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ABSTRACT

Let GL(n, K) denote the multiplicative group of all non-
singular nxn matrices with coefficients in a field K; SL(n, K) the
subgroup of GL{n, K) consisting of all matrices with determinant
unity; C(n, K) the centre of SL{n, K); PSL(n, K) the factor group
SL(n, K)/C(n, K); I_ the nxn identity matrix; GF(p") the finite
field with pn elements. We determine when every element of
SL{n, K) is a commutator of SL{n, K) or of GL(n, K). Theorem 1.
Let A ¢ SL(n, K). Then it follows that A is a commutator

Bcp et

of SL(n, K) unless: (i) =2 and K=GF(2); (ii)n=2
and K = GF(3); or (iii) K has characteristic zero and A = al ~where
a 1is a primitive nth root of unity in K and n 2 2 (mod 4). In case
(i), SL(2, GF(2)) properly contains its commutator subgroup. In
case (ii), SL(2, GF(3)) properly contains its commutator subgroup.
Furthermore, every element of SL(2, GF(3)) is a commutator of
GL(2, GF(3)). In case (iii), al ~is always a commutator of GL(n,K).
Moreover, al is a commutator of SL(n, K) when, and only when,
the equation -1 = XZ + yz has a solution x, y ¢ K. Hence: Theorem 2.
Whenever PSL(n, K) is simple, every element of PSL(n, K) is a
commautator of PSL(n, K). Theorem 1 simplifies and extends results
due to K. Shoda (Jap. J. Math., 13 (1936), p. 361-365; J. Math. Soc.
of Japan, 3 (1951), p. 78-81). Theorem 2 supports the suggestion
made by O, Ore (Proc. Amer. Math, Soc., 2 (1951), p. 307-314) that

in a finite simple group, every element is a commutator.



1. INTRODUCTION

Let K be a commutative field, A an n row square matrix
(briefly, an nxn matrix) with coefficients in K, In the nxn identity
matrix, |Al the determinant of A. Let GL(n, K) denote the
multiplicative group of all nxn non-singular matrices with coefficients
in K and let SL(n, K) denote the subgroup of GL(n, K) consisting of
all matrices in GL(n, K} with determinant one. It is known [1] that
the centre C(n, K) of SL{n, K) consists of all scalar matrices with
determinant unity. Let PSL{n, K) = SL(n, K)/C(n, K). Finally let
GF(p") denote the finite field with p elements.

The following theorem has been known a long time; a proof

may be constructed from material contained in [Z] , [3] , and [é] .

THEOREM. (1). SL{n, K) is its own commutator group,
except when n = 2 and K = GF(2) or when n = 2 and

K = GF(3). The commutator subgroup of GL(2, GF(3))
is SL(2, GF(3)).

(2). PSL(n, K) is a simple group except when n = 2

and K = GF(2) or when n =2 and K = GF(3). Further-

more, PSL(2, GF(2)) ¥ SL(2, GF(2)) T GL(2, GF(2)) = S,

~S

and PSL(2, GF(3)) = A,, where S, is the symmetric

group on three letters and Aé_ is the alternating group

on four letters.

In recent years a number of authors have studied the follow-
ing problem: Given a set (usually a multiplicative group) of non-

singular matrices with coefficients in a field, when is a matrix A in

1

-1_.-1
this set a commutator BCB "C or a product of commutators of



matrices in the set? Clearly, a necessary condition is that JA] = 1.
The first results in the converse direction are due toc Shoda. In two
papers, Shoda studied the problem of representing a matrix

A ¢ SL(n, K) as products of commutators of elements of GL(n, K):
A = ]r‘nr (B.c.s lc’ly; B, c. e GL(n, K).
. i7iTi Td i’ i

i=1

In his first paper [5] , Shoda showed that if K 1is algebraically closed,

1) and if K is real

1

then only one commutator is required (m

< 2). Generalizing this

closed, then two commutators suffice (m
result in his second paper [6] , Shoda showed that if K has infinitely
many elements, then not more than N commutators (m < N} are
required, where N is the largest of the degrees over K of the
characteristic values of A.

Other recent investigations of commutators of matrices have
been made by Toyama, Taussky, and Fan. Toyama [7] proved that
each element of the unitary unimodular group over the field C of
complex numbers, the unitary symplectic group over C, or the
proper orthogonal group of degree larger than two over the real
number field, is 2 commutator in its respective group. Taussky [8]
proved that if X, Y ¢ GL{n, C), then matrices U, V exist in
GI(n, C) suchthat X = ovyu vt if, ana only if, |X| = Ivl.

Fan [9] reproved part of Toyama's results and also studied the
problem of representing normal or Hermitian matrices with complex
coefficients as commutators of normal or Hermitian matrices,

respectively. Fan also extended Taussky's result by showing that if

x, y e G, an arbitrary group, then elements u, v existin G such



that x = uvyu_lv-l if, and only if, xy_l is a commutator of G.

An investigation of commutators in PSL(2, GF(p)) has been
made by Villari [10]. Villari showed that if p » 3, every element of
PSL(2, GF(p)) is a commutator of PSL{2, GF(p)). He also remarked
that this result is false if p =2 or 3.

The analogous commutator problem for permutation groups
has been studied by Ore [1] and by Itd [12]. Ore and It8 proved
simultaneously (but independently) that each element of A, the
alternating group on n letiers, is a commutator of An whenever
nZs, Since An is known to be 2 simple group whenever n 2 5, Ore
suggested that it may be true that every element of a finite simple
group is a commutator.

It is the purpose of this thesis to determine when every
element of SL{n, K) is a commutator of SL(n, K) or of GL(n, K).
The theorem quoted above shows that for most integers n and most
fields K the conjecture that every element of SL{(n, K) is a commu-
tator of SL{n, K) or of GL(n, K) is not an unreasonable one. Our
results, which will be significant improvements of Shoda's results,
will enable us to prove Ore's conjecture for those members of the
class of groups PSL(n, K) which are simple and will, at the same

time, reprove Villari's results.



z. RESULTS AND METHODS

Qur main result is Theorem 1.

THEOREM 1. Let A ¢ SL(n, K). Then, apart from the
exceptional cases noted below, A 1is a commutator of
SL{n, K). The exceptional cases are:

(1) n=2 and K = GF(2). Here SL(2, GF(2)) properly
contains its commutator subgroup.

(2) n=2 and K=GF(3)., Here A ¢ SL(2, GF(3))
implies that A is a commutator of GL(2, GF(3)).
Furthermore, SL{2, GF(3)) properly contains its
commutator subgroup.

(3) K has characteristic zero and A = ain, where
n =2 (mod4) and a is a primitive 2™ oot of unity

in K. Here aI4m is always a commutator of

+2

GL(4m + 2, K). Moreover, the necessary and

sufficient condition that al be a commutator of
4dm+2

SL{4m + 2, K) is that the equation -1 = <%+ yz have

a solution x, v ¢ K.
We proceed to deduce a number of corollaries of Theorem 1.

COROLLARY 1. Except in cases | and 2 (and 3 if -1 is
not a sum of two squares within K), then A ¢ SL{n, K)
implies that A is a commutator of arbitrarily high weight

in SL{n, K).

PROOF. If A = BCB_l(Z-l, we simply have to reapply Theorem

1 to the matrices B and C and iterate, noting that neither B nor C



can be a scalar matrix if A 1is not the identity.

COROLLARY 2. Let X, Y e GL{n, K). Then, except when
n=2 and K= GF(2), matrices C and D existin

1

GL(n, K) such that X = CDYC "D} if, and only if,

IX1 = 1Y},

PROOF. This is just the previously mentioned result of
Taussky. In the same way, it is easy to determine when
ID—l

X = CDYC for X, Y, C, D e SL(n, K).

Since 53"=‘SL(2, GF(2)) = GL(2, GF(2)) and since S,
properly contains its derived group, the exceptional case 1 of Theorem
l is genuine. Since PSL(n, K) is a homomorphic image of SL(n, K),
and since A4 properly contains its commutator subgroup, then from
PSI1(Z2, GF(3)) §A4 we immediately see that the exceptional case 2 is
also genuine. In the homomorphism from SL{n, K) onto PSL(n, K),
the scalar matrices map onto the identity, which clearly is a commu-
tator of PSL{n, K). Since the exceptional cases | and 2 of Theorem 1
correspond just to those cases in which PSL(n, K) is not simple, we

have established Ore's conjecture for the simple groups belonging to

the class PSL(n, K) of groups. We state this as Theorem 2.

THEOREM 2. Whenever PSL(n, K) is simple, then every

element of PSL{n, K) is a commutator of PSL(n, K).

We now sketch our methods of proof. Given A with JAl =1,
we perform a similarity transformation which throws A into a
rational canonical form. We then construct a triangular matrix D

with coefficients in K such that |D|I = 1. The elementary divisors of



D depend on its diagonal elements and the structure of its non-zero
triangle. Our construction of this non-zero triangle of D will make
the elementary divisors independent of the particular values of
certain of the off-diagonal elements. We shall attempt to choose
these off-diagonal elements such that AD and D have the same ele-
mentary divisors. This choice will involve solving a set of linear
equations. If a sclution can be found, the existence of a matrix S
such that AD = SDS"1 will be guaranteed. We shall show that we can

lD~1 where

satisfy 1Sl = 1. From this follows A = SDS’
S, D e SL{n, K).

Cur general methods will break down when the field K has
five or fewer elements. Hence we shall have to give special argu~-
ments when the field K is GF(5), GF(4), GF(3) or GF(2).

For the matrix theory used in this thesis, we refer the

reader to any standard text on matrix theory: for example, [1 3] ,

Chapter 7.



3. NOTATION AND DEFINITIONS

In this section we shall describe some of the notation to be
used. Part of the notation has already been described in the intro-
duction.

i p(\) = %+ a_ )\n*'l + -+ +a, isa polynomial with
coefficients in K, by C(p(\)) we denote the companion matrix of

p(N):

o 1 0 0
o 0 1
Clp(N\) = , n = 2;
0
0 0o 1
-al —an

Tet B denote an nxn matrix with a one in row & and

o, B
column B, and zeros elsewhere. The dimensions of E& 8 will
always be clear from context. Let Sy 8 (u) = Lo+ qu(,ﬂ . I o £ 8,
-1 th

S‘* 8 (u)As 8 (u) is a matrix obtained from A by adding the u

multiple of row # to row &, then adding the (—u)th multiple of

column & to column g in the resulting matrix. Because of the

associative law, S_ s (u)AS;lp (u) may also be obtained by perform-

" ing first the column operation, then the row operation in the resulting

matrix. Since such similarity transformations will occasionally occur,

we give them a special name.



DEFINITION 1. An elementary similarity transformation

of a matrix A 1is a similarity transformation of A which
. -1

replaces A with S_ o (u)AS, g (u) where ue K and

o # B.

. B

We shall often specify &, B and u in an elementary similarity
transformation by giving the row operation to be performed, or by
giving the column operation.

If ae K and n is a positive integer, by Jn(a) we denote

the Jordan matrix of a dimension n:

a 1 1
a 1 o
Jn(a) = , nZ2;
a 1
)
a
5,(a) = (a)

If A isan nxn matrixand B is an mxm matrix, by A + B we

denote the (m + n) x (m + n) matrix

The following matrix will be encountered so frequently that we give it

a special name.

DEFINITION 2. The following nxn matrix D will be

called a standard matrix.



d, 4, dj d,
Jg (cl} 0
1
J_ (c5)
S5 2
D = s
0
J (Cr)‘
r
l1+s, +s, 4+ +s = Y
sy *+s, s.=mn, n%=2;

D= (d;), n=1l.

The standard matrix is defined by the following parameters: the
integers n, r, Sys ree s sr; and the field elements dl’ dZ’ cee

dn’ Cp» Cps vve s Co When describing a standard matrix, we shall
always indicate the values to be assigned to these parameters in terms
of the notation used in Definition 2 above.

In a matrix, an asterisk * will indicate elements whose

precise values do not matter.
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4. PRELIMINARY LEMMAS
In this section we collect together the lemmas that will be

required later.

