear arrays of processes can be
used to compare the cycle period and latency of various implementations of FIFO

queues. Here, a FIFO queue is a linear array of identical processes each of the form:
fifo = %[L?z;R!z]

We use the control and datapath decomposition methods from Chapter 3 to con-
struct each fifo process. The control part is just the process *[L; R], where L and
R are now dataless synchronizations. The data part is inserted between the control
parts of adjacent processes. To improve the standard implementation, we consider
interleaving the waits and assignments implementing the handshaking protocols of L
and R in the control process. However, such interleavings must retain the constant
response time (CRT) property of the array of processes, and must also not violate
any of the assumptions—about when data variables change—that were made during

synthesis of the data part.
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6.1.1 CRT Constraint

From the work of Lee [18], a simple necessary condition for such an interleaving to

be CRT is
(rot< [ A(rol=<[-li]) VvV (loT=<[ri]) A (lol=< [-rd)). (6.1)

A statement z < y should be read as “z precedes y in the handshaking expansion.”
This condition is not sufficient. In general, a complete cycle analysis is required to
determine whether an interleaving is CRT. The necessary condition is used here only

to prune the search space.

6.1.2 Passive/Active Data Constraints

Three possible implementations of the data part in the case where L is passive and
R is active are shown in Figure 6.1. We now provide constraints on the indexed

occurrences of the transitions in the two handshaking sequences
[ti];loT; [li); 10} rol;[ri};rol;[-ri]

that must be satisfied to maintain the correct flow of data.

To ensure that a datum has been received before it is sent, we must have:
[-l] < rot (6.2)

One of the following three constraints is needed to ensure that the current datum has

been successfully received by the next stage before the next datum is received:

[_,m'(—l)] < lot Pa-no-iso (6.3)
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Figure 6.1: Possible datapath implementations for a pas-
sive/active FIFO. The blocks labeled O, L, P, and R denote
the output and input stages described in Figure 3.4, Figure 3.5,
Figure 3.7, and Figure 3.6, respectively.
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(3] lot [ld] lo}
“— — e — .,
rol § \ ‘ \
. IN
rol ; \ g \
fril ¢ b

._9 -

Figure 6.2: Diagram to enumerate the passive/active interleav-
ings. Crossing a dashed arc violates the second term of (6.1).

-

roV] < lot pa-iso (6.4)

[riY] < lot pa-latch (6.5)

Note that (6.5) = (6.4) = (6.3). The three constraints correspond to different
assumptions and different implementations of the output communication. In the
first case, pa-no-iso, no isochronic fork is allowed between the control and datapath
and an unlatched output implementation is used. In the second case, pa-iso, an
isochronic fork is allowed between the cbntrol and datapath and an unlatched output
implementation is used. In the third case, pa-latch, a latched output implementation

is used.

6.1.3 Interleavings of Passive/Active Protocols

The lattice-path diagrams (Figures 6.2 through 6.4) provide a convenient means of

organizing the various interleavings of the handshaking expansions for L and R. Each
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Figure 6.3: Diagram to enumerate the passive/active interleav-
ings that contain the vacuous wait [~ri]. Paths with dotted arcs
appear in Figure 6.2.
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Figure 6.4: Diagram to enumerate the passive/active interleav-
ings that contain the vacuous firing ro | and the vacuous wait
[ﬂ‘ri].
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path through one of these diagrams corresponds to an interleaving of these two se-
quences. To avoid duplication, we always start the sequence with the wait [2}. Trav-
eling along a right-pointing arc adds the next statement of the L handshake to the
current sequence. Traveling along a down-pointing arc adds the next statement of
the R handshake. Traveling along a diagonal arc adds both the next I statement and
the next R statement, simultaneously. |

We are interested in enumerating those constant response time interleavings of
these two sequences that also satisfy the data constraints. Data constraint (6.2)
contradicts the first term of the CRT constraint, so we now enumerate all the inter-
leavings that satisfy the second term of (6.1). Interleavings pa through a4 represent

all the possible interleavings of a passive and active sequence (Figure 6.2):

pa = x[{li;loT;[li];lo ], ro1;[ri];rol; [-ri]]

al = «[[li];loT;[=li];rot;[ril; o], ro|; [-ri]]
a2 = #{[ld;loT,roT; [=li];lol; [ril;ro ; [ri]]
a3 = #[[liljlo1,rot; [~li Aril;lol, rol; [~ri]
af = H[ld;loT,roT;[ri];rol; [li]; 1o |; [-ri]]

Interleavings pla through b5 represent all the possible interleavings of a passive and

lazy-active sequence (Figure 6.3):

pla = [[li];lot; [l lo; [~ri];ro1; [ri; ro ]
b1 = #[[li];lot;[~li A =wril;lo],rol;[ri]; o]
b2 = *[[li];IOT;[—"li/\—'Ti];mT;[ri];IOLTOU
b3 = «[[li];loT; [~ril;rot; [Hli);lol; [ri]; ro ]
bi = #{llif;loT; [-ri;rot; [~li Aril;lof,ro]]
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b5 = #[[li];lot;[ori);rot;[ri]; rol; [Hld); lo )

Interleavings c0 through c12 represent all the possible interleavings of the passive

handshaking expansion for L and the handshaking sequence

oD |3 [~riCY]; rot; [ri]

for R:
c0 = #[[li;lot; Rl lol,rol; [rilsrot; [ri]]
el = «llif;lot;[Nlif;rol;[rillol,rot; [rd]]
c2 = «fli];lo1; [l rol; [oril;roT;[ril;lo]]
¢3 = «[i)lot,rol; [ilsloL; [~ril; ro; il
¢4 = #[[li];lot,rol;[~li A =ri];lo], rot;[rd]]
5 = *[[ii];loT,rol;[ﬁli/\—nri];roT;[ri];lol]
c6 = #[[li;loT,rol;[-ril;rol; [li];loL; [rd]]
c?7 = «[[li];lot,rol;[~ri);roT;[~li Ari];lo]]
c8 = «[[li);rol;[-ril;lot;[li];lo], roT; [rd]]
c9 = x{li];rol;[-ril;lot; [l rot;(ril;lol]
c10 = #{[li};rol;[~ril;loT,roT; [li);lod; [ri]]
cll = «fli};rol;[-ril;loT,roT;[li A ri];lo]]

Further unrollings of the R handshaking protocol imply that lo 1< ri~!) which vio-
lates the weakest data constraint (6.5).

We now eliminate interleavings that violate the data constraints. Assuming the
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Qypof
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Figure 6.5: Latency/period constraint graph for buffer pa. The
results of the analysis are p — 6.0 +0g+ py +€and L = b1 +
brit + 015 if the § delays are assumed to dominate the o delays.
In the graphs that follow (Figures 6.6 through 6.17), we do not
label arcs with their respective delays. Refer to this graph for
the correct labels on the arcs between processes (p # 0). The
labels on the other arcs are not important except for their ¢
values, which we denote by a single tick mark if ¢ = 1, by a pair
of tick marks if ¢ = —1 and by no tick mark if ¢ = 0.

most strict case pa-no-iso, the following interleavings satisfy the constraints:
pa,al,c8,c9

Interleaving c9 is not CRT. In the second case pa-iso, the following additional inter-

leavings satisfy the constraints:
pla, b1, b2, c3,cf,cd
In the final case, pa-latch, the following additional interleavings satisfy the constraints:
cl,cl,c2

However, interleavings c0, c1, and ¢2 are not CRT.

Figures 6.5 through 6.17 show the constraint graphs and corresponding cycle-
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Figure 6.6: Buffer al,p = bryt +6,y+2¢

and £ = 6"‘? + 61# + 6[(1.
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Figure 6.8: Buffer c9, not CRT.

-
ro] <=+— ri¢] lo] li]
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Figure 6.10: Buffer b1, p = £ +

(brq4 max b.y)and £ =6, +61p +61y.
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Pl Lol = ril —=ro)

Figure 6.7: Buffer c8, p = rit + 6ry +
61{1 +£and £ = 6,.,7 + 6,.‘1 + 51,1 + 261‘1.
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Iz > o] > ril > ro]
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Figure 6.9: Buffer pla, p = 8,4 +(£ max
6y +6ty +61y) and €= 6,4 +814 +61y.

- "‘—’_—_——&\
rol <+— ri] =— lo] i)
liT > loT > ri] —> ro|

Figure 6.11: Buffer b2, p=L+6y +
6.4 + 61y and £ = it + Sy + b1y
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Figure 6.12: Buffer c¢8, p = (6,4 max
6,.;1)-*-[ and £ = (6"“1‘ max 6,.,1)-{-61,1 +
b3y«
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ro] - ri| - lo] li]

it —= lot ——H—> rzl‘” rol

Figure 6.14: Buffer c¢5, p = £ + brg +
6,;1+61;T and £ = 5,.,1 +6,.‘1+26,,T +6h1.

ro] <=+— ri| <——| lo] Iz}

it > loT > ril rol

Figure 6.16: Buffer c/, not CRT.
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Figure 6.13: Buffer ¢{, p = (6,4 max
6.y)+€and £ = (6r34 max ey )+ 61 +
by -

ro] <+— ri] lo] =— Ui}

it —— lof —= ri? ro|

Figure 6.15: Buffer c0, not CRT.

rol <+— ri| =— Io| li|

it — lot —= rit ro)

Figure 6.17: Buffer c2, not CRT.
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Period Latency
B | 8ry | Gy | 61 | & || 60y | v | 81 | 81 | @
pa || 2 | 1|1 216 1]0]1]1]3
al [ 312|281 o113
Bl 22|13 8T 111273
Pall 2 |0 |1 |1]6] 10114
111|141 flol1]|1]4
st 2o 11115 ] 10113
1l l1lal1]ola]n 3
22|11 ]2]6 101113
S 2lo0 |11l T o112
1111 lafofl1|1]1]3
Al 20114 T ToT113
o2 1|1]4fo]1|1]1]s
S 3 22181 T 2115

Table 6.1: Number of each external delay in the cycle period

and latency for the CRT interleavings that can be used as a FIFQ

stage. If more than one coefficient vector is given, then the p or

£ is the maximum of the set. The interleavings pla, b1, c3, and

c4 each have four external delays in series.
period analyses for each of the CRT interleavings that satisfy the data constraints.
In these graphs, the arcs into nodes 1i 1, Iz |, ri T and ri ] span processes and thus
have a non-zero process-number offset (p) value. These arcs represent the delays of
the datapaths that intercept the handshake signals interconnecting the processes. For
these analyses, we assume that the datapath delays, e.g., 81, are dominant and thus
we set all other delays in the circuit, e.g., 4, to zero.

We conclude from these analyses that four interleavings, pla, b1, ¢3 and ¢/, have

at most four external delays in series. Furthermore, all the other solutions have a

longer cycle period for all possible values of the external delays.

In Table 6.1, we tabulate the § coefficient vector for the cycle-period and latency of
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each legal interleaving. An extra column is included that specifies the number of non-
datapath delays that occur in each cycle-period and latency expression. Assuming
that 8 = & = b1y, 6ri = 6pp = 6,y and 1 = Qi = Mgy = Qpet = Qrqj, We have that
the cycle period of pla is 28;;+26,;+6, of b1 is 26;;+26,;+ 5, of ¢3 is 26;;+26,;+5, and
of ¢ is 26y; + 26,; +4. Thus, ¢4 represents the best design for a passive/active FIFO
under this model. However, the initial vacuous wait for [ri] makes this interleaving
difficult to implement. A thorough analysis of implemented circuits, not handshaking
expansions, is required to compare these designs. We do not perform this analysis
here.

We can also use these results to compare the datapath implementations of Fig-
ure 6.1. None of the efficient interleavings satisfies the pa-no-iso constraints. In the

pa-iso case, we can model the datapath delays more finely as

by = 6,+ 6., and
bi = b+,

where §,, 6, and é, represent the propagation delays (up-going delay equals down-
going delay) through an output unit, a register unit and a completion tree, respec-

tively. In the pa-latch case, we have

61,' = 0, and

bri = 0,4+ 6.+ 6.
Thus, we have:

DPpa—iso = 250 + 26,- + 46«: 3 and

DPpa—latch = 250 + 26,- + 2(56 .
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The datapath configuration using pa-latch is faster than that using pa-iso by two

completion-tree delays.
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Figure 6.18:

6.1.4 Interleavings of Active/Passive Protocols

We now consider the FIFO queues where L is active and R is passive. A stage
of the queue, complete with datapath, is shown in Figure 6.18, for three different

implementations. The datapath constraints are

and one of

lo ri

L Ii ro _I"
lo

_L. li 7ro _I"
lo i

L i ro r

[ A (R -

lo

I

L]

[r®] < lof

] < rot

ap-no-iso

lo

li

Possible datapath implementations for an ac-
tive/passive FIFO. The blocks labeled O, L, and R denote the
output and input stages described in Figure 3.4, Figure 3.5, and
Figure 3.6, respectively.




depending of the implementation. Again, the first datapath-constraint contradicts
the first term of the CRT disjunction (6.1). Constraints (6.7) and (6.1) contradict,
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rol™V} < lot ap-iso

[-riY] < ot ap-latch

so the first implementation, ap-no-iso, is not possible.

