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ABSTRACT

A differenice equation with a cubic nonlinearity is exarmined. Using a phase plane
analysis, both quasi—periodic and. chaotically behaving solutions are found. -The chaotic
behavior is investigated in relation to heterodinic and hormodlinic oscillations of stable
and unstable solution rmanifolds emanating from unstable periodic points. Certain cri-
teria are developed which govern the existence of the stochastic behavior. An approx-
imate solution technique is developed giving expressions for the quasi-periodic solu-
tions dlose o a stable periodic point and the accuracy of these expressions are investi-
gated. The stability of the solutions is examined and approximate local stability criteria
are obtained. Stochastic excitation of a nonlinear difference equation is also con-

sidered and an approxirmate value of the second moment of the solution is obtained.
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1. INTRODUCTION

. 1.1 Difference Equations

" In the construction of mathematical models of physical systerns if. is usually
assumed that all of the independent variables, such as time and space, are centinuous.
This assurnption normally leads to a reslistic and justified approximation of the real
variables of the system. However, we regularly encounter systermns for which this con-

tinuous variable assurmption cannet be made.

Systerns in which one or more variables are inherently discrete are in areas such as
populetion: growth [1,2], digital control [3], digital communication networks [4], quan-
turn mechanics, strong focusing of orbiting particles in accelerators [5), and delayed
feedback oscilletion as in laser emission pulsation [8]. Due to their discrete character,

wthes.e systerms must be modelled by the use of difference equations or mappings. The
step sizes of the discrete variables are large enough to prevent the use of differential

equations.

Another important use of difference equations arises from the reduciion of
differentisl equatioris to mappings. This reduction is accorrplished by considering the
theory of flows [7] of differéntial equations and maps of the type #:T; - I'¢, where
I'. is a cross-section of the flow of the corresponding differential equations. For sys-
terns with two degrees of freedom the map M is called a Poincare map [8,8]. M can

always be locked upon as a difference equation.

Through the consideration of Poincare maps, problems such as the motion of satel-
lites [10,11], and the mmotion of ooupled nonlinear oscillalors [12] can be analyzed
using norlinear difference equations. Of particular interest, in the use of difference
equations, is the seemingly successful modelling of turbulence by the Lorenz equation
[13], achieved by truncating the Navier Stokes equations. Through the tuning of the

pararmeters of the Lorenz equation it is possible to obtain chaotic behavior of the
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solution [14,15,186, 17}, ie., turbulence. This behavior can readily be studied by reduc-
~ ing the differential equation to a difference equation by considering a Poincere map of
the flow.

In numerical analysis, differential equations are converted to difference equations
which in turn can be solved by the use of a digital computer. This conversion can be
accornplished through a wide range of discretization methods such as forward, central
and backward difference, and the trapezoidal rule. In order that the solution of the
difference equation approximate the solution of the differential equation, with accept-
able accuracy, the step sizes of the discrete independent variables are usually taken to
be small. By letting the step sizes approach zero the behavior of the solution of the
diffcrence equations can be made to approach the behavior of the corresponding

‘ differential equation. No connections between difference and differential equations are
made in this dissertation and hence the step size of the difference equation is left to

assurne values which are far removed from zero.

To surnmarize, the reason for studying nonlinear difference equations lies in the
fact that they are fascinating mathematicel problemns in their own right and in addition
form important mathernatical models for real dynamical systems.

1.2 Staterment of the Problem

In this study we will consider second order scalar nonlinear difference equations of

the type
Zarr = S (@, Zos, ) (1)
with initial oondiﬁons T,.x,, WwWhere z,memberk oppA integers n.
In the main part of this dissertation f(m,, , _, n) is taken to be
f(z, xni—l' n) =0z, - L,y - b (1.2)

The cubic nonlinearity was chosen as it can be cheracterized as the simplest, odd,
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analytic nonlinearity. W henever f(z, z,_, n) is chosen to be given by (1.2) we will
- call equation (1.1) the discrete D uffing’s equation, due to the obvious sirnilarities with
the unp{)rtaut norldinear dif‘fe:r_ential Duffing's equation.

In Chapter 2 we conduct a phase plane analysis of the discrete D uffing’'s equation.
The existence and stability of the equilibrium points of eguation (1.1} is analyzed in
detail. Sclution trajectories about a stable fixed point, a center, are examined. It is
shown that close to a center, the motions are stable quasi-periodic orbits; however as
the initial point is moved farther and farther away from the center, chaotic behavior
frequently occurs. This apparent stochastic behavior of the solution is examined in
relation to the homociinic and heteroclinic osciliations of the stable and unstable marni-
folds emanating from unstable equilibrium or periodic points. Certain criteria are

developed, governing the existence of this stochastic behavior.

In Chapter 3 we develop an approximate method, similar to the method of slowly
varying parameters used in the analysis of nonlinear differential equations. W e also

develop approximate stability boundaries for the solutions.

Chapter 4 treats the discrete Mathieu equation obtained by perturbing equation
(1.1). Appfoxjrnéte stability boundaries corresponding to the solutions of the discrete
M athieu equation are obtained. Higher order approximations are achieved by the con-
sideration of the third harmomnic, ocourring due o the nonlinearity. The approximate
stability boundaries cblained in Chapter 4 are compared to the boundaries constructed
by the usé of the method developed in Chapter 3. Finally we conduct a numerical
detenrﬁnation of the | stability boundaries of the solutions of the discrete M athieu

equation using Floquet theory.

Inn Chapter 5 we consider linear snd nonlinear difference equations driven by sto~
chastic excitation. A general expression for the second moments of the steady state

response of a linear difference equation is derived. This expression is used to consider
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the exact evaluation of the second moment of the response of a nonlinear difference
" equation. It is also atternpted to extend the method of equivalent‘]jnearization {o

eovér nonlinear differerce equatibns. A1 approximate value of the second moment of
| the 'response of a nonlinear difference equation is obtained as a root of a third order

polynoimial.



2 PHASE PLANE ANALYSIS
2.1 Introduction

Chapter 2 will serve as an introductory survey of the many fascinating, but bother-
ing, problematic topics in the theory of nonlinear difference equations. We will, for
simnplicity, direct our efforts to a difference equation with a cubic norlinearity. In spite
of the simple structure of the equation we will find a suprising amount of intriguing

behavior.

By relating the response z, to z,,, we obtain a two dirmension space simmilar to the
phase plare of continuous systemns. The phase plane plot can be used as a helpful tool

in discussing such properties as equilibriurm, stability and periodicity of the solution.

In Section: 2.2 we determine the location and the stability of the equilibrium points.
" The stability of the solution at an equilibrium point is determined by looking at the
corresponding linear perturbation equation. Having determnined the equilibrium points
and their stability, we can, without searching for the detailed behavior, obtain a rough
estimate of the behaviour of the systerrn.

In Section 2.3 we construct several phase plane plots in order to analyse the proper-

ties of the exact solution of the nonlinear difference equation.

In order to obtain the phase plane plots we will plot &4 v.8. 2,. By having a
sufficiently large set of points, x,, %, il is possible to achieve, for smell enough ini-
tial conditions, a distinct pattern in the =, x,,, plane. For suffidently large initial
conditions and for certain values of the parameters of the difference equation we
obtain unbounded solutions which seemingly behave in a chaotic manner. W e will no
longer obtain simple and smooth solution point trajectories. In Section 24 we will
relate this stcchastic.behavior of the solution to the intersection of separatrices or

hormodinic and heterodirﬁc oscillation.
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22 Existence and the Stability of Equilibrium Points
C onsi_der the smooth map
FIR"> R® | (21)

where f is a diffeomorphism and where F™ is the n-dimensional Euclidean space.

If z,eR™ we introduce the notation

Tne1 = f (20) (22)
for all integers n. The point =, can then be expressed as
Zna1 = SN (Z) (.3)
where
Pz =F ) (R4)
A point is said to be periodic If we have
In = In+p (2.5)
for some integer F> G

P is called the period of the pointif P is the smallest integer satisfying (2.5). The

periodic point, z, , is also called a fixed point of the P* order.

If P=1, the pointis called a fixed point of the first order or an equilibriurn point.
This point is mapped back onto itself in every iteration. We will also call an equili-
brium peint simply a fixed point, without the order spedification. We will here con-

sider a smooth diffeomnorphism on £2 The difference equation
Tne1~0 Tyt Ty +H B3 =0 (2.6)
is such a map which will take the point (z,_, , z,) in £? to the point (z, , 4, in B*.

In the following we will determine the location, in the £® space, and the stability of

the equilibrium points of the nonlinear difference Equation (2.8). In order for an



equilibrium point to exist we must have
Tn41= T =Ty ‘ (R.7)
Hence, at the equilibrium poinis the Equation (2.6) yields

Z, —~nx, +x, +23=0

which using (2.7) yields either

TRt
Ty = Ty = % F—gg-] (2.8)

or
= X1 =0 (2.9)

(2.8) and (2.9) give the location of the equilibrium points in the phase plane. 1t is clear
that if {a—8)/b < O there will exist no equilibriurn points at the locations given by
(2.8). In order io determine the local stability of the equilibrium points we superpese
a small perturbation, £, on the existing steady state solution al the equilibrivim

points.
Pertubation around z,.; =2,=0 ; Assurne a solution of the form
T, =&, (2.10)
where £, is a small perturbation (2.10) into (2.68) yield
Eni1—0fptina =0 (2.11)
where we have neglected terms of 0(£2) .
Pertubation around =z, =z, =2, =[(a—2)/A6 1 ; Let
Ty = T+ by (2.12)

Qur linear perturbation equation becomes
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$n+1+2(m_3)$n+£'n—1 =0 .

(2.13)

‘In order to conduct a systernatic survey of the stability of the equilibrium points we

start up by considering two cases, 1 and 11.

I). Letaand b satisly

2220
W e can write this as follows
a). . 26> 0
b). a=2b<0,
II). Letaand b satisly
2o

W hich can be written
a). a>25b<0
b). a<2b>0.

The following two sections will {reat these two cases separately.

221 Casel. Phase Plane for 51;%2 0

It is clear from (2.11) that when
A L
the origin is a center and if
| a>2 or a<2
the origin is a saddle point. From (2.13) we can conclude that if
=R R

we have a center at

(R.14)

(2.15)

(2.16)

(2.17)

(R.18)



Ty = Ty = 7 (2.19)
-~ and if
a<Zor a>4 | (2.20)
we have a seddle point at
L= By T (R._1)

Using these conditions for which centers and saddle points exist, more subclasses of
caze I can be distinguished.

Ceaze la). can be divided up into
i). Saddle point at the origin, centers at
BT Ep Tt &,
for 6> 0,8<a< 4
i). Saddle point at the origin, saddle points at
T =y =
for > 0,a> 4
Case Ib). can be divided up into
i). Cenier at the origin, saddle points at
Ty = Zpg T X
for <0, R< a< 2
ii). Saddle point at the origin, saddle point at
Ty =y = £ T,

for b< 0, o< -2,

222 Casell. Phase Plane for -E;i< 0

Clearly no equilibrium points can exist at 2, =z = [%]’ﬁ if g__;—_z_< 0. Hence,

the only eﬁist’mg equilibrium point in case II is located at the origin. Cases Ila and 1T
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cant Turther be divided up into rnore subcases depending on the stability of the solu-
. tion at the origin. Case ITb can be divided up into:

ii) Center at the origin.

for b> 0, B< o< 2

i) Saddle point at the origin.

for 6> 0, a< =2

For case Ila the only existing equilibrium poirnt is a saddle point at the origin. The

different stability regions obtained above are plotted in Figure (2.1).

2.3 Discussion of Periodidty and Stability of Points Close

1o a Stable Fixed Point.