LEMMA 1. Let D be the standard matrix of Definition 2,
with coefficients in a field K. Then, if d; # c, for

i=1, 2, ... , r, the elementary divisors of D are
s s

()~d1), (k—cl) 1~, cee (\-cr) Y. (f n=1, the

elementary divisor of D is (W~ dl)")

PROOF. The resultis clearif n=1. If n22 andif xe K
-1
is suitably chosen, the matrix S, i(X)Dsl i(X) (i 2 2) has the same

E Ed

is

structure as D, except that di is replaced with 0 and di+1

altered. By a sequence of similarity transformations of this type,
with i=2, 3, ... , n, we may bring D to
Jl(dl) + JS (Cl) Fee0 JS (Cr)' The structure of this matrix

1 r
exhibits the reguired elementary divisors.

LEMMA 2. For n 22, let

1,2 71,3 1,n
0 0 f2,3 fZ,n
¥ =
0 0 n-1,n
1 *2 %3 *a
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be a matrix with coefficients in K such that

fl, ZfZ, 3 e fn-l,n # 0. Then a matrix S exists with
coefficients in K such that |9 = 1 and SFS™' = G,
where
0 fl’z 0 0
0 0 f2’3 0 0
G =
0
0 0 fn_l,n
V1 YZ V3 Yn
and
\
n T Ey
n-2
Vp-1 = ¥pa1 t dn-1,i %
i=1
j-1 > (1)
= x. + a X.,
Y j E isi
i T *1- J
The coefficients aj ; € K.
PROOF. If a, = - £ . ., the matrix
i n-l,ni,n
-1 -1
Sp-z,n-18, ) - Sy @D FEST (@) a8 5 (e ;) bas

the same structure as F, except that the coefficients standing above

n-1 p inthe last column are replaced with zeros and the (n - l)St

column is the (n - l)s‘t column of F plus linear combinations of
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columns 1, ... , n -2 of ¥. Repeating this procedure with columns

n -1,

, 3 produces the matrix G. The assertion about the

determinant of S5 1is clear since |Si J(u)l = 1 whenever ifj.

S.

i, 1

= f coo I

2

LEMMA 3. The matrix G of Lemma 2 is similar to

H = ¢( )‘n - Wn)\an - e. = Wl), where
_ )
Wa T Yy
Wa-1 ~ fn—l,nyn-l’
e
Wi £ i1 fo1,n Yy
Wi T E o anaVre J

PROOF. Let S = (s

-1 -1 .
n-1,n’

.) be a diagonal matrix with s =1 and
j n, n

L i=1, ..., n-1. Then SGS™' = H.

i,141

LEMMA 4. Let
-1 ~1
A:C()F»an)‘n = mayh - (<) A
be an nxn matrix with coefficients in K. Let D be the

nxn standard matrix of Definition 2 with coefficients in K

and |Al cy e CL # 0. Let
ah) = ¥ ra Nl gt ()Pl e e T
n 2 171 r
be a polynomial with coefficients in K. Then, for fixed
d,, ¢4, ...., c_, it is vpossible to choose d,, ... , d e K
1 1 T F 2 n

in such a manner that g()) is the characteristic and
minimum polynomial of AD. (When n=1, g(})= ) - d,

and the characteristic and minimum polynomial of AD is
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( A-1a14)).)

PROOF. For n=1, there are no dZ’ oo dn to be chosen

and the result is clear. Hence suppose n z 2. Compute AD.

0 Jsl(cl) 0 . 0 \
0 0 J_(c;) 0 .
2
AD =
0
0 0 0 Js (Cr)
r
Xl XZ X3 o Xl’l

where the first side diagonal of AD above the main diagonal contains

Cys wo+ s €y Cys » €5 ey Cb ovee ;€ B8 ceoefficients (ci
appears s, times, i=1, 2, ... , r) and
N\
_ n-1
X = (-1) Al dys
X, = (_1)11—1 Al d, + (2 linear expression in az),
n-1 >(3)
x; = (-1) latd, + (a linear expression in a., ai-—l)’
x_ = (-l)n—l IAl d_ + (a linear expressionin a_, a_ .).
n n n’ “n-1 J
The coefficients in the indicated linear expression depend on
Cys =o s C but not on dl’ e o dn. Invoking Lemmas 2 and 3, we

find that AD is similar to C(p())) where p(}) = )\ - W ),n_l Seee - Wy
and wy, ..., W are related to dl’ e dn by equations 1, 2, and

3. Since the characteristic polynomial of a companion matrix is also

the minimum polynomial, the result will follow if we can determine
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d,, ..., d_ such that p(A) = g(A). The constant term of p(A\) is

1 r

(—1)n Iald. ¢ - e But this is the constant term of g{\). Next,

1

set w, = - q., i=2, ..., n and note that equations 2 may be solved
for Yor see » Yy interms of Wos cee s Woo From equations 1 we
may determine Xos cee 5 X in terms of Voo sre s Voo Finally,
since Al ;l 0, equations 3 determine dZ’ cee 3 dn in terms of
Xg, 2:0 5 % . With d,, ... , d_ determined in this way,

2 n 2 n
p(A) = q(A) and the proof is complete.

The result just obtained will be the cornerstone of the proof

of Theorem 1. It will most often be used in the following form.

LEMMA 5. Under the hypothesis of Lemma 4, if

lAldl, c € 0 are all distinct elements of K,

19

then d o dn may be determined such that the ele-

2’
s s
mentary divisors of AD are (/\—lAldl), ()‘_Cl) 1, cees (A= Cr> 5

(When n =1, the elementary divisor of AD is

(A—lAtdl).)

PROOF. Let

S

a(N) = (- 1A1d)) (A=) L.

(N-c) T

r

and choose dZ.’ cee dn such that the characteristic and minimum
pblynomial of AD is q()\). But then the elementary divisors of AD
are obtained by decomposing ¢()\) into its relatively prime constitu-

ents. From this observation the result immediately follows.

LEMMA 6. Let A and B be two matrices with coefficents

in K, such that SAS-1 = B for some 5. If A possesses
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Can elementary divisor » - x with & ¢ K, then a matrix T
exists with coefficients in K such that, if t isany non-zero

element of K, TAT ' =B and IT) = t.

PROOF. Since )\ -« is an elementary divisor of A (and hence
of B), matrices S; and S, exist with coefficients in K such that

SlASIl = SZBS£1 = () -‘!-Al where A, is some (n-1)x(n-1)

. -1 .
matrix. Let t; =t|8281 | and set Tl:(tl)+ln—1° Then
T.s.as 't ' =5, a5 =s.BsI!, n sttt s asitils =B
17101 1 TP T PpPRp o BEHCE B Lgesey 4y By T B
-1
Set T —SZ Tlsl'
The following Lemma will be used in the study of matrices
over GF(3).

LEMMA 7. For n 23, let

0 d <y
0 0 d <5

H =
0 ¥ 0 d C. .2
0 0 . 4} 0 d
hl hZ ¢ hn—Z hn-l hn

Then the coefficient of \ in ”‘In - H} is

n-2 n-3
- (hzd + hld (Cl + e 4+ Cn—Z))'

PROOF. This coefficient is (-1)“'1 (the sum of the principal

minors of H of order n - 1). The minor obtained by deleting the
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first row and column of H has value (—l)n-zdn—zhz, The minor

obtained by deleting the last row and column vanishes. The minor

obtained by deleting row i and column i(2%ifn -1) is

0 d

d

3k
d
O “i-1
d
hl * d
- (-l)n"zh dn"3c
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5. THE PROOF OF THEOREM I WHEN K CONTAINS SIX CR MORE
ELEMENTS

Throughout this section A will denote an nxn matrix with
coefficients in K, JAl = 1. Since any factorization A = BCcB lc™! is
preserved under a similarity transformation, we may perform a
similarity transformation and throw A into a rational canonical form.
Thus we may suppose that A = Al Feee Am, where Ai is a
jixji companion matrix of a polynomial with coefficients in K,
i=1, 2, ..., m. By rearranging the Ai if necessary, we may

£ £

assume that jl s jZ 2o 2 We divide the proof intoc a number of

m’

cases, depending on the values of m and jl, cee s jrr’ Part of the

proof presented in this section will be valid when XK contains fewer

than six elements.

CASE 1. The 2x2 matrices.

If A is 2x2 and not scalar, then A is similar to the
companion matrix of a single polynomial with coefficients in K.
Choose p ¢ K such that pz # 1, 0. (This is possible if K is not

GF(2) or GF(3).) Let
P dy

o
i

o F
be a standard 2x2 matrix. By Lemma 1, the elementary divisors of
D are { »=p), (M- /’_1) since P# /;1. By Lemma 5, if d2 is
properly chosen, the elementary divisors of AD are also
( N-p), (X - /0—1), Hence, by Lemma 6, a matrix S exists in

1_.-1

SL(2, K) such that AD = sps™!. Hence A =5DS™'D! where

S, D ¢ SL(2, K).
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We shall give the proof for the scalar 2Zx2 matrices under

a later case.

1A%

CASE 2. j_ %3,

In the sequel, whenever we list the elementary divisors of a
matrix and include a term (M- Y )W where w = 0, then (M -y )W is
to be deleted from the list.

Let &, be any non-zero element of K and define

_ ™
SZ = lAll 51,
by = 1A 118y >(4)
&y = lAm—ll ®m-1 Y,
Then, since IA1 o0 A} =1,
m
5, = 1A 15 - (5)

For i=1, 2, ... , m -1 let yi be an element of K distinct from

Sis Si+1’ 0. Let Yin be any element of K distinct from Sm’ Sl, 0

IR A

and define y by the condition
m
it gt im-17t Jm 2 |
$EE —
5,8 - 871 Y2 o Ym-1 Ym  Ym - D (6)
Choose x ¢ K suchthat x # 0 and
Ym® # Sm or §is

-1
y;r‘l'x f Sm or 515

These conditions prohibit at most four non-zero values of x. Hence,
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if K has six or more elements, a suitable x always exists. Let

Ym mes
iR Tre _1
Yo, = Y X
Then
iiml -l jo_.-1 j -3
1 2 m-1 m B
5152”. smYI YZ " Y-l m Yény?;I‘l_l'
For i=1,2, ..., m-1 let Di be a jixji standard matrix with
_ cp e 2 _ _ s - _ _ .
d, = 6‘1 and (if j, 22), r=1, s =], 1, ¢; =v,, and with
dZ’ c e e s dj so chosen that the elementary divisors of AiDi are
i .
j.-1
(N - $i+1)’ O\ - 'Yi) S (Because of the way in which the Si and v

have been selected, we may use Lemma 5 to make this choice.}) By

j.-1
Lemma 1, the elementary divisors of D, are (N - Si)’ (N - ) *

We now construct a matrix D_- There are five different possibilities

T

3 Ym-

depending on the values of Ym' Yin

CASE 2.1.

If Yo Y;n’ Yéz"x are all distinct, let Dm be a jmxjm

standard matrix with d, = § . If j =3, wetake r=2, ¢, = vl
1 m m 1 m
s, =1, ¢ :Y”, s, = 1. If j >3, we set r =3, take c $1+ €

m 1’ S

2’ "2

as just indicated, and €y = ‘Ym, S3 = jm - 3. In either case, it

follows from Lemma 1 (in accordance with a convention indicated above)

that the elementary divisors of D _  are (\- &) (- Yo ) (A= yil)s

i -3
m
(N - Ym) . Select dz, cee dj such that the elementary
m i -3
divisors of A D _ are ()- §), (\- Vo (= v (N - Vo)
(LLemma 5 and equation 5.} Now let D = D1 Fooof Dm' Then,
because of our choice of Y;n’ y;;l, iD! = 1. The elementary divisors
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of D are

jl_l jz—l
()‘ = 51)’ ()\ = Tl) 4 (>‘ - 52)9 ()\ rz) s
jrr\—l_l
’ (>‘ - Sm_1)7 (>‘ - rm—l) i b (>‘ - gm)’ (7)
i, "3
- yg (v-yp) -y
and the elementary divisors of AD are
jy-1 jo-l
()\"82)’ ()"71)1 5 ()“83)’ (X"Yz)z s
jrn—?i-1
(M-8 M-y y) . (M-8, (8)
j_ =3

(N -y =y -y )™

Since the display 8 is the same as 7 except for a rearrangement, D
and AD have the same elementary divisors. Thus, by Lemma 6, a
matrix S exists with coefficients in K and determinant unity such
that AD = SDS .. Hence A =5SDS 'D™! where S, D« SL(n, K) as

required.