Interleavings ap through d5 and e0 through e meet the necessary condition for

constant-response-time and meet the weakest sequencing requirements of the above

datapath implementations. (Each satisfies (6.1), (6.6) and (6.9).)

ap
d1
lap
3
d4
d5
el
el
e2

ed

e4

Interleavings ap through d5 use the standard passive expansion for R, and are enumer-
ated using the lattice-path diagram shown in Figure 6.19. Interleavings e0 through

e4 use a passive expansion for R with ro| first and are enumerated using Figure 6.20.

If

I

Il

I

1

il

Hl

il

*[loT; [li];lo; [l Ari);rot[-ri]; rol]
[lot; [td];lo; [ril; roT; [=li A =ril;ro |
«[lo1; [ti); lo; [rd]; roT; [-ri]; rol; [—l]]
*[lo; [li Ardl;lol; [Hlil;ro T [=ri];rol]
«[loT; [li Ari);lo],rot; [li A —ri);ro]
«[lo7; [li Ari];lo},r0T; [-ri];rol; [14]]
«[loT; [lil; 1o 1; [1d); ro 1; [ri); roT; [-ri]]
«[loT; [li]; 1oL, rol; [li A ri];rot; [-ri]]
«[lo7; [li);lo}, rol; [ri];roT; [l A =ri]]
*[lo1; [li];rol; [ri];lo ;s [Hli]; rot; [ri]
[loT; [li];rol; [ri); lo, ro1; [li A —ri]]
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lol [%4) lo} [~i7]
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i
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rof
1
® m—m—— -:———-'_&- L]
'
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fori] oy Y Y
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! %
1 Y
1 ~
rol WV
B =

Figure 6.19: Diagram to enumerate the active/passive inter-
leavings. Crossing a dashed arc violates either (6.1), (6.6) or
(6.9).
No other interleavings (those with further unrolling of the handshaking protocol for
R) meet the constraints.
The cycle period and latency of all these interleavings are derived in Figures 6.21
through 6.31 and summarized in Table 6.2.
Interleavings d1, lap, d{ and d5 each have at most two §;; delays and two &,
delays in series. We can again split up these delays, but instead of comparing data-
path implementations (there is only one type), we can compare these active/passive

implementations to the passive/active in Section 6.1.3. Here,

511’ = 6o+6r+6c
6,-,' = 0

DPap—iso = Pap—latch = 260+ 261' +2§c

The best active/passive implementations have, under this model, the same cycle
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Period Latency
brit | rig | 61 | 61 | @ || 6rit | 6r | 61y | 81 | @
ap 1|2 ]2]1]6J0]1]1]1]3
di |11 [2[0[5 oo [1]0]2
1111 |4fojo]of1]1
lp| 1|1 ]2]0(6]0]O0]1[0]2
1f{1j1]1|4)loflo]1]o0]2
d| 132280 ]|11]1]3
d1]1]2]0o(4[[0o]ol1l0]1
1|1]o|l2|4olo]o]1]1
|1 |1]2[0o|[5o]ol1]o0]1
11 {1|1|4fofjol1lo0(1
el [ 22318112115
e2 | 2|1 (21|61 ]0o1[1]3
ed [3 (122010114

Table 6.2: Number of each external delay in the cycle period
and latency for the CRT interleavings that can be used as a
FIFO stage. The interleavings d1, lap, d{, and d5 each have four
external delays in series.
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lot 1] lo] [~14]

rol \ |
frl , \) V
N

rol

Y

® e - ; = - PY

-

[ori]

=

-

Figure 6.20: Diagram to enumerate the active /passive interleav-

ings that contain the vacuous action ro {.
period as the best passive/active implementations. The active/passive scheme does
have the advantage that it can be efficiently implemented without using a latched

output-unit in the datapath.



ro| <—— ri]| <— lo| <— [

li|

lof — rzL: rot

Figure 6.21: Buffer ap, p = ¢ + 6eit +
64 + 61,1 and £ = 5,.‘1 + 61.1 + 61;1.

ro| <— ri| =— lo| =~— Uit

NN\

li) —+= 1ol —= ritf —= rot

Figure 6.23: Buffer lap, p = (£ max
y) + byt + 6py + by and £ = by .

TO| == T1] lo] =— Uli1

li] —= lot — ri] — rof

Figure 6.25: Buffer dj, p = b6yt +60y +
(261iT max 26y ) and £ = b1y max &1y
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ro| <— ri| <—— lo| ~— [it

lil] —=>lot —= rif — rot

Figure 6.22: Buffer di, p = £+ 6ot +
6y + 614 and £ = 614 max &yy.

r0] <—— ri| =—— lo| ~— It

lof] —= ri7 rol

li|

Figure 6.24: Buffer d3, p = 2¢ + it +
6.4 and £ = 6,."1 + 6 + b13y.

/-—\

ro| =—— ri| =—— lo| -— [i1

il —+=lo] — rif — rof

Figure 6.26: Buffer d5, p = (£max
61y) + 6,4 + 6,4 + 61y and €= by
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u
PP LR] ————

rol ri| <—— lo| -—— [if ro] ri| <—— lo| =— It
Iz] lof] — ril —= ro} li] lof — ril — ro]
—————— -
Figure 6.27: Buffer e¢0, not CRT. Figure 6.28: Buffer ef, p = ¢ + briy +

6"1""'6"1‘ and £ = 5,.,7 +6,.,1+261,T +61y.

ro) ri| <—— lo| -—— Lif rol ri] =—— Jlo| it
li} —+=lo] —= rit — ro li] lo] —> rzl/ rol
Figure 6.29: Buffer e¢2, p = £ + 6rq + Figure 6.30: Buffer ¢3, not CRT.

6,4 + 614 and £ = eit + 81y + 615 -

—— Tt
ro ri| <— lo| li1

li] > lot > rif —>rot

Figure 6.31: Buffer ef, p = 2¢ + b6rit +
6ry and £=6,4 + b1y + b1y.
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6.2 Microprocessor

The Asynchronous Microprocessor described in [23] was designed using the analysis
techniques of Chapter 2 and provides a good example of how to apply performance
analysis to a synthesized design.

A complete CSP description of the microprocessor is given on Pages 356-7 of
[23]. For the purposes of this study, we will only consider the following collection of

straight-line processes that make up the control processes of the mi"cro"processor:

IMEM = x[ID!imem[pc]|

FETCH = x[PCI1;ID?i; PCI2; E1%; E2]

PCADD = x[PCIl;y:= pc+ 1; PCI2; pc := Y]
EXEC = «[E1%;E2;Xse Yse ACli.op e ZAs]

ALU = *[AC?0pe X7z ¢ Y ?y; ZAlaluf (z, v, op)]

REG1 = #[XseX!r]
REG2 = «[YseYlr]
REG3 = x[ZAs;ZA?r]

The processes are straight-lined because the environment, in this case the process
IMEM, supplies a continuous stream of ADD R1,R2 R3 instructions. Thus, for all
values of pc, the value of imem[pc| is this ADD instruction.

The performance of the above CSP program can be analyzed by first creating the

ER system corresponding to this collection of straight-line handshaking expansions:

IMEM = «|[idi]; ido 1; [~idi]; ido |]
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FETCH = «x[pcioT;[pcii A ~idi]; ido T; [idi]; ido |;
pcio |; [~pcii A ei]; eo T; [ei]; eo |]
PCADD = «[[pcii]; pcio1; [~inci]; inco T; [inci]; inco | ;
[-pcii]; peio |; [styi]; styo1; [styi]; styo ]
EXEC = x[[-ei];eol;[ei]; e0l;
[-zsi A —ysi A maci A —zasi]; 2s01, yso T, aco T, zaso T;

[zsi A ysi A aci A zasi]; zso |, yso |, aco |, zaso |]

ALU = =[laci A ~zi A ~yi];acol,z0t,y0T;
[~aci A i A yi];aco |, o0 |, yo |;
[zai]; zao T; [2ai]; zao |]
REG1 = «[[zsi A zi];zs01, 20 1; [~2si A —zi]; x50 |, 7o |]
REG2 = «[ysi Ayil;ysoT,yo1;[~ysi Ayi];yso |, yol]

REG3 = «|[zasi]; zaso1; [~zasi); zaso |; [-zai]; zao T; [zai]; zao |]

The processes are connected together as shown in Figure 6.32. The cigar-shaped ob-
jects represent the datapaths used to transport values between the processes. In this
analysis, we model the datapaths as delays. If the datapath intercepts the commu-
nication channel X, then we denote the delay during the rising portion of the data
transfer as §x; and the delay during the falling portion as §x;. All other delays in the
system are assumed to be much smaller than the delays through the datapath and
are modeled with the delay value zero.

Figures 6.33 and 6.34 together show the cycle period graph for this system. Some
nodes are duplicated so that no cycles are required to span both figures. The cycles

through Figure 6.33 result in the cycle-period constraints

P > bigp+big
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Figure 6.32: Process interconnections of the simplified asyn-

chronous microprocessor.
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ido | eol eo|
idi ] er ei]
f A
|
ido | pcio eol eo]
> I
idi] peii | eil eil
I
pcioT—>inco inco | pcio| —>styo styo |
pcil et inci ] peiz] sty T styi ]

Figure 6.33: First part of the cycle period graph for the simpli-
fied asynchronous microprocessor. Bold arcs have a datapath
delay associated with them. Normal arcs have a delay value of
zero. A tick mark on an edges specifies that ¢ = 1.
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Figure 6.34: Second part of the cycle period graph for the sim-
plified asynchronous microprocessor. For better clarity, not all
nodes of the graph are shown. In particular, the process REG2
is not included since it produces the same constraints as process
REG1.
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Figure 6.35: Simplified cycle-period graph corresponding to Fig-

ure 6.34. A single tick mark on the edge specifies an € value of
one. Two tick marks means ¢ = 2. Otherwise, ¢ = 0.

v

O + 64

v

6incT + 5inc1

v

p
p
p bstyr + Gaty)
p

v

(6t MaX inet) + (6 MAX Gypy1)

The graph in Figure 6.34 is too complex for direct cycle period analysis. By
applying the transformations of Algorithm 2.1, we can simplify the cycle-period graph

to that shown in Figure 6.35 with the following alpha values of the arcs:

0 = b + baeg MAX 01 + by

ap = Og + (001 max §,q)

@ = b4y max 6, max 8y max 8,4
ag = 6,4 max 8,y max by

G = bog + (64 max by) + 64

ay = bag + (6 max §y3) max 8,4

0y = (0 maxd,q) + (0,4 max 6,1) + Oet
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To generate this graph, first all nodes in the original graph that represent transitions
on input variables are removed. Then selected output variables are removed, one by
one, until this graph is produced.

We can further simplify this graph. Arcs a and e are subsumed by arcs ¢ and d
respectively, given that p is at least a,. The self-loop created by arc ¢ is subsumed
by the two cycles formed by arcs ¢, d and a. Furthermore, arc f is subsumed by the
cycle formed by arcs ¢ and d. The cycles through the simplified graph impose the

constraints:

=3
v

6eT + 5acT max 5ZGT + 62,,1

P 2 (8uq max 8, max &) + (8, max 8yl Max 6,4 max b, )

This analysis shows that at most two datapath delays occur in series when the
microprocessor is performing a continuous stream of ADD instructions. The model
shown here faithfully reproduces the implementation of the first fabricated AM (2um).
An evaluation of the values of the datapath delays showed that the cycle period would
depend on

biap + 6iqy

or

6zaT + 5zal

depending on the propagation delay of the commercial SRAMs used in the instruction
memory. Realizing that this was the case, and that we had fast commercial memory
available, we modified the ALU process so that the result of the function aluf was
stored in a local register before it was sent to process REG3. This modification had
the effect of adding another pipeline stage to the processor and slightly complicating

the mechanism needed to ensure the absence of data hazards [15). The modification
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split in two the data path activities modeled by the single delay named za. Only two

named datapath delays occur in series in the modified version and the delay values

in the datapath are smaller.
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Figure 6.36: Meng’s FIFQO implementation

6.3 Other Asynchronous Pipeline Circuits

6.3.1 Meng

Teresa Meng [26] uses the circuit shown in Figure 6.36 to implement a pipelihed FIFO
buffer. The control circuit enforces more sequencing than is necessary resulting in an
inefficient implementation.