Phase plane plots of explict nonlinear difference equalions can easily be produced
nurmnerically on a digital computer. This can be accomplished by simply stepping
through the difference equation given the initial conditions, x, and z,. Since we only
obtain discrete points for each successive iteration we must produce a large set of
points in the x,, ., plane -111 order to obtain distincl dear phese plane trajectories.
The fact thal dosed loop trajectories, Figures (2.2) - (2.4}, are obtainable close to a
center is due to the lack of periodidgty or the existance of extremely long periodic solu-
tions. So we have a situation where the solution of the difference equation, z,, ®n+1,
cannot exactly be mapped back onto a previous solution point , z,, ;. unless the
_soluticn is- periodic énd then only when n>> m. The traced out curve will hence
becorne mmore and more dense as the solution refuses to be mapped back onto one of

the previous points.

[t is possible to get an mdicatidn of why the solutions should have long periods by

: ocnsiderjilg a linear difference equation. Consider the equation
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Tyt~ =0 . (R.2%)
et
a =2cosd . (2.23)
The exact solution is then

z, = A cos(n®) + Bsin(nd) .

W e assume S to be chosen in such a way that =z, will be periodic with a peried of
N=— (2.24)

where N must be an integer. Hence the solution points will here be mapped perfectly

onto the points of the previous period after one revolution in the phase plane.

We wil nbw investigate the consequences of slightly perturbing the value of %

The new value, ¥, can be written

P
g =3 .

5 (2.25)
where P and ¢ are integers and the fraction —g— iz dose 1o 1. The solution to
Equation (2.22) can now be written

z=A cos|n %’d + Bsin|n gﬂ] . (2.26)

In order for the solution to be periodic we must have

M gqa= Rem (2.27)
where M is the pericd such that
D, = Lt 2 (2.28)

and R is the smallest integer satisfying Equation (2.27). Equation (2.24) into (2.27)
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yields
R=+=H .  (229)

It is clear that if Z’% is a rational frection, with a highest cormmon factor of one, &

must tske on the value of 7 and M must take on the value of @N in order for
Equation (2.29) to be satisfied. So by perturbing the value 4 slightly the period
chenges from N to @N. This can be a considerable change which can be realized by

cotsidering the following example.

Assume the initial period of the solution to be N =25, Changing ¥ slightly by
multiplying it by the fraction P/@ =1001/1000 produces, according o (2.29), a new
period equal to & =25000. Hence it will now take 25000 iterations, cormpared to 25

iterations earlier, for the solution to repeat itself.

Figures (2.2) - (2.4) illustrate how the "nonperiodic” qualily of the sclution makes
it feasible to construct smmeoth dosed curves or trajectories around a steble fixed point
of the first order. Each figure corresponds to a different stability region, &s defined in
Section 2.2 and shown in Figure (2.1). Each trajectory is obtained by iterating from

one initial point. |

Omne feature in Figures (2.2) - (2.4) with particular interest to us, in the develop-
ment of an approximate theory, is the distinctness and smoothness of the trajectories

dose to a stable fixed point. W e will return to this fact later in Chapter 3.

A subset C of E™ is invariant under f i f(C)c €. So judging from the dis-
finct and smooth character of the seemingly closed trejectories in Figures (22) - (2.4)
we suspect that they are one dimensional invariert subsets under the map correspond-
ing o the difference equation (2.5). If this actually is the case these trajectories must
also be _one—djmensional | invariant mamifolds in R? since the Map (28) is a

" giffeornorphism in £2 All our numerical work indicates thet this is true. Points
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nitially situated on one of these smooth curves seem to remain there as n grows to
mfinity. However, in splte of some effort we have not been able to obtain an expres-
- sion for these curves nor have we been able to formally prove that closed invariant

curves exist for cur Map (2.6).

The eigenvalues of the linear map obtained by linearizing the M ap (2.6) around an
equilibrium point of center type lie on the unit cirde in the complex plane. Hence the
systern belongs to a critical class where stability cannot be determined by the
corresponding linear systern Withoﬁt the consideration of nonlinear terms. If all the
eigenvalues would have been located within the unit circle we could easily have pro-
ven that all solutions of the original nonlinear systern would have been Liapunov
asymptotically stable. The proof builds on the assumption of suffidently small initial
conditions and that

iy, I
Zp*0 Iy

0 (2.30)

where g{z,} is the nonlinear part of equation (2.8). However since our system is
critical it is not possible to conclude stability or boundness using the same techniques
and we are therefbre forced to consider the cormplete nonlinear equation. So not only
are we unable 1o determine if closed invariant curves exist but we are alsc unable to

determine if the apparently bounded solutions actually are bounded.

The outermost trajectory, in each of the Figures (2.2) - (2.4), can be defined to be
the stability boundary which separates bounded end unbounded solutions. The nurner-
icsl determination of the stability boundary is complicated by the fact that the solution
of the difference equation can remgain bounded for many thousends of iterations and
then suddenly become unstable and blow up. Due to this phenomenon erroneous con-
clusions concerning the stability of the equalion can easily occur. Hence, in order to

- mrinirnize the error in our stability analysis we are forced to consider a large number of
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iterations of the difference equation. Since we cannot conclude stability in an analyti-
cal sense we will define the solutions which remain within a certain predetermined dis-

tance, L , from a center after a given numbers of iteralions, 5, to be stable.

Defining stability in this manner will lead to stability boundaries that are functions
of both Z and S. The L dependence is not critical since the solution grows very
fast as soon as it tends to become unstable. The dependence onn S however, is that
rmuch more critical. For example, concluding that the solution is stable due to the fact
that after 1000 iterations the solution is still well below the value of L can yield a
drasticelly different stability boundary compared to concluding stability using 100000

iterations. In Figures (2.2) - (2.4) the stability boundaries are found by using 5=10000.

Seventh order fixed peints very close to the stability boundery can be detected in
Figure (2.2). The complex configuration of the stebility boundary in Figure (2.3} can
be explained by the discrepancy between this boundary and the true stability boun-
dary. The points on our stability boundary will eventually be mapped outside a circle

of radius L. centered at origin for a certain n> S.

In Figures (2.5.a) to (2.5.€) we take a closer look at the behavior of the solution
dose to the stability boundafy. W e have chosen to concernlrate on case IIb and there
to focus on the top center “corner’” of the stability boundary. In Figures (2.5.a) and
(2.5.b) we have chosen initial conditions that are located inside the slability region. It
is seen that the shape of the trgjectory changes dramatically as the initial condition
approaches the stability boundary, going from Figure (25.8) to (25b). A further
smill perturbation of the initial conditions toward the stability boundary changes the
ﬁ'ajcctorjr to some ''semiperiodic” appearance, Figure (2.5.¢), where the points seem to
be influenced by higher order fixed points. Figure (2.5.d) shows the trajectory
obtained when the initial conditions are chosen to lie on the stability boundary deter-

mined by _
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'settjng 5=10000. Judging from the scatter of the points we can suspect that they are
‘actually located slightly outside the stability boundary and that the solution eventually
~ will grow unstable. In Figure (2.5.e) the initial conditions are clearly located outside

the stability region which forces the solution to grow unstable in few hundred steps.

2.4 Stochastic Behavior and Intetsectjng Separatrices

In this section we will consider the solution in a more global sense. W e will study
solutions which are located outside of and away from the stability boundaries obtained
in Section 2.3. These unbounded solutions behave in a much more complex manner

than the apparently bounded solutions discussed in the previous section.

We will first consider Equation (2.6) with e=-1, 0, b=-30. This parlicular
choice of the parameters e and b falls into the stability region (Ibi) (see Figure
(2.1)). The corresponding bounded solutions were discussed in Section 23 . The
complex behavior of the unbounded solutions is for this case apparent through the

quasi-stochastic scatter of points in the phase plane as displayed in Figure (2.6.8).

As can be seen from Figure (2.6.b) and as determined in Section 2.2 we have here,
in addition to the ﬁxed point at the origin, two unstable fixed points of saddle type at
(1,1) and at (-1,-1). With each unstable fixed point we have one unstable and stable
menifold. We call these manifolds separatrices. Solution points located on the stable
separalrix will approach the fixed point efter repeated applications of the map or
difference Equation (2.8). Solution points located on the unstable separatrix will be

mapped away from the fixed point.

By choosing several initial points along the eigenvectors of the linearized system
about the fixed point, we can trace out the unstable separatix by iterating forward and
the stable separatix by iterating backward. The stable and unstable manifolds can be

defined as follows :
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wi=lye R*: lim f™y)> = (2.31)
wi=tye R limfy)->m] (239

where i=1, 2 and =z is the location of the i? saddle type fixed point in the phase
plane. These separatrices are sketched out and lebeled in Figure (2.6. ¢). From Figures
(2.6.p) and (2.6.c) it is seen that the unstable separatrix W} does not simmply coincide
with the stable separatrix #§. The solution behaves in a more complex
and intriguing manner. #% crosses the stable manifold #§ and starts to oscillate
around W$ in an increasingly violent mnanmer. As seen in Figure (2.6.c) W3}
behaves in a similar marner in relationship to #Y¥. The crossing points of the
unstable and stable separatrices are called heteroclinic points and the oscillations men-
tioned above are called heteroclinic oscllations [2,20,21,22). ( A point of intersection
of a stable and unstable manifold emanating from the same fixed point is called a
homocliric point [2,18,19,20]. The corresponding oscillations of the manifolds are
called homoclinic oscillations. )

Sirce the map is a diffeomorphism the heterodlinic points must approach the fixed
point =, along W%, as n - . Similarly the heteroclinic points must approach =,
slong WY, as n - -, So, for example, the heterodinic point a; (Figure (2.6.c))
is mapped to a point farther down the manifold #§ cdoser to the fixed point z;.
Since our map is smooth and onto, a neighborhood of a; in WY must be mapped
into a neighborhood of the point f(e;). Hence we must again have a heteroclinic
crossing of the manifolds W¥ and #§ atthe point f(a,). We call this point "a;"

It can easily be shown that the sign of the angle between two intersecting curves in
the plane is preserved under the Map (2.6.). Hence points located to the right (left)
of an observer traveling down eny manifold must always remain to the right (left) for
any numbe_r'of iterations of the map. In order for this to hold we realize that the man-

ifold W% rnust cross W3 between the points e, and ap In Figure (2.6.c) we call
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this point ',

Since our meap is smooth and onto, it will map a simply connecled region info
another simply cormected region. Hence &l the points in the region, 4, ., cutoutin
the plane by the manifolds #¥ and #% between o, and &,, are mapped into the
shaded region A, No other points can be mapped into this region. Since the Jacobian
determinant of the map is equal to one, the meap is said to be area preserving. We
therefore have the situation where all the inside regions, labeled 4; (i=2.3.) , rmust
have the same area. Sirmilarly &ll the outside regions, labeled £ (1=12.) , must have

the sarme aree. ( Due to the symmetry between the menifolds, the aress of the outside

and the inside regions are also equal.)

A s the heterodlinic points approach a fixed point the distance between two consecu-
tive heteroclinic points tends to zero. Hence the amplitude of the oscillation of W}
around W§ 1must increase with each mapping in order to preserve the area of each
region cut out between the mamifolds WY and W$§. The "outside",H, loops are
mepped into thinner and longer regions and all points contained therein must asymtot-
ically approach the unstable menifold #% and tend to —= as n- . WY (ws)
canmnot croés W',‘g" (W3) since any intersection point of the two manifolds would be
mapped to two different locations, the fixed points z; and =5, as m—» = (). This

carmot occur since our M ap (2.8) is one to one and onto.

An "inside" loop of a stable manifold, ie. WY or w¥ will eventually, as n
grows, be mappéd into an outside loop. This tremsition takes place crossing the diago-
nal z,=-z,,, (see Figure (2.6.c)). The same holds true for the inside loops of a
stable manifold as (—n) grows.