CASE 2.2.

Ity =yl £ Y., let D bea j xj = standard matrix

with d1=8m, r =2, C1=Y1!rx‘1’ sl=1, c, =

5 > = Ve 2 ° jm - 2, Then

i =2
the elementary divisors of Dm are (A - gm), (A - r;}:}), (A - Ym) m

(Lemma 1) and by Lemma 5 and equation 5 we may determine

dz, coe 5 d. such that the elementary divisors of AmD are

m m
-2

j . .
(A-8), (M-y1), (A-y )" . Let D=D +--» +D_. Then

the elementary divisors of D are



jl'l
( X“ 51)9 (>\ - Yl) » ® ’ ()\_ gm—l)’
jm-l_l
(>‘ = rm—l) ) (>\ - 5m)’ (>‘ - Y;I,})’ (9)
i 2
(A-7)

Furthermore, the elementary divisors of AD are

j]_-l
(>“'62): (X—Yl) s e (A"Sm):
jm—l-l
()\" rm—l) ] s ()‘ - 51)9 ()" 7]:‘;1)’ (10)
i, 2

As before, 10 is merely a rearrangement of 9, hence, by Lemma 6,

i

AD=5Ds™!, A =5Ds"'D7! where S, D¢ SL(n, K).

CASE 2.3,

Here we assume Y = 1‘,1{} # rlfn In this case the proof is
the same as the proof in case 2.2 except that y;n and rl‘q‘l (in this
case) play the roles of yér'& and Y;'ﬂ (in the previous case)

respectively.

CASE 2.4.
Here we assume that Y;n = 71',11, # Voo Let Dm be a

JrnXJm standard matrix with d1 = Sm., If jm =3, we set r = 19

c, = Y;n, s = 2. If jm> 3, we set r = 2¢ Cis 8; as just indicated;

and c, = fJ_ 5 s, =]~ 3. The elementary divisors of D are

2 ‘jn\—?)
(A - Sm), (A- Y:rn) , (N - ym) ", and we may choose

dys eee s dj such that the elementary divisors of A D are

P
m
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i -3 )
(A'Sl):v()\"y,;n)zs (A"rm)m . Let D:Dl:l—.oo-}-D and

jasl

complete the proof as before.

CASE 2.5,

Yo

with dl = Sm, r=1, ¢y = rm, s; = jm - 1. Then the elementary

7' :Y”’ let D be a j_ xj standard matrix
m m ™ m “m

o ™1
divisors of Dm are (X - Sm), (X - Ym) and, if dZ’ ceo djm
are properly selected, the elementary divisors of AmDm are
il o
(M - 51), (» - Ym) . Let D=D; + -+ +D_ and complete the

proof as before.

The proof in case 2 is now complete.

CASE 3. mZ2, j_ =j = 2.
m m-1

The proof in this case is similar to the proof in the previous
case. Let 51 be any non-zero element of K andfor i=2,3, ..., m
define 55. by equations 4. For i=1, 2, ... , m -1 let 7; be any

element of K other than Si’ gi 0. Define YI‘T']' by equation 6.

+1°
Choose x ¢ K such that

Ym-1% %Sm—l or 6-m."
-1
11y
Y * # 5. or 5 -
Since K has six or more elements, a suitable x always exists. ILet
1 —
Ym-1 7 Ym-1%

Y m

i

-1
Py T h
m
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Construct the matrices Dl’ cvo 5 D .p @s incase 2. Let

(5 m-1 92 )
D = 3
m-1 0 .
Ym-1
11
Dm = (8 w QZ ) 2
i
0 Yin
where d, is chosen such that the elementary divisors of A D
2 m=-1"m-1

are (\ - Sm), (N - Y, _1), and dj is chosen such that the ele-
mentary divisors of A D _  are (N - 51), (N - 71‘11) Set

D=D, ++-- +D $ D . Then IDIl =1 and, by the argument
1 m-1 m
1

used in the previous case, A = SDS_ID— with S, D ¢ SL(n, K).

CASE 4. m22,j =2, ] = 1.

m-1- """ "1

In this case, A is the direct sum of a diagonal matrix of
order n - 2 and a matrix of order 2. DBecause of the fact that
Clp(M) ¥ C(gq(N\)) is similar to C(p(A)a(X)) if p(A) and g(X) are

. . P
relatively prime, we may assume that A =al . + C(A" - (2+Db)A + ab),
L ]

-1 . .. .
where a, be K and an b=1, (Otherwise, after a similarity

transformation of A, we could fall back on a matrix studied in cases
2 or 3.)

As far as possible, we shall use the technique of proof used
in the previous cases. For non-zero & ¢ K we define c(&) as a

function of & by
a’(n--l)(n—Z)/Z Sn-lc(s) _— , (1)

We attempt to choose § such that
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c(é) # &, (12)
é. (13)

If K has infinitely many elements, then a suitable é always exists
since the equations c(8) = 8, <(8) = 2725 have only finitely many

roots. Let

an_25 d
D:(X)Jr(aﬁ)i'-(aZS)-i-“-%’—(an—BS)-i- ( 2 )
0 c(8)
Then |[DI =1 and because of inequality 13, the elementary divisors of
-2
D are (A-6), (A-28), ..., (N-2""76), (N-c(8)). Because of

12, we may choose d, such that the elementary divisors of

(0 1) (an“zs dz)

-ab  a+b 0 c(8)

are (AN -8), (N -c(8)). The elementary divisors of AD are then
(N -2a8), ..., (N —an_ZS), (N -8), (N ~c(8)). Hence

}LD—]L where S, De SL(n, K).

A = SDS”
If K is a finite field, it is not clear that a suitable §
exists in K. To handle this situation, it is necessary to give a more

complicated argument. We divide our argument into three cases,

Let p be the characteristic of K.

CASE 4.1. b=a.

Assume first that a2 # 1. Take &§ = 1. Thenif c¢(1) =1

- 2
or if c(1) =a" 2, we find a~ =1 (using al = 1). Hence A is a

commutator of SL(n, K) if 2’ # 1. If a? = 1, then

C( N - 2ah +a%) ¢ SL(2, K). Bycase 1, if K is not GF(2) or
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GF(3), C{ A - 2ah + az) is a commutator of SL{2, K). Two cases
now arise: a=1 or a=-1. If a =1, then (since (1) is a commu-
tator of SL(1, K)), A is a direct sum of commutators, hence is a
commutator of SL(n, K). If a = -1, then n is even. It is known [141
that integers x and y exist such that XZ + yz = -1 (mod p). This

means that elements x, y existin GF(p) and hence in K (since K

contains GF(p)) such that xz + yz = -1, Let

S PR RN B

Then, X, Y e SL(2, K) and -1, = XYX vl Hence A is again a

direct sum of commutators of SL(2, K) and so is a commutator of

SL{n, K).

CASE 4.2. b # a, n is odd.

Since b #a, A issimilarto A =al +(b). Let

n-1

D=(6,) + (aSl) e 4 (an_lsl) where 51 = a-—(n—l)/Z_ Then

1

|IDj = 1 and it easily follows that A]_ (2nd hence A) is a commutator

of SL(n, K).

CASE 4.3. b#a, n is even.
Here we prove that an element § exists in K such that

11, 12 and 13 hold*, If § ¢ K, we say & is admissible if 11 and 12

When n is even, the obvious device of passing to a diagonal matrix
A1 and attempting to find a diagonal matrix D such that AlD is
similar to D fails since fields exist within which ID|l =1 cannot be

satisfied.
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hold. We first show the existence of admissible elements in K by
noting that if 1 is not admissible, then a must be. For if c(l) = 1,

c(a) = a, we have
a(ﬁ-—l)(n—Z)/Z -1 = a(n—.’t)(n—Z)/Z o

-1 . .
Hence a ' =1 sothat a =b (since a” b = 1). This contradiction
establishes the existence of admissible elements in K. Suppose now

that §' is admissible. Four mutually exclusive possibilities exist:
(1) () #a™ % s

(i)  c(8") = an_25‘, a§' is admissible and c(a ') #a “(a$§');
(iii) <(8Y) = an—25‘, a$' is admissible and c(a ') = an_z(aS');
(iv) c( §') = a2 §'. ad' is not admissible.

If (iii) holds, then

a(n—l)(n—Z)/Z( 8,)nan—2; _

{
[
-
o~
-
1:N
g

a(n—l)(n—Z)/Zan(sg)nan—Z -1,

so that 2" =1 and hence b =a. If (iv) holds, then we have 14 and

a(n-l)(n—Z)/Z an (5!)n = 1.

- 2 -
Hence a' = a 2', so that a = 1. Since n is even and 2™ 1b =1,

we deduce that a = b. Thus we must have (i) or (ii), which proves
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ste
K

the existence of the desired element in K™.

The proof for case 4 is now complete.

CASE 5. The scalar matrices.

We observe that if A is not scalar, we may, after a
similarity transformation of A, study the representability of A as
a commutator under one of the previous cases., Hence only scalar
matrices remain to be considered. The argument about to be
presented will not depend on the number of elements in the field K.

In this section a will denote a primitive nth root of unity
in K. Observe that n is determined by the roots of unity that exist
in K and is in general not arbitrary. We shall first show that

® 3 ®

al =al_ +al +-¢. +al_ (m terms) is a commutator of GL(mn, K)
mn n n n

for every integer m Z 1. Next, when n is odd, we shall establish
that al__ is, infact, a commutator of SL{mn, K) for every integer
m 2 1. We shall then prove that when n is even, almn is a commu-
tator of SL{mn, K) for every integer m> 1. Finally, we shall

determine when al_ (n even) is a commutator of SI{n, K).

Let D =(1)+(a) @4 i--- + ("), Then D and

o . n
aInD = aD have the same elementary divisors since a = 1. By

1

Lemma 6, S exists in SL(n, K) such that al = sps !, since

the direct sum of commutators is again a commutator, it follows that

ole
K

Since the multiplicative group K - {O} of the field K 1is cyclic, it
it possible to search for §é as a power z‘ft,x of the generating element
¢ of K - {0}. In this context, 12 and 13 demand that x is nota
solution of either of two congruences. When n is even, we may
establish directly the existence of a suitable non-solution x. The

above argument establishes this result in a slightly easier manner.
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al_ is always a commutator of GL(mn, K). For use later, we

appeal again to Lemma 6 to find T ¢ GL(n, K) such that |T| = -1

and al = toT 'p7L.
When n is odd, D} = an(n-l)/Z = 1. Hence aImn is, in

2

fact, a commutator of SL(mn, K) for all m = 1.
When n is even, |IDI = -1 since an/Z = -1. We showed
above that S exists in SL(n, K) such that al = SDS_lD_l,

Applying this result to (aln)-l, we deduce the existence of matrices

1.,-1

U, V in GL(n, K) suchthat al_=UVU 'V = and |Ul = -1,

IVI = 1, Now note that

al, =(S i s)(D ¥+ D)s + s)‘l(D ¥ D)’i,

al siviTivipsiuim i pivinl

3n
where (S +5),(D + D) e SL(2n, K) and (S+ U+ T),

(D+V 4+ D) e SL(3n, K). By writing al  as adirect sum of
matrices al or al, , we immediately see that al is a commu-~
Zn 3n mn

tator of SL{mn, K) whenever m > 1.
For the remainder of this section, we suppose that n is

IC_]’ where

even, and, if possible, suppose that aIn = BCB
B, C e SL{(n, K). Then aCB = BC. It is well known that BC and CB
have the same characteristic values. (Proof: BC = B(CB)B_]‘a) Let
¢ be a characteristic value of BC (in a suitable extension field of K,
if necessary). Then e is a characteristic value of CB, so that a«
is a characteristic value of aCB and hence of BC. Iterating this

n-1

. 2 s
argument, we find that &, a&k, aa, ... , 2 o are all characteristic

values of BC and, since a is a primitive nth root of unity, are all
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the characteristic values of BC. Since |BC| =1, an(n—l)/Zdn =1,

. n/Z n . . .
or, since a = -1, o + 1 =0. This means that the characteristic
polynomial of BC is p(A) = A" + 1. Since BC is a non-derogatory

matrix, a matrix S with coefficients in K exists such that

secs™! = C(p(A)) = Z, say. Then al_ = SaImS'1 !

