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ABSTRACT

- This work generalizes the Wiener-Kolmogorov theory of
optimum linear filtering and prediction of stationary random inputs.
It is assumed that signal and noise have passed through a random
device before being available for filtering and prediction. A ran-
dom device is a unit whose behavioi‘ depends on an unknown para-
meter for which an a priori probability distribution is given.

Use of representation theorems and a Hilbert space structure
make it possible to present the mathematical theory without the am-
biguities encountered in engineering derivations. This approach
also leads to a proof of the essential identity between the operator
solution and a realizable lumped parameter filter.

A number of engineering applications are cited. A few of
these are worked out in some detail to illustrate the optimization

procedure.
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INTRODUCTION

During the past three decades the science of control and
communication systems has evolved from a poorly understood art
to an impértant branch of engineering practice. One reason for
this upsurge is the development of a substantial body of theory,
enabling the engineer to perform effective analysis and synthesis.

One extensively explored aspect of control and communi-
cation engineering is the behavior of constant coefficient systems,
i.e., systems which relate an input x(t) to an output y(t) through

the relation

y(t) Z x(t):l (0.1)
Z dt‘] :l dt‘]

where the 2 and bj are real constants, and n >m. A large
number of physical systems can be assumed to act according to
0.1 over their normal operating range.

The design of constant coefficient systems to perform con-
trol or communication tasks is largely done by one of two methods.
The transient response approach places requirements on the system
outi;ut in response to a step (or ramp) input. For example, the
overshoot may be limited to a given figure, or some part of the
transition from one steady state to a new steady state output ac-
complished within a specified time. Frequency response design
emphasizes the magnitude and phase relationship of output and
input sinusoids. Upper and lower bounds are placed on both mag-
nitude and phase; the design is considered successful if the response

remains within these bounds.
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Both of the above methods require that the design meet
criteria- WhiCl:l are established intuitively, and which base the per-
formance of the system on the response to a single type of input.
It is therefore no surprise that the classical design techniques are
often inadequate. Many systems must deal with a wide variety of
inputs, so that design according to a specific type of input may
result in poor performance with other inputs*. Furthermore, the
input may be corrupted by random noise, so that the system must
perform some indicated operation on the signal while at the same
time rejecting the noise. Lastly, the system may be required to
predict future values of a random signal, when noise may again
be present.

Certain design problems involving random inputs were

(1)

attacked independently (and simultaneously) by Kolmogorov and

Wiener(z). It is desirable to discuss their objectives as a pre-
liminary to an explanation of the aims of L:his paper.

In order to give the design problem its analytical setting
it is necessary to define a.quantitative measure of performance.
Consider a signal x(t) plus noise n(t) as the input of a physically
realizable svystem, and call the system outpuf w(t). Define an
ideal operator which acts on x(t) to give y(t). This operator is
determined by the desired relationship of y(t) to =x(t). An illus-

tration is the prediction operator which has output y(t + h) for

input x(t) where h > 0 is specified. The error, & (t), is

*This and the preceding comments are not valid for all control sys-
tems. For instance, the rocket fuel shutoff mechanism of a, missile
is expected to respond to one step input during its life. Therefore,
the transient response to a step input is the only meaningful per-
formance criterion.
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taken to be the difference between the actual and desired outputs,
that is, £ (t) = w(t) - y(t). The error can also be described in

terms of a flow chart, viz:

n(t)
_ physically wit
x(t)— realizable E (t)
system
(0. 2)
ideal y{t)
operator

The engineer wishes to choose that realizable system which
minimizes the error & (t). This type of optimization is feasible
only if noise and signal are explicitly known beforehand, for & (t)
(and thus the optimum system) depends on the input.

In most instances the exact system input is unknown at the
time the system is being designed. However, the input may be ex-
pected to belong to a class of possible inputs. Suppose that the re-
lative frequency with which the inputs in this class will be realized
in practice can be estimated or measure_d. The optimum realizable
system might then represenf a compromise design which is most
heavily influenced by those possible inputs most frequently en-
countered. In that case, the design objective is to minimize the
error averaged over the various inputs which the system may meet
in actual use.

. The Wiener-Kolmogorov theory assumes that the average
of x(t)x(t + h) over all possible inputs is known. Furthermore,

this average does not depend on t, a property referred to as
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stationarity*. A similar requirement is placed on n(t). Then the

average of & (t) £(t + h) is likewise independent of t, and (with

h = 0) the expectation {or average) of {_(t)lz does not depend on

t.. The expectation of |£(1:)|2 is generally called the mean square
error,

The Kolmogorov-Wiener problem may now be stated as
follows: find that physically realizable system which minimizes
the mean square error. Of coursé, the minimization might have
been performed with respect to some other criterion. However,
there are two reasons for the choice of the mean square error as
the standard. In the first place, the mean square error possesses
physical significance as a measure of error power or energy.
Secondly, this criterion has the distinct mathematical advantage
that the theory does not involve the probability distributions of
x(t) or =x(t)x(t +h); only the second moments (covariances)
enter into the problem?,

A principal objective of this thesis is to present a generali-
zation of Wiener optimum filtering and prediction. Instead of the
flow chart 0.2 applicable to the Wiener problem, the following
*To avoid a (trivial) deterministic version of this problem it is
required that for at least one possible x(t) + n(t) the future cannot
be determined precisely from the past. In addition, Wiener de-
mands that x(t) be ergodic. This means that for each possible
input the average over t of =x(t)x(t + h) must be equal to the en-
semble average discussed in the text. This latter assumption is
not needed if the derivations of this paper are used in place of
those employed by Wiener.

#**While probability distributions do not play a role here, itis in-
_teresting to observe that if x(t) is a Gaussian process the linear
filter which is obtained is the best of all possible filters, linear

or nonlinear. Otherwise, a nonlinear filter may give even better

performance relative to the mean square error criterion than the
optimum linear filter. See Reference (3), pp. 74-78,



more general diagram is considered:

physically .
realizable wit, v, “)'; + v 1)
system
(0.3)
x(t) ideal y(t)
y operator

The difference between this diagram and 0.2 evidently lies in the
addition of h{t,vy) and 1{t,p). Here h(t,y} is a weighting function

so that

2{t,y) = f’x(t - 7) h(r, y)dr (0. 4)
o
The parameter vy is taken to be a random variable whose proba-
bility distribution is known. The physical interpretation of h{t, v)
is that the random process x(t) is acted upon by a device which is
itself random®*. The output of this deviée constitutes the input to
the system which is to be optimized with respect to the mean square
error. The mean square error is now obtained by averaging
I E(t, va ) ]2 over y and p as well as all possible inputs x(t) and
n(t). The above discussion applies to 1(t, 1) in analogous fashion,
except that 1(t, ) acts on the noise n(t) instead of the signal =x(t).
Several engineering examples will serve to clarify the idea
of a random weighting function, and to indicate some of the possi-

ble applications of the optimization problem depicted by 0. 3.

e e hey et AN S et b o et e e Bt e e b men hf me A g TS Gmh Ma et T e G Wb P P et e B b s e S ¢ Mt P e v MG Be hu e mn e P e e e

* h(t, vy} may also be a delta function representing a random gain
or scale factor device,
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Sﬁppose that it is desired to design a phonograph. Ideally,
this instrument would be equipped with compensation for each of
the recordiﬁg characteristics employed by the various record man-
ufacturers. But commercial policies often permit only a single
:Ei;;ed compensation network to be used. This should be designed to
represent an optimum compromise among the different recording
characteristics. If the optimum is that network which minimizes
the average error power the work of this thesis is applicable.
Each recording characteristic is an h(t, yi). The probability that
Yy = y; can be taken as the number of records sold having charac-
teristic i divided by the total number of records sold. Further-
more, estimates are available for the frequency spectrum of
music. These estimates describe the statistical properties of
x(t).