Unlike an exterior loop of W%, an interior loop of #% cannot increase in height
in a simple marmer since 73 ¥ i3 constrained by W¥ . Instead the inside loop staris to

wrap around in the interior, as n grows, and by so doing it intersects both of the
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osdllating menifolds, #35, and W§. Hence as n » = more and more of the inside
loop of W% will be carried, by the outside loops of W} and #¥, o —~ and = as
it also gels thinner and thinner. All this occurs without W} intersecting itself or # ¥,
Al points contained in an inside loop will eventually be carried to =« or —e as

n - oo,

The images of the inside loops start to form an inside envelops, £, as the
nummber of mappings, n, grows. This dosed envelope corresponds to our stability
boundary for the closed and bounded trajectories ciiscussed in Section 2.3. The inside
loops can be mapped arbitrarily dose to this envelope but can never cross it. In the
exterior of the envelope, the inside loops start o densely fill the remainder of the
region cut out by the manifolds. In the interior of the envelope points are mapped
along dosed and smooth paths (Figures (2.2) and (2.6.c))

By crossing the stability boundary, & (the envelope of the inner loops), leaving
the bounded region behind us, we must end up on or in an inside loop of one the
four manifolds, %, W5(i=1,2). This must be the case since this region becomes
dense with inside loops, as n- «. In other words, by choosing any location in this
region we can always find a m|, sufficiently large, and a closed set L coonsisting of
all points on and within an inside manifold loop such that the set f™(L) will contain
a point at the chosen location. Hence almost all points in the densely filled region will
eventually be mapped towards = or - = since al points contained in an inside loop
rrust be carried o +e asn » «. (The word "almost’ is used here since if a point is
located exaclly on the stable manifold it will be mapped to its corresponding fixed
point. This occurrence, however, is one of zero measure.) When the point is located
in an unstable (a stable) manifold loop, the point will first be carried along as the loop

wraps (unwraps) itself around the origin.

This explains why we obtain, as mentioned in Section 2.3, poinis close, but



-2B-

outside, the stability Bou_ndary which can remain bounded for several thousand map-
pings and. then suddenly be mapped towards = or —= . In order for this to ocour,
the point must be located in an inside loop which must wrap (unwrep) itself around
the stable fixed ‘pm'_nt a large number of times before the loop can carry the point
towards .

The connection between the stochastic appearance of the mapped points and the
occurrenice of heteroclinic oscillations can now be treated. Due to the heteroclinic
oscillations we obtaﬁ, as seen above, a region filled up by inside memnifold loops.
Points on or within these loops will be mepped around the origin several times in a
manner dependent on the loop and the location of the point. Hence, if we choose to
plot the images of a few discrete points for repeated maps, and not to plot the meni-
folds, the points appear to be become scattered in a stochastic manner. However, we
classify this as stochastic scatter anly because we fail to realize the amazing structure
of the inside rmanifold loops given our limited discrete information. (See Figures
(2.6.) and (2.6.c))

In Figure (2.7) we have =15 and b =-05. The critical points are of the same
type and in the same location as for a=-1.0, b=-30. In spite of this fact we obtain
a totally different global behaviour. We have here none of the indications of the
existenice of heterodinic oscillations as we had in the previous case. The unstable man-
ifold W¥(w3) smoothly coincides with the stable menifold WE(#¥). We obtain no

chaotic behaviour.

In Figure (2.8.2), =30, b=10, we again see cear evidence of stochastic type
Eehaviour. From local analysis, Section 2.3, we have determined the existence of three
first order fixed points, a saddle point at the origin and centers at (1,1) and (-1,-1).
Figure (2.4.a) was ob’taine_d by choosing several points, dose to the origin, on the

stable, #¢, and unstable, #¥% manifold. Two initial points, one for each cemnter,
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were glso chosen to jie in the regions of bounded trajectories. Hence the scattered
_ points are all on the stable and unstable manifolds even though the scatter appears to
be véry 'chaotici In Figure (2._8.b)’ we can see that the manifolds do not have the same
slope at the ]jné of symmetry and hence cross at points ¢ and d. This implies, since the
manifolds are issued from the same fixed point, that we must have homodinic cross-
ings. Figure (2.8.¢) dearly indicates how the inside homodlinic loops strive to fill the
inside spacé in a dense manner. Again, the loops form envelopes which coincide with

the stability boundaries around the centers.

The results above indicate the following. Stochastic behaviour exhibited by a
smooth diffeomorphism is caused by homodinic or heteroclinic oscillations of unstable
and stable manifolds.

W hen do such oscillations occur? W e have seen that the occurrence of heteroclinic
and homodlinic oscillations for map (2.8) is dependent upon the parameters of the
mep. [t would therefore be desirable to develop a condition that would guaraniee the
(non) existence of these oscillations. The concept of topological entropy [19] of a map,
has been used by Katok [23], Menning [24] and Bowen [25] in order to guarantee
homoclinic pointé. To date we have not been able to adapt the known result, relating
the topological entropy of a map to homodinic oscillations, in order to obtain expliat
conditions on the parameters of our map (2.6) gueranteeing the (non)existence of
homodlinic oscillations. Further research in this area is continuing. Preliminary resuits,
obtained by considering the slope reversing of an interval of a manifold, indicate that
the following must hold: The map (2.6) cannot have any transverse heteroclinic cross-
ings if

o—-3bx2>1 (2.33)

holds true for z,c W¥ and W§,i=1,R2.
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A s an aside we will give a bﬁef niote on a dissipative map g: B* » £® A mapis
‘dissipative if there exists a set @, which is an attractor, containing the fixed point z.
Our Map (2.6) could be converted into a dissipative mep by adding an extra 5,
term. It has been shown that for certain values of the parameters of the map g the
obtained atiracting set appears to be chaotic. Such en attracting set is called a strange
attractor [6,26,271. W e make mention of this here because the existence of strange
attractors in a dissipative map depends direclly on the existence of homodlinic and

heterodlinic oscillations.

2.5 Marginally Stable Solutions

D uring the determination of the stability boundaries in Section 2.3 we also encoun-
tered stability regions which can be cheracterized as lines. The solulions of the
Adifference equation located on these lines are only stable for perturbations in a specific
direction, the direction of the line itself. Perturbing the solution any other direction

will cause the solution to grow unstable.

Tt will be shown here that the cause for this phenomenon is that the perturbed sys-
term does not havé a complete set of linearly independent eigenvectors. It will also be

shown that the stability line is in the direction of the ordinary eigenvector.
Consider the case ITb with =1 and b=1
T~ T -1+ 2y =0 (R.34)
Add a small perturbation, ¢, to the solution z, .
T = %y +Ep (R.35)
Substituting the perturbated solution into (2.34) yields

- -

$n+1:A€n (236)

- where
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1o fs}

A=l 13,;2 and €,= |t (2.37)

" The eigenvaues of A are

Mz =¥ [-82% 41z Pz, =6z, T3] . (2.38)

A necessary condiion for dependent eigenvectors is

A= Ag (2.39)
80 wWe must have
z% =1 (2.40)
or
z%, = --%- for ‘{n . (2.41)

Hence the only values of z, that yield identical eigenvalues are either z, =1 or %, =-1
For these values of z, the matrix A does not have a full cormplernent of linearly indepen-

dent eigenvectors. Both eigenvectors are colinear with the vector
z=[1,1)7 . (R.4%)
The generalized eigenvectors can be found in order to write A in Jordan form. The veclors are
#1=[1,-1] and pe=[a,1-a]" . (2.48)

So we can write

_ 11-1 111~
A"[—ll 150(][0 llla ?]

w=( ] (97 e e 2
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But from (2.36) we can write

bnem=ATy, (249
fie)
. [y orrymed] 1o ol 4
o= 2] 87 T 1] 17 9]t (2.47)

If we now choose the initial perturbafion, En , to be parallel to an eigenvector of A,
dn=[1-11", (2.46)

we obtain from (2.45) the following

-é-rﬁ-m: [(-1)m™, =17 . (R.49)

Hence the solution remains bounded for a perturbation along the eigenvector of A . For any
other direction of the perturbation the term m(—1) will remain in the expression for Enim

angd therefore will foree the solution to grow unstable as m~ o=,

Frorn Equation {2.34) it is dear that we only have one solution with =7y =1 foral n. This
solution is periodic, having a period of four iterations in the sequence: (1,1), (1,-1), (-1.-1), (-
1,1, (L) ... . W e can conclude from above that the solution around these fourth order fixed
points is only stable for small perturbations along a line in the phase plane of slope -1. This

agrees very well with our numerical investigalion as shown in Figure (2.9).
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3 APPROXIHATE SOLUTIONS ; SLOWLY VARYING PARAMETERS
3.1 Introduction |

The feasibility of exact analytic determination of solutions of nonlinear difference
equations and the corresponding stability criteria is often lacking. As seen previocusly,
ever. a difference equation of relative simple structure yield solutions of surprising
complexity. However, as seen in the previous chapler, points sufficiently close to a
stable fixed point are meapped along cdosed and smmooth trajectories encirding the fixed
point. Hence by considering solutions only of small magnitude about the fixed point
we obtain well behaved solutions. This gives rise to a desire to develop techniques that
will yield approximate steady state solutions of small amplitude and corresponding
local stability bounds.

We are here going to develop an approxirnate solution method similar to the
method of slowly varying parameters as used in the analysis of nonlinear differential
equations. W e will, as before, consider the specific case of a difference equation with a
cubic nonlinearity. In the first section we obtain an expression for an approximate
steady state solution of a homogeneous equation of such a type. In the next two fol-
lowing sections we consider b@t’h the main and the uitraharmonic forced response. The
stability analysis of the steady state solutions is given in Section 3.5, In Section 3.6 we

develop some approximate solutions of higher order.
3.2 The Homogeneous Equation
Consider the equation
T =0T, v 2, F S =0 (3.1)
with 2< o< 2 . Equation (3.1) can be Wﬁtten as
Azxn-ll-z(l—-cos'tﬁ)a:n+ bz3=0 (3.2)

where -
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a =2 cosd (8.3}
~A z, denotes fhe central difference
AT = T+ 3y — -3 (3.4)
and therefore
Ay =2 22T,y (3.5)

Firsl consider the litiear case, & =0.
Tyt + Ty — 2o0sVZ, = 0. (3.6)
This linear differerice equation has the exact solution
2, = Acox(n) + Bain(n) (3.7)

where the constants 4 and 5 are dependent upon the initial conditions of the sys-

termn governed by (3.6).

By introducing a nonlinearity (& # 0) the solution of Equation (3.2) can no longer
be represented by a simple harmonic function with frequency 8. However, for small
values of b we can assume the solution to show fairly dose sirnilarity to the solution
of the linear Equation (3.6).. The desired approximate solution of Equation (3.2) is
then constructed by letting 4 and 7 in (3.7) be slowly varying functions of n, the

step number. The solution cen be written as
T = A(n)cos(ng)+B{n)sin(ng) . (3.8

In order for =z, (3.8) to be a solution of Equation (3.2) we must force 4(n) eand
B(n) to satisfy certain conditions obtained by substituting (3.8) into Equation (3.2).

The central difference of =, (3.8) is:
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Az, =A(n)Acos(n p) + B(n)Asin(n¢g)

+ A4 (n)oos(ng) + AB(n)sin(ng) | (3.9)
where we have neglected &ll differences of order two and higher.

