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ABSTRACT
Isotropic Nuclear Resonance Shifts

It is shown that isotropic or average nuclear resonance shifts
for a nucleus in a paramagnetic molecule in solution, and in a poly -
crystalline solid, can be used to distinguish between Fermi contact
and '"pseudo contacf” contributions to isotropic nuclear hyperfine in-
teractions., The pseudo contact interaction is that isotropic hyperfine
coupling which arises from the combined effects of (electron-spin)-
(nuclear -spin) coupling, (electron-orbit)-(nuclear-spin) coupling, and
electron spin-orbit interaction. When the magnetic hyperfine inter -
action between the electronic moment and nuclear spin is approximated
by a point dipolar interaction, and the isotropic hYperfine interaction
is exclusively pseudo contact, then the isotropic nuclear shift in a
polycrystalline solid exceeds the solution shift by the factor 3(g” + gl)/
(g“ + Zg-L) where g and g, are the spectroscopic splitting factors
parallel and perpendicular to the molecular symmetry axis. Iso-
tropic shifts due to the Fermi contact interaction are the same for

both solid state and solution cases,



The Magnetic Resonance Properties of Some Sandwich Molecules

Estimates are given for the magnetic resonance properties
of the dicyclopentadienyl and dibenzene sandwich compounds con-
taining the transition metals titanium to nickel, This work follows
that of Abragam and Pryce,

To obtain a first orientation to the orbital arrangements and
splittings two models are considered, the ionic and covalent models,
The ionic model is represented by the ligand field approximation and
With the exception of Mn(Cy Hy ), strong ligand field theory has gen-
~eral applicability although not to the exclusion of weak ligand field
theory in several molecules, It has been assumed that the ionic model
applies only to the dicyclopentadienyl metal molecules and ions, The
covalent model is considered for both the dicyclopentadienyl and di-
benzene molecules and ions. The covalent model leads to the same
general results as the ionic médel. One important result with the
covalent model is that orbital angular momentum about the symmetry
axis is not necessarily quenched - the ionic model shows it to be con-
served in first-order. Both models show that with the exception of
Mn(Cs Hg ), three one-electron orbitals lie considerably lower than
the other 3d orbitals and electrons are added to these orbitals accord-
ing to Hund's rule, The ground state of Mn(cp), is apparently the

. +2
S atomic term of Mn ,



Using the results of the two models as a first orientation
the results of the magnetic susceptibility experiments (i.e., the
observed deviation from spin only values) are ﬁsed to choose ap-
propriate arrangements for the three low-lying one-electrons in
calculating the fine structure. The fine structure is considered for
both when the Jahn-Teller effect splits a degenerate orbital ground
state and whenh spin;orbit interaction splits the orbital ground state
without the Jahn~Téller distortion. However, it is found that the
Jahn-Teller effecrt bperates when appropriate in all the molecules
énd io‘ns with the possible exception of Fe(C 5H5) 2+. Expressions are
given for the g-factors and zero-field si)littings, although the lack
of knowledge as to the values of many of the parameters precluded
numerical estimates in most cases,

Hype’rfine structure is considered although not in much de-
tail. Cognizance is taken of the fact that ""exchange polarization',
which results from paramagnetism of the ion causing the a and $
spins in the 132, Zssz, and 352 configurations to be in slightly differ -
ent orbitals, leads to negative hyperfine coupling coefficients while
unpaired electrons being in orbitals having g-character leads to a

positive coupling coefficient,
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ISOTROPIC NUCLEAR RESONANCE SHIF TS



Introduction

Important information on the molecular electronic structure
of paramagnetic molecules can sometimes be deduced from experi-
mentally measured terms in a molecular (electron-spin)-(nuclear -

spin) spin Hamiltonian:

A So

I + S-4:I + S-& - (1)
v AV ~ AN v N

I
) o

In equation 1 A,é is a symmetric dyadic with zero trace, and §w

is an antisymmetric dyadic. Of particular interest is the isotropic
_hyperfine coupling term A. Especially interesting features of molec-
ular electronic structure can sometimes be obtained from experi-
mental values for A when this isotropic interaction is dominated by
the Fermi contact coupling. From this point of view it is unfortunate
that the combined effects of (électron-spin) -(nuclear -spin) coupling,
(electron-orbit) -(nuclear -spin) coupling, and electron spin-orbit
interaction can also lead to an isotropic component of the hyperfine
interaction. Thus, in general, A = AC + Ap, where AC is the contact
contribution tb A, and Ap is the pseudo contact contribution. This
pseudo contact coupling is well known in the theory of hyperfine inter-
action of ions in crystals (1), and it has also been considered in con-

nection with proton hyperfine splittings in the paramagnetic resonance

spectra of polyatomic radicals in solution (2).



