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Abstract

In this thesis we propose a new, biologically inspired, paradigm for the design of

high speed communication systems. The paradigm consists of a new modulation

format referred to as Interval Modulation (IM). In order to transmit data in an

efficient manner using this format, new coding techniques are needed. In this thesis

we propose a coding technique based on variable length to variable length prefix

trees and code construction algorithms are outlined. These codes are referred to as

Interval Modulation Codes (IMC). Furthermore, data encoded with this modulation

format cannot be transmitted or received using conventional synchronous CDR based

receivers. In this thesis we outline a new asynchronous circuit architecture for both

the transmitter and receiver. The architecture is based on active delay lines and

eliminates the need for clock recovery.
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Chapter 1

Introduction

In this thesis we propose a biologically inspired paradigm for the design of high speed

digital communication systems for fiber optic communication. The transmission of

information in neural systems has been extensively studied. Neural systems are largely

asynchronous in nature. The transmission of information from one neuron to another,

happens by means of a spike train, or a sequence of action potentials. These action

potentials are all or none events. Once a neuron spikes, it enters a refractory period,

during which it cannot generate another action potential. The reasons underlying

this phenomenon are related to the biophysics of action potential generation. This

is the only constraint on the time difference between two adjacent spikes or action

potentials. How information is encoded in spike trains is an area of active study

and debate, and there are reasons to believe information is encoded differently in

different neurons based on function. Two leading hypothesis are rate codes, in which

information is encoded in the frequency of action potentials or spikes and temporal

codes in which information is encoded in the time difference between two consecutive

action potentials.

Communication systems have a wide array of applications, and the theory un-

derlying them has also received much attention. Where as communication systems,

can refer to systems that are used to transmit analog or digital information, in this

thesis we will mainly discuss communication systems for the transmission of digital

information. Unlike neural systems, most communication systems, and in general

digital systems are synchronous in nature. Furthermore, unlike neural systems, gen-
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erally information in digital systems is encoded in the amplitude of the signal, a high

represents a 1, a low represents a 0. This simple modulation format is known as Non

Return to Zero (NRZ) modulation and it is the modulation format of choice in most

communication systems. In spite of the simplicity of the modulation format, sending

data across a link requires more than just stuffing bits in one end and having them

show up at the other. The bits arriving at the receiver must be sampled with a clock

to return them to the digital domain. With slower serial interfaces, such as analog

spectrum telecommunication modems, this clocking may often be done through an

asynchronous over sampling of the received bit stream. At the faster data rates in

the optical communication domain, this over sampling becomes impractical. At faster

transfer rates the sample clock must operate at the same rate as the bits in the data

stream. While the sample clock could be delivered on a separate link, this is generally

poor practice. The time skew between the data and the clock is difficult to manage,

and the cost of the second links makes this prohibitive. Since no sample clock is

delivered to the receiver along with the data, a clock must be extracted from the data

stream. This is accomplished through the use of a high performance PLL (Phase

Locked Loop) that detects the transitions in the serial stream as illustrated in Figure

1.1. Numerous 10-Gb/s fiber optic receivers based on the paradigm described above

have been implemented [4], [8], [42], [43], [44], [45], [73], [88] and [101]. Unfortunately,

an NRZ data stream may contain few if any transitions, especially when sending data

of mostly one or zero bits. To send data of this type, the data must be modified to

force additional transitions into the data stream. Thus there is a need for coding.

Numerous methods exist to force additional transitions into a data stream. These

can be broken down into two categories, scrambling and run length limited coding.

Scrambling modifies a data stream by merging it with one or more randomizer

polynomials. Scrambling, used in telecommunications interfaces such as SONET [89]

and ATM [6], is 100% efficient. For every bit in the source data stream, a single bit

is sent across the interface. While this would at first appear as the perfect solution,

scrambling does have its drawbacks. The characteristics of a scrambler are such that

the scrambler can be zeroed out by specific data patterns. In other words, scrambling
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Figure 1.1: General System Level Architecture of a High Speed Optical Receiver

cannot guarantee transitions on the data stream, it can only make them more likely.

For rogue bit sequences, there will be no data transitions. A scrambled interface is

also somewhat limited in how link control information is moved across a link. Because

the link efficiency is perfect, all combinations of bits are used to represent data. This

requires all link information to be sent as combinations of data characters.

The other method of forcing transitions involves run length limited coding. In a

coded interface, the source data is modified by mapping the source data into alternate

bit combinations called symbols. These symbols are constructed with extra bits that

guarantee a minimum transition density. This problem has been extensively studied

in literature and numerous solutions are available [1], [30], [31], [49], [53], [65], [67],

[68], [69] and [102]. Encoded interfaces generally have link efficiencies ranging from

50-95%. One of the most popular encodings is known as 8B/10B [102]. This encoding

is used by popular high speed serial interfaces such as Fibre Channel [112], ATM [6],

ESCONTM, Gigabit Ethernet [34] and DVB-ASI. The 8B/10B code maps an 8-bit data

character into a 10-bit symbol known as a transmission character. This code limits

the maximum number of consecutive ones or zeros that can occur in the transmitted

serial bit stream to five. The efficiency of the link is 80%. This code is optimized

for transmission across optical media. In addition to guaranteeing transition density,
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the code is DC balanced. Thus it limits the low frequency content in the data stream

which in turn allows the use of low-cost AC-coupled optical modules. In addition

since some of the bit sequences are unused, these can be included in the data stream

as special control characters (such as start of frame, end of frame, etc.).

We will describe an alternate paradigm for the design of digital communication

systems which is inspired by temporal codes that are used in the nervous system.

The primary advantage of the proposed paradigm over conventional designs is a sub-

stantial improvement in data rate. The combination of amplitude modulation and

run length limited coding can be thought of as interval modulation. In the 8B/10B

code, there can be at most 5 consecutive zeros or ones. If B is the bit period, the

time between voltage transitions is either 1B, 2B, 3B, 4B, or 5B. Note that since

the circuits used are synchronous, the time between voltage transitions are always a

multiple of the bit period. The data rate is 0.8/B (compared to a data rate of 1/B

if scrambling were used). The fundamental draw back of this scheme is also that the

time intervals between voltage transitions must be multiples of a clock period. Con-

sider what would happen if the time between voltage transitions were to be restricted

to just two possibilities 1B, 1.2B. And data were transmitted using a very simple

coding scheme where a pulse of duration 1B would be transmitted for every zero

in the data stream and a pulse of 1.2B were transmitted for every one in the data

stream. Even in the worst case (sequence of all ones), the data rate achieved by this

simpler coding would be 1/1.2B which is greater than 0.8/B. In addition to a higher

data rate, the coding scheme is much simpler than the 8B/10B code and thus simpler

to implement. The code also provides better error propagation properties. It must be

noted that this simple scheme for coding is not optimal. Another scheme would first

take a binary sequence of fixed length, and map it to a balanced binary sequence.

Simple coding techniques for doing this exist and the number of extra bits is only

logarithmic in the number of bits in the original sequence [61]. Thus if the original

sequence is long enough, there is no loss in terms of data rate. Now the balanced code

can be transmitted using the technique described above. Since the coded sequence

contains an equal number of zeros and ones, the data rate would be 1/1.1B. Also
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the code has the interesting property that all binary sequences can be transmitted

in the same amount of time. However, there is a loss in terms of error propagation

properties. The above arguments illustrate, that if we drop the constraint that the

time between voltage transitions must be a multiple of the bit period, then improve-

ments in terms of data rate, DC balance and other properties are realizable. In the

example above, we had restricted the time between voltage transitions to belong to

one of two possibilities. This requirement is arbitrary. For example the time between

voltage transitions could be restricted to belong to 1.0B, 1.2B, 1.4B, 1.6B, or 1.8B.

It is possible to show that in this case, the data rate can exceed even that achieved

by scrambling. Furthermore, the time between voltage transitions does not have to

be restricted to multiples of the clock period B or some other constant but can be

a set of any arbitrary values, even though in the cases considered, the time between

voltage transitions are multiple of 0.2B. It must be noted that in the optical domain,

data rates are very high and as mentioned the clock due to limitations in chip pro-

cesses can operate at a frequency of at most 1/2B (this corresponds to a bit period

of B). Given this limitation, it is not possible to implement a receiver which samples

the amplitude using a clock with a frequency of 1/0.2B. An alternate architecture is

needed, a transceiver architecture which operates directly by measuring time between

voltage transitions. Notice that if we were to sample the amplitude, we would need

to sample it at a frequency of 1/0.2B. However, if we are to measure time differences

between adjacent transitions, the smallest measurable time interval only needs to be a

bit period. And the maximum sampling frequency needs to be 1/2B. The resolution

of the time measurement circuit needs to be sub-bit period. Variants of Run Length

Limited Codes can still be used to do the encoding in the case where time between

transitions is a multiple of some number smaller than the bit period B, but since the

architecture of the transceiver is different, conventional Run Length Limited Codes

which are designed to be used with conventional synchronous transceivers, lose some

of their desirable properties, like limiting the effects of error propagation. Formulat-

ing a new circuit architecture, will give rise to new coding constraints that must be

satisfied by desirable codes. In this thesis will be address two fundamental questions
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– one how is binary data to be encoded in a signal where time between transitions

can take on arbitrary values. And second what circuit architecture can be used for

transmission and reception of data using such a modulation format at high data rates.

We next review the organization of this thesis. In Chapter 2 we will discuss the

two basic problem of transmission of analog and digital information through an opti-

cal channel. Next we will describe the modulation formats used for analog and digital

transmission of information. We will then compare the proposed modulation format

to the different modulation formats concluding with a hierarchical categorization of

different modulation formats. In order to transmit data using the proposed modu-

lation format one needs new and novel coding techniques. In this thesis we propose

a coding technique based on variable length to variable length prefix free codes. In

Chapter 3, we will introduce the concept of a prefix free code, and illustrate its pri-

mary advantage, instantaneous decodability without the need for look ahead. We

will classify prefix free codes into four major categories and discuss and summarize

the theoretical problems associated with prefix free coding that have been studied in

literature. In Chapter 4 of this thesis we will propose the use of variable length to

variable length prefix free codes for interval modulation and refer to these as interval

modulation codes. Next we will formulate the problem of code construction. This

problem will then we reduced to a large scale integer optimization problem which is

well structured. We study the properties of the polyhedra defined by this structured

system of inequalities. These properties lead to efficient algorithms for determining

if the linear programming relaxation of the code construction problem is feasible and

an efficient algorithm for solving the linear programming relaxation. In Chapter 5,

we study a generalization of the Fibonacci numbers that arises in the context of rate

analysis as well as code construction. In Chapter 6, we outline a novel asynchronous

circuit architecture for high speed digital transceiver design. The transmitter is based

on the concept of a reconfigurable ring oscillator whereas the receiver is based on the

concept of multiplexed picosecond time digitizers. The proposed architecture does

away with the need for clock recovery circuits. A prototype based on the ideas dis-

cussed in this chapter was fabricated and measurement results are discussed. In
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Chapter 7 we briefly summarize the contributions of this thesis and outline exciting

areas for future research.
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Chapter 2

Modulation Formats

In this chapter we review different modulation formats that are commonly used for

data transmission through fiber. Modulation formats can be classified into two cat-

egories, analog and digital, based on whether they are designed for analog or digital

data transmission. The hierarchical classification of modulation formats used for

analog and digital data transmission is presented in Figure 2.1.

2.1 Analog Modulation Formats

Modulation formats for analog data transmission can be grouped into two categories,

Pulse Shape Modulation (PSM) Formats and Pulse Time Modulation (PTM) For-

mats. The simplest example of a PSM modulation format is Pulse Amplitude Modu-

lation (PAM). In PAM the amplitude of individual, regularly spaced pulses in a pulse

train is varied in accordance with the amplitude of the modulating signal. Such a

scheme is both simple and bandwidth efficient but cannot deliver the signal to noise

ratio. In addition PAM suffers to an extent from nonlinearity of the optical channel,

the photodiode, the photodetector and associated circuitry, severely limiting the qual-

ity of information transmitted. Due to these reasons, real communication systems are

based on alternate modulation formats discussed below.

The basic framework for research into PTM techniques was laid down around

50 years ago and reported in the late 1940s [23], [29], [54] and [64] but it is only

recently that a revival of interest has been experienced with the development of fiber
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Figure 2.1: Hierarchical Categorization of Analog and Digital Modulation Formats

transmission systems [111]. In all PTM methods, one of a range of time-dependent

features of a pulsed carrier is used to convey information in preference to the carrier

amplitude. The fundamental advantages of these schemes are that modulation is

simple, the signal is not quantized thus there is no need for digital coding, and

the pulse format renders the scheme immune to device and channel nonlinearity.

Furthermore, the signal can be routed through logic circuits and switching nodes in a

network. PTM techniques can be further grouped into two categories – Isochronous

PTM techniques and Anisochronous PTM techniques.

Isochronous PTM techniques are fixed rate schemes that require a fixed amount of

time to transmit a sample of the modulating signal. Two common examples under this

category are Pulse Width Modulation (PWM), sometimes also referred to as Pulse

Duration Modulation (PDM) and Pulse Position Modulation (PPM). In PWM, the

width of the pulsed carrier within a predetermined timeframe is changed according to

the sampled value of the modulating signal. PPM can be considered as differentiated



10

PWM, and carries information by virtue of the continuously variable position of a

narrow pulse within a fixed timeframe. Anisochronous PTM techniques variable rate

schemes in which the time required to transmit a sample of the modulating signal

varies and generally depends on the sampled value itself. This group consists of four

different modulation formats, Pulse Interval Modulation (PIM), Pulse Interval and

Width Modulation (PIWM), Pulse Frequency Modulation (PFM) and Square Wave

Frequency Modulation (SWFM). As the name suggests in PIM, the variable intervals

between adjacent narrow pulses is determined by the amplitude of the input signal.

PIWM is derived directly from PIM to produce a waveform is which both mark

and space convey information in alternating sequence. In both PIM and PIWM

each successive timeframe commences immediately after the previous pulse unlike in

PWM and PPM. In PFM, the instantaneous frequency of a train of narrow pulses is

determined by the amplitude of the modulating signal. SWFM is closely related to

PFM, consisting essentially of a series of square wave edge transitions occurring at

the pulse positions of PFM.

The primary advantage of Isochronous PTM techniques over Anisochronous PTM

techniques, is that Isochronous PTM techniques are far easier to multiplex in the

time domain because of their fixed frame timing intervals and require only a simple

demultiplexer at the receiving end. The primary advantage of Anisochronous PTM

techniques over Isochronous PTM techniques is that Anisochronous PTM techniques

essentially can transmit more samples in a given amount of time. PWM and PPM

have been widely adapted for use in fiber optic applications [10], [11], [86], [96], [104],

[105] and [106]. PFM has been used extensively for optical fiber transmission of video

and broadcast quality TV signals [46], [47], [48], [50], [55] and [76] with SWFM being

employed for the transmission of HDTV and other wideband instrumentation signals

[66], [79], [82], [107], [109] and [108]. PIM and PIWM have found fewer wideband

fiber optic applications [76], [77], [83], [84] and [110].
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Figure 2.2: Analog Signal Represented Using Different Modulation Formats
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2.2 Digital Modulation Formats

There are several modulation and encoding schemes that are suitable for optical com-

munication systems. The simplest approach is based on intensity modulation with

direct detection and is referred to as on-off keying (OOK). In this scheme a zero is

represented by zero intensity and a one by positive intensity. The primary disad-

vantage of this scheme is the low power efficiency. Higher average power efficiency

can be achieved by employing Pulse Time Modulation (PTM) schemes which will

be discussed later. In these schemes a range of time dependent features of a pulse

carrier can be used to convey information. OOK is also referred to as 2-PAM since

there are two intensity levels, one corresponding to a logical 0 and the other corre-

sponding to a logical 1. In an n-PAM modulation format, n distinct intensity levels

are used, each of these can represent a unique binary combination of blog2(n)c bits.

In practical systems the number of intensity levels used is 2 or 4. The advantage of

4-PAM systems over 2-PAM systems is higher data rate, but 4-PAM systems suffer

from the same limitations as PAM systems used for analog transmission. Namely,

nonlinearities in the channel, photodiode and photodetector and associated circuits

affect the threshold levels that must be used in the receiver. Furthermore, 4-PAM

signals cannot be passed through digital logic and more complex processing circuitry

is required.

As in analog modulation formats, an alternate is to use PTM techniques which can

be grouped into two classes, Isochronous PTM techniques and Anisochronous PTM

techniques. Isochronous PTM techniques, are fixed data rate techniques in which

the time required to transmit a bit of information is constant, or equivalently, the

number of bits transmitted in a constant amount of time is constant. Anisochronous

PTM techniques are variable data rate techniques in which the time required to

transmit a given number of bits varies depending on the bit sequence. The common

Isochronous PTM techniques are Digital Pulse Width Modulation (DPWM) or Digi-

tal Pulse Duration Modulation (DPDM), Digital Pulse Position Modulation (DPPM),

Multiple Pulse Position Modulation (MPPM), Overlapping Pulse Position Modula-
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tion (OPPM) and Pulse Code Modulation (PCM). The common Anisochronous PTM

techniques are Digital Pulse Interval Modulation (DPIM) and Digital Pulse Interval

Width Modulation (DPIWM).

DPWM is comparable to PWM for analog transmission. In this modulation format

the width of a pulsed carrier within a predetermined timeframe is changed according

to the value of binary combination represented by that time frame. DPPM is a differ-

entiated version of DPWM. In this modulation format, the position of a single pulse

within a time frame encodes the binary combination represented by that time frame.

MPPM is a generalization of DPPM. In this format the position of multiple, but a

fixed number, of pulses within a time frame encodes the binary sequence represented

by that time frame. OPPM is a modification of MPPM. In this modulation format,

an added constraint is placed on the position of the multiple pulses within a time

frame. The added constraint is that the multiple pulses occupy adjacent slots. PCM

techniques can be further classified into two groups, Return to Zero (RZ) techniques

and Non Return to Zeros (NRZ) techniques. Common RZ modulation techniques are

RB Modulation, Alternate Mark Inversion Modulation (AMI) and Manchester Modu-

lation. Common NRZ techniques are Non Return to Zero Level (NRZL) modulation,

Non Return to Zero Inverted (NRZI) modulation and Miller Code Modulation. AMI

modulation format is a pseudo ternary modulation format in which successive ones

are represented by alternately positive and negative polarity and the absolute values

of their amplitudes are normally equal and zeros are represented by zero amplitude.

In Manchester Modulation, a zero is represented by a 0-1 transition whereas 1-0 tran-

sition encodes a 1. NRZL modulation is equivalent to OOK and 2-PAM modulation.

A positive intensity level is used to encode a logical 1 and a zero intensity level is used

to encode a 0. In NRZI modulation there is a change in amplitude level from one

level to another, when a one is transmitted. The amplitude level remains unchanged

when a zero is transmitted. This kind of encoding is also called differential encoding.

In Miller Code Modulation, a logical one is encoded as a 01 and a zero is encoded as

10 if the preceding bit was a zero, and 00 if the preceding bit was a 1.

As mentioned the Anisochronous Modulation Techniques are DPIM and DPIWM.
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In DPIM the time between two consecutive pulses encodes the binary sequence. Thus

two binary sequences containing the same number of bits will be represented by

different intervals. In DPIWM, the binary sequence is encoded in the width of pulses

of alternating polarity.

2.3 Interval Modulation

Interval Modulation (IM) is an anisochronous modulation format for digital data

transmission. Interval Modulation is similar to DPIWM in that the binary sequence

in encoded in the width of pulses of alternating polarity. The fundamental difference

between DPIWM and IM is that in DPIWM the widths of the pulses are constrained

to be integer multiples of the bit period. In IM the widths must belong to set of

arbitrary values which need not be integer multiples. It must be noted that the

data rate achieved by NRZ, OOK and 2-PAM is 1. The data rate achieved by 4-

PAM is 2. All other schemes achieve a data rate of less than 1. The disadvantages

of 4-PAM have already been discussed. The threshold level used for thresholding

intensity levels at the receiver becomes sensitive to nonlinearities of the channel,

photodiode and photodetector and associated circuitry. Furthermore, 4-PAM signals

are not compatible with conventional two state digital circuits. Like 4-PAM, IM can

achieve a data rate in excess of 1. The primary advantages over 4-PAM are that

the signal is binary, that is it uses only two intensity levels making it compatible

with conventional digital circuitry and making it insensitive to nonlinearities in both

the channel and other devices. The disadvantage of IM over 4-PAM are additional

complexity since rate efficient coding of binary data is non trivial. Furthermore, since

IM is Anisochronous whereas PAM is Isochronous some schemes must be deployed

to mitigate the effects of error propagation. It must be noted that all Anisochronous

schemes can be impacted by error propagation. So this disadvantage is not restricted

to IM alone. Also since the pulse widths need not be multiples of the bit period but

can take on arbitrary values, the transceiver design cannot be based on conventional

clocked synchronous circuitry. In this thesis we will outline present a coding technique
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Figure 2.3: Digital Signal Represented Using Different Modulation Formats
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based on variable length to variable length prefix-free codes and an asynchronous

transceiver architecture.
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Chapter 3

Prefix Free Coding

3.1 Prefix Free Codes

Definition 1 A code is a mapping of source messages, words from the source alpha-

bet, into codewords, words from the code alphabet.