To show that this is so, we will perform a cycle-period and latency analysis on
Meng’s implementation and on a second implementation that performs less sequencing
but still enough to ensure correct operation of the datapath. Meng’s pipeline control

has the handshaking expansion:

*[[td]; co1; [ci]; lo T; [-ril; roT; [-li]; co L [eil; Lo L [ri]; ro ]



151

oy A
ro] <+— ri| *— lo} 3\1
b=t \ \ o
Y
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co] —> af

Figure 6.37: Latency/period constraint graph corresponding to

Meng’s FIFO implementation.
The constraint graph corresponding to this handshaking expansion is shown in Fig-
ure 6.37. A cycle-period analysis shows that four datapath delays occur in series.

The constraints imposed by the six cycles through the graph are

~
v

6CI + 6LT max 601 + 6L1

Z + (6LT max 6[,1)

i~
v

"3
v

o +6py

P = bop+dpy+bc+6n

resulting in a latency and cycle period of

{ = 661 +6LT machCl +6L1
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p = 66‘[ + 6LT + 601 + 6[,1 max 50[ + 26LT max 601 + 2(5[,1

Faster Pipeline Stage

An alternative handshaking expansion is
[[l]; coT; [ci]; loT; co|; [ori]; ro1; [Hli A —cil;lo; [ri]; rol]

In this case, co| is performed earlier in the sequence. This change does not violate any
requirements imposed by the datapath, since the data output of the register remains
valid even after co falls. (Note that in both implementations, ro must be implemented
with an isochronic fork between the control and data parts or by a latched-output
stage.) The constraint graph corresponding to this handshaking expansion is shown
in Figure 6.38. A cycle-period analysis shows that only three datapath delays occur

in series. The constraints imposed by the four cycles through the graph are

s
v

bt + b1y

3
v

e+ 6p;

bcr + 6 + 6y

~3
v

bct + 5[;{ + é¢y

i~
v

resulting in a latency and cycle period of

¢ = bg+6y

p = 501- + 5[,1 + (601 max 6LT max 6[4)
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bcy — £
bcr — 4 A
\
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+4
Y 6y

co] —> cil

Figure 6.38: Latency/period constraint graph of a second hand-
shaking expansion with weaker sequencing
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Comparison to the Active-Passive Pipelines

We now compare these two designs to the best pipelines designed in Section 6.1.4.
Because datapaths used differ slightly, we decompose them into comparable units. In
Meng'’s pipeline, the register and computation units are separated; two completion
trees are required. In the active-passive pipelines, the computation and register units
are combined together into a single unit with a single completion tree. We will write
the delay through the latch in Meng’s pipeline as §, + 6. and the delay through the
computation block as 4, + 8. where the §,, 8. and 6, represent register, completion
tree and output block delays, respectively. The delay through the entire datapath
stage in the active-passive case will be written 6, + §, + 6.. Up and down delays are

considered equal. With these assumptions, the cycle periods of these designs are:

DPMeng = 261- + 26¢ + 260 + 2‘5c
PMod = 26, +26.+ 6, + 4,

Diap = 260 + 26, + 26,

The modified Meng pipeline and the lazy-active/passive pipeline both have a better
cycle period than the Meng pipeline. Mod has a smaller cycle period if 6, < 4.

6.3.2 Greenstreet, Williams, and Staunstrup

Greenstreet, Williams, and Staunstrup [14] use the implementation of a pipeline stage
as shown in Figure 6.39 for their work with self-timed iterations. A number n of these
pipeline stages (at least three and with 4t least one process initialized differently) are
connected together to form a ring. If n is large, the cycle period of the ring is
determined by the latency per stage of an infinite array, multiplied by n. If nis

small, the cycle period of the infinite chain can contribute to the performance of the



155

/
....... CD......-
bcr, ¢y
i\ o
- lo 7

Figure 6.39: Implementation of the pipeline stage used by
Greenstreet, Williams, and Staunstrup [14].
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+£
YV b

col —> cif

Figure 6.40: Latency/period constraint graph of the GWS
pipeline stage.

system.

The handshaking for the control part of this stage is:
*[[li A =ri];cot; [ed]; loT, ro 15 [—li A ré); col; [ci]; lo ], ro]

The corresponding constraint graph is shown in Figure 6.40. The three cycles in the

graph produce the constraints

{ = (50{ ma.xécl

p = 2£+6CT+6CL'

The cycle period has four datapath delays in series and the latency has only one.

While it is possible to redesign the control process in order to reduce the cycle period
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Figure 6.41: Three GWS pipeline stages connected to form a
ring.
of a long chain of these stages, it is not the performance metric of interest.

What is important is the cycle period of three stages connected together to form a
ring (Figure 6.41). The surprising result is that with this implementation, all siz of the
datapath delays occur in series. Even with the (non-speed-independent) optimization
performed in [14, 38], all datapath delays occur in series.

The constraint graph shown in Figure 6.42 is constructed from the three pipeline

stages:

0 = #[[li A -ri];col;[ci];loT,roT; [Hli A ri];col;[—eil;lo],T0]]

rl

*[[li A =ri]; col;[ci]; loT, roT; [Hli A ri]; col; [—ei;lo ), rol]

72

*[roT; [2li Ari];col;[meil;lo],rol; [li A =ri];cot;[ei]; loT]
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Figure 6.42: Latency/period constraint graph of three GWS
pipeline stages connected to form a ring.



159

Process r2 begins with the R communication and the other two processes begin with
the L communication. Note that transitions on the handshaking variables li, lo, ro
and ri can be removed from the constraint graph since each transition is a copy of
a transition on ci in one of the three processes. We can rewrite the handshaking

expansions in this form:

r0 = *[[l0i A ~cli]; c0oT; [-10Z A clil; c0o |
rl = *[[c0i A =c2d]; cloT; [-c0i A ¢2i]; clo]]

2 = *[r207;[~cli A c0i]; c20|; [-c2i]; 720 |; [cli A ~c0i]; c207; [c2i]]

To determine the ¢ values on the arcs of the constraint graph, we see that the
wait [-ri] is vacuous in process r0 but not vacuous in process 1 since lo is initially
true in process r2. The wait [-ld] is vacuous in process r2. There is a cycle through
this constraint graph corresponding to the cycle period 3¢t + 3b¢y.

As the number of stages n in the ring increases, the number of datapath delays in

series becomes n.

Improved Handshaking

To improve this design, we observe the requirements imposed by the datapath:

(ci,j—l)(_l)l < {co,7)1
(e, j+1)T < {co, )]
(¢, i + 1)V < {co,j)1

(co,j + 1)V < (co, )1
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The first constraint ensures that the old data in stage j — 1 has been reset before the
latch is open in stage j. The second constraint ensures that data coming into stage
J + 1 is latched before the data in stage j is lowered. The final two constraints ensure
that the latch control in stage j + 1 is lowered before new data values are sent in

stage j. The third constraint is more strict and allows an implementation without an

" isochronic fork between the control and data parts. The fourth constraint forces an

implementation that uses an isochronic fork or a latched output stage, but then the
sequencing is considerably more efficient. If we enforce the fourth constraint instead
of the stronger third constraint, the cycle period of an infinite chain of these stages
is improved by 33 percent and the cycle period of a ring of three stages is improved
by 100 percent. No improvement is observed in the cycle period of a ring with more
than three stages, since the performance in constrained by the latency of each stage.

The handshaking expansion

Ir = *[[-ri Ali];10' 1;c01;[ci]; 10" T;70T;
[ri" A =li}; 10 |; col; [~ei]; 10" | 0]

implements these constraints. The handshake wire from lo to ri has been replaced
by two wires; one from 1o’ to r#/, and the other from [0” to ri". Both lo’ and lo" are
implemented with an isochronic fork since it is necessary to ensure that o' T occurs
before col and that lo” | occurs before ro|.

Figure 6.43 shows the constraint graph corresponding to an infinite array of the
process Ir. At most three external delays occur in series. The latency remains one

external delay. Three stages connected in a ring are shown in Figure 6.44. The
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Figure 6.43: Latency/period constraint graph for an infinite
array of the modified GWS pipeline stage.



162

L) LY O

SN I

<D ) Ly

Ay 9 Ry

Scrsba| cda| 1 grue [t 80| trud
1 ! 7 >/ i -

Figure 6.44: Three modified GWS pipeline stages connected in
a ring.
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Figure 6.45: Latency/period constraint graph of three modified
GWS pipeline stages connected in a ring.

rightmost process represents an implementation of

rl = x[rol;[ri" A =li];10 |;col;[~ci];lo” L;r0];
[-ri’ AliJ;10 15 coT;[ci]; 10" 1]

The process is needed to break deadlock in the ring. The constraint graph from this
circuit (Figure 6.45) shows that at most three external delays occur in series. The

constraints in the graph contributed by each Ir process j are:

(co,j)T — (ci,i)1
(co,i)l — (ci,7)!
(ct,j —1)T — {co,j)1

(ci,7 +1)T — {co,j)|
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(ci,j—1)] — (co,j)]
(co,j +1)1D —s (co,j)1

The last constraint has an € value of one only when it is connected on the right to an

Ir process. The constraints in the graph contributed by each rl process j are:

(o)t — (ci,i)1

(co, )l — {ci,j)!

(i, i = 1)1 — (co,j) !
(i, H1TY — (co,j +1)1

(ci,j +1)T — {co,)!

(co,j+1)| — (co,j)1
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Chapter 7

Performance Optimization

In this chapter, we discuss methods for optimally sizing the transistors of an asyn-
chronous circuit with a fixed topology. Using the analysis methods from Chapter 2,
a performance metric, for example, the minimum cycle period p, can be expressed
in terms of the delays of an ER system. These delays can be estimated from the
sizes of the transistors that make up the operators of the circuit, and the way these
operators are interconnected, by using a simple resistance-capacitance (RC) timing
model. Composing the performance metric in terms of component delays with the
delay approximation of the operators in terms of transistor sizes, we get an expres-
sion for the performance of the system in terms of transistor sizes. This expression is

optimized, producing optimal sizes for the transistors.

7.1 Tau Model

A simple RC switch model is used to relate each individual delay & to the widths
of circuit’s transistors (w’s). Each transistor is modeled as a switch with a resistance
inversely proportional to its width. The gate of a transistor has a capacitance to

ground proportional to its width. Source and drain capacitances are also proportional
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Figure 7.1: RC approximation of a CMOS pulldown.

IS

to transistor widths. Thus, the delays between a1 and z |, and 1 and z |, of the

circuit shown in Figure 7.1 are modeled as:

Qgyy = RiCy+(R;+ Rp)Co (7.1)
agy = (Ri+ Re)Co (7.2)
Ry = pfw
Ry = pfw,

Ci = Kin(w + wp)

C2 = Kext(w2 + 1.03) + Cwiring + Kg(w4 + 'LU5) )

where p1 is a constant that describes the differing per-unit-width strengths of the
n- and p-channel transistors, K, is the per-unit-width capacitance contributed by
internal (to the series chain) drain and source terminals, K, is the per-unit-width
capacitance contributed by external (the output node) drain terminals, K, is the per-
unit-width gate capacitance and Cyiring is the capacitance contributed by wiring. All
capacitances are expressed in terms of transistor width, and thus K, = 1. Each delay
a is expressed in units of 7, the time needed for a unit-width n-channel transistor
to switch a unit-width load. (Thus, p, = 1, g, > 1.) The values of Kjy;, Keq and

Cuyiring are not constant, but depend on the final circuit layout that depends weakly
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on the transistor widths. This dependence is normally small and is ignored in the
optimization problem.
Timing models similar to the tau model are used in other transistor optimization

tools (designed for synchronous circuits), such as TILOS [11], COP [21], and EPOXY
[28].

Example 7.1 As an example, we will construct the optimization equations for the

C-element circuit. From the cycle-period analysis,

P = oyt (@ + 0upy) max (g + oypy) +

gt + (e + Ogpur) max (aupy + ayg) .-
For purposes of this example, the constants of the tau model take on these values:
Kexi =1, Kig = 0.5, Kg =1, Hp = Hn = 1, Cwiring =0.

