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ABSTRACT

Let {G«} be a set of finite groups and define {C—}—o:-} to be the
intersection of all sets of groups which contain {G«} and are closed
under the operations of subgroup, factor group and direct product.

The equivalence relation defined by G;= G, if {—G—l} = {G—Z} is
studied and it is shown that if Qn and Dn are the generalized qua-
ternion group of order 2" and the dihedral group of order 2™ then
Q3= 04.

A group G is called decomposable if G ¢ {Ax} with 1A}
the set of proper subgroups and factor groups of G. It is shown that
if G is decomposable then G must contain a proper subgroup or
factor group whose class is the same as the class of G and one whose
derived length is the same as the derived length of G. The set of inde-
composable p-groups of class two are characterized and for p # 2
their defining relations are compiled. It is also shown that if the
exponent of G is p and the class of G is greater than two then G
is decomposable if G/Z(G) is a direct product.

Finally the equivalence relation given above is modified and its
connection with the isoclinism relation of P, Hall is investigated. It
is shown that for a certain class of p-groups this relation is equivalent

to isoclinism.



INTRODUCTION

This thesis introduces a notion of decomposition for finite groups
which includes direct product and subdirect product as special cases.
First a closure operator on sets of finite groups is introduced which
embeds a given set of groups {Gu} into its "closure', denoted by
{Gel, which is the smallest set of groups containing {Ga} and closed
under the operations of direct product, subgroup and factor group. A
natural question which arises in studying this operator is: What are
necessary and sufficient conditions for {G—l} = {é;} ? This question
seems quite hard and is not answered in this thesis. One interesting
result that is obtained along these lines is that the closure of the
generalized quaternion group is equal to the closure of the dihedral
group of the same order.

A group G is then defined to be decomposable if G ¢ {Aw}
where {Aa} is the set of all proper subgroups and factor groups of
G. In classifying the various ways in which a group G may be decom-
posable a mode of decomposition which we call factordirect product
and which is in many ways the dual of subdirect decomposition is intro-
duced. It is also shown that simple groups are indecomposable in the
sense defined above. In an attempt to obtain necessary conditions for
a group G to be decomposable it is shown that if G ¢ {Ax} then
G/Z(G) ¢ (Ax/Z(Aw)} and if G e {Aq} then G'e {Ak}. This provides
important information concerning the kinds of subgroups and factor
groups that a decomposable group must have. It tells for example that
a decomposable p-group of class n must have a subgroup or factor

group of class n. The remaining chapters are an attempt to apply the



ideas expressed above to finite p-groups.

Chapter II gives several characterizations of the set of indecom-
posable p—grdups of class two. And in the case of p # 2 all the
possible defining relations for such groups are enumerated. This
enumeration allows one to assert that given any finite p-group G of
class two, with p # 2 there exists a finite set of indecomposable
groups {G«} whose defining relations are given, such that G may
be constructed in a finite number of steps from {Ga} by the appli-
cation of the operations of subgroup, factor group and direct product.

In Chapter III an attempt is made to gain information about the
decomposability of a p~-group G from the knowledge that G/Z(G) is
decomposable. If the class of G 1is greater than two and if the ex-
ponent of G is p itis shown that G is decomposable if G/Z(G) is
a direct product. An example is given which shows that this decom-~
position is in general non-trivial. That is, G 1is neither a direct, sub-
direct or factordirect product.

The concluding chapter studies the connection between the
closure operator and a group relation know as 'isoclinism' which was
introduced by P. Hall in 1940. It is easy to show that both of these
ideas provide a partition of the set of finite groups into equivalence
classes which share many numerical invariants. The connection
between closure and isoclinism is made precise by introducing a
restricted form of closure. It is then shown that for a certain class of

p-groups these two concepts are equivalent.



Chapter 1

Any algebraic decomposition theory specifies a certain set of
algebras which may be called the ''basis set' and a set of operations
defined on the basis set. The basis theorem then states that any
algebra of the type being considered may be obtained from the basis
set by some applications of the given operations. In addition if a
given algebra A 1is to be called decomposable then the basis elements
required for its construction should be contained, in some sense, in A.

In the theory of finite abelian groups such a decomposition theory
does indeed exist. The basis set is the set of all cyclic p-groups and
the operation is that of direct product. In this case a group G may be
constructed as a direct product of a certain subset of cyclic p-subgroups.

There exists a decomposition theory for all finite groups in the
sense that every finite group may be obtained in a finite number of
steps by applying the operation of group extension to a set of simple
groups. That is, for an arbitrary finite group G there exists a finite
set of simple groups, {Aa}, the factors of a composition series of
G, such that for some ordering of the {Aa}, a sequence {Bi} may
be defined as follows: B, =4A,, B. is an extension of A; by B. 4
for i=1, ..., n and G :Bn-

One way of measuring the effectiveness of a given theory is its
degree of '"balance'. A decomposition theory ought to divide the diffi-
culty of understanding a class of algebras between the study of a fairly
restricted set of them and the study of the effect of certain operations

on the set. If the basis set is extremely easy to study but the operations



very complex then it may be said that the theory is unbalanced. In
such a case the basis theorem that results will most likely not be very
informative. Exactly such a state of affairs obtains if we restrict our
attention to the set of finite p-groups for a particular prime p, and
choose group extension as the operation. Here the basis set will be
t.he set of all simple p-groups. But the only finite p-group which is
simple is the group of order p. Hence all of the difficulty lies in
understanding the operation of extending a p-group by a group of order
p. On the other hand if we let the operation be direct product then the
basis set becomes those finite p-groups which cannot be represented
as a direct product. In this case little can be said concerning the
basis set as such.

A decomposition theory for finite groups will here be developed
which lies somewhere in between the two examples given above. That
is, the basis set will contain all simple groups and will be contained
in the set of all groups which are not direct products.

From this point on the word ''group' will be used to mean ''finite
group'’.

Since it will be convenient to refer interchangeably to the notions

of subgroup, factor group and factor group of a subgroup we define:

DEFINITION 1.1 A group A 1is said to be an ingroup of a group G if

one of the following holds:
a) A is isomorphic to a subgroup of G.
b) A is isomorphic to a factor group of G.

c) A is isomorphic to a factor group of a subgroup of G.
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The notation A <G will be used for the above with A < G denoting
that A is an ingroup of G but A 1is not isomorphic with G. In this

case A 1is said to be a proper ingroup of G.

LEMMA 1.1 The relation A SG is reflexive and transitive.

Proof G <G since if G = A then condition a) of Definition 1.1 is

satisfied. Hence the relation is reflexive.

To demonstrate transitivity it must be shown that A <B<C
implies A <C. Denote the relation between A and B by I, the
relation between B and C by II and that between A and C by III.
It must now be shown that for all choices of I and II, III is one of
the relations given in the definition. The following tabulation gives the

results required.

1 11 III
1) a a a
2) a b c
3) a c c
4) b a c
5) b b b
6) b c c
7) c a C
8) c b c
9) c c c

1. For the convenience of the reader all symbols used in this thesis

are collected in a glossary on page 62.



Note first that 1), 5), 6), and 7) follow from the fact that the
relation "subgroup' and 'factor group' are transitive relations. 4) is
precisely the statement of alternative c) in Definition 1.1.

Now consider 2). Here B is a factor group of C and A is a
subgroup of B. Hence B = C/N and A c B. The inverse image of

A in C, callit A is a subgroup of C which contains N as a

1’
normal subgroup. Hence A =A1/N and AICC“ Therefore A is a
factor group of a subgroup of C and hence IIl = ¢c. Now 3) follows
since A is a subgroup of a factor group of C. Hence A is a factor
group of a subgroup of a subgroup of C and therefore alternative c)
holds. Since it has been shown in the proof of 2) above that a subgroup
of a factor group is a factor group of a subgroup 8) and 9) follow from

the transitivity of the relations: subgroup and factor group.

We now define the notion of closure.

DEFINITION 1.2 Let {Au«} be a set of groups. A group G is said

to be of rank 0 if G <A for some A e {A, . G isof rank 1 if G
is not of rank 0 and G <A XB with A and B of rank 0. In general
G is of rank n if G has not been assigned rank n-k for k >0 and
G <C XD with C and D both of rank less than n. The set of groups
with assigned rank is called the closure of {A4 and is denoted by

&g . °

The closure of a set of groups may also be described in a some-

2. Graham Higman, in a recent paper [1] has studied sets of groups

with the property of being closed in the sense defined above.



what different manner.

LEMMA 1.2 If {Ax} is a set of groups then {A«} 1is closed under

the operations of ingroup, factor group, and direct product. Further-
more, every set of groups which contains {A«} and is closed under

the operations given above contains {A.} .

Proof If Ge {A.f then GKCXD with C, De (A . Let G >H.
Since the relation "' is transitive it follows that H <C XD. Hence
He {Ay}. Suppose that E, F e {Aa} . Then EXF<KEXF and
therefore is contained in {A,} .

Now suppose that A is a set of groups closed under the oper -
ations of ingroup and direct product and pal 2 {A,‘} . To show that
(A} C_:;b consider G ¢ {A,} of rank 0. In this case G <A e (AL
C__:»& and since A is closed under the operation of ingroup then G A
Suppose that all elements of {Ax} of rank less than k are contained
infl. Let Ge {A<} be of rank k. Therefore G <C XD where C,
D are of rank less than k in {A—:} . Hence C, D e/@ and since /ZZ
is closed under direct product and ingroup G e/zz. Therefore fA—;} E,U

The closure of a set of groups may therefore be thought of as the
intersection of all sets containing the original set of groups and closed
under the operations of ingroup and direct product.

If closure, as defined above, is regarded as a mapping defined
on the set of all subsets of finite groups then it is a closure operator in

the usual sense. That is:

LEMMA 1.3 If {Aa} and {B(,§ are sets of groups then:

a) {A} < {(Ad .



b) {AJ = (A} and

c) if {A,} < {B,} then {AJ < {B,} .

Proof a) If Ge {A.}] then G is of rank 0 in {A.,} and hence

(A < Ad .

b) Clearly {A,} < {A,} since all elements of {A_} are of

rank 0 in [A,} . Let G e fA. be of rank 0. Then G <Be {A.}.

But {A.} 1is closed under ingroups and therefore G ¢ {A.,} . Assume

that every element of {A.} whose rank is less than some integer k

is contained in {Ad} . Let G be of rank k in {A.J. Then G<EXF

with E, F ¢ {A.} of rank less than k. Therefore E, F ¢ {A«} and

since {A4} is closed under direct products and ingroups G ¢ {A.} .

Therefore {A“} < {A.} and hence {;‘:,—} = {AF .

c) Since {BB} is closed under the operations of ingroup and

direct product, and since {Bg} > {Bp} > {A.} , it follows from

Lemma 1. 2 that {BB} 2 A}

A natural question which arises from the definition of closure is:

Can one give necessary and sufficient conditions for (G—l_} = Z} ,

Gl and GZ arbitrary groups? The answer to this question is, in
general, not easy. For certain classes of groups, however, a straight-
forward answer may be given.

It can easily be proved that: If G1 and G2 are abelian groups

then {_G_l-} = {GZ} if and only if the exponent of G, is equal to the

exponent of G,, written e(Gl) =e(G2).

One interesting fact that arises in this connection is given by:



THEOREM 1.1 ILet Qn be the generalized quaternion group3 of order

Zn, and let Dn be the dihedral group of order 2" with n >3. Then

o = &

n-1 n-2
Proof Qn = <a,b> with a2 =1, bZ = a2 and ‘bab—1 = a_l.
-l 2 -1 -1
Dn = <g,h> with ¢ =h =1, hgh =g . In both of these cases
n >3. The theorem will be proved by showing that D {Q3 and

€

Qn € {—]—D—;} It will then follow from Lemma 1.3 that {Dn}

n
= {(":2;}.

