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ABSTRACT

A theory of existence and uniqueness of bounded solutions of
linear and nonlinear boundary value problems over a semiw-infinite inter-
val is developed. A numerical method for solving such problems is pro-
posed. The method uses only finite intervals and convergence is proven
as the length of the interval goes to infinity. This work is extended
to problems over 0 < t < « with a regular singular point at t = 0.

The techniques developed are applied to solve three problems.

i) The beam equation representing a semi-infinite pile

imbedded in soil. Such problems are of interest in

structural and foundation engineering.

ii) An eigenvalue problem representing the solution of the

Schrodinger equation for an ion of the hydrogen-molecule

with fixed nuclei.

iii) The Navier-Stokes equations for the von Ka;ma; swirling

flow. TFor this problem the existence of multiple solutions

has recently been discovered. We discover an additional

branch of solutions and reproduce the previous results in

a much simpler and more efficient manner. Our results

clearly suggest that an infinite family of branches of

solutions exist for this problem.
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CHAPTER 1

BOUNDARY VALUE PROBLEMS ON A SEMI-INFINITE INTERVAL

1.1 Introduction

We are interested in the numerical solution of the boundary value

problem on a semi~infinite interval

o= B v new)] e gt e (1.1a)

CO u(to) + ldim COo u(t) = o . (1.1b)
treo
Here u and h are vector valued functions of dimension n, B(t)
is a matrix valued function of dimension n x n and
B = lim B(t) # 0
oo oo
r, r >1,

i.e., infinity is a singularity of the second kind of rank

see Coddington and Levinson [ﬁj p. 138; C0 and C°°
is a constant vector of dimension m.

are constant matrices

of dimension m x n and o

We will restrict our attention to the case of solutions which
satisfy

u(t) is bounded as t +» o« (1.1¢)

We first determine the most general boundary conditions of the

form (1.1) b) which can be prescribed in this case.
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1.2 Notation For x € R" we use ||'|| to denote the maximum notm
2] = max Ix]
1<i<n
and for A e R " we use Il.li to denote the induced maximum norm
n
[all = sup [lax|[ = max 3 ]a]
| 1x]]=1 l<i<m j=1

-

1.3 Boundary value problems on a semi-infinite interval. The linear

constant coefficient case.

Let us consider problem (1.1) where
B(t) = Boo for t E{go’ )

Let P be a similarity transformation that takes B_ into its

Jordan canonical form:
A =P B P . (3.1)

+ -—
We shall call A, A° and A" the submatrices of A_ correspon-
ding to those eigenvalues with positive, zero and negative real parts
respectively. Their dimensions will be respectively q , r and p . We

assume finally that the eigenvalue X = 0 has geometric multiplicity

k . Thus,
(e8]
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r P

qoo [o¢] (s8]
sy ~dy N"'\_T
At oo 011 q,
Aoo = 0 AO 0 } rm (3.2)
0 0 AjlYop,
L -

+ -
and A, AO, A are block diagonal with each block having the familiar

. o}
Jordan form. For convenience we permute the rows and columns of A

so that it takes the form

(o]
All : 0
.—.«.—.—‘——T—-;— —————
,
53 N BN
! ‘xi
L | Voo

where s, is the number of different Jordan blocks in A° and the last
k, rows have Az = 0. This is done by pushing to the right all the
columns whose only elements different from zero are on the diagonal and
then doing the proper interchanges of rows such that those elements re-
main in the diagomnal.

We assume that P dincludes this permutation of columms.

Making the change of variables u = Py we obtain a problem

equivalent to (1.1)
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y(t') = tr"l[ém y(t) + f(ti] , (3.3a)

D y(t )+ 1limD y(t) =a (3.3b)
o} (¢] oo «

y(t) bounded as t + (3.3c)

Here f(t) = pt h(¢) , D =C P and D_=C_P.
The homogeneous system associated with (3.3) a) has a fundamental

matrix of solutions of the form:

o 1
+ r T
eA (t —to)/r o o
o, r T
Y(t) = 0 A et )/r 0 » (3.4)
’ -, r
0 0 eA (t ~t0)/r
L- ———

Hence any solution of the homogeneous system can be written as

yg = Y(®) £ . (3.5)

In order that vy _(t) be bounded as t = « it is necessary and
" y

sufficient that

0 . . - . .
where ¢ has dimension s, and & has dimension P,-
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Thus we conclude that the homogeneous problem related to (3.3)

th

(i.e. with £(t) 20, o =0) has p_ +s. _ linearly independent solu-

tions. Any solution of (3.3) can be expressed as
y(£) =y (e) + w(t) (3.6)

where yH(t) is a bounded solution of the homegsneous problem and w(t)

is a particular solution of (3.3).

In order to construct a particular solution of (3.3) we rewrite

it in the block form

' I o B
wl(t) t (A wl(t) + ﬁl)
r-1, o
wé(t) =t (A Wz(t) + fz) (3.7)
wit) = tT AT wo(t) + £)
3 3 3
where
fl Wl
f = f2 s wo=l v,
£ Y3

are the natural partitions induced by A_.
The variation of parameters formula can be applied to (3.7).
In doing this, we set the limits of the integration so that w(t) is

bounded as t - « for appropriate £(t). Thus we take as the particular
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solution:

. t +, r T
j‘ e—A (s -t )/t Sr—l fl(s)ds

1
t o, r .T
- AT (s -t )/r _x-1
L ‘J; e s fz(s)ds (3.8)
t -, Y T
w e_A (s'-t))/x sr“1 £ _(s8)ds
3 ‘ 3
o

w(t) will be bounded as t + « iff £(t) satisfies certain
conditions that we specify in the following lemma.

Lemma 3.9: The nonhomogeneous problem (3.3), where A~ is of the form

(3.2), has p_ + s_  linearly independent solutioms of the form:

0 'Wl(t)
y(t) = Y(t) (22) + w, (€) . (3.10)
£ w3(t)'

Here Y(t) is given in (3.4), &, and £ are constant vectors of

2

dimension s and 128 respectively. In particular y(t) 1is bounded as

t >« if f£(t) 1is differentiable in [FO, ) , f£'(t) -goes to zero as

1
jurcy s

t > ; fl(t) = 0(1) ; fz(t) =0 (t } ;  and f3(t) = 0(1) as

t -+ «, Here m is the dimension of the largest Jordan block of AO.

Proof: We only have to prove that w(t) 1is bounded as t > «, More-

over, in order to get an algebraic representation of the condition
"y(t) is bounded as t - «'", it is necessary to know the behavior of

w(t) given in (3.8).
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We first notice, using int

t +,. r r
j e-—A (s -t)/r Sr—l f1

oo

t
OB RN ) +f

ool

egration by parts, that

(s) ds =

+. -1

o e—A+(sr—tr)/r

1
fl(s)ds

implies
Lim w, (t) = - 1 i £,(0)
Lo t>oo
since
t + T T [
1im “I (Aﬁ) 1 e-A (s =t )/r fl(s)ds
oo Co
+ r .t + r
= 1im (A+)_1 eA t /I.‘[ e-.A s'/r fi(s)ds
t—>00 00
+ r + r
eA t /r e—A t /r £1(t)
= lim L =0
r-1
te t
Similarly,
\ -=-1 ..
1lim w3(t) = - (A) lim f3(t)
troo >
For the vector wz(t) = (W2,1"°"’ W2,r ) we have

(3.11)

(3.12)
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@ o, T
oyl L {12 gy e
t/r

Then for t sufficiently large

o r m -1
ey @1l (5= 1ol

for some constant k.

Since Ilfz(t)ll =o0 ( mlr as t » » we have
¢ ©
lim ||w2(t)|l =0
o0
and hence
lim wz(t) =0 -, (3.13)
oo

Thus, all the bounded solutions of system (3.3) satisfy

iii [1 ! o] y(t) = £, (3.14)

where I is the identity matrix of order (qoo tr - sm) and

~aH 1in £(0)
N t-roe
f = . (3.15)
0

Condition (3.14) is exactly a projection into the subspace of bounded
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solutions of system (3.3). From now on we will refer to condition
(3.14) as the "projection condition."

As it should be expected, we only can specify (poo + sm)
additional conditions to pick one solution from the set of (pCo +<1m)
linearly independent bounded solutions.

Thus the most general form for specifying those conditions

will be

Do y(to) + iiz D v(t) = a (3.16)
where D0 and Doo are (p00 + sm)xn constant matrices and a is a
(poo + sm) dimensional constant vector.
From the representation (3.6), with w(t) given by (3.8) and
yH(t) given by (3.5), we can deduce the conditions which DO an@ D
must satisfy in order that (3.16) and (3.14) guarantee the existence
and uniqueness of a solution.

Lemma 3.17: Consider the nonhomogeneous boundary value problem

y'(t) = A y(t) + £(t) (3.18a)
1im [T ] 0] y(e) = £ | (3.18b)
el

Do y(to) + 1im D_ y(t) = o , (3.18c)
teo B

where: I is the identity matrix of dimension (g +r_ - s_);
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+ -1
~(&1)77 lim £ (6D
f = £ ;DO and D are constant matrices of

0

dimension (pm + sw)xn.

Let us assume that A_ and f£(t) satisfy the hypotheses of

Lemma 3.9. We also require

D R=D . (3.19)

Here R is the projection onto the nullspace of A, il.e.,

-
0 0 o] n- (k, +p)
R = 0 I 0 koo (3.20)
0 0 0 P,
n- (k'oo+poo) kool poo

Then (3.18) has a unique solution provided

D +D Y(t)
O [s0]

[> 12,]

has D2 nonsingular.

Proof: Using (3.5), (3.6) and (3.8) in (3.18) c) gives

~

DO(E + w(to)) + 1im D_ Y(t)E + D w=oa . (3.21)

troo

Here

>

w = }im w(t)
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Since y(t) satisfies condition (3.18b) we must have

0

Y

where 5% is of dimension (sOo + pw).
We point out that the components of Y(t)Z with indices in
(q00 +r - sm) < i< (qoo +r - km) are oscillatory and undamped. Hence
their limit as t - « does not exist. On the other hand, the last P,
components of Y(t)& wvanish as t - o,
The previous discussion implies that we can only impose conditions
on
lim R Y(t)E
0

Then (3.18) has unique solution iff

* -
D2 £ =aqa - D _w - Do w(to)

is univocally solvable. @

1.4 The variable coefficients case

We will consider first the homogeneous problem

y' = 71 A(t)y (4.1a)

y(t) bounded as t =+ « . (4.1b)

Here 1im A(t) = A, with A as in (3.2).
>0
For the rest of this paper we will consider the partition of A(t)

induced by that of Aoo
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~y ~ ~

- .
App Ay Ag) e,
AR) = 1Ay By At
Ay Agp A3 e,

Let us write the equivalent problem

y' o= 5 A y(t) + et e - A) y(t) , ¢ e[Fm, ®)

y(t) bounded as t +

System (4.3a) can be expressed in block form as

yy(e) = tr"lA%yl(t) + 7

(A (©=ADy (£) + A, (O)y, (1) + A (DY, ()}
vy (&) = tr'leyz(t) + 5t

{8, ()3, (£) + (A, (£)-A")y,(£) + A, (£)y, ()}
yi(t) = tr~1A_y3(t) + 5

(A3 (O3, (6) + Ay, (), () + (A, (D)-A))y,(0)}

(4.2)

(4.3a)

(4.3b)

(4.4)
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Variation of parameters can be applied to (4.4) in order to
replace it by integral equations. Again the limits of integration must

be set correctly. Thus

o +. r T
y, (€)= ‘,{ oA (s -ty /r x-1 (4.5)
t

(A1 ()-AD)y, () + A, ()3, () + A, (s)y,(s)}ds
y,(£) = eAO(tr—ti)/r (O) - Iwe"Ao(sr—tr)/r S
Ve

Tay1 (¥ () + (A,,()-8")y,(s) + A, (s)y,(s) }ds

-, r T t _am X T _
y3(t) _ eA (£ -t )/r - +j‘ . A (s -t )/r_‘sr 1
t

{8y, (8)y () + A, (s)y,(s) + (A33(s)—A_)y3(s)}ds

where, again, EO is of dimension s, and £ is of dimension P, -
Then any solution of (4.3) would be a solution of the integral
equations (4.5) provided the integrals converge. Conversely, any solu-
tion of (4.5), where the integrals converge, will be a solution of (4.3).
In the next theorem we will prove that (4.5) has (pco + sm)
linearly independent solutions provided A(t) satisfies certain condi-

tions.