Since the mobilities of the pull-up and pull-down devices are assumed to be identical,
by symmetry, the widths of the pull-up and pull-down devices are identical. Similarly,
the pull-up and pull-down delays should be identical. Thus, we can simplify the

expression for the cycle period to
1
§p = Oy + (azz + azu) max (azy + ayu) .
To compute the delay between 2 | and z T, we compute the external load and

multiply it by the resistance of the driving transistor. So,

Cload = Kext(wzle + szzl) + Kg(wziuT + wa:Tul) + Cwiring
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4l .

S
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Figure 7.2: CMOS circuit for C-element and the trivial en-
vironment. Equal mobilities result in symmetric pull-up and
pull-down widths as well as symmetric pull-up and pull-down
delays.

Rdrive =

Substituting in values of the constants and applying the symmetry simplification

yields:
1
Qoat = 0y = —(2w; + 2wy).
wq

The delay between yT and u| is RiC) + (R; + Ry)C,, where

R =t~ Rt
Wty Waty
C1 = Kin(wgy + way)

C2 = Kext(szul + wzluT) + Kg(quzl + wu.lzT) + Cwiring .
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Substituting and simplifying, we get
a = @y = 1(w+w)+(1+l)(2w+2w)
Wl — yu — 21U3 3 4 w3 s 4 0)-

For the other three delays, we get

1 1

Qo] = Qgy = (;1)-;+w—4) (2w4+2w0)
1

Qupyy = Qup = w—0(2wo+2w1+2w2)
1

Qg = Oy = E;(2w2+2w3).

Replacing these delay expressions in the definition of the cycle period, we get

LI 1(w+w+w)+
4P—w0 0 1 2

1 1 1
(——(wl + wy) + (—— + ———) (wq + wo)) max
w w3 Wy

(l(w +w3) + = (w +w)+(1 + 1)(w +w))
wy 2 3 4w3 3 4 ws wy 4 0 -

Setting wg = 1, which we can do because Cluiring = 0, and simplifying, we get

1 Wy 1 1 Wy w3 1 Wy

P = 3+wi+wy+ —+ —+-— 4+ — max (——+-+——) :

4 w3 w3 wg W wy 4  4ws
We can find the optimum values of the width variables by optimizing this expression
with respect to the variables w;, wy , ws and wy. Here we use the traditional ap-
proaches from elementary calculus. An optimal solution to f = 0.25p on the interior

of the domain (w; > 0) exists at a point where the gradient is zero or at a point of

discontinuity of the gradient. However, the gradient is never zero over the interior of
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the domain since;

af . wy 1 Wy Wy
5o = 1 it (24 ) >
ow, ! Wy + 4 + 4ws w1

of wg 1wy Wy
g =1 it (B4 )<
Owy wo + 4 + 4ws wy
Thus, the rhinimum must be achieved at a point of discontinuity of V£, and this
can only be when both expressions in the max statement have the same value. Since
this is the case, we can use Lagrange Multiplier techniques to find the optimal value.

Optimal values of f(w;, ws, w3, ws) subject to the constraint

wy

(w1, we, w3, wy) = (w31 w4>_0
91,2,3,4—w1 w244w3—
are achieved when

V f(wi, wa, w3, ws) = AVg(wy,ws, w3, wy). (7.3)

The minimum value is 8.7202 and is achieved at:
(wy, wa, w3, wy, A) = (0.4782,1.1632, 1.8002, 0.9209, —0.7516) .

There is another solution to (7.3) but it does not represent a minimum point. The
plots in Figure 7.3 through Figure 7.6 show the cross section of f at the optimal point

with respect to each of the parameters w;, w,, w3 and w,. 0J

7.2 Convex Objective Function

Every a derived using this simple model (and also other more accurate models) is

a posynomial function (polynomial with positive coefficients and positive variables)
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0.5 1 1.5 2 2.3 3

Figure 7.3: Cross section of f with
respect to w;.

0.s 1 1.3 2 2.5 3

Figure 7.5: Cross section of f with
respect to ws;.
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0.3 1 1.8 2 2.8

Figure 7.4: Cross section of f with
respect to w,.

~

(X 1 1.3 2 2.8

Figure 7.6: Cross section of f with
respect to w,.
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of the transistor widths w’s, and thus a convex function of the logw’s [13]. Because
both the sum and the maximum of two convex functions are convex functions, the
resulting expression for p is a convex function of the log w’s; and, thus, each minimum
of p is global.

The addition of convex constraints, for example, to limit energy usage or to bound

transistor sizes, does not alter the unique minimum property.

7.2.1 Power Constraint

There are two ways to introduce the power constraint: If the power value is some

convex function of the widths, then we can add the constraint
power(w) < budget

and perform the minimization subject to this constraint. However, if we know that
the constraint is satisfied with equality at the optimal value and the power function
is linear in the widths, then we can transform the constrained optimization problem

into an unconstrained problem.

Example 7.2 If Cying = 4 instead of 0, the performance metric equation from

Example 7.1 becomes:

1 ‘ 1 1
f = —(w0+w1+w2+2)+(—+—) (w4+w0+2)
wg w3 Wy

1 ‘ 1 1

No finite solution vector minimizes f, since larger values of the widths will always
reduce the contribution of the terms with a constant numerator and a width in the

denominator. In order to find a practical solution, we constrain the total transistor
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width to be equal to a power budget. (In CMOS, transistor width is proportional to
capacitance, and that is proportional to power.) The total capacitance that switches

per cycle (all the capacitance in this circuit) is proportional to:

power -w+cy = (wo+ wy+wa+2)+ (wy+wo+2)+
(w1 + wg + 2) + (w2 + w3 + 2) + 0.25(w3 + wy)
= 2wy + 2w + 2wy + 1.25w3 + 2.25ws + 8

= budget

For example, assume a power budget of 103 units (on average w; = 10). Subtracting

and rewriting power so that power - w = 1, we get

2 2 2 125 225

power - w ) « (wo, w1, w2, w3, wy)

=1

As long as at the optimal solution w;« > 0, we can optimize the function

f (]?’U%—;) with Ui = 1

to obtain the constrained minimum value and the optimal solution vector. This

function is convex. The performance metric f can be rewritten

w w 2 w w 2 w, 2
f=l+—4 244 20 2 g0 2y
Wy Wy Wo w3 ws w3 Wy Wy
2 2 1 3
(1+%+——) max(1+%+—+—(l+-ui—))
wq wy : Wa Wy 4 w4
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In terms of u, we get

Uy U 2
= 14—+ —+4 —power-u+
f U Yo uopo
Uy

—+u°+2 wer + U +
uz us uapo

Uy 2
14+ —4 = .
+ Y + u4power u+

Uy 2
(1 + — + —power - u) max

Uy U
2 1
(1+E+—power~u+—(l+%>)
Us  Us 4 Uy

since the power - u cancel in the terms that are ratios of widths. The terms remaining

that contain power - u are posynomial since they are of the form

1 U;
_ j

-power -u = E power;—
U 7 U;

1

For this example, the function f has the optimum value 9.4895 and the optimum

solution occurs at

(wo, u1, us, uz, ug) = (1,0.5224,1.0948,1.7396,0.9258)
(wo, w1, w2, w3,ws) = (10.008,5.2289,10.957,17.410,9.2660)

O

7.2.2 Minimum Transistor Widths

Reality places a minimum limit on the widths of individual transistors. Although this

constraint is a minimum, it can be expressed in a convex form. We want m; < w; for
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all 7. Since each w; > 0, then

m <1 for all ¢
Wy
ma,x{1 fora.lli} < 1.

The constraint remains convex even if the power transformation is in effect,

m;
power - umax { —

U;

for all z} < 1.

Example 7.3 Consider the minimum width of 6 for each transistor in Example 7.1.

The minimum-width constraint equation becomes

1 1 1 1
6power~umax{1,——,—,——,—}
Uy Uz U3 Uy

For this example, the function f has the optimum value 9.53294 and the optimum

solution occurs at

(wo,u1, up, uz, ug) = (1,0.609272,1.12969,1.54954,0.99198)

(wo, wy, wa, w3, wg) = (9.84782,6,11.125,15.2596,9.76884) .

If the minimum width is 9.5 then three constraints are active. The function f has

the optiinum value 10.0372 and the optimum solution occurs at

(wo, uy, up, u3,ug) = (1,1,1.01837,1.37061,1)

(wo, wy, wa, w3, ws) = (9.5,9.5,9.67448,13.0208, 9.5).
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7.3 Subgradient Algorithm

The performance metric is a continuous, nonlinear, nondifferentiable, convex function
of the log w’s. The nonsmooth nature of the function makes the optimization problem
difficult and traditional techniques such as gradient following must be modified to
provide solutions to this problem. The subgradient techniques described by Shor [36]

provide adequate methods for finding optimal solutions.

7.3.1 The Subgradient

The subgradient of a convex function f of the vector z at the point x4 can be defined

as any vector gs(zg) such that for all =

f(z) ~ f(zo) > g5(x0) - (z — z0) .

At points where the gradient is continuous, the subgradient must equal the gradient.
At points of discontinuity, any (one-sided) directional derivative can be used as the

value for g¢(zo).

7.3.2 Basic Algorithm

"The basic subgradient minimization algorithm is the following iteration:

(kD) x(k)_h(k+1)($(k))gf(x(k))

This differs from normal gradient descent methods because in order for the algorithm
to converge the values of A*+1(z(*)) must tend to zero as k increases. Constant
step-sizes are not suitable because the values of gf(x(k)) may not tend toward zero if,

for example, the optimal value is at a point where the gradient is not continuous.
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The step-sizes must be decreased with subsequent iterations; however, they must
not be decreased too quickly, for in such a case all £ will be a bounded distance
away from the starting point z(®). Theorem 2.2 in [36] (p. 25) states that given any

sequence h(¥) such that

o0

A >0,  limh® =0, Y a®=co
k—o0 =1
then the iteration
’ k
oD k) _ h<k+1)_§M (7.4)
lgs(=®)|

converges to the minimum solution. However, this sequence can converge very slowly.

7.3.3 Convex Constraints

The subgradient algorithm can be used to minimize a convex function given additional
convex constraints. Suppose that we minimize the convex function f subject to each
convex function fy(z), fi(z), ..., fo(z) evaluating to at most 1. To find the minimum
solution to this constrained problem, we substitute the subgradient used in (7.4) by

any gf(z) satisfying

g5(z) ifforallz, fi(z) <1

9le) = 9x)  if fi(x) > 1

If a constraint is not satisfied, then the above algorithm will decrease the value of
the corresponding function until it is satisfied. If all the constraints are satisfied, the

objective function f is minimized.
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7.3.4 Heuristics and Space Dilation

The major reason for slow convergence of the (7.4) is that the direction specified
by the subgradiant can be almost perpendicular to the direction toward the true
minimum. When this occurs, a linear transformation on the domain of the objective
function can help speed up the algorithm. We try to reduce the components of the
gradient that are parallel to the previous gradient. We do this by shrinking the space
in the direction of the previous gradient.

A vector z can be represented as:

T = Ye(7)€ + de(),

where £-d¢ = 0, v¢(z) = - £, and d¢(z) = T — 7¢(z)€. The operator of space dilation

by the amount « in the direction ¢ transforms a vector z into
Ro(§)z = aye(z)€ + de(z) .
This operator can be represented in matrix form as
Ro(8) = I+ (a—1)¢€"

and has the following identities:

Rop(§) = Ra(§)Rp()
Ri(€) = I = Ra(§)Ry/a(€)

These operators are used in Algorithm 7.1. This straight algorithm with space
dilation is still too slow. We actually use Algorithm 7.2, which is described in [36]
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. Set By=1I,and k=0.
. Evaluate g;(=(®).

. Set §*) = Bl g;(z®).
. Compute

(@) €& =g®/1»||
(b) p(k+1)
(c) alk+D

. Update the solution vector z(¥+1) = z(¥) _ p(k+1) g, £(k+1),
. Update the transformation matrix By; = Ble/a(k+1)(£(k+l)).

. Increment k and go to step 2.

Algorithm 7.1: Subgradient method with space dilation along
the gradient.
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L l Tirans ]punsized ! Dsized I CPU (Sec) I
Three stage pipeline control 59 189 | 143 42
Ten stage pipeline control 192 189 | 151 190
Ten stage pipeline control* 192 189 151 95
Simple microprocessor control* | 285 646 | 430 369
* indicates results generated by the special-purpose algorithm

Table 7.1: Performance of optimization tool.