The phonograph design example illustrates a larger class
of applications. It is typical of a control or data transmission
systems thaf corrective feedback cannot be applied to input and
output devices. The compensationbthen takes the form of a net-
work in series with the input and/or output device. The design of
such a network is doubly difficult because the characteristics of
the input and output elements in question will vary from unit to
unit, and may also change with age or use. The statistical para-
meters of the input and output devices can be determined from a
large number of laboratory tests. Then h(t,y) and the distri-
bution of y will be known. The ideal operator is determined

from the over-all purpose of the control or data transmission



-7-
system. If a mean square error criterion is adopted, and the
sys‘terﬁ input is stationary, the methods of this thesis are appli-
cable.

The new techniques of this thesis can also be applied to
communication systems in which the error is considered to be
the difference between the input to the transmitter and the output
of the receiver. It is conventional practice to attach a network
filter to the receiver output to reduce the average error power to
the lowest value possible, In ground-to-ground microwave systems
multipath problems are created by ground reflections. More
simply, the transmitted signal arrives not only by a direct line
of sight path, but also via multiple ground refiection paths of
varying lengths. The received signal is shifted in phase, and
there is cancellation of reinforcement which affects the signal
amplitude. In the case of an amplitude modulated communication
system* the effect is as if the signal had been passed through a

{

filter h(t,y) whose Fourier transform is 1 + F(w,y). Here the
first term is due to the direct transmission path, ana the second
expresses the aggregate of the reflections in terms of the para-
meter y . Yy depends on the terrain over the transmission path,
the transmission distance, and the height of the transmitter and
receiver above gréund. These factors are not known in a mobile
communication complex, nor is it easy to calculate F(w,y) once

they are measured. However, controlled experiments can deter-

*Amplitude modulation is specified because it is a linear process
with sidebands whose amplitude and phase vary directly with
those of the input signal. These requirements must be met if
linear analysis is to be used.
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~mine F(Q, y). under various sets of conditions. The probability
that tﬁe mobile system achieves a particular F(w,y) on a given
occasion is assigned in advance an a priori grounds from a know-
ledge of the tactical mission of the system. The problem is then
of the type which has been solved in this thesis, assuming again
that signal and noise are stationary with known statistical para-
meters.

Of course, the illustrations provided in this introduction
encompass but a small part of the engineering problems which can
be handled through use of the methods of the thesis. For instance,
further examples are offered (and worked out in some detail) in
sections five to seven of this paper.

It should not be inferred that the present work follows
Wiener's derivations in arriving at the generalized results. In-
stead, representation theorems and a Hilbert space structure are
employed to resolve some of the ambiguities in Wiener's work.

The operator solution which appears in the frequency
domain often lacks an interpretation in the time domain, and cer-
tainly cannot be synthesed by known network techniques. The
writer shows that a filter can be constructed so that the .mean
square error is as close as desired to that of the operator so-

. lution. In fact, it is possible to find a lumped parameter filter
having this property.

*The Hilbert space approach has been exploited by Doob (Re-
ference (3)) to obtain a rigorous treatment of Wiener-Kolmogorov
prediction and filtering.
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A second point, neglected by engineering texts dealing with
Wienerl filtering, is that the factorization of the frequency specti’um
(see section 5) ié not unique. The uniqueness condition is stated
here, and a time domain equivalent given.

Still other matters of interest are the limiting cases of
long time prediction and lag, as discussed in section 6, Lastly,
section 7 is concerned with the generalized prediction and filtering
theory as applied to processes which are not themselves stationarv,

but which have stationary increments.
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SECTION I

MATHEMATICAL F OUNDATIONS

The optimum filter problem we shall treat was discussed
and motivated in the introductory section of this paper. In order
to proceed to the solution of the problem we must express it in
more precise terms., In that way, we are able to explore the
widest conditions of validity under which the solution holds, and
to show that this solution is unique and does yield the minimum
mean square error.

Certain basic definitions and concepts will be used without
further explanation.. For example, such notions as probability
space, expectation, and stationary (wide sense) process are dis-
aissed elsewhere in great detail, Any exposition of these in this
paper would be redundant and lengthy. The reader is advised to
consult Reference (3) for the necessary background information.

Liet | x(t) be a process which is wide sense stationary and
continuous in the mean, Such a process has a spectral repre-

sentation of the form

1 iwt
x(t) = f dX(w) (1.1)
—= e w

-

The integral is defined in the sense of a "limit in mean", usually
written l.i.m. [see Reference (3), Chap. IX and pp. 527-8).
Here X(w) is a process with orthogonal increments such that

N

| 2
E X0, =) ~ X(\ -)‘2 - an dA () (1.2)

N
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We shall restrict ourselves to absolutely continuous spectral dis-
tribution functions. That is, there exists a spectral density §(w)

such that

A
f Ploras = A () <= (1.3)

Evidently, §(w)eL1 . We shall also assume that

log §(w)
——dw > - (1.4)
oo 1 +w

It may be shown (Reference (3), p. 584) that if (and only if) 1.4
does not hold,the entire future and past of x(t) .may be exactly de-
termined from the behavior of x(t) over any t interval of some
specified length. In other words, 1.4 is satisfied unless x(t) is
a trivial pr.ocess from the viewpoint of prediction and filtering
theory.

The output which we desire to obtain from our filter will
be denoted by y(t). y(t) is related to x(t) by an operator u{w).

We define

y(t) = }u(m,»_ei‘*’t dX () (1.5)

]

G

where the integral is understood to be l.i.m. The existence of
the integral 1.5 is equivalent to the finiteness of the covariance

of y(t), or

Ely(t)lz - f% (w)l u(w)lzdco (1.6)
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as shown in Reference (3), p. 534.
Since the notion of an operator is basic to this paper, a few
clarifying examples will be offered at this point. Suppose that

ww) = ', Then

oD
v(t) = \l_;? [i""t taax(w) = x(t + a) (1.7)

so that e'“? is regarded as a prediction or lag operator according

to whether a is positive or negative. Consider next u(w) = iw .
_ . x(t + h) - x(t) ,_ dx
In that case we have vy(t) = %l.krcx)l. 5 (= ?ﬁ:') . Asa

third example, assume that u{w) is the Fourier transform of an

L1 function U(t) . There follows

® ® o

1 iwt 1 iwt -iwT

v(t) = u(w)e dX(w) = e "dX(w)] e U(r)d
N[Zn- ‘[m N \IZTT [N ? | T

(<]

(1.8)

[ve] oo n oo
i ‘r—i / umdr | < Naxw) = —— [ x(t -m)U(n)dr
2T J_ oo [ oo \|Z1T o

the interchange of integrals being valid according to Reference (3),

p. 431, i.e., by a direct application of Fubini's theorem.

As is seen from the above examples, the operation u(w)
is more general than that of prediction, differentiation, or appli-
cation of an ordinary filter to x(t). In fact, any u{w) satisfying
1.6 is admissible, whether or not it admits of an interpretation in
the time domain.