In order to show that Dn € {6};} it suffices to form the direct
product of Qn with a cyclic group of order 4 and then consider an
appropriate factor group of a subgroup of this direct product. Since
Qn contains a cyclic group of order 4 as a subgroup, the group which
results will be contained in {6;} It will then be shown that this group
is isomorphic to Dn.

A similar procedure will be adopted to show that Qn € {B—r} .

Let H =<c> with ct =1 Let G = Q X H and let N :<[b2,c2]>.
Clearly N4 G since be e z(Q.). Let G, = G/N={[a,]]N, [b,1]N,
[1,c] N>. Now consider a subgroup of G,DD =, N, [b,d N>
and we will now show that D ~ Dn'

It is clear that ([a, 1 N)Zn_1 = ([b,d N)Z =1. Also
[b,c] N[a,1] N [b,d In- [bab‘l, ] N = [a"l, 1] N=([a,]] N)'l.
Hence the generators of D satisfy the same relations as to the gener -

ators of Dn' If it can be shown that the order of D equals the order

of Dn then the isomorphism will follow.

3. Zassenhaus [2] p. 147.
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Since o(QnX H) = 4- O(Dn) and o(N) = 2 it must be shown that
[Gl:D] = 2. We claim that G, =D + ([b,cZ]N)D.

Since any element of Qn may be written as a word in a and b,
it can be put in the form ‘be a’ . This follows from the fact that
ab = ba—l. Hence a general element of G1 has the form [bp am£ , CYJN.
Now it will be shown that [‘bP ao‘ s CY]N is either in D or in [b, c:ZJND°

Since D = <[a, 1IN, [b,c] N>, [b, c]e [a, 1_']u N = [be au , cp] Ne D,
We must now consider the four cases: a) y = (4), b) y = B+ 1(4),
c) y= B+2(4), and d) y= B+ 3(4).

In case a) [‘bﬁ a“, CY]N = [b6 ax, ce] NeD. In case b) notice that

1

[b'l,c'leeD and so [b ,c'l]N[bBa“,cpjz[bp'la“,cB’I]Ne D.

But [b, cZ]N[bp_la“,ce_l_]N = [be a ,c6+le =[bpam, cVIN «

2 2R 2 2
[b;c®IJND. 1In case c) notice that [a, 1] “ N[b,c] “N = [1,c"]NeD,
Hence [b@ a“ , cpJ N[l, cZJN = [bﬁ a‘x , C g+2_]N = [bp a“ , CYJNﬁ D.
Finally for case d) [b,c] -1 N [1,CZJN = [b_l, c]NeD. Hence

- o
[b,c?IN[b NP &, P =[pP o™, PN = [P, Y.
Therefore o(D) = o(Dn) and D ~D .

Let H be defined as above and consider R = an H. Clearly
. Zn-Z 2
Re D} . Let R25=<{g, 1}, [h,c]>. Let M =X[g N DY
. 2 2 . 2ne
Since [h,c]” = [1,c”] clearly MC S. And since hg h

_pn-2 o102
=g =g it follows that M4 S. Let Q =S/M and we will

-1

now show that Q :Qn'

As in the previous case the generators of Q satisfy the same

n-2
relations as the corresponding generators of Q. For ([g, 1 I\/li)2
2n2 2 2

M =[1,¢IM = ([, cIJM)°. Also [h, ] M[g, 1] M([h, c]M)

=[g o
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= [hgh_l, 1™ = [g'l, 1M = ([g, 1] M)_l.

Since O(an H) =4 O(Qn) and o(M) = 2, in order to show that
o(Q) = o(Qn) we must show that the index of S in R 1is equal to 2.
We claim that R =S+ [1,c]S. For an arbitrary element of R is of
the form [hp g“ ,CYJ. Clearly the element [hp ga,<:p] € S5, and since
[l,cZJ ¢ S it follows that for y = f(4) and vy = f + 2(4) [hp g ,c']es.
If y=1+B(4) or y=3+B(4), [hpga,cyje [1,c]S. Therefore
Q=Q . Hence we have shown that Q e {-]3;} and D e {-Q_n} and
therefore {-]5;} = {-(TI} .

The closure of a set of groups can be regarded in a somewhat
different light, namely as defining a rather special group-theoretic
property. Any grioup property is determined by some set and con-
versely. The most familiar kinds of group properties have what can
be called "inheritance'. A property is said to be subgroup inherited if
whenever a group has this property then so do all of its subgroups. In
a similar way one defines factor group and direct product inheritance.
It can be said that a property is considered important and interesting
to study if it does have many inheritance characteristics. Commuta -
tivity, nilpotence an(i solubility are examples.

Therefore the closure of a set of groups is that set which defines
the‘weakest’property, which is subgroup, factor group and direct
product inherited, that is shared by all the elements of the set.
Weakest merely means that every other such property which is satis-
fied by all of the elements of the set is defined by a set of groups which
contains the closure of the original set. Theorem 1.1 can thus be

restated.
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Every property satisfied by Qn which is subgroup, factor group
and direct product inherited is also satisfied by D_ and conversely.

Having now studied some properties of those operations which
will be used to construct all finite groups from a given basis set we

are now ready to define the notion of decomposability.

DEFINITION 1.3. Let G be a group and let {A«} be the set of all

proper ingroups of G. G 1is called decomposable if G e {Aa} .

G ¢ {Ae} implies that there exist A, B e {A«} such that
G < A XB. This can happen in four ways.

I. First suppose that G = A X B. Since A and B are sub-
groups of G and hence are contained in fA«} it follows that G is of
rank 1 in {A«} .

II. Let GC A XB. Since A and B are finite groups itcertainly
follows that A and B may be chosen so that for any choice of Al
and Bl’ proper subgroups of A and B respectively, G g_éAl X B
and G ¢ A XB;. With such a choice of A and B#1, G is said to
be a subdirect product of A and B. Subdirect products may be

characterized in the following way:

A group G is a subdirect product of groups A and B if and

only if there exist non-trivial subgroups N,;, N,< G such that

Ny AN, =1 and G/N;= A and G/N, xB.
The embedding of G into A X B 1is given by

g —= [gN, gN,] ¢ G/NIXG/NZ= AXB



13

for all ge G.

Thus if G is a subdirect product of A and B then since A
and B are factor groups of G, A and B are contained in {Aa}
and hence G 1is of rank 1 in {A«} .

III. Let G = (A X B)/N. In light of the definition of subdirect
product it is natural to ask: Do there exist subgroups of G which are

isomorphic with A and B?

THEOREM 1.2 Let G = (A X B)/N. Then there exist subgroups A

1

and B, of G suchthat 1) G=(A, X B, /N for some N

]. 1,

2) A, and B, are isomorphic to factor
groups of A and B respectively and
3) G=A ;Bys with A, = A., B,~ B, and

AZ and B2 permute elementwise.

Proof For the sake of simplicity we will write AX B as AB, and ab

in place of [a,b].

Let M =(ANN)U(BNN). Since M4 G we may write
G =AB/N= AB/M/N/M = AM/M . BM/M/N/M. This last equality
holds because every element of AB/M is of the form abM = aMbM
¢ AM/M* BM/M. Similarly a typical element of AM/M:BM/M is
am; Mbm,M = aMbM = abM. We will now show that AM/M:BM/M is
a direct product.

Suppose AM/M N BM/M D2 M/M. Then there exists a;eA and

b, €e B suchthat a.M =b,M. Hence a, =b,m =b.ab and a, =

1 1 1 1° 71 1 1T
But since AN B =1, M is the direct productof AN N and BNAN

and so ab e M implies that a, b e N. Hence a ¢ M and alM = M.
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Clearly AM/M, BM/M<AB/M and so AM/M-BM/M =AM /MXBM/M.

Let A, = AM/M and B, = BM/M. Hence G =(A1XB1)/N and

1
Al’ B1 are isomorphic to factor groups of A and B respectively.
Further A 1 N, = BN N, =1. Let A, = AlNl/Nl and B,

=B;N,/N;. Then G=A,B,, A/XA,, B,~B, and A, and B

272 1 2’ 1 2 2

permute elementwise. For A1 n B1 = 1 and hence permute element-

wise. This completes the proof of the theorem.

In analogy with the notion of a subdirect product this theorem

leads to the definition of factordirect product.

DEFINITION 1.4 A group G 1is called a factordirect product of A

and B if for some N, G=(AXB)/N and 1 #A, BcG.

Thus Theorem 1.2 shows thatif G = (A X B)/N then G is a
factordirect product of two groups which are factor groups of A and

B respectively.
It will now be shown that condition 3) of Theorem 1.2 implies

that G is a factordirect product.

THEOCREM 1.3 If G =AB and ab =ba forall aec A andall be B

then G 1is a factordirect product of" A and B.

Proof Let H=AX B ={[a,b] a¢ A, be B}. Let N={[c,c_1]f for

all c e AN B considered as subgroups of G} . Since A and B
permute elementwise in G it follows that AN B¢ Z(G). Therefore
Ng9AXB.

Consider the following mapping between G and A X B/N.

Grg=a; b <« [al,bl] N.
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-1

., . _ -1 _
To show that it is one-one let albl = aZbZ' Then ble =a., a

1 =2
Since A and B permute elementwise and al_laZ ¢ B, ailazb‘2 =
-1 .. . -1 -
bzal a, = bl' This implies that a; a, = bzlbl.
Now consider the images of a;b; and ay,b, in AX B/N.
[a,;b,JN=[a,,b] N [a_la bl ] N since [a“la by J N.=N.
1’71 1’71 1 7271 "2 1 72271 "2 ’

Therefore [al,blj N = [az,bz] N.
Suppose that [al’bl] N = [az,bZJ N. Then there exists

c e AN B such that [al,bl] = [az,bz] [c,c—l_]. Hence a; =a,c and

-1 -1
2 21 = byby

-1 -1
b, =b,c ". Thus a, a; = b1 bZ' But this implies that a
and hence a'lbl = aZbZ'

To show that it is a homomorphism suppose that
2Py ~—= [2, 0] N

and azbz DI [az,bz] N.

Then a)bjayb, = aja,b b, and similarly [2),b ] Nfa,,b,]N
= [alaz, bleJ N. Hence the mapping is an isomorphism, and
G A X B/N. Since A, BEC G, G isa factordirect product of A and
B.

It is interesting to note that subdirect and factordirect products
are dual in many respects. One illustration of this duality is the fact
that the relation of '"'subdirect product' is transitive in some sense.

And a similar result may also be stated for factordirect products.

First consider the subdirect case.

LEMMA 1.4 Let G be a subdirect product of A and B. If HcG

then either H 1is a subdirect product or else H 1is isomorphic to a



16
subgroup of A or B.

Proof Clearly HCAXB. If HNA #1 and HNB #1 then H isa

subdirect product, i.e. HC (H/HNA)X (H/HN B).
Suppose HN A =1. Let B, = {bi I[aj’bi] 3 H} and consider

the mapping between H and Bj:
H»3[a,b] «=be B.

To show that this is one-one suppose that [al’bl] = [az,bz] in H.
Then b; =b,. If b, =b, then consider [az,bz] and [al,bl].
Clearly [aZ’bZ] [ail,bl-l] = [azail, 1] ¢ H. But HNA = 1. Hence
aza'l-]L = 1 and therefore [az,bz] = [al, bl] . Hence the mapping is
one-one.

Since multiplication in H 1is carried out componentwise the
mapping is clearly a homomorphism and under the assumption that
HNA =1, H=~B, ¢ B.

If HNB =1 then the argument above, applied to a subgroup of
A shows that H 2A1 S A. This completes the proof.