Consider the simple code shown in Figure 1 A. The source alphabet is {a, b, c, d}

and the code alphabet is {0, 1}. The code itself is a mapping of source messages

or words from the source alphabet, {a, b, c, d} to words from the code alphabet,

{00, 01, 10, 11}. Thus the string cabd would be represented as 10 00 01 11. The

source messages are the basic units into which the string to be represented is par-

titioned. These basic units may be single symbols of the source alphabet, as in the

preceding example, or they may be strings of symbols from the source alphabet.

When source messages of variable length are allowed, the question of how a message

ensemble (sequence of messages) is parsed during encoding, into individual messages

arises. Similarly, if variable length codewords are permitted, the question of how a

code ensemble (sequence of codewords) is to be parsed into codewords during the

decoding process arises.

Definition 2 A code is distinct if each codeword is distinguishable from every other,

that is the mapping from source messages to code words is one to one.

Definition 3 A distinct code is uniquely decodable if every codeword is identifiable

when immersed in a sequence of codewords.
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Note that both the codes in Table 3.1 (A-D) are all distinct. The codes in Table

3.1 (A,C,D) are all uniquely decodable but the code in Table 3.1 (B) is not. If the

code in Table 3.1 (B) were to be used 10 could be parsed as the codeword 10 or

codeword 1 followed by codeword 0. Thus any message transmitted using this code

cannot be uniquely decoded even though the code is distinct.

Message Code

a 00
b 01
c 10
d 11

Message Code

a 0
b 1
c 10
d 11

Message Code

a 1
b 100000
c 00

Message Code

a 0
b 10
c 110
d 111

A B C D

Table 3.1: Examples of Distinct, Uniquely Decodable and Prefix Free Codes

Definition 4 A uniquely decodable code is a prefix-free code if no codeword is prefix

of any other codeword.

Note that the codes in Table 3.1 (A,D) are prefix free. Prefix codes have the

desirable property that they are instantaneously decodable. That is the code message

can be parsed into codewords without the need for look ahead. If the source messages

are also prefix free then the code is both instantaneously encodeable and decodable.

There is no need for look ahead in either the coding or decoding process. However, the

prefix property is not needed to ensure that a code be uniquely decodable. The code

in Table 3.1 (C) is uniquely decodable but it is not prefix free. In order to decode a

message encoded using the codeword set {1, 100000, 00} look ahead is required. Note

that the first codeword of the message 1000000001 is 1 but this cannot be determined

until all ten symbols have been read. The algorithm for determining whether a 1

corresponds to the codeword 1 or the codeword 100000 is based on determining the

parity of the number of zeros that follow the 1. Even though this code is not prefix

free, it is uniquely decodable. However, decoding requires look ahead.
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aa ↔ 00 aa ↔ 0 a ↔ 00 a ↔ 0
ab ↔ 01 ab ↔ 10 ba ↔ 01 ba ↔ 10
ba ↔ 10 ba ↔ 110 bba ↔ 10 bba ↔ 110
bb ↔ 11 bb ↔ 111 bbb ↔ 11 bbb ↔ 111

A B C D

Table 3.2: Examples of Prefix Free Codes Belonging to Different Classes

3.2 Classification of Prefix Free Codes

Prefix free codes can be classified into four classes depending on the number of source

alphabets in the source strings and the number of code alphabets in the code strings

[63]. The first class consists of prefix free codes in which both the number of source

alphabets in the source strings and the number of code alphabets in the code strings

is fixed. These codes are referred to as the block to block prefix free codes. A com-

mon example is the ASCII representation of the alphanumeric characters. Another

example is shown in Table 3.2 (A). Codes in which the number of source alphabets is

fixed but the number of code alphabets is allowed to vary are referred to as block to

variable length prefix free codes. A common example is Huffman codes [87, 27, 51],

discussed later in this chapter. Another example is illustrated in Table 3.2 (B). Note

that all the source messages have 2 symbols but the number of code alphabets in the

codewords varies from one to three. Codes in which the number of source alphabets

is allowed to vary but the number of code alphabets is fixed are referred to as variable

length to block codes. An example is shown in Table 3.2 (C). Note that the number

of source alphabets in the source messages varies from one to three but the number

of code alphabets in the codewords is fixed to two. The most general class of codes

consists of prefix free codes in which both the number of source and code alphabets

is allowed to vary. A variable length to variable length prefix free code is shown in

Table 3.2 (D).

Numerous variants of prefix free code construction problems can be defined. Gen-

erally, we are given the source and code alphabets. All source alphabets may have

the same probability or the probabilities may differ. Furthermore, the code alpha-

bets may have the same transmission times or the transmission times may differ.
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Figure 3.1: An Optimum Huffman Code for (E,29), (I,5), (N,7), (P,12), (S,4), (T,8)

Given the source and code alphabets, the probability of the source alphabets and

the transmission times of the code alphabets, the problem is design a general code

construction algorithm that minimizes or maximizes a given objective function. The

objective function is generally the expected transmission time. Other variants of the

code construction problem have been studied. In these variants in addition to the

above, the code strings must satisfy some constraint, for example, all code strings

must end in a given code alphabet.

3.3 Results on Prefix Free Coding

Prefix free codes that have been most extensively studied in literature are block to

variable length prefix free codes. The problem where the probabilities of the source

alphabet are different but the transmission costs of the code alphabet are the same

was first studied in 1948 by Shannon [87] and in 1949 by Fano [27] who developed

essentially identical methods for constructing near optimum codes. In 1952 Huffman

[51] used an elegant combinatorial technique to obtain a strictly optimum solution

to the problem. These codes are referred to as Huffman codes and an example is

discussed next. Let the source alphabet be {E, I,N, P, S, T} and the frequency of
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occurrence be (E, 29), (I, 5), (N, 7), (P, 12), (S, 4) and (T, 8). The optimum Huffman

Code is shown in Figure 3.1. In 1954 Blachman [12] generalized the Shannon-Fano

approximation technique to treat the situation where both the probabilities of the

source alphabet and the transmission costs of the code alphabet differ. In 1957

Marcus [70] improved on the Blachman technique by combining it further with the

combinatorial results of Huffman. The algorithms of both Blachman and Marcus

are approximate in nature and give near optimum solutions. Karp [57] developed an

optimum algebraic solution by reducing the problem of code construction to an integer

linear program which was solved using Gomory’s integer programming algorithm

[39, 40, 41]. Other approximation techniques have been developed by Krause [62],

Cot [25, 26], Mehlhorn [72], Altenkamp and Mehlhorn [2] and Gilbert [35]. A dynamic

programming algorithm for an exact solution has been developed by Golin and Rote

[37] is O(nC+2) where n is the number of source words and the transmission cost of

the code alphabet belongs to integers from 1 to C. No polynomial time algorithm

for arbitrary transmission costs is known. The special case of constructing block to

variable length prefix free codes where probabilities of source messages is fixed but

transmission costs of the code alphabets is allowed to vary was first studied by Varn

[99] in 1971 and is also referred to as Varn coding. Exact solutions have also been

proposed by Perl et.al. [78], Choy and Wong [21], Cot [24], Stanfel [93], Kapoor and

Reingold [56] and Golin and Young [36]. In 1990 Berger and Yeung [9] introduced

a new class of prefix free codes having the property that each codeword ends with a

one. A useful application of 1-ended prefix codes is considered by Capocelli et. al.

[18, 20], where is it shown how to construct from a given 1-ended prefix code a self

synchronizing prefix code having the same codeword lengths. The alphabetic version

of 1-ended prefix codes has been studied by Browning and Thomas [16] and Capocelli,

et. al. [19]. Synchronizing codes deal with limiting error propagation when variable

length prefix free codes are used. Work on variable length to block prefix free codes

was pioneered by Tunstall [98]. Compared to block to variable length prefix-free codes

and variable length to block prefix free codes, variable length to variable length prefix

free codes have received very little attention in literature.
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Chapter 4

Interval Modulation Codes

4.1 Review and Examples

Generally, prefix free codes are used for source coding. However, in our case we would

like to use them for channel coding. The data stream to be transmitted consists of

binary data, 0s and 1s. These are our source alphabets. Furthermore, the modulated

signal can be represented by a sequence of code alphabets which have different trans-

mission times. An Interval Modulation Code is a variable length to variable length

prefix free code defined by the source alphabet, 0 and 1, and the code alphabet which

consists of a finite set of symbols with different transmission times. In this thesis,

we will formulate an algorithm to construct interval modulation codes to maximize

worst case data transmission rate. That is minimize the time required to transmit

the worst binary data stream. We define S to be the set of permissible time intervals.

For expository purposes assume S is {1, 2}. A simple encoding strategy would be

to map every binary 0 to a 1 and every binary 1 to a 2. This only achieves a worst

case rate of 0.5 since a sequence of T 1s would require 2T time units to transmit.

An alternate strategy would be to map 00 → 111, 01 → 12, 10 → 21, 110 → 112

and 111 → 22. Note that the sets {00, 01, 10, 110, 111} and {111, 12, 21, 112, 22} are

both prefix-free. In the worst case this scheme would achieve a rate of 0.66 since a

sequence of 2T 0s would require 3T time units to transmit. Since neither the number

of bits nor the number of symbols is fixed, this is a variable length to variable length

prefix-free code. Notice that the maximum number of bits that the encoder might
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have to examine before it can encode part of the binary sequence is 3 (corresponding

to 110 or 111). This is the delay associated with the encoder and is referred to as TE.

Similarly the decoder might have to wait up to 4 units of time before it can map part

of the received symbol sequence back to bits (corresponding to 112 or 22). This is the

delay associated with the decoder and is referred to as TD. More complex variable

length to variable length prefix-free codes are shown in Table 4.1 and Table 4.2.

4.2 Problem Formulation and Code Construction

Using Integer Linear Programming

We have already defined the set of permissible time intervals or symbols to be S. We

assume that all elements in S are positive integers1. Furthermore, we assume that S

has at least 2 elements. Let m be the largest element in S. For i ∈ {1, 2, ....,m−1, m},

let

Ki =

 1 i ∈ S

0 i /∈ S
(4.1)

We define NK(T ) to be the number of sequences of length T whose elements are

in S.

NK (T ) =



m∑
i=1

KiNK(T − i) T > m

KT +
T−1∑
i=1

KiNK(T − i) 2 ≤ T ≤ m

K1 T = 1

(4.2)

It is easy to show that NK(T ) can be computed using the recurrence above. When

T = 1, NK(T ) is 1 if K1 = 1 (1 ∈ S) and 0 if K1 = 0 (0 /∈ S). Hence, when T = 1,

NK(T ) = K1. Now consider the case when 2 ≤ T ≤ m. The number of sequences

of length T that end in T is KT (1 if T ∈ S, 0 if T /∈ S). The number of sequences

of length T that end in i is KiNK(T − i) (NK(T − i) if T ∈ S, 0 if T /∈ S). Hence,

1If the symbols are not integers, they must be suitably scaled and truncated or rounded.
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TE = 5 TE = 6 TE = 7
TD = 2.73 TD = 3.16 TD = 3.63
R = 1.83 R = 1.87 R = 1.92

00 ↔ S1 00 ↔ S1 00 ↔ S1

010 ↔ S3 010 ↔ S3 010 ↔ S4

011 ↔ S4 011 ↔ S4 0110 ↔ S6

100 ↔ S5 100 ↔ S5 0111 ↔ S7

1010 ↔ S6 1010 ↔ S6 10000 ↔ S2S1

1011 ↔ S7 1011 ↔ S7 10001 ↔ S2S2

1100 ↔ S2S1 1100 ↔ S2S1 10010 ↔ S3S1

11010 ↔ S2S2 11010 ↔ S2S2 10011 ↔ S8

11011 ↔ S8 11011 ↔ S8 10100 ↔ S2S3

11100 ↔ S2S3 11100 ↔ S2S3 10101 ↔ S3S2

11101 ↔ S2S4 11101 ↔ S2S4 10110 ↔ S3S3

11110 ↔ S9 11110 ↔ S9 10111 ↔ S2S4

11111 ↔ S2S5 111110 ↔ S2S5 11000 ↔ S9

111111 ↔ S2S7 11001 ↔ S5S1

110100 ↔ S3S4

110101 ↔ S2S5

110110 ↔ S5S2

110111 ↔ S3S5

111000 ↔ S5S3

111001 ↔ S10

111010 ↔ S2S6

111011 ↔ S5S4

111100 ↔ S3S6

1111010 ↔ S2S7

1111011 ↔ S5S5

1111100 ↔ S3S7

1111101 ↔ S5S6

1111110 ↔ S3S8

1111111 ↔ S5S7

Table 4.1: Code with S = {1.00, 1.13, 1.27, 1.42, 1.60, 1.80, 2.03, 2.28, 2.57, 2.89}
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TE = 4 TE = 6 TE = 7
TD = 4.46 TD = 6.75 TD = 7.70
R = 0.87 R = 0.89 R = 0.91

00 ↔ S1 00 ↔ S1 000 ↔ S4

01 ↔ S2 010 ↔ S4 0010 ↔ S6

100 ↔ S3 0110 ↔ S6 0011 ↔ S1S1

101 ↔ S4 0111 ↔ S2S1 0100 ↔ S1S2

110 ↔ S5 1000 ↔ S7 0101 ↔ S2S1

1110 ↔ S6 10010 ↔ S2S2 01100 ↔ S1S3

1111 ↔ S7 10011 ↔ S3S1 01101 ↔ S3S1

10100 ↔ S2S3 01110 ↔ S2S3

10101 ↔ S3S2 01111 ↔ S3S2

10110 ↔ S8 10000 ↔ S1S4

10111 ↔ S3S3 10001 ↔ S8

11000 ↔ S2S4 10010 ↔ S3S3

11001 ↔ S5S1 10011 ↔ S2S4

11010 ↔ S3S4 10100 ↔ S1S5

110110 ↔ S2S5 10101 ↔ S5S1

110111 ↔ S5S2 101100 ↔ S3S4

111000 ↔ S9 101101 ↔ S2S5

111001 ↔ S3S5 101110 ↔ S5S2

111010 ↔ S5S3 101111 ↔ S9

111011 ↔ S2S6 110000 ↔ S1S6

111100 ↔ S5S4 110001 ↔ S3S5

111101 ↔ S3S6 110010 ↔ S5S3

111110 ↔ S10 110011 ↔ S2S6

111111 ↔ S2S7 110100 ↔ S5S4

110101 ↔ S1S7

110110 ↔ S7S1

110111 ↔ S3S6

111000 ↔ S2S2S1

1110010 ↔ S10

1110011 ↔ S2S7

1110100 ↔ S7S2

1110101 ↔ S5S5

1110110 ↔ S2S2S2

1110111 ↔ S3S7

1111000 ↔ S7S3

1111001 ↔ S1S8

1111010 ↔ S2S2S3

1111011 ↔ S5S6

1111100 ↔ S2S8

1111101 ↔ S7S4

1111110 ↔ S2S2S4

1111111 ↔ S3S8

Table 4.2: Code with S = {2.00, 2.29, 2.61, 2.99, 3.41, 3.90, 4.46, 5.09, 5.82, 6.65}
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Figure 4.1: A Simple Interval Modulation Code Implemented Using Prefix Trees

NK (T ) = KT +
∑T−1

i=1 KiNK(T − i). The proof for when T > m is similar and left

as an exercise for the reader. It is easy to show that NK is a generalization of the

Fibonacci Numbers.

Example 5 First consider the case when S = {1, 2, 3}. In this case m = 3 and K1 =

1, K2 = 1 and K3 = 1. Using the recurrence above, we find NK(5) = 13. The 13 se-

quences of length 5 are {11111, 1112, 1121, 1211, 2111, 122, 212, 221, 113, 131, 311, 23, 32}.

Now consider the case when S = {2, 3, 5}. In this case m = 5 and K1 = 0, K2 = 1,

K3 = 1, K4 = 0 and K5 = 1. Using the recurrence above we find NK(9) = 8. The 8

sequences of length 9 are {2223, 2232, 2322, 3222, 333, 225, 252, 522}.

Note that variable length to variable length prefix-free codes can be implemented

using prefix trees. The coding technique outlined in the previous section for S = {1, 2}

is implemented using prefix trees in Figure 4.1.

Definition 6 For each leaf node x of the encoder tree T , let de(x) denote the length

of the path from the root to x, called the “encoder delay” of x. Also, let dd(x) =
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x1 + ... + xn , where x1, ..., xn is in Sn is the label of x, called the “decoder delay” of

x.

Let maxx de(x) and let maxx dd(x) be called the “maximum encoder”and “max-

imum decoder” delays, respectively, taken over all leaf nodes x of the tree T . We

will refer to these as TE and TD respectively. Also define the “rate” to be R = minx

de(x)/dd(x).

Before we define the code construction problem and present a reduction to integer

linear programming, we would like to prove a theorem.

Notation 7 Σ+
S is the set of non-null strings over S

For all s ∈ Σ+
S , ‖s‖ is the sum of the elements in s

Πl
S = {s|s ∈ Σ+

S and ‖s‖ = l}

Assume p ∈ Σ+
S and l ≥ ‖p‖. We define PA(p, l) = {s|s ∈ Σ+

S and ‖s‖ = l and p

is a prefix of s}

Theorem 8 We are given MS ⊆ Σ+
S such that MS is a prefix-free set. For all i let

yi = |{s|s ∈ MS and ‖s‖ = i}|.

For all n, yn ≤ NK(n)−
n−1∑
l=1

NK(n− l)yl

Furthermore, if we are given yi such that they satisfy the constraints above, we can

find MS ⊆ Σ+
S such that MS is a prefix-free set and |{s|s ∈ MS and ‖s‖ = i}| = yi.

Proof. We are given n. Define M̄S(n) = {s|s ∈ MS and ‖s‖ < n} and R̄S(n) =

{s|s ∈ MS and ‖s‖ = n}.

Note that, R̄S(n) ∪
⋃

s∈M̄S(n) PS(s, n) ⊆ Πn
S

Hence,
∣∣∣R̄S(n) ∪

⋃
s∈M̄S(n) PS(s, n)

∣∣∣ ≤ |Πn
S|
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It is easy to show that R̄S(n)∩
⋃

s∈M̄S(n) PS(s, n) = φ and since M̄S(n) is a prefix-

free set for all s1, s2 ∈ M̄S(n), PS(s1, n) ∩ PS(s2, n) = φ.

Hence,
∣∣R̄S(n)

∣∣ +
∑

s∈M̄S(n) |PS(s, n)| ≤ |Πn
S|

Hence, yn ≤ NK(n)−
n−1∑
l=1

NK(n− l)yl

The proof of the converse is constructive. Note that y1 ≤ NK(1) = K1. If K1 = 0,

let MS = {} and if K1 = 1, let MS = {1}. Now we will assume that we have con-

structed a prefix-free set such that for i ∈ {1, ..., n− 1}, |{s|s ∈ MS and ‖s‖ = i}| =

yi.

Note that, yn ≤ NK(n)−
n−1∑
l=1

NK(n− l)yl

Now let U = Πn
S −

⋃
s∈MS

PS(s, n)

Hence, |U | =
∣∣Πn

S −
⋃

s∈MS
PS(s, n)

∣∣
First note that

⋃
s∈MS

PS(s, n) ⊆ Πn
S. Also note that since MS(n) is a prefix-free

set for all s1, s2 ∈ MS(n), PS(s1, n) ∩ PS(s2, n) = φ.

Hence, |U | = NK(n)−
n−1∑
l=1

NK(n− l)yl

Hence, yn ≤ |U |. It suffices to pick yn elements from U and add them to MS.

Problem 9 Given numbers TE, TD, and R, and a set of positive integers S, find a

tree T with the fewest possible leaves such that the maximum encoder delay is TE, the

maximum decoder delay is TD, the rate is at least R, and the labels of the leaves form

a prefix-free set over S.
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For l ∈ {1, 2, ..., TD} and d ∈ {1, 2, ..., TE}, let xl
d be the number of leafs (non

negative integer) in the encoder tree at depth d which have a label of length l. Also,

we define xl to be the number of labels of length l and we define xd to be the number

of leafs in the encoder at depth d. Formally,

xl =

TE∑
i=1

xl
i and xd =

TD∑
i=1

xi
d (4.3)

The problem is to design the smallest encoder decoder pair. So we would like to,

min

TD∑
i=1

TE∑
j=1

xi
j (4.4)

Firstly, since the encoder tree is a full prefix tree, the Kraft Inequality for full

trees, tells us that
TE∑
i=1

2(TE−i)xi = 2TE (4.5)

Furthermore the labels attached to the leaf nodes of the encoder tree must form a

prefix-free set over S. Equivalently, the decoder must be a prefix tree. From Theorem

8 we know that,

For 1 ≤ L ≤ TD, xL +
L−1∑
l=1

NK(L− l)xl ≤ NK(L) (4.6)

Also the encoder and decoder must achieve a rate of R. Hence,

j/i < R =⇒ xi
j = 0 (4.7)

It is easy to verify that equations (4.5,4.6,4.7) are also sufficient. If we are given

xi
j which satisfy these constraints we can construct a code which achieves the desired

rate and has the specified delays. Since equation (4.5) is satisfied, the Kraft inequality

for full binary trees tells us that we can construct a full binary tree such that the

number of leafs at depth i is xi. Since equation (4.6) is satisfied, Theorem 8 tells us
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that we can find a prefix-free set MS over S such that the number of labels in MS of

length l is xl. We can now arbitrarily assign xi
j labels of length i from the set MS to

leaf nodes of the encoder tree at depth j in a one on one manner.