Theorem 4.6: Let A(t) be continuous for t ¢ [to, ©), We also assume

that A(t) is of the form (4.2), and that for sufficiently large t_

there exist o(t), p(t) and 1 < 1 such that for each t ¢ [tw, o)
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lmuu>—ﬁuioug,Imuunlid%>,uﬁgwuioug,

1A, (] <oce) , [a,,(0) - A°%] <@, [ay®f <o),

i A

Hag ] <ot) 5 A, < ote) , [a @] <o) ,

I A

r

30(t,) o [ r rim,-1
— <t < 1, 3k J~ [S t ] Sr—l p(s)ds <t <1
t

Here m is the dimension of the largest Jordan block of Ao, k is

o, r T r fimg-1
-A - L o
the smallest constant so that I{e (st )/r||_i k Fiqgi} ,S > t,

t e[tm, ©) and R(A+) >e >0, R(A7) < - < 0.

Then the integral equations (4.5) have P, + s linearly inde—

pendent solutions. Each of these solutions satisfies 1lim R y(t) exists
>

and is finite, where R is the projection onto the null space of A .

2]

Proof: Define yi =0, y; =0, yg = 0 and

yv+1(t) _ _~gm;—A+(sr—tr)/r -1
1 t
LA ()-AT)y (s) + A ,(8)y,(s) + A () () }ds
Sy = ATt/ OO _ J-we—Ao(sr—tr)/r (11
g t
{8y, ()77 (8) + (Ay, ()-A7)7,(8) + Ay, (s)y}(s) }ds
- r T t -, r r =
y§+l(t) _ eA (t -tw)/r g—__af e—A (s -t )/r T 1
t

o]

(A3 (3] (8) + Ay, (8)y,(s) + (Ay5(s)-AT)y,(s) }ds
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We first notice that

1 -
yl(t) =0 ,
0, Y r 0
le(t) = A (T ta)/r ( A
£°
-, T T
1 A t g % -
y4(t) = e (€t} /x g
' 1
Hence there exists a constant L > 0 such that l}yz(t)[] <L

~and f|y§(t)|| <L for t e[}m, @) .

1
Then we conclude that y (t) is bounded as t » », Moreover,

lim R yl(t) =

O ™ O

ale
w

o
where &  is the vector formed with the last k_ components of £

1
Agsume y (t),...,yv(t) are bounded as t - «, Then yv+l is

well defined since the integrals converge and

3o(t)
ol < —2 max [y <t nax |1y &)]]
tms_s<oo too.<_S<°°
®© T rym-1
vy o] < []e°]] + {kf ('s“’ri') p(s)ds} max |[|y°()]]
. t_ss<e
v
<L+ 71 max ||y (s)]]
L _Ss<®
\)+1 v ey \)+1 .
IIY3 O} <L+t max ||y (s)|| =% vy (t) 1is bounded for t e[%m,m)-

<
t <s<w
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Since

© 0, T .T ‘
o A (s -t ) /r Sr—l

lim
e Jt

{8y, ()] () + (4,,()-A")y)(s) + A, (s)y,(s)}ds = O
we have

0
timr vy = 5],
toe 0

where R ds given in (3.20).

With e(\))(t) = y(\’)(t) - y(v—l)(t) it follows that

We shall show that b el(t) is uniformly and absolutely
i=1

convergent for t e[}m, @),

From the integral equation for the yﬁ(t) we get:

. o +,. r r
lejw |- 1] et emerm =
t
+ .—1 '_1 ..—
(A, (s)-2 )e;L (s) + Alz(s)e; (s) + AB(s)e; () 1as] |

© r r i
e O s 6

I A

t
30(tm) o1
</ max [le7(®)]] ,
t<g<x
eyl <t max (e (o)

t<g<»
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Similarly:

‘ ljme—Ao(Sr—tr) /r

eyl =11}

{A21(s)ei—l(s) + (Azz(s)--AO)ei_1 + A23(s)e§-1(s)}ds‘l

o fr r mo-1 .
[S -t ] Sr-—lp(s) [ lel—l(S) l ldS

r

< T max Ilei—l(s)ll
E<g<®

and
) t_A-( T Ty/r o rel
eyl < |1 f & e
t(X)
i-1 i-1 -, i-1
{Ag 6] 7+ Age, (Ag,-A dey }as||
3o0(t ) . .
< - Z— max ‘lel_l(s)il < T  max [lel—l(s)li
€ too.<_s<°° twﬁ. s<®
Hence

et <17, e efe,, =

and we recall 0 < 1 < 1. Then we conclude that vy(t) = lim yv(t) =
Voo

z éi(t) exists and it is bounded as t - «. Also y(t) can be con~
i=1

tinued to t = to and
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0
1im R y(t) = EK
£
0
Let
Y(t) = (yl(t),.--, wa"”Sm(t)) . (4.7)

Here yi(t),i =1,...,p + s, are any p_+ q linearly independent
solutions of the integral equation (4.5).
Then any bounded solution on [}0, ©) of the differential sys-—

tem y' = A(t)y can be expressed as

yH(t) = §(t)8 (4.8)

where we recall Y(t) is nx(poo + sm) and B is a (poo + sm) constant
vector.

We will consider now the inhomogeneous problem

vt = 5 Aty + £(1) (4.92)

y(t) bounded as t » = . (4.9b)
Any solution of (4.9) can be written as
y(€) =y (&) + w(t)

where w(t) is a particular solution of (4.9) and yH(t) has the
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form (4.8).
We have, for the existence of w(t),

TLemma 4.10: Let A(t) and t_ be as in Theorenm 4.6 and f(t) be as

in Lemma 3.9. Then the integral equations

po . T T (4.11)
-A (s -t )/r r-1 + .
t = e —
wl( ) J, e s {(All A )wl + A12w2 + A13w3 + fl}ds
po O, T T
o A" (s -t ) /r r-1; o
wz(t) J. e s {A21w1 + (A22—A )w2 + AW fz}ds
-A (-t /r -1 -
t == + + —_
W3( ) ,g e ) {A31W1 A32w2 (A33 A )w3 + fB}dS

t

o0

have a unique solution.

Proof: The proof is very similar to that of Theorem 4.6. We only need

to prove that the Picard iterates remain bounded as t - <. In fact we

shall show that:

) +. -1 =
1im W:(t) = (-A") f1 (4.12a)
t'—)'oo
1im w;(t) =0 (4.12b)
t'—>0°

.V -y-1 Z
1im wo(t) = (~A) f (4.12¢)

3 3

>0

where 1lim f(t) = £ .

Lo

It

We take wo 0 and then
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S +, r T

wi(t) = iJP e—A (s’ -t")/x sr—l fl(s)ds
t
® o, T .T

wl(t) = 1J‘ e"A (s’ -t")/r sr~1 f.(s)ds

2 . 2

© - T T

wé(t) = jjﬂ e—A (s'-t)/r Sr—l f3(s)ds
t

[ed]

As in section 3,

lim wll(t) =~ (A) f1
>

.1
limw () =0

t>o 2
1im w13(t) = - (A")~1 f3
t—>00

Now using induction on v and the fact that 1im (A(t) -~ Am) =0
>0

we get (4.12). %
Letting v » « in (4.12) it follows that w(t), the particular
solution of (4.9), has the same limiting forms as in the constant coeffi-

cient case (3.3). Thus the condition that the solution of (4.9) has to

be bounded at infinity can be expressed in algebraic form as the

"projection condition':

>

—(A+)_l £

lim [I | o] y(t) = - (4.13)
t'—)OO
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Here I is the identity matrix of dimension q_+1r - s_.
Finally we have:

Theorem 4.14: Consider the nonhomogeneous B.V.P.

y' = A(t)y + £(t) (4.15a)
D y(t ) + lim D yv(t) = a (4.15b)
o o
oo
y{(t) bounded as t » « (4.15¢)

where: DO and D _ are (poo + sm)xn constant matrices, A(t) satisfies

the hypotheses of Theorem 4.6, and f(t) satisfies the hypotheses of

Lemma 3.9.

Then (4.15) has a unique solution provided that the matrix of

order p_ + S,

[Do %(to) + 1lim D_ R ‘}(t):l

t>oe

is nonsingular. Here R is as in (3.20) and Y(t) as in 4.7).

Proof: The proof follows the same steps of the proof of Lemma 3.17.
But in this case yH(t) and w(t) in (3.6) are given by (4.8) and

(4.11) respectively. @

1.5 More general linear systems:

The requirements on A(t) and f(t) in Theorem 4.6 and Lemma
3.9 seem very restrictive. In particular this is so when A_ has
multiple eigenvalues with real part equal to zero. However, in this

case it is easy to construct examples which violate the hypotheses of
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Theorem 4.6 and/or Lemma 3.9 and have solutions with unpredictable
asymptotic behavior, see Cesari [3]. On the other hand, many problems

of practical interest, when transformed into the form
-1
y' =t [A(t)y + f(tﬂ ) (5.1)

fail to satisfy the requirements mentioned above.

F. de Hoog and R. Weiss, [é}, have found a way to overcome some
of these difficulties in the case of an irregular singularity at a finite
point. We will extend their results to the semi=infinite interval.l Let

us consider the slightly more general linear system:
y'(©) = T@fB() y(©) + h(e)] (5.2)
where

T = diag (t 1 Il, t 12,..., t I.), the I, (5.3a)

are identity matrices

r,>1 i=1,..., k (5.3b)
M = 1im B(t) 1is in block upper triangular form (5.3¢c)
t>o
My My Mygoeoo - My
0 M22 M23 e e MZk
M = . . =D+ M
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D = diag (Mll,..., Mkk) (5.3d)
Each ij is a square matrix of the same dimension as Ij (5.3e)
and does not have eigenvalues with real part equal to zero

for j=1,..., k-1.

Either Mkk = 0and r, =1 or Mkk is as in e) and r > 1. (5.3%)

k k

In the rest of this section we will employ the partitions

W w— I e — “‘1

Byp o Big Bygooee By Yy by

Bor Byp Byg ees By Yy hy
B(t) = , y(t) = and h(t) =

B Prk Y Py |

induced by the partition of M given in (5.3c).

It is possible to prove results similar to those in section 4
for the system (5.2) under very mild conditions on the convergence of
B(t) and h(t) as t =+ ». In fact,

Theorem 5.4: Let B(t) be continuous for t e[to, »), Furthermore let

M = lim B(t) be as in (5.3c). If Mkk = 0 we assume Bki = o(%O

as t + «. Then the homogeneous system associated with (5.2) has p_tr_

linearly independent solutions which are bounded as t + «, where p_

is the number of eigenvalues of M with real part < 0 and r_ 1is the

algebraic multiplicity of the eigenvalue zero. Moreover each of those

solutions satisfies




—25-

lim M y(t) = 0 . (5.5)

toe

Proof: Using variation of parameters we transform for t e[}m, )

t_ >t , the differential system (5.2) into an integral system. Since
— 0

we are only interested in bounded solutions, the integral system takes
the form

y(t) = e(s(t)~s(tm))D £ (5.6)

t _—
. f e SOISEND pro)luy(s) + (B()-1y(s)] ds
t

[e8]

_f cSOSED 1 pyr(o[uy(e) + @) Wy(e)]ds .
t

~t
Here S(t) = J. T(s)ds, P = diag [?1,..., Pk} and Pi is the projec-
o .

tion into the invariant subspace of Mii which is asscociated with the

eigenvalues with real part < 0. The vector & satisfies
PE = & . (5.7)

We observe that any solution of the homogeneous form of (5.2),
which is bounded as t = =, will also be a solution of (5.6). Recip-

s

rocally, any solution of (5.6), where the integrals converge, is a solu-

tion of (5.2) with h(t) = 0.

In order to prove that (5.6) has a nontrivial solution we use a
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Gauss-Seidel type iteration, thus

OB

and for v =1, 2,...

s () = (B(O-Sa)ID ¢ (5.8)

(t)

t ~
+§ (8 (t)-5(s))D PT(s)[_My(v)(s)+(B(s)-M)y(V_1)(s)]ds
t

fee]

i} _r e SIS (pyrco) [ity oy 8y 0y 7V (5] as.
t

We observe that the integrals are convergent for v = 1. More-

over, y(l)(t) = e(S(t)—S(tm))D £ and hence there exist a constant

L >0 so that Ily(l)(t)|{ < L.
(V)

If vy (t) is bounded as t - « then the integrals in (5.8)

y(v+1)(t) is well defined.