Y = scs'l, 1Yl = IClI. Thus, if al is a commutator within

=2Y2 'Yl where
SL(n, K), then aIn is the commutator of Z and another matrix Y.
We shall now deduce the form of Y. Let Y = (le.) where the super-
script indicates the row index. The equation ZY =a¥YZ gives the

following matrix equation.

2 2 1 i 1
Vi ee0 Vg, -ay, ayy co e a2y, 1
- 2
aYn ayy aVn-1
n n =
Y1 - Vn
1 1 n n n
Yy e Vg Ay, ay, oo ay_ i

A

Hence, for 2 < j=n, we find

=1
7 = -ayy
i-1 i-2
o e absent when j = 2
2 - . 1
Tn-j+3 T Fpoje2
1 _ n
Yn-j+z = #Vn-jr1e
n _ n-1
Yn-j+1 = #n-y
. . absent when j=n
j+l j
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Thus, beginning with the last of these equations, we find

+1
V2

Similarly,

so that

Y14

Hence,

n-1
ayn_l,

aYl H

-~

? absent when j=n

> absent when j= 2




Y
1
/YI

n
1

n
-ay;
1
ay,
21
a vy,
ay)
2 3
a“y

Conversely, for this Y,

31

n-j+1_j n-1 2
-a vy -a Yq
n-1
_a le
n-j 1
a Jy1
n-j+l 1
a vy
_.n~l n
a 1
n-j j n-1 1
a JYJ‘E V:&
aYZ = ZY,.

In order to simplify the notation in a computation that will be

presently made, we set yl1 = Voo i=1, «c. , n., Let
71 “Yn V-1 ¢ Y2
Y2 1 REY Y3
73 72 71 . L

Y
i ° ® °

Yn-1 Yn-2 Yn-3 AN
Yn Tn-1 Yn-2 ) 71

Then |Y| = an(n—l)/Z || and hence (since an(n—l)/Z = - 1) the



32

necessary and sufficient condition that aIn be a commutator within
SL(n, K) is that field elements yy» =+ » ¥, exist such that
Iy | =-1.

In order to investigate the values that |Y1| can assume,
we require a known [15] formula for lYll . For completeness, we
include a derivation of this formula. Let ® be a primitive (Zn)‘th

s . . . 2
root of unity in a suitable extension field of K, ® =a. Set

. 2 _

w.:alcb, i=1, ..., n. Let v.:(l,m., w. , ..,.,ofl 1)., Then it
1 1 1 i 1

. _ n-1 .

is easy to see that v, ¥ = (y1 +wy, + + yn)vi’ i=1,..., n.

Thus ] is a characteristic vector of Y1 belonging to the character-~
istic value V1 + Wy, +oreo 4 a)?_lyn. Now, the nxn matrix with

Vis cee sV oas its rows is non-singular since it is a Vandermonde
matrix and the w, are distinct. Consequently we have found all of

the characteristic values of Ylo Hence we obtain the known

expression

i=1 j=t 4
Thus
kel I R
vyl o= TT L &M ety
_ — ]
i=1  j=1
/
_ Tﬁ-{n 2 qzj-z)a@j-zy o Ef; Lil2i-1) 251 .
i=1 j=1 SR | 2]
n n/2 n/2
. T (2,80, 5& RICTEDE RSN
i=1 J"—-—"]_ J J:]_
n 2 . ey .
_ ]_I' ( ¢ a(J—l)(Zﬁ-l)Y - +(1)-1 aJ(ZH—l)—l ).
i=1  j=1 2j-1 =1 2
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if k is an integer. Also,

,..4
Ll
i
=
(W)
—
—
)
4%
p——
[
H
et
ez
—~
v
b
+
prmt
ot
<
[3%]
Tt
]
et
+
8|
ot
o
H
o
S
oy
o
[
~
[§Y)
e
4
ot
e
%]
[
e

i=1 =1 =1
n/2 . n/2
,(3-1)(2i+1) AP j(2i+1)
( =1 2j-1 "% Jifi ZJ)]
n/2 n/2 _ 1 5. N
: [( _(-1)(2i+1) ZH)Z ] zl(é i), )2]
i=1 j=1 j=1 J

Consider the following set of n/2 equations in n/2 unknowns:

2
iffr -1)(23+1 .
2 (-1 )Yzj—l =w, i=1,2, ..., n/2, (15)

j=1

where Wis e s Wn/Z ¢ K. The matrix of coefficients of 15 is

1 2 @)L pHe2-n
. i T NCYERY
1 | an+1 (an+1)2 o (an+1)(n/2 - 1)

This is a Vandermonde matrix and is non-singular since
3
a , a5, cea a1rl+1 = a are distinct. Hence, for any choice of
Wi e ,‘Wn/2 in K, Vi Y3s cce 5 Y,y Can be found in XK such
that 15 is satisfied. Similarly the set of n/2 equations in n/2

unknowns

%2 s .
j(2i+1) U .
a YZj_a‘Wi’ i=1, 2,.,..,11/2,

has a non-singular coefficient matrix so that a solution exists in K

. . ; .
for every choice of Wis oeee s Wn/Z in K,
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Thus, in order to set IY]_I = -1, it is necessary and
. . H 1 :
sufficient that LATEEERNE Wn/Z’ Wis eee s Wn/z be found in K such
that a/2 5 o 5
-1 = ( wo-a "t (w)). (16)
. i i
i=1
If n=4 tak =a'" = = -1
n = 4m, take w, = ,/WZ— —-Wn/z— ,
b om ae = ot - . n/z . . .
wi = Wn/z 0. Then, since a I, equation 16 is
satisfied.
2m+1 .
If n=4m + 2, then from a = - 1 we obtain
- a—l = azm. Set Wi” = W{am. Then
n/2 .
2 2
Yy = r/f (wi + (wi')7). (17)
i=1

Since the product of sums of two squares is again a sum of two squares
[16] , if elements in K exist such that lYll = -1, then for certain

elements W, W' of K we have
-1 = wl e (w2, (18)

Conversely, if 18 has a solution in K, thenif in 17 we take w; = W,

- ! = coe¢ = = 1 o= 00 = tt = i
wy' = W', Wo = Wn/z 1, wy Wn/z 0, we find that
|Y1| = -1. Hence we have reached the following conclusion: If
n=4m + 2, then the necessary and sufficient condition that
al = Z.Yz_lY_1 where Z, Y ¢ SL(n, K) is that equation 18 have a

solution in K.

It is known that integers x and y always exist such that
x% + yz +1 =0 (mod p) where p is a prime. This means that
elements .x and y always exist within GF(p) such that XZ +y =-1.

Hence, since any field of characteristic p contains GF(p), 18
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always has a solution if K has characteristic p.

If K has characteristic 0, then 18 is sometimes
impossible. As an example we may take n=2, a = -1, and K to be
any formally real field (such as the field of rational numbers). In
many other cases 18 possesses a solution. We list two such cases.
(1). If K contains the primitive (Zn)'th root of unity ®, thena
solution of 18 is W = mn/z, W' = 0.
(2). If for some divisor r of 2m + 1 integers s and h exist such
that r(h+ 1) = 2° +1, then a solution of 18 can be found. For,

using a technique due to Landau [1 7] , we first note the following

polynomial identity:

LNt Xreoed X1 XNa (s et (5D

L4 A+ Xogoee g abir-l

(1+>\)(1+>\2)(1+ Ay e (1 X )+ X

Since 2r divides n, the field K contains the primitive root of unity

n/2r

P=2a of order 2r, so that Pr + 1 =0 and hence

Fr—l_Pr—2+____ -p+1=0.

Using -1 = p°, we obtain

pzr"2+ F2r—4+n“ + F2+ 1 =0,

2
Hence, if we take A = f , we find

s+1 S
N IR IR (Tt}

from which we deduce that -1 is a sum of two squares.
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If 2m + 1 has a prime divisor p of the form 8k + 3 or

8k - 3, then we may take r = p. For

2(p-1)/2 = (2/p) (mod p)

1
o~
§
s
e’
—
io]
1
e
S
.
oo

so that p divides Z(p_l)/Z + 1. Here (Z/p) denotes the
Legendre symbol.

It is known [1 8] that -1 is a sum of four squares in the
field of the nth roots of unity over the rationals, n7 2. Whether
or not -1 is a sum of two squares in such fie\lds remains to be

determined.
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6. THE PROOF OF THEOREM 1 WHEN K = GF(5).
The field GF(5) consists of the elements 0, 1, 2, 3, 4.
In order to prove Theorem ! when K = GF(5), we assume as before

that A = Al +oe 4 Am, where Ai is the jini companion matrix

of a polynomial with coefficients in K, and IA1 ses Aml =1. We

make the additional assumption that IAi coe Ai | #1 if the subset
1 k

{1y - viboof 1l m] is proper. This additional as-

sumption, which involves no loss of generality, serves to restrict
the values that m can assume. We divide our discussion into a
number of cases depending on the value of m.

If m =1, the resultis clear if n = j1 =1 andif n=2
(by cases 1 and 5 of the proof in the preceding section.) If n>= 3,
choose p ¢ K such that PZ #1, 0. let D be a standard matrix

-1

with d, = P, r = 2, 31:1, sz=11—2., c1=P ,c2:1. Then the

1

elementary divisors of D are (A-p), (N~ F—l), (n - l)n-Z.

Choose dZ’ cee dn such that these are the elementary divisors of
AD. Then, by Lemma 6, A = sps D! with S, D« SL(n, K). This
part of the proof also works if K = GF(4).

If m = 2, then, after a rearrangement of the Ai if
necessary, the two-tuple (A e [Af ) must be (4, 4) or (2, 3). In

order to use the method of proof given previously, we select an element

§, ¢« GF(5), then choose c(l), cee \1) , c(Z), cee C(Z) ¢ GF(5)
1 1 j -1l iyl

and distinct from 51, SZ = |A1| 81 such that

(1) 1)
M

616, ¢ %5, -1

Jz'l

If we are able to do this, we construct matrices Di (i=1, 2) ina
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manner analogous to the constructions in the previous section. Thus,
if Yy and Y, are so chosen that Yy Yoo 51, 82 are the four non-

zero elements of GF(5), we suppose e; of the elements

c(ll), cse s c(.l) 1 and e, of the elements C(Z), oo c.(Z) are v
iy 2 1 32—1 1
and the remaining elements are Yoo For i=1, 2 we let Di be a

jixji standard matrix with d = 8,1 and elementary divisors

e, _] -l-e,
(N - S A - Yl (N - YZ) ! such that the elementary

e. 3 -1- -e.
.. i
divisors of A.D. are (N - 5i+1)’ (N - \(1) s (N - \/2) (where

53 = 5'1). Lemmas 1 and 5 guarantee the existence of Di.s Setting

D =D, + D,, we find A = sDs™ D! where S, D« SL{n, GF(5)) in

the usual way.

If (IA1| 1A ) = (4, 4), then we wish the cg‘) to be
distinct from 51, 451. Thus we may suppose that exactly e of the
ck1 are equal to 2 81 and the remaining n - 2 - e are egual to
p- Thus it suffices to find an field element 51 and an integer e

with 0 €e€n -2 such that

45 enZe_

or,

Take 51 =3 and choose e (= 0 or 1) sothat 2n + 2e = 0(mod 4).
If (IAlI ; IAZI ) =(2, 3), we wish to select n - 2 elements
(1)
. are 38'l

and n -2 - e are 451, it suffices to find a field element Sl and an

cg) different from Sl or 281. Thus, if e of the ¢

integer e with 0 €e€h -2 suchthat
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an 36 4n-«Z—e =1,

1
or,
5131 21+Zn+e - 1.
>
If n-2=23, take Sl =1 and e (=1 or 3) such that

1+2n+e =0 (mod4). If n=23, take §;=1, e=1. If n=2, the
matrix A = (2) + (3) and is similar to C(( X\ - 2)( A - 3)) which has
already been studied under the case m = 1. The case n =4 requires
special treatment.