4.3 Linear Programming Relaxation

Equations (4.4,4.5,4.6,4.7) represent an integer linear program. Equations (4.4,4.5,4.6,4.7)

without the integrality constraint are the linear programming relaxation of the integer

linear program. Although the solution to the linear programming relaxation does not

provide a code, it does provide a lower bound on the size of the optimal code. In this

chapter we will present a polynomial time2 algorithm for finding an optimal solution

to the linear programming relaxation, if one exists. We next formulate a necessary

and sufficient condition for the linear programming relaxation to have a solution.

Note that equation (4.5) represents a hyperplane and equations (4.6,4.7) represent

a convex polyhedra. For a solution to exist, this hyperplane must intersect the convex

polyhedra. It must be noted that this criteria is both necessary and sufficient for

the linear programming relaxation of the integer linear program to have a solution.

However, it is not sufficient, only necessary to ensure the integer linear program has a

solution. The hyperplane intersects that polyhedra if and only if max
∑TE

i=1 2(TE−i)xi

subject to equations (4.6,4.7) is greater than or equal to 2TE . In this chapter we also

present a polynomial time algorithm for performing this optimization.

4.4 Generalized Fibonacci Polyhedra and their Prop-

erties

First we will define a Generalized Fibonacci Polyhedra. This definition is motivated

by the matrix representation of the system of inequalities in equation (4.6).

2We define a polynomial time algorithm to be one that requires a polynomial number of arithmetic
operations, integer or floating point.



31

Notation 10 We let In be the n × n identity matrix and we let An be the n × n

matrix below,

An =



1 NK(1) . NK(n− 2) NK(n− 1)

0 1 . NK(n− 3) NK(n− 2)

. . . . .

0 0 . 1 NK(1)

0 0 . 0 1


We refer to the ith column of An as An

i and the ith column of In as In
i . Note that

An
i can be computed recursively as follows,

An
i =


In
i +

m∑
j=1

KjA
n
i−j i > m

In
i +

i−1∑
j=1

KjA
n
i−j 2 ≤ i ≤ m

In
1 i = 1

Definition 11 We are given K ∈ {0, 1}m and α ∈ {0, R+}n. Let Γ(K, α) = {y|y ∈

{0, R+}n and Any ≤ Anα}. Equivalently if s ∈ {0, R+}n is the vector of slack vari-

ables we have Γ(K, α) = {y|y, s ∈ {0, R+}n and Any + Ins = Anα}. We will refer to

Γ(K, α) as a Generalized Fibonacci Polyhedra of dimension n and order m.

Before we state and prove properties satisfied by Generalized Fibonacci Polyhedra

we will prove a lemma.

Lemma 12 We are given K ∈ {0, 1}m, α ∈ {0, R+}n and y ∈ Γ(K, α). Let s be the

vector of slack variables corresponding to y.

If 2 ≤ n ≤ m,
n−1∑
i=1

yiA
n−1
i +

n−1∑
i=1

siI
n−1
i =

n−1∑
i=1

[αi + (αn − yn)Kn−i]A
n−1
i

If n > m,
n−1∑
i=1

yiA
n−1
i +

n−1∑
i=1

siI
n−1
i
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=
n−m−1∑

i=1

αiA
n−1
i +

n−1∑
i=n−m

[αi + (αn − yn)Kn−i]A
n−1
i

Proof. Since y ∈ Γ(K, α), Ay + Is = Aα. Hence,

n∑
i=1

yiA
n
i +

n∑
i=1

siI
n
i =

n∑
i=1

αiA
n
i

Note that yn + sn = αn. Hence,

n−1∑
i=1

yiA
n
i +

n−1∑
i=1

siI
n
i =

n−1∑
i=1

αiA
n
i + αnA

n
n − ynA

n
n − snI

n
n

=
n−1∑
i=1

αiA
n
i + (αn − yn)(An

n − In
n )

Now consider the case when 2 ≤ n ≤ m. In this case An
n = In

n +
∑n−1

i=1 KiA
n
n−i.

Hence,

n−1∑
i=1

yiA
n
i +

n−1∑
i=1

siI
n
i

=
n−1∑
i=1

αiA
n
i + (αn − yn)(In

n +
n−1∑
i=1

KiA
n
n−i − In

n )

=
n−1∑
i=1

αiA
n
i + (αn − yn)

n−1∑
i=1

Kn−iA
n
i

=
n−1∑
i=1

[αi + (αn − yn)Kn−i]A
n
i

Hence,

n−1∑
i=1

yiA
n−1
i +

n−1∑
i=1

siI
n−1
i =

n−1∑
i=1

[αi + (αn − yn)Kn−i]A
n−1
i

If n > m, An
n = In

n +
∑m

i=1 KiA
n
n−i. We can show,

n−1∑
i=1

yiA
n
i +

n−1∑
i=1

siI
n
i
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=
n−1∑
i=1

αiA
n
i + (αn − yn)

n−1∑
i=n−m

Kn−iA
n
i

=
n−m−1∑

i=1

αiA
n
i +

n−1∑
i=n−m

[αi + (αn − yn)Kn−i]A
n
i

Hence,

n−1∑
i=1

yiA
n−1
i +

n−1∑
i=1

siI
n−1
i

=
n−m−1∑

i=1

αiA
n−1
i +

n−1∑
i=n−m

[αi + (αn − yn)Kn−i]A
n−1
i

4.4.1 The 0-1 Principle

Before we prove the 0-1 Principle, we will introduce some notation and prove a lemma.

Definition 13 Let a, b ∈ {0, R+}n. We say that a ⊆ b iff for all i ∈ {1, ..., n}, ai > 0

implies bi > 0.

Lemma 14 We are given K ∈ {0, 1}m, α ∈ {0, R+}n and y ∈ Γ(K, α). If we are

given ᾱ ∈ {0, R+}n such that ᾱ ⊆ α, then we can find ȳ ∈ Γ(K, ᾱ) such that ȳ ⊆

y and s̄ ⊆ s, where s is the vector of slack variables corresponding to y and s̄ is the

vector of slack variables corresponding to ȳ.

Proof. The proof is by induction.

Base Case: n = 1. We are given y1 + s1 = α1. If α1 = 0 then y1 = 0, s1 = 0

and ᾱ1 = 0. We let ȳ1 = 0 and s̄1 = 0. Note that ȳ1 + s̄1 = ᾱ1 and ȳ ⊆ y and

s̄ ⊆ s. If α1 > 0 then let ȳ1 = ᾱ1y1/α1 and s̄1 = ᾱ1s1/α1. Note that ȳ1 + s̄1 =

ᾱ1y1/α1 + ᾱ1s1/α1 = ᾱ1(y1 + s1)/α1 = ᾱ1. Furthermore ȳ1 > 0 implies y1 > 0 and

s̄1 > 0 implies s1 > 0. Hence, ȳ ⊆ y and s̄ ⊆ s.
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Inductive Hypothesis: We are given K ∈ {0, 1}m, α ∈ {0, R+}n−1 and y ∈

Γ(K, α). If we are given ᾱ ∈ {0, R+}n−1 such that ᾱ ⊆ α, then we can find ȳ ∈ Γ(K, ᾱ)

such that ȳ ⊆ y and s̄ ⊆ s, where s is the vector of slack variables corresponding to

y and s̄ is the vector of slack variables corresponding to ȳ.

We are given K ∈ {0, 1}m, α ∈ {0, R+}n and y ∈ Γ(K, α). Let s be the vector

of slack variables corresponding to y. We will assume that αn > 0. If αn = 0 then

yn = 0 and sn = 0 and the result follows trivially from the induction hypothesis.

There are two cases to consider.

Case 1 : 2 ≤ n ≤ m. Since y ∈ Γ(K, α), by Lemma 12,

n−1∑
i=1

yiA
n−1
i +

n−1∑
i=1

siI
n−1
i =

n−1∑
i=1

[αi + (αn − yn)Kn−i]A
n−1
i

We let ȳn = ᾱnyn/αn and s̄n = ᾱnsn/αn (Note that ȳn > 0 implies yn > 0

and s̄n > 0 implies sn > 0). Next we show that ᾱi + (ᾱn − ȳn)Kn−i > 0 implies

αi +(αn−yn)Kn−i > 0. If ᾱn− ȳn > 0 then αn−yn > 0. Hence, if (ᾱn− ȳn)Kn−i > 0

then (αn− yn)Kn−i > 0. Since ᾱi > 0 implies αi > 0, we have ᾱi +(ᾱn− ȳn)Kn−i > 0

implies αi+(αn−yn)Kn−i > 0. By the inductive hypothesis we can find ȳ1, ..., ȳn−1and

s̄1, ..., s̄n−1 such that ȳi > 0 implies yi > 0 and s̄i > 0 implies si > 0 and,

n−1∑
i=1

ȳiA
n−1
i +

n−1∑
i=1

s̄iI
n−1
i =

n−1∑
i=1

[ᾱi + (ᾱn − ȳn)Kn−i]A
n−1
i

n−1∑
i=1

ȳiA
n
i +

n−1∑
i=1

s̄iI
n
i =

n−1∑
i=1

[ᾱi + (ᾱn − ȳn)Kn−i]A
n
i

=
n−1∑
i=1

ᾱiA
n
i +

n−1∑
i=1

[(ᾱn − ȳn)Ki]A
n
n−i

=
n−1∑
i=1

ᾱiA
n
i + (ᾱn − ȳn)(An

n − In
n )

Hence,
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n∑
i=1

ȳiA
n
i +

n∑
i=1

s̄iI
n
i

=
n−1∑
i=1

ᾱiA
n
i + (ᾱn − ȳn)(An

n − In
n ) + ȳnA

n
n + s̄nI

n
n

=
n−1∑
i=1

ᾱiA
n
i + s̄n(An

n − In
n ) + ȳnA

n
n + s̄nI

n
n

=
n−1∑
i=1

ᾱiA
n
i + s̄nA

n
n + ȳnA

n
n

=
n−1∑
i=1

ᾱiA
n
i + ᾱnA

n
n =

n∑
i=1

ᾱiA
n
i

Case 2 : n > m. Since y ∈ Γ(K,α), by Lemma 12,

n−1∑
i=1

yiA
n−1
i +

n−1∑
i=1

siI
n−1
i

=
n−m−1∑

i=1

αiA
n−1
i +

n−1∑
i=n−m

[αi + (αn − yn)Kn−i]A
n−1
i

We let ȳn = ᾱnyn/αn and s̄n = ᾱnsn/αn (Note that ȳn > 0 implies yn > 0 and

s̄n > 0 implies sn > 0). For i ∈ {1, ..., n−m−1} ᾱi > 0 implies αi > 0. Next we show

that for i ∈ {n−m, ..., n} ᾱi + (ᾱn− ȳn)Kn−i > 0 implies αi + (αn− yn)Kn−i > 0. If

ᾱn − ȳn > 0 then αn − yn > 0. Hence, if (ᾱn − ȳn)Kn−i > 0 then (αn − yn)Kn−i > 0.

Since ᾱi > 0 implies αi > 0, we have ᾱi + (ᾱn − ȳn)Kn−i > 0 implies αi + (αn −

yn)Kn−i > 0. By the inductive hypothesis we can find ȳ1, ..., ȳn−1and s̄1, ..., s̄n−1 such

that for i ∈ {1, ..., n− 1} ȳi > 0 implies yi > 0 and s̄i > 0 implies si > 0 and,

n−1∑
i=1

ȳiA
n−1
i +

n−1∑
i=1

s̄iI
n−1
i

=
n−m−1∑

i=1

ᾱiA
n−1
i +

n−1∑
i=n−m

[ᾱi + (ᾱn − ȳn)Kn−i]A
n−1
i

n−1∑
i=1

ȳiA
n
i +

n−1∑
i=1

s̄iI
n
i

=
n−m−1∑

i=1

ᾱiA
n
i +

n−1∑
i=n−m

[ᾱi + (ᾱn − ȳn)Kn−i]A
n
i

=
n−1∑
i=1

ᾱiA
n
i +

n−1∑
i=n−m

(ᾱn − ȳn)Kn−iA
n
i
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=
n−1∑
i=1

ᾱiA
n
i +

m∑
i=1

[(ᾱn − ȳn)Ki]A
n
n−i

Hence,

n∑
i=1

ȳiA
n
i +

n∑
i=1

s̄iI
n
i

=
n−1∑
i=1

ᾱiA
n
i +

m∑
i=1

[(ᾱn − ȳn)Ki]A
n
n−i + ȳnA

n
n + s̄nI

n
n

=
n−1∑
i=1

ᾱiA
n
i + (ᾱn − ȳn)(An

n − In
n ) + ȳnA

n
n + s̄nI

n
n

=
n−1∑
i=1

ᾱiA
n
i + s̄n(An

n − In
n ) + ȳnA

n
n + s̄nI

n
n

=
n−1∑
i=1

ᾱiA
n
i + s̄nA

n
n + ȳnA

n
n

=
n−1∑
i=1

ᾱiA
n
i + ᾱnA

n
n =

n∑
i=1

ᾱiA
n
i

Now we are ready to state and prove the 0-1 Principle.

Theorem 15 We are given K ∈ {0, 1}m and α ∈ {0, R+}n. If y ∈ {0, R+}n is

an extreme point of Γ(K, α) and s ∈ {0, R+}n is the vector of slack variables then

(yn, sn) = (0, αn) or (yn, sn) = (αn, 0).

Proof. The proof is by contradiction. Assume y is an extreme point of Γ(K,α)

and s ∈ {0, R+}n is the corresponding vector of slack variables. Since y is an extreme

point of Γ(K, α), y ∈ Γ(K,α). Hence Any ≤ Anα or equivalently Any + Ins = Anα.

Let V be the set of vectors that are used by y, s. Specifically An
i ∈ V iff yi > 0 and

In
i ∈ V iff si > 0. Since Any + Ins = Anα, yn + sn = αn. Furthermore, yn ≥ 0 and

sn ≥ 0. Hence 0 ≤ yn ≤ αn. If αn = 0 then (yn, sn) = (0, 0). So we will assume

αn > 0. Now assume (yn, sn) 6= (0, αn) and (yn, sn) 6= (αn, 0). Hence 0 < yn < αn

and sn = αn − yn > 0. We will show that if this is the case then the vectors in V are

not linearly independent and consequently y is not an extreme point of Γ(K, α).

Case 1 : n = 1. We have assumed α1 > 0, 0 < y1 < α1 and s1 = α1 − y1 > 0.

Since y1 > 0, A1
1 ∈ V . Since s1 > 0, I1

1 ∈ V . Since A1
1 ∈ V , I1

1 ∈ V and A1
1 = I1

1 , V
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cannot be a linearly independent set of vectors.

Case 2 : 2 ≤ n ≤ m. By Lemma 12 we know that,

n−1∑
i=1

yiA
n
i +

n−1∑
i=1

siI
n
i =

n−1∑
i=1

[αi + (αn − yn)Kn−i]A
n
i

We have assumed αn > 0, 0 < yn < αn and sn = αn − yn > 0. Since yn > 0,

An
n ∈ V . Since sn > 0, In

n ∈ V . Now note that if Kn−i > 0 then αi+(αn−yn)Kn−i > 0.

This is because (αn − yn) > 0 and αi ≥ 0. By Lemma 14 we can find ȳ ∈ {0, R+}n−1

and the vector of slack variables s̄ ∈ {0, R+}n−1 such that for i ∈ {1, ..., n− 1} ȳi > 0

implies yi > 0 and s̄i > 0 implies si > 0. Furthermore,

n−1∑
i=1

ȳiA
n
i +

n−1∑
i=1

s̄iI
n
i =

n−1∑
i=1

Kn−iA
n
i =

n−1∑
i=1

KiA
n
n−i

Note that In
n ∈ V and

In
n+

n−1∑
i=1

ȳiA
n
i +

n−1∑
i=1

s̄iI
n
i = In

n +
n−1∑
i=1

KiA
n
n−i = An

n

Hence, by using a subset of the vectors in V excluding An
n we have been able to

generate An
n which is also in V . Hence the vectors in V are not linearly independent.

Case 3 : n > m. By Lemma 12 we know that,

n−1∑
i=1

yiA
n
i +

n−1∑
i=1

siI
n
i

=
n−m−1∑

i=1

αiA
n
i +

n−1∑
i=n−m

[αi + (αn − yn)Kn−i]A
n
i
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We have assumed αn > 0, 0 < yn < αn and sn = αn − yn > 0. Since yn > 0,

An
n ∈ V . Since sn > 0, In

n ∈ V . Now note that if Kn−i > 0 then αi+(αn−yn)Kn−i > 0.

This is because (αn − yn) > 0 and αi ≥ 0. By Lemma 14 we can find ȳ ∈ {0, R+}n−1

and the vector of slack variables s̄ ∈ {0, R+}n−1 such that for i ∈ {1, ..., n− 1} ȳi > 0

implies yi > 0 and s̄i > 0 implies si > 0. Furthermore,

n−1∑
i=1

ȳiA
n
i +

n−1∑
i=1

s̄iI
n
i =

n−1∑
i=n−m

Kn−iA
n
i =

m∑
i=1

KiA
n
n−i

Note that In
n ∈ V and

In
n+

n−1∑
i=1

ȳiA
n
i +

n−1∑
i=1

s̄iI
n
i = In

n +
m∑

i=1

KiA
n
n−i = An

n

Hence, by using a subset of the vectors in V excluding An
n we have been able to

generate An
n which is also in V . Hence the vectors in V are not linearly independent.

4.4.2 The Decomposition Principle

Lemma 16 We are given K ∈ {0, 1}m, α ∈ {0, R+}n and y ∈ Γ(K, α). For i ∈

{1, ...., k}, we are given αi ∈ {0, R+}n such that
∑k

i=1 αi = α then we can find

yi ∈ Γ(K, αi) such that
∑k

i=1 yi = y and
∑k

i=1 si = s where s is the vector of slack

variables corresponding to y and si is the vector of slack variables corresponding to

yi.

Proof. The proof is by induction.

Base Case: n = 1. We are given y1 + s1 = α1. If α1 = 0 then y1 = 0 and

s1 = 0. Furthermore for all i ∈ {1, ...., k} αi = 0 since
∑k

i=1 αi = α = 0 and
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αi ∈ {0, R+}n. For all i ∈ {1, ...., k} we let yi
1 = 0 and si

1 = 0. Note that yi
1+

si
1 = αi

1 and
∑k

i=1 yi
1 = y1 and

∑k
i=1 si

1 = s1. If α1 > 0 then we let yi
1 = αi

1y1/α1

and si
1 = αi

1s1/α1. Note that yi
1 + si

1 = αi
1y1/α1 + αi

1s1/α1 = αi
1(y1 + s1)/α1 = αi

1.

Furthermore,
∑k

i=1 yi
1 =

∑k
i=1 αi

1y1/α1 = (y1/α1)
∑k

i=1 αi
1 = (y1/α1)α1 = y1 and∑k

i=1 si
1 =

∑k
i=1 αi

1s1/α1 = (s1/α1)
∑k

i=1 αi
1 = (s1/α1)α1 = s1.

Inductive Hypothesis: We are given K ∈ {0, 1}m, α ∈ {0, R+}n−1 and y ∈

Γ(K,α). For i ∈ {1, ...., k}, we are given αi ∈ {0, R+}n−1 such that
∑k

i=1 αi = α

then we can find yi ∈ Γ(K, αi) such that
∑k

i=1 yi = y and
∑k

i=1 si = s where s is

the vector of slack variables corresponding to y and si is the vector of slack variables

corresponding to yi.

We are given K ∈ {0, 1}m, α ∈ {0, R+}n and y ∈ Γ(K, α). Let s be the vector

of slack variables corresponding to y. We will assume that αn > 0. If αn = 0 then

yn = 0 and sn = 0 and the result follows trivially from the induction hypothesis.

There are two cases to consider.