The process available to our optimum filter is yet a third

process, called z(t,y). The 2z process is created by subjecting
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x%(t) to an operator depending on a random variable y, Yy being
d.efined- on a probability field independent of that of x(t). It will
be assumed that .this operator has meaning in the time domain.
In fact, we begin by specifying that. h(t, y) be jointly measurable
on the space of t and vy, and that h(t,y) =0 on the product set
oft < 0 and vy with the possible exception of a set of product

measure zero. We demand, furthermore, that

v 2
E / |h(t,y)|dt < oo (1.9)
and ’
E/ lh(t,y)lzd‘c < oo (1. 10)
(24

It follows from 1.9 and the Schwarz inequality that

co ©0
E/lh(t,y)ldt <|E /'h(t,y)lzdt
(<] [

Therefore, h{t, y)e L1 with probability one, so that the L1 Fourier

transform of h(t,vy) exists with probability one; this transform is

1/2
< oo (1.11)

written Hw, V) -

We shall have need to speak of E[ H(w, v) :l and E IH(w, Y' 2
in the future. It is convenient, therefore, to define H(w) and G(w)
by H(w) = E[H(w, y)] and G(e)) = E,H(w, \()IZ . These expec-
tations always exist, and indeed Parseval's theorem together with
1.10 gives

o
Glo) do < oo (1.12)
- Q0

In consequence of 1.29 G(w) is everywhere bounded so that
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/ $ @) Glo) do < oo | (1.13)

bl

Furthermore, 1.8 may be applied to h(t,y) to yield

2ty y) = —— | Hiw, et aX(w) = — fx(t-T)h(T,Y)dT

(1.14)

This means that 1%‘?- h(t,y) is the weighting function of a realiz-
able, stable filter (with probability one), in accordance with the
criteria to be presented near the end of this section.

Let r(w) be an operator applied to =z(t,y) . If

f $ () G(w)lr(w)lz do < oo (1. 15)

we have a new process, w(t,y;r) which is represented by

wit,y;ir) = — f H(o, y) r(w)e® ax(w) (1.16)

Jor doo

the integral again being defined in the l.i.m. sense.

In the terminology of the engineer, r(w) describes the oper-
ation of a device with input z(t,y) and output w(t,y;r) . Thus,
since the desired output is y(t) (see 1.5), it makes sense to speak

of an error

Elt,yir) = wit,y) - ylt) (1.17)

The error is again a stochastic process which is wide sense

stationary and continuous in the mean (Reference (3), p.534). Then
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- 5
we may denote the mean square value of ¢ (t,y;r) by ¢ (r);

i.e.,

£ (r) E|E(t,v;r)l2 (1.18)

We find that

£°(x) :;3[ /@w)lH(w,wrm) - u(w)lzdw] (1. 19)

where % is the expectation on y . 1.19 may be rewritten

op
£4r) = /fﬁ(«a)[@(w)\rwz - H)r(@)u) -

(1. 20)

H(w)r{w)u(w) + l u(w) l 2 :l dw

The latter form is justified by Fubini's theorem. The application
of the theorem to the first and third term of 1.20 is clear. For the
k |

middle terms the Schwarz inequality gives |H(w) ¢ G{w) so

that a second application of the inequality vields

/@w)H )T (o)ufo) | do ¢ (/;(w)(](w)l r() | Zdo
(L@(w)ew)| @|*a "

It is convenient to denote the class of all r(w) satisfying

1/2

(1.21)

1.15 by A . As will be seen below, we may find a unique re#
which minimizes the mean square error defined by 1.18, However,

the engineer thinks in terms of another class, so that ultimately
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we shall minimize the mean square error over a class 747, the
class of s£ab}e, realizable filters. In what follows, we shall give
7’){ a mathematically precise meaning.
A filter is defined by a weighting function, say K({t), which

relates a filter input x(t) to a filter output y(t) by

o
y(t) = fX(t- T) K(m)dr (1.22)

o

if the integral has meaning. A filter is said to be realizable if
that filter is capable of acting only on signals received in the past,
and not on signals which are yet to arrive in the future. Thus, a
filter is defined to be realizable if and only if its weighting function
K(t) = 0 for a.e. t < 0. Lastly, a filter is stable if every
essentially bounded (measurable) input to the filter results in an
essentially bounded (measurable) output. We have

Theorem 1: A filter is stabie if and only if its weighting function

is in L.1 , that is

/TK(t)ldt < oo | (1.23)

Proof: Using the notation of 1.22, let x(t) ¢ N a.e. Then
o0
| y(t)l < N f IK(t) | dt which is bounded if K(t)eL, . Con-

versely, suppose that K(t)y;‘L1 . If x(t) =N, we have
o
/X(t-—T)K(T)dT - N [ K(nar - N/ IK(T)IdT (1.24)
" oo A X-A

where A = (j: I K(t) > O_} . At least one of the two terms on the
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right hand side of 1.24 is infinite because K(t )éL Thus K(t)
cannot represent a stable filter.
We shall study the relationship between 71( and ¥ further.
For this purpose it is useful to utilize well-known properties of

Hilbert spaces. We may define an inner product

(rys) = E| wi(t,y; r)w(t, v; s) = /j]i(w)(}(w)r(co-)mdw (1.25)

where r and s are any two elements of A4 . The inner product
is seen to be a symmetric bilinear functional on A . Also, s
complete by the Riesz~Fisher theorem. In short, the space /"[
with inner product defined by 1.25 is a Hilbért space.

The null element of the Hilbert space # deserves mention.

”r“ = 0, we have

/?f(uo)G w)| do = 0 (1.26)

§(m) > 0 a.e. is assured by 1.4 . G(w) is non-negative, since by

definition G(w) = EIH(w, y)lz . In section three, we shall see that

/ —Lci)g_r——z——ci)w)ldw<m so that G(w) » 0 a.e. It follows that 1.26 holds
only if r(w) = O a.e.; hence, two operators in A are equiva-

lent if and only if they are equal a.e.

The mean square error may be rewritten as

2
(1.27)

I

from 1.20. We shall not develop 1.27 further at present, but only
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note that E'_Z(r') is minimized if

rlw) = _u%%%);)_ | (1.28)

Let r' be any other element of 75/ Then

2 - E4x) = |5 - = ||2 (1. 29)

Thus, if the choice of operators is.to be restricted by some sub-
space .Jc ¥, the mean square error is minimized by the element
in o which is the projection of reX¥ on A{ .

The above discuss.ion reveals how the optimization is to be
performed with respect to ‘777 . Indeed, we need only show that
”c # . From 1.8 and the properties of L1 Fourier transforms,
an element of 77? has an operator representation which is bounded
and uniformly coﬁtinuous. Now we have
Lemma 1: Every essentially.bounded measurable operator be-
longs to % .

Prooi: According to 1.3, §(w)e L1 . Then 1,15 is satisfied for

an essentially bounded operator if G(w) is shown to be bounded.

We write for the absolute value of G(w)

2 2

o0

f h(t, y)e tat

-]

21r|G(co)|= E £ E

flh(t, v) | at

(1.30)

which proves the lemma,
The projection operator of * on »_] is difficult to find by

A
direct means. Instead, we shall define a subspace 7’{ , project K
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on ‘”?in an obvious fashion, and then show that 7;\'[ = '7? .
'Quite‘often, the engineer wishes to synthesize an optimum
filter which is nof only in 79{ , but whi\ch can be constructed of
lumped parameter elements (resistors, capacitors, inductors). A
filter of this type is characterized by a rational Fourier transform.
The class of such filters will be called 77’ . We have already de-
manded that 7)]’c7r(. Now if, in addition, 727’ = W, the engi-
neer knows that he will be able to synthesize a lumped parameter
filter whose performance (as measured by the corresponding mean
square error) will approach that element of thich we shall de-
termine to be optimum. Accordingly, we shall prove |
Theorem 2: Let §(w)G(w) be essentially bounded. Then 7] = 7],

Proof: Let 7 be the subspace generated by the family of oper-

1 (1 - i)™ }
v R

Let A( be the family of step functions in (0, ¢ ); we shall think in

ators

terms of Fourier transforms of the step functions. Then it will be

shown that m“c ‘e 7y c g c 7r]”, so that also

= 7{7:‘7:'777 (1.31)