The solution =z, (3.8) is a functional of two independent functions of =n. Since
we have orly one equation in two variables we can introduce an arbitrary relationship

between A(n) and B(n). Ttis convenient to choose this auxiliary condition as
AA(n)cos(ng) + AB(n)sin{ng) =0 . (3.10)
Using (3.10) in (3.9) we have
Ay, = A{n)Acos(cosp)+B(n)Asin{ng) (3.11)
80

A%z, = A4 (n)APcos(n ) + B(n)A%sin(n ¢)

+ AA(n)Acos(ng) + AB(n)Asn(n ¢) (3.12)

where we have neglected all differenices of order three and higher. Substituting the

expression {3.12) for A%z, imto Equation (3.2) and noting that

Acos{ng) = —2sin(n ¢ }sin(’% ¢}
Asin{n¢) = cos(n ¢)sin(¥% »)
Afcos{n p) = —2[1 —cospcos(n ¢)

APcos(ng) = —2[1 —cosp Jsin(n ¢) (3.13)

vields



i
20 A (n)ws(n.p) + B(m)sin(n p)[cosp — coss] —
— 24 (n)sin(n ) snlh ¢) + 2AB(n)cos(n ¢)sinGh ) +
+b [ A%m)cod(n ¢) + BAXm) B(n)conp)sining)

+ 34 (n) B n)cos(n¢)sin®(n ¢} + B¥n)sin®(ny)}=0 . (3.14)

By multiplying Equation (3.14) by sin{n¢) and using the auxiliary condition (3.10)

we gel

2[4 (m)cos(n p)sin(ng) + B(n)sin’(n ¢)](cosp — coss) —2sin( £)A4 (n)

+b [A¥(n)coP(ny)sin(ng) + BAR(n) B(n) o (ng)sin®(ng)

+ 34 (N} B¥(n)cos{n ¢ )sin’(n @)+ Bi(n)sinng)]=0 . (3.15)
Sirmilarly multiplication of equation by cos(n¢} yields

2(A (n)cosf(n @) + B(n)sin(n ¢) cos(n ¢}}(cosg — cost)
- len(% @)AB(n) + bIAX ) cos(ny) + 34%(n) B(n) cos{ng )sin(ny)

+ 34 {(n) F{n)co{ng )sin®(nyg) + B(n)sin®(ne)cos(ng)}=0 . (3.16)

Sirece we have assumed A(n) and B(n) to be slowly varying functions with periods
of much greater magnitude than -B—;L we can simplify Equations (3.15) and (8.16) to

the following forms
A (n) cosp — cost] + Rsin( %)ﬁ\.ﬁ'(ﬂ.) + %b [A%(n) + BA(n)]A(n) =0 (3.17)

and
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B(n)[cosg — costl] ~ 2sin L)na(n)+ L6[4%m) + F(m)IBM)=0 . (319

kThese two equations determine A(n) and B(n) for all n, given ﬂﬁe initial condi-
tions. Proceeding with this determination would require numerical simulation. Since an
exact solution of Equation (3.2) could be obtained using the same numerical sirmula-
tion technique directly on (3.2), we have no interest in determining 4 (n) and B(n)
from (3.17) and (3.18). However, our primeary interest is in the steady state solution
which can easily be obtained through Fquations (3.17) and (3.18) without recourse to

nurmnerical techniques.
For steady state solution

AAnY=AB{(n)=0 .

Thus Equations (3.17) and (3.18) become

A{cosp —cost) + %B(Ah- pDA =0 (3.19)

Bleosg —coss) + %b(A2+BE)B =0 (3.20)
Equations (3.19) and (3.20) are satisfied if
A=0 (3.21)
and
(oosga—cosﬂ)+—g-bBE=O . (3.22)
Equation .(3.22) vields the relationship between the armplitude, B, and the frequency,
p, of the sleady staie response
T, = Bsin(ne) (3.23)

The appreximate solution is compared to the exact solution, obtained through nurmeri-

cal smulation, in Figure (3.1).
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33 Forced Oédﬂaﬁ@
Consider tile foreced nonlinear difference equation
APz, +2(1 - cos)x, + bl = bPsin{np) (3.24)
Where p~. Assume as before a selution of the form
z = A (n)cos(ny) + B(n)sin(ng) (3.25)

Where A(n) and Z(n) are slowly varying functions. W e will again use the auxiliary
condition
AA(n)cos(ng)+AB(n)sin{ng) =0 (3.26)
So we have
APz = A (n) APcos(ng Y+ B(n) APsin(ng) (3.27)

+ AA (n)Acos(ng)+AB{n)Asin{ng) .

Equations (3.25), (3.28), and (3.27) into (3.24) yield

2l A (n)cos{nyp)sin(ng) + B(n)sin®(ny) }{ cosp ~cosb)
~Rsin(¥% p)AA (n) + b [ A¥n)cos*(ng)sin(ng) + BA¥n) B(n)cos*{ng)sin®(ng)
+ 34 (n) BA(n) cos{ng) dinf(ne ) + B n)sn*(ney)

= bPsin*{nyp) (3.28)

and
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21 A(m)ood(ng) + B(m)sin{np)cos(ng) ] (cosp ~ cos0)
+2sin(l P)AB(n) + b [ A%n)oosi(ng) + 34%n) B(n)cos(np)sin(ng)
+ 34 (R) B¥(n)cos(np)sin®(ng) + BYn)sin¥(ng)cos(ng)]

= Peos(ng )sin{ny) (3.29)

but since 4(n) and B(r) are slowly varying functions of n we have

B{n)|cosg — costl] ~ 2sin( g—)AA (n)

+ S b14%(m) + Bn)1B(n) = P (3.30)
-and

A (n) [cosp—cosE]+2sin( %—)&B('n)

+

CDJ:D

[A¥n)+ B¥(n)]A(n) =0 . (3.31)
The steady stéte soiu’tioﬁ has constant amplitude and phase with respect to n.
Hence for steady state we have
AA(R) =AB()=0 . (3.32)
Set
la(n) =4y and |B(n)[=5 (3.33)

The Equations {3.30) and (3.31) can now be written

'+ By[cosp —cpmﬂ] + —g-b[Asa+ BY+ B)=%bP (3.34)

ﬂ:As[cosqo-oosﬂ]+%b[Aszi-Bsz](j:As):G (3.35)
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or

A4,=0 ‘ (3.36)
[cosy — cosd] + %-b B= 1Y% b P/B (3.37)

Equation (3.37) determines A, and B, of the steady state solution
z, = + Bsin(ng) . (3.38)

Figures (3.2a) end {3.2b) show the relation between the amplitude 5, and the frequency, ¢.

3.4 Ultraharmonic Response

Nenlinear systems often exhibit response frequencies which can significantly deviate from
thal of the forcing function. In the cese of the discrete Duffing Equation, {3.24), we would
expect an uliraharmonic response to prevail when the frequency of the forcing term is approxi-
mately one third of the linear natural frequency of the system. The ultraharmnonic part of the

response will then have a frequency which is three times the fordng frequency.
In this section we will find an approximate expression for the response of the disorele sys-

tem governed by Equation (3.24) for the case when o™ %«9 .

Consider the equaion
APz, + 2(1 — cost)x, + bzl = b Psin(ng) (3.39)

where

ca?l:-

- (3.40)

Por values of ¢ dose to é—ﬂ the effect on the mein response due to the nonlinearity is
yrinirnal. We cen therefore write the solution as follows
x, = @sin{ng) + A (n)cos(3ne) + B{n)sin(3ng) (3.41)

where A(n) and B{n) are slowly varying functions of n and where
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7, = @sin{ne) (3.42)
‘mtisﬁes_ the linear equation
ARz, + 2(1 — cosz, = b sin{ng) . {3.43)
By substttu’cmg (3.42) into Equation {3.43) we obtain
& = bP[2(cosg ~cos®) ]! . {3.44)
The first central difference of =z, is

Az, = @ Asinlng) + A (n)Acos(3ng) +B(n)Asin{3ngy)

+ AA (n)cos(Bng) + AB{n)sin(3ng) {3.45)
where we have neglected differences of order two and higher.
W e choose our auxiliary condition as
AA (n)cos(3ng) + AB(n)sin(3ng) =0 . {3.46)
Hence

A%z, = QAPsin(ng) + A (n)A%cos(3ne)} + B(n) Afsin(3ng)

+ AA (n)Acos(3nFd) + AB(n)Asin(3ng) (3.47)

Substituting {3.47) into Equation (3.39) , multiplying by sin {3ng) and noting thet
Acos(Bng) = —2sin{3ngp)sin( ‘2‘9’)
Asin(3ng) = 2cos(3ng ) sin( %?)

APeos(3ng) = R[cos(Bp) — 1L]cos(Sny)

Afeos(Bne) = 2[cos(3¢) — 11sin{3ng) (3.48)
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we obtain after the use of the auxiliary condition (3.46)

2[A (n)cos(3ng)sin(3ng) + B{n)sin?(3ng)][cos(3p) —cosd]
—2AA{n)sEn( %qp) + 26 cos(Bnyp ) sin( 3ngp) [ cosp — cos]

+b[@sn(ng) + A (n)cos(3ng) + B{n)sin(3ng) Psn(dng) =

bPsin{3ny)sin(ng) . (3.48)

Using the fact that A{n) and B(n) are slowly varying functions of n we obtain

B(n)[cos(3p) — cosd] — 2sin( %@)AA (n)

+b Z[35%(n) - @°+34%(m) B(n) + 6@7B(n)]=0 . (3.50)

A second equation relating A(n) and F{n) is obtsined in a similar fashion rmaltiplying

Equation {3.39) by cos(3ng).

A (n)[cos(3np) —cost] + 2sin —g—m)AB(n)

i

+b§[:3A3(n)+3A (n)B3n) +12Q%4(n)]=0 . (3.51)

The steedy state solution is obtained when
AA=AF=0 . {3.52)

The Equations (3.50) and (3.51) become

B(n}cos{3p) —cost] + b -é—[SBa(n) — 3%+ 34%(n) B(n) + 6Q%B{n)]=0 (3.53)



54—

A(m)[cos(3p) —cosd] +b -é-[BBB(n) +3A(R)FA(n) + 12024 (n)]=0 .  (3.54)

For a nonfrivial solution we can set

A(n)=0 (3.55)
and
B() (cos(3p) ~coss) + b [35%n) - @°+6§°B(n)] =0 . (3.56)
Since we have steady state we wilt call
A(n)| =4, (3.57)
and
\B(n}|= B (3.56)

in order to obtain the following from (3.55) and (3.56)
A =0 (3.59)
and
[cos(3p) —cost] +b S [B2+ 247 = = B 5 (3.60)
where @ is given by expression (3.44). Equation (3.60) relates the ammplitude, B, of the solu-
tion
1z, = @sin(ng) + Lsin(3ngp) (3.81)
to the frequency, @, of the fordng function. See Figures (3.28) amd {3.2b).
35 Stability of the Steady State Sdlution
35.1 The M ain Response

We will here investigate the local stebility of the steady stete response of the system

governed by Equation (3.24) in Section 3.3. In order to perform the investigation, we perturb
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the solution of Equations (3.30) and (3.31). Hence assume
A(n)=¢, - (38

B(n)=FB+n,

where A{n)=0 and B(n)=2F is the steady state solution of {(3.,30) and (3.31). The linear-

ized perturbation equations resulting from substituting (3.82) into (3.30) and (3.31) are:

~2sin-at, + [(cosp —cost) + b Bl =0 . (3.63)
Esinig—:lnnﬂcosga — cos®) + —g—b Blen=0 . (3.64)
For simplicity call
v 1=[eosgo—msﬁ]+-g—bﬁz (3.65)
and
V2=[cosga—cosﬂ]+%bﬂg : (3.68)
Fquation (3.64) gives
| Bén=—2sin( £) A%na¥ 1. (3.67)
So BEquation (3.63) yields
A% + 45112227:'2) =0 (589)
Now set
Mme1=ANn (3.89)
For stability we rmust require
INES (3.70)

. Equation.(3.69) substituted into Equation (3.68) gives
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A=1 + |]1- -1 . (3.71)
Bmz(ﬂ) stnz(ﬂ,) \
2 2
Soif
ARy
1—~é— — U2 e (3.72)
sin’( £)

we have [A]< 1 and hence a stable solution. The inequality {3.72) is satisfled if
0< V,Vp< 16sin¥ g—) (3.73)

Since p= ¢ and |b| is assumed to be smal, the right inequality is always satisfied. So we are
left with

[cosp — cosv+ g-b E*]cosp — cosO+ %b =0 . (3.74)

The inequality (3.74) gives a condition on B and ¢ for the steady state solution (3.38) of
the homogeneous difference Equation (3.2) to be locally stable. Local and global stebility of the

solutions of the homogeneous Fquation (3.2) was discussed in the previous chapter.

3.5.2 Siahility of the Ultrabarmonic Response

Section 3.4 we cbtained an approximate selution (3.41) of Equation (3.39 ) which included
the ultraharmonic responge. W e artived at the Equations (3.50) and (3.51) relating the slowly

varying functions 4 (n) and B(n).