(v)

are counvergent and hence
To see what is the behaviour of vy (t) as t » « we inte-

grate by parts and take limits:

If Mkk # 0 D is nonsingular then

1im v () = 1im[—D"1T“1(t)PT(r_)§1 v(£)-p "t (0) (1-P) T (£)M y(“)(tﬂ

e Lo

Since T(t) is diagonal and D + M =M we get:

lim M y(v)(t) =0

>
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If Mkk = 0 we do it by components and get

1im yév)

>0

(t) =€

Here g are the last components of the vector ¢&.

k
For i =1,...,k -1

k k

U Y s () S ™) ]
lim v, (t) ‘11m Mi'P' ) ; Mijyj (t) Mii(I Pi) z Mijyj (v) s

te t->o0 j=i+l j=i+1
i.e.,
k
lin 1 M sy =0 .
o j=i T3
Then we also have in this case
. v
lim My () =0 . : (5.9)

Lo

In order to prove that the sequence (5.8) is convergent as

vV > @ we define:
e(v)(t) = y(v)(t) - y(v_l)(t) , v=1,2,...

Then
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£ . |
eM iy = f e(T(L)_T(S))D'PT(S)[M eM gy + (B(s)—M)e(“‘”(s)st (5.10)

-f e(T(t)"T(S))D(I—P)T(s)[ﬂ eM ey + (B(s)~M)e(\’“1)(sﬂ ds
t
Since e 1 (t) = y(l)(t) we have
1e® @l <t

On the other hand, t _~ can be chosen large enough so that:

a) 186 - ml] < oe) for € efe,, =)
t k 2Ko (t_)
b) If M, =0 thenj; 121 HBki(s)H < —

for t s[}m, )

c) ' There exists a constant T , 0 < T < 1, such that

)

2Ko(t) k-1 i
— 5 )

€

Here € and yu are positive constants such that Ili(M)l > ¢ for all

eigenvalues of M different from zero and llMl| < y. Hence
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t —e(t =5 )/r r. -1 _
llel({v)(t)ll if e Kok Ko (t ) He(\) 1)(S)llds

©e(t -8 )/r T, ~1
+f e ok ko e (o) ]as
t

k k
-e(t =t )/r K o(t.)
< (1-e U max [[OV (e
t <s<t
Ko(t )
+ max ||e(v~1)(s)|l
€ §£§<m
2Ko (t )
< = 2 max lle(v_l)(s)!l.
€ tmi g<©

If Mkk =0
k

t
el {1 1@ el
1

i=
oo

(v-1) “t  k
< max ‘le (S)llﬂf
- 121 l[Bki(s)‘[ds

ot _<s<t c
2Ko (£ )
< i max l[e(v_l)(s)ll
€ tw$S<oo

This implies:

e @] <« max |1 PDo]] -

t S8<»
©0

Similarly,
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r, T,
. _ i i ;
[Ieégi(t)ll ffé’[ZKG(tm> §-+ Ko(t@ﬂ max ||e(v)(s)li[}“e e(t t»)/ri]
‘ too.S_S<t
+-l [2Ka(t ) Ey xote i] max ‘|e(v)(s)|l
€ o’ g o0 f<s<e
2Ko (t_) 9
< 211+ = max e(v)(s)
<« e]twg_s@” Il
<t omax [[eYP o]
£ ss<o
Finally we get
™) 2ko(t ) k-1 ) i (ool
eIl == = () nax 1OV @]
i=0 E t <s<e
< T max l!e(vml)(s)ll
thS<°°
Hence
e @] < v max [V o)l] <1 5.11)
too.iS<°°
So )2 e(v)(t) is uniformly and absolutely convergent. Since
i=0

(v)

s =z W

0

™ <

i

[os]

s M, . .

we have, y(t) = limy (t) = ,Z e(l)(t) is continuous for
Y-y i=0

t e[}m, ©), bounded as t =+ « and it can be continued to

t=t <t.
O o0
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From (5.9) we conclude that y(t) satisfies (5.5). @

It can also be proven thatif h(t) satisfies certain conditions
the nonhomogeneous systeﬁ (5.2) also has (p_ + r) linearly indepen-
dent solutiomns.

In fact, any bounded solution of (5.2) can be represented as

y(t) = SAE(t) B+ w(t) (5.12)

where %(t) is the nX(p00 +1?w) matrix formed with (pm +1;m) linearly
independent solutions of the integral equation (5.6), and w(t) 1is the
solution of the integral equatiomns

(5.13)
w(t) = J: e(T(t)—T(s))DPT(s)[ﬁ w(s) + (B(s)-M)w(s) + h(sﬂds

[eo]

_J‘ e(T(t)“T(S”D(I-P)T(s)[ﬁ w(s) + (B(s) - Mw(s) + h(sﬂ ds .
t

In the next theorem we prove that equations (5.13) actually have

a unique solution.

Theorem 5.14: Let B(t), M and t  satisfy the hypotheses of Theorem

< t
— oo

5.4. In addition, let h(t) be continuous for t e[% , @), t
_ ) o

and bounded as t » ». If Mkk = 0 we also require hk(t) = o(%) as

t > «. Then the integral equations (5.13) have .a solution which is a

bounded solution of the system (5.2).. Moreover,
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k
lim & M,, w. (t) = - lim h () , i =1, » k~1 5.15a
ij i i ( )
te =1 too
If Mkk = 0 then iiz wk(t) =0 |,
(5.15b)
If M, #0 then lim M, w (t) = - lim b (c) ,
o oo
in other words,
lim w(t) = - QHR) " 1im h(t) . (5.16)
t->co Lo

If Mkkafo then R = 0, if Mkkso R ={

Proof: The proof is very similar to the one of Theorem 5.4. 1In fact,

(0 = 0.

we define again a Gauss—Seidel type iteration and start with w

It easily follows that every iterate is well defined and bounded as

E(v+l)(t) _ W(v+1)(t) _ W(v)(t)

t > «, Moreover, satisfies, as the

-+ .
ev l(t), the relation (5.10).

T vl
Hence L E- (t) dis uniformly and absolutely convergent. Let
i=0

w(t) = lim w'(t).
Voo

The last part of the theorem is obtained by taking the limit of
wv(t) as t+w v=1,2,... . @
From (5.16) and (5.5) we conclude that any bounded solution of

system (5.2) satisfies

lim y(t) = - (M+R)—1 (lim h(t) - lim R y(t)) (5.17)

t~>o0 oo e
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Hence the projection in this case can be written as

lim Q y(t) = - QQER) ™" (1im h(t) - lim R y(t)) (5.18)

t>oo oo >
where Q = diag [EI—PI),...,(I—Pki] is the projection into the inva-
riant subspace of M associated to the eigenvalues with positive real
parts.

The,projection'condition.ﬁnposes n - (poo + r_ ) restrictions

on the solution. Then we only can specify (poo + r ) more conditions
in order to expect existence and uniqueness of solution for (5.2).

Theorem 5.19: Let B(t) and h(t) satisfy the hypotheses‘gigheorgg§

5.4 and 5.14. Consider the boundary conditions

DO y(to) + 1im D y(t) = o , (5.20)

t>e0

where DO and Doo are (poo +~r@)xn constant matrices. Then (5.2),

subject to (5.20) haé_g unique bounded solution if the matrix

+ 14
Co Y(to) lim D R Y{(t)

>
is nonsingular. %

1.6 Nonlinear problems.

K. W. Chang [4] has proved the existence of decaying solutions

for a special nonlinear systems of the form



Y.

u' = f(t, u)

(6.1)

He studied the case in which the variational equation of (6.1) has an

exponential dichotomy.

general systems.

Qur aim in this section is to treat more

We will be interested in the existence of solutions of (6.1)

which satisfy

and

1im u(t) exists and it is finite.
oo

Tn all that follows we will call

v = 1lim u(t)

>0

(6.2)

(6.3)

We suppose that the following assumptions hold throughout:

f(t, u) and fu(t, u) are bounded and continuous for

';(t, u) EE:OO, «)xD, D C 8" and

Sp= lu | [lu=y|] < p}cD.

fu(t, u) > T(t) A(t) as y > ¥ uniformly on t. Here
T(t) is as in (5.3a) and there exist a nomsingular

matrix Q so that

B(t) = Q- A(£)Q

(6.4a)

{6.4b)

(6.4c)
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M = lim B(t) (6.44d)
t>0
is as in (5.3c).
f(t, u) = o(|lu-y|]D) as u(t) »~ v . (6.4¢e)

Let P be the projection into the invariant subspace associated
with the eigenvalues of M with negative real parts. We will show that,
for every & such thatv PE =& and t large enough, the system 6.1
has a solution wu(t), t e[%m, ©), which satisfies P u(tw) = £ and (6.2).

To simplify the notation in what follows we make some changes

of variables:

1) We will assume that vy = 0. Since the change v{(t) = u(t) - vy

gives a system for v equivalent to (6.1) and 1im v(t) = 0.
>0

2) System (6.1) can be rewritten in the equivalent form
u' () = T(t)[A(t) w(e) + T ) £(e, w) - Adt) HE)
Introducing the change u(t) = Q y(t), we get for v(t):

y'(t) = T(t),[B(t) y(t) + g(t, y(t)ﬁ , t e{tm, *) (6.5a)

where

1

g(t, y(0)) = € T H(e) £(t, Q) - BE) y(&) (6.5b)

lim y(£) = 0 . (6.5¢c)

Lt
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Theorem 6.6: Let f(t, y) and fy(t, y) satisfy (6.4) a), b), c), d)

and e) where vy = 0. Moreover, if Mkk = 0 we also assume that
1 1
= [ - o 1 = - = 0=
Bki(t) o\t) as t , 1 1,...,k-1 and that fk(t, 0) o(t) as

t » . Then for sufficiently large t  and every ¢ such that

P = &, (6.5) has a solution which satisfies P y(tm) = g.

Proof: The proof is very similar to that of Theorem 5.4. In fact, we

will follow the steps of that proof.
Using variation of parameters we get for t E[Fw, @) the inte-
gral equation:

y(t) = e(T(t)—T(too))D g (6.7)

t A
¥ f eTOTENID by by (s) + (B()-My(s) + gls,y(s))]ds
t

[ee]

_ f TOTEID (L pyr(o)[uy(s) + BlsI-Wy(s)+5(s,5(s))]ds
t

As in Theorem 5.4 we construct the sequence y(v)(t) using a

Gauss~Seidel type iteration. We start with

NOMNESNCOREEICO I (6.8)

Hence lim y(o)(t) = 0.

>0

For v =1,2,...
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y(v)(t) = (TE)-T(t))D (6.9)

t ; n
+ J' e(T(t)—T(S))D PT(S)[M;v)(S) + (B(s)—M)y(v—l)(s)
t

- +g(s,y 7 ())] s

- [ TOTE @[y (o) + G0y o)

t
ety en]as

Suppose that lim y(vml)(t) = 0, then y(v)(t) is well de-
oo
fined. Moreover taking limits in (6.9) we get

(v-1)

lim (M + R) y(v)(t) = - lim g(t, y ()

troo >0

(0)

Since g(t, y(&)) = o(|ly@)|]) as ||ly@®)]|| >0 and vy  ’(t)

decays exponentially we conclude that (M + R) y(v)(t) + 0 exponentially
as t > ® . Here R 1is the projection into the nullspace of M,

Since (M + R) dis nonsingular we can write

1im y™M () =0 . (6.10)

Lo

To prove the convergence of the sequence {y(v)(t)} we define

M) =y -y Vi, v, (6.11)

P =y P

Then there exists L > 0 so that
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11e@)] <1

By the mean value theorem we have:

1

-1 -
g(t,y) - g,y ) = f %}g—r e,y + (1-8)y " 1yeY (e)as . (6.12)
0

Using the definition of - g(t, y) in (6.12):

1

g(t,y") - glt,y ) (v)

it

1
f [ "7 o 00y r -0y TH-p)] ¢V (a0
0

(V)

3V (t) eV (t)

Since fy(t, y) is uniformly continuous as y > 0: given ¢ > 0, there

exist p > 0 so that if lle yv(t) + (1-6) yv—l(t)ll < p then

fee]

%] <6, ¢t e[t )

At the end of this proof we will show that if L is small
enough then l|yv|’ <p ,v=1,2,..., for any given p.