. \n
It is evident that "<’ since —%i—l—i—z—;ﬂi— is the rational

Fourier transform of an L1 function which is zero for a.e. nega-

tive argument. By definition, we also have 7)7’6777.

e s it e A e b e e s Bp e e et b e e b et b P b ot S et b et G B e i b ot MAS S Gl Ml S e Gew e M et G R A b G R b e e e e e G

* These are the well-known Laguerre polynomials.
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Given € » 0, and a K(t) ¢ 77{ , there exists an S(t) ¢ ‘E

such that

k(w) - s(w)lg flK(t) - S(t)Idt < £ (1.32)

where k(w) and s(w) are Fourier transforms of K(t) and S(t),

respectively. If G(w) € M (see 1.30) there follows

[ - “2 <ME? [E(w)dw (1.33)

/]

Lastly, we prove that ]C»Z . The set

(1 - i)™
T +ie)™H

is a complete orthonormal set in L2 norm. Therefore, (since

,<fc: LZ) 7’}2” is dense in f with respect to L2 norm. Because’

§(w)G'(m) is essentially bounded the density arguﬁent holds in %4

norm also; hence jc 7”
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SECTION 1II
- GENERALIZED OPTIMUM FILTERS
"AND THE WIENER PROBLEM

In this section we shall study some relationships between
the filter problem of Wiener, and the problem presented in the pre-
ceding portions of this paper. It should be apparent that our problem
reduces to the Wiener problem if h(t,y) is a known (rather than a
random) function, i.e., a function hot dependent on y . On the
other hand, if h(t,y) is not exactly known, it might be expected
that the mean square error becomes larger, and the optimum filter
solution differs from the Wiener solution. If the mean square

error 1.27 is rewritten in the form

2
ew - Je-F | + € @. 1)

in which 621b (the greatest lower bound mean square error) is

IZ : [Bofue)?[ - LEal e 5 0

(2.2)
we observe that a new error term foreign to Wiener filtering arises,

uH

G

£glb

IS

and that this term depends only on the nature of hit,vy) . It will be

demonstrated that Eélb = 0 if and only if h(t,y) is a sure function

as defined below. In that case, the optimum element of A becomes

ot it v Gt et s e s et ave e G Ad e Wt s b Itk G M Aee M R Gt men s At et n e P G et i Mt e e B M Bt MR b e e e e M e e s e e

*If h(t,y) is not a sure function, we always have r(a)l | u(co—)
a.e. except on sets where u{w) = 0.
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We shall now demonstrate the validity of the above state-
ments. A sure function is defined by the existence of a Tl(t) such

that
ht,y) = h(t) (2.4)

except on a set whose product measure in t and y is zero. An
equivalent statement is given by
Lemma 2: Let h(t,y) be a sure function according to 2.4. If

H(w) is the Fourier transform of lq(t,), we have
H(w,v) = H(w) (2.5)

except on a set whose product measure in w and y is zero. Con-
versely, if 2.5 holds as stated, h(t,y) is a sure function with

T’I(t) having f—I(w) as its Fourier transform.

Proof: For every, w
0 [~ ]
H(w,y) = ——1—/h(t, e e = L [Rwe % = Hw)  (2.6)
m a 2T %

where the middle integrals are equal except for a y set of measure
zero. Note that this y set does not depend on the choice of w,

for with probability one

'/I:h(t, y) - “H(t)] et gy

For the converse, 1.10 and Parseval's relation yields

< /Ih(t,y) “By|at = o (2.7)

E/Ih(t,y)—'ﬁ(t) Zdt = E/'H(w,\/) - M(w) Zdoo =0 (2. 8)

Q - O
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which can be true only if
h(t,y) = h(t) (2.9)

except on a set of product measuré zero. An application of the first
half of the lemma shows that ﬁ(t) indeed has ﬁ(w) for its Fourier
transform.

We can now show how our optimum filtering reduces to the

Wiener case when h(t,y) is a sure function. This is accomplished by

Theorem 3: l H(w) | 2 . G(w) a.e. if and only if h(t,y) is a sure
function.
Proof: If h(t,y) is a sure function we use the preceding lemma
to write

2

1

Glo) = E|Hl,v)|*

B|fHe | - |5[Hw ]| = | B0y ]

IH(w) | (2. 10)

1

which holds for a.e. w .

Conversely, if lH(c;))l‘2 = Glw) a.e.

fEIH(co,y) - E[H(w,y):l 0 (2. 11)
so that
w,\/) = [H(co,y)] (2.12)

except on a product set of measure zero.
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Corollary: A sufficient condition that Czlb = 0 is that h(t,y)
be a sure function. The condition is also necessary if Iu(w)l >0
a.e. The proof of the corollary is obvious. It need only be added

that G(w) > 0 a.e., a statement that will be proved in section

three.
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SECTION III
DERIVATION OF THE STABLE,
REALIZABLE FILTER SOLUTION
It was stated in section one that the optimization with re-

spect to 71-1 (the subspace in A generated by the class of stable,
realizable filters) would be accomplished by projecting the optimum
element in A on ‘15—7 . In this section we shall determine a pro-
jection operator appropriate to this 'purpose, so that the engineer can
find an explicit solution in terms of ‘;}Z .

The following theorem plays a central role in the work of

\
this section:

Theorem 4: Given a function F(w) such that
1. Flw) > 0 a.e. (3.1)
2. F(w)eL1 (3.2)
- .
3. log F(w) 4, 5 - oo (3.3)
1 +w .
Y-

there exists an Fi(w) such that

1. lFi(w)I = {F() a.e. (3. 4)
2. F_i(co) is the L2 Fourier transform of a
function f(t) with f(t) = O for a.e. t ¢« 0, and (3.5)

o] .
ff(t)e‘lzt dt # 0 forall o< 0.

[+ . ’
3. log| —— [ f(t)e fat | = - log FZ(‘*’) dw (3. 6)
\I—Z:r 2w 1 +w
o -0

4. If f(t) = 0 for a.e. tin EO,G], then 6§ =0. (3.7)

(
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Furthermore, the Fl(w) specified by 3.4, 3.5, and 3.6, is a.e.
unique ul:-) to a complex constant of modulus unity.
Pr}oof: ILc—:t R(w.) = J_F—(c;) > 0 . Then R((;.))EL2 , and satisfies 3.3

if F(w) does so. 3.3 implies the existence of

(- -]

o log R(x)

NMz) = -—_’1; dx o<« 0 (3.8)

o2+ (x-0)

with z = +ic . Since 3.8 1is the Poisson integral applied to the
lower half plane, M\z) is harmonic in that half plane. The function

Fi(i) may be defined by
Fi(2) = exp| Mz 4 iut | 5 <0 (3.9)

where p(z) is the conjugate of \(z) .

Paley and Wiener have shown’* that for all ¢ < 0

/lF(w—lo*I dw Qf (w)dw < o (3.10)

The fact that F1 z) is regular in the lower half plane, together with
3.10 means that there exists an f(’c)eL2 , f(t) =0 for a.e. t <0,

such thatk

F (o +io) = —= /f(t)e“it(‘*’““)dt (3. 11)

and indeed

- m o m o om b aa e mm o om gt o et W W h e et i g e et et M m e P e Wy et e e et M hm R M e e Gt bt e et e e

* Reference (4), p. 18, (eq. 8.06)
%% Reference (4), pp. 8 - 9
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F (@ = li.m. f(t)e 9t gt (3.12)
© A

where 3. 10 enables us to define

Fi(co) = l.i.m. Fi(w + i) (3.13)
o —+ 0

Thus Fi'(w) satisfies 3.5.

The theorem of Fatou* applied to the half plane yields

lim Mo +i0) = log R{w) a.e. (3. 14)
G- O

so that
lim lFi(w Tio)l = [F@ a.e. (3. 15)
g—>»0 .