B(m)[cos{3) — cosd] —2sin( —g—-;o)AA (n) +

- é—b [SE8(n) — @ + 34%(n) + 602B(n)] =0 (3.50)
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A(mn)[cos(3¢) — cosd] + 2sin( -g—-;a)AB(n)

3 —é—b[BBE('n) +BA (n) BYn) + 12024 (n)]=0 . (3.51)

In order to determine the local stability condition of the steady state solution of (3.50) and
(3.51), hence also an approximate stability condition of the steady state solution of Equation

(3.39), we proceed as follows. Let
Aln)=¢&, (3.75)
B(n)=B+n, (3.76)

where £, and 7, are small perturbations and F(n)=F and A(n)=0 is the steady state

solution to {3.50) and (3.61).

Substituting (3.75) and {3.76) into (3.50) and (3.51) yields

o
—Rsin( 'é-?’)&gn'l"g #n =0 (3.77)
.3
2sin{ =—@)An,+0 £, =0 (3.76)
2
where
0, = cos(3 )—ms§+b§-[52+ _w [ (3.79)
! v 8[ cosp ~ cos| | '
Q 5= cos(3 )-—msz?+b~§—r632+ __p (3.80)
€ ¢ 16[ cosp ~ cosd '

Taking the central difference of the Equation (3.78) gives
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Zsin(%ga)bznn+ﬂ AE.=0 . (3.81)
. By solving for A¢, in (3.81) and substituting into (3.98) we obtain
451022 )%+ 2 10 7= (3.69)
Hence the stability condition becomes
Q.02>0 (3.83)
or finally
{[cos(3¢p) —cosd] — é—b (057 + 867} cos(3¢) — cost] + -é—b 35+ 126%)}= 0 , (3.84)
which is our stability criterion for the steady state solution

x = @ sin{ny)+ Bsin(3¢) (3.85)

3.6 Approximate Solutions of Higher Order

3.6.1 Use of the Exact Cenfral Difference Formulation

In Section 3.2 we applied a slowly varying parameter technique to & hornogeneous
equation. In doing so we used approximate expressions for both the first, Az, and
the second, A®z,, central difference of =z,. In order to achieve a higher order

approximation these approximations will be replaced by exact expressions.
As in Section 3.2 consider the hormogeneous Equation (3.15)
AP, 4+ 2(1 —cosfa, + b2 =0 . (3.2)
As before we assurne a solution of the form
, = A(n}cos(ng ) + B(n)sin(ng) (3.86)

Retaining all terms in the expression for the first central difference of =z, gives.
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Az =A A(nyoos(ng) + A(n)Acos(ng) +AA(n)tcos(n +J)e —Bmﬁ(nw)
+eos(n — Y )pi+kAcos(ng)id (n + ) ~RA(n) + A(n—%)] +AB(ﬂ)Sin(';'w)
+B(n)Asin(ng) + $AB(n){sin(n + )¢ —2sin(ng) + sin(n—7%) ¢}

+¥%Asin(ng){B(n+¥%) —2B(n)+ Bn—-%)1 . (3.87)

As an auxdliary condition we require

AA(n)fcos(n +¥%)¢ + cos(n —} e}
+YAcos(ne) A (n+ %) —RA(n) + A(n—%)]
+ B AB(n)sin(n +%)¢ +sin(n ~%) o}

+ Y Asn(ne){AB(n+%) —2B(n) + Bin-%}=0 . (3.88)
Hence
Ax,=4 (n)Acosng + B{(n)Asitme . (3.89)
The exact expression for the second difference of =z, becornes

ARz, =Y%AA(n){Acos(n+ %) ¢ + Acos(n — )}
+ 1% APcos(ng){d (n+ %) + A(n—-%)}

+¥AB(n){Asin{n+¥%)¢ + Asin(n - %) ¢l (3.20)

+%a%in(ng) (Bn+ i)} + Bln-$)] .

Using Equations {3.86), (3.13), and (3.90) and noting that
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Acos{n +¥%)p = 2sin(n + J)psn(fp)
Acos(n—%)p = 2sin(n — % )¢ sin(fop)
Asin{n + %) = 2oos(n + 1) esin(lie)

Asin{n —})p = Reos(n—})psin{}fop) (3.91)

the Equation {3.2) yields

2[A(n)cos(ng) + B(n)sin(ng)](1 - cost)
+[{A(n+3) + Aln—)cos(ng) + {B(n + ) + B(n — i isin{ng)](cosg — 1)
—bA(n)isin{n +1%)p + sin{n ~ % )¢isin(l ¢) + AB(n)lcos(n+ %) ¢ + cos(n ~Y)elsin(lh ¢)

+b[A(n)ms(ng) + B(n)sin(np) =0 . (3.92)
By rultiplying Equation (3.92) by sin{ng) end using the auxdlliary condition (3.88) and

the fact that A(n) and B(n) are slowly varying functions it is possible to obtain

B(n)[1—cost] - (B{n+}) — B(n) + B(n-%))(1- cosp)

—AA (n)sing + —g-b [A%(n) + BYn)]1B(n) =0 . (3.93)

Repeating the same procedure but multiplying Equation (3.92) by cos(ny) we achieve

A(n)[1—cost] ~(A(n+}8) —A(n) + A(n—1)][1 - cosp]

+AB(n)sing + %b [A%(n) + BAm)]A(n) =0 . (3.04)

The slowly varying parameters, A{n) and F(n), in the solution {3.86) can be determined by

 the use of the Equations (3.93) and (3.94).
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Tor steady state solutions we have AA(n)=AF(n)=0. Hence

Bn)(wsp—cos) + o [4%n) + FAmIB(mM) =0 (39)
A (m)(eos —cosi) + o 1a%n)+ A =0 (3.90)

If we zet
A(n)=0 (3.97)

we have
(cosgp —coss) + %b B2=0 (3.98)

where

B(n)|= & (3.9)

Equation (3.98) determines the amplitude, A, of the steady state response. It is realized that
Tquation (3.98) is identical to Equation (3.22) which was derived with approximale expressions
for Az, and APz,

3.6.2 Stability Apalysis

In order to determine the local stebility of the steady state solution obtained asbove we per-

turb the solution as follows

A(n) =,

B(?_v,) =B+n, (3.100)

where £, and ny, are small perturbations. Substiluing the perharbed steady state solutions

{3.1C0} into Equation (3.93) and (3.105)

.EnV 1+ Anpsing + (cosg — 1)($n+}é +én-3)=0 (3.101)

and



—62—

NV g+ Afpsing + (cosp — LNy +Mm—y) =0 (3.109)

'v;.rhere )
vlzl—msa+zsm2(5§—)+%baz. (3.103)
ngl—cosa+25m2(-%—)+%bﬁ'g : (3.104)

A ssume a solution of the form

£n=Cp™ (3.105)
Na=Dp™ .
Hence we have
Entp=énP (3.108)
Nn+¥ = Nnl

and the Equations {3.101) end (3.102) yield
£n-y [0V 1+ (059 — 1)(0P+ 1} ]+ 7y (0P —1)sing = 0 (3.107)
(0P — 1)sing + T yl0Y 2+ (cosg —1)(F2+ 1)]=0 . (3.108)
For a nontrivial solution of these equations we must require
[(cosp — 1)(1+7%) + 0V {J[(cosp — 1)(1+p%) + PV o]+ (pPsing —sing)*=0 . (3.109)
This can be simmplified to yield
pr+Ap +Bpf+Ap+1=0 (3.110)

where

A= (3.111)
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and

Boospsin®( £)+V 17 5 |
B=- (3.112)
ot £ +siy

W e are searching for the region inthe A end B plane where the solution of Equation (3.110)
satisfies the condition |p|= 1. This region would then, as seen from (3.105), correspond to

the region of stability for the steady state solution of our difference equation.
The region for which fpi= 1 is easily determined to be
(B+2-2A)B+2+R2A)=0 . (3.118)

If the expression (3.111) and (3.11R) for A and B are substituted into the inequality (3.113)

we get

[ —Boosgpsin’ (50—)-1—VIV2+B {59-)+25Ln;o+4(‘7 +V g)sin (50—)]x {3.114)

£y=0 .

[—Beosgsin( Sg—) +V |V 2+ Bsin¥( g—) + 2sirfp —4(V 1+ V gsin®( £

Inequality (3.114) can be written as follows

[22+ ( —24+Beozt) cosy +Beos (29 —BcostH bI* 68— g-msga - %msﬁ]-}- %{—bz}i"‘} X

[1 Ecosﬂcosrp+——(cos(8qa)+cos(2'ﬁ))+—-sz(cosr,a—cos&)+ B‘*] (3.115)

but

22+ ( —24+Bros) cosy +5cos (26) —Beosd

+bB6 g-cosga -g-cos"tﬁ]+——b23“>0 (3.116)
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forg~ o, which is the rég,ion of interest, and |6 | smwll. So for stability we st satisfy
1—Rcostcosp +1% (cos {2y ) +cos (29)) + %sz(cosgo —cos) + % b= 0 (3.1
which can Be Writtén
[cosp —cosB+ -g-b B*][cosp —cost+ g—b Bl= 0 (3.118)

This is exactly the stability criterion for the steady state solution, obtained previously, when
approximations for the first and second central difference of z, were used.
3.6.3 Hipher Ordar A pproximnation by the Use of the Third Harmonic
A ssume a solution to the difference equation
APz, + 2(1 — cost)zy, + br = 0 (3.119)

tb be of the foﬁn

2, = A(nYeos(ng) + B(n)sin(ng) + C{n)cos(3ng) + D(n)sin(3np) . {3.120)
Then

Az, = A (n)heos(ng) + B(n)Asin(ng) + C(n)Acos(3np) + D(n)Asin(3ry)

+A4 (n)cos(ny) + AB(n)sin{ny) + AC(n)cos(3ng) + AD(n)sin(3ne) . (3.121)

Since we have four funclions of n describing &, we cen arbitrarily choose the following as

our auxiliary conditions
AA (m)cos(ng) + AB(n)sin(ng) =0 | (3.122)
AC(n)cas(8ne) + AD (n)sin(Bng) =0 | (3.128)
AA(n)cos(3ng) + AD(n)sin{ng) =0 | (3.124)

Using these conditions in the expression for Az, (3.121) yields
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_ Agxn=A ('n.)Amsl(nga) + B(n)Asin{ng) + C(n)Acs(3ng) + D (n)Asin{3ng) . (3.125)
W e also have

- A%, = A(n)A%os (ng) + B(n)Asin(ng) + C(n)A%cos(3ng) + D(n)A%sin(3ng)

+AA (n)Acos{ng) + AB(n)Asin{ng) (3.126)

+AC(n)YAcos(Bny) + AD (n)Asin(3ng) .

Using the relationships (3.24) and (3.123) and Equations (3.13) and (3.126), the Equation

(3.119) becomes

2(A4 (n)oos(ng) + Bln)sin(ng)){cosy —cosd) + 2(C (n)cos{3ng) + D{n)sin(3ng))x

(cos(3p) — cost) — 2AA (n)sin{ng)sn( %) +2A B(n)cos(ne) sn( %)

~2A C(n)sin(3ng)sin( g-ga) + 2A D {n)cos(3nyp ) sin{ %gp)

+b[A(n)eos{ng) + B(n)sin(ng) + C(n)ms{3ng) + D (n)sin(3ne) P=0 . {3.127)

From the auxiliary condition {3.122), (3.123),and (3.124) we have

AA(n)=gin(ng)cos Y np)AB(n) , (3.128)
AC{n) =sin{3np)eos" np)AB(n) , (3.129)
AD(n) = oos(3ng)cos H{np)AB(n) , (3.130)

Multiplying Equation {3.127) by cos(ng) and using Equations (3.128), (3.129), and (3.130)

and the fact that A(n), B(n), C(n), and D(n) are all sowly varying functions yield

A(m)[cosp —coss]+ 8 B(m)[sin( £) + sinf S¢)]

+b[

m|ca

(BA%+ FP)A + %(CE-[—DE)A]:D . (3.131)
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Next muiltiply (3.127) by ém(nga) and use

AB(n) = cos{np)sin Y ng)AA
AC(n) = sin{3np)gn~(np)AA

AD(n) = —cos{3ng)sin" Y np)AA (3.132)
to get the following

B(n)[cosp —cost] 28 A (n) [sin( £ + sin g-;p)]

+b [%(32+A2)B+ i—(cEwE)B]: 0. (3.135)

W here we have again used the fact that 4A(n), B(n), C{n), D(n) are slowly varying func-
tfons.