Case 1 : 2 ≤ n ≤ m. Since y ∈ Γ(K, α), by Lemma 12,

n−1∑
i=1

yiA
n−1
i +

n−1∑
i=1

siI
n−1
i =

n−1∑
i=1

[αi + (αn − yn)Kn−i]A
n−1
i

We let yj
n = αj

nyn/αn and sj
n = αj

nsn/αn (Note that
∑k

j=1 yj
n =

∑k
j=1 αj

nyn/αn =

(yn/αn)
∑k

j=1 αj
n = (yn/αn)αn = yn and

∑k
j=1 sj

n =
∑k

j=1 αj
nsn/αn = (sn/αn)

∑k
j=1 αj

n =

(sn/αn)αn = sn). Next note that for i ∈ {1, ..., n − 1}
∑k

j=1 αj
i + (αj

n − yj
n)Kn−i =∑k

j=1 αj
i + Kn−i

∑k
j=1 αj

n − Kn−i

∑k
j=1 yj

n = αi + (αn − yn)Kn−i. By the inductive

hypothesis we can find ȳ1, ..., ȳn−1and s̄1, ..., s̄n−1 such that for i ∈ {1, ..., n − 1}∑k
j=1 yj

i = yi and
∑k

j=1 sj
i = si and,
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n−1∑
i=1

yj
i A

n−1
i +

n−1∑
i=1

sj
iI

n−1
i =

n−1∑
i=1

[αj
i + (αj

n − yj
n)Kn−i]A

n−1
i

n−1∑
i=1

yj
i A

n
i +

n−1∑
i=1

sj
iI

n
i =

n−1∑
i=1

[αj
i + (αj

n − yj
n)Kn−i]A

n
i

=
n−1∑
i=1

αj
iA

n
i +

n−1∑
i=1

[(αj
n − yj

n)Ki]A
n
n−i

=
n−1∑
i=1

αj
iA

n
i + (αj

n − yj
n)(An

n − In
n )

Hence,

n∑
i=1

yj
i A

n
i +

n∑
i=1

sj
iI

n
i

=
n−1∑
i=1

αj
iA

n
i + (αj

n − yj
n)(An

n − In
n ) + yj

nA
n
n + sj

nI
n
n

=
n−1∑
i=1

αj
iA

n
i + sj

n(An
n − In

n ) + yj
nA

n
n + sj

nI
n
n

=
n−1∑
i=1

αj
iA

n
i + sj

nA
n
n + yj

nA
n
n

=
n−1∑
i=1

αj
iA

n
i + αj

nA
n
n =

n∑
i=1

αj
iA

n
i

Case 2 : n > m. Since y ∈ Γ(K, α), by Lemma 12,

n−1∑
i=1

yiA
n−1
i +

n−1∑
i=1

siI
n−1
i

=
n−m−1∑

i=1

αiA
n−1
i +

n−1∑
i=n−m

[αi + (αn − yn)Kn−i]A
n−1
i

We let yj
n = αj

nyn/αn and sj
n = αj

nsn/αn (Note that
∑k

j=1 yj
n =

∑k
j=1 αj

nyn/αn =

(yn/αn)
∑k

j=1 αj
n = (yn/αn)αn = yn and

∑k
j=1 sj

n =
∑k

j=1 αj
nsn/αn = (sn/αn)

∑k
j=1 αj

n =

(sn/αn)αn = sn). Next note that for i ∈ {1, ..., n−m− 1}
∑k

j=1 αj
i = αi. And for i ∈

{n−m, ..., n}
∑k

j=1[α
j
i +(αj

n−yj
n)Kn−i] =

∑k
j=1 αj

i +Kn−i

∑k
j=1 αj

n−Kn−i

∑k
j=1 yj

n =∑k
j=1 αj

i +(
∑k

j=1 αj
n−

∑k
j=1 yj

n)Kn−i = αi +(αn−yn)Kn−i. By the inductive hypoth-

esis we can find ȳ1, ..., ȳn−1and s̄1, ..., s̄n−1 such that for i ∈ {1, ..., n−1}
∑k

j=1 yj
i = yi

and
∑k

j=1 sj
i = si and,
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n−1∑
i=1

yj
i A

n−1
i +

n−1∑
i=1

sj
iI

n−1
i

=
n−m−1∑

i=1

αj
iA

n−1
i +

n−1∑
i=n−m

[αj
i + (αj

n − yj
n)Kn−i]A

n−1
i

n−1∑
i=1

yj
i A

n
i +

n−1∑
i=1

sj
iI

n
i

=
n−m−1∑

i=1

αj
iA

n
i +

n−1∑
i=n−m

[αj
i + (αj

n − yj
n)Kn−i]A

n
i

=
n−1∑
i=1

αj
iA

n
i +

n−1∑
i=n−m

(αj
n − yj

n)Kn−iA
n
i

=
n−1∑
i=1

αj
iA

n
i +

m∑
i=1

[(αj
n − yj

n)Ki]A
n
n−i

Hence,

n∑
i=1

yj
i A

n
i +

n∑
i=1

sj
iI

n
i

=
n−1∑
i=1

αj
iA

n
i +

m∑
i=1

[(αj
n − yj

n)Ki]A
n
n−i + yj

nA
n
n + sj

nI
n
n

=
n−1∑
i=1

αj
iA

n
i + (αj

n − yj
n)

m∑
i=1

KiA
n
n−i + yj

nA
n
n + sj

nI
n
n

=
n−1∑
i=1

αj
iA

n
i + sj

n(An
n − In

n ) + yj
nA

n
n + sj

nI
n
n

=
n−1∑
i=1

αj
iA

n
i + sj

nA
n
n + yj

nA
n
n

=
n−1∑
i=1

αj
iA

n
i + αj

nA
n
n =

n∑
i=1

αj
iA

n
i

Theorem 17 We are given K ∈ {0, 1}m, α ∈ {0, R+}n and c ∈ Rn. Let yopt maxi-

mize cy subject to y ∈ Γ(K, α) and let C be the maximum of cy subject to y ∈ Γ(K, α).

Let yi
opt maximize cy subject to y ∈ Γ(K, In

i ) and let Ci be the maximum of cy sub-

ject to y ∈ Γ(K, In
i ). Equivalently, let Ci be the maximum of [c1, ..., ci]y subject to

y ∈ Γ(K, I i
i ). We claim that C =

∑n
i=1 αiC

i.

Proof. Let yopt maximize cy subject to y ∈ Γ(K, α) and let sopt be the slack

variables corresponding to yopt. For all i ∈ {1, ..., n} let xi
opt maximize cx subject to

x ∈ Γ(K,αiI
n
i ) and let ri

opt be the slack variables corresponding to xi
opt. We know



42

that α =
∑n

i=1 αiI
n
i . Hence, by Lemma 16 we can find xi ∈ Γ(K, αiI

n
i ) such that∑n

i=1 xi = yopt and
∑n

i=1 ri = sopt. We will next show that cxi = cxi
opt. Let C = cyopt.

Since
∑n

i=1 xi = y, C = c
∑n

i=1 xi =
∑n

i=1 cxi. Assume that there exists an i such

that cxi
opt > cxi. Let ȳ = (xi

opt−xi)+
∑n

j=1 xj and let s̄ = (ri
opt− ri)+

∑n
j=1 rj. Next

we show that ȳ ∈ Γ(K,α). First note that both ȳ, s̄ ∈ {0, R+}n. Also,

Anȳ + Ins̄ = An[(xi
opt − xi) +

n∑
j=1

xj] + In[(ri
opt − ri) +

n∑
j=1

rj]

= (Anxi
opt + Inri

opt)− (Anxi + Inri) + (Anyopt + Insopt)

Since xi
opt ∈ Γ(K, αiI

n
i ), Anxi

opt+Inri
opt = AnαiI

n
i . Similarly, Anxi+Inri = AnαiI

n
i

and Anyopt + Insopt = Anα. Hence,

Anȳ + Ins̄ = AnαiI
n
i − AnαiI

n
i + Anα = Anα

Thus ȳ ∈ Γ(K, α). Now note that cȳ = (cxi
opt−cxi)+

∑n
j=1 cxj = (cxi

opt−cxi)+C >

C. Hence, yopt does not maximize cy subject to y ∈ Γ(K, α). This is a contradiction.

Hence, for all i ∈ {1, ..., n} cxi = cxi
opt. Thus, C = cyopt =

∑n
i=1 cxi =

∑n
i=1 cxi

opt. It

is easy to show that cxi
opt = αicy

i
opt where yi

opt maximizes cy subject to y ∈ Γ(K, In
i ).

Hence, C =
∑n

i=1 cxi
opt =

∑n
i=1 αicy

i
opt =

∑n
i=1 αiC

i, where Ci = cyi
opt.

4.5 Algorithm for Maximizing Linear Functions Over

a Generalized Fibonacci Polyhedra

In this subsection we will state an algorithm for maximizing an arbitrary linear func-

tion over a Generalized Fibonacci Polyhedra. The algorithm we present is linear in

the dimension of the polyhedra and is a consequence of the 0-1 Principle and the

Decomposition Principle. Before we state the algorithm we will state the problem

formally.
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Problem 18 We are given K ∈ {0, 1}m, α ∈ {0, R+}n and c ∈ Rn. Find C = max

cy subject to y ∈ Γ(K, α).

Algorithm 19 For i ∈ {1, ...., n} we compute Ci using the following recurrence,

Ci =


max(

m∑
j=1

KjC
i−j, ci) m < i ≤ n

max(
i−1∑
j=1

KjC
i−j, ci) 2 ≤ i ≤ m

max(0, c1) i = 1

Note that this can be accomplished in O(nm) operations by first computing C1,

followed by C2, followed by C3, and so on and so forth. Now we let C =
∑n

i=1 αiC
i.

This computation requires only O(n) operations.

Proof. If we can show that for i ∈ {1, ...., n} Ci is the maximum of cy subject to

y ∈ Γ(K, I i
i ) then from the Decomposition Principle it will follow that C =

∑n
i=1 αiC

i.

To complete the proof it would suffice to establish that this is the case. Let yi

maximize cy subject to y ∈ Γ(K, I i
i ) and let si be the corresponding vector of slack

variables. Since yi maximizes cy subject to y ∈ Γ(K, I i
i ), yi must be an extreme point

of Γ(K, I i
i ). There are three cases to consider.

Case 1 : i = 1. From the 0-1 Principle we know that (y1
1, s

1
1) = (1, 0) or (y1

1, s
1
1) =

(0, 1). If (y1
1, s

1
1) = (1, 0) then cy1 is c1. If (y1

1, s
1
1) = (0, 1) then cy1 is 0. Hence

C1 = max(0, c1).

Case 2 : 2 ≤ i ≤ m. From the 0-1 Principle, it follows that (yi
i, s

i
i) = (0, 1) or

(yi
i, s

i
i) = (1, 0). If (yi

i, s
i
i) = (1, 0), it is easy to show that for j ∈ {1, ...., i− 1}, yi

j = 0

and si
j = 0. Hence, cyi = ci. Now consider the case when (yi

i, s
i
i) = (0, 1). We know

that,

i∑
j=1

yi
jA

i
j +

i∑
j=1

si
jI

i
j = I i

i +
i−1∑
j=1

yi
jA

i
j +

i−1∑
j=1

si
jI

i
j = Ai

i
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Hence,

i−1∑
j=1

yi
jA

i
j +

i−1∑
j=1

si
jI

i
j = Ai

i − I i
i = I i

i +
i−1∑
j=1

KjA
i
i−j − I i

i

Hence,

i−1∑
j=1

yi
jA

i
j +

i−1∑
j=1

si
jI

i
j =

i−1∑
j=1

KjA
i
i−j

We let c̄ = (c1, ...., ci−1) and ȳ = (yi
1, ...., y

i
i−1). Also we define ᾱ = (Ki−1, ...., K1)

and C̄ to be the maximum of c̄ȳ subject to ȳ ∈ Γ(K, ᾱ). It is easy to show that the

maximum of cy subject to y ∈ Γ(K, I i
i ) and (yi, si) = (0, 1) is just C̄. From the De-

composition Principle we know that C̄ =
∑i−1

j=1 ᾱjC
j =

∑i−1
j=1 Ki−jC

j =
∑i−1

j=1 KjC
i−j.

We have shown that the maximum of cy subject to y ∈ Γ(K, I i
i ) and (yi, si) = (1, 0) is

ci and the maximum of cy subject to y ∈ Γ(K, I i
i ) and (yi, si) = (0, 1) is

∑i−1
j=1 KjC

i−j.

Hence Ci = max(
∑i−1

j=1 KjC
i−j, ci).

Case 3 : i > m. This case is similar to Case 2. We will simply state that in this

case Ci = max(
∑m

j=1 KjC
i−j, ci) and will leave the proof as an exercise for the reader.

4.6 Algorithm for Maximizing a Linear Function

Over the Intersection of a Generalized Fibonacci

Polyhedra and a Hyperplane

In this subsection we will state an algorithm for minimizing an arbitrary linear func-

tion over the intersection of a Generalized Fibonacci Polyhedra and a hyperplane.

The algorithm we present is polynomial in the dimension of the polyhedra and is a
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consequence of the 0-1 Principle and the Decomposition Principle. Before we state

the algorithm we will state the problem formally.

Problem 20 We are given K ∈ {0, 1}m, α ∈ {0, R+}n, c ∈ Rn and p ∈ Rn and

k ∈ R. Find C = min cy subject to py = k and y ∈ Γ(K, α). Equivalently, find

C = min cy subject to py = k, Any ≤ Anα and y ∈ {0, R+}n where An is an n × n

matrix such that y ∈ Γ(K, α) iff Any ≤ Anα and y ∈ {0, R+}n.

Let π be the dual variable associated with the constraint py = k and let µ be the

vector of dual variables associated with the constraints Any ≤ Anα. The dual of the

linear program above is

max πk + µAnα

subject to

πp + µAn ≤ c

π unrestricted,

µ ∈ {0, R−}n

We next decompose the above problem as follows

max

π unrestricted

πk +

max µAnα

subject to
µAn ≤ c− πp

µ ∈ {0, R−}n


Let ȳ be the set of dual variables associated with the constraint µAn ≤ c − πp.

We replace the inner linear program by its dual (instead of minimizing, we maximize

the negative of the cost function)

max

π unrestricted

πk −
max (πp− c)ȳ

subject to
Anȳ ≤ Anα

ȳ ∈ {0, R+}n


Next we define f(π) = πk, g(π) = max (πp − c)ȳ subject to Anȳ ≤ Anα, ȳ ∈

{0, R+}n and L(π) = f(π)− g(π).Using the results in the previous section, we know

that for any given value of π, g(π) =
∑n

i=1 αigi(π) where
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gi(π) =


max(

m∑
j=1

Kjgi−j(π), πpi − ci) m < i ≤ n

max(
i−1∑
j=1

Kjgi−j(π), πpi − ci) 2 ≤ i ≤ m

max(0, πp1 − c1) i = 1

We know that g(π) = L(π)−f(π) where f(π) = πk. f is thus linear and continuous

and L is the Lagrangian Dual of the linear program and is thus piecewise linear,

concave and continuous. Therefore, g must be piecewise linear and convex. Using

a similar argument it is possible to show that gi will be piecewise linear, convex

and continuous. Piecewise linear and continuous functions can be represented by a

sequence of breakpoints (stored in sorted order) which partition the real axis into

nonoverlapping intervals. Within each interval the piecewise linear function is linear

and this line can be represented using two parameters describing the slope and the

intercept. Addition of two piecewise linear functions results in a piecewise linear

function whose parametric representation can be computed in linear time (linear in

number of breakpoints). Similarly the maximum of a linear function and a piecewise

linear function is a piecewise linear function whose parametric representation can

be computed in linear time (linear in the number of breakpoints). Our proposal is

to compute the parametric representation of g1, g2, .... , gn and then compute the

parametric representation of g and finally L. Given the parametric representation of

L, it is easy to determine the value of π that maximizes L and thus the maximum

value of L. For this process to be efficient we need to bound the number of breakpoints

of g1, g2, .... , gn and g and L. We do this next.

Let bi = {π|π is a breakpoint in gi} and let Bi = {π|π is a breakpoint in g1 or g2

or .... or gi}. Note that bi ⊆ Bi and hence |bi| ≤ |Bi|. We claim that |Bi| ≤ 2i − 1.

The proof is by induction. |B1| can be at most one since g1 can have at most one

breakpoint. Next we assume that |Bi−1| can be at most 2(i− 1)− 1 = 2i− 3. First

consider the case when 2 ≤ i ≤ m.
∑i−1

j=1 Kjgi−j will be a piecewise linear and convex.

Furthermore, if π is a breakpoint of
∑i−1

j=1 Kjgi−j then π is a breakpoint of g1 or π is

a breakpoint of g2 or π is a breakpoint of g3 or .... or π is a breakpoint of gi−1. Hence

the number of breakpoints of
∑i−1

j=1 Kjgi−j is less than or equal to |Bi−1|. Note that
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j=1 Kjgi−j is a piecewise linear, convex and continuous function and πpi − ci is a

straight line. A straight line can “intersect” a piecewise linear, convex and continuous

function at at most two points (if the line overlaps a line segment, then the number

of breakpoints is unaltered). Thus, |Bi| ≤ |Bi−1|+ 2 = 2i− 3 + 2 = 2i− 1. The proof

for the case when i > m is similar to the previous case and left as an exercise for the

reader. Now note that g(π) =
∑n

i=1 αigi(π). π is a breakpoint of g implies π is a

breakpoint of g1 or π is a breakpoint of g2 or π is a breakpoint of g3 or ... or π is a

breakpoint of gn. Hence, the number of breakpoints of g is less than or equal to |Bn|

which is equal to 2n − 1. Since g has at most 2n − 1 breakpoints and f is linear, L

has at most 2n− 1 breakpoints.

4.7 Applications and Examples

We will illustrate how the techniques developed in the previous section can be used to

determine if the linear programming relaxation of the integer program has a solution,

and find the optimal solution if one exists.

Example 21 We are given S = {1, 2, 3}, TE = 7, TD = 8 and R = 6/7 = .857. We

would like to determine if the linear programming relaxation of the integer program

has a solution, and find an optimal solution if one exists. The linear programming

relaxation of the integer program is given below.

min
TD∑
i=1

TE∑
j=1

xi
j , subject to

TE∑
i=1

2(TE−i)xi = 2TE

1 ≤ L ≤ TD, xL +
L−1∑
l=1

NK(L− l)xl ≤ NK(L)

j/i < R =⇒ xi
j = 0, xi

j ≥ 0
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Notice that without loss of generality we can assume that the only non zero vari-

ables are x1
1, x2

2, x3
3, x4

4, x5
5, x6

6, x7
6 and x8

7. Consider an example – we claim that we

can assume x2
3 = 0. Assume x2

3 > 0. We increase x2
2 by x2

3/2 and set x2
3 = 0. Notice

that x2 decreased and thus the decoder inequalities will still be satisfied. However, x3

decreased by x2
3 and x2 increased by x2

3/2. Since the coefficient associated with x3 is

16 and the coefficient associated with x2 is 32 the encoder equality will still be satis-

fied. Also the value of the cost function has decreased. Thus, in an optimal solution

x2
3 = 0. The linear program above can be reduced to the linear program below.

min cx

subject to px = k, Anx ≤ Anα, x ∈ {0, R+}n

where c = [1, 1, 1, 1, 1, 1, 1, 1], x = [x8
7, x

7
6, x

6
6, x

5
5, x

4
4, x

3
3, x

2
2, x

1
1]

T , p = [1, 2, 2, 4, 8, 16, 32, 64],

k = 128, α = [0, 0, 0, 0, 0, 1, 1, 1] and

An =



1 1 2 4 7 13 24 44

0 1 1 2 4 7 13 24

0 0 1 1 2 4 7 13

0 0 0 1 1 2 4 7

0 0 0 0 1 1 2 4

0 0 0 0 0 1 1 2

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1


A sufficient and necessary condition for the linear programming relaxation of the

integer program to have a solution is that the maximum attained by the linear program

below be greater than or equal to k.

max px

subject to Anx ≤ Anα, x ∈ {0, R+}n
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This is a linear programming problem over a Generalized Fibonacci Polyhedra and

can be solved efficiently using the algorithm developed in this chapter. We solve the

problem below.

C1 = max(0, c1) = max(0, 1) = 1

C2 = max(
∑1

j=1 KjC2−j, c2) = max(1, 2) = 2

C3 = max(
∑2

j=1 KjC3−j, c3) = max(1 + 2, 2) = 3

C4 = max(
∑3

j=1 KjC4−j, c4) = max(1 + 2 + 3, 4) = 6

C5 = max(
∑3

j=1 KjC5−j, c5) = max(2 + 3 + 6, 8) = 11

C6 = max(
∑3

j=1 KjC6−j, c6) = max(3 + 6 + 11, 16) = 20

C7 = max(
∑3

j=1 KjC7−j, c7) = max(6 + 11 + 20, 32) = 37

C8 = max(
∑3

j=1 KjC8−j, c8)

= max(11 + 20 + 37, 64) = 68

C = C6 + C7 + C8 = 20 + 37 + 68 = 125

Note that the maximum that is attained is just 125 which falls short of the desired

128. This means that the linear programming relaxation of the integer program does

not have a solution.

Example 22 We are given S = {1, 2, 3}, TE = 5, TD = 6 and R = 4/5 = 0.80. We

would like to determine if the linear programming relaxation of the integer program

has a solution, and find an optimal solution if one exists. The linear programming

relaxation of the integer program is given below.
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min
TD∑
i=1

TE∑
j=1

xi
j , subject to

TE∑
i=1

2(TE−i)xi = 2TE

1 ≤ L ≤ TD, xL +
L−1∑
l=1

NK(L− l)xl ≤ NK(L)

j/i < R =⇒ xi
j = 0, xi

j ≥ 0

Notice that without loss of generality we can assume that the only non zero vari-

ables are x1
1, x2

2, x3
3, x4

4, x5
4 and x6

5. Consider an example – we claim that we can

assume x2
3 = 0. Assume x2

3 > 0. We increase x2
2 by x2

3/2 and set x2
3 = 0. Notice

that x2 decreased and thus the decoder inequalities will still be satisfied. However, x3

decreased by x2
3 and x2 increased by x2

3/2. Since the coefficient associated with x3 is

4 and the coefficient associated with x2 is 8, the encoder equality will still be satisfied.

Also the value of the cost function has decreased. Thus, in an optimal solution x2
3 = 0.

The linear program above can be reduced to the linear program below.

min cx

subject to px = k, Anx ≤ Anα, x ∈ {0, R+}n

where c = [1, 1, 1, 1, 1, 1], x = [x6
5, x

5
4, x

4
4, x

3
3, x

2
2, x

1
1]

T , p = [1, 2, 2, 4, 8, 16], k = 32,

α = [0, 0, 0, 1, 1, 1] and

An =



1 1 2 4 7 13

0 1 1 2 4 7

0 0 1 1 2 4

0 0 0 1 1 2

0 0 0 0 1 1

0 0 0 0 0 1


A sufficient and necessary condition for the linear programming relaxation of the
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integer program to have a solution is that the maximum attained by the linear program

below be greater than or equal to k.

max px

subject to Anx ≤ Anα, x ∈ {0, R+}n

This is a linear programming problem over a Generalized Fibonacci Polyhedra and

can be solved efficiently using the algorithm developed in this chapter. We solve the

problem below.