Let us suppose that t_ is so large that:
1) By - u[| + [[5° ] < oc,) for t efe . =

® k ZKG(tm)
i) If M, =0 then j z (||Bki(s)|| + ||Jki(s)|l)ds <
b =1

iidi) There exists a constant T, 0 < 1T < 1, so that
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2K o(tw) k-1 i
—— ¥ (Zu) =1 <1

€ 4=0
Here ¢ and 1 are positive constants such that [Ai(M)! > e for all

eigenvalues of M different from zero and IIMll E_u;

Then, as in Theorem 5.4, we conclude

2Ko(t_) k-1 i _
HesV @Il <= 1 @& max [V V]|
j=0 t _<s<e
< 1 max {|e(v‘1)(s)]§
twf_s<°°
This implies
He™ @1 < max [V V)] <1
t(»f_s<°°
Then
N
y(t) = 1lim I e(v)(t)
N> y=1
exists and satisfies (6.5) c).
From (6.11) we have
v .
P = P
i=1

This implies
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v+1
T

(v 1 -
Hy‘ Ol <vy——

Thus, if —%;—E_p we get [{y(v)(t)[l <p,v=1,2,... .

In this case the "projection condition" for y(t) is

lim (I-P) y(t) = 0 , i.e.,

oo

| (6.13)
lim (I-P) Q"' u(t) = 0

) rad
We point out that if in the original problem <y # 0, P depends

upon vy = lim u(t). If the actual value of vy is not known then (6.13)
>

is nonlinear in u(t).
It is posgsible to prove for (6.1) results similar to those in
Theorem 6.6 with slightly different T(t) and A(t) (recall (6.4b)) in

fact:

Theorem 6.14: Let £(t, y) and fy(t, y) satisfy (6.4a,b,e) where

¥ = 0. We also assume that T(t) = £ I, r >0 and I identity matrix,
A

. . . _ 1
o = lim A(t) 1is as in (3.2). Moreover A21 of r(mo—l))’
%% 1 1 t 1
(Azz - A ) = ’O&tr(mo"‘l))’ A23 = O(tr(mo_l)); fzktao) = O(tr(mo"l)) as

t > «, Here m is the dimension of the largest Jordan block of A°,

Then for sufficiently large t_ and every £ such that P& = § (6.5)

has a solution which satisfies P y(tm) = £, @

Note: We have seen that the results of Lemma 3.9 are fundamental for
all the conclusions of this chapter. We point out that the same results
can be obtained without the requirements on f'(t) (see page 7). We

chose the present procof because of its simplicity.



41~
CHAPTER 2
THE NUMERICAL SOLUTION OF BOUNDARY VALUE

PROBLEMS ON SEMI-INFINITE INTERVALS

2.1 The linear case.

In this chapter we will consider the boundary value problem with

separated boundary conditions

y' = trﬂl[A(t)y + f(t)] , tO <t <o (l.1a)
DO y(to) = q , DO is ko X n (1.1b)
v(t) bounded at infinity . (1.1c)

We assume that lim A(t) = Aw, with A as in sections 1.3 and
T

1.4 (Chapter 1) and ko =p, + s_.

(o]

In the previous chapter we saw that under certain conditions

(1.1) ¢) can be written in the algebraic form

Lin [1 | 0] y(&) = 1im D y(t) = 8 (1.1d)
e

M

where 1 is the identity matrix of dimension q_+ r_ - s and
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Tt is easy to see that the change of dependent variable

1

o>

4+ -
-(A)
y(t) = y(t) - 0 : gives an equivalent system with inhomo-

~7t

>

3

geneous term which goes to zero as t + «, and hence the boundary con-

dition at infinity reduces to lim [F [ é] y(t) = 0. We will assume
+-—>00

in the rest of this chapter that this is the case.

Most numerical work on problems of the form (1.1) a), b), c)
proceed by replacing the interval E%V ©) by a finite interval, say
[FO’ t%]. However the boundary conditions to be imposed at t = t_

are not always chosen correctly.

We propose to solve

v' = tr_l{é(t)v + f(tﬂ (1.2a)
DO v(to) = q (1.2b)
D v(tm) =0 . (1.2c)

We will study the error that is made by solving (1.2) instead of
(1.1). To do this we assume that (1.1) a), b), d), and (1.2) have uni-
% %
que solutions vy (t) and v (t) respectively.

In order to estimate the error
* % .
e(t) =y (t) - v (£) , t e[to, tOJ , (1.3)

we first study, as Keller [}é], the special case when A(t) and f(t)
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have "constant tail", i.e.,

A(t)

i)
g

£(t)

i
)
-
a3
'
ct

Theorem 1.4: Let A(t) and £(t) be continuous for t EEZO, tm] and

A(t) = A, f(t) =0 for t > t . Let (1.1) a), b), d) and (1.2) a),

‘ % % * %
b), ¢) have unique solutions vy (t) and v (t). Then yﬁ(t) = v (t)

for t EEZO, tm).

%
Proof: v (t) is such that

Z'(t) = A Z({t) , t <t<w (1.5a)
0

Z(too) = (1.5b)
Y?s

The solution of (1.5) can be written as
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0 0
Ag(tr—ti)/r
Z(t) = e = ,

Y v (t)

with +vy(t) of dimension ko. Then we have

lim D_ Z(t) = lim I | O Z(t) = 0
#0) = 1im [ ] o]

Lo

Thus we conclude that the function

v*(t) t s[to, tm}
w(t) =

) t e[too, )

is a solution of the problem (1.1) a), b), d) and hence e(t) = yh(t) -

V() =0, t e[:o, tw] )
For general A(t) and f(t) we have

Theorem 1.6: Let (1.1) a), b), d) satisfy all the hypotheses gf_Theorem

4.14 (Chapter 1). We also assume 1lim f(t) = 0 and that (1.2) hag a
troo

%
unique solution v (t). Then for t E{}o’ t%]




—4 5=

0
oo +, r T
njh A (s'-te)/x srﬁlml(s)ds
t

e(t) = y*(t)—v*(t) = Y(t)Q;1 : 0o, T . T
"[Ilolf e—-A (s ~t)/T sr_lmz(s)ds
tOO

D
%
Here y (t) 1is the unique solution of (1.1), Q = ° .

* D_ Y(tm)

Y(t) 1is the fundamental solution of the homogeneous system associated

with (1.1) subject to Y(to) =1 and

0 t <t <t
o — —

F(E) + (AGE) - ADY () , €5t

(s

m(t) =

Proof: Let us call w the solution of the "constant tail" problem

tr_l(A(t)w + £(t)) t <t <t

Vo o e

r—1
t A w t >t
[

ool

D w(t) = a
[¢]

lim D00 w(t) = 0 .
oo

* &%
Then E(t) =y (t) - w (t) satisfies
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RING): t St s<t,
E' =

tr"l(AmE +m(t)) t >t
Do E(to) =0
lim D_E(t) = 0 .
>0

After a little algebra one gets

t +.r T,

- f e—A (S "‘too)/f sr—lml(s)ds
® et o, r .r

E(too) = yo -—j e_A (s —tm)/; Sr—lmz(s)ds R

v

o _ o 0 }roo - s
where vy and v are constant vectors and vy = o
Yo }Sm
t <t

% %
Hence e(t) =y (t) - v (t) = E(t) , t < o s 1s the unique

(s}

solution of the boundary value problem

e’ = 571 A(t)e
D e(t) =20
O O
o +, r r
_J N O
1
too .
D_ e(tm) =

o o, r T :
-[IIO] j’ enA (s -te)/x sr_lmz(s)ds
t



A
where I is of dimension (r°O - sm). @
From the previous Theorem it is clear that:

Corollary 1.7: 1If the conditions of Theorem 1.6 are satisfied then for

fixed t, e(t) > 0 as t_ = », provided the matrix
[ e «©

_1' 011} P, * S,
Q(t) = Y(t)QOo - - - ‘ remains bounded for t < ¢t <t as
I} q + (r-s) © —

Now we will give .an example where this is the case. Suppose that

A(t) * A + I -k

k=1 A

and that all the eigenvalues of A have geometric multiplicity equal to
1. Then we know from Coddington and Levin&n1[§] that the homogeneous

system has an asymptotic solution of the form

6 =P tR eQ ,
where
p= 3 t ¥ P, B =1
k=0 ©
r r-1
t t
Q= ;_.Qo + —;:T-Ql + ... +t Qr-l ,

R and Qi i=0, ..., r-1 are diagonal. Moreover Q@ = A .
o

In this case Q;l has the following form

gl- + 0

[s¢]
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where DO = [Pl [ Dé], g(t ) = [I l é]ti)eq, and I is of dimension
+ r
q,- The dominant term in Q(tw) has the form eA teo/T and therefore

we conc¢lude that the matrix Q(t) remains bounded for ¢t e[%o, t%} as

In conclusion, to solve numerically (1.1) a), b), c) we
propose:

1) Pick a suitable large t (Studies on the problem of choosing
the "appropriate" t_ = for a given problem are being carried
out at present.)

2) Obtain the "projection" condition.

3) Solve the resulting two point boundary value problem using any

"global" method.

In particular, all our numerical results have been obtained
using the TPBVP solver PASVA3, which is described in the Appendix.
We should mention that recently other proofs of convergence of
numerical methods for this kind of problems have appeared. Bayliss in
[1:}proposes a double shooting technique and Franklin and Scott[}l]

consider a "shooting from infinity" method.
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CHAPTER 3
BOUNDARY VALUE PROBLEMS ON A SEMI~INFINITE

INTERVAL WITH A REGULAR SINGULAR POINT

3.1 Existence theory for the linear problem.

In this chapter we are interested in the existence of solutions,

which are continuous as t > 0 and bounded as t - «, of the equation
WD) = G+ ) ule) +E(E) , 0<E < . (1.1)

Here M and ¢(t) are n x n matrices, u(t) and £(t) are vectors
of dimension n. C(t) and £(t) are continuous for t E[b, ©) and
bounded as t - «.

At the end of the chapter we will show the most general boundary
conditions which are compatible with the requirements of continuity and
boundedness and that also guarantee uniqueness.

To study problem (1.1) we divide the interval [b, ») into two
parts: [p, ti} . [EO’ ©) for finite to. We first seek solutions which
are continuous in [O, té], then we continue them through the interval

[Fo, «), and study their behaviour at infinity.

Thus, let us consider
u'(t) = (E + C(t)) u(t) + £(t) 0 <t < t (1.2)
t - 0 :

r
here ¢(t) and £(t) are continuous for ¢t eLO, t;].



I R A B ro, (1.3)
; ' } ¢q
und w o
PO rO qO

+ —
M and M are Jordan blocks corresponding to eigenvalues of M with
positive and negative real parts. Mo is also a Jordan block but we

have interchanged some columns and rows, such that it takes the form

Here s, is the geometric multiplicity of the eigenvalue zero.

The existence of continuous sclutions for problem (1.2) has
been studied extensively by de Hoog and Weiss!:7]. Brabston and Keller
[2} also consider numerical methods for solving (1.2) subject to boun-

dary conditions of the form
B u(t) = lim [Bo(t) u(t) + Bu(l) - b(t)} =0 .
) t~o

We will give a new proof of existence and uniqueness of a con-

tinuous solution for (1.2) subject to boundary conditions of the form

Co u(0) + Cl y(to) = q . (1.4)

(p _+s )
Here CO and C1 are (p0 + so)xn constant matrices and a e R °© ©
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Our proof will use the same techniques employed in the earlier

chapters and is of a more elementary structure than the one in [7] .

Ui(t)
uy (t)

ug(t)

Y(t) =t

I

To start the analysis we rewrite (1.2) in block form

(1.5)
ul(t) + (Cll(t)ul(t) + Clz(t)uz(t) + C13(t)u3(t) + f3(t))

——-uz(t) + (CZl(t)ul(t) + C22(t)u2(t) + C23(t)u3(t) + fz(t))

—-g3(t) + (C31(t)u1(t) + C32(t)u2(t) + C33(t)u3(t) + f3(t))

=

The fundamental solution of y'(t) = E-y(t) is given by

M for 0 < t j_to and Y(1) = I. Variation of parameters

suggests rewriting (l.5) in the integral form

then:

il

=) y +t s {C..u, +C..u, +¢C u+fl}ds

N i VA sl
. 11 Y1 7T Y12 Y2 Ttz Y

t 1 22 "2 23 3

(0] O t (o]
EHM vo + M 5. s {C. u. +C.. u +C. u +f£ }s
o 0 21 2

+ fB}ds

- - t -
t M - M -M
o +
=) Y + t J; s {C31 uy + C32 u, C33 u,

Since we are only interested in continuous solutions at zero

Y }'s
Yy =0 and v° = 1 ) © . (1.6)
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Thus,

(1.7)
+ + ot
t M+ M -M B
= = B T + C
“1(t) (to) Yy +t Jt s {c11 uy c12 u, + G g ug + fl}ds
O
o
ofYy M t o
_ M 1 o -M
uz(t) = (t ) + t f s {021 u +Chpy o, F c23 U, + fz}ds
o 0 0
t -
(£) = tM M {C u, + C u. + C u. + f_ids
Us 0 31 "1 32 %2 33 Y37 %3

Clearly any continuous solution of (1.2) will be a solution of
(1.7). Conversely any solution of (1.7) is a solution of (1.2). It will
be proven in Theorem 1.8 that every solution of (1.7) is continuous at
t = 0.