If 3.13 and 3. 15 are compared, we obtain

IFi(w), = ,|F(@) (3.-16)

which verifies 3.4.
To prove 3.6, we note that the construction 3.8 and 3.9 defines

i(z) up to an arbitrary constant. This constant is now chosen in such

a manner that p(-i) = 0. Ifweset w=0, o=-1, 3.9 becomes
o0
o 1 log F(w)
Fi(-l) = exp[ 5= > dw (3.17)
1 +w
- R

which, in combination with 3. 11 gives 3.6 as the result.

e e e ot h mm e i mm e e et et e m R e M e Rt M me R am e e Am e M b me e ke St ey b pt R P e G et bt v b et A = e =

* For the unit circle, this theorem may be found in Reference (5),
Vol. 1I, pp. 147 ff.
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To prove uniqueness, suppose 'l'\“'l(co) also satisfies 3.4,
3.5, and 3.6. Then 3.1t1 defines a %‘Ji(z) regular and non-zero

(see 3.5) in the lower half plane, and such that

o o
f‘i(eria)'zdw-\a |%’1(w)|2dw < oo (3.18)
o~ a)
Fi(w) = l.i.m. Fl(w + ic) (3.19)
o - O

The last two equations follow from the work of Paley and Wiener.
According to a theorem of Kryloff(6), a fl(z) possessing

the above properties has a representation

F z) = eiC tiaz D(z)G(z) (3.20)

1

where a ¢ 0, c¢ is real, and D(z) and G(z) are given by

o0
i 1+ log Fq(x
D(z) = exp 11? X_XZZ 0%“{14() dx (3.21)
- 00
and o
G(z) = exp Iﬁr_ _1?*?’52_ dS(x) (3.22)
-0

respectively. Here S(x) is monotone increasing and bounded. The

‘corresponding representation for log I f‘i(z)l is then

r log Ifi(x)l

loglFi(z) I = - ar + = > — dx
J + (x - w)
- - (3.23)
N S 450
2w

0‘2+(X—0‘)
o

e R e e e e T T e it T e T R S G i U gy

N\

* Reference (4), theorem V.
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The second term on the right hand side of 3.23 is equal to log IFi(Z)I

by 3.4 and 3.8, While the first and third terms are negative or zefo.

Hence
log ]Fi(z)l < log|F1(z)| (3. 24)

~S

But 3.6 and 3.11 imply that Fi(—i) = Fi(-i) . Therefore, the maxi-

mum modulus theorem applied to log lFi(Z) I - log I f‘i(z) I gives
|F1(z)| = |%’1(z)| | (3. 25)
from which

Fi(z) eic'Fli(z) (3. 26)

I

Then also

F, ) = o°F (3.27)

i
o
b

_

3

by virtue of 3.13.
Only 3.7 remains to be demonstrated. Let f(t) = 0 for a.e.

t in I:O 6:] Then f (t) = £(t + 8) satisfies 3.4 and 3.5, and we have
F (z) = ¢°%F (2) (3.28)

by 3.11. This gives

1og|%1(z)| = -8y + 1og|F1(z)| (3. 29)

with y < 0. If the Kryloff representation(é) is applied to f‘i(z)
A
loglFi(z)I < log]Fi(z)| (3.30)

the proof being identical with that leading to 3.24. It is evident that



-30-
3.29 and 3.30 are contradictory unless 6 =0 . This completes
the proof of the theorem.

If a functidn meets the conditions placed on F(w) by theorem
4, that function will be called factorable. Its factor is the (unique)
function satisfying 3.4, 3.5, and 3.60.

Theorem 4 is readily applied to E(w) . That _@]Ii(m) is a.e.
non-negative follows from the nondecreasing nature of A(w) as re-
quired by t.2. The assumption thaf x(t) ils continuous in the mean
leads to §(w)e L1 . Lastly, 1.4 is exactly condition 3 of the theorem.
Thus, §(w) is factorable; we shall denote its factor by Yi(w) .

It is necessary that not only §(m) but also G(w) be fac-
torable. We note that G{w) = E IH(w, v) Iz > 0, and that G(w)e L1

by 1.12. Then G(w) is factorable if

-0

208 Glo) 4y 5 - (3.31)

o 1 +ow
We shall assume 3.31 to be true, deferring its proof for the moment.
The factor of Glw) will be called Gl(w) .

| Consider now the product §(w)G(w) . Since G(w) is bounded
according to 1.30, this product is in L1 . Obviously, i(m)G(w) is

a.e. non-negative. Furthermore,

1 +w 1+ 1+w

log E(w)ZG(w f_l_"_é_@_) dw 1°g G(‘”) dw >~-oa (3.32)

because of 1.4 and 3.31 . Then -§(w)(}(w) ig factorable. A straight-

forward computation shows that ?1(w)G1(w) satisfies 3.4, 3.5 and
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3.6, where (l]l(w) and Gi(w) are as defined above. Therefore,
wi(w)t}l(w) ‘ is the (unique) factor of E(Q)G(w) .

We now réturn to the proof of 3.31. We have
Theorem 5: Let h(t,y) be defined as in section one. Let 1.9
and 1.10 hold. Then 3.31 is satisfied.

Proof: By 1.9, Fubini's theorem applies to h(t,y) in the sense

that
o0 o
Hlw) = —— E | h(t, y)e ¥tar = -1 {E[ h(t, y):l e %t (3. 33)
\l 2m o J-Z_'I‘T
- [+]

Thus, H(w) is the Fourier transform of a function zero for a.e.

t < 0. Also, 3.33 and the Schwarz inequality yield the result

E[H(w, Y)]

Then G(co)el.;1 (by 1.12) means that H(m)eL2 . In short, H{w)

2
|Hw | = < E |H(w,y)|2:l = G(v) (3. 34)

satisfies the conditions of a theorem of Paley and Wiener* which

is now used to assert that

log | H{w)|

1+.oo2

de > - oo (3.35)

-0

Finally, we use 3.34 to write

o

1
__clg_g_%&’_)_dw; 2

oo L T W 1 4w

o0
log [H@)| g, > - oo (3.36)

which completes the proof of the theorem.

* Reference (4), pp. 16-20
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The factorization which we have constructed is used to define

-~

: A
a new subspace 7')'{_ . We shall define 77? as the subspace (in XL )

of all operators of the form

.
: loi,m. f P(t)e_lwtdt

\]21r A —»o o

plw) = P(t)eL, (3.37)

W, ()G, (@)

We see that an element of the above type is in # . Furthermore,
~
the fact that ‘7?2 is closed in # norm is equivalent to the fact
that the class of L, functions vanishing for a.e. negative argument
. A
is closed in Lz(—oﬂ s, +90) norm. Therefore, \7’7 is indeed a sub-
space in XL .
A

The subspace 77( is of great importance, for it is the sub-
space of all operators involving only the past of the input process.
More practically, we have

r

Theorem 6: Let \)7’( be the subspace (in %') generated by oper-

ators of the type [e-lw-h, h > 0} . Then

. . :
N = (3.38)
Proof: The proof of this theorem is omitted, since our theorem
forms a part of a theorem of Doob. The reader is referred to Re-
ference (3), pp. 586-587 (theorem 5.2).
We now assert that 3.37 is a representation of operators in

\77’1 . The validity of this statement is a result of

A —
Theorem 7: \77’1 = 77] .
Proof: It suffices to prove that 77’[ = 77—'—1 (see theorem 6) . If

_.f is the family of step functions (in the time domain) defined in
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theorem 1, we have 777C,~<{ by that theorem. But also, any step

function -is in I, so that jC 772 Therefore* \7;1_ = ,<£ .