C1 = max(0, p1) = max(0, 1) = 1

C2 = max(
∑1

j=1 KjC2−j, p2) = max(1, 2) = 2

C3 = max(
∑2

j=1 KjC3−j, p3) = max(1 + 2, 2) = 3

C4 = max(
∑3

j=1 KjC4−j, p4) = max(1 + 2 + 3, 4) = 6

C5 = max(
∑3

j=1 KjC5−j, p5) = max(2 + 3 + 6, 8) = 11

C6 = max(
∑3

j=1 KjC6−j, p6) = max(3 + 6 + 11, 16) = 20

C = C4 + C5 + C6 = 6 + 11 + 20 = 37

Note that the maximum that is attained is 37 which exceeds the desired 32. This

means that the linear programming relaxation of the integer program has a solution.

We next illustrate how to compute the optimal solution to the linear programming

relaxation of the integer program. The linear programming relaxation of the integer

program is given below.

min cx

subject to px = k, Anx ≤ Anα, x ∈ {0, R+}n

This is equivalent to maximizing L(π) = f(π) − g(π) where π is unrestricted,



52

f(π) = πk and

g(π) =

 max (πp− c)x̄

subject to Anx̄ ≤ Anα, x̄ ∈ {0, R+}n


Next, we compute g1, g2, ...., g5, g6.

g1(π) = max


0

p1π − c1

=


0 π ≤ 1

π − 1 π > 1

g2(π) = max


1∑

j=1

Kjg2−j(π)

p2π − c2

=


0 π ≤ 1

2

2π − 1 π >
1

2

g3(π) = max


2∑

j=1

Kjg3−j(π)

p3π − c3

=



0 π ≤ 1

2

2π − 1
1

2
< π ≤ 1

3π − 2 1 < π

g4(π) = max


3∑

j=1

Kjg4−j(π)

p4π − c4

=



0 π ≤ 1

4

4π − 1
1

4
< π ≤ 3

2

6π − 4
3

2
< π

g5(π) = max


3∑

j=1

Kjg5−j(π)

p5π − c5

=



0 π ≤ 1

8

8π − 1
1

8
< π ≤ 2

11π − 7 2 < π

g6(π) = max


3∑

j=1

Kjg6−j(π)

p6π − c6

=



0 π ≤ 1

16

16π − 1
1

16
< π ≤ 3

20π − 13 3 < π

Hence,
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g(π) = g4(π) + g5(π) + g6(π) =



0 π ≤ 1

16

16π − 1
1

16
< π ≤ 1

8

24π − 2
1

8
< π ≤ 1

4

28π − 3
1

4
< π ≤ 3

2

30π − 6
3

2
< π ≤ 2

33π − 12 2 < π ≤ 3

37π − 24 π > 3

Hence,

L(π) = f(π)− g(π) =



32π π ≤ 1

16

16π + 1
1

16
< π ≤ 1

8

8π + 2
1

8
< π ≤ 1

4

4π + 3
1

4
< π ≤ 3

2

2π + 6
3

2
< π ≤ 2

−π + 12 2 < π ≤ 3

−5π + 24 π > 3

The maximum value taken on by L(π) is 10 and occurs at π = 2. L(π) is plotted

in the figure above. We next turn our attention to the integer program associated with

this code construction problem. Using a standard ILP solver we find that the solution

to the integer linear program is x1
1 = 1, x5

4 = 6 and x6
5 = 4 (all other variables are

0). Hence the size of the code will be 11. Thus the solution to the linear program

provides a lower bound on the size of the code. Next we illustrate how to construct

the code itself. First we construct a prefix-free set using the source alphabet {0, 1}

such that the number of elements consisting of 1 bit is 1, the number of elements

consisting of 4 bits is 6 and the number of elements consisting of 5 bits is 4. A valid

set is {0, 1000, 1001, 1010, 1011, 1100, 1101, 11100, 11101, 11110, 11111}. We will call
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this set A. Next we construct a prefix-free set using the code alphabet {1, 2, 3} such

that the number of elements having a duration of 1 unit is 1, the number of elements

having a duration of 5 units is 6 and the number of elements having a duration of

6 units is 4. A valid set is {1, 2111, 212, 221, 23, 311, 32, 2112, 213, 312, 33}. We will

call this set B. Now we arbitrarily map 1 element consisting of 1 bit from set A to

1 element of duration 1 in set B. We arbitrarily map 6 elements consisting of 4 bits

in set A to 6 elements of duration 5 in set B in a one on one manner. Similarly, we

arbitrarily map 4 elements consisting of 5 bits in set A to 4 elements of duration 6

in set B in a one on one manner. A valid mapping (code) is shown in the table below.

0 ↔ 1 1001 ↔ 212 1011 ↔ 23 1101 ↔ 32 11101 ↔ 213 11111 ↔ 33

1000 ↔ 2111 1010 ↔ 221 1100 ↔ 311 11100 ↔ 2112 11110 ↔ 312

4.8 Open Problems and Future Work

The algorithm presented in this chapter exploits the structure of Generalized Fi-

bonacci Polyhedra represented by the set of inequalities in (4.6). However, equation

(4.5) is well structured as well, and so is the cost function (4.4). A possible ap-

proach to developing a more efficient algorithm would be to study the properties of

the polyhedra formed by the intersection of the Generalized Fibonacci Polyhedra,

equation (4.6) and the hyperplane (4.5) and develop an algorithm for optimizing an

arbitrary linear function over such a polyhedra. One could then extend this algorithm

to solve the linear programming relaxation by treating the set of equations in (4.7) as

a complicating constraint using Lagrangian Duality. Furthermore, although we have

presented an algorithm for solving the linear programming relaxation, we have not

derived bounds on the quality of the approximation obtained, for the case in which

the integer linear program is feasible as well. Other open problems include deriv-

ing sufficient and necessary conditions for determining the feasibility of the integer

linear program itself. As well as developing an efficient, polynomial time algorithm

for solving the integer linear program. One can also study more complex structures,
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like finite state machines for the purposes of developing more compact and realistic

coding schemes.
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Chapter 5

Generalized Fibonacci Numbers
and their Sums

Two series that arise in both the context of rate analysis and code construction are

the Generalized Fibonacci Numbers and their sums. Let m be a positive integer

greater than or equal to 2. We define Ki for i ∈ {1, 2, ....,m− 1, m} as follows

Ki =

 1 i ∈ S

0 i /∈ S

Next we define NK(T ) to be the number of sequences of length T whose elements

are in S.

NK (T ) =



m∑
i=1

KiNK(T − i) T > m

KT +
T−1∑
i=1

KiNK(T − i) 2 ≤ T ≤ m

K1 T = 1

If m = 2 and K1 = 1, K2 = 1 then

NK (T ) =


2∑

i=1

NK(T − i) T > 2

2 T = 2

1 T = 1

= Fib(T )

Thus NK(T ) is a generalization of the Fibonacci Numbers. Note that if for all

i ∈ {1, 2, ....,m − 1, m}, Ki = 1 then NK(T ) would reduce to the generalization
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studied by Capocelli and Cull [17].We next define N̄K(T ) as follows

N̄K(T ) =
T∑

t=1

NK(t)

In this chapter we will derive a closed form expression for the Generalized Fi-

bonacci Numbers represented by NK(T ). We will also derive recursive and closed

form expressions for the sum of the Generalized Fibonacci Numbers represented by

N̄K(T ). We will also show that if for all i ∈ {1, 2, ....,m− 1, m}, Ki = 1 then sum of

the Generalized Fibonacci Numbers are rounded powers much like the Generalization

of the Fibonacci Numbers studied by Capocelli and Cull [17]. It must be noted that

the recursive series studied by Spickerman [91] and Spickerman and Joyner [92] are

also special cases of this generalization.

Theorem 23 Let p(λ) = λm −
∑m

i=1 Kiλ
(m−i) and p′(λ) = mλm−1 −

∑m
i=1 Ki(m −

i)λ(m−i−1). For i ∈ {1, 2, ....,m− 1, m} φi be the roots of p(λ). If the root of p(λ) are

distinct then

NK(T ) =
m∑

i=1

αi [φi]
T =

m∑
i=1

|αi| |φi|
T cos(θi(T ))

where αi =
φm−1

i

p′(φi)
and θi(t) = arg(αi) + t arg(φi)

Proof. Let M be the companion matrix. It is easy to show that

M =



K1 K2 . Km−1 Km

1 0 . 0 0

. . . . .

0 0 . 0 0

0 0 . 1 0


For i ∈ {1, 2, ....,m− 1, m}, we define Ci and Ri as follows,

Ci =
[

φm−1
i φm−2

i . φ1
i 1

]T

and

Ri =

[
1 φ1

i −
1∑

j=1

Kj
φ1

i

φj
i

. . φm−1
i −

m−1∑
j=1

Kj
φm−1

i

φj
i

]T

Since p(φi) = 0, φm
i −

∑m−1
i=1 Kiφ

m−i
i = Km and φm

i =
∑m

i=1 Kiφ
m−i
i . Using these

two identities, it is easy to show that MCi = φiCi and MT Ri = φiRi. Thus Ci and
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Ri are the column and row eigenvectors of M . Next we will establish that if i 6= j,

then RT
i Cj = 0. (RT

i M)Cj = RT
i (MCj). But (RT

i M)Cj = φiR
T
i Cj and RT

i (MCj) =

φjR
T
i Cj. Hence, φiR

T
i Cj = φjR

T
i Cj. Hence, φi = φj. This is a contradiction,

since the roots of the characteristic polynomial are distinct. Since, the roots of the

characteristic polynomial are distinct and since RiCj = 0 if i 6= j, using an argument

similar to the one by Capocelli and Cull [17], it is possible to show that

NK(T ) =
m∑

i=1

αi [φi]
T where αi =

RT
i I

φiR
T
i Ci

and

I =
[

NK(m) NK(m− 1) . NK(2) NK(1)
]T

To complete the derivation, we need to establish the exact value of RT
i I and RT

i Ci.

First let us derive an expression for RT
i I.

RT
i I = NK(m) +

m−1∑
j=1

[φj
i −

j∑
l=1

Klφ
j−l
i ]NK(m− j)

= NK(m) +
m−1∑
j=1

φj
iNK(m− j)−

m−1∑
j=1

j∑
l=1

Klφ
j−l
i NK(m− j)

Collecting like powers of φi

= NK(m) +
m−1∑
p=1

φp
i NK(m− p)−

m−2∑
p=0

φp
i

m−p−1∑
j=1

KjNK(m− p− j)

= [NK(m)−
m−1∑
j=1

KjNK(m−j)]+[φm−1
i NK(1)]+

m−2∑
p=1

φp
i [NK(m−p)−

m−p−1∑
j=1

KjNK(m−

p− j)]

Now note that, NK(m) = Km +
m−1∑
j=1

KjNK(m− j)

Hence, NK(m)−
m−1∑
j=1

KjNK(m− j) = Km

Similarly, NK(m− p)−
m−p−1∑

j=1

KjNK(m− p− j) = Km−p

Also NK(1) = K1. Substituting these values into the formula for RT
i I, we get

RT
i I = Km + φm−1

i K1 +
m−2∑
p=1

φp
i Km−p =

m∑
j=1

Kjφ
m−j
i

But since p(φi) = 0, φm
i =

∑m
j=1 Kjφ

m−j
i . Hence, RT

i I = φm
i

Now we will derive an expression for RT
i Ci.

RT
i Ci = φm−1

i +
m−1∑
n=1

[φn
i −

n∑
j=1

Kjφ
n−j
i ]φm−1−n

i
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= φm−1
i +

m−1∑
n=1

φm−1
i −

m−1∑
n=1

n∑
j=1

Kjφ
m−1−j
i

= mφm−1
i −

m−1∑
j=1

Kj(m− j)φm−j−1
i

= mφm−1
i −

m∑
j=1

Kj(m− j)φm−j−1
i = p′(φi)

Now we are ready to derive the value of the multiplicative constant. It follows by

substituting the value of RT
i I and RT

i Ci in the formula for αi.

αi =
RT

i I

φiR
T
i Ci

=
φm−1

i

p′(φi)

The characteristic polynomial can have complex roots. Thus we will derive the

expression for NK(T ) in polar form. First let us define

θi(t) = arg(αi) + t arg(φi)

NK(T ) =
m∑

i=1

|αi| |φi|
T [cos(θi(T )) +

√
−1 sin(θi(T ))]

Note that the complex roots occur in conjugate pairs. It is easy to show that if φi

and φj are conjugates, so are αi and αj. Hence, θi(T ) = −θj(T ). Thus the complex

sinusoid components of the i and j term in the summation will cancel. Thus,

NK(T ) =
m∑

i=1

|αi| |φi|
T cos(θi(T ))

Next we will derive a recursive expression for the sum of the Generalized Fibonacci

Numbers.

Before we derive a closed form expression for the sum of the Generalized Fibonacci

Numbers, we will prove a lemma.

Lemma 24
m∑

i=1

αiφi

φi − 1
=

m∑
i=1

Ki

[
m∑

i=1

Ki]− 1

Proof. First let us define a new function G as follows

GK (n) =



m∑
i=1

KiGK (n− i) n > m

m∑
i=n

Ki +
n−1∑
i=1

KiGK (n− i) 2 ≤ n ≤ m

m∑
i=1

Ki n = 1
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Next we will prove GK(n) =
m∑

i=1

γiφ
n
i where γi = ([

m∑
j=1

Kj]− 1)αi (φi − 1)−1

Since, G is a generalized Fibonacci type recurrence having the same characteristic

polynomial, it can be written as,

GK(n) =
m∑

i=1

γiφ
n
i .

The only issue that needs to be addressed is the exact value of γi. Using an

argument similar to that in Capocelli and Cull [17], it is easy to show that,

γi =
RT

i I

φiR
T
i Ci

=
RT

i I

φip
′(φi)

where I =
[

GK(m) GK(m− 1) . GK(2) GK(1)
]T

(φi − 1) RT
i I = (φi − 1)

[
GK(m) +

m−1∑
n=1

(φn
i −

n∑
j=1

Kjφ
n−j
i )GK(m− n)

]
By collecting like powers of φi we get,

= (φi − 1)
m−1∑
p=0

φp
i

[
GK(m− p)−

m−p−1∑
j=1

KjGK(m− p− j)

]

But we know that, GK(m− p)−
m−p−1∑

j=1

KjGK(m− p− j) =
m∑

j=m−p

Kj

Substituting,

= (φi − 1)
m−1∑
p=0

(φp
i

m∑
j=m−p

Kj) =
m−1∑
p=0

(φp+1
i

m∑
j=m−p

Kj)−
m−1∑
p=0

(φp
i

m∑
j=m−p

Kj)

=
m∑

p=1

(φp
i

m∑
j=m−p+1

Kj)−
m−1∑
p=0

(φp
i

m∑
j=m−p

Kj)

= φm
i

m∑
j=1

Kj +
m−1∑
p=1

φp
i (

m∑
j=m−p+1

Kj −
m∑

j=m−p

Kj)−Km

= φm
i

m∑
j=1

Kj −
m−1∑
p=1

φp
i Km−p −Km = φm

i

m∑
j=1

Kj −
m∑

j=1

Kjφ
m−j
i =φm

i ([
m∑

j=1

Kj]− 1)

We have shown that, (φi − 1) RT
i I = φm

i ([
m∑

j=1

Kj]− 1)

Hence, RT
i I =

1

(φi − 1)
φm

i ([
m∑

j=1

Kj]− 1)

Substituting we get, γi =
RT

i I

φip
′(φi)

= ([
m∑

j=1

Kj]− 1)
φm−1

i

(φi − 1) p′(φi)

Thus we have shown, GK(n) =
m∑

i=1

γiφ
n
i where γi = ([

m∑
j=1

Kj]− 1)αi (φi − 1)−1

Now note that, GK(1) =
m∑

i=1

Ki



62

Also, GK(1) =
m∑

i=1

γiφi = ([
m∑

i=1

Ki]− 1)(
m∑

i=1

αiφi

φi − 1
)

Hence,
m∑

i=1

αiφi

φi − 1
=

m∑
i=1

Ki

[
m∑

i=1

Ki]− 1

Next we will derive a closed form expression for the sum of the Generalized Fi-

bonacci Numbers.

Theorem 25 Let p(λ) = λm −
∑m

i=1 Kiλ
(m−i) and p′(λ) = mλm−1 −

∑m
i=1 Ki(m −

i)λ(m−i−1). For i ∈ {1, 2, ....,m− 1, m} let φi be the roots of p(λ). If the roots of p(λ)

are distinct then

N̄K(T ) = κ +
m∑

i=1

βi [φi]
T+1 = κ +

m∑
i=1

|βi| |φi|
T+1 cos(θi(T + 1))

where βi =
φm−1

i

(φi − 1)p′(φi)
, θi(t) = arg(βi) + t arg(φi) and κ = −

m∑
i=1

Ki

[
m∑

i=1

Ki]− 1

Proof. N̄K(T ) =
T∑

t=1

NK(T ) =
T∑

t=1

m∑
i=1

αi [φi]
t

=
m∑

i=1

αi

T∑
t=1

[φi]
t =

m∑
i=1

αi
φT+1

i − φi

φi − 1
= −

m∑
i=1

αi
φi

φi − 1
+

m∑
i=1

αi
φT+1

i

φi − 1

But note that by Lemma 24,

m∑
i=1

αi
φi

φi − 1
=

m∑
i=1

Ki

[
m∑

i=1

Ki]− 1
= −κ

Hence, N̄K(T ) = κ +
m∑

i=1

αi
φT+1

i

φi − 1
= κ +

m∑
i=1

βiφ
T+1
i

Now we convert this formula to polar form. First we define,

θi(t) = arg(βi) + t arg(φi)

N̄K(T ) = κ +
m∑

i=1

|βi| |φi|
T+1 [cos(θi(T + 1)) +

√
−1 sin(θi(T + 1))]

Again note that the complex roots occur in conjugate pairs. It is easy to show

that if φi and φj are conjugates, so are βi and βj. Hence, θi(T ) = −θj(T ). Thus
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the complex sinusoid components of the i and j term in the summation will cancel.

Thus,

N̄K(T ) = κ +
m∑

i=1

|βi| |φi|
T+1 cos(θi(T + 1))

Next we define the generalization studied by Capocelli and Cull [17].

Definition 26 We will formally define the mth order Fibonacci Numbers F and their

sum F̄ as

Fm(n) =



m∑
i=1

F (n− i) n ≥ m

2n−2 2 ≤ n ≤ m− 1

1 n = 1

0 n = 0

and F̄ (n) =
n∑

i=1

F (i)

We will leave as an exercise for the reader to verify that when S = {1, 2, ...,m −

1, m} or equivalently Ki = 1 for all i ∈ {1, 2, ...,m− 1, m} then Fm(T ) = NK(T − 1)

and F̄m(T ) = N̄K(T − 1) + 1. We let p(λ) = λm −
∑m

i=1 λ(m−i). Also let φi be the

roots of p(λ) = 0 (it is easy to verify that the roots are distinct) and let φ1 be the real

positive root (it is easy to verify that the real positive root is unique). From Theorem

23 it follows that

Fm(T ) =
m∑

i=1

αi [φi]
T−1 where αi =

φm−1
i

p′(φi)

Capocelli and Cull [17] further show that the mth order Fibonacci Numbers are

rounded powers and can be computed from only the real positive root using the

formula below.

Fm(T ) =
〈
α1φ

T−1
1

〉
Next we will prove that the sum of the mth order Fibonacci Numbers, like the

mth order Fibonacci Numbers are rounded powers.

Theorem 27 F̄m(T ) =

〈
− 1

m− 1
+ β1φ

T
1

〉
where βi =

φm−1
i

(φi − 1)p′(φi)
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Proof. From Theorem 25 it follows that F̄m(T ) = − 1

m− 1
+

m∑
i=1

βi [φi]
T where

βi =
φm−1

i

(φi − 1)p′(φi)
. We define dm(T ) =

m∑
i=2

βi [φi]
T . To complete the proof we need

to show that for all T > 0, |dm(T )| 6 1/2. If T > 2 and if for all i, 2 6 i 6 m,

|dm(T − i)| 6 1/2 then |dm(T )| < 1/2. The proof of this statement is analogous to

a proof presented by Capocelli and Cull [17] and thus omitted. Hence, it suffices to

establish that for all m, if 2−m 6 i 6 1, |dm(i)| 6 1/2.

Case 1: m = 2. We need to show that for i such that 0 6 i 6 1, |dm(i)| 6 1/2.

Direct computations show that d2(0) = −0.17 and d2(1) = 0.10.

Case 2: m > 3.We need to show that for i such that 2−m 6 i 6 1, |dm(i)| 6 1/2.

We will first prove that this is true for 2−m 6 i 6 0 and then show that it also holds

for i = 1.

(1) Consider that case when 2−m 6 i 6 0. We need to show that |dm(i)| 6 1/2.