By a similar procedure we obtain the equafions

€ (m)[cos(35) —coss] 28 C(m) sin( £) + sin( T¢)]

+b12(CP+ DHCH+ DAC + (4% + BC + 5% =0 (3.134)

D{n)oos(3p) —coss] ~2A C{m)[sin( £ + sin( )

3
+D [%(CE+D2)D+ -j:(A2+82)D+-é-]=O . (3.135)
The difference Equations {3.131), (3.133), (3.134), and (3.135) determine A(m), B(n),
C(n), and D{n).

By setting AA(n)=AF(n)=AD(n)=0 we obtain the following expressions for the

steady state sclution
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r .
A[cos;o—cos*ﬂ]+bi%(Az+Bz)+%(C‘ztl)z) A=0, (3.136)
J
I
-B[cosgo—cosﬂ]+bl'%(Az+BE)+i—(C’z+D2) B=0, (3.137)
3 1 1
Ccos(3¢) — cosf] + b [E'( C*+ D% + Z(A2+Bz)]c+ %3-,43 =0, (3.138)
D[cos(3) — cost]+b [%(chpz) + i—(A2+BE)]D + é—BS =0 . (3.139)
Now if we set
B=D=0 (3.140)
we get
g+ %b [342+2C%] =0 (3.141)
and
aC+-é—-b[iSCE+BAEC+AB§]=D (3.142)
where
o = cos3y — cosd (3.143)
8 = cosp —cos¥ . (3.144)
Equation (3.141) yields
e__4, 3 4e
Co=—~—B > A {3.145)

Using this expression for C* we can eliminate € in Equation (3.142) in order to get
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_ [ |
[-—40@ + 1208 —952]5 + %114&6 — 30— 2—7;?2 A?

115

= At—p2 B3 46— (3.146)

15
AT 512

18

+b2r—
|

This sixth order polynomial determines 4 given ¢ and &, € is then detenmined by Equar

tion (3.145) in order to get the steady state solution
xniAcom;a + CooBng . {3.147)

A numerical cormparison between the lower order approximate solution (3.23) and the solution

obtained here is shown in Figure (3.3).
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4 THE DISCRETE HATHIEU EQUATION
4.1 Linearization of the Nonlinear Difference Equation
Consider as in the previous chapter the nonlinear differenice equation
APz + (1 — cos¥)z, + bz = bPsinng (4.1)

Assume z* to be a steady state solution to this equationn. Let the pertubation of =*

be £,. Hence
EAE TR T (42)
Substitution of (4.2) intc Equation {4.1) gives
AP, + (1= coshé,, + Bk {(23)%, =0 (4.3)
where we have neglected terms of 0{£%) and higher.

An approximate expression for the steady state solution, z¥, was obtained in the

previous chapter, Section 3.3. W e can therefore write

Z¥= Acosny (4.4)
Equation (4.3) then becomes
| | A% +(ot+Beos(2ng) ), =0 (4.5)
where
o= B(1—cost)+ %Q-Ag (4.6)
and
8 = %bAE . (4.7

W e will call Equation (4.5), the discrete M athieu equation due to the obvious similer-

ity with the well known continuous M athieu equation.
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4.2 . Stability Boundaries of the Discrete M athieu Equation for Small g
'4.2.1 Expansion of the Sclution
For srmgll values of 8 it is possible to express the stability boundaries correspond-

ing to the solution of the Equetion (4.5), in the «, 8 plane, as an expansion. Let the

boundaries be given by

o= o+ o+ SRt (4.8)
and let the solution be giveﬁ by
€n=5an+ﬁfln+ﬁ2$2n+ n (4.9)
where ¢, , € - have aperiod of % or —BLT—.

Substituting the expansions (4.8) and (4.9) into Equation (4.5) and equating

coeflicienis of like powers of 8 yield

B0 &, ~(2-0,), +Eq_ =0 (4.10)
BY &, —(2-0)E, +&; = —(on+oos(2ne))q, (4.11)
6% to,,~(Bm00) bz, Hg, , = ~aba,~(artcos(2ng) )y, (4.12)
B o, (200 )y s, , = —Oato,~0ufy, —(crtoos(2np))éa, - (4.13)

W e will treat each equation seperately starting with (4.10).
The solution to the linear difference Equation (4.10) is
€o, = Aocos (ny) + B, sin(ny) (4.14)
1i&here

1}0 _ COS_I{ .2—2019

(4.15)
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422 Solutions Having a Period of /%
W e will first look for solutions having a period of 4. Set
o= 0

The Equation (4.10) has then the periedic solution

Using the fact that «,=0 and ¢, =4, Wwe can write Equation (4.11) as

£,,,~R¢& +E  =—A, (e, +oos(Bnp))
Since we are looking for periodic solutions of period /A4 we must set.
o, =0 .
" The periodic solutions of Equation (1.5) are then of the form
€1, =Ac0s(Rnp)+C,
whers

4o

Ar= R{1—cos(Rp))

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

If we now substitute solutions (4.17) and (4.20) and the values of o, and «; into

Equation (4.12) we can write the following
$2n+1“2$2n+52,,,1 = —opd, — %A —% A 008(2nyp) —C 008 (2ng) .
In order for Equation (4.22) tx) have periodic solutions we rrust set
oA, ~¥B A =0
which by using (4.2 1) vields

0= - (1-cos(2p)) " .

(4.22)

(4.23)

(4.24)
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By using the two first terms in the expansion for a (4.8) we can now produce an

approximate expression for the stability boundary where the solution has a period of
-g—-. By sﬁbstitutj;ng the values obtained for &,, oy, and e« into (4.8) we get as our sta-

bility Boundary
a= —%(1-905(2@))-152 . (4.25)
W e continue our search for additional —Z— period stability boundaries. By setting
on = (Rg)? (4.26)
we obtain from Equation (4.15)

Y=2p . (4.27)

W here we have assumed o, to be sufficiently small for us to justify the neglect of all
termns of O(¢?) and higher. Hence, by using (4.14) we arrive at the following solu-
tion to Equation (4.10).

o, = Agcos(Bnyp) +B,sin(2ny) (4.28)

The value of o, (4.26) and the solution (4.28) substituted into Equation (4.11) yields

the equalion
£, ~(2—2p0t, +E; = ~(xr+oos(Bnp)) (A,cos(Rnp) + Bsin(2ng))  (4.29)
In order for the forcing term not to cause resonance we rmust set
=0 . (4.30)
Equation (4.29) can then be written as
&y, —(B=4pP)E, +Ey =¥ A~V Agcos(ang) — ) Bysin(4ng) . (4.31)

The solution to this equation is of the form
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€1 =Ajcos(4ng)+Bysin(4ng)+C, (4.32)
where
A1= — A (cos(4p) ~cos (2¢)) ™ (439
By = =4, (cas (4) —c0s(2¢)) ! (4.54)
__ Ao
C,= Bo? (4.35)

Substituting solutions (4.28) and (4.32) and the values of o, (4.26) and e, (4.30) into

Equation (4.12) yield

[
b2,,,~ (R4 g +Ee, = [ —ogdot 1 B (cos{4y )A_ocos B2)) Ao} (Zng)
+[~—-a Fo — o sin(Rngp)
[ 2 B cos(4p)—cos( 2;9}] ¥
s+ L Ao cos(Bng) (4.36)

cos{4¢) —cos(2p)

+l_ Bo
B cos(4yp)—cns(Ryp)

sin(Bng) .

I order for Equation {4.36) to have a periodic solution the following must hold

Ao 1 Aa

Ao+ = T —C— =0 (4.37)
and
1 Bo _
el —g cos(4p)—cos(2p) 438

These equations are satisfied if

Apg=0 and cp= = L p ot

1
5 cos(ag)—coe(37) By (4.39)

or
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1 1

5=0 and op= g o) (4.40)
If we agﬁn neglect terms of 0(p?) and higher we get
tp = qﬁq,—z | (4.41)
oT
oo = 45_35"_2 . (4.42)

The stability boundaries corresponding to a solution of period :;— are obtained substi-

tuting the determined values of a,, o, and o from (4.26), (4.80), and (4.39) or

(4.40) respectively into expansion (4.8)

o= 4p%+ %\;a 22 (4.43)
and

— a2 L —2az

o =4y W B~ . (4.44)

W e have so far constructed three stability boundaries corresponding to the solutions of

period lg;—forsmé]lﬁ and @ .

423 Solwlions Having a Period of z-”g—}.

We here extend our stability analvsis by looking for the stability boundaries
corresponding to sclutions of period 2%. Set
o = % (4.45)
then we have from (4.14 ) and (4.15)
£, = Ascos(ng)+B,sin(ne) (4.46)

Substituting o, (4.45) and £, (4.46) into the difference Equation (4.11) yields
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1= (-0 +E1 = —(0r+ D) Agous(ng) ~(ay— 2) Bsin{ng) (4.47)

~ 24s0s(3ng)+ Bysin(5ng)

In order io have a minirmum period of 2—2— we must set

oy = _é, and By=0 (4.48)
or
o;= = and A, =0 . (4.49)

So by choosing o, and e, according to (4.45) and (4.48) or (4.49), respectively, we
obtain the following stabilily boundary
—.2, 1
2=t of . (4.50)
for small 8.
4.3 Stability Boundaries of the Discrete M athieu Equation
for Small 8 up to the Fourth Order in Stepsize.

Consider Equation (4.10)
soﬂ_u_( B_¢O)Eon+fan._1 =0 (4.10)

Wé are searching fof solutions with the minimum period of 2%. In the previous sec-
tions we chose «, such that the exact solution of {4.10) could be approximated, to the
second order in ¢, by a periodic function with a period of 2% W e will here extend
this previous second order approximation to a fourth order approximation in ¢.
W e wish the soluﬁon of the dif"ference Equation (4.10) to be of the form
£q, = Apcos(nyp) +B,sin(np) (4.51)

Such a solution can be achieved if we choose o, according to (4.15). Hence,
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[
Y=p= cos‘ll ;0 ] (4.52)
By iﬁcludj.ng the three ﬁrsttenns'm the expansion of cos{e),
cosg = 1— gt gt (4.53)
2 24 ' '
we can, through a comparison with (4.54), determine o, as
0y = it (4.59)
e iz
We can now substitute £, (4.51) and «, (4.54) into Equation (4.11). Hence
(2P oyt HEr, = o) Aocos (ng) - on—4 | Busind
3 oo E L, = o COS (N ) —ieyy hsin(ng)
—¥% (A,c05(3ng)+B,sin{3ny)) .
In order for Equation (4.54) to have a periodic solution we set
oy = —é— and B, =0 (4.55)
or
a1=-é— and 4, =0 . (4.56)

Hence the stability boundaries corresponding to the solutions having a period of 2%—

are
_ 2 1 4
o=g lch+}éﬁ (4.57)
or
a=;o2—%2-w4—%ﬁ : (4.58)

4.4 The Inclusion of the Third H armomic

In this section we will derive a stability criterion for the discrete D uffing equation

assurning the third harmonic to be induded in the steady state solution. By perturbing
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the nonlinear equation and assurning such a steady state response we will again pro-
“duce a M athieu type equation.