It is natural to ask whether a factor group of a subdirect product
is always either a subdirect product or isomorphic to a factor group
of one of the factors. The answer to this question is in the negative as
may be demonstrated by the quaternion group of order 8. For it has
been shown in Theorem 1.1 that the quaternion group is a factor group
of a subdirect product of the dihedral group of order 8 and the cyclic

group of order 4. Clearly the quaternion group is neither a factor

group of either of these nor is it a subdirect product.
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The dual result to Lemma 1.4 for factordirect products is as

follows:

LEMMA 15 ILet G be a factordirect product of A and B. If

_H= G/N then either H is a factordirect product or else H is

isomorphic to a factor group of A or B.

with ab = ba for

Proof Since G is a factordirect product G = AlBl

all a ¢ A} and be B;. Let N<IdG. Then G/N=A N/N-BN/N.
But AIN/N 2Al/Al N N and BlN/N x Bl/Bl N N, and these groups
permute elementwise. If neither Alﬂ N or B1 N N=1 then H is

a factordirect product. If A;N N =A, then Hx Bl/Bln N, and
similarly for A; N N.

Analogous to the subdirect product situation a subgroup of a
factbrdirect product need not be a subgroup of one of the factors or a
factordirect product itself. In the proof of Theorem 1.1 the dihedral
group of order 8 is constructed as a subgroup of a factordirect product
of the quaternion group and the cyclic group of order 4. Clearly it is
neither a factordirect product nor is it isomorphic to a subgroup of one
of the factors.

IV. The final case in the enumeration of G<A X B is G = H/N
with HE A X B. A very important distinction sets this case apart
from the others. For up until now it has been the case that if

G <A XB then GSAIX B with Al’ Bl proper ingroups of G.

1,
No such conclusion will be possible here as is illustrated by Theorem
1.1. In other words, let {Hg} be a set of groups. Then if G ¢ {Hu]

by virtue of being a non-trivial direct product, subdirect product or
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factordirect product then G ¢ fAq} where {A«} is the set of proper
ingroups of G.
In any event if G = H/N with H€ A X B then a special choice

of the groups A, B, H, and N may be made.

LEMMA 1.6 Let G = Hl/Nl with H, a subdirect product of A, B

# 1. Then there exist factor groups A, B, H and N of A, By, H,

and N, respectively such that G >2H/N, HE€ AXB and there exist

R, S<H such that:

RNS=RAN=SAN=1.

Proof Since H1 is a subdirect product it follows that there exist

Sl<1H

subgroups R such that Rln S1 = 1. Suppose that

1’ 1
(RRINN))U(S;,NN)=M>D1. Let N= Nl/M, H=H/M, R=R/M/M
and S = SlM/M., Clearly RNAN =1 since if rmM = nm'M with

T € Rl’ m, m'e M and ne N, then r = nm'" = nr's'. This follows
from the definition of M. But r' e R, n N, €M and s'e¢ Slﬂ N1 < M.
Hence r ¢ N1 and therefore r e R1 NN € M, which implies that
rmM = M. Ina similar manner it can be shown that SN N = 1. Since

R; NS, =1 itisclear that RNS =1 and since RyM/M =R /R, N M

the lemma is proved.

Since the case of G © A X B already has been considered we

will assume now that G = H/N is not a subdirect product.

THEOREM 1.4 Let G, H, A, B, R, S be defined as in the lemma

above. Assume in addition that G is not a subdirect product and that

G 1is not isomorphic to a factor group of A or B. Then G contains



19

a normal abelian p-group.

Proof Consider the element S (]NR. Since all of these subgroups are

normal R U N may be writtenas RN or NR.

Assume first that NRf1S = 1. Since the lattice of normal sub-
groups of a group is modular it follows that N U (NR N S) = NR N NS = N.
Now if NR #N and NS # N then NR # NS and hence H/N is a sub-
direct product. If NR = N then G = H/N=2~H/R/N/R and hence G
is isomorphic to a factor group of A. If NS =N then G = H/N &

H/R/N/R and G is isomorphic to a factor group of B. Hence if
NRMA S =1 then G is either a subdirect product or G is isomorphic
to a factor group of A. But it is easy to see that NR/1 S =1 if and
only if NSl R =1 which holds if and only if RS/(] N =1. For if
RSN N # 1 then there exist r, s, and n suchthat rs=n#1, and
hence s =1 'n and r =ns *. Note that r #1 and s # 1 for other-
wise RN N# 1 and SN N# 1 contrary to Lemma 1.6. Hence if
Y=NSAR and Z=RS/AN then Y# 1 and Z # 1.

The lattice diagram in Figure 1l below illustrates the relation-
ships of the groups that have been discussed above. All of the argu-

ment above and some of the argument that follows will verify that the

unions and intersections given in the diagram are indeed correct.
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X =NR(OS
Y=NSMNR
Z =RSAN

FIGURE 1

XNY=(NRNS)N(NSNR)CRANS =1. Applying the same argu-
mentto XNZ and YNZ, (i) XNY=XNZ=YNZ =1.
By the use of the modular law we see: XY = (NR/ S)U (NS R)
= NSN [(NRN S)UR] = NS N NR/) RS. By symmetry the same
result holds for XZ and YZ. Hence

(ii) XY = XZ = YZ = XYZ.

Ore [3] has shown that under conditions (i) and (ii) the group XY
is abelian.

Consider XY U N = (NS NRNRS)UN =NS N [N U(NR 1 s)

NS N [NRN (N URS)] =NsN [NRN NRS] = NS/] NR. Also XY/IN

1

[NSN NR/ RS] NN =N/ARS=2. Therefore RN/)SN/N

XYN N/N=XY/XYNN=XY/Z =XZ/Z=X. Hence we have exhibited
a normal subgroup of H/N = G isomorphic with X, which is abelian.

Now if X had composite order then it would contain two characteristic
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subgroups with trivial intersection. Since a characteristic subgroup
of a normal subgroup is normal it would follow that G 1is not sub-
directly indecomposable. Hence X is a p-group. This completes the

proof of the theorem.

Using this theorem, a statement made earlier may now be
verified. That is, the basis set of the decomposition theory presented

here contains the set of all simple groups.

COROLLARY 1.4.1 If G is a simple group then G is indecomposa-

ble.

Proof Assume that G is decomposable. If fA«} is the set of all

proper ingroups of G then G ¢ fA.} . Since G is simple it is
clearly not a subdirect or factordirect product. Hence G = H/N and
H is a subdirect product of A and B, A, B e {m and the ranks
of A and B are less than the rank of G. Theorem 1.4 then shows
that G 1is isomorphic to a fa;ctor group of A or B. This implies
that the rank of G equals the rank of A or B, a contradiction.
Hence G ¢ {Ax)} must be false and G is indecomposable.

The problem of determining whether or not a given group is inde-
composable is a special case of the more general question: Given a
group G and a set of groups {A«}, whatare necessary and sufficient
conditions for G ¢ {Au} ? Three necessary conditions are given
below which in the decomposability problem, that is, in the case of
{A.} equal to the set of proper ingroups of G, prove to be sufficient

for some cases.
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THEOREM 1.5 Let {A«} be a set of groups. If G ¢ {A.} then

G/Z(G) ¢ {AL/Z(A)}.

Proof Let G be of rank 0 in {A.} . This means that G <Ae {A.} .

We now consider all the possibilities for G <A.

a) Let GcA. Clearly G U [Z2(A)U Z(G)] =G U Z(A). Since
Z(A)Z(G) = Z(G)Z(A) the modular law applies and since Z(A)N G
SZ(G), GnNn[zAa)vz@Q)] = ) U[Z(A)N G] = Z(G). Hence G/Z(G)
=G/G N[zAa)vz(G)] =G Uu[z(A)Uu Z2(G)]/z2(A) U Z(G)
=G UZ(A)/Z(A) U Z(G) = G U Z(A)/Z(A)/Z(A) U 2(G)/z(A). But
G UZ(A)/Z(A)c A/Z(A). Hence G/Z(G) is isomorphic to a factor
group of a subgroup of A/Z(A) and A ¢ {A} .

The proceeding argument may be illustrated by the lattice

diagram in Figure 2.

Z(A) N Z(G) = G N z(A).
FIGURE 2
b) The second case to consider is G = A/N. Let I = aZ(A)
for a ¢ A and I_,. =aNZ(A/N). We will show that the mapping:

alN

IL—> I of A/Z(A) into G/Z(G)
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is a homomorphism.

Suppose that I =1 then aZ(A) = Z(A) and a ¢ Z(A). Consider

L= aNZ(A/N). Since a ¢ Z(A), aN ¢ Z(A/N). Hence ILn=1-
Now let I =3 1 and
a, alN
I ——1 .
2, a N
I I = a;Z(A) a,Z(A) =a,a,Z(A) = 1 , and I 1 =1 .
1
a; ‘a, 2 172 aja, alN aZN alaZN

Hence the mapping is a homomorphism and therefore G/Z(G) is
isomorphic to a f:actor group of A/Z(A).

c) Finally if G ~H/N and HC A ¢ {A«} then H/Z(H) is
isomorphic to a factor group of a subgroup of A/Z(A) and G/Z(G) is
isomorphic to a factor group of H/Z(H). Hence G/Z(G) ¢ {A«/Z(A)}.

This completes the argument for G of rank 0. Notice that the
above proves that if G <A then G/Z(G) <A/Z(A).

Now if G is of rank n >0 then we assume that for all elements
of {A«} of rank less than n the theorem holds. But G <CXD
with C and D of rank less than n. Hence C/Z(C), D/Z(D)
¢ {AL./Z(AL)}. But CXD/Z(CXD)=C/Z(C) xD/Z(D) ¢ {Ax/Z(Ax)} .
Hence since G/Z(G) <C X D/Z(CXD), G/Z(G)e¢ {Ax/Z(Ax)}. The
proof is then complete by induction.

If the set f{A«} is the set of proper ingroups of G and if G is

a nilpotent group then the following holds.

COROLLARY 1.5.1 Let G be a nilpotent group. If G is decomposa-

ble then G contains a proper ingroup whose class (length of upper

central series) is the same as the class of G.
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Proof If the class of G is n, written c(G) =n; and Zr(G) is the
th

r ~ element of the upper central series, then G/Zn(G) =1 and
G/Zn_l(G) D1. If Ge {A,} and the class of A is less than n, then
A/Zn_l(A) =1 forall Ae {A,} . Therefore Ao /2 (A = {1} .

But it follows from the theorem that if G e¢ {A.} then G/Zn—l(G)

e {A. /Zn—l(A"‘)} . Since G/Zn-l(G) D 1 this is a contradiction.

Hence G 1is either not decomposable or it contains an ingroup with

class n.

THEOREM 1.6 Let {Ax} be a set of groups. If G ¢ {Ax} then

G'e {ALY.

Proof Let G be of rank 0 in {A«} . Then G <A ¢ {ALY

a) Suppose first that G € A. Then G'cA’' and hence G'e {Al} .

b) If G=A/N then G'=(A/N)'=A'N/N=A'/A'NN. Hence
G'e (AL},
c) If G=H/N with HECA then H'€A' and G'=H'/H'NN.

But H/H'N N e {AL}] and hence G'e {AL}.

Now assume that the lemma is true for all groups of rank less
than n. Let G be of rank n. Then G <A XB where the ranks of
A and B are less than n. But (A XB)'= A'X B' and since R'<S'
if R<S it follows that G'<A'X B' e {A%}Y. The theorem follows by

induction.

COROLILARY 1.6.1 Let G be a soluble group. If G is decomposa-

ble then G contains a proper ingroup whose derived length equals that

of G.
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Proof Let {A«} be the set of proper ingroups of G. If the derived
length of G is d, then ad -1 pu gld-b) # 1. But it follows
from the theorem that G(d—l) € {A(ud_l)} » and if the derived length
of every proper ingroup of G is less than d then G(d_l) € {A[,‘d-lj}

= {1} , a contradiction. Hence either G is indecomposable or it

contains a proper ingroup whose derived length equals that of G.

THEOREM 1.7 Let {A«} be a set of groups. If G ¢ {A.,} then

there exists a finite subset of {A«} , say {Bi}, such that the ex-
ponent of G divides the lem of the exponents of {Bi}' That is

e(G)l lem {S(Bi)} .

1

Proof Let G be of rank 0 in A. Then G<A e {A}.

a) If GC A then clearly e(G)le(A).

b) If G

H

A/N then e(G)Ie(A).

c) If G=H/N and Hc A then e(G)le(H)Ie(A). Hence for rank
0, {B} = {A}.