(pp. 135—139).. While this algorithm does not have the provable convergence prop-
erties of the previous algorithm, in practice, it converges to the optimal solution in
fewer steps.

We have implemented Algorithm 7.2. In the current implementation, the user
may interactively adjust the values of the parameters and possibly reset the space-
dilation matrix to the identity. The algorithm terminates if the change in the value of
the performance metric is less than a user—'adjustable parameter (typically 0.0001) for
several (typically 10) iterations. Tables B.2 and B.3 show the optimization equations
for the lazy-active/passive buffer example. Tables B.4 and B.5 show the output of
this tool, including the value of the perfdrmance metric at every fifth iteration.

Table 7.1 lists the results of this program when applied to a variety of circuits. The
column 7.,y denotes the number of transistors in the circuit, and thus the number
of free variables in the optimization problem. The columns Dunsized and Dgizeq Show
the cycle period in units of 7 of the circuit before and after optimization. In the
unsized case, all transistors have equal sizes. The CPU column denotes the number
of CPU seconds needed to compute the optimum value on a SUN/Sparcstation 1.
The performance metric of the sized circuit is generally 20-30 percent faster than the
unsized circuit. A direct implementation, using cycle enumeration to determine the

cycle period, requires O(n2,, . +ncycieskmax) arithmetic operations per iteration, where
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.Set Bo=1,k=0,§® =0, and 5® =0.

. Evaluate gs(z(®).

. Set g®) = BT g;(z®).

. Compute the difference of the two gradients, r(¥) = g(¥) — §(*),

. Calculate the ratio of the norms of r(¥) and §(®; that is, B*) = ||r(®]|/||g®|].
. If (¥ < ¢y, then set

(a) pE+1) — p(k)
(b) Bit1 = B

(c) GETD = k)
(d) n®+D = 7®

. If %) > g4, then set

(a) AHD = p(R)g,

(b) Bk+1 = Bk‘Rl/ﬂ(T(k+l)/I|T(k+l)“)
(c) g%V = BT, ,gs(«™®)

(@) p*+D) = pletD B, gD 7)1 gD

. Update the solution vector z(*+1) = z(¥) _ 5(k+1),

. Increment &k and go to step 2. |

Algorithm 7.2: The r-algorithm, modified to decrease the num-
ber of function evaluations. Typically, the parameters are set
as follows: h =1, ¢; = 0.9, g2 = 0.95, a = 1.5.
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Ncycles 1S the number of cycles used to form the cycle-period function, and where k.
is the maximum number of edges per cycle. A more sophisticated implementation
uses the primal-dual algorithm (Algorithm 2.2) to solve the linear program for the
cycle-period at each iteration, and requires only O(n2, ) arithmetic operations per

iteration.
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Chapter 8

Summary and Concluding Remarks

In this thesis, we have defined an abstract representation of a computation that
facilitates performance analysis. We have formulated several performance metrics
that indicate the rate of operation of such an abstract system. We have formulated
and proven several lemmas and théorems describing how closely we can approximate
the complex, difficult-to-compute performance metrics, e.g., the timing simulation,
by simple, easy-to-compute ones, e.g., the cycle-period. We have also described an
efficient algorithm to compute the cycle-period. We have briefly described Martin’s
method for synthesizing quasi-delay-insensitive circuits from concurrent programs.
We have shown how to transform a concurrent program, described at one of the
various levéls of the synthesis hierarchy, into the abstract representation used for
performance analysis. We have also shown how to analyze effectively the performance
of a system containing a linear array of idenfical processes. These techniques were
used to compare a variety of implementations of a FIFO, and were used to improve a
pair of existing designs. Finally, a tool for performance optimization was described.
Within this tool, the analysis techniques of the previous chapters are used to construct

a concise objective function that is then optimized.
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We plan to incorporate the work described in this thesis into a computer-aided de-
sign (CAD) tool that unifies synthesis, analysis, and optimization. Such a tool would
start with the description of computation as a concurrent program, and then perform
a series of transformations guided by performance concerns until an asynchronous
circuit that implements the computation has been constructed. Optimization meth-
ods would then be applied to compute the sizes of transistors within the circuit. We
believe that such a tool should be interactive, allowing a circuit designer to decide at
each level which alternatives to explore. With such a system, a good designer should
quickly be able to generate efficient implementations of computations as asynchronous

circuits.

8.1 Loose Ends

This work invites several questions that remain, as yet, unanswered.

A tighter bound in the termination proof of Algorithm 2.2, used to compute
the cycle-period, is needed. Experimental evidence suggests, even for large systems
designed using our method, that only a few iterations of the algorithm are required.
The bound derived suggests that this number is O(n?) (but possibly larger if ¢ > 1),
where n is the number of nodes in the collapsed-constraint graph. To get a very tight
bound, we would have to consider the type of event-rule systems that are generated
by the synthesis method because, for an arbitrary system, the algorithm can take
)(n) iterations. We see this lower bound by generalizing Example 2.9.

The inability to model inherently disjunctive systems (Section 4.5) is not partic-
ularly satisfying.

Not all the possible degenerate cases of regular systems are categorized in Chap-
ter 5. A more complete theory is required.

On the practical side, the most important follow-up would be to improve the
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convergence properties of Algorithm 7.2 by customizing the step-size determination
procedure and the termination test to the type of objective functions that are ac-
tually encountered during transistor sizing. The current algorithm makes almost no
assumptions about the form of the objective function. Incorporating a smooth ap-
proximation into the tau model, as described in Section A.2, could also accelerate

convergence.



186

Bibliography

[1]

(2l

(3]

[4]

[5]

[6]

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

Richard E. Bellman, Kenneth L. Cooke, and Jo Ann Lockett. Algorithms, Graphs, and
Computers. Academic Press, New York, 1970.

Steven M. Burns. Automated compilation of concurrent programs into self-timed

circuits. M.S. thesis, California Institute of Technology, 1988. CS-TR-88-2.

Steven M. Burns and Alain J. Martin. Syntax-directed translation of concurrent pro-
grams into self-timed circuits. In J. Allen and F. Leighton, editors, Advanced Research
in VLSI, Proceedings of the Fifth MIT Conference, pages 35-50. MIT Press, Cam-
bridge, MA, 1988.

Steven M. Burns and Alain J. Martin. Synthesis of self-timed circuits by program
transformation. In G.J. Milne, editor, The Fusion of Hardward Design and Verification.
North-Holland, 1988.

R. A. Cuningham-Green. Describing industrial processes with interference and approx-
imating their steady-state behaviour. Operational Research Quarterly, 13(1):95-100,
1962.



187

[7] David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. Ph.D. thesis, Carnegie Mellon University, 1988. CMU-CS-88-
119.

[8] Jo C. Ebergen. Translating Programs into Delay-Insensitive Circuits. Ph.D. thesis,
Technische Universiteit Eindhoven, 1987.

[9] W.C. Elmore. The transient response of damped linear networks with particular regard
to wideband amplifiers. Journal of Applied Physics, 19(1):55-63, January 1948.

[10] Shimon Even. Graph Algorithms. Computer Science Press, Rockville, MD, 1979.

[11] J.P. Fishburn and A.E. Dunlop. TILOS: A posynomial programming approach to
transistor sizing. In JEEE ICCAD, pages 326-328, November 1985.

{12] L.R. Ford, Jr. and D.R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, NJ, 1962. '

[13] Joel Franklin. Methods of Mathematical Economics. Springer-Verlag, Berlin, 1980.

[14] M. Greenstreet, T. Williams, and J. Staunstrup. Self-timed iteration. In VLSI 1987,
pages 1-20, 1987. Draft.

[15] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufman Publishers, Inc., 1990.

[16] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21(8):666—677, 1978.

[17] Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rine-
hart and Winston, New York, 1976.

[18] Tony Lee. Communication behavior of linear arrays of processes. M.S. thesis, California

Institute of Technology, 1989. CS-TR-89-13.



[19]

20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

188

Tzu-Mu Lin. A Hierarchical Timing Simulation Model For D:gital Integrated Circuits
and Systems. Ph.D. thesis, California Institute of Technology, 1984. 5133:TR:84.

Jan Magott. Performance eva:iil;ti;)n of concurrent systems using Petri nets. Informa-

tion Processing Letters, 18:7-13, 1984.

David P. Marple and Abbas El Gamal. Optimal selection of transistor sizes in digital
VLSI circuits. In Paul Losleben, editor, Advanced Research in VLSI, Proceedings of
the 1987 Stanford Conference, pages 151-172. MIT Press, Cambridge, MA, 1987.

A.J. Martin. The limitation to delay-insensitivity in asynchronous circuits. In
William J. Dally, editor, Advanced Research in VLSI: Proceedings of the Sizth MIT
Conference, pages 263-278, Cambridge, MA, 1990. MIT Press.

A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovi¢, and P.J. Hazewindus. The design of
an asynchronous microprocessor.ﬂ In C.L. Seitz; editor, Advanced Research in VLSI:
Proceedings of the Decennial Caltech Conference on VLSI, pages 351-373, Cambridge,
MA, 1989. MIT Press.

Alain J. Martin. An axiomatic definition of synchronization primitives. Acta Infor-

matica, 16:219-235, 1981.

Alain J. Martin. Programming in VLSI: From communicating processes to delay-
insensitive circuits. In C.A.R. Hoare, editor, UT Year of Programming Institute on

Concurrent Programming. Addison-Wesley, Reading, MA, 1990.

Teresa H.-Y. Meng, Robert W. Brodersen, and David G. Messerschmitt. Automatic
synthesis of asynchronous circuits from high-level specifications. IEEE Transactions

on Computer-Aided Design of Integrated Circuits, 8(11):1185-1205, November 1989.

David E. Muller and W.S. Bartky. A theory of asynchronous circuits. In The Annals
of the Computation Laboratory of Harvard University. Volume XXIX: Proceedings of
an International Symposium on the Theory of Switching, Part I., pages 204-243, 1959.



28]

(29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

189

Fred W. Obermeier. An Open Architecture for Improving VLSI Circuit Performance.
Ph.D. thesis, UC Berkeley, 1989.

Christos H. Papadimitriou and Kenneth Steiglitz.‘ Combinatorial Optimization: Algo-
rithms and Complezity. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

P. Penfield and J. Rubinstein. Signal delay in RC tree networks. In Charles L. Seitz,
editor, Proceedings of the Second Caltech Conference on VLSI, pa‘gésﬂ269—283. Caltech
Computer Science Department, January 1981.

C.V. Ramamoorthy and Gary S. Ho. Performance evaluation of asynchronous concur-
rent systems using Petri nets. IEEE Transactions on Software Engineering, 6(5):440-
449, September 1980.

Edward M. Reingold, Jurg Nievergelt, and Narsingh Deo. Combinatorial Algorithms:
Theory and Practice. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.

Raymond Reiter. Scheduling parallel computations. Journal of the ACM, 15(4):590-
599, October 1968.

Martin Rem. Trace theory and systolic computations. Computer Science 5239:TR:87,
California Institute of Technology, 1987.

Charles L. Seitz. System timing. In Carver Mead and Lynn Conway, editors, Intro-
duction to VLSI Systems, chapter 7. Addison-Wesley, Reading, MA, 1980.

N.Z. Shor. Minimization Methods for Non-Differentiable Functions. Springer-Verlag,
Berlin, 1985. Translated from Russian.

Ivan E. Sutherland. A theory of logical effort (revised version). Technical Report SSA
4679, Sutherland, Sproull and Associates, Inc., September 1986.



190

[38] Ted Williams, Mark Horowitz, R.L. Alverson, and T.S. Yang. A self-timed chip for
division. In Paul Losleben, editor, Advanced Research in VLSI, Proceedings of the 1987
Stanford Conference, pages 75-95. MIT Press, Cambridge, MA, 1987.



191

Appendix A

Accuracy of Tau Model

We provide a short analysis of the accuracy of the approximations, (7.1) and (7.2),
to the actual propagation delay through the RC circuit shown in Figure 7.1. 1t is
beyond the scope of this thesis to argue the accuracy of the tau model at describing
delays of real transistors. To ease the analysis, we change the time units so that one

unit corresponds to (R; + R3)Ca, and use the dimensionless variables

r= By c = G
_R1+R2, - Cy

Figure A.1 shows the RC circuit with these new names for the resistances and
capacitances. Typically, r < 0.5 and ¢ < 0.3.
We now derive the time evolution of the voltages on the internal and external

nodes of this circuit given various configurations of the two switches. Initially, the

T T “1—TT
TMWNW—
5\/\/\/\'—/6{‘; 1%

Figure A.1: RC pulldown circuit with dimensionless variables r
and c.
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internal node is at voltage u and the external node is at voltage v.