Or equivalently, −1/2 6 dm(i) 6 1/2. We know that dm(i) = F̄m(i) + 1/(m − 1) −

β1 [φ1]
i. For i 6 0, F̄m(i) = 0. Thus, dm(i) = 1/(m − 1) − β1 [φ1]

i. Hence, we need

to prove, −1/2 6 1/(m − 1) − β1 [φ1]
i 6 1/2. Or equivalently, −1/2 − 1/(m − 1) 6

−β1 [φ1]
i 6 1/2 − 1/(m − 1). Now note that −β1 < −β1 [φ1]

1 < .... < −β1 [φ1]
2−m.

Hence, we need to show that −1/2 − 1/(m − 1) 6 −β1 and −β1 [φ1]
2−m 6 1/2 −

1/(m− 1).

(a) −1/2 − 1/(m − 1) 6 −β1 or β1 6 1/2 + 1/(m − 1). Or equivalently,

((m + 1)φ1 − 2m)−1 6 (m + 1)/(2(m − 1)). Capocelli and Cull [17] prove that

2 − 2/2m < φ1. Hence, ((m + 1)φ1 − 2m)−1 < ((m + 1)(2 − 2/2m) − 2m)−1. Hence

it would suffice to establish that ((m + 1)(2− 2/2m)− 2m)−1 6 (m + 1)/(2(m− 1)).

Simplifying the above inequality yields (m + 1)2 6 2m+1. This is true for m > 3.

(b) −β1 [φ1]
2−m 6 1/2− 1/(m− 1). Note that −β1 [φ1]

2−m < 0 and since m > 3,

1/2− 1/(m− 1) > 0.

(2) Consider the case when i = 1. We need to show that −1/2 6 dm(1) 6 1/2 or

−1/2 6 1− β1 [φ1] + 1/(m− 1) 6 1/2. Substituting the value of β1 and simplifying

reduces this inequality to, 2m(3m− 1)/(3m2 + 1) 6 φ1 6 2m(m + 1)/(3 + m2).
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(a) 2m(3m−1)/(3m2 +1) 6 φ1. Capocelli and Cull [17] show that 2−2/2m < φ1.

Hence, it would suffice to show that 2m(3m− 1)/(3m2 + 1) 6 2− 2/2m. Simplifying

this inequality yields, (3m2 + 1)/(m + 1) 6 2m. This inequality holds for m > 3.

(b) φ1 6 2m(m + 1)/(3 + m2). Note that φ1 < 2. But since m > 3, 2m(m +

1)/(3 + m2) > 2.
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Chapter 6

A 20Gbs Integrated Optical
Transceiver in IBM BiCMOS 7HP
Process Technology

In this chapter we will discuss our attempts to build a 20 Gbs Optical Transceiver

based on the ideas outlined in the previous chapters. The contribution is a fundamen-

tally new architecture for both the transmitter and receiver. Both these circuits are

fully asynchronous. The transmitter is based on a reconfigurable ring oscillator and

the receiver is based on picosecond time digitizers which directly measure the time

between consecutive voltage transitions, unlike conventional receivers which sample

the amplitude of the data signal. Thus there is no need for clock recovery. In the

next section we will review the architecture of the transmitter and receiver.

6.1 Transmitter and Receiver Architecture

The transmitter consists of a single inversion ring oscillator formed by four reconfig-

urable delay lines. This is illustrated in Figure 6.1. A reconfigurable delay line is a

tapped delay line connected to a multiplexer which allows selection of the appropriate

tap output thereby effectively altering the delay between the input and output of the

reconfigurable delay line. It must be noted that the outputs of the delay lines are

shifted versions of each other as illustrated in Figure 6.2. The final output can be

generated by simply computing the parity of the four outputs as illustrated. The
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Figure 6.1: System Level Architecture of Asynchronous Transmitter
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Figure 6.2: Transmitter Waveforms

width of the individual pulses can be adjusted by altering the delay of each reconfig-

urable delay line. In order to ensure proper functioning of the circuit it is important

to ensure that all the delay elements in the delay line have stabilized before the delay

line is reconfigured. Reconfiguring the delay line after its output has stabilized does

not guarantee this condition will be satisfied. Consider the delay line connecting the

nodes A and B. We will assume that each delay cell has a delay of 30ps. The time

required for a change in voltage at point A to propagate through is 6× 30ps = 180ps

(it is not necessary that the change propagate thru the last delay element as it does

not feed into the multiplexer). We assume the minimum delay between A and B is

100ps, the size of the smallest symbol. Thus the signal can propagate through to

node B before it has propagated through to the end of the delay line. However, the

minimum delay between node A and C is 200ps. Thus if a change in voltage at node

A has propagated through to node C, it must have also propagated through the entire

delay line in the reconfigurable delay connecting node A and node B. Thus the delay

line can be reconfigured once the change has propagated through to node C. The data

source is therefore triggered by A⊕ C. Using a similar argument, logical expressions

for triggering of data sources can be derived. It must be noted that all signals have a
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bit period greater than or equal to twice the size of the smallest symbol, even though

the difference between two adjacent symbols is smaller than the size of the smallest

symbol. Other noteworthy features of the architecture are that the only component

operating at full data rate is a single exclusive-or gate that is generating the final

output and that the architecture naturally lends itself to time division multiplexing.

The architecture of the receiver is complementary to that of the transmitter. The

input data signal drives a twisted ring counter which serves as a frequency divider.

The outputs of the twisted ring counter are shown in Figure 6.4. These outputs

are used as start and stop signals to control four independent time digitizers which

measure the time between the rising edges of the start and stop signals thereby

recovering the data. The architecture is illustrated in Figure 6.3. As in the transmitter

the period of all signals is greater than or equal to twice the size of the smallest symbol.

Furthermore, the only part of the circuit that operates at full data rate is the twisted

ring counter which can be implemented using double edge triggered flip flops which

themselves can be implemented using either latches or two-to-one multiplexers. These

circuits are no more complex than an exclusive-or gate. In the proposed architecture

there is no need for clock recovery as it functions by measuring the time between

adjacent edges. The architecture is fully asynchronous, all logic gates are triggered

by the data signal itself or signals derived from the data signal. Like the transmitter

the architecture lends itself to time division multiplexing.

In both the transmitter and receiver all low frequency circuits including delay lines

were implemented using differential CMOS circuits. The logic family used was Source

Coupled Logic. This choice was made to minimize area and power consumption.

A power supply of 1.8V was used. A logic level of 1.8V was used to represent a

logical 1 and 1.2V was used to represent a logical 0. High frequency circuits which

comprise the exclusive-or gates in the controller and the latches in the twisted ring

counter were implemented using differential Bipolar circuits. The logic family used

was Emitter Coupled Logic (ECL). A power supply of 3.6V was used. A logic level of

2.7V was used to represent a logical 1 and 2.1V was used to represent a logical 0. In

IBM BiCMOS 7HP process technology, the VBE of Bipolar transistors is 0.9V . The
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Figure 6.3: System Level Architecture of Asynchronous Receiver
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Figure 6.4: Receiver Waveforms

logic levels were chosen to simplify the design of circuits to interface SCL and ECL

gates on chip. The transceiver was designed so that the symbols would be 100ps,

115ps, 130ps, 145ps, 160ps, 175ps, 190ps, 205ps, 250ps. The delay of a single delay

element was 30ps whereas the intersymbol delay is 15ps. Interpolation circuits were

incorporated in both the transmitter and the receiver to achieve delays smaller than

the delay of a single delay element. In the next section we will discuss the design

of the delay element and phase interpolation circuits. It will also be shown that the

six to one multiplexer in the transmitter can also be used for phase interpolation.

Also test circuits and pseudo random data sources must be incorporated in both

the transmitter and receiver since a transceiver based on this architecture cannot be

tested using off-the-shelf Pseudo Random Bit Sequence (PRBS) Generators and Bit

Error Rate (BER) Testers. Design of pseudo random data sources and associated

test circuitry will be discussed in a separate section. Finally, we will conclude with

experimental results obtained from our first prototype.

6.2 Delay Elements and Phase Interpolation Cir-

cuits

Critical to a successful implementation of the architecture discussed in this thesis

is the design of delay lines which are used in both the transmitter as well as the
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Figure 6.5: Constant-K LC Ladder Structure with 4 Stages (Termination Resistors
are Not Shown)

receiver. Delay lines can be either active or passive. There are several passive LC

(inductor and capacitor) structures that can be used as delay lines. The best known

is the Bessel-Thomson filter that has maximally flat delay response [52], [60], [94] and

[97]. However, it is not suitable for integration since it results in delay values that

are small, and also its component values become unrealistic as filter order increases

[22], [33], [81] and [103]. Most suitable for our application is the Constant-K ladder

structure which consists of identical interconnected inductors and capacitors in ladder

form as shown in Figure 6.5. The Constant-K ladder is a lumped approximation of a

transmission line and hence can be used as a delay line [3] and [80]. It can be shown

that the delay of the structure TD and its characteristic impedance Z0 are given by

the equations below.

TD = n
√

LC and Z0 =
√

L
C

where n is the number of segments

The statistical properties of integrated passive delay lines were studied by Analui

and Hajimiri [3]. An oscillator with loop delay of 105.2ps was implemented in IBM

BiCMOS 7HP process technology. The area of the chip was 900um x 560um. The size

of the largest symbol and thus the total delay of the delay line should be 250ps. In

addition we need four delay lines in the transmitter and four delay lines in the receiver.

This makes the use of passive Constant-K Delay Lines unfeasible. In our application

active delay lines were used. Active delays are sensitive to process, temperature and

supply voltage variations. Thus the delay element must be tunable and tuned against

a known reference using a delay locked loop. The tunable element used in our design

is shown in Figure 6.6 and a simplified circuit model is shown in Figure 6.7. The delay
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Figure 6.6: Differential Tunable Delay

Figure 6.7: Simple Model of Tunable Delay

consists of a current starved differential inverter with a negative resistance placed in

parallel with the resistive loads. The cross-connected transistors forming the negative

resistance are modeled using a voltage controlled current source. The output current

as a function of control voltage is also plotted in Figure 6.7.

It is easy to show that when the switch is closed the steady state solution is reached

when ID = IS2. Thus Vo = Vdd−R(IS1 + IS2). When the switch is opened the steady

state solution is reached when ID = 0 and thus Vo = Vdd. This simple model can

also be used to explain how changing IS2 affects rise and fall time and thus alters the

delay. Let the initial values of the tail currents be IS1 and IS2. And the new values

be I ′S1 and I ′S2. Also IS1 + IS2 = I ′S1 + I ′S2. Without loss of generality we will assume

I ′S2 < IS2. We define ID(Vo) to correspond to the voltage current characteristic when



74

Figure 6.8: Effect of Changing Tail Currents on Tunable Delay

the tail currents are IS1 and IS2. And I ′D(Vo) to correspond to the voltage current

characteristic when the tail currents are I ′S1 and I ′S2.

First let us consider the case when the switch is opened. In this case no current

flows into the current source. By Kirchoff’s Current Law (KCL) it follows that

dVo

dt
=

1

C

[
Vdd − Vo

R
− ID(Vo)

]
Both ID(Vo) and I ′D(Vo) are plotted in the Figure 6.8 (a). Note that for all values

of ID(Vo) > I ′D(Vo). Thus, decreasing IS2 increases dVo/dt for all values of Vo which

decreases the rise time.

Next we consider the case when the switch is closed. In this case a current of IS

flows into the current source. Again by KCL it follows that

dVo

dt
= − 1

C

[
(ID(Vo) + IS1)−

Vdd − Vo

R

]
We have plotted ID(Vo) + IS1 and I ′D(Vo) + I ′S1 in Figure 6.8 (b). It is evident

that decreasing IS2 increases ID(Vo) + IS1 for all Vo. Thus the magnitude of dVo/dt

increases for all values of Vo. Thus the fall time will decrease as well. Given that

the effect of decreasing IS2 is a decrease in both rise and fall times, it follows that its

effect is to decrease the delay.

The delay of a single delay element is greater than the smallest required delay

value. In order to generate delays smaller than the delay of the delay element phase

interpolation was used [113]. As illustrated in Figure 6.9 the function of the phase
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Figure 6.9: Phase Interpolation Concept

Figure 6.10: Static CMOS Phase Interpolator

Figure 6.11: A Differential Current-Mode Phase Interpolator
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Figure 6.12: Simplified Model of Phase Interpolator

Figure 6.13: A Differential 6-1 Multiplexer and Phase Interpolator
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interpolator is to generate an output signal X0 for which the zero crossings are ideally

placed halfway between the zero crossings of two input signals X1 and X2. Figure

6.10 shows a CMOS design of a phase interpolator. Interpolation is accomplished by

shunting the outputs of two CMOS inverters. The output signal, X0 is high when both

inputs are low and low when both inputs are high. However, when one input is high

and the other is low, X0 becomes approximately Vdd/2 assuming the transistors are

sized properly. As the delay between signal transitions in X1 and X2 is reduced, the

intermediate region shown in Figure 6.10 shrinks and eventually disappears resulting

in a smooth transition. In this case the circuit functions as a phase interpolator. For

this circuit to function properly, the delay between X1 and X2 must be small, namely

comparable to one gate delay, so that the transitions overlap to some extent. It is

important to observe that the interpolated signal has a slower edge rate than the two

original signals. Unfortunately this makes X0 more sensitive to supply and substrate

induced jitter. Supply noise rejection is one of the issues that must be addressed

in the design of the phase interpolator as it can directly affect the location of the

zero crossings of the interpolated signals. Although the single ended CMOS design

of Figure 6.10 has the advantages of simplicity and low static power dissipation, its

supply sensitivity is poor specially during signal transitions. Shown in Figure 6.11

is a current-mode implementation of a phase interpolator. The circuit operates on

the same principal as the CMOS design of Figure 6.10. However, because of the

differential implementation, it has much better supply rejection. Each differential

pair is essentially an SCL inverter carrying half the tail current needed to provide a

full logic swing at the gates outputs. Therefore, just as in the CMOS implementation,

each input can only cause half a transition at the output. The resulting waveforms are

similar to those shown in Figure 6.10. A simplified model of the phase interpolator

in Figure 6.11 is shown in Figure 6.12. In this representation. switching functions of

the transistors are modeled by applying current sources to the output nodes X0, X1

and X2 at appropriate times. From the model it follows that
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X0(t) = Vdd +
RIS

2


e

−
t

RCP − 1

 u(t) +

e
−
t− T

RCP − 1

 u(t− T )


X1(t) = Vdd +

RIS

2

e
−

t

RCP − 1

 u(t)

X2(t) = Vdd +
RIS

2

e
−
t− T

RCP − 1

 u(t− T )

From these equations it follows that the transition point of X0 is approximately

(not exactly) midway between that of X1 and X2. The differential six to one mul-

tiplexer used in the transmitter is shown in Figure 6.13. In this multiplexer if two

select lines were activated then the output would be an interpolated version of the

corresponding outputs. In this case the circuit functions in much the same way as

the phase interpolator in Figure 6.11.

6.3 Pseudo Random Data Sources

Conventional high speed transceivers can be tested using off-the-shelf test equipment.

Since our architecture is radically different pseudo random data sources and test cir-

cuits must be integrated on chip. On chip test circuits should enable complete char-

acterization of both the performance of the transmitter and receiver. Conventional

transmitters and receivers are tested using PRBS testers which are based on Linear

Shift Registers (LSR) [38]. LSRs can be implemented in two ways. The Fibonacci im-

plementation, sometimes also referred to as a simple shift register generator (SSRG),

consists of a simple shift register in which a binary weighted two modulo sum of the

taps is fed back to the input. The modulo-2 sum of two 1-bit binary numbers yields

0 if the two numbers are identical, and 1 if they differ: 0+0=0, 0+1=1, 1+1=0. It

is equivalent to XOR of the two 1-bit binary numbers. The general Fibonacci imple-

mentation is shown in Figure 6.14. For any given tap, weight gi is either 0, meaning

”no connection,” or 1, meaning it is fed back. Two exceptions are g0 and gm, which

are always 1 and thus always connected. Note that gm is not really a feedback con-
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Figure 6.14: Fibonacci Implementation of a Linear Shift Register

Figure 6.15: Galois Implementation of a Linear Shift Register

nection, but rather is the input of the shift register. The Galois implementation,

also referred to as a multiple-return shift register generator (MRSRG) or modular

shift register generator (MSRG), consists of a shift register, the contents of which are

modified at every step by a binary-weighted value of the output stage. The general

Galois implementation is shown in Figure 6.15. Careful inspection reveals that the

order of the Galois weights is opposite that of the Fibonacci weights. Given identi-

cal feedback weights, the two LSR implementations will produce the same sequence.

However, the initial states of the two implementations must necessarily be different

for the two sequences to have identical phase. The initial state of the Fibonacci form

is called the initial fill or initial vector, and this initial fill comprises the first m bits

output from the generator. The initial state of the Galois generator must be adjusted

appropriately to attain the equivalent initial fill.

LSR generators produce what are called linear recursive sequences (LRS) because

all operations are linear. Generally speaking, the length of the sequence before repeti-

tion occurs depends upon two things, the feedback taps and the initial state. An LSR

of a given size m (number of registers) is capable of producing a maximum of 2m − 1

states, but will do so only if proper feedback taps, or terms, have been chosen. Such
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a sequence is called a maximal length sequence, maximal sequence, or less commonly,

maximum length sequence. It is often abbreviated as m-sequence. These sequences

are also referred to as a pseudonoise (PN) or pseudorandom sequences, due to their

optimal noise-like characteristics. Maximal length generators can actually produce

two sequences. One is the trivial one, of length one, that occurs when the initial state

of the generator is all zeros. The other one, the useful one, has a length of 2m − 1.

Together, these two sequences account for all 2m states of an m-bit state register.

Finite (Galois) field mathematics are used to derive m-sequence feedback taps. Any

LFSR can be represented as a polynomial of variable X, referred to as the generator

polynomial.

G(X) = gmXm + gm−1X
m−1 + gm−2X

m−2 + ..... + g2X
2 + g1X

1 + g0

The coefficients gi represent the tap weights, as defined in Figure 6.14 and Figure

6.15, and are 1 for taps that are connected (fed back), and 0 otherwise. The order

of the polynomial, m, represents the number of LSR stages. Rules of linear algebra

apply to the polynomial, but all mathematical operations are performed modulo-2.

The generator polynomial of the equation above is said to be primitive if it cannot be

factored (i.e. it is prime), and if it is a factor of (i.e. can evenly divide) Xn +1, where

n = 2m− 1 (the length of the m-sequence). It can be shown that an LSR represented

by a primitive polynomial will produce a maximal length sequence. Alternately, for

the purposes of design, one can find all prime factors of order m, of the polynomial

Xn + 1. Consider a simple example. Let the number of registers m be 3. The length

of the maximal sequence n = 2m − 1 = 7. Now note that,

X7 + 1 = (X + 1)(X3 + X + 1)(X3 + X2 + 1)

Notice that (X +1)(X3 +X +1)(X3 +X2 +1) = X7 +2X6 +2X5 +4X4 +4X3 +

2X2 + 2X + 1. When arithmetic is done modulo 2, 2X = 0, 2X2 = 0 and so on and

so forth. Thus X7 + 2X6 + 2X5 + 4X4 + 4X3 + 2X2 + 2X + 1 = X7 + 1.

The two factors of order 3 are X3+X+1 and X3+X2+1. The Fibonacci and Galois

implementation corresponding to X3 +X +1 are shown in Figure 6.16. The sequence
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Figure 6.16: Fibonacci and Galois Implementation of Linear Shift Registers Corre-
sponding to the Generating Polynomial X3 + X + 1

Figure 6.17: A Cross Coupled Two Dimensional Linear Shift Register and the Cor-
responding m-sequence.

generated by this LSR is 1, 1, 1, 0, 0, 1, 0. It is left as an exercise for the reader to verify

that the sequence generated by LSR corresponding to X3 +X2 +1 is maximal. LSRs

are used as PRBS circuits for testing conventional transceivers. In the context of

the architecture outlined above, what is needed is a Pseudo Random Symbol Source

(PRSS) as we have 8 different symbols excluding the blank symbol. Note that the 8

different symbols can be represented using different combination of 3 binary values.

One technique to implement a PRSS would be to implement 3 independent LSRs.

There are two primary disadvantages. First the length of the sequence would only be

2m − 1, whereas the total number of registers is 3m and therefore the shift registers

can be in 23m − 1 non-zero states. The second disadvantage is that all the symbols

would not be generated with the same frequency. In fact if three LSRs shown in

Figure 6.16 were implemented, the system would cycle through 7 symbols, and at

least 1 symbol would not be generated at all.
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Figure 6.18: System Level Schematic of On Chip Datasource

The circuit used in our design is shown in Figure 6.17. It is inspired by Fibonacci

Type LSRs. The fundamental difference between this and the previously proposed

architecture is that the feedback terms are dependent on all registers. There is a cross

coupling of feedback terms. The sequence generated by this circuit is also shown in

Figure 6.17. This sequence has 63 = 23∗2 − 1 elements and is thus maximal. Two

immediate consequences of maximality are that all symbols will be generated and

all symbols will be generated with approximately the same frequency. Specifically

the symbol represented by 000 would be generated 7 times (corresponding to the 7

different states for registers R11, R21 and R31. When the output symbol is 000, these

registers can be in any state excluding 000). All other symbols will be generated 8

times as the registers R11, R21 and R31 can be in any 1 of 8 possible states.