Assume the theorem is true for all groups of rank less than n.
If G is of rank n then G_<_AX B, and A and B are of rank less
than n. By the induction assumption there exists subsets {Rj} and

{Sk} of {A«} such that e(A)llim {e(Rj)} and e(B)llckm {e(Sk)}. It

follows that if G <A X B then e(G)

lem {e(R.), e(S,)}. Hence the
ik J K
theorem follows by induction.

From Theorems 1.5, 1.6, and 1.7 given above it appears that
the decomposability question might be most accessible for p-groups.

Since such groups always possess non-trivial central series and

derived series. The next section is a first step in this direction.
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Chapter II

In this chapter p-groups of class two will be considered. A
group G is of class two if 1€ G'CZ(G). Thatis, G is non-abelian
and G/Z(G) is abelian. Since such groups are quite similar to
abelian groups it is reasonable to expect that a decomposable group of
class two will be decomposable in a rather simple way. This is indeed
the case and a complete characterization of the indecomposable groups
of class two is obtained. In case p # 2 all possible defining relations
for the indecomposable p-groups of class two will be given.

The following lemmas concerning nilpotent groups will be needed
in this section and in those that follow. The first three of these are
given without proof and may be found in Zassenhaus [ 2] p. 114, and

P. Hall [4] on p. 34 and 50 in that order.

LEMMA 2.1 If G is a nilpotent group then G' <& §(G).

LEMMA 2.2 If G is nilpotent and N<IG then NN Z(G)>D1.

LEMMA 2.3 If G 1is nilpotent and the class of G is n then

Gy S 2(G)-

LEMMA 2.4 Let G be a p-group. G is a subdirect product if and

only if Z(G) is not cyclic.

Proof Assume that Z(G) is not cyclic. Then Z(G) is a non-cyclic

abelian group and hence it contains subgroups N1 and N2 different
from 1 such that N, N NZ = 1. But since every subgroup of Z(G) is

normal in G it follows that Nl’ N2<1G and hence G 1is a subdirect
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product.

Conversely, if G contains N N, <1 G such that N, n N, =1

1,
then it follows from Lemma 2.2 that Z(G) contains subgroups Ml’
M, different from 1 such that My n MZ = 1. Hence Z(G) is not

cyclic.

LEMMA 2.5 If G is a non-abelian group and Z(G) £&(G) then G

is a factordirect product.

Proof Since ¢(G) is the intersection of all maximal subgroups of G

then there exists one maximal subgroup M of G such that Z(G) & M.
Since M is maximal and Z(G) is normal in G, it follows that
G = MZ(G). But these groups permute elementwise and Z(G) € G,

hence G 1is a factordirect product.

LEMMA 2.6 Let a, b, ce G. If (a,b) and (a,c) ¢ Z(G) then

(a,b) (a,c) = (a,bc) and (a,b) (c,b) = (ac,b). Furthermore (a,b)”

= (a™, b) = {a, b™).

o1 -1 -1 1 o-1 -1
Proof Since (a,b) e Z(G), (a,bc) =a L1y abc = a tc b ba(a, b)c
= aulc—la(a,b)c = a_lc—lac(a,b) =(a,c) (a,b) =(a,b) (a,c). Similarly
1 -1, -1 -1 -1, -1 -1
(ac,b) =c "a b acbh=c "a b “abc(c,b) =c (a,b)c(c,b) = (a,b)(c,b).

The formula (a,b)" = (a”,b) = (a,b") can be verified by a simple

induction argument for n _>_ O. In order to show that the formula holds

for n< 0, let n= -1 and consider (a_l,b). There exists a positive

integer r such that (—anl,b) =(ar,b). But (a',b) = (a,b)’ and

(a,b)(a,b) = (a,b) T = (a1, B) = (1,b) = 1. Hence (a,b)* = (a,b) "
-1

= (a ,b), and the formula holds for all integers n.
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LEMMA 2.7 Let G be a cyclic p-group and suppose that G= <ab>

with a, b e G. Then if o(a) >o(b), G =<a>.

p:&

Proof Since ab = ba, (a]o)X = a"b". Since a ¢ G there is some

integer g4 such that a/‘ ™ = a. Hence b'a ¢ <ay. Clearly pT/u
since otherwise o(a/“b/a) < o(a). But since pT/ll- , <b’u> :<b>¢___‘_ <a>.,
Therefore G = <a,>.

LEMMA 2.8 Let G be a p-group. If G has two generators and

G=AXDB then A and B are cyclic and hence G 1is abelian.

Proof Consider G/G'= AXB/(AXB)'= A/A'XB/B'. If G has two
generators then G/G' has two generators. Hence G/G' is the direct
product of two cyclic groups. Hence A/A' and B/B' are cyclic.
Therefore A and B are cyclic and G is abelian.

The main decomposition theorem for p-groups of class two may

now bhe stated.

THEOREM 2.1 Let G be a p-group of class two. Then G is decom-

posable if and only if G is either a direct product, subdirect product,

or factordirect product.

Proof Assume that G is decomposable but is not a direct or subdirect

product. This implies that Z(G) is cyclic and since ¢(G) = 2,

G'c Z(G) so that G' is cyclic. Let Z(G) =<z with zp‘x =1, G’

is generated by a product of commutators each of which is contained

in G'. It follows from Lemma 2.7 that there exists a commutator,
(a,b), such that G'= {(a,b)). Let of(a,b)) = pp. Since G is decom-

posable it follows from Theorem 1.6 that G' e {K}:} where {A/‘} is
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the set of proper ingroups of G. Since G' is cyclic of order p‘9
there must be an element A, e {Aﬂ} such that e(Ai) ?pB , and Ai
is cyclic. Al cannot be a factor group of G, for if Al = G/N then
Al = (G/N) =G'N/N=G'/G'1 N. Lemma 2.2 states that all normal
subgroups of G have a non-trivial intersection with Z(G) and hence
with G'. Hence A'l would have exponent properly smaller than
e(G'). It follows from Theorem 1.7 that there exists Ay, a proper
subgroup of G, such that .A'l =G'. For A} €G' and since e(A.'l)
= e(G'") and G' is cyclic, A'l = G'. Hence there exist u, v e A
such that <(u, v)) = Al Since A'1 = G' for some 6, (u, V)@ = (ue, v)
=(a,b). Let c = u@, d=v and (c,d) = (a,b) = m.

Let A =<c,d)>. It will now be shown that G must be a factor-
direct product with A as one of the factors. Since A 1is a proper
subgroup of G there exist elements {gi} such that G =<c, d, gyrvve gk>,
and such that none of the gi's may be omitted. Consider
B :<g1, cee s G-

o,
Let (c, gi) =m = forall i=1, ... , k. It follows from Lemma

- X - - o

2.6 that (c,d) if(c,g)=(c,d (c,g) =(c,d 'g)=1. Let

- % B;

gl=d 'g,. Hence (c,g/) =1 for all i. Suppose that (d,g{) = m

-8 '51.

for all i. Therefore (d,c) (d, g;) =(d,c g!)=1. Now let

-B, '

gi' =c 'gi. Hence (d,gj) =1 for all i. Butif (c,gi‘) =1 then

(c, gi') = (c, c-glgi‘) = 1. Therefore A permutes elementwise with the
group B, =<g‘1‘, cee gl‘<'> Since AUB, =G, AB, =G and they
permute elementwise.

Since A is a proper subgroup of G it remains to verify that
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B1C G. If B, = G then ¢, d ¢ Z(G), a contradiction. Therefore G

is a factordirect product. Hence if G is decomposable then G is

either a direct product, subdirect product or factordirect product.
Conversely, if G is a direct, subdirect, or factordirect product

then G 1is decomposable.

COROLLARY 2.1.1 Let G be a p-group of class two. If there exists

a proper subgroup A of G such that e(A') = e(G') then G is

decomposable.

Proof If G 1is not a subdirect or direct product then G' is cyclic
and hence e(A') = e(G') implies that A' = G'. It has been shown in
the proof of Theorem 2.1 that this implies that G is a factordirect

product.
A further characterization of these groups is given by:

THEOREM 2.2 Let G be a p-group of class two. G 1is indecomposa-

ble if and only if Z(G) is cyclic and G may be generated by two

elements.

Proof Let G be indecomposable. Hence Z(G) is cyclic and there-

fore G is cyclic. It follows from Lemma 2.7 that there exists a
commutator (a,b) such that G'=<(a,b)). If <a,b)> were a proper
subgroup of G then G would be decomposable by Corollary 2.1.1.
Hence G =<a,b).

Conversely if G =<a,b> and Z(G) is cyclic then G is certainly
not a direct or subdirect product. Hence if G is decomposable it

must be a factordirect product. Assume G = AB, alb1 = blal for
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all a; ¢ A and b; ¢ B. Clearly G/ANB=~(A/ANB)x(B/ANB)
= AXB. If G is generated by two elements then G/ANB is also
generated by two elements. But G/AB is the direct product of A
and B. Therefore it follows from Lemma 2.8 that A and B are
cyclic,  and since AN B CZ(G), G is abelian, a contradiction.

If p# 2 the defining relations of an indecomposable p-group of

class two can be shown to assume one of two distinct forms.

LEMMA 2.9 If G 1is a group of class two then for a, be G

u(u-1)

(ab)® = a%b%(b,a) °

Proof The proof is by induction on wu. It is trivially true for u = 1.

r(r-1)
T r, r 2 . r+l
If (ab)” = a b (b, a) then since (b, a) e Z(G), (ab)
r(r-1) r(r-1)
= (ab)ab = a"b%(b,a) ° ab=a’blab(b,a) ° But a’b’ab
=a'ab (b", a)b = ar+1br+1(br, a) = ar+lbr+1(b, a)’. Therefore (a.b)rJrl
T 1‘-12_'_r r(r+l
- al‘+1b1’+l(b’ a) 2 - ar+1br+l(b’ a) Z

LEMMA 2.10 Let G be a p-group of class two, with p 7! 2, which

is generated by two elements a;, b; with o(al) zo(bl). Then there

exist a, be G suchthat G =<a,b> and <a>N<by = 1.

Proof Suppose a(f =bg #1. Let 0 =pmm and §f =pﬂn with

(p,mn) = 1. Clearly <a§n> =<al> and <b111>= <b1>. Therefore we

o<

g
may as well assume that ali) = blf #1 and a,6 # 0. For otherwise

G would be cyclic. Since o(al) zo(bl) it follows that &« ?f Let

A
pp ﬂ & ,x-ﬂ B_iﬂﬂ_—l_)

x-p 8 o X
P B) P al® (a® b)) 2

a’? . Then bP = (bya
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« P! « 6.,
= 1 since alp = blp . Notice that P__Z__ is an
integer only if p # 2. If <b>n<a1> D1 then this process may be

repeated and since o(b)< O(bl) it follows that there exists a choice

of b such that <b>ﬂ<al> =1, Let a = ay and the lemma is proved.

If the condition p # 2 is removed then the quaternion group of

order eight is a counterexample to the lemma.

THEOREM 2.3 ILet G be an indecomposable p-group of class two

with p # 2. Then G is generated by two elements and has defining

relations either

omed
Y
T
i
o
o]
it
et
R
=z
]
©
o]

with G > 25, or

o £ Y ¢
1T aP =bvP =1 (a,b)? =2, y=28-a (a,b,a)=(a,b,b) =1

with g<ag 26.
Conversely any group defined by I or Il is an indecomposable p-group

of class two.