If j1‘: 1, j, =3, then A=A, ;AZ where Ay =(2),

A,=C(X - a¥ - BN-3). Let

4 d2. d3
D2 =10 2 0
0 0 2

where (Lemma 4) d, and d, are so chosen that the characteristic
and minimum polynomial of A,D, is (N=4)N-1)N - 2). Let
D = (1) + D.. Then the elementary divisors of D are (X - 1), ( \- 4),

2
(XN-2), (A-2) and those of AD are (A-2), (A-4), (A-1), (XA -2).
, where S, D¢ SL(4, GF(5)). If j; =3, j, =1,

Hence A = SDS 'D

the result follows immediately from the observation that the inverse of

. . . . . . 3 2
the matrix corresponding to this case is similar to (2) + C( N - a A" -ph3).
If j1 =, = 2, then, if the characteristic polynomials of A1 and AZ
are relatively prime, the result is immediate since A is similar to
the companion matrix of a single polynomial, for which the result is
already known (case m = 1). This will be the case if either of the

characteristic polynomials is irreducible. (Equal characteristic
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polynomials are impossible since |A1| = 2, |A2| = 3.) Thus suppose
that the characteristic roots of A, are r, 2/r and that the character-
istic roots of A, are r, 3/r where r ¢ GF(5). Since r =2/r and

r = 3/r are impossible in GF(5), it follows that A is similar to a
diagonal matrix. We may suppose this diagonal matrix to be

Li@30G) if r=1; (@) F)F@) if r=2;(1)+(3)+(3) % #)

2
if r = 3; (4);(4)4;(2)-1‘-(3) if r = 4. Since the matrices (2) + (3) and
(4) ¥ (4) have been discussed above, the proof is complete when

r =1 or 4. To complete the proof when r = 2, we note that it suffices
to consider (2) t C({X - 2)(\ - 4)) to which the discussion above
applies. Similarly we complete the proof when r = 3.

The proof for the case m = 2 is now complete.

We now consider the case m = 3. Here (lAll’ \A2|, |A3{)
is (2, 2, 4) or (3, 3, 4). By passing to FRERT: necessary, it
suffices to consider the first of these possibilities. Let
8, (# 0) ¢ GF(5) and let §,=26, 6 =28 =45. We wish to
select c(li), cer c(.i) (i =1, 2, 3) e GF(5) such that for
i=1, 2, 3, we have CS);!gi or &, for k=1,2, ..., j -1

(where 54 = 51)‘. Hence, for i =1, 2, 3, we wish to find integers

e, with 0 € e, < ji -1 such that

. 1 1 1

(i)- c(ll) = e = C(el) =451, c(el)+1 = ... = Cgl)‘l = 351;
2 2 2

(ii) c(1 ) - = CEEZ) =36, c(ezz)+1 = ... = ng)'l = 51;

I B C RN C Ry

e3+1
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and

If this can be accomplished, we construct matrices Di (i =1, 2, 3)

as in the previous cases. Thus Di is a jixji standard matrix with
(i) e.
d, = Si and elementary divisors (A - 51), (A - <y ) '

(i) j:_l-e-
(N-c ) : ' such that the elementary divisors of A.D, are
e.+1 y i1
(1) e, (1) Ji—l—ei 1
T N I Nt I
(Lemmas | and 5.) If D=D, + D, + D,, then A = sps™ D! where

1 2
S, D e SL{n, GF(5)) in the usual way.

3’

Thus, it suffices to find a field element Sl and integers

e, €, €y with 02e £j -1 such that

e. j.-l-e. e, e, jy-l-e
n 1,71 1,72,73,73 3
381 4 73 37273 =1,
or,
3+j,+j,te,; te +le
1 173 71 "2 3
§) 3 = 1. (19)

In the following table we give suitable values for 51, €+ €5, €3 as
functions of jl’ jZ,’ j3» We may suppose the notation so chosen that
jl z j2' Note that ey + e, can assume any of the integers

0, 1, .. ,\jl +j, -2, sothatif j; +j, 25, wemayfind e, and
e, suchthat e; +e, is congruenttoanyof 0, 1, 2, or3 (mod 4).
The right hand column of the table gives equations which verify
equation 19 or equations from which the e, can be computed so as to
satisfy equation 19. All congruences are modulo 4. Those entries in
the table which are not specified may assume arbitrary values (to the

extent permitted by the other entries in the table).
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j1+j2 jl jZ j3 11 ¢1| e2| e3 Eqguation

25 Ll <ijleip| 0 | eqte,t3+j i3 =0

4 3or2|lora2| 22 1 <Jjp |<iy <l e1+e2+2e3+3+j1+j3 =90
4 S3or 2!l or?2 1 1 <j1 <iy 0 el+62+jl_‘=— 0

3 2 1 22 10,110 | 0,1] e;+t2eyt3+j +j, =0

3 2 1 1 Exceptional case

2 1 1 even| 1| 0 0 j3/2 Ze,+3+j,+],

= 4+4:(j3/2;) =0
2 1 1 odd | 31 0| 0 0 | nt3+j,+i,

= 8+4((j3—1)/2) =0

In the exceptional case in this table (in which & Ill =1 for
each § # 0) we have A = C( )\2 -aA +2) +(2) + (4). Bya similarity
transformation we may pass to C( z - aA +2)F CUN-2)(N-4)
which has already been studied under m = 2.

Finally, we arrive at the last case of m = 4. Here
(1ad, 1A 0, 1A, IA) is (2, 2, 2,2) or (3, 3, 3, 3). By
passing to A—l if necessary it suffices to consider the first of these

possibilities. Here, if 51 e GF(5), we let 82 =2§,,

532282’:481, 54:253=381. For i=1, 2, 3, 4 we wish to

find field elements c(ll), s o c(.l) 1 distinct from §., 6. (where
J;- i i+l

85 = 81) and hence we wish to find integers e, with 0 % e s ji -1

such that

(i) m:”':Cfell):”l’CSI)H:'”:C(-D Py




2 _ (2)_ 2) 3
(ii) C(1 ) - = Cez)— 3 519 c< Z)H‘ = ees = ng)-l = 65
3 3 3 3
(it) C(l ) - - Ci; 26y C(e3)+1 T C§3)—1 = 8y
4 4 4
(iv) C<1):'°°:C(4):25}s C(e4)+1— °:C§4)-1:451'

For i=1, 2, 3, 4 we construct a jini standard matrix D.1 with

(i))ei’

d, = S‘i and elementary divisors ( - Si)’ (AN -c

1 1
(1) Jj-l-e;
(- c, +1) such that the elementary divisors of AiDi are
' i) e (i) jiml-e
(N- Ei+1)’ ()\-c1 ) ()\_Ce.+1) . (Lemmas 1 and 5.) If we
i

set D=D. 1D +D. D, we then find that A = SDS™'D™! where

1 2 3 4
S, D e SL{n, GF(5)) provided that

43? T-L cfkl) = 1.

Thus it suffices to find integers e, and a field element 61 such that

ey jl—l-el e, €3 e, j4—1—e4

45?3 4 3°272%4 = 1,
or,
0 2(i+j1+j4)—e1+e2+363+64
5§, 73 = 1.

If two of the j.

; are greater than one, suppose jZ > 1, j4> 1 and

take 51 =1, e, = ey = 0, and e, and ey equal to 0 or 1 such that

e, tey + 2(1 + ip * j4) =0 (mod 4). If only one j; is not one, suppose

=1, j322. Let § = 3%, then choose k=0, 1, 2, or 3

Jp 7327y 1

H

and ez, 0= e =j; - 1, such that (using n = jp Hip, Tig j4)
k(3+j,) + 3e, + 6
3 3 3 -1,
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or,

k(3 + 33) +3e;+6=0 (mod 4).
If j3=0 (mod 4), take k = 2, ez =0. If j,=2 (mod 4), take
k=2, e;=0. If j3'="3(mod4) take k=1, e; =0. If j3_-__-'-_1(mod4)

but j37!1, take k=0, e;=2. If j; =], =j;=j,=1, then A is

scalar and we may appeal to the results of case 5, section 5.
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7. THE PROOF OF THEOREM 1 WHEN K = GF(4)
The field GF(4) consists of the elements 0, 1, 6, 8 + 1
with @Z =8 +1. As in the previous section, we assume that

A= A1 Fo.. -E—Am where A. is the j;in companion matrix of a

polynomial over GF(4), and !Ai Ail =1 (where
1 k

1 £ il< nee <y £ m) if, and only if, k =m. The possible m-tuples
(IAll s e s IAmI ) with this condition are (1), (6, 8 +1), (6 + 1, 8),
(6, 6,8), (8 +1, 8+1,8 +1). If m=1, the proof in the previous
section applies here also. If m =2 and (IA ], lAzl ) =(8, 6 +1)

let D1 be a jlxj1 standard matrix with d1 = 0 and elementary divisors

Ji-1 . .
(XA-9), (N-1) such that the elementary divisors of AlDl are
2 iyt
(N-087), (N-1) . Let D, bea j,xj, standard matrix with
2 - 2 it
d, = 8" and elementary divisors ( A-07), (A-1) such that the

1
jz'l
elementary divisors of A,D, are (AN-98), (\-1) . These

constructions are possible by Lemmas 1 and 5. Set D = D1 t DZ,'
Then |DI =(9)3 = 1, and by the usual argument, A = SDS_ID-l where
S, D ¢ SL(n, GF(4)). By appealing to the automorphism & for which
o(8) =0 + 1, the other m = 2 case automatically follows.

We now consider the case m = 3. Owing to the existence of
¢, itis enough to assume that (1A, A ], lA3I ) is (8, 6, 9).
First suppose that RN (mod 3). Appealing as usual to Lemmas 1

and 5, we let D, bea jlle standard matrix with d1 =1 and

1 .
2,J; -1
elementary divisors (M- 1), (A-087)1 such that the elementary
2,171
divisors of A ;D, are (A-98), (A-8") . Let D, bea j,xj,

standard matrix with d; = @ and elementary divisors (\-98),
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, J
(N- 1) z such that the elementary divisors of A,D, are (M- 92),

2
12 o o 2
(N -1) . Let Dj bea j;xj; standard matrix with d; = 68"~ and
2 jz-l
elementary divisors (A-907), ( A\~ 9) such that the elementary
j3"1 o ®
Set D:D1 + DZ + D3.
1 1

divisors of A;D, are (\N-1), (A-9)

Then Dl =1 since 2j; +j; 0 (mod 3). Hence A = SDS D

where S, D e SL{(n, GF(4)).

Next, suppose that jifjk (mod 3) for any pair i, k.
Choose the notation so that j; = 2 (mod 3), ;=0 (mod 3),
j3= 1 (mod 3). Since j; 2, is 2 1, it follows from these congru-

> . . . .
ences that j1 =2, jz 2 2. Let D1 be a J1xl standard matrix with

2

d, = 1 and elementary divisors (X - 1), (A-18), ( A- Q)J I (see

1

Lemma 1) such that the elementary divisors of A;D, are (N - 1),
2 jy2
(A-87), (N-9) 1 (see Lemma 4). Invoking Lemmas 1 and 4

again we let D, bea jZXj2 standard matrix with d; = 8 and

j, =2
2 2) 2 such that (A- 8),

elementary divisors (A -8), (A- 87), (A-9

i, =2
A-1 s A - (%Z 2 are the elementary divisors of A,D,. B
Y 2o Yy

Lemmas 1 and 5, we may construct a j3xj3 standard matrix D3
ja -1
=1 and elementary divisors (A- 1), (\ - @2) 3 such that

ja-1
)3 . We set

with d1

the elementary divisors of A;D; are (N-8), (A~ 0%
D= D1 ¥ DZ t D3, Then | Dl =1 since j1 + ij + 2j3 - 4 1is congruent
to 0 (mod 3). Hence A = sps D! where s, D« SL(n, GF(4)).