| The present paper is concerned with the problem of relating
isotropic (or average) nuclear resonance shifts to the contact and
pseudo contact interactions, .Ac and AP., As will be shown in the
present work, the isotropic shift of a nucleus in a rapidly tumbling
paramagnetic molecule in solution is determined by the isotropic
‘contact and pseudo contact hyperfine terms, A = AC+ APO The iso-
tropic shift of an ensemble of non-tumbling molecules in a poly -
crystalline solid involves not only the isotropic but also the aniso-
tropic hyperfine terms’in equation 1. This means that the isotropic
resonance shifts will be different in the two cases if the pseudo con-
tact coupling makes a significant contribution to the isotropic hyper-
fine interaction, This is because a pseudo contact contribution to
A implies the simultaneous presence of anisotropic terms in equation
1, whereas a pure isotropic contact contribution to equation 1 requires
no anisotropic terms,

This fact suggests a particularly convenient method for dis-
tinguishing between contact and pseudo contact contributions to hyper -
fine interactions when isotropic nuclear shifts can be measured both
in the solid state and in solution.

Isotropic shifts in solutions due to a pseudo contact interaction
were first discussed by Bloembergen and Dickinson (3, 4) in connec-

tion with resonance shifts of nuclei in ions in solutions., Our theo-

retical expression for the isotropic shift in solution is, however, not



precisely the same as that obtained by Bloembergen and Dickinson
(3,4). Isotropic shifts in solution are known that are due exclusively
to the contact interaction (5), The present work was stimulated by
our earlier studies of proton resonance shifts in the bicyclopenta-
dienyl complexes of paramagnetic metal ions, and by the question as
to whether these shifts were due to contact or pseudo contact inter -
actions (6, 7).

In section A we will derive the isotropic nuclear resonance
shifts from the (electron-spin)-(nuclear-spin) spin Hamiltonian such
as equation 1 for the cases where the paramagnetic molecule is a)
in a polycrystalline solid, b) in solution where the rate of electron-
spin relaxation is very much greater than the rate of tumbling,

Te » Te , and c) in solution where T, & Te .
In section B we will consider the results obtained in section A when
the spin Hamiltonian arises from the Fermi contact and from the

pseudo contact interactions.



A, Derivation of the Isotropic Nuclear Resonance

Shifts from the Spin Hamiltonian

General Considerations, For our problem of the isotropic

resonance shifts of a nucleus contained in a paramagnetic molecule,

the spin Hamiltonian has the form

A

=(pls.gexH - 7% LkH_+ [p| 7h 5. Q. (2)

It should be noted that the last term of equation 2 corresponds to
equation 1, but for present purposes it is more convenient to express
the (electron-spin)-(nuclear -spin) interaction through the dyadic g& .

Equation 2 can also be written as

U - Seg°kH - YA (kH -H.)e ‘
lpl S-g-kcH - YA (kEH -H)eL, (3)
where
He |8l srq (4
Henceforth we shall only be concerned with HN° Providing,
however, that ,EN'« HO ; we need only consider iNqi{v: HNZa

This is because the components of H _ perpendicular to k produce

N ~~

AN

only a second-order contribution to the field at the nucleus relative

parallel to k.

v

to the components of HN

AN/



To calculate the isotropic shift we proceed as follows, We
set up a rectangular coordinate system in the molecule, and express
EV and ,\C,Zu in terms of this coordinate system. As the electron
spin relaxes at such a rate that the Liarmor period of the nucleus is
long compared to the lifetime of the spin orientation, T'e » the
nucleus senses only the averaged orientation of the electron spin,
Then the paramagnetic moment induced in the molecule by the mag-
netic field is obtained from the Boltzmann distribution of the electron
spin states, The Béltzma.nn average will depend on whether the
molecule is fixed in a rigid lattice or is free to undergo rapid random
tumbling, and also on the rate of relaxation of the electron, Then,
in order to obtain the isotropic component of the shift, we average

H <k over all orientations of k relative to the molecular coordinate

~m WV Vaad

system.