e
To show that Mc??(, we consider e—lwh, h > 0. There

exists a step function Sa(t) with the Fourier transform

e~iwh sin wa

= . Now
A
“e—iwh _ e—iwh Si:)lacoa ” 2 < §(w)G(w)l - szlawa 2 dos
-A
A ‘ (3.39)
+ 2 + f @(w)G(w)dw
co A.

which can be made as small as desired by choosing A sufficiently
~JS o— ——
large, and then a sufficiently small. Hence, WZC,‘Z = ‘747 .
(£ %4
Conversely, 777(‘: 77? For we observe that ke 77( has the

form
oD

ko) = —— | K(t)e ¥t at (3. 40)

V2

(=

so that k{(w) is the limit of linear combinations of operators

-iwh

, h >0 . Given any finite « interval and any & >0, we can
find a linear combination icj e_iwt, 0«t << tj < o8t <00,
such that

n
| k() - }1_—_cje"i‘°t|' < & (3.41)

over the chosen finite interval. At the same time, the Cj are

e 7-71-— = )Z- has already been proved by theorem 1; however, that
proof required @(w) to be essentially bounded.
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such that for every w

n

' ( ) n 0
|k(@) i Z Cje-iwtjl < Ik(w)l + Zlcj|s Z/lK(t)Idt (3.42)
1 o

1

[P
An argument similar to 3.39 completes the proof that 772C >7’Z

The representation 3.37 of operators in )7’2 makes it easy

to project ﬂ on \7’)’2 . In fact,

Theorem 8: The projection of re # on \;/)/l is given by
P(r) = plo) = 1 x
rro= Pl = E '(_E'l(w)Gi(w)
(3.43)

A B
l.i.m. o lwt l.i.m. t_gi(p)Cfrl(p)r(p)eltp dp dt
A e A B —o Ys
Proof: It is convenient to call R(t) the inverse L2 Fourier
transform of t_gi(w)Gi(w)r(w) . Then 3.43 becomes

A

plw) = ! l.i.m. R(t)e ! at (3. 44)

V21 W ()G, (0) A —e

We also define a gq(w) such that r(w) = p(w) + q{w) . This operator
is given by

O

1 l.i.m. t
Vor WY )G ) A == J

R(t)e ¢t gt (3. 45)

q(w) =

To show that p(w) 1is the desired projection, we prove that
p and q is the orthogonal decomposition of r with pe\}‘a and

A A
qe M+ . That pe )11 is obvious from the definition 3.37. For
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. 4»
q ; we shall demonstrate that g is orthogonal to every element of 77{ .
Given any ke‘};\z there exists a K(t)eLZ, K(t) =0 for t <0,

such that

A

1 . ~iwt

k(w) = 1.i.m. / K(t)e ™" dt (3.46)
(Zn P, (0)G, (o) A->se o

Also, we write q(w) as

= / i

1 -iwt
qw) = 1. Qft)e (3.47)
2w Yi(w)Gi(w) A N

where now

Q) = | (3.438)
R(t) t <0

An application of Parseval's relation may be used to show that

(k,q) = [ K@®)QMat - (3.49)
- 00

But for a.e. t at least one of K(t) and Q(t) are zero. It follows
that (k,q) =0, as was to be shown.

If we project the optimum operator in xé (as given by 1.28

ive. r(w) = —Hﬁ—r W ) on \777_- the optimum operator in ‘77” is

found to be*

A
plw) = - l.i.m Rk
2 Yiw)Glo) 4 s .
O

- H(p)u(p)
[Ei;ri / kA S dp]d (3. 50)
Gylp)

p

e e e mm e e b An e e R e e e At e o St Ml et e mm e M R A R o R em b e e m b Bt S e bl T e me ae M e e e e e et e e e e e =

* That the optimum operator in P is unique, a.e. is a conseguence
of the unique nature of an orthogonal decomposition. See Reference (7).
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in accordance. with the preceding theorem. If this operator is used,

the corresponding mean square error is computed to be

SR PR I [ L Y e

by 1.29 and theorem 8 . We substitute for Ezlb from 2.2 and

evaluate “ q ” to obtain

- .
2
2 [ _ lH@)]
Emin - §(w)| () ' l:i T T Gw) (3. 52)
- op *
N 0P) 2
A—-> ® Giz p)
- o0
in which we have adopted the notation (‘f = 1nf [E (k)]

This completes the solution of the filter problem in the ab-
sence of noise inputs. The more general case of an input consisting

of both signal and noise is treated in the next section of this paper.
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SECTION IV

GENERAL PREDICTION AND FILTERING

We shall now consider filtering and prediction of inputs con-
sisting of both signal and noise when each of these is subjected to a
random operator. The random operators applied to fhe signal and
noise may be the same or different, correlated or uncorrelated.

Let random operator H(w,y) be applied to the signal, and
M(w, p) be applied to the noise. Then the input to our filter is

an

2(t, Yo b) = J—;—_ Hiw, Y)AX, (@) + Mo, )dX () (4. 1)
T 00"
where the subscript s refers to signal and n refers to noise.
The integrals, of course, are l.i.m. as before.
Leet the signal and noise inputs xs(t) and xn(t) be uncor-
related, and ascribe to each of them the properties of x(t) in
section one. The total spectral density of the input to the filter is

then
d) = Gl § ) + L@ @ (4.2)

in which L{w) = .E ,M((.o, 1) IZ .

We. wish §(w) to be factorable, 1(cu) being its factor.
&(w) meets conditions one and two of theorem 4. To satisfy coh—
dition three, it is necessary and sufficient that at least'one of
is(m) and §n(w) satisfy this condition. Physically, this means
that either signal or noise must be a non-deterministic process if

signal plus noise is to be non-deterministic.
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As before, we define a Hilbert space % . The inner

product is now

(r,s) = f Pl r (@B o (4. 3)

The work of sections two and three now follows with little, if any,

modification. The optimum operator in >;Z becomes

A
_ 1 . -iwt
T 5Ty
(4. 4)
B
(p)EH(p)ulp)
1.i.m. / b, P gp | dt
B> oo -B X,ilp;
with a corresponding mean square error
2 = o @|Ee]
Emin - %s(w) lu(w) I L - {w) do
- (4. 5)
o B - 2
(w)H({w)u(w)
- 1 . g | at
T | B =B A

—_— - wn
We remark that '777 = ‘77’( = 777 remains unchanged; the

manifolds of opefators do not depend on the input process.
Of course, appropriate simplifications of the above equations
vield the conventional Wiener filter formulae, or the filter derived

in the previous section.
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SECTION V

THE RANDCOM GAIN AMPLIFIER

The operator H(w,y}) has been made subject to certain
assumptions (in section one) which exclude an important class of

applications. We refer here to an H(w,y) of the form
H{w,v) = v ' (5.1)

which has the physical interpretation that the signal (or input) is
passed through an amplifier with random gain, or that the signal is
derived from a transducer with a random scale factor.

Actually, operators such as 5.1 cause little theoretical dif-
ficulty. The restrictions of section one had the purpose of insuring
that E I H(w, v) I 2 be factorable, and that the process into the filter
be of finite mean square. These two requirements are satisfied if
E Iy IZ <« o= . For convenience, we eliminate the case y = 0 with

probability one as trivial. Now let

Ey = ¥ - (5.2)

and

Elvlz S~ (5.3)

The general case of section four is not much simplified.
Consider, however, the somewhat simpler assumption that both
signal and noise are passed through the same random gain amplifier.

Then in M
w
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k(w) = -:Y__Z_kw(w) (5. 4)

<

where kW(w) is the ordinary Wiener filter, viz.

1 m—ié»t "L(P)u(p) it
k. (0) = fe dt f——————————-e P dp (5. 5)
v SR . X

the integrals being 1.i.m. where the factor X 1(w) constitutes
‘the factorization of is(w) + @n(w) .