Proof Since G is indecomposable it follows from Theorem 2.2 and

e 8
Lemma 2.9 that Z(G) is cyclic, G =<a,bp with af =bP =1,

o > g and <> N<B>= 1,

w w w
Suppose that of(a, b)) = pm. Then (a,b)? =(aP ,b) =(a,b? ) =1

w w
which implies that a’ , b® ¢ Z(G). Since Z(G) is cyclic and o(a)

w w w
2o(b), bP e <ap> . But <a>{1<b> =1 and therefore bP = 1.
pﬁ 8
Hence 65@ But (a,b) = (a,b? ) =1, and hence ﬂ >w. There-

8
fore of(a, b)) :pp, and af ¢ Z(G).
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Since G is of class two either G'c Z(G) or G' = Z(G).

Case I. Assume that G'C Z(G) and let Z(G) =<g>. Any element of

G, 1in particular g, may be represented in the form g = aubv(a, b)w.

Since G'< Z(G) it follows that <(a, B)"> C Z(G) and a'bY ¢ Z(G).

Hence by Lemma 2.7, Z(G) =<aubv>. But (a"b’,b) = (a¥,b) =1, and
y

v

(a"bV,a) = (b",a) = 1. Therefore a, b’ ¢ Z(G). This implies that

either b =1 or av=1., If a" =1 then (a, b)V = (a,bv) = (av,b) =1,

v

and a', b’ e Z(G) which would imply that b’ =1, In any event

V=21 and z(G) = <a"D.

Let u-= pfm with (p,m) = 1. Since Z(G) =<a"™> it follows

J g ) $
that Z(G) =<aP > . Since aP ¢ 2(G), /8_><S. But (a,b)’ = (aP ,b)

b

¢
=1, Therefore £> ﬁ SO S: P and Z(G) = <ap> .
Z 8 9
If a; = a’ then there exists © such that (a,b) = (aII) ) with
c n pﬁ+e
@=pmn, (p,n)=1. Thenif a, = aj, (a,b) = as . But o(az)

i

o(a)
and hence 2P+ ¢ =a. Therefore Zﬁsq.

B
Case II. Assume that Z(G) = G'. Since aP ¢ Z(G), and Z(G) = G'

Y

=aP . Let u=p'm with (m,p) = 1. Hence (a,b)" =(a,b

= aP . Since o(b™) = o(b) we may replace b throughout by b~ and

V6 g6 -
call it b. Now (a,b)? P =aP P =1 and pOL P

4 -
of aP . Hence o((a, b)) = pp = p\/+OL P Therefore vy = 2,5 -o,

is the order

Finally since y >0, Zﬂzm. The relations (a,b,a) =(a,b,b) =1
follow from the fact that G 1is of class two.
It will now be shown that if a group G is defined by I or II then

it is an indecomposable p-group of class two.
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& 8
Suppose that G =<a,bp and is defined by af =bP =1,
x-g «-g
(a,b) = aP with @ >2@. Since (a,b) = af it follows that
-1 *-f 1 pf 8

- 4
b "ab = aal . Hence b "aP b=2aP and therefore aP « Z(G).

Gl -

PP p ¢
But since a——ﬁ _>_‘9 it follows that <a*“ > 2<a >. Hence

(a,b) € Z(G) and this implies that G is of class two. For any element
of G may be written as aubv(a,b)w. Let g; and g, be two

arbitrary elements of G. Then (gl, gz) = (aulbVl (a,b) 4, auzbvz(a,b)wz)
= (aule1, auzbvz) since (a,b) ¢ Z(G). But Z(G) 3 (a,b)ulVZ_V1u2

Y1

2
=(a b ha % Y = (g gy
Since the generators of G have order a power of p and G is
of class two, G is a p-group.
. . u, v W
To show that Z(G) is cyclic, let the element a b (a,b) be an
element of the center. Since (a,b) ¢ Z(G), then a'b’ ¢ Z(G). There-

fore (a™",a) =(b',a) =1, and hence b’ ¢ Z(G). But then (a,b’)

pa.—-ﬁ v -8

= (a, b)Y = (a ) =1, and since of(a® )=pP, bY=1. There-

v w + *-f
fore a"b (a,b)” = a™ WP

for every element of the center and
hence Z(G) 1is cyclic. It follows from Theorem 2.2 that G is inde-
composable.

. N p
Now suppose that G =<a, by and is defined by aP =b? =1,

Y g
(a,b)p =aP (a,b,a) =(a,b,b) =1, and y =28 -«, x< Zﬂ,
Since (a,b) ¢ Z(G) it follows from the argument given above that G
is of class two.

G is clearly a p-group and it remains only to show that Z(G)
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is cyclic.

Suppose that a"b (a,b)" ¢ 7Z(G). Arguing as above b" ¢ Z(G)
and (a,b)’ = 1. But o((a,b)) = pB and hence b’ =1. Also (a”,b) =1
and hence a' e Z(G). Therefore since of(a,b)) = pP, it follows that
pﬁl u and a" e <ap6> c {(a,b)>. Hence a"b'(a,b)” ¢ {(a,b)> and
Z(G) 1is cyclic. Therefore G is indecomposable. This completes

the proof of the theorem.

Notice that the condition p # 2 is used only in applying Lemma
2.9. If G 1is a 2-group which satisfies the conclusion of Lemma 2.9
then its defining relations are indeed of the form I or II above. An
example of such a 2-group is the dihedral group of order eight.

The main results of this section may be summarized in the
following manner:

Let G be an arbitrary p-group of class two with p # 2. If
e(G) = p'u then there exists a finite set of groups {Hl} of type I and
II given in Theorem 2.3 such that G e {ﬁ;} . This follows from the
fact that any group is contained in the closure of the set of its indecom-
posable ingroups and that the exponent of a group cannot exceed the

largest of the exponents of its indecomposable ingroups.
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Chapter III

The problem of determining when an arbitrary p-group G is
decomposable can in some cases be solved by considering the decom-
posability of G/Z(G). In the case of e(G) = p it will be shown in this
section that if G/Z(G) is a direct product then G is decomposable.

In general, this decomposition is non-trivial, i.e. G 1is neither a
direct product, subdirect product, or factordirect product. An example
will be given to illustrate this point. Two lemmas will be required

before the main theorem can be proved.

LEMMA 3,1 Let G be a nilpotent group of class n > 2. Suppose

that G/Z(G) = G = AB with ab=ba forall a¢ A and b ¢ B. That
is, G is a factordirect product of A and B. Thenif A and B are

the inverse images of A and B respectively, c(A) =n or c(B) = n.

Proof Let A =<3

., a > and B =<b,, cee, b >. Then
T 1 s

G :<a1, cees @ by, ee, by, Z(G)>. Since G 1is a factordirect
product of A and B it follows that (ai’bj) ¢ Z(G) for all i, j.
Hence any element g e G may be put in the form g = abz with a e A,
be B and z e Z(G).

Since the factor z may be omitted as a multiplier of any entry
in a commutator there exists a non-identity commutator of length n:
(cydys -ves c d ) e Z(G) with c;e<ay, ..., a > and
dj € <b1, ceos bs>. This follows from the fact that ¢(G) = n
and G(n) C Z(G). But (c;d}, ..., cndn)
=(cydy, wees ¢ qd s ) (Cldl’ cees o qd g dn) since these

three commutators are contained in Z(G). Since (Ci’dj) ¢ Z(G)



37

(Cldl’ CZdZ) = (CI’CZ)(dl’dZ)Zl for some z; ¢ Z(G) and hence by
induction, (Cldl’ cee Cn—ldn—l) :(Cl’ ey C )(dl’ ce e dn-l)z‘

)

= ((Cl’ oo Cn—l)(dl’ e e dn—l)’ cn) = (Cl’""Cn—l’cn)(dl’°°"dn—1’cn>'

n-1

for some z ¢ Z(G). Hence (Cldl’ eeey €14 s €

n-1"n- n

Now since n >2 (d , d ) = (u,v) with u, ve<b1, co o bS>.

n-1
-1 -1
) =(u v “uv, Cn)

1r v

Hence (dl’ cees d g cn) = ((u,v),cn

, cn)(u, cn)(v, cn) = (u, Cn) _1(V, cn)_l(u, cn)(v, Cn) =1 since

each of these commutators is in Z(G). Therefore (Cldl’ oo ’Cndn)

= (Cldl’""Cn—ldn—l’Cn>(cld1"°°’Cn—1dn—l’dn)
=(cyyecesc )dy,.0e,d ). If c(A)<n and c(B)< n it follows that
1 n 1 n
(Cldl’ e cndn) = 1 and therefore c(G)< n, a contradiction. Hence

either c(A) =n or c(B) =n.

LEMMA 3.2 Let G be a p-group and let G =<al, cees @ > such

that <ay, s sees a >CG forall i. I (a)P=1 for

SRR T L T
all i then for all ge G, g has a unique representation of the form

& [~ 4
) arrb with be G'.

Proof Since every element of G is a word in the ai's it follows that

every element has a representation of the form given above.

ul & ﬁl r
Suppose that g = a; ... @ b1 =ap ees Ay b2 with
dl_el & - 6
bl’ b‘2 € G'. Therefore ay coe arr Tz b3 e G'. Assume that

for some 1 pT’ ai_fgi' Then G :<a1, oo ai—l’b3’ai+1"'°’ar>"
o ~

é

i . : .
For clearly a; Yis generated by these elements and since

«-F

(O(i— ﬂl,p) =1, <aii

generator. Therefore G ::(al yeees @

1>= (ai>. But b3 ¢ G' and hence is a non-

io17 %y e a1> contradicting
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%, B

the hypothesis. Hence p!di —ﬂi for all i and thus a; =a, for

all i. Therefore b1 = bZ, and the lemma is proved,

THEOREM 3.1 Let G be a p-group of class greater than two and let

e(G) =p. If G/Z(G) is a direct product then G is decomposable.

Proof If Z(G) is not cyclic then G is decomposable. Assume there-

G
fore that Z(G) is cyclic and hence has order p. Let G/Z(G) = KBl

with ab=bza for all ae A and be B,. Let {El,...,ar} be an

1
irredundant set of generators of A. That is, if A =<51, .. ,5r>
then <a1""’ai—l’ai+1"“"ar>CA for all i. Choose {bl,.,.,bs}

similarly for El' If ¢(G) =n >2 then according to Lemma 3.1 either
c(A) =n or c(By) =n. Let c(A) =n. Clearly A(n) EG(n) and from
Lemma 2.3 it follows that ICA(n) C Z(G) and therefore A(n) = Z(G).
Hence if Z(G) =<z> then z ¢ A' and from Lemma 2.1 z is a non-
generator of A. Therefore A :{al, oo ar> and this is an irredundant
set of generators of A.

Let B =<b1,...,bs>. If ze B then B = Bl’ but this may not
necessarily be the case. In any event G = ABl and hence G = AB,

It can now be shown that G ¢ {A, Bf. Since (é—i,b.) =1 it

J
a-.
- 1] = o0 o X- i =
follows that (ai’bj) =z Y, Let H=AX - XAXB. Since Z(G) A(n)
r

there exists ¢, d € A such that (c,d) = z. Let %, B be subsets of

H defined as follows:

£ § s |
X = {[a,.c 1,...,c“,1_'{|5ji=01fj;£i, 5J.i=1ifj=iandi,j=l,.,.,r}.

i

1k *rk %k
©={1,4 “....aF" ,bk]l(ai,bj):z Yok=1, ..., s}.
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Let H, =<\, 3>. Notice that H could have been defined as
A XAlX cee XAIX B with A1 =<c,d>. Thatis, H may be defined

as the direct product of A, B and r copies of a group of class two.

041. —OCl. Clz. -G,
Let N=<[z "Lz “1,....1,.0= “51,z “1,....1, ...
o . -
[z rl,l,...,,l,z r1, 1] for 1= 1,...,s>. Since the commutator
& x o
1k k k
([aj’]-,-‘vg]-’(::]-:-eo;l]:[13(1 J"")d t :bk]):[]-:'°°:]-:z J :1’°""

it follows that N C H1 and clearly N < Hl°
Let G1 = HI/N' It will now be shown that Gl = G under the
mapping induced by: ¢
1i

1

ri
a; «>[a,c " ,..0,c L 1]N=g,

¢4

1i Qe
bj<——->[1,d J,...,d rJ,bJ.]Nzhj

where a word on the a; and bj corresponds to the same word on g;
and hj' It will be shown that words are equal in Gl if and only if
they are equal in G. This will suffice to show isomorphism.