In order to perform error measurements, the data sources in the receiver and

transmitter must not only be identical, they must be synchronized to one another.

Symbols from the data source in the transmitter are transmitted across the channel

and processed by the receiver. In order to determine if the symbol was received with-

out error it can be compared against the output of the data source in the receiver

assuming that the data source in the receiver is generating the same pattern as the

data source in the transmitter and is synchronized with it. In order to achieve syn-

chronization, a “blank” symbol must be transmitted at the end of each cycle of the

data source. When a blank is received, the data source in the receiver is reset to
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the state after the blank state effectively synchronizing it with the data source in the

transmitter. Every state in a maximal sequence of an LSR corresponds of a unique

state of its registers. Thus a simple method to generate a blank symbol once during

each cycle is to define a blank state. In our design we generate a blank every time all

the registers R11, R21, R31, R12, R22 and R32 are set to 1.

Sym 1 Sym 2 Sym 3 Sym 4 Sym 5 Sym 6 Sym 7 Sym 8 Blank

0000 0001 0010 0011 0100 0101 0110 0111 1xxx

000001 000011 000010 000110 000100 001100 001000 011000 100000

The PRSS circuit described above uses a binary representation to represent the

symbols. However, an alternate representation is used by the six to one multiplexer

used in the reconfigurable delay lines. The two representations are summarized in the

table above. A decoder circuit was implemented to transform the output of the PRSS

circuit to the representation used by the reconfigurable delay lines. Also four two to

one multiplexers were placed between the PRSS circuit and the decoder circuit. The

multiplexers enabled selection of either pseudo random content from the internal data

source or externally user specified data. The system level schematic of the datasource

is shown in Figure 6.18.

6.4 Error Unit for Symbol Error Rate Measure-

ment

As mentioned LSR based circuits are used to perform Bit Error Rate (BER) mea-

surements on conventional transceivers. Of the shelf BER measurement equipment

is available for testing high data rate transceivers. This equipment cannot be used

to measure Symbol Error Rate (SER) for transceivers based on the architecture pro-

posed in these thesis. Therefore, in conjunction with pseudo random data sources

described in the previous section an error unit was incorporated on chip. The system

level schematic of the error unit is shown in Figure 6.19. It consists of a digital com-

parator which compares data on two buses. Two outputs, specifically REC and ERR
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Figure 6.19: Error Unit Integrated with Data Source and Time Digitizer Circuit

are produced. REC toggles every time a symbol is received and ERR toggles every

time an error is produced. These outputs are directed into divide by 8 circuits which

reduce the frequency of these signals to allow interfacing to off-the-shelf low frequency

counter circuits. Also shown in the figure, is how the error unit is integrated with the

data source and the time digitizer. Note that the blank output of the time digitizer is

used to reset the data source. This is the synchronization circuit used to ensure that

the data sources in the transmitter and receiver and synchronized with one another.

Also it must be noted that all circuits are “clocked” with the stop signal to the time

digitizer.

These circuits can be used to perform a myriad of different tests. The transmitter

can be configured to transmit data from the external data source. The receiver can

also be configured to compare received data against data specified externally. By

repeating this experiment for different symbol combinations, one can calibrate the

receiver. By configuring the transmitter to transmit data from the pseudo random

data source and configuring the receiver to compare received data against externally

specified symbols, one can measure the frequency of different received symbols, and

compare them against their expected frequency (given the properties of the pseudo

random data source, the expected frequencies are fixed and known). By configuring



85

Figure 6.20: Die Micrograph of Experimental Prototype Fabricated in 0.18µm IBM
BiCMOS 7HP Technology

the transmitter to transmit data from the pseudo random data source and configuring

the receiver to measure received data against data from the pseudo random data

sources one can measure the SER.

6.5 Experimental Results

An experimental circuit based on the architecture discussed in the previous sec-

tion has been designed and integrated in 0.18µm IBM BiCMOS 7HP process technol-

ogy. The circuit consists of a transmitter and receiver pair both of which have built-in

pseudo random data (symbol) sources. Both the transmitter and receiver can also be

supplied data (symbols) externally which must be loaded into two on-chip shift reg-

isters via a parallel port. The output of the transmitter connects to a high frequency
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Figure 6.21: Control Circuit Schematic

driver circuit, the output of which can be probed to allow direct measurements on

the transmitter output. The receiver input can be configured to connect to the trans-

mitter output or it can be configured to connect to an external signal supplied by a

high frequency pattern generator via a probe. This facilitates independent testing of

the receiver circuit. The low frequency outputs of the transmitter and the receiver

are connected to on chip low frequency driver circuits. These outputs facilitate test-

ing of the transmitter and receiver using off-the-shelf low frequency test equipment

without the need of performing high frequency measurements. A die micrograph of

the prototype is shown in Figure 6.20. The delay locked loops for tuning of delay

lines in the transmitter and receiver were not integrated in this prototype. Instead,

these delay lines can be tuned using external control voltages. The die has an active

area of 2mm x 1mm.

In order to characterize the experimental prototype an off-chip control circuit

was designed. This circuit consists of a voltage divider circuit to level shift the output

of the parallel port from 0-3.3V to 0-1.8V. This was necessary in order to interface
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Figure 6.22: Experimental Prototype Wirebonded to Chip Carrier Package

the on chip shift registers which use a voltage level of 1.8V to represent a logical 1

and a voltage level of 0V to represent a logical 0 with the parallel port which uses a

voltage level of 3.3V to represent a logical 1 and a voltage level of 0V to represent

a logical 0. Also included in the circuit were tunable voltage dividers to generate

the control voltages for tuning the delay lines in both the transmitter and receiver.

The tuning circuits include a tapered cascade of surface mount capacitors for filtering

noise which would translate into jitter on the transmitter output and measurement

uncertainty in the receiver. The circuit also includes a DIP switch based circuit for

generating the digital control voltages. A tapered cascade of electrolytic and surface

mount capacitors is used to bypass all supply voltages. The schematic of the control

circuit is shown in Figure 6.21.

A 3”x6” four plane copper printed circuit board (PCB) was designed to house

the control circuit and the experimental prototype. The experimental prototype

was mounted on a low inductance 48 pin chip carrier package using silver epoxy.

This chip carrier package was soldered to the PCB and all pads on the experimental

prototype, excluding the high frequency input and output pads were wirebonded to

corresponding pads on the chip carrier package, as illustrated in Figure 6.22. Notice

that due to the relative difference in size of the experimental prototype and the chip

carrier package, the wirebonds used were long and thus had high inductance values.

Due to high inductance values of the wirebond, the high frequency input and output

were not wirebonded, but left exposed for probing. For the high frequency output
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Figure 6.23: Printed Circuit Board with Control Circuitry, Chip Carrier and Exper-
imental Prototype

Figure 6.24: Measurement Setup
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no on-board termination resistors were used since the reflections would be absorbed

by the 50Ω impedance of the test equipment. For the high frequency input, there

was no need for termination resistors, as these were built into the chip. The low

frequency outputs were connected to SMA connectors via 50Ω transmission lines to

allow connections to test equipment. No termination resistors were used on-board

since signal reflections will be absorbed by the 50Ω input impedance of the test

equipment. SMA connectors were also provided for the voltage supplies and a DB-9

connector was provided to interface the parallel port to the shift register circuitry. An

assembled PCB with the experimental prototype mounted on a chip carrier package

is shown in Figure 6.23. The clock output on an Anritsu MP1763C 0.05-12.5 GHz

Pulse Pattern Generator was used to produce square waves of different frequencies

for testing the receiver. This could be done by adjusting the data rate. An Agilent

Infiniium DCA Wide Bandwidth Oscilloscope was used to directly monitor the high

frequency output of the transmitter. The low frequency REC output was used as the

trigger signal. The low frequency outputs were interfaced to a Tektronix TDS754A

500 MHz 2 GbS/s Oscilloscope. Bias-Ts were used to AC couple all input and output

signals to test equipment and supply the appropriate bias voltage. The test setup is

shown in Figure 6.24.

Two different methodologies were used to characterize the performance of the

transmitter. The first was based on low frequency measurements and the second on

high frequency measurements. First we will discuss the low frequency measurements.

For these measurements the transmitter was configured to transmit symbols from

the external data sources. Note that four symbols can be specified and they are

transmitted in a round robin fashion. Let the durations of the four symbols be D1,

D2, D3 and D4. Note that the period of receive signal, PREC is given by the identity

below.

PREC = 16 ∗ (D1 + D2 + D3 + D4)

The receive output of the error unit toggles every time a symbol is received on

that channel. This happens after D1 + D2 + D3 + D4 time units. Thus the period
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Figure 6.25: Low Frequency Transmitter Measurements

Figure 6.26: Delay Lines Characterized Using Low Frequency Measurements
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of this signal is 2 ∗ (D1 + D2 + D3 + D4). This output serves as the input to a

frequency divider circuit which reduces the frequency by a factor of 8. The output of

the frequency divider circuit is the receive signal that is measured. Note that if all

the external data sources were to transmit the smallest symbol which has duration

S1, then

PREC = 64 ∗ S1 or equivalently S1 = PREC

64

Thus the duration of the smallest symbol can be measured by measuring the

period of the REC signal. A similar methodology can be used to infer the sizes

of all other symbols. An alternate method to measure the size of the symbol is to

measure the time between pulses on the TRANSTRIG output. Note that the internal

data sources cycle once after 2n − 1 symbols have been transmitted, where n is the

number of flip flops in the data source. The time required to transmit 2n − 1 is

2n − 1 ∗ (D1 + D2 + D3 + D4) time units. Also the frequency is divided by a factor

of 2. Thus

PTRANSTRIG = 2 ∗ 63 ∗ (D1 + D2 + D3 + D4)

If all the external data sources were to transmit the smallest symbol which has a

duration of S1, then

PTRANSTRIG = 504 ∗ S1 or equivalently S1 = PTRANSTRIG

504

Hence, it follows that

PTRANSTRIG = 504 ∗ PREC

64
= 7.875 ∗ PREC

Sample output from the Tektronix TDS754A Oscilloscope is plotted in Figure

6.25. The REC output is on Channel 1 and the TRANSTRIG output is on Channel

4. Channel 2 is the RECTRIG output and Channel 3 is the ERR output. These will

be discussed later. Notice that PTRANSTRIG ≈ 8∗PREC . The experiment was repeated

for different symbols and the symbol duration computed from time period measure-

ments performed on the REC and TRANSTRIG outputs. The graph is plotted in
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Figure 6.27: High Frequency Transmitter Measurements

Figure 6.26. As mentioned previously, the symbol durations can also be measured

by performing high frequency measurements on the output of the transmitter. The

transmitter was configured to transmit the smallest symbol S1 on Channel 1 and

Channel 3 and transmit the largest symbol SBLANK on Channel 2 and Channel 4.

The output on the Agilent Infiniium DCA Wide Bandwidth Oscilloscope is plotted in

Figure 6.27. The transmitter was then configured to transmit the smallest symbol S1

on all four channels and the time period of the output was measured. The duration

of the symbol is just half the time period. This measurement was repeated for all

the symbols. The results are plotted in Figure 6.28. They are in excellent agreement

with those obtained by performing low frequency measurements on the REC and

TRANSTRIG output and shown in Figure 6.26.

There are several issues that must be addressed. Firstly, the transmitter was de-

signed so that the duration of the smallest symbol would be approximately 100ps.

The smallest measured symbol duration is approximately 850ps. Secondly, the cir-

cuit was designed so that the time difference between two adjacent symbols would
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Figure 6.28: Delay Lines Characterized Using High Frequency Measurements

Figure 6.29: Comparison of Simulated Delays with Estimated Parasitics and High
Frequency Measurements
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be 105ps. The additional delays can be accounted for by carefully estimation of the

parasatic capacitances associated with the signal lines connecting the reconfigurable

delay lines illustrated in Figure 6.30 and the parasitic capacitances associated with

the signal lines connecting the delay cells to the multiplexer in the reconfigurable

delay lines illustrated in Figure 6.31. First the lateral capacitance between the two

differential signal lines connecting the output of a reconfigurable delay line to the

next reconfigurable delay line in the oscillator was measured. Also the capacitance

between the differential signal lines and the substrate was estimated. The capacitance

was dominated by the lateral capacitance between the differential lines which was not

accounted for during design. Also the lateral capacitance as well as the substrate

capacitance was estimated for the signal lines connecting the outputs of the delay

cells to the inputs of the multiplexer. Again the total capacitance was dominated by

the lateral capacitance which was not account for in design. The oscillator was res-

imulated with these additional parasitic capacitances. The simulated and measured

symbol sizes are plotted in Figure 6.29. It must be noted that the slopes of the two

curves are in excellent agreement with one another. The size of the smallest symbol

is a bit more than the simulated size suggesting that the capacitance was underesti-

mated. Thirdly, the time differences do not increase linearly. It must be noted that in

our simulation we have assumed that the parasitic capacitances are constant. This is

true for the substrate capacitance. But the total parasitic capacitance is dominated

by the lateral capacitances. In the reconfigurable delay line, the lateral capacitance

is between adjacent signal carrying lines. Thus the capacitance is not constant but

depends on how the signal in the adjacent lines changes with respect to the signal

itself. If the signal in the adjacent signal line were identical to the signal in question,

then the effective capacitance would be zero. On the other hand if the signal in the

adjacent signal line is an inverted version of the signal in question, the effective ca-

pacitance would be twice the estimated value. We hypothesize that this effect results

in the observed non-linearity. If the circuit were to be redesigned the layout needs to

be modified taking into account lateral capacitances which have substantially affected

the design discussed in this thesis.
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Figure 6.30: Layout of Reconfigurable Delay Lines

Figure 6.31: Transmitter Layout
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It must be noted that the receiver is not affected by the corresponding parasitic

effects. The high frequency data signal drives a twisted ring counter. The outputs

of the twisted ring counter serve as the start and stop inputs to four independent

picosecond time digitizers. The effect of parasitic capacitances is to delay both the

start and stop signal but the time between these signals is not affected by the parasitic

capacitance. Also notice that in the time digitizers the delay cells connect to six

buffers as illustrated in Figure 6.32. The length of the signal lines is minimal when

compared to the length of the corresponding lines in the reconfigurable delay line.

Also the lateral capacitance are minimal due to spacing. The receiver was simulated

with the extracted parasitics and it was found to function as designed. Thus it is

designed to receive pulses with widths ranging from 100ps to 250ps. Thus regardless

of the symbol transmitted by the transmitter, the receiver will always detect a blank.

When the receiver detects a blank it resets the internal pseudo random data sources

preventing them from cycling. Thus no output is observed on RECTRIG as shown

in Figure 6.26, Channel 2.

An alternate method to test the receiver is to supply an external data signal.

The circuit to do this is shown in Figure 6.33. It must be noted that the resistance

between the voltage sources used to bias the circuit and the termination resistors is

50Ω and the voltage drop across these resistors is 2.4V . The DC current through the

termination resistor is 48mA. The DC current could be reduced to 0mA by connecting

the termination resistors to 2.4V . The widths of the metal lines connecting the pads

to the termination resistors and the input of the buffer and their current carrying

capacity is tabulated in the table below. From the table it is evident that there exists

a problem of electro migration when the chip is connected to an external data source

and this severely impacts reliability which prevents exhaustive testing of the receiver

circuit using an external data source.
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Figure 6.32: Layout of Time Digitizers

Figure 6.33: Circuit for Supplying an External Input to the Receiver
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Metal Layer Current Capacity Width Current Capacity Actual Current

M1 0.69(W − 0.0675) 20u 13.75mA 96mA

M2 0.69(W − 0.06) 15u 10.31mA 48mA

M3 0.69(W − 0.06) 15u 10.31mA 48mA

M4 0.69(W − 0.06) − − −

MT 0.69(W − 0.06) − − −

LY 0.84(W − 0.06) 55u 46.15mA 96mA

AM 2.59(W − 0.06) 50u 129.34mA 96mA

Some preliminary measurements were performed on the receiver. The receiver

was configured to receive data from the external data source. The error units were

programmed to compare the received data against the smallest symbol. That is if

the pulse width corresponded to the smallest symbol then the ERR output would not

toggle. If however, the received symbols were larger the ERR output would toggle

every time a symbol was received. Thus both the REC and ERR signal would have

the same frequency. Initially a sequence of pulses having a width of 113.6ps was

supplied and no output was observed on the ERR signal. The widths of the pulses

was increased to 116.3ps causing the ERR signal to oscillate as the same frequency as

the REC signal indicating the transition boundary between the first and the second

symbol is between 113.6ps and 116.3ps. The results are depicted in Figure 6.34. The

REC signal is on Channel 1 and the ERR signal is plotted on Channel 4.

6.6 Summary

A new transceiver architecture was outlined. In this transceiver architecture, the

transmitter is based on a reconfigurable ring oscillator and the receiver is based on

picosecond time digitizers. Unlike conventional transceivers, the circuits are fully

asynchronous and do not require clock recovery for sampling the data signal. Another

fundamental advantage of the architecture is that it naturally lends itself to time

division multiplexing, as a result only the controller in the transmitter and the twisted

ring counter in the receiver need to be designed to operate at full data rate. Both
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Figure 6.34: Low Frequency Receiver Measurements

these circuits are relatively simple to implement as they can be built out of two input

exclusive-or gates and two-to-one multiplexers.

A first prototype was designed, implemented and fabricated in 0.18µm IBM BiC-

MOS 7HP process technology. A methodology for testing high speed asynchronous

transceivers with off-the-shelf low frequency measurement equipment was presented.

The fabricated prototype was extensively tested. Tests included both low and high

frequency measurements, both of which were in excellent agreement with each other.

It was shown that the performance of the transmitter was substantially mitigated

by lateral electrical and magnetic cross-coupling of metal lines connecting the taps

on the delay lines to the inputs of the multiplexer in the reconfigurable delay lines.

Due to differences in design, the time digitizers were not affected by these parasitic

effects. Thus the transmitter and receiver operated at two very different data rates,

preventing us from exhaustively characterizing the performance of the receiver. Fur-

thermore, when the receiver was supplied an external high frequency data signal, it

did not function reliably due to an effect caused by electro migration. We briefly

discussed how these problems could be addressed if the circuit were to be redesigned.
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Chapter 7

Conclusions and Open Problems

The contribution of this thesis was a new modulation format suitable for high speed

fiber optic communication where one of the limiting factors towards achieving higher

data rates is high speed circuit design. In order to utilize this modulation format

to transmit data in a rate efficient manner we showed that there is a need for new

coding techniques. We proposed the use of variable length to variable length prefix

free codes for rate efficient transmission of information using the proposed modulation

format. We showed that the code construction problem can be reduced to a large

scale integer optimization problem that is well structured. We studied properties of

the system of inequalities that arise in this context and based on these properties we

derived efficient algorithms for determining if the linear programming relaxation of

the code construction problem is feasible. We also derived an efficient algorithm for

solving the linear programming solution, if it is indeed feasible. In this thesis we have

also proposed an alternate architecture at the circuit level for high speed transceiver

design. Unlike conventional transceivers which are based on the idea of clock and data

recovery we proposed a fully asynchronous, clock-less circuit that can be implemented

at high speeds. The transmitter is based on the idea of a reconfigurable ring oscillator.

The receiver is based on the concept of multiplexed picosecond time digitizers. A first

prototype of the proposed circuit was implemented in IBM BiCMOS 7HP process

technology and measurement results are discussed.

Before the proposed paradigm has an impact on how real world transceivers are

designed numerous problems need to be addressed. The problem of solving the integer
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program that arises in the context of code construction in polynomial time is unsolved.

Also coding techniques based on variable length to variable length prefix free codes

suffer from error propagation. Thus there is a need for self synchronizing codes

and algorithms for constructing them. Furthermore, it might be possible to reduce

the complexity of the codes by studying alternate data structures for coding like

finite state machines or codes that unlike prefix free codes are not instantaneously

decodable. It is not yet known if the complexity of these codes can be reduced by

studying such data structures. Furthermore, systematic techniques for developing

codes based on such data structures are not known. From a circuits standpoint, the

first prototype was not fully functional and a new prototype needs to be developed

which addresses some of the design issues that were discussed in an earlier chapter.

Also a comparative study of transceivers based on active delay lines, passive delay

lines and microstrips needs to be undertaken. And alternate techniques for delay

generation such as integrate and dump, both in the context of the transmitter and

receiver need to be explored and their effect on measurement error fully quantified.

The paradigm could also benefit from circuit techniques for generation and detection

of solitons. From a theoretical standpoint, the topic of generation of data dependent

jitter and phase noise in reconfigurable ring oscillators needs to analytically examined.

From a communication systems standpoint, the effect of noise in amplitude of the

data signal and the effects of the channel like limited bandwidth and chromatic,

polarization, multimode, waveguide and material dispersion on data dependent jitter,

ISI and error rate need to quantified. Also a comparative study of various modulation

formats in comparison to the one proposed needs to be undertaken.

In this thesis we studied the transmission of digital information within a biolog-

ically inspired framework. Specifically, we proposed a modulation format that was

inspired by neural spike trains and studied the problem of efficient encoding of digital

data and the design of high speed digital transceivers. The transmission of analog

information through optical fiber is also challenging and of great commercial signifi-

cance. Schemes which encode analog information in the amplitude of the signal suffer

from distortion due to nonlinearities in the photo diode and photo detector. A variety
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of modulation formats have been proposed but the transmission of analog information

within a similar framework has not attracted much attention even though there is

arguably a closer connection with the transmission of information between neurons

and neural coding and there has been extensive research on these topics. Both the

rate efficient encoding of analog information and design of high speed circuits for

analog data transmission are exciting avenues for future work.



