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Abstract 

 

A new strategy for the catalysis of organic transformations using iminium ion 

activation has been developed.  Using this strategy, the first asymmetric organocatalytic 

Diels-Alder reaction has been developed.  This methodology has demonstrated the 

possibility of an imidazolidinone salt to function as an effective asymmetric catalyst for a 

wide variety of chemical transformations. 

The iminium ion activation strategy has also proved successful for conjugate 

additions, and an asymmetric organocatalytic Mukaiyama-Michael reaction has been 

developed using the principles of LUMO-lowering catalysis.  A more reactive and selective 

chiral imidazolidinone catalyst was developed, and this secondary amine has extended the 

range of transformations possible with iminium ion catalysis. 

Progress has been made towards the development of an enantioselective 

organocatalytic alpha-oxidation of ketones.  Proline catalysis has been demonstrated to 

effectively catalyze the asymmetric alpha-oxidation of cyclohexanone, but extension of this 

methodology to other ketones has not been successful.  These studies have further 

demonstrated the utility of proline as a catalyst, and provide a platform for the extension of 

HOMO-raising catalysis to other organic transformations. 
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