Theorem 1.8: Let C(t) and £(t) be continuous for t s[p, tq] and

M be as in (1.3). Then the integral equations (1.7) have a solution.

Hence (1.2) has (p + so) linearly independent solutions which are

o
continuous'gg. t = 0.

(0)

Proof: We use Picard iterations in (1.7) and start with u (£) = 0.
We get for u(l)(t)
+ + At F
v + N -M
oP ey = EM f M £ (s)as
1 t 1
o t
o. o
ofy 1 M° '
WPy = (&N ( 1)+ t_f s £ (es)as (1.9)
2 t 2
o 0 0

ugl)(t)

i

1 —_
t ‘f S‘M f3(ts)
0
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Since f(t) 1is continuous at t = 0, all the integrals converge.

Ned Ned

Hence (t) dis well defined. Moreover (t) is continuous for

t 8[0, t;], and taking limits as t > 0 in (1.9) we get
0]

u(l)(O) = yﬁ
0

Then u(z)(t) is well defined. Similarly, it can be shown by
induction that u(v)(t) is well defined and continuous for t S[O, to]
and that

0

WD gy = |40 o (1.10)
1 1
0

We define

ey = M@y - O Vy v, 2.,

Then e(v+1)(t) is given by
-} ’nt -+
e§v+1)(t) = tM J. S_M {Cll(s)efv)(s) + Clz(s)eév)(s) + 013(s)e§v)(s)}ds,
o

o prt °
e§V+1)(t) IR {021(s)e(“)(s) N sz(s)e(v)(s) + C23(s)e§v)(s)}ds,

dO 1 2
- t -
O gy o }; M e, @ (@) + oy (9167 () + (0108 () s,



~54—

We have for t e[p, g] and some constant D > 0,
t + ~
Hf G asl] < %+ [ 6]
1

Here o = min R(X(M+)) and m is the dimension of the largest Jordan
A

block in M+.

Let
1 o 1 ~
a = maxf 11 as L {1157 Jas).
0 0
Then
l|e§V+l)(t)l, §_3Dtu(l + |£n tlm—l) max (Ilev(s)ll'IIC(S)ll),
O<s<t
-~ "0
[Ie2v+1 (t)!l < 3at max (llev(s)l} ‘IC(S)'I) ,
O<s<t
||e3v+1 ()] < 3at max (llev(s)|i [[C(S)[l)
O<s<t
Let to, be so small that
t, <max (1, 1/(3a max [|c()|])
© O<s<t
—— 0
and for t e{?, té]
3D( max ||C(s)|l)tOC (1 + |n tlm_l) <1

O<s<t
——0
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Then we get, in the usual manner, that

e(v)
1

l|e(v)(t)|! is uniformly convergent. Hence (£) is

V=] v

o~ 8

uniformly and absolutely convergent on [0, to} . Then we conclude that

e(t) = u(N)(t) tends uniformly to a continuous function u(t) which
1

I ™=

v
is a solution of the differential equation (1.2) on [b, t;]. Moreover,

from (1.9) we get

O‘ } pO
u(0) = Y? b s (1.11)
0 } (n - P~ so)

This solution can be continued for t > tO if £{t) and C(t)
are continuous for t > to. @

It should be noticed that all the solutions of (1.2) which are
continuous at t = 0 satisfy (1.11). In this case the projéctién into

the subspace of solutions which are continuous at t = 0 is given by
Q, u(®) =0 . o (1.12)

Here zQO = (I - PO - Ro)’ Po is the projection into the invariant sub-
space associated to the eigenvalues of M with real part greater than
zero, and Ro is the projection into the nullspace of M.

From (1.12) it is also clear that we can only give s, additional

conditions at zero. So we get:
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Theorem 1.13: Consider the two point boundary value problem

w= Ercpuri@ 0 e, (1.14a)
u(t) continuous at t = 0 , (1.14Db)
= . (1.14(1)

[BO a(0) + B u(to)]

Here M, C(t) and f(t) satisfy the hypotheses of Theorem 1.8; B0

and B, are (p + so)Xn constant matrices; o 1is a constant vector of
— 1 — o

dimension (pO + so). This problem has a unique solution for each a

iff the (p + s ) order matrix
= l l 1.15
B B R U + B1 Ut ) ( )

is nonsingular.

Here U(t) is any nx(po + so) matrix formed from (p0 + so) linearly

it

independent solutions of the integral equation (1.7) with £(t) 0

(homogeneous system).

Proof: From Theorem 1.8 we know that all the solutions of (1.14) a)

which are continuous at t = 0 satisfy (1.11). Then condition (1.14) c)

can be rewritten as
B R u(0) + B, u(t) =o0o ". (1.16)
o o 1 0

On the other hand, any continuous solution of (1.1) can be

represented as
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u(t) = U()B + v(t) . ‘ (1.17)

Here wv(t) dis the uniqde solution of the integral equation (1.7) with

v £ 0. Then substitution of (1.17) into (1.16) gives

B R U8 + BI[U(tO)B + v(to)] =a .
Hence (1.14) has unique solution iff ﬁ is nonsingular. @

From the previous results and those in Chapter 1 we can deduce
when it is possible for the system (l.1) to have solutions which are
continuous at zero and bounded as t - «,

Before continuing further we state some notation that we will

use later on:

Y(t) is the nx(poo + sm) "fundamental' matrix (1.18a)

of solutions of (1.1) which are bounded as t = o,

U(t) 1is the nx(po + so) "fundamental' matrix (1.18b)
of solutions of (1.1) which are continuous at

t = 0.

U(t) is the matrix formed with those columns of (1.18¢c)
U(t) which are in the range of Y(t). U(t) is

nxk .

From (1.18) ¢) we deduce that there exist CO and C_ constant

matrices, of dimension (po+s%)xk and (p_+s)xk respectively, such that
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U(t)CO = U(t) = Y(t)Cw . (1.19)

Finally we have

Theorem 1.20: Suppose that M, C(t) and f(t) satisfy the hypotheses

of Theorem 1.8. We also assume that there exists a similarity transfor-

mation P such that

A(L) = g P_l[%— + c(e)|p

and

r+1

n(e) = ¢ 7 7l gy

satisfy the hypotheses of Theorem 4.14 (Chapter 1) for some r > 1.

Then if system (1.1) has a continuous bounded solution up(t), that

solution is unique iff the k defined in (1.18) c) is equal to zero.

If kx >0 it is necessary to specify k additional conditions to

guarantee uniqueness:

B u(0) + 1lim B_ u(t) =a . (1.21)
° t—ro

Here B and Boo are k X n constant matrices and o is a constant
o a constant

vector of dimension k.

The solution is unique iff

B =B R U(0) + 1im B_ R_ U(t) ‘ , (1.22)
[e) o] o0

is nonsingular. R is the projection into the nullspace of M and
As nonsingular o X8 proj P or and
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R 1is the projection into the nullspace of A = lim A(t).
t—>co

Proof: Any bounded continuous solution of (1.1) can be represented as

u(t) = U(E)g + a (6] (1.23)

The matrix 6(t) is given iﬁ (1.18) ¢), B dis a constant vector in R
and up(t) is the particular solution of (1.1). Substitute (1.23)
into (1.21), recall that u(0) = RO u(0) and that the only components
of u(t) which can be specified at infinity are R u{t). Then we see

that the boundary conditions (1.21) are equivalent to

[B R U(D) + 1im B R U(t{}s = a-B R lim u (£)-B u (D).(L.24)
o o © ® o P o p

Lo t-ro0

The system of algebraic equations (1.24) has a unique solution

iff B is nonsingular. %

3.2 Numerical considerations: De Hoog and Weiss [7] bave shown that the

box scheme and the trapezoidal rule are stable discretizations for sys-—
tem (1.2) when computing solutions which are continuous at t = 0. In
the case of the trapezoidal rule it is necessary to change equation

(1.2) at t =0 to
v'(0) = M y"(0) + C(0) u(0) + £(0) .

Thus this scheme only is applicable when M does not have the eigen-—
value X = 1,

De Hoog and Weiss also mention that, although the trapezoidal
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rule is still a second order method for (1.2) the discretization error
does not have a uniform expansion.

We should mention that our numerical experience, using PASVA3

(see the Appendix), does not support this statement.
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CHAPTER 4

NUMERICAL EXAMPLES

4.1 The beam equation.

We have chosen a very interesting problem to start the compu-
tational test of the methods we described in the previouschapters.
J. N. Franklin and R. F. Scott [l{l, have proposed the use of

a shooting technique to obtain bounded solutions of the equation
W) + %P w) =0, x efo, = . (1.1)

"This equation is satisfied by the deflection w(x) of loaded beams

resting on, or imbedded (piles) in soils; x is the distance from the surface.
In many structural and foundation engineering problems consid-

eration must be given to elastically supported beams. When the support

is provided by a continuum, a solution in the form of the deflection of

the beam as a function of its length is often difficult to obtain. A

good representation of the system is achieved by considering the support

of the beam to consist of springs continuously distributed along its

length.

In the simplest case, the beam has properties uniform along its
length. 1In this case analytical solutions in terms of elementary func-
tions have long been available. However, when the beam or spring pro-
perties vary in some fashion along the beam's length, closed-form ana-

lytical solutions have not been obtained.

A problem of considerable practical interest is the pile, which
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consists of a beam imbedded vertically, or near vertically, in the
ground, and loaded by a horizontal force or a moment at ground surface.
Most soils become stiffer with depth, in some cases linearly, in others
with some other power of distance.

For the diameter and length of piles most frequently employed
in practice, displacement, moment, and other quantities in this pro-
blem die out relatively rapidly with distance from the surface, so that
the range of numerical values occurs near the loaded end. Conditions
at the pile base are unimportant, and the problem becomes a semi=infi-
nite one."

The well known simplified equation feor a beam bending under the

action of transverse forces q(x) is
e w™ ) - q =0, 0<x < 1.2)

where EI is the elastic modulus, w dis the deflection, =x is the
length coordinate taken along the beam's axis. Where the beam is not
loaded by external forces q(x) = k(x) w(x) is supplied by the foundation
material pressing on the beam. If k(x) can be represented as a power

of the distance, equation (1.1) is obtained from (1.2) through a change

of wvariables.

For the pile problem there are two possible sets of conditions
that can be given at the top ef the pile - either the values of w'
and w''' or w'' and w''', depending on what is known: the

transversal force or the moment at the top of the pile. The comple-

mentary conditions are:
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lim w(x) = lim w'(x) = 1lim w'(x) = lim w'""(x) = 0 . (1.3)
X0 X>® ‘ x>0 x>0
In order to find the appropriate projection condition for the
equation (1.1) when p > - 4 we rewrite it as a first order system which
has the same asymptotic behaviour as x - « as equation (1.1). Making
the change of dependent variable (Coddington and Levinson [5] p. 169)
o X—(k—l)r w(kwl)

Yy , k=1,2,3,4 , r=plt , (1.4)

we get that the vector y = (yl, Vo5 Vg y4)T satisfies

y' = x Ay . | (1.5a)
Here
0 1 0 0
- 0 —rx” D) 1 0
A = 0 0 —opyx” IFT) 1
-1 0 0 —3rx_(1+r)
and

A_ = lim A(x) = . (1.5b)
x> 0 0 0 1

A has the following eigenvalues A, = eﬂl/a, A
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i/ _ S/

Ay = 4

3 > A

We notice that Re(kl) > 0 ,Re (Az) >0,

Re(A3) < 0, Re(KA) < 0. We conclude that the system (1.5) has two linear-
ly independent solutions which vanish as x + « .