The proof for the case K = GF(4) is now complete.
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p M) = A+ 1, p,(N) = M h+l=(h-1)%
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THE PROOF OF THEOREM 1 WHEN K = GF(3)

The field GF(3) consists of the elements - 1, 1, 0. Let
2

2 2
p3()\) = A -A+1=(N\+1)°. These are the only monic polynomials

of degree two over GF(3) with one as constant term. Let

7~

C; = C(pi( M) i=1, 2, 3. We list here a set of five lemmas which

we shall discuss below. Let A ¢ SL{n, GF(3)).

LEMMA 8. If A 1is the companion matrix of a polynomial,

1..-1

but not C;, C,, or C,, then A = CDC "D, where

C, D e 5L{(n, GF(3)).

LEMMA 9. If A is the companion matrix of a polynomial,

1..-1

then A = CDC D ~, where C, D e GL(n, GF(3)) and

Icl = -IDl = 1.

LEMMA 10. If A=A, +A, where A, is the
companion matrix of a power of an irreducible poly-
nomial over GF(3) and lAil =-1,1i=1, 2, then

1

A = CDC~ D_l, where C, D e SL(n, GF(3)).

LEMMA 11. Under the hypotheses of Lemma 10,
A =cpC DY, where C, D¢ GL(n, GF(3)) and
Icl = -|pl = 1.

1

. -1 -1
LEMMA 12. C, + C, = 8.D,S. D, , where |S.| =1,
1 1 i1 1 1 1

ID,| = -1 and S, D, ¢ GL(n, GF(3)); i=1, 2, 3.

In the following discussion we shall show that the validity of
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these five lemmas is enough to establish Theorem | when K = GF(3).
Let A ¢ SL{n, GF(3)). Throw A into rational canonical

form and assume that A is the direct sum of companion matrices of

powers of polynomials irreducible over GF(3), so arranged that

A = dl Fooee 4 dm’ where either |dl' =1 and 41 is the

companion matrix of a power of an irreducible polynomial, or

Qi = agl) + a£2> where 'dﬁ”' = |ﬂ§2)l = -1 and dgl), ng) are

companion matrices of powers of irreducible polynomials. To prove

Theorem 1 when n = 2, we note that if A is not scalar, then A

is similar to the companion matrix of a single polynomial so that

Lemma 9 establishes the desired result. If A is scalar, then the

discussion in section 5, case 5 provides the result. To prove Theorem

1 when n 75 2, we note that the result is immediate when n=1. If

n 2 3, Theorem 1 immediately follows from Lemmas 8 and 10 if

C

CZ’ C3 do not appear among the direct summands of A, since

1’
the direct sum of commutators is again a commutator. If Cl’ CZ’
C3 are some of the direct summands of A, butan di exists which
is not Cl’ CZ.’ or C3, then we obtain the claimed result by applying
Lemmas 9 or 11 to the other direct summands of A, and Lemmas 8,
9, 10, or 11 to this particular di' If Cl’ CZ’ C3 are the only
matrices which constitute the ai then, if m is even, Lemma 9
suffices. If m is odd and two different Ci appear (for example, C1
and CZ) then, since C; + C, is similar to C(pl()\)pz()\)), we may
apply Lemma 9 to the C. and to C(pl(X)pZ()\)). Finally, if

A = Cisr cee 4+ Ci for some i with m odd, an appeal to L.emmas 12

and 9 completes the proof.



If d-= (d3, dyr s dn) define the nxn matrix

3n(g19 gzs g3’ g4: d) in the fOllOWiﬂg Waye.

g]_ gz d3 d4 PR dn
g3 g4 0 s s o 0
1 1 . .
ﬁn(gl’ ng g?)s g4: d} = ° P 5 n%z};
O .0
11
1
gy g 943
Diley: 850 230 g4 D= |0 83 84|
0 0 1
g1 g2
wz(gl, gza g?): g4_, d) = ( ) ;
0 g3

$1(g1= 8y 837 8By d) = (gl)°

When n =2 or 1, the letter d in ﬁn(gl, 8y 831 84 d) is superflu-
ous and no meaning is to be attached to it. Also, d =0 will mean
d3:o'° :dn:O“

The proofs of Lemmas 8 and 10 will be complicated by the
fact that we shall be unable to satisfy the hypotheses of Lemma 6.

We now note two facts that will be used to circumvent this difficulty.

For néz, if
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ml,l 1 0 0 0
mZ,l mZ,Z 1 0
Ml =
. 0
. 1
mn, i mn, 2 m ,n-1 mn, n

is a matrix with coefficients in GF(3), then a matrix S exists in
SL(n, GF(3)) such that SM:lS—1 = C(p(A\)) where p(\) is some
polynoinial., We use elementary similarity transformations to find

S. For fixed k, by transforming M; with a sequence of elementary
similarity transformations which add the (—mk,j) multiple of

column k+ 1 tocolumn § for j=1, 2, ... , k, we obtain a matrix
with the same structure as MI’ with the same coefficients in rows

I, 2, ..., k-1, and with m, pr My g cee s M replaced with

k k, k&
zeros. Applying this result for k=1, thenfor k=2,3, ...,n-1,

we obtain the companion matrix of some polynomial.

Suppose now that M, = (mi J.) is an nxn (n 2 3) matrix
7

with ml’lzmz’zz—l; mi’i:1for i=3,4, ..., n;
mi,’ﬁ-i =1 forall 1 7-/ Z; and mi,j = 0 whenever 1> j. Thena
matrix S exists in SL(n, GF(3)) such that SMZs"lzﬁn(-l,l,-l,l,e).
To find S, we shall first show that the coefficients of 1\42 mavy be
assumed to satisf m, .=m, .= ce» = Im, . =0 for

sarsty 3,] 4, i-2,]

j=5,6, ... , n. The following reduction to this special case, which
will be established by induction on the columns of MZ’ is to be

omitted when n = 3 or 4. Suppose that for some integer k with
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< < = = s 008 = = ] =
52k =n, we have m3’j m4,j mj—Z,j—O for j=k+1,
k+2, ..., n. Initially, k = n and this set of equations is empty.
Let S =S, 5 110z, 1803, 101053, 1) 783 e g 1)

Then, if we change notation and let SlMZSI1 = (mi .), we find that

SIMZSI1 satisfies all the hypotheses imposed on MZ and, in addition,
m33k T Ty o og = 0. Thus, after a similarity transformation by
an element of SL{(n, GF(3)), we may suppose that
m3’j = e = mj-Z,j =0 for j=5, 6, ..o , n. Then, for any

. . -1 -1
x, vy ¢ GF(3) and any integer i > 2, SZ, i(x)sl,i(Y)Mzslgi(Y)SZ, 1(X)
differs from MZ only in those coefficients with coordinates (1, i),
(2, 1), (1, i+ 1), (2, i +1). Choosing x and y properly, we may
replace m; ; and m, ., with arbitrary elements of GF(3). Making
use of this fact for i =3, ... , n produces the desired result.

PRCCOF OF LEMMA 8. Since JA}l =1 and A is not Cl’ C2 or

C3, if A is nxn, then n=1 or n 2 3, The result is clear if n = 1.

Assume nZ 3. Let A = c(\' - an)\n_1 - e = az)\ - (-=1)n-1). Let
D = ,@n(- 1, -1, -1, d,, d) where d, is the root of
(-1)® ~a, + (-1 (- q, +n - 3) = - E (20)

and E, is the coefficient of A in (M + 1)2(>\ - 1)“'2. We shall later
choose d3, oo e dn.

Let S, = (-1) +I__;. Then, as noted above, we can find S, in
SL(n, GF(3)) such that S,S,DS; lsél =§bn(- 1, 1, -1, 1, 0). Hence,
as outlined above, we find S5 in SL(n, GF(3)) such that
S3SZSID81_18£15?:1 is the companion matrix of some polynomial. This

2 -
polynomial must be (A + 1)7(N - )" 2,



52

Now, compute AD. We find that SlADSII is a matrix like

the matrix F in Lemma 2 with { = e = f =1, and
1,2 n-1,n

x; = (—l)n‘l, A
n

x, = (-1) - a,,

_ n-1

Xy = (-1) dy +a,d, +as, }(21)
n-1

X, = (-1) dy +az +tay,,
n-1

x = (-1) d +a__y*ta, y,

By Lemma 2, a matrix S, exists in SL{n, GF(3)) such that

-1 - -1
S4SIAD511541 = C( X' -y, N - - y)) where
\
Yn = Xy
Vool T X1 + (a linear combination of Kys Koo coe s Xn_z)’
}22)

YZ = XZ. + Xl(" dz +n - 3); (bY Lemma 7)

We determine dj, ..., d = such that }\n " Yn R y; is

( N+ 1)2( \- 1)n—2. The constant terms of these two polynomials agree,
and, because of 20, so do the coefficients of A. From equations 21
and 22, we may determine dj, ... , dn so that the coefficients of the

other powers of A also agree. Hence

- -1 -1 -
4 41 = 5382511)51 521531, from which it follows that

-1 -
A =8SDS D ! where S, De SL{n, GF(3)), as required.

-1
S SlADS1 ]
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PROOCF OF LEMMA 9, If n>1, let D be a standard matrix
with d1 =-1, r =1, s; =n- 1, cy = 1. Then, by Lemmas 1l and 5,
we may choose dZ’ ceo d.n such that D and AD both have
AN+, (A= l)n_1 as elementary divisors. Hence

1

A =5DS 'D ! where ISt =1, IDI = - 1.

PROOF OF LEMMA 18. In the proofs of Lemmas 10 and 11 we

. 3 iyt J1
assume A=A, + A, where A, = C(\ -a. A = eee =a A-(-1)")
1 2 i A\ Z
jz jz_l jz
and A, = C(N\" -a! A - eee - a“z>\- (-1) 7). We may assume

J2

that the characteristic polynomials of lAl and A2 are powers of the
same irreducible polynomial since otherwise we may find a similarity
transformation which carries A into the companion maitrix of a
single polynomial; for which the claimed result has already been
obtained in Lemma 8.

If j,=1, then A, = C(N+1), sothat A is

j
C((h+ 1) 1). Since 1Al =-1, j; is odd. Ifalso j, =1, A =-I,

and we may appeal to the results obtained in section 5, case 5.
Hence, if jp = 1, we may assume Jj; 3, Deferring until later the

case jl = j2. = 2, every conceivable situation is covered by one of

>
the following three cases: (a) j; = 3, J; 2 3; () 3y 2 3, iy = 25

. > .
(c)\]1 =3, j, =1.
In case (a), select by, b, in GF(3) such that b;b, #0
and such that
i2 .
(-1) (b1+bz+32-3) = -a, - E, (23)
jz“l

where E, is the coefficient of Ain (N4 1)(A-1) In case (b)
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let b, =1 and b; = -a}. Then b; # 0 since, if b, =0, A, is the
2
companion matrix of A -1, which is not a power of an irreducible

polynomial. In case (c) set by =b, = 1.

Let dz be the root of

jptl I .
(-1) by -ay +(-1) " (-d, + i, - 3) = -E, (24)
jl_l
where E, is the coefficient of ANoin (N + 1IN = 1) . Now let
pjl (-1, -b,, -1, d,, d) l M
D= I
1 §
0 ﬁjz(,bl, 1, by, d')
where M = (mi,j) is a j;xj, matrix with my = dj1+k
(k =1, 2, ..., jz); mjl_l’1 = blbzx; mjlsl = blbz; and all other
m, j = 0. We set x=d, if i = 3 and x =1 otherwise. Here
— | S— 7 1 .
d_(d3’“"dj1)’ dj1+1"°"dn’ d—(d,.,,,djz) will be

determined later. Let

. . v

o1 +(byby) + (by) +I. _, incase (a);

92}
il
—_~
]
o
o
“+
(o]

1 J1 iz
S; = (—bl) +I 5+ (bl) + (1) in case (b);
S, = (-1)-.%1 _] incase (c).

Then we may use the remarks preceding the proof of Lemma 8 to
. -1.-1
find S,, S; € SL(n, GF(3)) such that $,5,DS; S, =59n(-1, 1, -1, 1, 0),

5352511)5;15215;1 = C((\+ 1)2(>\ - 1)““2).