In Section 4.1 we sew that by perturbing the D uffing equation we obtained the

equaﬁon
€nv1—R(1—cosO) €, +8b(50)%, =0 (4.59)
By substituting the steady state sclution
z,¥ = Acos (nyp) + Beos (3nep) (4.80)
where A and B where determined in Section (3.4), we obtain
| €nn—Rén+Enr+[a+peos(Rng) + yoos(dng)+peos(6np) 520 (4.81)
where

o= %b (A %4+ B) +2(1—cost)

g= %b (AR+2AR)

v =3bAB
— 3,
p= -é-bB (4.62)
If we now let
y=% g (4.63)
p=0g (4.64)
we have
Eni1—REn+En1+[a+B(cos(Bny) +® cos(4nyp) +Ocos(Bng) [, =0 (4.65)

where
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2=2_ (4.66)
\and
0= —Z (4.67)
Sinece 8 is small the .stabi]jty boundaries can be written ag
o = o+ 8o+ 8%t (4.68)
and the solution can be written as
€n= o, TBEL +8%p +.... (4.69)

Substituting o (4.68) and ¢, (4.69) into Equation (4.65) and equating the coefficients

of equal powers of 8 vield

g Ean+1~(2—éa)$on+$an_l=0 (4.70)

B £y, ~(R~a0)éy by = [o+oos(@ng)+8 cos(4ngp) +Ocos(Bnp) T, (4.71)

B &g, ~(B—ay)Eg +Ep | = —opt, —[oytoos(Rng) + B cos(4ng) + Ocos(Bng)léy,  (4.72)

B0 &3, —(B—ao)ég tEg = —aafs, —0f1, (4.73)
~ [oy+oos(Brg ) +® cos(4ng) +Bcos(Bnyp) [, .

We will consider the stability boundaries corresponding to the solutions with &

period of Bgal For this purpose set

o =¢? . (4.74)
A coording to Equations (4.14) and (4.15) we then have
£o = AgCos (nyp) +B,sin(ng) (4.75)

as the solution to Equation (4.70). Substituting Equations (4.74) and (4.75) into

Equation (4.71) yield
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Elnﬂ_(g_Gﬂg) £ +E = = %A (Roy+ 1) cos(ng) ) By (R —1)sin{ng)

~%A,(1+8)cos(3nyp) = A4,(P +0)cos(5nyp)
—3 B, (® —0)sin(Bng) ~¥% A, B cos(Tne) -1 B,sin(ng) .

In order to avoid resonance we must set

or

oy = A, =0 .

L

2 )

The solution of Equation (4.76) then takes on the following form
¢€1 = Ayyros(3ng)+A pros(Bnp) +A4 15005 Tng)+

Bysin(3ng )+ Bpsin bng) + Bgsin tng)

where
Az te - 140 N
U™ 4 cosp—cos(3p) U7 4 cosp—cos(3p)
An= :."E’___._@ +0 B..= .'?o_.—ql _®._
B™ 4 cosp—cos(5p) ' B~ 4 cost—oos(5¢)
P B e
B™ "4 cosg—cos(Te) B7 "4 cosp—cos{7p)
% @ ¥

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

By substituting solutions (4.75) and (4.79) and the values of e, (4.74) and o,

(4.77), (4.78) into Equation (4.72) it is possible to obtain the following condition for

the existence of aper’iodic solution,
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oLl (eB?  (@+0)2 | @
7 B | cosp—cos(3p)  cosg—cos(5p) cos;a—ms('?;a)]

end By=0  (4.81)

or
(1-8)  (#—®)® __  e® |
cosp—cos{3p) ' cosg —cos(5¢) 1 GOSGQ—GOS('?@)J

f
a2=—é—l and A4,=0 . (4.82)

We now have sufficient informmation in order to produce an expression for the wanted
boundary up to an accuracy of 0(g% . The stability boundary for srnall g is

o= ot g_ﬁ_ir (1£8)® . (8+8)° 82 ]
-9 B | cosp—cos(3¢)  cosg—cms(5p) | cosga—cos(?;a)_l

p g* . (4.83)

It is clear that the correction to the stability boundary due to the introduction of the
third harmenic is only present in the coeflidient of 8 to the second power.
4.5 Relaling the Stability Boundaries of the M athieu
Equation to the N onlinear Duffing Equation
W e recollect that we obtained the discrete M athieu equatioh
W Ep1—REn+En1+ [+ Bros(Bng) €, =0 (4.5)

by perturbirig the discrete D uffing equation

i1 =20 + 2,1+ 2( 1 —cost) 23, + BzF = bFSIn () (4.1)

Wh.em
o= 2(1—cos®) + %EJA2 (4.6)
p=04% . (4.7)

From previous Section 4.2.3 we know that two stability boundaries corresponding to

solutions of period 2%— are given by (4.50)
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1
o= P L

o= g+ %ﬁ : ' (4.50)

The sbabﬂity regions obtained from these boundaries can be stated as:
Region 1: o< ¢*~=f (4.84)
Regicn 11: o= ¢+ = (4.83)

where the regions I and II are shown in Figure (4.1). So one of our stability condi-

tions in region 1 and 11 is
(0=g=2)(a=p® S6)> 0 (4.86)
Substituting the expression for a (4.8) and g (4.7) into the inequality (4.88) yields
(mwucos%%bfla)(cosga—ms%%bflz)a 0 (4.87)

The stahility criterion (4.89) is identical to the one obtained eatlier by the use of the
method of slowly varymg pararmeters on the nenlinear Duffing equation.
4.6 Numerical D etermination of the Stability Boundaries

of the M athieu Equation Using Flequet T heory

The M athieu equation
€nr—REn+in i+ a+foos(Rrg) 6, =0 (4.5)
has a fundarmental Inatnx solution X ,, which satisfles
X, =AX, (4.88)
Xo=1 (4.89)

where
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To 1
=|-1 2~(a+foos(@ne)) | (4.90

A
| Since A is a periodic matrix we can write the following usmg Floquet theory
X,=Q,e" ' (4.91)
where Q; is a periodic matrix such that
Quin=Q, . (4.92)
Using (4.91) and (4.92) it is possible to show that
Kpry =X X . (4.93)
A ssuming Xy to be a nondefective matrix we can write
Xy =X, TAFT ! (4.94)

where

M
A= [ 0 SJ (4.95)

and where X; and Az are the eigenvalues of the matrix Xy. Itis dear from Equation
(4.94) that we must require
Nzl i€(,B) (4.96)

for the solution to remsain bounded. It is elso dear that since A is periodic in N
steps, that:

i) i A;=Xxg=1 the solution is periodic in N steps

i) if ;;=-1, i=1 org2 , the solution is periodic in 2N steps.

o a numerical determination of the stability boundaries, in the o, § plane, of the

M athieu equation could follow the following outline:

1. Determine Xy by exact simulation of the difference equation with the initial

condition X, =(1.0)T and X,=(0,1)7.



2. Obtain the eigenvéiues of Xy.

- 3. Vary o in a systematic manner, holding g

éonétant until the desired stability boundary, case i or 1, is reached.
Figure (4.1) shows the numerically obtained stability boundaries corresponding to
solutions with a period of both g— and 2:7. The approximate boundaries produced

earlier are also shown in the figure. It is seen that the accuracy of the approximate
technique is good for small values of 8.
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5 STOCHASTIC EXCITATION
5.1 Linear Systems

Before ‘we can approach the task of obtaining exact or epproximate solutions to
norlinear difference equations with stochastic forcing functions we must first exarine

the case for which the equations are linear. Consider the equation
T+ 02+ By = M (1) (5.1
where M-(n) is a Gaussian distributed forcing function with
E[M (n)]=0 (5.2)
and
E[M {(nyM (p)] =268 (5.3)

where E[ 1 denotes expectation and where

il n=
br2=10 m ;53; (5.4)

Due to the statistical description of the forcing function the solution of {5.1) can
only be described using the same measures. W e will here obtain expessions for the

steady state values of the first and second moment of the response, =, .

Equation (5.1) can be writlen

[ r
[zﬂ =% 2 rn“l L) (5.5)
[ we call
3,n={z;:] a=[5 2] ma f@=[y ) (5.6)

we have
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, o .
Za=ATE+ ), APPE(p) (6.7)
p=1
Sinice we are looking for the steady state sclution we can set
:_é]_:O (5.8)

hence

n I
Eoa1= Y, ATPE(p) (5.9)
p=1

The mean of #,,, is obtained by taking the expectation of Equation (5.9).

ElZp]= Z A®PE[f (p)] . (5.10)
But from (5.2) we have
E[F(@)]=0 (5.11)
so
Fl]=0 | (5.12)

Hence, the first moment of the response of a discrete linear system is equal to zero if

the first moment of the excitation is also equal to zero.

W e proceed to caleulate the variance of the response. The second moment can be

obtained by considering
BBl pf qz EmPmf (0)I7 (@) AT (5.13)
but
B @7 (@)1=28]3 %s, - (5.14)

Hence
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Fl2la]=28 $am 0 Ay . (5.15)
»=1

Assuming 4 1o be nondefective we can write

A=TAT™ ' (5.16)
where
A o [y 1
A=|y No| T=|.AI As (5.17)
and where

M=(%)[~a+VaP—4b ]

A= (%) —a—VaP~ab | (5.18)

Substituting (5.16) into (5.15) vields

Elxf)=2B Z (A W {?\?(n"” RAA)™ P + AFn P (5.19)
RTTAL
If we now let
?\1 =p 9i¢
Ag=pe™ (5.20)
we have
' 2B &
Elzf]= = > pFrPleir?[(n—ple] . (5.21)
P 311'150 p=1

Since the second moment of the steady state response is desired, let no = in

Equation (5.23). Hence for steady state response we get

Bz = 2B § P (np) ] (5.22)
PSH1¢ p=l

" where
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g=n-p (5.23)

A fter some manipulation it is possible to write £[=?] as:

[ 2
2= 2| (1+p%)(1—cosRp)
loml= 3, | (1—p®)(1—Rp?cos 2 +p%) (524)
but Equations (5.18) and {5.20) yield
p=~b
_1 a”
sing = E\ f4— &
1 a®
cosBp = EY —b*"-‘l (5.25)
Hence by substituting Equation (5.25) into {5.24) we finally get
E[z?] = 2p 1F0) L (5.26)

(1=b) (1+8b+b%—a?)
which is the general expression for the second moement of the steady state response of

the linear difference Equation (5.1). This result will be used in Section 5.22 in order

to oblain an approximate solution to a nonlinear difference equation with stochestic

input.

5.2_ Nonlinear Systems

521 Exact Evaluation of the Second M oments

F'rom the theory of stochastic differertial equations we know that the probability
density function of a M arkov process is given by a Fokker-Planck equation [28]. Itis
therefore tempting to try a similar approach for the case of stochastically forced
differcnice equations. However, tlj.e derivation and existence of the Fokker-Planck
equation depend upoh the capability of being able to let the step size, At, approach

zero. Clearly, this cepability is inherently absent for a specific discrete equation. The
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stepsize is fixed and cannot be treated as a continuous variable. W e can therefare not
work with the Fokker-Planck equation as such but are forced to consider a equation of

Kolmogorov-Smoluchowski type [28].
Consider the nonlinear difference equation
Loy 1+ (T Ty = M (1) (5.27)

where M (n) is of Gaussian distribution with zeroc mean and variance equal to 25.

W e are interested in obtaining the joint probability density, p(@,.; . 2,). W e have

p(xn+1,zn)=fp(mn+1 Ty Ty By (5.28)

The triple joint probability density, p(@,+; . % . Ze1) can be written as:

(T 1% Fnm1) = P Ty 12 By —1)P (2, 1) (5.29)

Substituting (5.29) into (5.28) yields

P(Tni1.T0) = _f Dy |Zn + Tnms) P(Fn + Ter) By (5.30)

which can be considered te be a equation of Chapman-Kolmogorov- Smoluchowski

type. For steady state we have

P(Lne1,2) = P&Zn Lnr) (5.31)

Hence Equation (5.30) can be considered to be an integrel equation for p{zu.; . )
during steady state. Our goal is to determine the second moment of the steady state

response from this equation.