The eigenvectors of A@ are

i 1 . 1 1
%%'(1+i) {% (1-1) -{%A(l-i) —{g (1+1)
s , s and
i -i -i i
-/—g (1-1) -“-3- (1+1) “-3- (1+1) Z (1-1)

After some algebraic manipulation, we find that the projection

condition for a real solution can be expressed as

1 1
14 + - =0 ,
le[yl (x) > yz(X) 5 YA(X)]
(1.6)
=0

1 1
lim| — y,(x) + v (x) + =y, (%)
x-m[/zz ’ /z"*]

We observe that by making the change of variables (1.4) we
have introduced a singularity at x = 0 which did not exist in the
original problem. To avoid this diffucilty, we use close to zero a dif-

ferent formulation of (1.1) which has no singularity at x = 0. Specifi-

cally we use near x = 0 the system:
[0 1 o o

0 0 1 0

y' = y . (1.7)
0 0 0 1

>

-X 0 o
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The components of y(t) are defined by

3,0 =0 1 =1,2,3,4, (1.8)

In practice, we choqse a suitable x (in this problem x =7
was satisfactory) and apply the projection condition at x = X _.. On
the other hand, it is convenient to compute two linearly independent
bounded solutions once and for all, such that ome can obtain any solu-
tion of physical interest as a linear combination of those two. That
can be achieved by imposing the initial conditions either w' =1,

L try

""'"=0 and w'=0,w''"" =1 or w'=1, w =0 and w'' =0,

w

il

ey
w

il

1. Then for x eEé, l} we solve system (1.7) with the two
appropriate initial conditions and finally for x e{l s x%] we solve
system (1.5) with the projection condition. This is done simultaneously

by making the additional changes of independent variables

t = x, xe[O, 1] and

(1.9)

x-~1 [, ]
t = » xefl | x
xm—l ©

Now t e[p, ﬂ is the independent variable for both systems

and since we want a continuous solution the additional conditions are
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7, (1) = y,(0) = 0
7,(1) - ¥,(0) = 0
¥4 (1) = y5(0) =0
v, (1) - y3(0) =0

Figures 1 and 2, correspond to the numerical solution obtained
using the two-point boundary solver PASVA3 [a full description of this
program is in the Appendi%] to solve the systems we just described for
p =1, Sinﬁe we were interested in making some comparisons with the re-
sults of Franklin and Scott [1{], we chose the initial conditions
properly in order to get their solutions.

In conclusion we solve for V) T Y Vg T Vg Vg = Vg V=Y,

~ ~ ~

VS = yl’ V6 = y2’ V7 = Y39 V8 = }’4: t E[O’ ]_']

Vi(t) = Vz(t)

Vé(t) = v3(t)

va(e) = v, (1)

V&(t) =—t4r vl(t)

Vi) = Ge DT (647 G m 1) v (0)

v6(8) =~ TGy Vet DT (R G v ()

() = - (t+1/%}iw-l)) vy + G D (R (e - 1) vy ()
3r

vg(t) =~ (7 (x-1)) '8 ~ (xm—l)rﬂ(tﬂ/(xmd))r vg (£)



with the boundary conditions:

- .886498

VZ(O)

or

V3(O) = ~ ,584606
and

1

Yy

V3
V4
V2 v5(1) + v6

v6(l) + /E'v7
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(1)

(1)

(1)

(1

(1)

(1)

M

A

i

(0)

it

(0)

VS(O)
v6(0)
v7(0)
v8(0)
vg(l)

vg(l)

.29039%4

.892356

The numerical results were obtained on a grid of 49 points in the

*
interval [Q, i] . The results agree with those of Franklin and Scott

up to 4 significant digits.

It is necessary to emphasize some of the advantages of our ap-

proach as compared to that of Franklin and Scott:

ot
’

tions on 98 grid points.

The work done is equivalent of that of solving one system of 4 equa-
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1. It is not necessary '"to play' with boundary conditions since
the projection condition and the physical requirements form
a set of 4 boundary éon&itions.
2. The results were obtained by running the program only twice.
3. We use a boundary value solver with estimation of global
errors and deferred corréctions which permit us to obtain

*

accurate solutions efficiently.

4.2 An eigenvalue probiem.

The second example we consider was chosen for two reasons.
First it is one of those historic problems that has appeared in the
literature for many years because it was difficult to solve with stan-
dard techniques. Second, it has a regular singular point at the left
endpoint and is on [p, ),

Fox in [}d] and Conte in [6] consider the following eigenvalue

problem related to the solution of the Schrddinger equation for the

hydrogen-molecule ien with fixed nuclei:

% T would like to thank Professor Joel Franklin for mentioning this
problem to me and Professor Ronald Scott for explaining the physical
significance of the problem and offering his numerical results for
comparisons.
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u" = 2\u - 4 EO u - %-Ez v - %‘E4 W (2.1)
v' = 20 + ii-v - 4 E2 u - (4EO +-§ E2 +-§ Eq)v

- (%E2 + %gg-Ea + %%% E6)w
w' = 2xw + ig-w - 4 E4 u - (%% E2 + g%—E4

+%’E6)v- G +30E + 28w

+~§9~ E +-lg§9-E Yw

143 76 2431 78

b
P
h
[w]
| A
™
I A
[y

if

| v

Boundary conditions: the solution has to be continuous at x = 0 and
vanish at infinity.

We should mention at this point that we have not done any analy-
tical study of eigenvalue problems in semi infinite intervals. It seems
unlikely that one cén compute the eigensolution, using the techniques
we have discussed in this thesis, when the problem has a continuous
spectrum. But the situation for discrete spectrums looks more promising.

In any event, the problem that we present here has a discrete
spectrum. Moreover, it has an isolated eigenvalue close to A = .3.

We intend to compute that eigenvalue and its corresponding eigenfunc-
tion more accurately than has been done so far. In particular, computing
the eigenfunction numerically with any reasonable accuracy has been a

very difficult task in the past.
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To get a first order system equivalent to (2.1), which preserves

the regular singularity at zero we make the change of variables

y, (0 = u(x) Y, =0 (x) oy, = vx)
(2.2)
ya(X) = x v'(x) yS(X) = w(x) y6(X) = x w'(x)
Then we get for vy
g = i AGx) + £(x, ¥) (2.3a)
where
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
M= 1lim A(x) = (2.3b)
x>0 0 0 6 1 0 0
0 0 0 0 0 1
0 0 0 0 20 1

and f(x, y) dis continuous as x = 0 for continuous y(x).

The eigenpairs of M are

1 0 0
0 1 0
0 0 1
A =0 , ;A= -2 :
0 0 -2
0 0 0
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0 0] 0

0 0 0]

0 1/3 0
)\:_—[;, Ky >\=3 3 )\25

0 1 0

1 0 1/5

~4 0 1

Then, after some algebra, we find that a continuous solution at

zero must satisfy

il
o

-3 y3(0) + YA(O)
(2.4)

it
o

-5 y,(0) +y,(0)

To obtain the projection condition at infinity we have to make a
different change of variables since system (2.3) does not have the same
asymptotic behavior as system (2.1).

The proper change of variables is

7,60 = u 3, = e 3,60 = v

(2.5)

A

ya(X)

I
[
i

v'(x) ;S(X) w(x) ;6(X) w' (x)

~

Then, vy satisfies

y' = Ax)y + £(x, ¥) , (2.62a)
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where
0 1 0 0 o] 0
2\ 0 ] 0 0 0
. 0 0 0 1 0 0
A,oo = 1lim A(x) = . (2.6b)
x>0 0 o 2x 0 0 0
o] 0 0 0 0 1

The eigenvalues of A are

w,o== /2% u_ = V2A ,
1 2
both of algebraic multiplicity 3 but geometric multiplicity 3 (we
only consider the case X > 0).

The corresponding eigenvectors are

1 0° 0
- Y2 0 0
0 1 0
0 ’ - V2) ’ 0 27
0 0 1

0 0 - /7
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and
1 0 0
V2 0 0
0 1 0
2 ’ (2.7)
0 V2 0
0 0 1
0 0 V2
Hence the projection condition at infinity becomes
lim (V2x v, () +y,x) =0, (2.8a)
b Sass
lim (V2A v, (0 +y, ) =0, (2.8b)
Ko
lim (V21 yo(x) +y () =0 . (2.8¢)
b e
Conditions (2.8) written in the y wvariables become
lim (V2A y, (&) +y,(x) =0 (2.9a)
e &
lim (V2A (0 + 3, /%) =0 (2.9b)
X0
lim (V22X y5 () + Y (x)/x) = 0 (2.9¢)

We actually use the projection conditions (2.9) at a suitable
finite value x = xM. For this problem we found Xy = 13 quite satis-

factory.



A

We note that continuity at zero and boundedness at infinity ounly
impose 5 boundary conditions for a system of 6 first order equations.
For this problem it is possible.to specify one additional condition at

zero. We take, for convenience,

yl(O) =0 . (2.10)

After all this analysis we have transformed the original problem
into an eigenvalue problem in a finite interval. In order to be able to

use PASVA3 we introduce as two new variables the eigemvalue X and a

normalisation,

y. (= = A,
< 6 (2.11)
2
vg (x) =[ Loy (x)dx o,
0 i=1
together with the boundary conditions
yg(0) =0 ygl=) =1 . (2.12)

The resultant system is
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Y1792
| 4 4
| - = . R
Vp =2y -4 E Y~ By g s
'=—Z{}_
y3 x
y) = Zé~+ 2xx vy +-é y, - 4x E_ y
LT % 37 %73 2 1
- x(4 E +8 @ + E )y
o} 7 Y72 4 3
8 400 100
- xG By 553 By T 143 BdYs
7
yS X
y
1. 6 20
Ve - + 2Ax Vs + = Vs 4x E4 vy
72 80 180
- x5 By ¥ 55 B+ 3 By,
80 648 80
- x(AE )+ 52 By + 9501 B T 143 B
1960
* 5431 Bg)Ys
'=
Yy 0
6
2
Yé= oy ()

(=1

The boundary conditions are:
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- 3 y,(0) +y,(0) =0
=5 y,(0) +y.(0) =0
Yl(O) = 0
y8(0) =0

/i_;y<x>~ry2<x)=o

v, (%)
Vr—— y3(x ) + ~é-M— =0
M
v, (x )
Y2y yo(x,) + L
7 Y5 Xy
ys(xM) =1

Conte in [6] computed the eigenfunction associated with the
eigenvalue A = .36004, which he calculated with 6 significant figures.
He used an initial value method to compute the eigenfunction and a root
finder procedure to get the value of XA which satisfies the additional
boundary conditions.

Figure 3 shows the eigenfunction we obtained for A = .36004.
Conte used an step size equal to .05 to compute the eigenfunction to at
least 4 significant figures in the interval [O, 1%}. We used PASVA3 to
compute the same eigenfunction with 165 mesh points in the interval
[O, 1%‘; 3 corrections were required to get Conte's results. Besides
the advantages of efficiency that this approach gives it is the first
time, to our knowledge, that a theoretical justification has been given

for solving (2.1) in a finite interval.
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CHAPTER 5

MULTIPLE SOLUTIONS FOR THE VON KARMAN SWIRLING FLOW

5.1 Introduction

The problem of a rotationally symmetric, viscous, incompressible
fluid above an infinite rotating disk has been of great interest from
both the theoretical and the numerical point of view.

Von Kirmin has sﬁown [}é} that in the case of axially symmetric
flow, the Navier—Stokes’equations can be reduced to a system of ordinary
differential equations.

For various values of the ratio vy of the angular velocity of the
fluid at « and the disk, solutions have been obtained. More recently,
D. Dijkstra and P. J. Zandbergen [9i}and A, ﬁ. White [?d] have shown
that at least two branches of solutions exist for v & (-.16054, .07).
In fact, these two branches coincide for vy = - .16054.

From the theoretical point of view Mc Leod has proven several im-
portant results:

i) Solutions exist for vy > 0 {15], [17] .
ii) Solutions do not exist for vy = - 1 when there is no suction
through the plate [16] .
iii) A unique solution exists for vy =1 [1%}.

We only treat the case of no suction through the plate. We find
~another limit point at vy = .07452. This new branch crosses the axis
and continues for negative values of y. ‘That i;, at least three solutions
exist for v E[b, .0745%]. In fact, we have computed ghis third branch
up to y = 0. As we will see later, we have enough evidence to believe

that there are infinitely many solutions.
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5.2 Governing Equations

In a cylindrical coordinate system (r, ¢, Z) - the disk is the

plane Z = 0 and the corresponding velocities are
5
u=1r Q£ () ,v=rQglt), w=-200)" f(t) . (2.1)
The angular velocity of the disk is £ and
1
t = 2(Q/v)* .