Let m be an arbitrary element of G. It appears as a word in

the ai's and bJ.‘s as follows:

M =X VX5 Yy XY, with xieA, yieB.

%11

Under the mapping, the image of Xy will be (Xl, Cuv yun,

o0, C r1] N with Gil equal to the sum of the exponents of a; in Xqo

S

9
rl .
30 4 8 3 d ) Yl] N Wlth ¢11 = jglalj

g
The image of y; will be [1,d H

%
and wjl equal to the sum of the exponents of bj in Ve Therefore

the image of m under the given mapping will be:
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0] ﬂ e Qf 4] 5’& 8] ﬁ
lldll...c ltdlt’. crldrl-ucrt rt

d ,yl.,.yt]N,

s e 3

[XIXZ"' $X, C

e

Since (a.,b.) = = J
1]

suitable powers of z to the product. That is

» X, may be commuted to the left by adding

b.a. = a.b, (b.,a.) = a.b. = Jt
1 J J 1 1 J J 1

This operation is mirrored in G, by commuting powers of c to the

a @
1i ,
left. Thatis [L,d ...od “b ] gl e 1,00 1N
o . . . o, . ce . . [« AN
- [aj,d oo g 0 g Wiy b N
[« Q. o, L.oo= O [« TR [
= [aj,d 11,...,d Jll,cd Iy ‘Jl,d ﬁ-llv,...,d rl,bi]N. But since
ox.. -
Ji J1 .
the element [z ,1l,000,1,2 ,1,“.,1] ¢ N the above expression
-, o

1i Qi

may be written as [ajz Jl,l,....,l,c,l,..u,l] [1,a s oo sd ,b.l]N.

Hence every time some a; is commuted with bj in m, thereby

introducing a power of z, the very same power of =z is introduced
[ 8

in the image element in G; by commuting ¢ with d ), Therefore

. «© ol .
if M = XY eee XY =X ees XYy oene V7 Exyz with X=Xy X

I 'ul f

and Y=Yy Yy then the image of m, n:[xz 1C sesssC ,l]

v 0
[l,d 1, eeosd r,y]N with /ui equal to the sum of the exponents of a;

s
appearing in the product x and 'l)i = Z a’ijwj’ with (DJ. equal to the
j=1

sum of the exponents of bj in y. Hence if an arbitrary element of G

is put in the form xyza defined above then the image element can be

My D Y2 )
put in the form [xza,c 1d 1, v.. o Td r,y]N,

By an argument similar to the one above it can be shown that an

arbitrary element of G1 may be put in the form
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[+ 73

o M1V foy D

[xz ,c d T,...,C d r, ] N and its image in the form xy=z

Suppose that m, m ¢ G and let' n and n be their images in Cx1°

oL JU— — Oz
Let m be inthe form m = xyz  as defined above, and m = xy=z

[ —_—— O .
similarly. Then if m =m, xyz =xyz implies that x 2 e Z(G)

— -1 . Sl— . Y1 — -1 Y2
and yy = € Z(G) since ANBCZ(G). Hence x x=2z ', yy =z

and o - o = —(y1+y2)(p). It follows from Lemma 3.2 that the sum of

the exponents of a; in x ~x is equal to o mod p, and similarly for
b, in yy'l,
o MY I

Now form n-lﬁ in Gl' If nZ[xz ,¢ d ,...,c ~d r,y]N

c d ,...,c ~d r,—f}N then n_1§=
1w Y M A ")rc‘/urC/‘rd’)r “1—

[x z Xz ,d c c d ,...,d , Y y]N

o mea Py 900 (R M) Pt 970 D) 1

“[X X7 , C d z ys003C d Z Y y]N°
1= N — -1 _ -1=_ Y2 _

Since x x = z and yy =y y =2z then M.= . = o(p) and

OiE ﬁifo(p) for i=1, «v., ¥« Hence n n
Yl-(\{l+\{2)
z

Yo _
,1,0..,1,2 ]N:[l,”.,l]N. Therefore if m = m
in G then n=n in Gl'

Conversely let m and m in G have images n and n in Gl'

Now suppose that n_1 n=1. This product will appear as above and
hence P’i - M E o(p), —31 -9, = o(p) for i=1, ..., r. Hence

-1— ] K—at -l

n nz[x 1xz O y]N=[l,..,,1]N. Therefore

-l Yy -1— -
X X =z and y 'y =z such that —(y1+ yz) =x - @ =o(p). But

e - -1 -]l— ok -] “l =] &E_co¢
then x lxza v= 1'y = 1. Hence x 1xz v 1y =y lyx 1xz
-] -l — &- _— e &R
:ylx 1xyz D(=1. Therefore m =xyz = xyzd = m, and the

mapping is one-one. Hence it is an isomorphism and therefore G is
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decomposable.

In order to show that a group which is decomposable in the
manner described above, i.e. G/Z(G) is a direct product is not in
general a direct, subdirect, or factordirect product consider the
following example.

Let p be a prime greater than 3, and let A = <a1, az> with

af =ay =yP=2P =1, (apa) =y (ay) =2, (ay9) = (a),2)

= (az,z) = 1. This group has order p4 and class three. This group
is discussed in Burnside [5] p. 146, and it is there shown that
o(A) = p4, c(A) =3 and that Z(A) =<z). Itis easy to see that A
=<y, z». Incidentally, A is indecomposable because all proper sub-
groups and factor groups have order at most p3 and every group of
order p3 has class at most two.
Consider A XA DH :<[a1, 17, [az, al] , Ul,v]>. First we show
that [A XA : H] = p°.
Consider the set <[l,alllag ]>for all u, v<p. There are

. 2 . . .
precisely p elements in this set and we claim that these elements

form a complete and irredundant set of coset representatives for H
in AXA.

A general element of A XA is [a?afyyzg , aoiiaglywng . Let
o' Zﬁ and consider the coset [I, a?'_fg af']H, The element
[a(fazﬁ, af] ¢ H and therefore [a{xaf, aoll'a’zgl] € [l, a?'-ﬁaS!]H. But
since [y, 1], [z, 1] and [1,z] € H it follows that

d 1 f ] 1
a; azﬁsz‘S , aof ag y\{ zg is contained in the coset in question. Hence
this set of coset representatives is complete.

Now suppose that two of these cosets are the same. Then
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[l,all,a*]z] [1,a aZJ h with he H Let h= [alasyyz ,aly zg]

Therefore a; gy\/z5 =1 and allaJZ = a11<+ﬁa§y 1z 1., From Lemma

3.2 it follows that @ = B=o(p) and hence y= § = olp). Similarly
i-k=j-L=o(p) and hence [I, a11 av]Z 1= {1, alfaﬂzl Therefore the set
of coset representatives is not redundant. Hence [A XA:H] = pz.

Now consider N=<[z,z'l]>. Clearly N< H. Let A, = H/N

1
= <[a1, 1] N, {2, al N, [1,y]N>. Since o(N) = p it follows that
5
o(A;) = o(H)/p=p .
It will now be shown that A1 satisfies the hypothesis of

Theorem 3.1.

a) It has already been shown that o(Al) = p5 and hence A, is

not isomorphic to an ingroup of A.
b) A1 has class three. Consider the triple commutator
-1
([alallNr [az’ al:' N, [al!l] N) = ([Y’U N, [al’l] N) = [Z s l] N 7£ [1:1] N.
Hence C(Al) >3. But since A, 1is a factor group of a subdirect
product of two groups of class three it follows that C(Al) < 3. Hence

c(A,) = 3.

1
c) Z(A;) bhas order p and hence A, is neither a direct

product or subdirect product. For suppose £ —[a agy\{zg,aly ZQ{}N

¢ Z(Al)' Its commutator with [al,l]N is [( a ﬁy z ,a) 1] N. If this

(PY ):1‘

is N then (a 132V 2 52y a,y'sa; But by direct calculation

(aZY saq) = (ag, al)(ag, ay, YY)(yY, al) = y_ﬂz‘\{ = 1. Therefore B=vy

x § 9 : :
=o(p). Hence g:[alz Y zﬁjN. Its commutator with [az,al]N is

>4 o oz
([a;2 , yezg] N, [a,,2] N) = [(alzs , ’a\;z),‘ (y@z¢, a )N = [(a1 , az), (y@, al)] N.
o « —QL?) 6 -0

But one can easily show that (aj,a;) =y z , and (y ,a;) =z



a(x-1)
o 4] o T2

-0
Hence (al,az),(y yay) N=[y =z , z JJN=[1,1]N, « = o(p)

and 96 =o(p). Therefore ¢ = [zg, z.g]N = [z£+

=<z, IIN>. Thus o(z(A))) = p.

d) Consider the subgroups R =<[a1, 1] N, [az,al] N> and

@,I]N and Z(Al)

s =<[1,yIN, [1,2]N>. Itis easy to see that A = RS, RNS = Z(A,)
and {(r,s)lr ¢ R, seS}= Z(Al)' Hence Al/Z(Al) is a direct
product.

It follows from the theorem that A1 is decomposable.

If A1 were a factordirect product then one of the factors would
have to be a subgroup of class three. Since the smallest p-group of
class three has order p4, such a subgroup is of necessity maximal
and hence must contain A'l :<[y, 1] N, [z, 1] N>. Now the intersection
of the two factors of a factordirect product must be contained in the
center of the whole group, and hence the factor group Al/Z(Al) must

be a direct product. Since O(Al) = p5

and o(Z(Al)) = p, and
AI/Z(AI) is not abelian, it must be a direct product of a group of
order p and one of order p3, ‘Hence the orders of the factors in the
whole group must be p4 and pZ. But the factor of order p2 is
abelian and hence in the center, contradicting the fact that ,O(Z(Al)) = p.
Therefore A1 is not a factordirect product.

The decomposability of Al could also have been deduced from
the fact that A1 ¢ {A} and A is isomorphic to a proper subgroup of
A,. That is, the mapping a; =<—- [al, 1] N

a, ——> [az, alj N induces an iso -

morphism. Hence A ¢ {A} © {Ay} where {Aa} is the set of proper

ingroups of A.
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It is easy to check that Al may be defined by:
P =aP =¢P = (c,d)p = (c,c:,d)p =(c,c,c,d) =(d,c,c,d) ={(f,c,c,d) =1

and (d,f) = (c,c,d).
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Chapter IV

The definition of closure given in Chapter I suggests an equiva-
lence relation for finite groups. That is, GIE GZ if {—5?} = {E;} .
It is readily shown that this is indeed an equivalence relation and hence
provides a partition of the set of all finite groups. This chapter will
investigate the relation between this partition and a group relation

introduced by P. Hall [6 ] known as isoclinism.

DEFINITION 4.1 The groups G1 and Gx2 are said to be isoclinic,

Gl"'G2 if:
1) G,/2(G)) G, /2Z(G,),
2) Gy =G,

3) if a Z(Gl)é-)a ) under 1)

1 Z(G

) and blz(Gl)eb Z(G

2 2 2 2

then (al,bl)e(az,bz) under 2).
That is, there must exist isomorphisms 1) and 2) such that 3) is satis-
fied. Notice that 3) is unambiguous even though a particular choice of
coset representatives has been made. For (al, bl) :(alzl, blZ2> if

z, and z, ¢ Z(Gl)'

Two groups are then said to be isoclinic if the first elements of
their descending central series are isomorphic and if the first factor
groups of their ascending central series are isomorphic and if the
latter isomorphism induces the former.

Although the definition of isoclinism doesn't restrict the groups
to p-groups, it becomes equivalent to isomorphism if G1 and GZ
have trivial centers or if G1 = G'l, and G‘2 = G‘Z. For p-groups, of

course, neither of these two possibilities can occur. The discussion
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from this point on will be primarily restricted to p-groups.