Now, compute AD. We write down AD only for the case
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nj1 > 3, jZ; > 3. The details of the other cases are similar and will be

omitted.

AD =

. 0 0
1 1 bleX 0
0 0 1 ble 0
oy oy - e e e . djl o(j1+1 o‘ji+2 R 2N
0 1 bZ. 0 0
0 0 1 1
O o 0
1 1
0 0 1
Bl BZ B3 ° ° BJZ
where
31+1 ~
« = (1),
!
o, = (-1) by -a,
i  (25)
dy = (1) "dy +2,d, +ag,
Iy
o, = (-1) "d. +a +a., J




J1
A = (-1) "4d. +(a. ,x+a,)(b,b,), A
Jl""l 31+1 i 1 1 172
(-1)'la
oA +2 B i, +2’
2! 71 b (26)
J1
°‘n = (_1) dns
~
3 M
J2
ﬁl = ("]-) 3
jZ
Bz = (-1) "by +a),
jz 27
63 = (-1) dé +a'2b2 +a'3, > (27)
p)
34 = (-1) d&+aé+a}i,
g (-1) 2a:
. = (-1) "d! + a! +al .
Jo Jo 32'1 J2 J
-1
Let S4 :Sjl,j1+l(blb2)' Then S4ADS4 differs from AD only in

the submatrix in the j,Xj, block in the upper right corner. The first
J1%)2 PP g
j1 - 1 rows of this jlij submatrix are now zeros only, and the

jISt row is (in case (a))
(°‘j1+1 B R L TR R R b I R U ISR %)

Now let S; = (-1) ‘I Then, by methods used in the proof of

Lemma 2, we may transform SSSL}:ADSZLIS;1 with a sequence of

n-1’

elementary similarity transformations which add multiples of row o

to row g for i1 >« >p Z1 only so as to bring the matrix in the
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. “lo-1 .
upper left jlil block of SSS4ADS4155 into the form of the

companion matrix of a polynomial. This means that Sé (the direct

sum of a triangular j;Xj; matrix and I ) exists in SL(n, GF(3))

Jo \
such that S,5.5,ADS; 8 '571 is the same as 5.5,ADS !5 except
6°5°477"4 5 Zg 5247724 5 P
that the jlle block in the upper left corner is now
J1 3ol
C(A - czj SRR L0 #;) where (by Lemmas 2 and 7)
1
o = o h
J1 Ji
jl'z
D(' 3 =, 5t § a. K
i 1 i1 1 =] iy 1,k k
, Y (28)
af el ey e
k=1
o = o, - (- d, + - 3) (by Lemma 7),
e & = - 0(1. _J
The coefficients a, are independent of the di’ di' . We wish
J ji-1 i, -1
xl_djz N - cwl Nl = (N+1)A-1)" . The constant
1

terms of these two polynomials agree. Because of equation 24, the
coefficients of A also agree. From equations 28 and 25, it is now

possible to determine dg, ..., d. such that the remaining
1

coefficients agree.

We now examine the _]'ij2 matrix in the lower right

-1.-1 -
corner of 8655S4ADS4 85 Sél., By the proof of LLemma 2, we may,

by a sequence of elementary similarity transformations of
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sés5s4ADs£1_ sglsél, throw the lower right j,xj, block of

6 55 ADS4 S 86 into the companion matrix of a polynomial. In
these elementary similarity transformations the column operations are
always the addition of a multiple of column & to column B with
ip t 1$a<f<n only. (These transformations are not required
in cases (b) and (c¢).) This means that S, exists in SL(n, GF(3))

such that the lower right block of 5.5,5 S ADS S S S is

574 6
)\Z DN 2_1 ' DY 1 . ..
C( - sz meee m LA '51) and the upper right j,;xj, block
. . C . . .
consists of zeros except for row iy which is (o(jl_H, oo s a(n)
where
s 3
BJ ﬂJ
2 2 —
12
o, =8 4t b. _ B,
iz -1 it = Jpmty Kk
By =Bt by .8 0 (29)
3 3 3,k Pk’
k=1
By, =P, +B(b,+i,-3), (by Lemma 7)
B1 = By _J
and
) _ . .
djl b = °(j1+i + (a linear combination of o(jl,
(30)
. s djl-l'i—l); i=1, 2, oo, jZ’
The coefficients of the linear combinations in 30 and the b1 . in 29

?

are independent of the d;, dj. Since dj, «.. , dj are already
1
determined, dj is now a known quantity. Hence, from equations 30
1
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-1 a 1 0
0 -1 0 a
D =
0 0 1 -a
0 0 0 1
-1_.-1
Then S, D e SL(4, GF(3)) and A =5D5 "D .

PROOF OF LEMMA 11. To prove Lemma 11, we use the tech-
nigue used in the proof of Lemma 10. Since we shall be able to use
Lemma 6 in this proof, the details here are somewhat simpler than
the details of the proof of Lemma 10. If j1 = j2 =1, then A = -IZ
and we appeal to the results of section 5, case 5. Otherwise, we
assume that j; 2 2. We need consider only the following four cases:
(2) 5,23, 3,23 (B 23, 5,22 ()i, 23, §,=1; () j; =2,

j, =2. In case (2), choose by, b, to be non-zero elements of GF(3)

such that

iz
- 3 - t = -
(-1) " (b + b, +j, - 3) +a} E,
jz*l
where E, is the coefficient of N in (AN+ 1)(N -1) In cases (b)
and (d), let by, =1 and by = -aj; then b, # 0 for the same reason

as in the proof of Lemma 10. In case (c), let bl = bZ =1, Let

P. (-1, a,, 1, 1, d) I M

0 l 3j2(1, by, 1, by, d'

where the coefficients of the j;xj, matrix M = (rni j) satisfy

:djl_l_k, k=1, 2, oaa’jz; m. _1’1:1 (1f Jl>2), =1;

MLk i

m.
Jl’l
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ano,dg

and all other m, . =0. Here dz(d3, cos , d. ), d. b1 0

. I

d' = (d'3, ceo dj ) are to be determined later. By applying the
2

technique used to transform the matrix MZ in the remarks preceding
the proof of Lemma 8, we may transform D into a Jordan canonical
form and show that the elementary divisors of D are (A + 1),

(- 1)n~1‘ Compute AD. Let (AD); be the matrix obtained by
adding row jl +1 of AD to row iy then subtracting column jl
from column j1 + 1 in the resulting matrix. Now, by a sequence of
elementary similarity transformations of (AD)1 in which the row
operations are addition of multiples of row &« to row B for

j1 >a >B 21 only, we obtain a new matrix (AD)Z which is the same

as (AD)1 except that the j;xj; submatrix in the upper left corner is

now the companion matrix of a polynomial. Just 4s before, we may

i
choose dZ’ cee 3 dj such that this polynomial is (A - 1) 1, Next,

1
by a seguence of elementary similarity transformations of (AD)2 in

which the column operations are the addition of multiples of columns
& to columns B for j1 + 1 < o < B<n only, we obtain a matrix

(AD)3 in which the jzsz submatrix in the lower right corner is the

companion matrix of a polynomial, and the jlsz submatrix in the
upper right corner consists of zeros in all rows except for

(d31+1’ e 0(1‘1) in row jl’ where d51+1’ .o a(;l are related to

aLj b1 cee s Ky by a system of equations like 30. Owing to the choice
1

of by and b,, we may select dis eee s dJ! such that the matrix in
2

o1
the lower right corner is C(( A+ 1)2()\ - 1) 2 ). Also, we may choose

d.

d such that !
i n (]

s
IR 1+1’°°°’dn) is (1, 0, 0,.“,,0).= It
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now follows that the characteristic polynomial of (AD)3 is

(N+ )N - 1)11—1' Since (AD)3 is known to be similar to the
companion matrix of a polynomial, it follows that the elementary
divisors of AD are (A+ 1), (A- 1>n—1° Appealing to Lemma 6, we

1

we easily see that A = SDS p~! where S, D e GL(n, GF(3)) and

isl =1, D} =-1.

PROCF OF LEMMA 12, Let C be any one of C}, CZ.’ C3o

The proof of Lemma 9 (with an appeal to Lemma 6) shows that we may

1T—1 with |SI = 1Tl = - 1. Applying Iemma 9 to C"1

have C = STS
(which we may, since C—1 is non-derogatory if C 1is), we see that
c=uvulv! with Ul =-1, IVI=1. Then

cic=(stuT Vet (TiV) ! andaisiul=1, T VI=-1.
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9. THE PROOF OF THEOREM 1 WHEN K = GF(2)
The field GF(2) consists of the elements 0, 1. All
matrices appearing in this section are assumed to have coefficients

in GF(2).

LEMMA 13. The nxn (n % 3) matrix M_ = J,(1) 5 I (1)

is a commutator over SL(n, GF(2)).

It
o

PROQOF. We first consider the case in which n 1is even, n
Let j=(n-2)/2. Then j+124 and j+4Sn, Let R be the
following nxn matrix. (The numbers at the side and top indicate the

rows and columns. )

R =
12 3 4 ... j ¥l j42 §43 j44 345 ... n
1 0 1 1
11 2
1 3
1 0 4
1 j
11 j+1
1 1 0 1 . 1 j+2
1 1 1 oo 1 jt3
0 11 eo 1 j+4
1 | j+5
"1l .
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2
The elementary divisors of R are (A+ 1), (N+1), ..., (At 1),
n-j
(A+1) . To see this, note that the minimum polynomial of the

principal submatrix of R formed from the last n - j rows and
columns of R is (A+ I)D"}, and that the elementary divisors of the

principal submatrix formed from the first three rows and columns of

R are (A+1), (A+ 1)2. Let S = (Si j) be an nxn matrix with

s. .=1 for i=1,2, ... , j+1,3+3, ..., n; Sj+l,j+221;

= 1: = k = 3 3 .
Sj+3,j+2 1’Sj+2,k 1 for k=3j+3, j+4, ... , n; and all other

] = 0. Then ISl =1 and it is easy to see that

1]
L

S(M_R) = (Jj+z(1) t J,(1) + 1 )S; hence, the elementary divisors

n-j-4

2

of M R are A+ 192, (A + )%, (A+1), eoe s (N+1). But

j+2=n-j. Hence R and MnR have the same elementary divisors,
so that M_ = QRQ_lR_1 for some Q ¢ SL{(n, GF(2)).

Next we consider the case in which n is odd, n 2 7, Let
j=(n-1)/2. Then j+1 Z4:, jt+4 S$n. Let R, be the matrix at
the top of the next page. The elemenﬁary divisors of Rl are

(N+ 1) (1), ee s (NHD), (N D™ Let s, = (s, ) where

3

Sii:1 for i=1, 2, eo. , j+2, j+4, oo , n;

Sip4, 343 = Sie3,gea = U Sypp, 0 b ofor k=32 543, wee, s and

all other s, , are zero. Then Sl(Man) = (Jj+l(l) + J2(1)+In—j—3)sl

b

and ISII = 1, so that the elementary divisors of Man are

(h+ )3 A+ 1% (A +1), .., (N+1). Since j+1=n-j the

result follows as before.
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1

0
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1 jt2 343 j+4 345

n

-

[

We now complete the proof by exhibiting Mn as a commu-

0

1

0

0

Let

1 0 1
o i 0 ;
0 0 i
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¢ 1 0 o0 O 1 ¢ 1 0 0
0 ¢ 1 0 O 60 1 1 0 0O
U5= 0 60 0 1 O s V5= c ¢ 1 1 ¢© ;
11 0 0 1 6 ¢ 0 1 1
6 0o ¢ 0 1 0 ¢ 0 0 1
6 1 0 1 0 O 1 6 0 0 6 0O
6 0 1 1 0 O 0 1 1 ¢ 1 ¢
i1 6 6 ¢ ¢ 0 o o 1 1 1 ¢
Ué: ¢ 0 0 0 1 1 y Vé— ¢ ¢ o 1 1 0O ’
1 0 0 1 0 ¢© 0 ¢ 0 0 1 0
0 0 ¢ 0 1 0O 0 0 0 0 0 1

Then M =U V U_lV_}L for n =3, 4, 5, 6. This completes the
n nnon n

proof of Lemma 13,

Let
i 1 o0 1 1 0O 1 1 0 0 o0 1
i 0 0 0 1 O o 1 1 0 O 0O
0 1 0 0 0 O 0 0 1 0 0 1
U= , vV =
0 ¢ ¢ o 1 1 g 0 0 1 1 0
0 0 0 0 0 1 6.0 0 0 1 1
o 0 1 ¢ 1 0O 6 ¢ 0 0 0 1

We now state Lemma 14, which can be verified by direct

computation.