The mean square error corresponding to this optimum filter

is
2 2 WIZ §s(w)
= () [ulw) 1 - d
& . gswl o | IR A AO N
(5. 6)
g2 I o3 @ 2
+ IY__I__ f ' f*—L—— 't dw dt
ZwYZ es | Vo ’xiiwi

We note that if y = 0 the OIil:imum operation becomes k{(w) = 0,
and the mean square error is /@s(w)lu(w)lzdw . This is in
accordance with the intuitive idea.‘:hat if a number is equally likely
to be positive or negative we guess zero if the penalty for an incor-
rect guess is the square of the difference between the actual number

and the guess.
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SECTION VI

PREDICTING AND LAGGING FILTERS

One of the most important applications of optimum filter
théory lies in predicting the value of a random input process
x(t) (perhaps corrupted by noise) over some prediction time we
shall call a . This type of prediction has been used where some
component or natural phenomena introduces a lag between per-
ception of x(t) and decisions made or action applied as a result.
Typical examples include anti-aircraft gun computers which must
account for the motion of the target while the shell is on its way, |
and an automatic landing technique to be used in connection with
an aircraft carrier in a stormy sea.

At the other extreme, lagging filters are useful also. Such
a filter has the advantage that as the lag between output and input
is increased the mean square error is lessened. For many pur-
poses, a lag is‘quite acceptable and the delay in obtaining the out-
put is gladly exchanged for enhanced accuracy. We shall give two
exandples where lagging filters are appropriate. On missile test
flights performance data is telemetered to a ground station where
it is reduced at some later date from a tape recording made
during the flight. If the playback pr;)cess involves a (reasonable)
delay time no harm is done. The same argument may be applied
to the playback of recorded music. In fact, a delay or lagging
filter is appliqable wherever the data in question need not be

available instantaneously.
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It was stated in 1.7 and the text of section one that
) iwa
ufw) = e (6.1)

constitutes a lead or lag operator. If a is positive, u(w) cor-
responds to lead or prediction. Analogously, u(w) is a delay or
lag operator whenever a < O*. The physical interpretation of
u(w) as in 6.1 is that the filter output vy(t) should lead or lag the
random process x{t}) by a time interval | a l , the choice of lead
or lag being determined by tl;xe sign of a .

If u(w) is given by 6.1, the minimum mean square error

. . 2 . .
in 77 is called Emin(a) , and the corresponding operation in

\”_’Z will be denoted by ka(c.o) . These are given from 4.5 and

4.4 by
= 2
2 (w) | H(w)
Ein@® = [ P | 1 - B fe | d
| ¢ @G + §_@ L)
° oo (6.2)
2
! %S(w)H(w] it + a)w dt
{zr X Y
and
00 ®
: (P)H(p) .
ka(‘*’) g 1 _ -iwt dt s i(t +a)pd 6. 3)
t o a0 %119

We may now assert

2

Theorem 11: émin(a) is a monotone nondecreasing function of a .

- o - wm e e he e e em R e A Sk Gmh e Gt % b v Tm Gt e A e S P e M e e o M e A Sm n M et v o e e e e bl ey it e e ey S e W e

* Qur concept of a lag or delay may differ from that sometimes
~found in electrical engineering usage. We mean a time delay, i.e.,
a delay independent of frequency. The corresponding phase delay
is then proportional to frequency.
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Also

. ‘ 2 @ (w) lH(w) IZ
igf l:éfnin(a)] = [m§s(w)l: @s(w)g § jl dw (6.4)

and
j@s(w)dw (6. 5)

Sgpl:i Iznin(a):l

Proof: From the work of sections one and three, the mean square
error in question may be expressed as

£ (@) = £ ok, - “2 (6. 6)

min" " glb

where r(w)eI—Iw is

%s(w)H(w eiwa
r{w) = (6.7)
¢ (G + §_(@)L©)

f&) ({1 b | ]dw .
oo b, (@)G©) + §_(0)Liw)

The theorem is proved if we show that ” r—ka “2 is monotone and

0 (6.9)

gf?*Jlr"ka "2

il

N I N N ©.10

It is convenient to rewrite 6.3 as

¢ (o)
k (@) = _—"ﬂ_)f “loty j——s—-—-—— e g (6.11)
o X '1(p)
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by a change of variable t +a =r . The integrals in 6. 1% are to be
taken l.i.m. In the same sense, the substitution of 6.7 into 6. 11

yields

| i PYH(p) |
k () = () W/ ot fq) 'Pap (6. 12)

from which

“r—ka ”2 = |R(tj|2dt (6.13})
-~ 0

R(t) being the inverse Fourier transform in L, of X. (W)r(w
It is clear that || r—ka ” is monotone. In addition, it

follows from 6. 13 that

a
hmJI r -k ” | R | at = 0 (6. 14)
a-—y -
- 0
and
- J
lim “ r -k ” IR(t) I Zdt = |x1(w)r(m) lzdw = " T ” 2
T i (6.15)
thereby completing the proof of the theorem.
A supplementary result of 6. 15 is that
:iil“ ” k. “ = 0 (6. 16)
or
Liom. ka(w)] = 0 (6.17)

This result, of course, is also true in the case of the conventional

Wiener filter.
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SECTION VII

AN EXAMPLE: RANDOM DELAY TIME

Every communication system involves delay between the
transmission and reception of messages. Inevitably, the information
is propagated through some medium so that there is a lag directly
proportional to the distance between transmitter and receiver, and
inversely proportional to the propagation velocity.

Two persons conversing together experience such a delay
without inconvenience. Over larger distances, and in more critical
applications, the propagation delay can greatly reduce the value of
the data received. In that case, Wiener filter theory yields the re-
sult that the best estimate (in the mean square sense) of the present
data is achieved by passing the delayed data through a Wiener opti-
mum prediction filter whose prediction time is exactly equal to the
propagation delay.

The transmission range and therefore the delay time is
likely to vary where mobile equipment is used, or where a target
is tracked. A variable prediction time filter islthen called for.
However, range measurements may be difficult, or a fixed pre-
diction filter may be preferable for reasons of simplicity or
economy. The optimum fixed prediction :filter must then represent
a comi)romise over the transmission ranges which will be en—.
countere.d in practice. |

The optimum fixed prediction filter referredlto above is
easily derived by the; methods of this paper. Let vy ’be the pro-

pagation time (delay), and let F(y) be its probability distribution
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function. Then

Hio,y) = e Y vy %0 (7. 1)
from which
H(w) = fe-iwv dF(y) = @) (7.2)

where “ (w) is the characteristic function of F(y) , as generally

defined. We also have, by an obvious calculation
Glw) = 1 (7.3)

If there is no noise present the optimum operator in ﬁ is

hed on
B 1 -iwt itp

k(w) = m /e dt ‘/‘Yi(P)q(P)e dp (7.4)
[~ - &0

with the .integrals being defined l.i.m. The mean square error

becomes

2 < >
Ein™ | B[t - |@]? o
-Qf

(7.5)
2
at

b oo f’/tfi(p)W(p)eitpdp

If the operation 7.4 were not applied to the signal the error due to

the delay is calculated to be

2 (-] [ ]
E (1) = v[‘@w)lii - I'*f(w)lz]dw + f{)(w)li —‘P(Q)lde (7.6)

which must be larger than 7.5; this difference in mean square



_47-

error is

EZ ‘ 2 < 5

(- & . = f@(w” Lo ko) | d (7.7)
- o0

where k{w) is given by 7.4. It should be noted that k(w) = 1 a.e.

if and only if ‘P (w) = 1, that is, the delay is zero with probability

one.