It is quite easy to see that the relation of isoclinism is an equiva-
lence relation and hence provides a partition of the set of groups being
considered into isoclinic classes, or 'families' as P. Hall denotes
them. It follows from the definition that both the elements of the
descending and ascending central series of one member of a given
family is common to all members and hence is a family invariant.
Similarly for the derived series. All groups of a given family will
therefore have the same class and the same derived length.

Clearly all abelian groups belong to the family containing the
element 1. And it is easy to see that if A 1is any abelian group then
G XA ~G for any G. This follows from the fact that (G X A)' = G'
and (G X A)/Z(G X A) =~ G/Z(G). Using these properties Hall shows
the following:

1) If KEG then G ~K if and only if G = KZ(G).

2) If H=G/N then G ~H if and only if N NG' = 1.

The statements 1) and 2) may be restated as follows:

1') If K& G then G~K if and only if G = KA, A is abelian
and A commutes with K elementwise.

2') If H=G/N then G ~H if and only if there exists MG
with NAM =1 and G/M abelian.

Another equivalent form is:

1'") If K€ G then K ~G if and only if G is a factordirect
product of K with an abelian group.

2'") If H=G/N then H~G if and only if G is a subdirect

product of H with an abelian group.
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Hence the isoclinism of a group with an ingroup of itself is the
statement that G is decomposable in a rather special way. This
suggests that there may be some relation between G; ~ G, and
©p = G}

It is not true in general that G, ~ G, implies {6?} = {G—Z_} .
For G1 ~ G1 X A where A 1is an abelian group of arbitrarily large
exponent whereas the exponent of any element of {ET} is bounded by
e(Gl). Hence GjX A ¢ {(_3'—1} if e(A)> e(Gl). Similarly {_CZ} = {GZ}
does not necessarily imply G, ~ G,, sinceif G, =G, X G, itis
clear that {G.l—} = {m} But if Gl is non-abelian GI/Z(GI) *
(G X c;l)/z(ca1 X Gy) ’-‘-‘Gl/Z(Gl) X GI/Z(GI) and therefore Glfclxcl.
Hence if some statement concerning the relation between isoclinism
and the equivalence induced by closure is to be formulated then either
the domain of groups under consideration must be restricted or the
definition of {G} must be modified, or both.

Before we can give the modification of closure that will be useful

we define the notion of A-permissibility.

DEFINITION 4.2 If HEG and A is a cyclic group then H is called

an A-permissible subgroup of G if G is a factordirect product of H

and A with A

17 e {A}. If H=G/N then H is called an A-per-

1
missible factor group of G if G 1is a subdirect product of H and

Al e {Ay.

Following are some of the elementary properties of this relation.

LEMMA 4.1 An A-permissible factor group of an A-permissible

factor group of G is an A-permissible factor group of G.
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Proof Let K be an A-permissible subgroup of G. Then G = KAI’

Al ¢ {A}, and K commutes elementwise with the group Al‘ If
K= HAZ’ AZ ¢ {A}, and H commutes elementwise with the group
AZ then G = HAZAl' AZ.AI € {K} , it is abelian and commutes element-

wise with H.

LEMMA 4.2 An A-permissible factor group of an A-permissible

factor group of G is an A-permissible factor group of G.

Proof Let K = GI/N1 be an A-permissible factor group of G. Hence

GE€G/N, XG/R with G/Re {A} and NJN R =1. Let H=K/M, be
an A-permissible factor group of K. Hence KCK/M, X K/S, with
K/S, ¢ {A} and ;N M; =1. Let H= K/M, = G/Nl/M/Nl o~ G/M.,

It must now be shown that H is an A-permissible factor group of G.
Let S, =S/N,. Since G/R and K/S; ®G/S are abelian R, S 2G!
and hence R NS # 1. Since Slﬂ M1 =1 and S MM = N1 then

M NRNS=N; AR =1. Hence GE&G/M XG/RNS. Itonly remains
to show that G/RN S ¢ {A}. Since G/R ¢ {A} and K/S; = G/S ¢ {AY
and G/SNRCS G/R X G/S it follows that G/SN R ¢ {A}. Hence

H= K/M1 2 G/S is an A-permissible factor group of G.

LEMMA 4.3 An A-permissible factor group of an A-permissible sub-

group is an A-permissible subgroup of an A-permissible factor group.

Proof Let K be an A-permissible subgroup of G. Thatis, G :KAl,

with (k,a) =1 for all ke K and a e A, and Al e {AY. Let H be

1
an A-permissible factor group of K. Thatis, KcC K/N1 X K/S with

H= K/Nl’ N1 f1s=1 and K/S e {A}. It must now be shown that H
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is an A-permissible subgroup of an A-permissible factor group of G.

Since N1 and S are normal in K it follows that N S 4G,

1)
Hence G C€G/N; X G/S with N;1 S=1. But G/S =KA /S =K/S:
A.S/8, with A S/S=A /A NSe{AY and K/S e {A}. Hence

G/S ¢ {AY. Therefore G/N1 is an A-permissible factor group of G.
Now G/N; = KA/N, =K/N; - A|N,;/N;. Clearly (kN ,aN ) =1 for

all kN; ¢ K/N; and all aN; ¢ A|N;/N; and since AN /N,

1
’iAl/Al n N1 e Ay, H= K/N1 is an A-permissible subgroup of
G/Nj.
It is not difficult to show that if A is a priori chosen to be of
order equal to the exponent of G then the converse of Lemma 4.3 is
valid.
If now we define H to be an A-permissible ingroup of G if H

is an A-permissible subgroup of an A-permissible factor group of G

then the three lemmas above prove:

THEOREM 4.1 The relation '"H is an A-permissible ingroup of G"

is transitive.
We now define the notion of A-closure.

DEFINITION 4.3 Let {Ga} be a set of groups and let A be a cyclic

group. A group G will be said to be of rank 0 if G is an A-permissi-
ble ingroup of some Ga. G is of rank l if it is an A-permissible
ingroup of a direct product of a group of rank 0 with an element of {A},
and it is not of rank 0. In general, G 1is of rank n if it is not of

rank k< n, anditis an A-permissible ingroup of a direct product of

a group of rank less than n with an element of {A}. The set of
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groups with an assigned rank number will be called the A-closure of
{Gal , written {Gu«} A
The A-closure of a set of groups may be described in another

way':

LEMMA 4.4 Let {Gg} Dbe a set of groups. Then {G“}A satisfies:

1) {Ga} € {Gal 4
2) if He {—G_:}A and J is an A-permissible ingroup of H

then J ¢ {G"‘}A

3) if He {Gay , and Aj ¢ {A} then HX A ¢ {Gd K

and

Furthermore, if A is a set of groups which satisfies the same con- -

ditions as {Ga} A above, then & E{GQ}A.

Proof 1) {Ga} e {-G“—}A since all elements of {Gu} are of rank 0
in {Gu} A

2) Trivially, J is an A-permissible ingroup of H XA, for
any Al ¢ {A}, andis hence in {Gul} A

3) HX A, is an A-permissible ingroup of itself.
Let &Z be a set satisfying conditions 1), 2), and 3). If G is of rank
0in {G} A then G 1is an A-permissible ingroup of some element of
{G«Y and is hence in Al . Assume the lemma to be true for all elements
of {Ggu} , of rank less than n. Let H have rank n in {Gu} A H
is an A-permissible ingroup of R X A1 with R of rank less than n
and A e {A}. Then R ¢ & and R X Ay ¢ M. Hence from 2) H ¢ L.

That is, {Gea} A is the intersection of all those sets of groups

which contain {Ge} and which are '"closed' under the operations of

A-permissible ingroups, and direct product with elements of {Ay.
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If {Ga}A is thought of as an operator on the lattice of subsets

of the set of all finite groups then it is a closure operator. That is:

LEMMA 4.5 If {Go} and {Hg} are sets of groups and A is a

cyclic group then:
1) {Go‘} E {Go:} A and,
2) '{{ao—‘-} A.}A = {-G;} A and,

3) if {Gg} E{HP} then {G;:}AE{FI;} A

Proof 1) This has been demonstrated in Lemma 4. 4.

2) From 1) it follows that {G“}A_ {{G,,‘} A} PR
He {{Ga} A}A is of rank 0 then H is an A-permissible ingroup of an
element of {Gu«} A and therefore H e {Ga} A Assume the lemma

true for H ¢ {{G:}

A}A of rank less than n. Let G be of rank n.

Then G is an A-permissible ingroup of JXAl with J e {{Gu} A}A
of rank less than n and A1 ¢ {A}. By the induction assumption

J e {Gu} A

Therefore {{—G—"‘-}A}A = {Gu} A

By Lemma 4.4, J XA, ¢ {G—“—}A and G e {Gu} 4-

3) It follows from 1) that {Gg} < {Hp} < {Hg} - Hence by
Lemma 4.4 {Ga} ACS ‘{HB} A
Now consider the special case in which {Ga} consists of a

single group.

LEMMA 4.6 If He {G‘}A then {H}A:{'G}A.

Proof It is only necessary to show that G e {F} A for it follows

from 3) and 2) above that if H e {G} , then iﬁ}AE {G} A

Assume that H is of rank n in {G}A Hence H 1is an
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A-permissible ingroup of J xAl’ J a group of rank less than n and
Al ¢ {A}l. By definition H is an A-permissible subgroup of an A-
permissible faétor group of J X Al’ and it will first be shown that
J )(A1 e {H} A

Let S =HA, with A, ¢ {A} and (h,a) =1 forall he H and
ae A, Then JXA c(J XA )/NX(J XA )/R with NNR =1,
(J XAI)/R ¢ {A} and S =(J X Al)/N' First it must be shown that
JX A, e {S},. Clearly SX(J XA )/R ¢ S}, If gelX A, then
(IXxA])/R={[N,gR] | all ge (I3 XA} If [gN,g,R] is anarbi-
trary element of (J X A[)/NX(J X Al)/R then [g N, gZR]
= [glN, glR] [N, gl_ngR] = [N, gi ngR] [glN,glR] since R 2(J X Al)'.
Hence (J X Al)/NX (J X Al)/R may be represented as a product of
elementwise commuting subgroups one of which is (J X Al)/R and the
other a group isomorphic to J XAlg Hence J )(A1 is an A-permissible
subgroup of (J X A;)/NX(J X A)/R=8X(JX Al)/R ¢ {S} , and
J ><A1 ¢ {S} AC Therefore J ¢ {S} A

In order to show that S « {E}A consider (H XAZ)/M with
M = {[h,h ] | he HNA, in8}. By Theorem 1.3 S = (HXA,)/M. To
show that (H XAZ)/M is an A-permissible factor group of H XA,
consider (H X A,)/M X(H XA,)/(HX 1). Since MN(HX1) =1 and
(H X A

)/(HX1) =A, e fA] it follows that HX A, < (H XA,)/M

2 2 2

X(H X AZ)/(H X1) and (H XAZ)/M is an A-permissible factor group

of H X AZ' Hence S ¢ {H XAZ}A = {H} A Therefore J ¢ {f—I—}A.
Now suppose that H is of rank 0 in @A; then H is an A-

permissible ingroup of G. And the argument above, with Al =1 and

J =G shows that G ¢ {H} A If the lemma is assumed to be true for
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all groups of rank less than n in {G} A then the argument above
shows that G e {J} AS {H A Hence the lemma follows by induction.
The special case just treated actually represents the general

situation since:

LEMMA 4.7 1f G%¥4{Gt, then Gua} =V 1 Gz}t

Proof Clearly X {Gal < {Gut A

If He {Go} , is of rank O then
H is an A-permissible ingroup of some element of {Gg}, say G.
Hence H e G. Assume that for all H of rank less than n in {Gu} AC
He {—G-}A for some G in {Gu} . If H is of rank n then H is an
A-permissible ingroup of J X A1 with J of rank less than n and
A1 e {A}. But J X Al ¢ J and by the induction assumption J ¢ G
for some G ¢ {Gyt . Therefore H e G and the conclusion follows by
induction.