Switch a Tied, Switch b Cut If switch a is tied and switch b is cut, then the

voltage on the internal node decays as a simple exponential.
u(t) = wuex ( ¢ )
- P\7re
The voltage on the external node remains constant.

Switch b Tied, Switch a Cut If switch b is tied and switch q is cut, then charge

sharing occurs between the internal and external nodes.

s — 1+e¢
o = c(l—r)
81 = 0
U—v cu+v
t —_ sol
u() 1+e¢ 1+¢
cY — cu cu+v
t — sot
v() 1+ce + 1+¢

Notice that if u = v, that is if the two nodes are at the same voltage, the voltage on
both nodes remains constant. The scenario cannot reduce the voltage on the external
node to half of v unless v < 0.5 and ¢ — 1 /¢ > 2u, which represents an unreasonably

large (greater than unity) value for c.

Both Switches Tied If both switches are tied, the voltages on both nodes will

decay toward zero.

1 2
¢ = —— = (Al)
To —1l—cr+ \/(1 —cr)? + 4cr?
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14

T L) L]
0.5 1 1.5 2 2.5

RPN

Figure A.2: Time evolution of the voltages u(t) and v(t) for the
case of both switches tied. The initial values u and v are both
set to 1. The resistance and capacitance ratios are both set to

0.3.
1 2
ST = —— = (A2)
71 -1 —cr—\/(l —cr)? + 4cr?
u(t) = (u —rv) —uny grot 4 UL (u — rv) ot (A.3)
n—"7 1—To

(v—wer—vr ,, v —(v—u)er
e®! +

o(t) = et (A4)

Tl—fTo T—7

The time needed to lower the voltage on the external node to one half its initial

value is named the 50-percent propagation delay.

v(ts0%) = %U (A.5)

The o values in (7.1) and (7.2) are meant to approximate this delay. Because of the
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two time constants in (A.4), no closed form solution exists for ¢5q0;.

Actual 50% Delay The following table shows the propagation delay for various

values of r and c.

u=1

tsoe |[c=01]¢c=03]|c=05|c=0.7]c=0.9

r=0.1f 0.703 | 0.723 | 0.743 | 0.763 | 0.784
r=03| 0.721 | 0.776 | 0.833 | 0.89 0.947
r=05] 0.736 | 0.821 | 0.906 | 0.989 | 1.072
r=0.7) 0.748 | 0.857 | 0.964 | 1.070 | 1.174
r=09] 0.758 | 0.887 | 1.015 | 1.142 | 1.269

These values were computed by numerically solving (A.4) and (A.5) for t59%. In the
limiting cases, the system degenerates to a single time constant and the propagation

delay can be solved in closed form.

t50% = 1112, fr=0vVe=0

= (1+c)ln2, ifr=1

Modeled 50% Delay The tau model approximation is derived from the Elmore
delay [9, 30, 19] of v(t) with v = u = 1:

oo
tElmore = "A tv,(t)dt

= —/ 4 [Sokoesot + Slkleslt] dt
0

1
= = [rott = e 4 kate - -l-)em]
50 s 0
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k k
= - [—0 + —IJ = koo + k11
So 31

2 2

70
+
M—T7 7T1—17
i+7 = l4cr

1

The voltage v(t) is falling from 1 to 0 and thus v/() < 0. The Elmore delay is the
centroid of v(¢) and represents a single time-constant approximation to the system.

This approximation is exact in the limiting cases above.

t: = (I14+rc)ln2

= 1509 fr=0vVe=0vr=1
Percent Relative Error We define the percent relative error of the approximation
by

100 tr — tso%
50%

% €TTrel =

The following table shows the errors for various values of r and c.

u=1

Joerreel | c=0.1[c=03|c=05|c=0.7|c=09

r=01} -04 | -1.2 | —2.0 | —28 | —3.8
r=03{) —-09 | —-2.7 | —4.3 -5.8 -7.0
r=05| -1.1 -29 | —43 —-54 | —6.2
r=07{ -08 | —21 -29 | -34 -3.8
r=09] -03 | —-0.8 | —-1.0 | —-1.1 ~1.2
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The approximation is quite good, with no more than 7% error over a wide range of
parameter values. Over the range of typical values, r < 0.5 and ¢ < 0.3, the errors
are all less than 3%.

Internal Node Not Fully Charged The voltage u is state information and can-
not, in general, be determined statically from the circuit description. The tau model
assumnes the worst-case initial voltage for the internal node. Large overestimations of
delay occur if the initial voltage on the internal node is zero. The inability to model

the effect is one of the key contributors to the error of the tau model.

u=20

tsog |c=01]c=03[c=05]¢c=07{c=0.9

r=0.1 0693 [ 0.692 | 0.691 | 0.690 | 0.689
r=0.3] 0.690 | 0.682 | 0.671 | 0.658 | 0.644
r=05] 0.684 | 0.659 | 0.625 | 0.585 | 0.547
r=0.7] 0.676 | 0.625 | 0.555 | 0.474 | 0.403
r=09] 0.664 | 0.583 | 0.474 | 0.341 | 0.204

From this table, we see an error of 25% if r = 0.5 and ¢ = 0.3 and an error of 11% if

7 = 0.3 and ¢ = 0.3. The error is less pronounced if u = 0.5, being less than 7% over
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the range of typical values.

u =105

tsox |c=01]c=03]c=05]c=07]c=09

r=0.1] 0698 [ 0.707 [ 0717 | 0.727 | 0737
r=03/ 0.705 | 0.730 | 0.755 | 0.780 | 0.803
r=05 0710 | 0.743 | 0.773 | 0.801 | 0.826
r=07] 0712 | 0.747 | 0.776 | 0.800 | 0.821
r=09] 0712 | 0.744 | 0.770 | 0.791 | 0.809

To compensate for this error, we can compute the Elmore delay of v(t), with u

set to an intermediate value.

lElmore = koTo + k171
1—u)er— 19 71 — (1 —u)er
= ( To+ ) T1
n—"7 m—7

= n+n—-(1—-u)er = 1+cru

Using this estimate, we see an error of less than 5% over the range of typical values.
The error, however, can be quite large for large r and c. However, this technique is
rarely pfactical, since it is difficult to determine without simulation what initial value
u to choose.

Figures B.13 through B.16 show the SPICE-generated waveforms of selected nodes
of a circuit implementing the lazy-active /passive buffer. All but the first and the fifth
waveforms correspond to internal nodes. Notice that the voltage on some internal
nodes is constant while on others it varies almost from rail to rail. We do not consider
it practical to use this information during optimization and choose a worst-case initial

‘voltage for the internal nodes. However, this example does show a major source of



198

€ITor.

A.1 Tied Transistors in the Pull-up Chain

One source of capacitance is ignored by the delay model as it stands. The capacitance
of internal nodes in the pull-up chain of an element can influence (make longer) the
delay of the down-going transitions of the element. (The same argument holds for
pull-down chains and up-going transitions.) This is because there can be a conducting
chain of transistors between the output node to the internal node. The capacitance
on the nodes of this conducting chain must be charged as well.

If a circuit variable z is connected to a gate in the pull-up chain and to a gate in
the pull-down chain, then the capacitance of the internal nodes beyond z (toward the
power rail) can never contribute to the delay of the down-going transition. This is
because in order for the down-going transition to occur, all the n-channel transistors
in the pull-down chain must be tied and thus the p-channel transistor in the pull-up
chain with gate £ must be cut (by non-interference). While this fact does not say
for sure whether the capacitance of an internal node in a pull-up chain influences
a down-going delay, it does say when such is possible, and thus provides an upper
bound on the delay. A more accurate determination requires simulation.

Compare the a values determined by SPICE simulation as shown in Figures B.17
and B.18 with those shown in Figures B.19 and B.20. The results of the simulations
described by the second set of figures show a better fit between simulated and modeled

delay values.
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A.2 Maximum Approximation

Another inaccuracy occurs when the inputs switch almost simultaneously. The time
between the inputs ¢(a 1) and ¢(b1) and the output ¢(z |) is characterized using the

tau-model as
t(z1) = max(t(al) + oy, 2(ET) + aya) -

Assuming that t(a 1) + 6 = t(b1) and substituting for each « in the dimensionless

model, we get

H(z1)
t(Z l) -— t(bT) = max((R101 + (Rl + RQ)CQ) In2-56, (R1 + R2)Cg In 2)

t(bT) + max(aam - 6, abTZl)

= max((rc+1)In2 — §,1n2)

= In2+ max(rcln2 — §,0).

For § > 0, the value of t505 is determined from (A.4) after first setting the initial
condition of the internal variable to

v = exp (-i) (A.6)

rc

to account for the charge pulled off this node while switch a is tied and switch b is
cut. Figure A.3 compares the actual t505 values—generated by numerically solving
(A.4)—with the tau-model estimates.

A more accurate (and also smooth) approximation can be constructed from the
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0.1 0.2 0.3
Figure A.3: Plot comparing t50% and t(z |) — t(b 1) derived
using the tau-model. Units on both axes are multiples of the
fundamental time (R; + R;)C,. The functions are plotted versus
6, the time after a1 fires that b1 fires. That is § = t(bt1)—t(at
). The parameters r and ¢ are 0.3 and 0.3, respectively. An
underestimation of the delay by 7% is observed at t = rc.
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Elmore delay of v(t) with u set at some intermediate value. Using (A.6) for u, we get

(I1+rc)ln2-6 ifé6<0

t(z1) —t(01) = (1+rcexp(-£))m2 i 5>0.

The derivatives of both pieces match at § = 0.

Example A.1 Using this smooth approximation, the optimization equation from

Example 7.1 becomes

§ = Y4 _Us
wy Wwa
1 'U)4>
= (1+—=
T 4( +w3
4 1 1 Wy
f=3+twtwe+—+—+—+—+
3 Wz Wy 1
Texp(—6/7) if6>0
T—6 if6<0

This expression can be minimized by traditional gradient-following techniques. The

minimum value is 8.806 and is achieved at:
(wy, wa, ws, wy) = (0.5136,1.1422, 1.8478,0.8972)

Figures A.4 through A.7 show the respective cross sections at the optimal point. 0

This approximation is quite accurate although it is significantly more complicated
than the maximum approximation. However, it is potentially simpler to optimize

such a smooth function because there are no discontinuities in the gradient.
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Figure A.4: Cross section of smooth
J with respect to w;.
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I

(3 1 1.5 2 2.8

Figure A.5: Cross section of smooth
J with respect to ws.

0.5 1 1.5 2 2.8 k)

Figure A.6: Cross section of smooth
J with respect to ws.

0.5 1 1.5 2 2.5

Figure A.7: Cross section of smooth
f with respect to wy.
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A.3 Transistor Models

As stated earlier, it is beyond the scope of this thesis to argue the accuracy of the tau
model at describing delays of real transistors. Instead, we will refer only to some ex-
amples in the following appendix. Figures B.9 and B.10 show the waveforms provided
by a SPICE simulation comparing an implementation of the lazy-active/passive buffer
with optimized and non-optimized transistor sizes. Figures B.13 and B.14 show the
waveforms of the internal nodes in these cases. Table B.1 and Figure B.17 compare
the predicted delay with the SPICE simulations. In Table B.3 and Figure B.19, the
comparison is redone with the tied model. In Figures B.21 and B.22, the waveforms

of a larger circuit are compared.
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Appendix B

Detailed Example

In the appendix, we perform a complete performance analysis and transistor opti-

mization of a circuit implementing the lazy-active/passive buffer.
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process active {

x.i->x_.0~
T x_.0 => x.0 ¢
" x.4->x_.0¢
xX_.0 -> x.0 =

}
process passive {

- x.3 [-1] -> x.0 +
x.i -> x.0 =

}
# top level production rules

“1i(-1) & x[-1]1& - r.o[-1] => _l.0 +
g% _lo=->1_ .0~

T 1l..0=>x+

T1_.0->1l.0+

x&k1l.i=->_l.0-
“ dlio=>1_.0 4+
1_.0~>1l.0 ~

ri&x&l _o->r_.0o-~
T r..o =>r.o+

T.0 => x -
“x& " r.i->r_.o+
r..o->r.o -

instance passive p
# instance active a
# connect 1.0 a/x.i

¥ connect 1.1 a/x.0

# instead of waking an instance of active,
* connect the wires of the left channel

connect 1.0 1.1

connect r.o p/x.i
connect r.i p/x.o

Figure B.1: Input representation of a single lazy-active/passive
buffer.