A classical éxample of Wiener optimum prediction may be
described és follows: an anti-aircraft battery is equipped with a
radar tracking system which determines the position and velocity of
enemy aircraft. In one dimension, the aircraft velocity is stationary
with spectral density

dew) = ——

1 +w
The time required for the shell to attain the altitude of the aircraft
is vy (v is fixed for the present) . If the anti-aircraft shell is
fired at time t we must be able to predict the aircraft position at
time t + vy . In other words, we require a prediction filter to com-
pensate as nearly as possible for the delay vy inherent in the system.

Unfortunately, the aircraft position z(t) is not a stationary
process, sO that the techniques of this paper are not immediately
applicable. However, we shall show that z(t +vy) - =z(t) is
stationary. It suffices to work with z._(t +vy) - z(t) since the
radar measures z(t) directly and exactly. Then our best estimate

of =z(t +v) is obviously attained by adding the best estimate of

% The appropriateness of this form of spectral density is justified
in Reference (8), pp. 300 - 304.
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z(t +y) - z(t) to the known value of z(t).

In what follows, our choice of notation will be consistent
(insofar as .possible) with the notation used in previous sections.
Accordingly, let x(t) be the stationary process of aircraft velocity.

To investigate the properties of z(t +vy) - z(t) , let

- \IZ'n' -y&t <O
hit) = (7.8)
0 ' t>0
It is clear that h(1:)eL1 . Indeed, h(t) has the L1 Fourier trans-
form
{ - elYo

H{w) = e (7.9)

iw
so that some stationary process, say s(t) , has the representation

s(t) = —— [ H{w)dX(w) (7. 10)

X

the integral being defined l.i.m. We also have from 1.8

(7.11)

Q0
s(t) = —\l%? A[ej(t - T)h(T)dT

- x(t - 7)dT = =z(t +vy) - =z(t)

-a

In this application, the input available to the optimum filter
is the velocity, =x(t) . The filter output will be denoted by w(t) , as
in the first section. The optimum operator in %L is designated by

r*#{w) , and the optimum operator in ‘?)'—'I is called k#*(w) . Then

E(t; k*) = w(t) - l:z(t +v) - z(t)] (7.12)
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w(t) having the representation

_;.1_ k*(w)dX(w) (7. 13)
izr o

The mean square error becomes

wi(t) =

E, ) f@ w)lI—I(w) - k#(w) 1% do (7. 14)

and this error is minimized by

o ] .
R 1 -iwt { - ' VP itp
1("‘((9) = m f e dt ] -(fi(p) —~1p—-——— [S] dp (7. 15)
o -0

The formula 7. 15 is identical with that of Wiener.

If the spectral density i(m) is rational the inner integral
in 7. 15 may be evaluated by a contour integration in the upper half
plane. The result is the sum of terms of fhe form tke_ant , SO
that the second integration can be done by parts or through use of
readily available integral tables. In our case, @(w) = —1——_:‘—62

so that the above procedure yields
kkw) = 1 -e ¥ (7. 16)

We note particularly that for small y the use of the approximation

1 -e ¥ ~ v implies that when the prediction interval is short

the best estimate of z(t + vy) - z(t) is obtained by assuming that

the aircraft continues at its present velocity x(t) throughout the

prediction interval v .
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The fiiter 7.15 is indeed optimum if it can be assumed that
all enefny aircraft will fly at the altitude corresponding to shell
flight timé Y . Since the enemy is not e};pected to be so obliging,
we must take into account the possibility that aircraft will come in
at various altitudes. This situation can be dealt with by providing
an adjustable filter which varies in accordance with the flight time
of the shell as calculated from the aircraft altitude measured by
the radar set. However, a fixed filter may be preferable for
reasons indicated at the beginning of this section. Such a filter
attempts to predict z(t + vy) - z(t) where the aircraft altitude and

thus vy are random variables. In analogy to 7.9

_ 1yw
Hio,y) = ——35 (7. 17)
and as in 7. 14
2 * 5
Ew =B | de) ey - ko) |" (7. 18)

where 1\'*(3 denotes expectation with respect to y. If y assumes
some given value with probability one, 7.18 reduces to 7. 14 and

the optimum filter is given by 7.15 as has also been shown by Wiener.
In the more general case (where the aircraft may fly at more than
one altitude) we suppose that y is associated with the probability
distribution function F(y) . The only restriction placed on y and
F(y) are that y » 0 with probability one, and that F(y) is such

that

Y dF(y) < oo (7.19)
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for some § > 0 .

It is convenient to rewrite 7.18 as

2 « 12 2
€ (k) = ff{)(w)|k(w) - —1-;15\&(22 dw + Eglb (7.20)
in which
2 ® Qo)
Eglb = ———2—% [1 - I*(w)lz:ldn (7.21)

Here P (w) is again the characteristic function belonging to F(y) .
The computation of 7.20 and 7.21 is quite similar to the work of
section three. But in addition it is also necessary to demonstrate
the integrability of the integrands of #.20 and 7.21. Since
I P () l <€ 1 the only question remaining is that of the behavior of
2

_1_:.3.__(2_) and L_-_I:{é_(_(’i)_l_ near w = 0. Let

w w

oo .
f vdF(y) = m (7.22)
L]

2 2
1 - L b R
—_— ()I and —————2——————| ()l

Then are integrable, for in the

vicinity of w = 0 , the expansion

1+6

Y =1 + iom + Ofw ) (7.23)

is valid*. It should be noted that the condition 7.19 is a sufficient
but not necessary one for 7.20 and 7.21 to exist. For example, the

Couchy distribution has no finite first moment; yet the characteristic

function is such that —1—-——(—5{(—9}— is bounded near w =0 . Of course,

*This is a well known theorem in probability theory. See Reference

(9), p- 199.
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any distribution of vy is acceptable if, for any A > 0,

Proceeding as in section three, we see that the element in

—

77{ which minimizes the mean square error 7.20 is given by

kiw) = 71?%—1@—7 fe'i‘*’tdt TF.i(p)—i—"i—pﬂp—)eitp dp (7.24)
o -on

the integrals being taken as l.i.m. If the aircraft velocity spectrum
@(oo) = —1—1;_-—('—02 as was assumed in the calculation of the conventional

Wiener filter 7.16 the optimum operator 7.24 specializes to

o0
k(w) = 1 -¥@E) = 1 - e YdF(vy) (7.25)
°
This result is easily established by contour integration of the first
integral in 7.24. The upper half plane is used since the integral
along a sufficiently large semi-circle converges to zero. In this

regard it should be noted that

P(2) = " VdF(y) (7. 26)

is regular and bounded in the upper half plane,
It is instructive to note the increase in the mean square
error when the Wiener filter k*(w) is used in place of the k(w)

of 7.24. For the latter we obtain

#* This fact may be established by a modification of a proof found
in Reference (10), p. 8.
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€ - f—%(f—)[i —[?<w>|2]dw

f el -ve] g,
= e dw

(7.27)
2
dt

o

1

+ 2T
-~ 00

which is analogous to 3.47 and is derived in an identical manner.

Further calculations then lead to an equation like 1.28, or

2- 2 ® 5
Ewny- & . = f w@w)l k) - ko) [© do 29
= g ot -]
= 2 o © dt
In the particula:: case @w) s iwz we have k*(w) and k(o)

from 7.16 and 7.24, respectively. It is seen that 7.28 becomes

= 2
e - e YdF(y)

2 2
Ewy - &€ -

do 7.29
. x [ Pl (7.29)

- 00

where the Wiener filter k*(w) has been designed on the assumption
that y = a . If the mean square error is defined as in this paper
the Wiener filter is seen to be optimum if and only if vy = a with

probability one. Then also k(w) = k*(w) a.e.
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