It is quite evident that the definition of A-closure was formulated

so as to preserve the relation of isoclinism. That is:

LEMMA 4.8 If Gy ¢ {G,} »

then G1 ~ GZ'

Proof Let G1 be of rank 0 in { Z} A Hence G is an A-permissible

ingroup of GZ' Since isoclinism is a transitive relation it follows
from 1'") and 2'") on page 47 that G;~G,.

Suppose that the lemma is true for G ¢ {G—Z—}A of rank less than
n. If G, has rank n then G, is an A-permissible ingroup of JXAl
with J of rank less than n and Al ¢ {A}. Hence G1 ~J XAl ~ J.
But J ~ GZ by the induction assumption. Therefore Gl ~ GZ'

Notice that from Lemma 4. 8 it follows that {Gl} A iGZ} A
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implies G1 ~ GZ'
The main theorem of this section will now be stated in the form

of a corrected converse of Lemma 4.8 above.

THEOREM 4,2 If Gl and GZ, are p-groups such that for i =1, 2

Gi/Z(Gi) may be generated by a set of elements of order p then

G, ~ G, implies {CTl} AT {G_Z}A with ofA) = max {e(Gi)}'

k
set of generators of GI/Z'(GI) such that o(diZ(Gl)) = p. Let

Proof Let Gl/Z(Gl) =<°‘1Z(G1), cee, X Z(Gk)> be an irredundant

C=C X - XCk, C; =<c;,> with O(Ci) = o(Oﬁi) for all i. Consider

G, X C2H= (alcl), e (akck) . Since e(C)Se(Gl) it follows

that C ¢ {A}. And since G, X C = HZ(G, X C) it follows that H is
an A-permissible subgroup of G, X C. Hence H ~G;XC ~G, and
{—I:I-}A = {Gl XC} p = {C_l} A+ Itis easy to see that the mapping

¢ . c. Z(H)«> aiZ(Gl) is the isomorphism required by the definition of

isoclinism. Let N =<(0L1c1)p, cees (O’-kck)p). Since 0!.? € Z(Gl)’

N<H. Also H'= (Glx C)' = G} and therefore NN H'=1, For if

1
i

rlp rkp

an element of N, (Ot-lcl) . (Ockck) , 1is contained in H' then

r.p TP P r,p
o 1 ceo ¥ k c ! ..o C k must be contained in G, and hence

1 k 1 k 1

TP ry P
¢y cee € = 1. Since all c, are independent o(ci)lrip. But

r.p

O(Ci) = o(di) and therefore o = =1 for all i.

Let M = H/N =<et,;¢|N, ..., & ¢, N>= <f, ..., B, > Since
M is an A-permissible factor group of an A-permissible subgroup of
G, X C it follows that M ~ G, and {M‘}A = {G} ,- In addition o(B.)

= p for all i. The isomorphism between M/Z(M) and GI/Z(Gl)
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required by the definition of isoclinism is induced by the corre-

spondence ﬂiZ(M)*-—OLiZ(Gl) since the mapping (ﬁ ﬂ al OLJ)

induces an isomorphism between M' and Gl'

Now consider GZ,/Z <\/12(G ), Z(Gk)> and choose

e Yy
these cosets so that aiZ(Gl)«-—»in(GZ) gives the isomorphism

required by the definition. The argument given above for Gl may be
reproduced identically for G,. Hence we obtain a subgroup

R = <'01, oo -«)k> with o('Oi) = p, iR} AT {G;} Al R ~GZ and such
that the mapping

'l)iZ(R)-"—*in(GZ)

gives the required isomorphism.
If {OKIZ.(Gl), cee C\’—kZ(Gk)} was chosen as an irredundant set
of generators it follows that {ﬂl, .ew, 5k} is irredundant, and

similarly {7)1 s ee e is irredundant.

U

Since o(ﬁi) = of 'l)j) =p for all i, j it follows that every element

T r
1
of M has a unique representation of the form /B oo ,Bkk @1 with

6, €« M', and similarly for R. If a( ﬂ ,8 1) ‘()) then 0O

induces the isomorphism between M' and R' implied by the
M/Z(M) =R/Z(R
Consider the mapping:

r r

r T
1 k D1 Dk
ﬁl cee By 914—*’1 SR A ACIN

Clearly it is well defined on all of M, and since 0'-1 is uniquely

defined the mapping is one-one. To show that it is an isomorphism

d d e €y d+e d. +e

. 1 k 1 1 k "k
consider ﬂl ﬂk ®1°ﬁ1 .. ﬂ ‘61 Pk 939192, and
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d ey e d1+el -dei-ek

Do See,) =0 L Ko a(e))e(e,).
Clearly 94 is formally identical to 93 with "Bi replaced by ‘L)i.
Hence 0, = 0'(93) and since ¢ is an isomorphism 0‘(@3)0'(91)0‘(92)
=7 (656,9,).

Therefore R=M and {G_l} A S {C—Z:} A

Using an argument quite similar to the one above it will now be

shown that:

THEOREM 4.3 If G, are p-groups such that C(Gi) =2 and G,

:<ai’bi> for i=1, 2 then G1~GZ implies that {GI}A = {—G—Z-} A

with o(A) = max {e(Gi)} .

1

Proof Let G, =<a1,b1> and hence Gi/Z(Gl) :<aIZ(Gl)’bIZ(G1)>'

o P
Suppose o(aIZ(Gl)) =p ! and o(blZ(Gl)) =p L Let C and D be

two cyclic groups such that C = <c”, o(c) = o(al) and D =<d> o(d)
= o(b;). Clearly C, D« {Ay . Consider G; XC XD DH =<alc,b1d>,
Since GIXCXDe{ZZ}A and HZ(G; X C XD) =G, XCXD then

2! A
He {G—l—} A Let N:<(alc)p ,(bld)p> . Clearly NH, and

N NH'=1. Hence H1 =G1/N€ ﬁ:ﬁA: {G_I}A and {'PI—I} A= {—G_l} A

ol
Now H, =<(a;c)N, (bjd)N>=<a;,5, > and if al e Z(H,) then
_ —pd — po< Do‘
(al)p = 1. Forif (a; ,b;) =1, ((a;c)" ,bjd)N =(a] ,b;)N =N,
o ['4
But (a} ,b;) ¢ H} and NNH] =1. Therefore (a} ,by) =1 and
o (23 >4

since G, :<a1,b1> alll ¢ 2(G,), (aLlc)p € N and ('a_fl)p = 1.
Similarly for El’ Now let GZ :<a2,b2> where a, and b‘2 are

chosen such that: alZ(Gl)*-*a Z(G

5 blz(Gl)"> bZZ(GZ)’ induces

ot
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the isomorphism required by the definition of isoclinism.
In an analagous manner form H, = <(a2r)M, (bZS)M> =<-a—2, —b—2>,

and { HZ} i_G—;S A

It will now be shown that every element of H1 has a unique

“ _A % A
representation in the form El _51 91 with (—)1 € H'1 For if _a_l 751 @1
o B o, - B -£ o -
— 2 -1 "2 = 1 -1 —
= a, bIZQZ then a, = b, 2 6,6, and therefore a, L2, Z(Hl)'
1% "1™ b _p
But then 51 =1 and so Zl a; Similarly B—l = El and
hencg Gl = 92.
The identical argument shows that every element of HZ has a
vl__ )
unique representation of the form a, ¢1, with ;?51 € H‘Z

Let 0'(( by)) (a Z,EY) Then ¢ induces an isomorphism
between H‘1 and H‘Z
Consider the mapping:

TXTY —X
ap by 81> 3

Y o
bs (Gl).
By an argument identical to that given in Theorem 4.2 Z[—I1 = HZ and
hence {G, N {GZ} A

The detailed description which P. Hall gives of the isoclinism
families involves a discussion of the so-called "stem! groups of the
family. These are the family members of least order. Stem groups
may also be characterized by the property: Z(G) €G'. In showing
that there always are such groups the following construction is used:
Form the direct product of a group in the family with a finitely gener-

ated free abelian group and consider an appropriate factor group of a

subgroup of this direct product. In this manner a stem group can
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always be constructed. Hence if A is allowed to be the free group of
one generator then there always exists a stem group G1 such that for

any group G ~G,, {G}A = {6_1} A
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CONCLUSION

Several rather general questions have been raised in the preceding
four chapters. In Chapter I the problem of determining necessary and
sufficient conditions for (6_1} = {_‘—2:} was mentioned. The interesting
case to examine is that for which G1 and Cx‘2 are indecomposable.
Since G1 is not an ingroup of G‘2 this question is equivalent to whether
or not the basis set of our decompositions theory is 'independent'. It
was shown in Chapter I that independence does not hold, in general
since both the gquaternion and dihedral groups of order eight are inde-
composable and yet have the same closure. Whether this is just a
peculiarity of 2-groups or perhaps irregular p-groups is not clear.

One certainly ought to be able to settle this question for indecomposable
p-groups of class two with p # 2 since these are given explicitly in
Chapter II.

One rather obvious direction in which to carry the technics here
developed is to study the decomposition question for finite groups of
composite order. It follows from Theorem 1.4 that a decomposable
group is either a subdirect product or it contains a normal abelian p-
group. At this stage, however, it is not clear how useful it is to know
that groups with no normal abelian p-subgroup are either indecomposa-
ble or subdirect products. Certainly this question might be profitably
pursued. One might begin with composite order groups which have
abelian Sylow subgroups, for example.

The unanswered question in Chapter Il concerns the defining
relations for indecomposable 2-groups of class two. It is not very

surprising that there is a greater variety of indecomposable 2-groups
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of this type since almost any compilation of p-groups of certain orders
invariably must deal with p = 2 in a special way. One strong possi-
bility is that this greater variety of 2-groups is absorbed by considering
the closure of a 2-group and not the group itself. For example, it is
shown in Chapter II that the quaternion group of order eight doesn't fit
in with either of the two general forms of defining relations given. But
if D and Q are the dihedral and qu’aternion groups of order eight
then {Q} = {D} and the defining relations for D do fit one of these
given forms. Hence it seems plausible that if G is an indecomposable
Z-group of class two then there exists a group in the closure of G
whose defining relations fall in one of the two given categories.

The main result of Chapter III provides a tool for handling a good
part of the decomposability problem for p-groups of class three. A
complete characterization of the indecomposable p-groups of class
three seems quite accessible. The most difficult case arises when
G/Z(G) is a subdirect product.

The notion of A-closure which is linked up with the relation of
isoclinism might be investigated directly as a classification procedure
for p-groups. This assumes of course that all of the hypothesesof
Theorem 4.2 are indeed necessary. It certainly would be desirable to

settle this question.
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GLOSSARY
{Aal Set of elements Aa, & contained in some index set.
A< B A is an ingroup of B.
A<B A is a proper ingroup of B.
ACB A is a subgroup (subset) of B.
ACB A is a proper subgroup (subset) of B.
{A o} The closure of {A«} .

<a1, e an> The group generated by the set {al, e« v an}.

[a,b] An element in A XB with ae¢ A, be B,

NG N is a normal subgroup of G.

A=3P A and B are isomorphic.

o( A) The order of the group (element) A.

[A:B] The index of B in A,

a =b(n) a is congruent to b modulo n.

ANB The intersection of A and B.

AUB The group generated by the subgroups A and B.
Z(G) The center of G.

z.(G) Zi(G)/Zi_I(G) = z(G/z,_,(G)) with Z(G) = Z(G).
c(G) The class of the nilpotent group G.

G! The derived group of G.

G(n) The n'P derived group of G with G(l) =G'.

a'b The integer a divides the integer b.

aTb The integer a does not divide the integer b.

@(G) The Frattini subgroup of G.

G(n) The nth higher commutator group of G with G(Z) =G,

(a,b) The commutator of a and b, i.e. 2t tan.
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A~B A 1is isoclinic to B.
{G} The A-closure of G.

V{GoL I Set union of the sets Gu .
oL
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