206

“$period"
with

“$pover"” max “$widths” <= §
vhere

“$1(1.0)" = “$u(l.ot _1.0~)" + "$w(l.o~ _1.04)" ¢ ( “$u(l. .o+ 1.0-)" + "$u(l_.0o- 1.04)" ) ¢ 1 + 4

“$r(l.0-)" = “$1(1.0)% * “$uw(l_.o+ l.0-)" * -

“$a(l_.o+ 1.0-)" = “$r(l.0-)*

“$1(_1.0)" = “$a(_ 1.0+ 1_.0-)" + “$u(_1.0~ 1_.0#)" ¢ ( “$ulr.o~ _1.o#)" ¢ “$u(l.o+ _1.0-)" ) ¢ 1 + 4

“$r(_l.ot)" = “$1(_1.0)"  ( “$3(l.o= _1.04)" = =1 + “$u(x- _1.04)" ~ =1 4 “$u(r.o~ _1.04)" = ~1 ) * 2.5

“$a(l.o- _1.04)" = “$a(r.o~ _1l.o#)" + ( ( “$w(l.0- _1.0+)" = ~1 + “$u(x- _1.0#)" ~ =1 ) » ( “$u(x~ _1.04)" + "$g(r.o-
“loo#)™ ) + "$u(l.o- _1.04)" = =1 % ( "$w(l.0- _1.04)" + “$w(x- _1.0+)" ) ) % 1.25

“$a(x- _l.0#)" = “$a(r.o= _1.0#)" + “$a(x~ _L.o#)" = ~1 » ( “$u(x- _l.0+)* + "$a(r.o- _1l.o#)" ) % 1.2§

“$a(r.o~ _l.o+)" = "$r(_1l.o+)"

"$1(x)" = "$wlx+ _1.0-)" + "$u(x+ r_.o=)" + "$w(x= _1.04)" + “$u(x~ r_.o#)" + ( “$u(r.o+ x-)" + “$a(l_.o- x#)" ) « 1 + 4

"$r(x=)" = “$1(x)* * “$ulr.o+ x-)" = -1

“g$a(r.o+ x-)* = “$r(x~-)*

"$1(r.o)" = “$u(r.o+ x-)" + “$u(r.o+ r.i-)" + “$ulr.o- _1.04)* + "$u(r.o- r.i+)}* +  “$w(r_.o+ r.o-)" + “$a(r_.o-
r.ot)" ) st + 4

“$r(r.o-)" = “$1(r.0)" * “$u(r_.o+ r.o-)" = -1

“$a(r_.o+ r.o~)" = “$r(r.o-)"

“$1(1_.0)" = “$u(l_.o+ 1.0-)" + “"$w(l_.0+ r_.0=)" + “$w(l_.0- x+)" + “$u(l_.o- 1.04)" + ( “$a( 1.0+ 1_.0-)" + “$a(_l.0-
1oo4)" ) s 1 + 4

"$r(l_.o-)" = "$1(1_.0)" *» ( “$ulg+ 1_.0-)" ~ -1 + “$u(_l.o+ 1_.0-)" ~ =1 )

“$a(_ 1.0+ 1_.0-)" = “$r(1_.0-)"

“$rlx+) = “$1(x)" & "$a(l_.o- x+)" = -1 # 2.§

“$2(1_.0- x4)" = “$r(x+)"

“$r(l.o+)" = “$1(1.0)" # “$u(l_.0- l.o+)" = -1 & 2.§

“$a(l_.o~ l.0+)" = “$r(1l.0+)"

“$r(1.0-)" = “$1(_1.0)" ¢ ( “$u(x+ _1.0-)" ~ -1 + “$uw(l.o+ _1.0-)" ~ =1 )

“$a(x+ _l.0-)" = “$a(l.o+ _1.0-)" + “$ulx+ _1.0-)" " -1 & ( “$u(x+ _1.0~)" + “$u(l.o+ _1.0-)" ) + 0.5

“$a(l.o+ _l.o=)" = “$r( 1.0-)"

“$r(l_.o4)" = “$1(1_.0)" & “$u(_l.0- 1_.o#)" ~ -1 & 2.5

“$a( 1.0~ 1_.o+)" ® “$r(l_.o+)"

“$1(r.0)* = “$u(r. i+ r_.o-)" + “$a(r.i- r_.o¥)" + ( “$u(r.o- r.i+)" + “$u(r.o+ r.i-)" ) « 1 + 4

“$r(r.i+)" = "$1(r.i)" ¢ “$w(r.o- r.i+)" - -1 « 2.5

“$a(r.o- r.i4)" = “$r(r.is)"

“$1(r..0)" = “$u(r_.ot r.o=)" + "$u(r_.o= r.0o#)" + ( “$8(1_.0+ r_.0=)" + “$u(r.i- r_.o#)" ) ¢ 1 + 4

“$r(r_.o-)" = “$1(r_.0)" * ( “$u(r.i+ r_.o~)" = -1 + “$ulx+ r_.o=)" ~ -1 + “$u(l. ..ot r_.0~)" " -1 )

“$a(r.i+ r_.o=)" = “$a(l .o+ r..0-)" + ( { “$w(r.i+ r_.o-)" = =1 + “$ulx+ r_.0-)" = =1 ) * ( "$ulx+ r_.0-)" + “$a(l_.o+ I_.o-
I ) 4 mgu(r At r_.o-)" " <1 & ( “$u(r.it r_.0-)" + “$wlx+ r_.0-)" ) ) ¢ 0.5

“$alxt r_.0-)" = “$a(l_.o+ r_.0=)" + “$u(x+ r_.0-)" = -1 & ( "$u(x+ r_.0-)" + "$u(l_.o+ r_.0~)" ) * 0.5

“$a(l_.o+ r_.o-)" = “$r(r_.o0-)"

"$r(r.o+)" » “$1(r.0)" * “$u(r_.o~ r.o4¢)" = -1 » 2.5

“$a(r_.o=- r.o¥)" = “$r(r.o+)"

“$r(r_.o#)" = "$1(r_.0)" ¢ ( "$w(x~ r_.04)" = <1 + "$u(r.i- r_.o#)" ~ =1 ) & 2.5

“$alx= r_.ot)" = "$a(r.d~ r_.o+)" + “$u(x- r_.o#)" ~ <1 & ( “$u(x- r_.o+)" + “$u(r.i- r_.o+)" ) ¢ 1,26

“$a(r.i- r_.o+)" = “$r(r_.o+)*"

“$r(r.i-)" = "$1(r.i)* ¢ “$u(r.o+ r.i-)" ~ -1

“$a(r.ot r.i-)" = “$r(r.i~)"

Figure B.2: Optimization equations for the lazy-active/passive
buffer.
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“$pover” = ( "$w(l.0- _1.0¢)" + “$ux- _1.0¢)" + “$u(r.o- _1.04)* + “$ulgt 1_.e~)* + "$5(_ 1.0+ 1_.0-)" + “$u(1_.o-
x#)" + “S$u(l_.o- 1.04)" + “$ulx+ _1.0-)" + “$u(i.e+ _1.0-)" + “$u(_l.0- 1_.04)" + “$u(l_.o+ 1.0-)" + “$u(r.i+ r_.o=)" + “$ulx+ r_.o~
)+ “Sw(l_.ot r_.0=)" ¢ “Sw(r_.o- r.0¢)* ¢ "$u(r.ot x=)" + "$ulx~ r_.o#)* + “$ulr.i- r_.o+)" + “$u(r_.o% r.o=)" + *$u(r.o-
r.i4)" + "$u(r.o* r.i~)" ) + 0.00238095

“$uidths® = ( “$e(l_.o¢ r_.o~)* = -1 max “$w(x+ _1.0-)* = -1 max “$w(l..0- x+)* * -1 max “$u(r.i- r_.o4)" = -1 max “$w(l_.o-
l.o#)" = =1 max “$w(r..o+ r.o~)* * =1 max “$w(l.0- _1.04)" * -1 max "$u(r.o- l.0o4)* = -1 max “$u(r_.o~ r.o+)" * -1 max “$ulr.i+ r_.o-
) T -1 max “Sw(gt 1_.0-)" = -1 max “$w(r.o+ x-)* * -1 max "$w(_ 1.0+ 1_.0-)" = ~1 max “$#(x- r_.o#)" - -1 max “$u(x- _l.o#)" = -
1 max “$w(_1.0- 1_.04)" = -1 max “$v(x+ r_.0~)" = -1 max “$u(r.o+ r.i-)* = -1 max “$w(r.o- r.i+)* = -1 max “$w(l.o+ _l.0-)" - ~
1 max "$w(1_.0+ 1.0-)" ~ -1 ) « 4

“$c0" = ( ( “$a(r..o~ r.o#)" + “$a(r.o+ r.i-)" + "$a(r.i- r..o+)" max “$a(r_.o- r.o#)" + “$a(r.o+ x-)" + “$alx-
T_.o#)" ) + “$a(r_.ot r.o=)" + “$a(r.o- _1.0+)" max “$a(r_.o- r.o+)" + “S$a(r.o+ x=)* + “$a(x~ loot)* ) + ( ( "$a(_l.0+ 1_.0~
)+ “Sa(l .o- L.o#)" + “$a(l.o+ _1.0-)" max "$a(_l.o+ 1_.0-)* + "$a(l_.o~ x+)* + “$a(x+ _1.0-)" ) + “$a(_l.0o~ 1_.0o#)" + “$a(l_.o+ r_.
)" max “$a(_l.o+ I_.0-)" + “$a(l_.o- x+)" + “$a(x+ r_.0=)" )

“$c1 = { “$a( 1.0+ 1 .0-)" + “$a(l .o~ 1.0%)" + "$a(l.0+ _1.0-)* max “$a(_ 1.0+ 1_.0-)" + "$a(l_.o= x+)" + “$a(x+ _1.0-
)4 )+ ( "$a(_l.o- 1 .0#)" + “$a(l_.o+ 1.0-)" ) + “$a(l.0- _1.0+)"

“$c2" = ( “$a(r_.o- r.o¢)" + “$a(r.o+ r.i-)" + “Sa(r.i- r_.o+)" max "$a(r_.o- r.o+)" + “$a(r.o+ x=)" + “$a(x-
T_.o#)" ) + ( “$alr_.o+ r.o=)" + "$a(r.o~ r.i+)" ) + “$a(r.i+ r_.o-)"

“$period” = "$c0" max “$ci* max “$c2*
initially

“$w(l_.o+ r_.o-)" = 15,666

“$u(x+ _1.0-)" = 15.665

“$w(l_ .0 x+)" = 24,7685

“$u(r.i- r_.o+)" = 24.7685

“$w(l_ .o~ l.0+)" = 24.7685

"$u(r_.o+ r.o~)" = 15.665

“$u(l.0- _1l.04)" = 24.7685

“$u(x.o~ _l.o4)" = 24,7685

*$u(r_.o- r.o+)" = 24,7685

*$u(r.i+ r_.o~)" = 15.665

“$u(g+ 1. .0-)" = 15.665

“$w(r.o+ x-)" = 15.665

“$w( 1.0+ 1_.0-)" = 15,665

“$u(x~ r_.o+)" = 24.7686

“$v(x- _1.04)" = 24.7685

“$w(_1l.0- 1_.0¢)" = 24.7685

“$9(x+ r_.0-)" = 16.665

“$w(r.o+ r.i-)" = 15.665

“$u(r.o- r.i+)" = 24,7686

"$w(l.o+ _1l.0-)*" = 15.665

“$u(l_.o+ 1.0-)" = 15.665

Figure B.3: Optimization equations for the lazy-active/passive
buffer (cont.).