LEMMA 14. J,(1) +3,(1) + 3,(1) = svu iyl
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LEMMA 15. For nZ 3, let

Then, if a, ta = 1, the elementary divisors of An are
( A+ 1)3, (N + 1), together with (\+ 1)2' repeated m - 2
times when n = 2m is even, and (>\+ 1)3 together with

(N\+ 1)2 repeated m - 1 times when n=2m + 1 is odd.

PROOF. To compute the elementary divisors of An, we reduce
the polynomial matrix )\In + An to a diagonal form
(o3 ON) ¥ (p,(N) + <<+ +(p_(N) where p,(\) divides p, (N,
i=1,2, ... ,n-1, bytransformations of the following two types:
(1) interchange of two rows (or two columns); (2) addition of a poly-
nomial multiple of one row (column) to another row (column). The
row and column transformations necessary differ slightly in the two
cases n even and n odd.

If n is even, n = 2m, we begin with )\In + An and add A

times row 2m +1 -k torow k+ 1, then add 2111 tfimes row
2m + 1 -k torow 1 in the resultingkmatrix, for k=1, 2, ... , m~-1.

Next, add )\ times column k to column 2m + 2 -k for k=2, 3, ...,

m. Then add 21 times column 1 to column 2m + 2 - k for
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k=2, 3, ..., m. Atthis juncture the coefficient with coordinates

2
(I, n) is a, +a =1. Now add the N+l=(N+ 1)2 multiple of the
first row to the second, thenadd a_ .4 (A+ 1) times row m + 1 to

row 2 and a + a

242 -k times row k torow 2 for k=m, m - 1,

k
, 3. At this point, the last column consists of zeros except for a

1 in the first row. Add >\ + 1 times the last column to the first,

times the last column to column m + 1, and a5 42k + ay

times the last column to column 2m + 2 -k for k=3, 4, ..., m.

am+1

We now have a matrix which can be transformed to a diagonal form of
the required type by permutations of its rows and columns.
If n isodd, n=2m + 1, we begin with >\In + An and add

)\times row 2m + 2 -k torow k+ 1 and a times row 2m +2 - k

k+1
torow 1, for k=1, 2, ... , m. Then add )\ times column k to
column 2m + 3 -k for k=2, 3, ..., m+1l. Next, add 2y times
column 1 to column Z2m +3 -k for k=2, 3, ..., m+ 1. The coef-

ficient with coordinates (1, n) is now a, +a_ =1. Add the ()\2 +1)
multiple of the first row to row 2, then add a5 i3 -k + a, times row
k torow 2, for k=m+ 1, m, ... , 3. At this point, the last
column has a 1 in the first row and zeros in the other rows. Finally,
add ( A+ 1) times the last column to the first columnand 25 i3 -k+ ay
times the last column to column 2m + 3 -k for k=3, ... , m+ 1.
We now have a matrix which can be transformed into a diagonal matrix

of the required type by permutations of its rows and of its columns.

LEMMA 16. For n 2 3, let
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(1). If n=2m andi

- hY
°m+z TCm-1 T O
°m+3 T Cm-z T O > (absent if m = 2)
©2m-17 2 = 0
2m = 0
c = 1,
m
- 1
Cm+1 o

then the elementary divisors of C_ are (A+ 1)3, (A + 1),
2
together with (A + 1)° repeated m - 2 times.

(2). If n=2m+ 1, andif

_ ™
Coniz + S = 0,
+ = 0, i
Cm+3 7 “m-1 ? (absent if m = 1)
CZm +C2 = 0, )
©2m+1 = O
c = 1,
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then the elementary divisors of C_ are (X+ 1)3 and

(N + 1)2 repeated m - 1 times.

PROOF. As in the proof of Lemma 15, we use row and column
transformations of the two types previously indicated to transform
\In + C_ into a diagonal form from which the elementary divisors may
be read off.
(1). In )\In-i— C, add M\ times column 2m + 1 - k to column k for
k=1, 2, o. , m. In the resulting matrix, add >\ times row k to

row 2m + 1 -k for k=1, 2, ... , m. Next, add c¢ times

2m+1 -k

row k to row 2m for k=2, 3, ... , m. Since cm=c =1,

the coefficient with coordinates (n, m) is now AN+ 1. Now add

>\+1 times column m to column 1 and c¢ times column m

2m+1-k

to column k for k=2, 3, ... , m~-1. Add c times row

2m+1-k

Zm +1 -k torow m+1 for k=2, 3, ... , m - 1. At this juncture,
the last row consists of zeros only except for )\ + 1 in column m.
Finally, add A+ 1 times row 2m torow m + 1. The matrix we now
have can be brought to diagonal form by permutations of its rows and

of its columns.

(2). When n is odd, we begin by adding A times column 2m+2 -k
of )\In-i- Cn to column k for k=1, 2, ..., m. In the resulting
matrix, add \ times row k torow 2m + 2 -k for k=1, 2, ..., m,

then add c¢ times row k to row 2Zm + 1 for k=2, 3, eee » Mo

2m+2-k

2
Next, using c¢ =1, add A +1 times column m + 1 to column 1

m+1

1

and (>\+ 1)c times column m + 1 to column k for k=2, 3,

2m+2 -k

.e. », m. Nowadd c times row 2m + 2 -k torow m + 1

2m+2-k
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for k=2, 3, ..., m. At this juncture, the last row consists entirely
of zeros, except for a 1 in column m + 1. Finally, add (A + 1)

times row 2m + 1 torow m + 1. The matrix we now have may be
brought to diagonal form by permutations of its rows and of its columns.
This completes the proof.

We now turn to the crucial lemma of this section.

LEMMA 17. A non-derogatory, non-singular nxn matrix
M_ with coefficients in GF(2) is a commutator over GF(2)

unless n =2 and M, is similar to C(( A+ 1)2).

PROOF. Let M_=C( N +b, A" "+ +c+ + b A+ 1). Let A
n 2 n n
be as in Lemma 15, where the a, are to be determined later. let

C =MA . Then C_ is as described in Lemma 16, with
n nn n

c.=a.+b., 1i=2, 3, ..., n.
i i i

Case (1). n=2m. If

22 + @om L
_ h

°m+z T Cm-17 O
c + c = 0, ‘
m+3 m=-2 Y (absent if m = 2)
CZm—l + 5 = 0, )

€om © 0,

C = 1,

m

Cm+1 = 1

then, by Lemmas 15 and 16, An and Cn have the same elementary

divisors, which would imply the result. These equations become



_ N\
@2 TPy YA, TPy 70
m3 T Pmez Y2 P 70 ?(absent if m=2)
: (31)

2om-1 " Pam-1 T2z by =0,

aZm + bZ‘m =0,

a + b = 1,

m m

am+l + bm+1 =1

2, + aZm = 1.

If m23, then 2, m, m+ 1, 2m are distinct integers. Then take

a5 0 = me’ a = I+ bm, a 41 " 1+ bm+1, a, = 1+ CPI Choose
ags s a1 at will. Then equations 31 determine & 120t s
a This completes the proof of case 1 when m 2 3,

2m-1"

The cases n =4 and n = 2 need special attention. When

n =4 we have unknowns as, g 2y and equations

a2+b2=1,
a; +by =1,
ay T by =0,
a2+a4=ie

These equations have a solution if, and only if, bZ. + b4 = 0. Thus

the cases in which bé‘r =1+ bZ are not covered by this proof, Let
1 1 1 1 1 0 ¢ 0
0 0 1 0 i 1 0 ¢
S, = s Ty o= ;
! 6 1 0 0 ! o 1 1 0O
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6 o0 1 1 1 6 0 O
1 1 1 ¢ i1 0 0
SZ: i 1 0 0O ’TZ: 60 1 1 ¢
1 0 1 1 1 0 1 1

1..-1

4 3 -
Then C( A + S 1) = S;T,8; and C( >\4+ X3+ >\2+1) equals
5,T7,5;'T; . Furth C(N + N+ 1) is similar i
21,5, T, . Furthermore, C(A + A+ 1) is similar in SL(4, GF(2))

- 3 4
to C I(Xq[+>\ + 1) and C(>\+>\Z+ >\+l) is similar in

B

SL(4, GF(2)) to C M N+ W+ X\ 1),
When n =2, we note that every element of SL(2, GF(2))
is similar within SL(2, GF(2)) to L. C(N + A+ 1), or G((h+ 1)%).
2 2 “1..-1
Let S3=1J,(1), Ty=C((A+1)7). Then C(NXN'+ X+ 1)=8,T,5; T, .

The proof of Lemma 17 for even n is now complete.

Case (2). n =2m + 1. The proof here is similar to the foregoing

proof. If
+ b + + b =0 )
dm+2 m+2 ®m m -
a + b + a. _ + b _ = 0,
m+3 m+3 m-~1 m-~1 > (absent if m = 1)
e & (32)
azm 4+ me + a, + bZ = 0, J
22m+1 T Pamyr 7O
Tm+l i bm+1 =L
as * 22m+1 L

then, by Lemmas 15 and 16, An and Cn have the same elementary
divisors and the result follows. If m 2 2, then 2, m+ 1, Zm + 1
are distinct integers. Then let ay 1l = b2m+l’ a_ 11 = 1+bm+1’

a, = 1+a Choose az, =e- 5 2 at will and solve equations 32

2m+1l°
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for a s +e0 5 8, . The proof of case 2 for m 2 2 is now finished.
m+2 2m
When m =1, we have unknowns a, and asz and equations
ag = b3,
a, = 1+ bZ’
a, = 1+ 2.

A solution exists when, and only when, bZ + b3 = 0. To complete the

proof, we let

6 1 © 1 1 0
84: 11 1y, T4= ¢ 1 1 .
1 0 ¢ 0 0 1

Then C( NoEA g 1) = sé}rlﬂélz-*u;f’ré;l and C( NN 1) is similar

within SL(3, GF(2)) to c'l( >§ + N\ +1). Lemma 17 is now
completely established,

With these lemmas at our disposal, we are now in a position
to finish the proof of Theorem 1.

If A e GL(n, GF(2)), we may, after a similarity transfor-
mation, suppose that A 1is the direct sum of companion matrices of

powers of polynomials irreducible over GF(2),

A=clp "N F o F 0, SO0 Tno b (N = (At 1)% then each

C(pi N) is a commutator by Lemma 17, hence A 1is a commutator.

e. 5
If exactly s of the pil()\) are (A + 1)‘é where s > 1, then by

Lemma 14 and Lemma 13 (for n = 4) the (2s)x(2s) matrix

CUNM DA 1. e )Y

is a commutator, from which it follows that A is a commutator. If
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] 2
exactly one of the p; (N) is (A + 1)

e
r > 1. Suppose pll()\)=(>\+1)zu If pz()\):)\+1, Lemma 13

, then if n 74- 2, we must have

e . e
states that C(pll()\)) + C(pzz( A)) is a commutator, and hence so is

A, If pz( A) is not A+ 1, then, since p2(>\) is irreducible over
GF(2), pz( A) is prime to A + 1. But then A is similar to

63 ® [

SO0 e e TN,

r

SN+ 1)%p,%(\) + Clo

so that Lemma 17 is directly applicable. The proof is now complete.
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