103

Bibliography

[1] R. L. Adler, D. Coppersmith and M. Hassner, “Algorithms for Sliding Block

Codes – an Application of Symbolic Dynamics to Information Theory”, IEEE

Transactions on Information Theory, vol. 29, pp. 5-22, 1983.

[2] D. Altenkamp and K. Mehlhorn, “Codes: Unequal Probabilities, Unequal Letter

Costs”, J. ACM, vol. 27, no. 3, pp. 412-427, July 1980.

[3] B. Analui and A. Hajimiri, “Statistical Analysis of Integrated Passive Delay

Lines”, IEEE Custom Integrated Circuits Conference, pp. 107-110, Sep. 2003.

[4] L. I. Anderson, B. G. R. Rudberg, P. T. Lewin, M. D. Reed, S. M. Planer and

S. L. Sundaram, “Silicon bipolar chipset for SONET/SDH 10-Gb/s Fiber Optic

Communication Links”, IEEE J. Solid State Circuits, vol. 30, pp. 210-218, Mar.

1995.

[5] E. Arikan, “An Implementation of Elias Coding for Input-Restricted Channel”,

IEEE Transactions on Information Theory, vol. 36, pp. 162-165, 1990.

[6] ATM Forum, ATM User-Network Interface Specification. Version 3.0, 1993.

[7] M. S. Bazaraa, J. Jarvis and H. D. Sherali, “Linear Programming and Network

Flows”, John Wiley & Sons, Inc., 1977, 1990.

[8] B. Beggs, “GaAs HBT 10-Gb/s Product”, IEEE MTT-S International Microwave

Symposium Workshop, Anaheim, CA, June 13-19, 1999.

[9] T. Berger and R. W. Yeung, “Optimum “1”-Ended Binary Prefix Codes”, IEEE

Transactions on Information Theory, vol. 36, no. 6, pp. 1435-1441, 1990.



104

[10] M. C. Berry, “Pulse Width Modulation for Optical Fiber Transmission”, PhD.

Thesis, Nottingham University, England. 1983.

[11] M. C. Berry and J. M. Arnold, “Pulse Width Modulation for Optical Fiber

Transmission of Video”, IEE International Conference on the Impact of VLSI

Technology on Communication Systems, London, 1983.

[12] N. M. Blachman, “Minimum-Cost Encoding of Information”, IRE Trans. Inform.

Theory, vol. PGIT-3, pp. 139-149, 1954.

[13] M. Blaum and J. Bruck, “Coding for Skew Tolerant Parallel Asynchronous Com-

munications”, IEEE Transactions on Information Theory, vol. 39, no. 2, pp. 379-

388, March 1993.

[14] M. Blaum, J. Bruck and L.H. Khachatrian, “Constructions of Skew-Tolerant and

Skew-Detecting Codes”, IEEE Transactions on Information Theory, vol. 39, no.

5, pp. 1752-1757, September 1993.

[15] M. Blaum and J. Bruck, “Coding for Delay-Insensitive Communication with

Partial Synchronization”, IEEE Transactions on Information Theory, vol. 40, no.

3, pp. 941-945, May 1994.

[16] D. J. Browning and J. B. Thomas, “Optimal Coding Schemes for Conflict-Free

Channel Access”, IEEE Trans. Commun., vol. 37, pp. 1004-1013, Oct. 1989.

[17] R. M. Capocelli and P. Cull, “Generalized Fibonacci Numbers are Rounded

Powers”, Third International Conference on Fibonacci Numbers and Their Appli-

cations, Pisa, Italy, pp. 57-62, 1988.

[18] R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro, “On the Structure of

Statistically Synchronizable Codes”, IEEE Transactions on Information Theory,

vol. 38, pp. 407-414, Mar. 1992.

[19] R. M. Capocelli, A. De Santis and G. Persiano, “Efficient Algorithms for Conflict

Free Channel Access”, Tech. Rep., Univ. Salerno, July 1992.



105

[20] R. M. Capocelli, A. De Santis and G. Persiano, “Binary Prefix Codes Ending in

a “1””, IEEE Transactions on Information Theory, vol. 40, no. 4, pp. 1296-1302,

July 1994.

[21] D. M. Choy and C. K. Wong, “Bounds for Optimal α-β Binary Trees”, BIT, vol.

17, pp. 1-15, 1977.

[22] E. Christian and E. Eisenmann, “Filter Design Tables and Graphs ”, John Wiley

and Sons, Inc., New York, 1966.

[23] D. Cooke, Z. Jelonek, A. J. Oxford and E. Fitch, “Pulse Communication”, J.

IEE, 94, Part IIIA, pp. 83-105, 1947.

[24] N. Cot, “A Linear-Time Ordering Procedure with Applications to Variable

Length Encoding”, Proc. 8th Princeton Conf. on Information Sciences and Sys-

tems, pp. 460-467, 1974.

[25] N. Cot, “Complexity of the variable length encoding problem”, Proc. 6th South-

east Conference on Combinatorics, Graph Theory and Computing, Congressus

Numerantium XIV, Utilitas Mathematica Publishing, Winnepeg, MB, Canada,

pp. 211-244, 1975.

[26] N. Cot, “Characterization and Design of Optimal Prefix Codes”, Ph.D. Disser-

tation, Stanford University, Stanford, CA., 1977.

[27] R. M. Fano, Res. Lab., for Electronics, Massachusetts Institute of Technology,

Cambridge, Tech. Report no. 65, 1949.

[28] L. Farina and S. Rinaldi, “Positive Linear Systems – Theory and Applications”,

John Wiley & Sons, 2000.

[29] E. Fitch, “The Spectrum of Modulated Pulses”, J. IEE, 94, Part IIIA, pp. 556-

564, 1947.

[30] P. A. Franaszek, “Sequence-state Coding for Digital Transmission”, Inform.

Contr., vol. 1-J, pp. 155-164, 1969.



106

[31] P. Funk, “Run-length-limited Codes with Multiple Spacing”, IEEE Transactions

on Magnetics, vol. 18, pp. 772-775, 1982.

[32] F. R. Gantmacher, “Applications of the Theory of Matrices”, Interscience Pub-

lishers, 1959.

[33] P. R. Geffe, “Simplified Modern Filter Design ”, J. F. Rider Publisher Inc., New

York, 1982.

[34] Gigabit Ethernet Alliance, “Gigabit Ethernet: Accelerating the Standard for

Speed”, Whitepapers, Mar. 1999.

[35] E. N. Gilbert, “Coding with Digits of Unequal Cost”, IEEE Transactions on

Information Theory, vol. 41, no. 2, pp. 596-600, 1995.

[36] M. J. Golin and N. Young, “Prefix Codes: Equiprobable Words, Unequal Letter

Costs”, SIAM J. Comput., vol. 25, no. 6, pp. 1281-1292, 1996.

[37] M. J. Golin and G. Rote, “A Dynamic Programming Algorithm for Constructing

Optimal Prefix-Free Codes with Unequal Letter Costs”, IEEE Transactions on

Information Theory, vol. 44, no. 5, pp. 1770-1781, 1998.

[38] S. W. Golomb, L. R. Welch, R. M. Goldstein and A. W. Hales, “Shift Register

Sequences”, Aegean Park Press, 1982.

[39] R. E. Gomory, “Outline of an Algorithm for Integer Solutions to Linear Prob-

lems”, Bull. Am. Math. Soc., vol. 64, pp. 275-278, Sep. 1958.

[40] R. E. Gomory, “An Algorithm for Integer Solutions to Linear Programs”, Prince-

ton IBM Math Research Project, Tech. Rept, Rept. No. 1, 1958.

[41] R. E. Gomory, “All-Integer Integer Programming Algorithm”, IBM Res. Center,

Yorktown Heights, N.Y., Res. Rep. RC-189, 1960.

[42] Y. M. Greshishchev and P. Schvan, “SiGe Clock and Data Recovery IC with

Linear-Type PLL for 10-Gb/s SONET Application”, Bipolar/BiCMOS Circuits

and Technology Meeting, pp. 169-172, Sep. 1999.



107

[43] Y. M. Greshishchev, P. Schvan, J. L. Showell, M. Xu, J. J. Ojha and J. E. Rogers,

“A Fully Integrated SiGe Receiver IC for 10-Gb/s Data Rate”, ISSCC Dig. Tech.

Papers, pp. 52-53, Feb. 2000.

[44] Y. M. Greshishchev, P. Schvan, J. L. Showell, M. Xu, J. J. Ojha and J. E. Rogers,

“A Fully Integrated SiGe Receiver IC for 10-Gb/s Data Rate”, IEEE Journal of

Solid State Circuits, vol. 35, no. 12, pp. 1949-1957, Dec. 2000.

[45] J. Hauenschild et. al., “A Plastic Packaged 10-Gb/s BiCMOS Clock and Data

Recovering 1:4 Demultiplexer with External VCO”, IEEE J. Solid State Circuits,

vol. 31, pp. 2056-2059, Dec. 1996.

[46] D. J. T. Heatley, “Unrepeatered Video Transmission using Pulse Frequency Mod-

ulation over 100 km of Monomode Optical Fiber”, Electron. Lett., 18, pp. 369-371,

1982.

[47] D. J. T. Heatley, “Video Transmission in Optical Fiber Local Networks using

Pulse Time Modulation”, 9th European Conference on Optical Communication

(ECOC), Geneva, pp. 343-346, Sep. 1983.

[48] D. J. T. Heatley and T. G. Hodgkinson, “Video Transmission over Cabled

Monomode Fiber at 1.5µm using PFM with 2-PSK Heterodyne Detection”, Elec-

tron. Lett., 20, pp. 110-112, 1984.

[49] C. D. Heegard, B. H. Marcus and P. H. Siegel, “Variable Length State Split-

ting with Applications to Average Runlength-constrained (ARC) Codes”, IEEE

Transactions on Information Theory, vol. 37, pp. 759-777, 1991.

[50] S. F. Heker, G. J. Herkovitz, H. Grebel and H. Wichansky, “Video Transmission

in Optical Fiber Communication Systems using Pulse Frequency Modulation”,

IEEE Trans. Commun., 36 (2), pp. 191-194, 1988.

[51] D. H. Huffman, “A Method for the Construction of Minimum Redundancy Codes

”, Proceedings of the IRE, vol. 40, no. 9, pp. 1098-1101, 1952.



108

[52] W. H. Huggins, “Network Approximation in the Time Domain ”, Rep E 5048A,

Air Force Cambridge Research Labs, Cambridge, Mass., Oct. 1949.

[53] K. A. S. Immink, “Codes for Mass Digital Storage”, Shannon Foundation Pub-

lishers, 1999.

[54] Z. Jelonek, “Noise Problems in Pulse Communications”, J. IEE, 94, Part IIIA,

pp. 533-545, 1947.

[55] T. Kanada, K. Hakoda and E. Yoneda, “SNR Fluctuations and Non-Linear Dis-

tortion in PFM Optical NTSC Video Transmission Systems”, IEEE Trans. COM-

30 (8), pp. 1868-1875, 1982.

[56] S. Kapoor and E. M. Reingold, “Optimum Lopsided Binary Trees”, J. ACM,

vol. 36, pp. 573-590, 1989.

[57] R. M. Karp, “Minimum Redundancy Coding for the Discrete Noiseless Channel”,

IRE Trans. Inf. Theory”, vol. 7, no. 1, pp. 27-38, 1961.

[58] W. H. Kautz, “Fibonacci Codes for Synchronization Control”, IEEE Transac-

tions on Information Theory, pp. 284-292, April 1965.

[59] K. J. Kerpez, “Runlength Codes from Source Codes ”, IEEE Transactions on

Information Theory, vol. 37, pp. 682-687, 1991.

[60] Z. Kiyasu, “On a Design Method of Delay Networks ”, J. Inst. Elec. Comm. Eng.

Japan, vol. 26, pp. 598-610, 1943.

[61] D. E. Knuth, “Efficient Balanced Codes ”, IEEE Transactions on Information

Theory, vol. 32, pp. 51-53, 1986.

[62] R. M. Krause, “Channels which transmit letters of unequal duration ”, Inf. Con-

trol, vol. 5, no.1, pp. 13-24, 1962.

[63] D. A. Lelewer and D. S. Hirschberg, “Data Compression ”, ACM Computing

Surveys, vol. 19, no. 3, pp. 261-296, 1987.



109

[64] M. M. Levy, “Some Theoretical and Practical Considerations of Pulse Modula-

tion ”, J. IEE, 94, Part IIIA, pp. 565-572, 1947.

[65] D. Lind and B. Marcus, “An Introduction to Symbolic Dynamics and Coding ”,

Cambridge University Press, 1985.

[66] C. Lu, “Optical Transmission of Wideband Video Signals using SWFM ”, PhD.

Thesis, University of Manchester Institute of Science and Technology, Manchester,

England, 1990.

[67] B. H. Marcus, P. H. Siegel and J. K. Wolf, “Finite-state Modulation Codes for

Data Storage ”, IEEE J. Sel. Areas Comm., vol. 10, pp. 5-37, 1992.

[68] B. H. Marcus, P. H. Siegel and J. K. Wolf, “Codes with a Multiple Spectral

Null at Zero Frequency ”, IEEE Transactions on Information Theory, vol. 35, pp.

463-472, 1989.

[69] B. H. Marcus, R. Roth and P. H. Siegel, “Handbook of Coding Theory ”, Elsevier

Press, 1998.

[70] R. S. Marcus, “Discrete Noiseless Coding ”, M. S. Thesis, MIT, Electrical Engi-

neering Dept., 1957.

[71] R. K. Martin, “Large Scale Linear and Integer Optimization ”, Kluwer Academic

Publishers, 1999.

[72] K. Mehlhorn, “An Efficient Algorithm for Constructing Nearly Optimal Prefix

Codes ”, IEEE Trans. Inf. Theory, vol. 26, no. 5, pp. 513-517, 1980.

[73] T. Morikawa et. al., “A SiGe single-chip 3.3V receiver IC for 10-Gb/s Optical

Communication Systems”, ISSCC Dig. Tech. Papers, pp. 380-381, Feb. 1999.

[74] S. Mukhtar and J. Bruck, “Frequency Modulation for Asynchronous Data Trans-

fer”, Electronic Technology Report, ETR036, April, 2001.

[75] K. Murty, “Linear Programming”, John Wiley & Sons, Inc., 1983.



110

[76] A. Okazaki, “Still Picture Transmission by Pulse Interval Modulation”, IEEE

Trans. CATV-4, pp. 17-22, 1979.

[77] A. Okazaki, “Pulse Interval Modulation Applicable to Narrowband Transmis-

sion”, IEEE Trans. CATV-3, pp. 155-164, 1978.

[78] Y. Perl, M. R. Garey and S. Even, “Efficient Generation of Optimal Prefix Code:

Equiprobable Words using Unequal Cost Letters”, J. ACM, vol. 22, no. 2, pp. 202-

214, 1975.

[79] L. Pophillat, “Video Transmission using a 1.3 µm LED and Monomode Fiber”,

10th European Conference on Optical Communications, Stuttgart, West Ger-

many, pp. 238-239, 1984.

[80] D. M. Pozar, “Microwave Engineering ”, John Wiley and Sons, Inc., New York,

1998.

[81] R. Saal, “Handbook of Filter Design ”, AEG-Telefunken, Berlin, West Germany,

1979.

[82] K. Sato, S. Aoygai and T. Kitami, “Fiber Optic Video Transmission Employing

Square Wave Frequency Modulation”, IEEE Trans. COMM-33 (5), pp. 417-423,

1985.

[83] M. Sato, M. Murata and T. Namekawa, “Pulse Interval and Width Modulation

for Video Transmission”, IEEE Trans. CATV-3 (4), pp. 166-173, 1978.

[84] M. Sato, M. Murata and T. Namekawa, “A New Optical System Communica-

tion System using the Pulse Interval and Width Modulated Code”, IEEE Trans.

CATV-4 (1), pp. 1-9, 1979.

[85] A. Schrijver, “Theory of Linear and Integer Programming”, John Wiley & Sons,

Inc., 1986.

[86] C. B. Schrocks, “Proposal for a Hub Controlled Cable Television System using

Optical Fiber”, IEEE Trans., CATV-4, pp. 70-79, 1979.



111

[87] C. E. Shannon, “A Mathematical Theory of Communication”, Bell. Sys. Tech.

J., vol. 27, pp. 379-423, 623-656, July-October 1948.

[88] M. Soda, T. Suzaki and T. Morikawa, “A Si bipolar chip set for 10-Gb/s Optical

Receiver”, ISSCC Dig. Tech. Papers, pp.100-101, Feb. 1992.

[89] SONET OC-192, “Transport System Generic Criteria”, Bellcore, GR-1377-

CORE, no. 4, Mar. 1998.

[90] E. Sperner, “Ein Satz uber Untermengen einer endlichen Menge”, Math. Z. vol.

27, pp. 544-548, 1928.

[91] W. R. Spickerman, “Binet’s Formula for the Tribonacci Sequence”, The Fi-

bonacci Quarterly, no. 2, pp. 118-120, May 1982.

[92] W. R. Spickerman and R. N. Joyner, “Binet’s Formula for the Recursive Sequence

of Order K”, The Fibonacci Quarterly, no. 4, pp. 327-331, 1984.

[93] L. E. Stanfel, “Tree Structure for Optimal Searching”, J. ACM, vol. 17, pp.

508-517, 1970.

[94] L. Storch, “Synthesis of Constant-Time Delay Ladder Networks using Bessel

Polynomials”, Proc. IRE, vol. 42, pp. 1666-1675, 1954.

[95] G. Strang, “Introduction to Linear Algebra”, Wellesley-Cambridge Press, 1993.

[96] S. Y. Suh, “Pulse Width Modulation for Analog Fiber Optic Communications”,

IEEE J., LT-5 (1), pp. 102-112, 1987.

[97] W. E. Thomson, “Delay Networks having Maximally Flat Frequency Character-

istics”, Proc. IEE., pt. 3, vol. 96, pp. 487-490, 1949.

[98] B. P. Tunstall, “Synthesis of Noiseless Compression Codes”, Thesis Georgia In-

stitute of Technology, 1967.

[99] B. Varn, “Optimal Variable Length Codes (Arbitrary Symbol Cost and Equal

Codeword Probability)”, Inf. Control. vol. 19, no. 4, pp. 289-301, 1971.



112

[100] T. Verhoeff, “Delay-insensitive codes – an overview”, Distributed Computing,

pp. 3:1-8, 1988.

[101] R. C. Walker et. al., “A 10-Gb/s Si-bipolar Tx/Rx Chipset for Computer Data

Transmission”, ISSCC Dig. Tech. Papers, pp. 302-303, Feb. 1998.

[102] A. X. Widmer and P. A. Franaszek, “A DC-Balanced, Partitioned Block,

8B/10B Transmission Code”, IBM J. Res. Develop., vol. 27, no. 5, pp. 440-451,

Sep. 1983.

[103] A. B. Williams, “Electronic Filter Design Handbook ”, McGraw-Hill Book Co.,

New York, 1981.

[104] B. Wilson and Z. Ghassemlooy, “Optical Pulse Width Modulation for Electri-

cally Isolated Analogue Transmission”, J. Phys. (E), 18, pp. 954-958, 1985.

[105] B. Wilson and Z. Ghassemlooy, “Optical PWM Data Link for High Quality

Analogue and Video Signals”, J. Phys. (E), 20 (7), pp. 841-845, 1987.

[106] B. Wilson and Z. Ghassemlooy, “Optical Fiber Transmission of Multiplexed

Video Signals using PWM”, Int. J. Optoelectronics, 4, pp. 3-17, 1989.

[107] B. Wilson, Z. Ghassemlooy, I. Darwazeh, C. Lu and D. Chan, “Optical Square-

wave Frequency Modulation for Wideband Instrumentation and Video Signals”,

IEE Colloquium on Analogue Optical Communications, London, Digest 1989, 165,

Paper 9, 1989.

[108] B. Wilson, Z. Ghassemlooy and C. Lu, “Squarewave FM Optical Fiber Trans-

mission for High Definition Television Signals”, Proc. Int. Soc. Optical Eng., 1314,

pp. 90-97, 1990.

[109] B. Wilson, Z. Ghassemlooy and C. Lu, “Optical Fiber Transmission of High-

Definition Television Signals using Squarewave Frequency Modulation”, Third

Bangor Symposium on Communications, University of Wales, Bangor, pp. 258-

262, May 1991.



113

[110] B. Wilson, Z. Ghassemlooy and J. C. S. Cheung, “Spectral Predictions for Pulse

Interval and Width Modulation”, Electron. Lett., 27 (7), pp. 580-581, 1991.

[111] B. Wilson and Z. Ghassemlooy, “Pulse Time Modulation Techniques for Optical

Communications: A Review”, IEE Proceedings-J., vol. 140, no. 6, pp. 346-357,

Dec. 1993.

[112] X3T9.3 Task Group of ANSI, “Fiber Channel Physical and Signalling Interface

(FC-PH)”, rev. 4.2, Oct. 9, 1993.

[113] M. Zargari, “A BiCMOS Active Substrate Probe Card Technology for Digi-

tal Testing”, Technical Report No. ICL97-070, Integrated Circuits Laboratory,

Stanford University, Mar. 1997.