The conditiona probability density (@1 |20 . Zn-1) s Gaussien since M (n) is of
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Gaussian distribution and =, and =z,-; are both considered to be fixed. Hence
P Ty 8 T my) = (Bﬂ)'ﬁE[zﬁH fmn.zn—ll_}é X : (5.32)

expl—(1/8)zz1 B[ 251 [on Zn1] |

where

Zna1 = Zne1 = E Tt [0, Tt (6.33)

The first moment of =z,,, given =, and =, ;, is

B39 W T 1= G (20, Tt} (5.34)
o)
Zre1 = T 10 (T Frn1) (5.35)
The conditional second moment Az, 1%, . 2,—;] in Equation (5.32) can then be
written

izl 2, Tt 1= Elx2 12, T 1 1-RE B 18 (B B o1 ) 1, T 1+ B [G7(, B g 135, )

= Bz 2 o - Lg% Fn) i 2ot 1 RETH (1) 9 (0, B 1) [ 1] (5.38)

= B[M*n) |z, 7, ,]= 2B ,

where Equation {5.27) has been used.

Substituting Equations (5.35) and (5.36) into the expression for p(@n. |2, Zx-1)
(5.32) yields

D(Tpa1 2 Zaoy) = (4ﬂB)'ﬁeXp[—;f*g(%uﬂ(zmxn—l))z] : (5.37)

Hence the integral equation for p{z..; . zn) (5.30) becomes
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(T2 E,) = (4m B)# fw exp|— Z%( T1=G (T Ty —1) )2 1D 2. 35—y ey (5.38)

Since the moment of the process &, can be obtained from the characteristic function,
M9, %), we proceed to take the Fourier transform of p(z,.,. %) in order to
obtain M (%, %).

M ultiplication of Equation (5.38) by exp(i[$z,.1+%%,]) and integration yield

H, %)= [ expli{Giznit +52) I (e 1,50) s 182, (5.39)

=00 —po

=f f S GXP["?(Wnuwz%)]explm—— 11~ F (20, = 1)) 2 |0 (B, T 1) By B T,

which simplifies to

H (%, ) = exp| ~% 5] f f exp[1{hg (Zn 1) +0Tn) [P (T, Tt} By (5.40)

—00 —o0

The evaluation of the second moment of z, for a general system via Equation (5.38)
or Equation (5.40) seems to be a very formidable task which we will here avoid.
However, we will use FEquation (5.4C) to determine the second moment of x, for a
linear difference equation in order to show consistency with the result oblained in Sec-

tion 5.1.
If we set
G (ZniTp1) = OZp b2y (5.41)

we have

Mwl ﬂz)-ezp[%ZB]f _J: exp[i( (=00 Ty —b B2 —1) 1P (2, Ty Dy . (5.42)

oo

Since for steady state Equation (5.31) holds, Equation (5.42) can be written as follows.
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M (D1, %) = exp[ —6 BIM (Gp~0t, ~b¥y) (5.43)

‘For a Gaussian process with zero mean :

| Mxy(,9) = expt-Y [ E[z®] 0f+RE [z y] tr 8+ T3] %3 (5.44)

Hence Equation {5.43) can be written

XDt b | Bl 104 2 [ 2] 0y G 2 (5.45)

= expl 5,5 Joxpt—5 | B[ 201 1(0e= 007 ) + 2 21 7, ) Ber-a) (~b) + BT ~692) |

By equating coeffident of like powers of % ,%,j7<€1,2 we obtain the following

three equations

Bzt ] =B+ E[ 2k J0P+RE 4011 2, ) 0 bE[27] b? (5.46)
Bty 2] = Elttgey Ja+ Bl 2,16 (5.47)
Elzf]= E[x},] (5.48)

Eliminating £+ 2] from (5.48) with the use of {(5.47) we get

2a”bh
B[z ]= 2B+ B8 0%~ T B 1+ Bz b (5.49)
By using (5.48) we finally obtain
B1_ pp 1D 1 ,
Elzf]=2B b o) (5.50)

which is consistenit with the results produced in Section 5.1.
5.2.2 Equivalent Linearization

The method of equivalent linearization, as applied to stochastic nonlinear
differential equations, was developed independently by Booton [29] and Caughey {30].

It is atternpted here to extend thé applicability of this method to include nonlinear

difference equations.
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To achieve this task consider fhe second order nonlinear difference equation driven

by a stochastic func_tion.
| Tyt 0L, HbT,_+exs = M (n) (6.51)
where |
E[M (n)]=0 (5.52)
and
EM (n)M (p)]=20,B (5.53)

6 1S given by (5.4). Assume £ to be a small parameter. W e want to write Equation

(5.51) as
Ty 1+ e T+ b+ 6(2) = M () (5.54)

and where @, is chosen in such a way as to mieke the equation error, 6{z;), as small
a5 possible. One way of achieving this is to minimize the mean square of the equation

error, E[(x)]. Hence we want to minimize E[ 6 (=, ) |.
E[6%x,)] = E(a zpt+e 2—0p7)?] (5.65)

with respect to o,: So set

o] _

Y (5.56)
Substituting the expression for E[é*(z,)] into Equation (5.56) yields
Bl
=a+ 5.97

This specific value of o, minimizes E[6%z,)]. In order to get an approxirnate solution

to Equation (5.54) we now simmply neglect the minimized term ¢(z,). Hence we have
%+1+aayn+byn-*l =M ('n') (5~58)

where v is our desired approximate solution. Since y~z, for small &, we will also
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make thé approximation.

Elyn]

Op=0+E——p5 - E[ 2]

(5.59)
Equation {5.58) is alinsar difference equation with a Gaussian distributed input, hence
the output, 75, must also be of Gaussian distribution. Therefore

Elyn]=8E[y (5.60)
Using (5.80) we can rewrite (5.59) as

o, = a+3E(y?] (56.81)

The mean squere value of the response of Equation (5.58) is obtained using the

thecry of linear difference equations derived in the previous sections, Thus

o 1+5 1
Al 1= 25 Ty TrabtoPa? (5.62)
By substituting a, from (5.81) into Equation (5.62) we get
2], Be pel 2] 142b+b%—0® [ o 2B 1+b _
Eﬁly‘] et 1 927 El%]JrgsE 1-b (563

So our approximate value for the second moment of the response of the nonlinear

difference equation cen be obtained from

2a 142b+b%—a® [ o], 25 1+b
] E@ ] 10l 22 oo (5.64)
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6 SUMMARY AND CONCLUSIONS

W e have herein conducted an enalysis of a difference equation with a-cubic non-

linearity. The analysed equation is of the form

Ty 1 = J (T Ty, 1) (8.1

where

Tz % m) =2z, —b zi+g(n) . (8.2)

The solutions of (8.1) were studied using both exact simulation techniques and
approximate methods. The approximate methods were developed using slowly varying

parameter arguments.

Presented in Chapter 2 was a phese plane analysis of Equation (8.1) with g(n) =0 .
Phase plane plots were obtained by treating Equation (£.1) as a nonlinear map, which
takes the point (ézn_l,m,,) in #* to the point (z,,z,,,) n #%, and by plotting these

points for repeated iteration.

The locations of the first order fixed points were obtained and the local stability
was discussed. Depending on the value of the pararmeters of the map , a and b, we
classified the ﬁxeci points as either centers or saddle points. W e found that solution
points situated close to a center always exhibit smooth closed trajectories around the
center. For 1mt1a1 conditions situated sufficiently far away from a center we obtained

unbounded solutions.

For certain Vélues of the pararneters of the map (6.1) we obtained points, located
in spedific regions of the phase plane, which appeared scattered in a stochastic menmer.
We have concluded that this cheotic behavior is due to homociric and heterodinic
oscillations of stable and unstable manifolds ernanating from the unstable fixed points.
Stochastic descripticns'of the scattéred points have been used in the past due to the
- failure qf ‘relating the scatter of the peints with the complicated structure of these
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oscillating manifolds.
1t was discovered that the manifolds mentioned above form cdosed envelopes

- around the centers. Inside these envelopes all solutionrtr;ajectnries are smooth and

closed.

In Chapter 3 we turned our focus towards approximate solutions of nonlinear
difference equations. Still considering, for definiteness, a difference with a cubic non-
linearity (8.1), we developed an approximate solution technique using the assumption
that the solutions are modulated by slowly varying perameters. Our goal was to obtain
approximate solutions of Equation (6.1) in a region in the phase plane where well
behaved smooth solution trajectories were known: to exist. Hence, the developed tech-

nique is only vatid for solutions sufficiently close to a stable fixed point.
By assuming a sclution of the form
x, = A(n)cos(np)+B(n)sin(neg) (6.3)

where both A(n) and B(n) are slowly varying perameters, we were able to obtain
the following relationship between the amplitude of the steady state solution of (6.1)

and the frequency, ¢ , with g('n) =0.

cosp —costt %ng =0

(6.4)

A=0

where a = 2cosd. The agreement with the exact solution was shown 1o be good.

The approxirmate solution of the forced equation with g(n)=bPsin(ng) was
obtained in the same manner. Again the agreement with the simulated exact solution

was showh to be good. The ultraharmonic response due to the norlinearity of the
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systern was considered in sectioﬁ 3.4
In order to investigate the local stability of the steady state solutions a pertubation

techniique was applied. W e obtained the following stability criteria corresponding to the

steady state solution.
i) M ain Response
[ 3. I 9
lcosrp —cosy + E—bﬂz lcos;a —cost + EbBE =0 (6.5)
it) Ultraharmonic Response
[ 1
[cosBrp-—cosﬁ-l-b E(QBE+SQQ) X (6.6)

{
[mssga-—cosmb -é—(sgﬁ 1202)

=0,

In section 3.6 we developed approximate solutions of higher order. In a first
attermpt of achieving higher order solutions we used the exact central difference for-
rmulation. This atternpt led to results identical to what had been obtained earlier in
Chapter 3. As asecond atterhpt we included the third harmonic, due to the nonlinear~
ity, in the expression of the assumed response of Equation (6.1). By so doing a higher
order approxirnation of the steady state solution was achieved. However, due to the
increased complexity of the analysis, the advantage of proceeding with the higher

order analysis can be considered to be questionable.

In Chapler 4 we consider the discrete M athieu equation. By the linearization of

Equation (8.1) an equation of the following type was obtained.
AP, +[ot+Beos(Bng)le, =0 . (6.7)

W e called this equation "the discrete M athieu equation'.
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By letting the stability “t#oundéxies be given by
Q= ¢ +Boy+ B8R0 +..... | : (8.8)
we obtaiﬁed, fdr small g , approximate expressions fof the stability boundaries
corresponding to solutions with periods of —g- arid 2% . It was concluded that these

expressions agreed well with the stability boundaries obtained numerically through the

use of Floquet theory and nmumerical simulation.

In section 4.4 we included the third harmonic of the steady state solution during

the linearization of Equation (8.1). This enabled us to obtain the equation
Ens1—Zntény+[ ot fcos(Bne)+y cos(4ng) +pcos(bng) =0 . (6.9)

By again expressing the stability boundaries as expansions about o, we obtained accu-
rate stability boundaries up to 0(g% . The inclusion of the third harmonic did intro-
duce a second order correction of the stability boundaries obtained using only the

main response.

In section 4.5 it was concluded that the stability criteria obtained through the
method of slowly varying parameters are identical to the criteria obtained via the

M athieu equatior.
Presented in Chapter 5 was an analysis of stochastic difference equations. The
linear equation
L1 HE T+ b Ty = M (1) (6.10)

was first considered, where # (n) is a Gaussian distributed forcing function with zero
mean and with an aulocorrelation, E[M (n)M(p)] , equal to Ré,F .The first and

second moment of the steady state response was learned to be
Flxz,]=0 (6.11)

and
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2= i+b 1
Bz =2 o aprorea? \ (6.12)

In the' case of a n_on]jnear difference equation we constructed an integial equation
of Chapman - Kolmogorov - Smoluchowski type. An implicit expression for the joint
characteristic fuction was also developed. No attempt was made of using these results
in order to produce an exact evaluation of the second moment of the sohition of the
norlinear equation. However, the joint cheracteristic function expression was used to
determine the variance of a solution of a linear difference equation in order to show

consistency with the results obtained earlier in Chapter 5.

In section 5.2.2 the methed of equivalent linearization was extended for the pur-
pose of obtaining an approximate value of the variance of the response of a nonlinear

stochastic difference equation.
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