We let k, 2}_ , and Z{ denote the unit vectors which
determine the molecular coordinate system. For convenience we
consider a molecule with axial symmetry and let k  point along

this symmetry axis, Then the g-factor can be written

g g, ke tg (AL 77 (5)

where g and g, are the g-dyads parallel and perpendicular to

the symmetry axis, respectively, We denote the orientation of the



molecular coordinate system relative to k by £ and

k“/‘\'/"—v =cosﬂ/¢, ke A = sin ¥ cos O ,k°‘7/=sin J’sin_o_o

v ARV Y] A ANV

For the present we require no more prescription than this of the

molecular coordinate system. We will let g be the direction of
~

quantization of the electron spin. ( g may not be in the direction k,)
AN ~

The Boltzmann averaged component of spin along the direc-

tion g will be denoted by _S— and is given by
v q

s S
s = [ = s exp(-Eg /kT)]/ [ = exp(-Eg /kT)]. (6)
4 sq:-s 4 q Sq=-5 q v

Here ES is the energy eigenvalue corresponding to the eigenvalue of

9

spin Sq° The energy ES is proportional to Sq:

q

Esq = [BlHS, e, ). (7)

In equation 7, f(g, ©*, <2 ) is some function of the g-factors and the

orientation of k that will vary from one problem to another. For the
4% %

usual Curie-formula-type approximation, )ES '<< kT , equations

q
6 and 7 lead to the result

[¢7]
1

- \g f(g, '1},.(1) (8)

where

)

|8 H_S(S+1)/3kT. (9)



Then, symbolically, the isotropic nuclear shift, AH is

s =), -Elel (e # o) Qo ), L (o)

It must be noted that we have chosen the signs such that at a
fixed frequency, when AH is positive the shift is up-field, while when

AH is negative the shift is down-field.

Isotropic Shifts in a Solid. Consider a paramagnetic molecule

to be contained in a single crystal with fixed orientation relative to
the external field. We may look upon the first term in the spin
Hamiltonian, equation 2, as representing the coupling of a free

electron spin with g-factor g, * 2,0023 to an effective field He

AN

= gk H /g ()

H
e
AN A daad

The free spin energy eigenstates are then characterized by the spin

components in the direction of H ; i.e., H defines a cannonical
e e

axis of quantization gq
n
= HJ/|HE | (12)

11

gk /]gk| . (13)



The energy eigenvalues Eg in equation 7 are simply the free spin
q

eigenvalues of the first term of 'ﬂ in equation 2; i.e.,

Eg = ]ﬁ]sq q gk H_ (14)

q N

Thus, by comparison with equation 7 we see that for the present

problem,
(g, ,2) = ggk (15)
The isotropic shift is then given by the general equation,

e @ 29,

Performing the average indicated in equation 16, the isotropic shift

in a solid is

s sy B an vg (aur @l 09

Qe ° a,, , and A,) are the principal dyads along the

¥, A, and 1 directions. Equation 17 can be written in terms of
v ~v

the coefficient A and the dyads of d used in equation 1 instead of the

~

dyads of Q4

N

Il
aH = -f 73 [Alg, + 2g) + dley, -2 1. 18
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In equation 18 we have used the relations
1
A = S Aeet Ay + Ayy ) (19)
and

'émc: % (2 A - Ay - Ay ). (20)

Isotropic Shifts in Solutions, We now consider the case in

which the paramagnetic molecule undergoes rapid random tumbling
motions in the liquid state. Thatis, ’pQ and (2 are functions of

time., We can write the first term of the Hamiltonian equation 2 as

(8):
K- gy coszba (t) + g_Lsinzzﬂ- (t)1 (8] Hosk

+—;—\ﬁ| H_ (g, —gL)sin’ﬂ'(t) cos(t) { S, e'ia(t)+ S em(t)}, (21)

In equation 21 S+ and S are the electron spin raising and lowering

operators., For the moment, let us consider the second part of equa-

tion 21:

9 =2 (g, -g)) sin# (1) cos # (1) |p] Ho{s+e'i“(t)+ -s_ein(t)} . (22)
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’TC,, The time T

Let H '"act on the spin system for a time -

is essentially the time required for the molecule to turn through a
radian, or to move through a distance comparable with its dimen-

sions, Then if
T D e, -e| |BIHE,, (23)

to a good approximation, j’x(’ " has no effect on the spin system (9).

Thus g = k and we can write the remaining part of equation 21,
~ ~

(#-#'), as

= (e, +2g)/31p[H S, + (g, -g)[plH_[cos™9(9-1/3]s,. (24)

Assuming that equation 23 is satisfied, we consider the two cases
where a) the rate of electron spin relaxation is much smaller than
the tumbling rate, which is the most likely case to be met with ex-
perimentally, | ’I"C<< Tle , and where b) the rate of felaxation
is much greater than the tumbling rate, ’I'C > T ot In case a),
T‘e » Tc » the spin system ""'sees' only the average Hamiltonian.
That is, whereas it takes a time Tle for the electron spin system to
adjust to any change in the interaction, Tc being much shorter than
T|e’ the interaction changes many times before the spin system can

adjust to a previous change, and hence, the spin system senses only

the average interaction. Thus the energy E is simply

S
q



12

Esq = |8 H_ S, (g” + Zgj_)/3o (25)