iter: 0 143.356 h:1 alpha:1.5 zero:0/2t

jter: 5 126.288 h:.903688 alpha:1.5 zero:0/21
iter: 10 120.874 h:.796236 alpha:1.5 zero:0/21
iter: 15 116.99 h:.70166 alpha:1.5 zero:0/21

iter: 20 116.119 h:.618141 alpha:1.5 zero:0/21
iter: 26 116.042 h:.544642 alpha:1.5 zero:20/21
iter: 30 115.244 h:.4796881 alpha:1.5 zero:0/21
iter: 35 115.415 h:.422621 alpha:1.5 zero:0/21
iter: 40 115.168 h:.372646 alpha:1.5 zero:0/21
iter: 45 114.81 h:.328249 alpha:1.5 zero:0/21
iter: 50 114.726 h:.289219 alph .5 zero:0/21
iter: 56 114.631 h:.264829 alpha:1.5 zero:0/21
iter: 60 114.588 h:.224529 alpha:1.5 zero:0/21
iter: 65 114.524 h:.197831 alpha:1.5 zero:0/21
iter: 70 114.518 h:.174308 alph .5 zero:0/21
iter: 75 114.514 h:.153682 alpha:1.5 zero:0/21
iter: 80 114.498 h:.136321 alpha:1.5 zero:20/21
iter: 86 114.508 h:.119231 alpha:1.5 zero:0/21
iter: 90 114.496 h:.105064 alpha:1.5 zero:0/21
iter: 95 114.492 h:0.0925622 alpha:1.5 zero:0/21
iter: 100 114.49 h:0.0815662 alpha:1.5 zero:0/21
iter: 106 114.488 h:0.0718588 alpha:1.§ zero:0/21
iter: 110 114.488 h:0.0633145 alpha:1.5 zero:0/21
iter: 116 114.487 h:0.0557861 alpha:1.5 zero:0/21
iter: 120 114.486 h:0.0491529 alpha:1.5 zero:0/21
iter: 125 114.485 h:0.0433084 alpha:1.5 zero:0/21
iter: 130 114.485 h:0.0381589 alpha:1.5 zero:20/21
iter: 136 114.485 h:0.0344837 alpha:1.5 zero:20/21
iter: 140 114.485 h:0.0303834 alpha:1.5 zero:0/21
iter: 145 114.485 h:0.0267707 alpha:1.5 zero:0/21
iter: 150 114.485 h:0.0235876 alpha:1.5 zero:20/21
iter: 165 114.485 h:0.0207829 alpha:1.5 zero:0/21
iter: 160 114.484 h:0.0183117 alpha:1.5 zero:0/21
iter: 165 114.484 h:0.0161344 alpha:1.5 zero:20/21
itar: 170 114.484 h:0.0142159 alpha:1.5 zero:20/21
iter: 175 114.484 h:0.0126256 alpha:1.5 zero:0/21
iter: 180 114.484 h:0.0110363 alpha:1.5 zero:0/21
iter: 185 114.484 h:0.00972399 alpha:1.5 zero:0/21
iter: 190 114.484 h:0.00856777 alpha:1.5 zero:20/21
iter: 195 114.484 h:0.00754902 alpha:1.5 zero:0/21
iter: 200 114.484 h:0.006656141 alpha:1.5 zero:0/21
iter: 206 114.484 h:0.00686063 alpha:1.5 zero:20/21
jter: 210 114.484 h:0.00516369 alpha:1.5 zero:0/21
iter: 215 114.484 h:0.0045497 alpha:1.5 zero:0/21
iter: 220 114.484 h:0.00400872 alpha:1.6 zero:0/21
iter: 2265 114.484 h:0.00353207 alpha:1.5 zero:0/21
jter: 230 114.484 h:0.00311209 alpha:1.5 zero:20/21
iter: 236 114.484 h:0.00281236 alpha:1.5 zero:0/21
iter: 240 114.484 h:0.00247796 alpha:1.5 zero:0/21
iter: 245 114.484 .00218332 alpha:1.5 zero:0/21
iter: 250 114.484 h:0.00192371 alpha:1.5 zero:0/21
iter: 255 114.484 h:0.00169497 alpha:1.5 zero:20/21
iter: 260 114.484 h:0.00149343 alpha:1.§ zero:0/2t
iter: 264 114.484

minimum 114.484 constraint 1

variables:
“$9(1.0- _1l.0+)" = 41.9465
"$u(r.o- _l.o4)" = 13.4876
“$w(x- T..0+)" = 34_4755
“$u(x- _l.o+)" = 31,7336
“$u(x+ r_.o-)" = 20.5728
“$u(r.o- r.i+)" = 4

Figure B.4: Output of optimization tool for

active/passive buffer.
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“$a(l_.o+ r_.0-)" = 9.0725
“$w(l_.o- x+)" = 26.9904
“$w(l_.0- 1.04)" = 11.6961
“$u(r.i+ r_.0-)" = 33,7778
“$w(_ 1.0+ 1_.0-)" = 10.4381
“$w(x+ _1l.0-)" = 20.727
“$u(r_.o+ r.o-)" = 10.3686
“$u(gt 1_.0-)" = 62.3914
“$u(_1l.0- 1_.o+)* = 16.5043
“$w(r.i- r_.o+)" = 17.0989
“$w(r..o- r.o+)" = 16,3941
“$w(r.o+ x-)" = 18,3244
*$u(r.o+ r.i-)" = 6.24478
“$w(l.o+ _l.0-)" = 9.75601
“$w(l_.o+ l.0-)" = 4
definitions:
“$1(r.o0)" = 72.8194
“$r(r.o+)" = 11._1046
“$a(r_.o- r.o+)" = 11.1045
“$1(r.i)" = 65.1215
“$r(r.i-)" = 10.4282
“$a(r.o+ r.i-)" = 10.4282
“$1(r_.o)" = 56.9341
“$r(r_.o+)" = 12.4528
“$a(r.i- r_.o+)" = 12.4528
“$1(x)" = 156.824
"$r{x-)" = 8.55819
“$a(r.o+ x-)" = 8.56819
“$a(x- r_.o+)" = 14,3228
“$r(r.o-)" = 7.0231
“$a(r_.o+ r.o-)" = 7,0231
“$1(_1.0)" = 54.186
“$r(_ 1.0+)" = 17.5419
“$a(r.o- _l.o+)" = 17 5419
“$alx- _1l.o0+)" = 19,3232
“$1(1_.0)" = 82.7014
“$r(l_.o0-)" = 9.24855
“$a(_l.o+ 1 .0-)" = 9,24855
“$1(1.0)" = 71.3986
“$r(l.o+)" = 16,2612
“$a(l_.o- l.o¢)" = 15.2612
“$r{.l.0-)" = 8.16839
“$a(l.o+ _1.0-)" = 8.16839
“$r{x+)” = 14,5259
“$a(l_.o~ x#)*" = 14 5269
“$a(x+ _1l.0-)" = 8.90373
“$r(l_.o+)" = 12 6273
“$a(_l.0- 1_.o+)" = 12.5273
“$r(r_.o-)" = 10.7284
“$a(l_ .0+ r_.o~)*" = 10.7284
“$alxt r_.o-)" = 11.4489
“$cO" = 114.484
“$r(l.0-)" = 17.8497
“$a(l_.o+ 1l.0-)" = 17.8497
“$a(l.o- _1.04)" = 22,8665
“$c1 = 85.9216
“$r(r.i+)" = 40.701
“$a(r.o- r.i+)" = 40.701
“$a(r.i+ r_.o-)" = 12,6923
“$c2" = 94.4019
“$period” = 114.484
“$pover" = 1
“$widths” = 1

Figure B.5: Output of optimization tool for the lazy-
active/passive buffer (cont.).
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Figure B.7: Period constraint graph with optimized transistors.
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Figure B.8: Period constraint graph with nonoptimized transis-
tors. )
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Figure B.11: SPICE output of optimized lazy-active/passive
buffer using the switch model. p = 6.9ns Improvement: 38%
Predicted improvement: 25%
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Figure B.14: SPICE output of nonoptimized lazy-active /passive
buffer.
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Figure B.15: SPICE output of optimized lazy-active /passive
buffer using the switch model.
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Figure B.16: SPICE output of nonoptimized lazy-active/passive
buffer using the switch model.
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| Graph Edge | Predicted (7) [ Simulated (ns) |

ri) ro_T 12.4528 0.716107
lo_.| z7 14.5259 0.557763
zTro-} 11.4489 1.6227
doTlo.} 9.24855 0.487441
lo_-Tro_] 10.7284 0.495459
rol lo7 17.5419 0.616859
zlro_T 14.3228 0.736862
ro_| rot 11.1045 0.4743
rol ri| 10.4282 0.391314
ro.Trol 7.0231 0.383195
lo.Tli] 17.8497 0.716005
z] dol 19.3232 1.73692
lo_| li1 15.2612 0.569415
rol ril 40.701 1.17362
li1 do} 8.16839 0.589842
rifro_| 12.6923 2.11115
dollo_T 12.5273 0.525745
li] 1ol 22.8665 237577
rolTz| 8.95819 0.375331
zT lo} 8.90373 0.601494

Table B.1: Transistor simulation, simple model: predicted a’s
(1) vs. simulated a’s (ns).
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| Graph Edge | Predicted (7) | Simulated (ns) |

ri| ro_T 12.4528 1.0093
lo.]l z7 14.5259 0.794033
zTro-| 11.4489 1.97755
doTlo_) 9.24855 0.518611
lo_Tro.| 10.7284 0.664136
ro] loT 17.5419 0.794643
] ro.T 14.3228 1.00696
ro.| rof 11.1045 0.797499
rol ri] 10.4282 0.418945
ro.Trol 7.0231 0.562676
lo_Tlz] 17.8497 0.80195
zl dol 19.3232 2.36428
lo_} li7 15.2612 0.863115
rol ril 40.701 2.28707
127 o} 8.16839 0.488083
ril ro.} 12.6923 1.79777
Jdollo_T 12.5273 0.756253
li] Jo1 22.8665 3.44526
rolT x| 8.55819 0.421288
zT do} 8.90373 0.557165

Table B.2: Switch-level simulation, simple model: predicted a’s
(7) vs. simulated a’s (ns).
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Figure B.17: Transistor simulation, simple model: simulated a’s
(ns) vs. predicted a’s (7).
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Figure B.18: Switch-level simulation, simple model: simulated
a’s (ns) vs. predicted a’s (7).
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| Graph Edge [ Predicted (7) | Simulated (ns) |

T ro.} 12.9682 1.54882
lo.]lz7 . 14.4692 0.540642
il ro_1 13.8993 0.653855
dotTlo-] 9.21432 0.49932
lo_Tro.| 12.1956 0.545544
rol ol 19.1171 0.642331
z]lro.1 15.7815 0.66685
ro_l rol 11.0317 0.478837
lo_Tli] 18.5313 0.713662
rol ri] 10.3968 0.387837
ro_Trol 6.97786 0.366419
z] ldo7 20.9894 1.67563
lo_| li7 15.2094 0.551436
lit o] 9.63698 0.491809
rol rif 42.4117 1.1761
do| lo_1 12.4524 0.500672
rif ro.] 14.0595 2.05501
li] lot 24.1886 2.37168
rof ] 8.51459 0.374842
zT o] 10.3771 0.502603

Table B.3: Transistor simulation, tied model: predicted a’s ()
vs. simulated a’s (ns).
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| Graph Edge [ Predicted (7) | Simulated (ns) ]

zl ro.| 12.9682 2.1009
lo.lx1 14.4692 0.728569
rel ro_1 13.8993 0.54395
dotT lo_| 9.21432 0.763381
lo_-Tro_| 12.1956 0.806885
rol ol 19.1171 0.957902
zlro 7 15.7815 0.589523
ro_l rol 11.0317 0.711888
lo_T1li] 18.5313 0.875744
rol ri| 10.3968 0.506599
ro.Tro] 6.97786 0.40268
z| ol 20.9894 1.95011
lo_|li1 15.2094 0.899785
liT lo] 9.63698 0.339696
rol rit 42.4117 2.03018
dol lo_1 12.4524 0.783103
ril ro_| 14.0595 2.52057
il do7 24.1886 3.1538
rolT z] 8.51459 0.470423
zT o] 10.3771 0.510912

Table B.4: Switch-level simulation, tied model: predicted a’s
(7) vs. simulated a’s (ns).
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Figure B.19: Transistor simulation, tied model: simulated a’s
(ns) vs. predicted a’s (7).
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Figure B.20: Switch-level simulation, tied model: simulated a’s
(ns) vs. predicted a’s (7).
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Figure B.21: SPICE output for three-stage optimized lazy-
active/passive pipeline. p = 7.3ns Improvement: 15% Pre-
dicted Improvement: 34%
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Figure B.22: SPICE output for three-stage nonoptimized lazy-
active/passive pipeline. p = 8.4ns
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Figure B.23: Switch-level SPICE output for three-stage opti-
mized lazy-active/passive pipeline. p = 10.4ns Improvement:
30% Predicted Improvement: 34%
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Figure B.24: Switch-level SPICE output for three-stage nonop-
timized lazy-active/passive pipeline. p = 13.5ns