Then the Navier-Stokes equations reduce in this case to

it

EUTT(E) + 2 £(8) £17(E) = £12(8) + v2 - g2(t) (2.2a)

g''(t) + 2 £(t) g'(t) = 2 £'(t) g(r) . (2.2b)

For no suction at the disk the appropriate boundary conditions are:
£(0) =0, £'(0) =0, g(0) =1 . (2.3)

In (2.3) we have assumed that the angular velocity of the fluid at in-
finity is vy,

The asymptotic behaviour of the solution at infinity has also
been studied by Mc Leod. - In fact, for vy = 0 the solution decays
exponentially. For vy # O the solution is damped oscillatory. TUlti-

mately
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f(t) fm
£' () 0
£117(1) -1 0 as t > o
g(t) Y
g'(£) 0

Here foo is a constant and depends on the value of the parameter Y.
In order to get the appropriate projection condition for system

(2.2) we make the change of dependent variables:

w (t) = £(£) - £
Wz(t) = £'(t)
wa(t) = £77(t) (2.4)

w4(t) = g(t) - vy

g'(t)

w5(t)

Then, the vector w(t) is the solution of the first order system

0
W0 = A w(e) +| 2w (Duy () + wr(0) = (E) (2.5a)
0

\ ~2, (D)wg(£) + zwz(f)wl(t)



o 1 0 0 o ]
o o 1 0 0
A= fo o _2f -2y 0
o 0 0 0 1
0o 2 0 0 ~2f
| - v oo_|

The eigenvalues of A are

and the roots of the equation

Voow 26yt +ayt =0,

5
)\=—fm+1——[i{(fi+4y2)2+f

V2

2,4

ol

s L
+ i{(f: + 4y%yE fi}{l

To simplify the notation we write these four roots as:

A, = =~ fOo +x+iy, A, = - fOo +x~1ivy

2

X, = - foo -x+iy, r =- foo -x -1y

4

where

(2.5b)

(2.6)

(2.73)
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L 2.4
x=—1——{(fi+4y2)"‘+f}‘

[o5]

N

(2.7b)
1

LD D - £y
We notice that, for vy # 0, A has two complex eigenvalues with
positive real part, and two complex eigenvalues with negative real part.
From the theoretical considerations of Mc Leod it can be concluded
that for vy = O,f°° has fo be positive. Hence, in this case we have two
negative eigenvalues, and the eigenvalue zero has algebraic multiplicity
3 with one Jordan block of dimension 2.

To go further in our study we separate the cases y = 0 and v # O.

The eigenvectors of A°° for vy # 0 are

l e
1 1 1 1 1
A A, 0 ,\3 A,
_ 2 2 2 2
P = M A, 0 A3 A, (2.8)
2 2 2 2
- x101/2y - )\2C2/2y 0 - >\3C3/2y x404/2Y
3 3 3 3
- A1C1/2Y - >\2C2/2y 0 - x3c3/2y - >\4c:4/2y
- -
Here Ci = 2foo + Xi ; this implies
C1 =f +x+ iy =~ A4 C2 =f + g‘- iy = - A3
(2.9)
C3 =f_ -x+iy = - Xz C4 =f -x-1iy = - Al

In P we have ordered the eigenvectors so that



Then the projection condition is

lim qf w(t)

£

1lim qg w(t)

tor

where qf and qg are the first two

We notice that the matrix P

P = (pl’ 513 pzs

with Py = Py Therefore

i
o

(2.9a)

!
(@]

- (2.9b)

. -1
rows of the matrix P .

can be written as

p3’ p3) >

. ey s T .
This means that it is only necessary to calculate 9y and since the

desired solution is real, the boundary condition at infinity is given

by
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lim R(qf) w(t) = 0
t—)'OO

(2.10)
lim I(qf) w(t) = 0

e

Let: qf = (xl, Xy Xg5 Xy XS). Then, we have to solve the linear sys-

tem of equations

q; P = (1, 0, 0, 0, 0)
Since P, = (1, 0, 0, 0, 0) then
X = 0

The equations for the other components are:

2
X, C rTC
171 171 _
I Sl S VRS
AiCi Aici (2.11)
-+ P - = i =
X, Ai Xq 2y X, 2y 5 0 i 2,3,4
Let §, =~ A, C, i=1, 2,3, 4 ; i.e.,
1 1 1
61 = Xl A4/2Y 62 = AZ AB/ZY
63 = k3 AZ/ZY 54 = AA AI/ZY .
Hence 51 = 64 62 = 53

The equations (2.11) can be written in the form:



Qx

To solve (2.12) we reduce

gives:
Where
1
1
Q =
1
-

Q to lower triangular form.

(2.12)

This
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1 0 0 0
O L
(A=2)) 2
T = 27 M
2
0 0 1 0
0 0 0 1

Q1 T, T, x=Db , (2.13)

where

1/x

Defining v =T T—1 x, we solve (2.13) in two steps:

Q1 v=~>=, (2.143a)

x=T, T, v . (2.14b)

Then,
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l/kl

—l/Al(Xz-Xl)

v: —3
1/2,(8,-8,)
1/, (8,-8,) (1, =A )
Hence
X5=V4
X, = V., — A, V, = (A4‘Al) ! Al =~ X, Vv
4 3 1 4 A1(64—62)(A4-A1) 4 4
§,-6
_ 4 "2 _
3TV TR T 2 T T %Y
o = (64"52)(A4"A1) - 51(x4‘11) M
2 \
A (8,8 Oy2p)
A
Ay (8,760 (y=ry)
= Aa 62 Va .

Therefore, conditions (2.9a) are given by

Lim{x, §. w.(t) - 62 wg(t) - (t) + w (t)} =0 |,

oo 4 "2 "2 4

since v, # 0.

Separation of real and imaginary parts gives

2 v
by G, ) = Linf-wy (6) + (£, + %) w, () +w (D} =0 ; (2.15)

Lo
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2
(f, xy +x7y)

hz(w, v) = 1lim{-

oo

v wy(0) = 2 wi(e) +y w (D)} = 0.

hz(w3 y) = lim{—(fm‘x + xz) wz(t) - X w3(t) + v w4(t)} =0 . (2.16)

>

This simplification is even valid when vy = 0, since for lyl << 1

and foo #0
1 1
e G R I T
V2
1 2 2?2 4o
= (£ + T - 0+ 0(y'))7
V2 £
2
=+ @+ oy
Similarly,

x = £,(1+ 0(y"))

As we will see later, it is important to know the limiting ex-

pressions for hl(w, Y) and hz(w, Y) as vy > 0. Namely

hl(w, 0) = :tLiS{Z £ wé(t) + ws(t)}
(2.17)
hz(w, 0) = 1im{2 £ wz(t) + w3(t)}

Lo
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The eigenvectors of A for y =0 and £ > 0 are

—I/fm 0 0 0 1]
0 /£, 0 0 -2

Pp= o 0 0 0 4
0 0 /£ /£ 0
0 0 0 -2 0

o0 1 o o 0o
0 0 0 0 0
p A_P= o o0 o0 o0 0 (2.18)
0] 0] 0 A3 0
0 0
B 0] 0 Aé__
Then the first three rows of P—l are

q2 = (0’ fw, ]/2’ O, O)
a; = (0, 0, 0, £, %)

We notice that and are the limiting forms, as v = 0, of the
)

43
projection conditions hl(w, v) and hz(w, v) given in (2.15) and (2.16).

Now we can state the problem which we will solve:
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frr ez =04 Y2 = g2
0<t<w (2.19a)
g'"+2fg'=2f¢€f"g¢g
with the boundary conditions:
£f(0) =0 £'(0) =0 g(0) =1 (2.19b)
. 2
Lim {2 £7(t) + (£(t) + x)(g(t)-y) + g' ()} =0
| Sy Y
(2.19c)

1im {- x(f(t) + x) £(t) - x £'7(t) + y(g(e)-y)} = 0 .
>0
Here x and y are given in (2.7b). vy is a parameter in the problem,

and for v = 0 instead of (2.19c) we use their limiting forms

1im {2 £(t) g(t) + g' ()} =0
t>ce

(2.20)

lim {2 £(t) £'(t) + £''()} =0

o

We remark that this is the first time, to our knowledge, that the boun-
dary conditions (2.19c) have been used. But more recently, and com—
pletely independently, A. B. White [?é] has alsg used some sort of pro-
jection condition when solving this swirling flow problem.

Since PASVA3 is a first order solver we have to rewrite (2.19).

Thus we actually solve for the variables
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v (8) = £(1) , y,(t) = £'(8) y4(t) = £11 (),

i

y4(t) g(t) - v, ys(t) = g'(t)

Then we want to compute the solutions of the first order system

y1(8) = y,(t)

yo(t) = y,(t)

4 (1) = -2 y, (8 yé(t) + yg(t) -2yy,(0) - yZ(t) (2.21a)
v, (t) =y (t)

yg(e) = - 2y, () y(£) + 2 y,(t) (v, () +v)

subject to the boundary conditions

Yl(O) = 0 yz(O) = 0 y4(0) =1-y
2
lim {§X—-y2(t) + (y, () + %) v, (6) +y,(DF =0 (2.21b)

I gl

lim {- x(yl(t) + x) yz(t) - X y3(t) + v Y4(t)} =0

>0

5.3 Numerical Method.

From the experience of Dijkstra and Zandbergen E?] and A. B.
White [2@} we know that problem (2.21) has multiple solutions. These
authors have computed two different branches of solutions for
Y a[}.16057, .Of]. Moreover there is a "limit point", éée section 2
of the Appendix, at vy = -,16057. All of these computations stop at

approximately <y = .07. Dijkstra and Zandbergen indicate their belief
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that the branch continues to larger values of vy and also that they
have strong evidence that around Yy =.0752 there is another "limit
point." On the other hand, White argues that a small "kink" develops
near vy = 0.07.

To solve (2.19) numerically we have introduced in PASVA3 the
necessary modifications to carry out the arc length continuation proce-
dure of Keller [14]. In the Appendix there is a detailed description of
those modifications. |

We still have to say how to choose t s the point where we apply
the boundary conditions (2.19c). We know that the behaviour of the
solutions change drastically when passing through a limit point. From

[9:} we have taken the idea of using the integral identities

[2e]

£"%0) - g2 (0) =f 4 £(E£"2 - g2ydr
0

£17(0) g' (0) +§y3-yz+l=fm4 £E g dt
3 3 0 '

as an additional check on the goodness of t . But to guarantee p
digits in our results, we compute the solutions for different values of
t_~ until we have stabilized at least p figures in the solution. All
the solutions were obtained on a net with a maximum of 120 points. We
observe that, although it was necessary to enlarge the interval every
time the branch of solutions crossed a limit point, the "boundary layers"
were thicker and hence less points were necessafy to reach the desired

accuracy.

All our results are accurate to at least 4 significant figures.
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5.4 Numerical Results.

As it is described in the Appendix in order to use the arc length
continuation procedure we have to start with an isolated solution of
(2.21). This is easy because for vy =1 we know an exact solution of
the problem, namely solid body rotation of the fluid: £ = 0 , g = 1.

Using arc length continuation we follow the branches that have
been already computed by White Eﬂa and Dijkstra and "Zandbergen E}],

On the first branch, from vy =1 to y = 0 an interval of length 15 was
used, from vy = 0 to the first limit point the length of the interval
was enlarged to 25. All the solutions of the second branch were com-
puted on an interval of length 45. ¥or the third branch we needed an
interval of length 95.

The numerical results of our computations are given in figures
4 ~ 15 and table 4.1.

Figures 4,5 and 6 show the bifurcation diagrams corresponding

to —fw,g'(O) and. £''(0). as functions of vy, ¥y e[f .16, .O%}
For plotting pﬁrposes, we translated the values of g'(0) and £''(0).
Figures 5 and 6 show (g'(0) + 0.6) and (£''(0) - 0.5) respectively.
Every point in any of these diagrams correspond to a solution of (2.21).

Table 4.1 contains the numerical values used to plot the third

branch of solutions. (For the numerical values of the other two branches

see [9] and [29]>.



.07452
.07451
.07450
.07447
.07437
.07435
.07433
07414
.07
L0675
.0650
.0625
.06
.0575
.0550
.0525
.05

. 04556
.03791
.02463
.01089

.005

TABLE 4.1.

.2258

.2259

.2260

.2259

.2251

L2249

.2246

L2221

i

L1448

L1112

.08152

.05472

.03037

.00816
.01222
.03097
.04826
.07577
.1150
.1627
.1890
.1934

.1938
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£"(0)
L4940
L4940
L4940
L4940
<4941
L4941
4941
L4941
L4946
L4949
L4952
<4955
.4958
L4961
.4963
.4966
.4968
L4972
.4978
.4985
.4989
-4990

.4990

f

Third Branch of the Swirling

gt |

.5622

.5622

.5622

.5622

.5622

.5622

.5622

.5622

.5623

.5624

.5625

.5626

.5627

.5627

.5628

.5629

.5630

.5631

.5633

.5635

.5637

-5637

.5637

Flow Problem
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Figures 7, 8 and 9 show the three velocity components for each
of the three branches for v = 0. The flow corresponding to each of
them is shown in figures 10, 11, 12.

To describe the flow field we will use the concept of a cell. A
cell (Szeto [}é}) is a region bounded by plsnes of constant Z that
includes only its own recirculating fluid. In other words, it is a region
bounded by planes of constant Z at which the Z-velocity is zero.

Thus, we observe that the flow for the first branch has only one
cell. The second branch has three cells and the third branch has five cells.

In figures 10, 11, 12 the size of the arrows is proportional to the
logarithm of ‘1 + magnitude of the velocity.

Finally, figures 13, 14 and 15 represent the two solutions for
Yy = 0.0745 corresponding to the second and the third branch.

It seems reasonable to conjecture that there are infinitely many
solutions for vy = 0, with their inflow velocities, -f_, monotonically
converging to zero from below. Thét is, schematically, the extension of

figure 4 is conjectured to be:

W, ™
o
§__;‘8—7‘1
=~
~
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The regularity of the added '"periods' ,and cells also suggests this.
Indeed based on the solution branches 1, 2, 3 which use boundary condi-

tions at t_ = 15, 45, 95 we assume that the fourth branch will require

t 195,
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CHAPTER 6

APPENDIX

6.1 Brief description of PASVA3.

»

PASVA3 is a modified version of the variable order, variable step

code for solving two-point boundary value problems described in [}8] .

To start the description we consider a general nonlinear two-point

boundary value problem:

& e, W =0, e[ 0] (1.1a)

subject to the nonlinear boundary conditions

g(w(a) , w(b)) =0 , (1.1b)

where w(t), f(t, w) and g are d-dimensional vector functions.
Tt is assumed that the conditions in g are given in the follow-

ing order

g(l)(W(a)) }p
e(w(@),wm) = &P w@,um) | tr
e ) ] q

In other words, the problem has p initial conditions g(l)(w(a)) =0; r
coupled boundary conditions, g(z)(w(a),w(b)) = 0; and q end conditions,

¢ wm) = o.
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Moreover, it is also assumed that f has at least two continu-
ous derivatives and that there exists an isolated solutioh W*(t) to the
problem (1.1).

The numerical method used to solve (1.1) is based on approxi-
mating ‘%% by the trapezoidal rule on a mesh with (J+1) points in
the interval a,lﬂ. Thus, we consider a mesh m of points {tj}
i= 1,...,J + 1 satisfying:

a=tr<t <...<tJ+1=b. (1.2)

The trapezoidal rule approximation to (1.la) is:

Wj+l._wj_
e s == 1/ ) 1 = J
A [ece,, wp + e, wp] L a =109, (3a)

with the boundary conditions

g(bﬁ, WI%I) =0 . (1.3b)
Here the d-vectors W. approximate w (t.) and h., = t,. - t., 1is
5 °PP ¢ i’ i j+l j

the mesh spacing, which is not assumed to be uniform.
Equations (1.3) form a system of (J + 1)xd nonlinear algebraic

equations in the same number of unknowns {W .} i=1,...,d .
11 & -
j=1,...,J+1

Using further vector notation we refer to (1.3) as the discrete

system and write it as:
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GW(W) =0 , (1.4)
where
— ey 1
W g( )(w )
11 17
R 5
Woq d-vectors w2 - W1 2 (f1 + f2)
Wai1
W = W > GT]'<W) =
12
hJ
Wopp ~ ¥y -3 (fJ+1 + fJ)
(2)
g "W, W)
(3)
Wag+1 g W)

with £, = f(t,, w.).
J J J
Under mild assumptions system (l.4) will have an isolated solu-

* ¥
tion W near {w&(tj)}, provided h = max h, is sufficiently
j=1,..,3

small. Moreover, this discrete approximation will be accurate to order

2 . .
h”, di.e., there exists a constant ¢ so that:

* % * * 2
llw - w [I:_ max !wij - wi(tj)l <ch . (1.5)

The solution of (1.4) is computed using a Newton iteration. If
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we call GWGJ) the Jacobian matrix of Gﬂ; we have that the iteration
is defined by:

w(® given (1.6a)

¢ whHm ™ - - ¢ @) (1.6b)
w T

w(v+1) _ w(v) (v+1) v=0,1,...

+ W . (1.6c¢)
We see that for every Newton iteration‘it is necessary to solve
a linear system of algebraic equations, namely system (1.6b). To solve
these systems the program constructs a stable LU factorization of Gw’
using an alternating partial pivoting strategy that does not destroy the
sparse structure of Gw' Then it solves two block triangular systems

to obtain AW(V+1).

As we pointed out before the discretization (1.3) has order of
accuracy h2, even if a nonuniform mesh is used. Whenever there is a
priori information on regions in which the solution w*(t) might have
rapid variations it should be used by considering an appropriate mesh
m. The program has an automatic mesh selection procedure which, in the
course of the computation, will try to find a good mesh for the problem.

The order of accuracy of the basic method (1.3) will usually be
too low. To improve this situation a variable order method, based on
deferred corrections, has been implemented in the program. This de-
ferred correction procedure gives, as a by product, a very good estima-

tion of the global error.

All these various techniques are arranged in a somewhat complex
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structure with a master control program that makes automatic decisioms,

based on currently available information on when to refine the mesh,

when to increase the order, and finally when to stop with a sufficiently

accurate result.

6.2

Brief description of the arc length continuation procedure.

The arc length continuation procedure is completely described in

Keller [}4]. Here we will give a summary of it.

We are interested in two point boundary value problems which de-

pend upon a parameter:

It

a)

b)

c)

dw
it £(t, w, v)

]
o

G(w, t, v) =

g(w(a), w(b), v)

is assumed that w is in some Banach space B and vy € R.

We start with some definitions:

Arc of solutions: is a one parameter family of solutions of

(2.1), @(s), v(8)) , s s[sl, sé], twice continuously dif-
ferentiable in the parameter s

Problem (2.1) has an isolated solution, v s for vy =¥«

(e}

. o _ . . . .
if GW = Gw(wo’ yo) is nonsingular and if G(w, y) 1is
continuously differentiable in some po—sphere about

o0 7]

[&0, Yé] is a regular solution (point) if v is an iso-

lated solution of G{w, t, YO).

(2.1)
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d) [?0, y;] is a normal limit solution (point) if:
1) v is a solution of G(w, t, YO)
. . . ) . o
ii) dim N(G ) =codim R(G) =1
w W

0 , 0
e R(G
iii) GY fR( W)

e) Eﬂf Yé] is a simple bifurcation solution (point) if:
S i) LA is a solution of G(w, t, yo)
s . o . o}
ii) dim N(G) = codim R(G ) =1
W W
o o
iid G R(G ).
iii) G, £ R( W)
iv) bifurcation equation is satisfied (too messy to
include).
The whole idea of the arc length continuation procedure is to
introduce an artificial parameter in the problem and to continue in this

parameter. To do this we seek solutions of (2.1) which satisfy the

normalisation
1 o 2 . 2
NG, v, 8) = gllw@|]"+ -a) [v["-1=0 (2.2)

where ¢g¢e(0, 1) is arbitrary and -+ denotes differentiation respect

to S.

Normalisation (2.2) is a form of arc length. In practice it is

more convenient to use

Ng(w, v, s) = & v'v*(so) EI(S) - W(SO)]
+ (-9 V(s [¥(e) = v(s)] - (s, (2.3)

s e[?o, sl).
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Here we have assume that we know a solution [yb, Y;] =

E?(So)’ Y(Soil and a "'tangent" [%o’ 90] satisfying (2.2) and

.* X - -
Then w (so) € Bx is the dual element of w o= w(sO) such that
.* L . 2
W (so) w(so) = }Iw(so)ll .
We recall that, if G 1is smooth enough, differentiation of

= S
G(w, t, v) =0, (w, v) € po(wc, YO)

gives

dwo

— 2+ = .
G, Fw GY o , (2.4a)
GW v, + GYYO= 0 . : (2.4b)

Hence away from a limit point

. . dwb
Wo = 'Yo E;_ . (2.5)

At a limit point w is a vector in the nullspace of G since
W

vy =0 at a limit point.

On the other hand, differentiation of Ng gives

@i (s,) #(s) + (1=9) 1(s)7(8) = 1 =0, s € [5,5)). (2.6)
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Substituting (2.5) in (2.6) we obtain, for s = s,

i
9 dwo <:1WO 2
8 Y (So)?ﬁ” o + (1-¢) v (So)-l'—’O s

,l.e.,

o 1

Y(SO) =+

J dw: dWO . 2.7)
PreqTw Y
To get (w(s), v(s)), s = s, + As, we use Newton's method to

solve

it
o

G(w, v, 8)

[
(]

Nq(w, Y, S)

Keller proved in [14] that for As small enough the Newton iteration

G:; ¢’ att ¢’
Y = - (2.8)

L% . vl v

&V, (1"Q)YO Ay Ng

converges quadratically close to regular and normal limit points, pro-

vided one uses as an initial iterate

wo(s) w W
o = + As . (2.9)
Y (s) Y Y
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6.3 Description of PASSIN (a modified version of PASVA3 to solve TPBVP

with normal limit points).

Keller in [}4] pointed out which were the modifications that have
to be introduced in a program like PASVA3 in order to carry out the arc
length continuation procedure.

The algorithm is as follows:

dwk
i) Given a solution [?k’ Yk] compute E§~ , by solving
(2.42). This is done with the same subroutines of
PASVA3 that solve the linear system (1.6b).
ii) Use the discretized version of (2.5) and (2.7) to com=~
pute W, and Yie (changing s, to sk).
iii) Call PASVA3 with initial values:

[e} .

Vil Vi Y
= + As
O -
Vi1 Yi Yk
v+l
AWyt
iv) To obtain PASSIN solves
A v+l
Y+l
Gv . = - QY ’
w
v v v
GW y = - GY .
v+l v R . Y
V) Ay = - (Ng + Qw, 2 Y ((A-a)y, +8w ¥ )
Aw\)+1 _ zv + AYV yv
v+l _ v v+l
Vil - Vi TV
vl _ v v+l
Yipp = Ve TV
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Remarks:

4wy

, SO we can use the last

|y yv is an approximation to &
Tkt dw

yv computed in the Newton iteration as ktl .
dy
k+1
2) To solve the indetermination of sign of §k we use the fact

(Keller) that the sign (det GW . ;) is constant on branches
of regular and normal 1imit points. Thus, we pick a sign for
% when we start the computations on a branch and change the
sign of v§ whenever det Gw changes sign.

To locate accurately mormal limit points we have developed a
"aodified" chord method to find the zeroes of i(s). The standard chord
method cannot be used because every time we compute a new solution we
change the parameterization of the problem (éince we insist in having
unit tangent vectors at every S, respect to different normalisations).
There are three ideas in our "modified" chord method:

1) At a limit point Yy 1s an extreme, i.e., either y is the
maximum or minimum value for which there is a solution on the
current branch.

2) i(s) = o(s - sk) +0(s - sk)2 for s close to a limit point

Sy Szeto E9] .

3) The parameterization depends upon the point from where we

start the next computation, i.e., if we want to reach v,

say, and we have values for [Yl’ %i], [72, %é] then we

have two possibilities for the initial guess, namely

= +.
Y=y, Y88
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or

-~

Y = y2 + &2 ASZ

In general, As. # As,.
1 2
Hence given Yl and YZ with YZ closer to the limit point

(|§2| < l&ll), say, then the initial guess for the limit point will be

O -3
Y=, + Yy As
Y Y .
As = + P
Y™ 1

The sign of As is picked so that YO is always closer to the limit

point. 1In other words, choose the sign of As to force

e . . . . .
Y > Yoy if the limit point is a maximum

~

Y <Y, if the limit point is a minimum.

We recall that the limit point is a maximum iff l?zl < l§1! implies

‘Y2 > Yl'
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