Comparison with equation 7 shows that

f(g, 4, 0) =£(g) =(g, +28)/3 (26)

1l

Thus, the isotropic shift from equation 10 is

AH = (ENEV >7211 = - gl g, + 2¢)/3] ”jﬁ“}iz})ﬁ 0

11

- (U9 ( Aot Qyp + Ayy ) g [B] (g, + 22)0 (28)

Referring to equation 19, equation 28 can be written

AH = -(1/3)% [p] A (g, * 28, ) (29)

In case b)J 'T'C>> TIe , the spin system can rapidly adjust to
the instantaneous change caused by molecular tumbling. Under this
circumstance we should consider that thermal equilibrium among the
energy eigenstates
E = lﬁ’H Sk (g,cosz’ba+g_L sinzzﬁ ) (30)

o) |

S
q

was established for every value of 7% ., Then
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g, ¥, Q) =£(g, F) = (gncm":a?}“r gLsinzﬂ}L), (31)

and the isotropic shift is therefore

AH

- E|@|<g”coszq}i + g, sin’f ) (ggjg)}qﬂﬂ (32)

AH

(g [pls) { Loee(3e )+ 28) + ( Ay + Ay)
(g“ +4g1_) } ° (33)

Then referring to equations 19 and 20, equation 33 becomes

AH = - (g ]6l15) [5Alg, +2g) +2 Do (e, -g)]. (39
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B, Considerations When the Spin Hamiltonian Arises from

the Fermi Contact and Pseudo Contact Interactions

General Considerations. Quite often the principal (electron-

spin) -(nuclear -spin) interaction giving rise to an isotropic shift is

the Fermi contact interaction. The form of this interaction is
W - * 2
= (16 7/3) [B| 7HS1[¥(0)]%, (35)
: ~V W

where ]"#(0)]2 is the electron density at the nuclear site. However,
the contribution to the isotropic shift of the pseudo contact interaction
may be as large as or larger than the contribution from the Fermi
contact interaction. The pseudo contact interaction is that isotropic
hyperfine coupling which arises from the combined effects of
(electron-spin)-(nuclear-spin) coupling, (electron-orbit)-(nuclear -
spin) coupling, and electron spin-orbit interaction. We will approxi-
mate pseudo contact interaction between the electronic moment and
nuclear spin by a point dipolar interaction. We express the para-
magnetic moment in terms of a g-factor, thereby taking into consider-
ation the combined effects of spin and orbit,

This dipole field at the nucleus does not average to zero over
molecular orientations, because the induced paramégnetic moment

itself depends upon the molecular orientation relative to the external
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field. In certain solids — especially ionic crystals — one may
have to include in the calculation several nearby molecular para-
magnetic moments, in addition to the far away dipole whose effects
may be calculated using bulk magnetization formulae., The extension
of our calculations to this more general situation is trivial when the
coupling of the paramagnetic moments with one another is small
compared to kT,

We will now complete the prescription of the molecular co-
ordinate system. We take the origin of the coordinate system to be
situated at the electronic point dipole and let,it; denote the position
of the nucleus of interest. We take j to be perpendicular to r,
so that r lies in the plane formed by x® and ,ﬁ\, and describe the

e

angle between and r by X : Tk  =cos X ;) T A =sin X .

A

The pseudo contact interaction between the electronic mag-

netic moment p and the nuclear magnetic moment y %A1is

ﬁ=—y7l;l|.L'T°I (36)
where
T = -;1_5— (3££/r2 -2 ) (37)

and 2_" is the unit dyadic. The spin Hamiltonian for the hyperfine

coupling is therefore
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U= A [plseg-T-1 (38)
Then, referring to equations 3 and 4,

a = geT (39)

P

which on expansion gives

ke ak:,\ am}
4 = Lo Z5%\ ary
Ayw Qg 7o

1 2
= 8, (cos™ X -1) -3—3 g, cos X sin X 0 (40)
T

T

gLéos X sin X —1—3 g_L(B sin’ X -1) 0
T

0 0 —gl/r?’

In terms of the symbols in equation 1,

A = ;1 3 (g" -g,) (3 cosZX -1), (41)
/Jmc ’&c). 'ch?
-é = Ay b

duv By D

2
(L3 (cos™x -1)(2g +g) ~3—§ (—g"—;—gi cos X sin X 0
3r : r
3 1
= | 2 (g, + 1
r3 —-————(g“z g.) cos X sin X r3 lg,- _—-———'-*(g"; 2g1) (3 coszy_ -1)]o
-1 o)
Lo 0 Slg, + BB cosx )
) r

(42)
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and,
0 Eer  Lev 0 —3—3 . (g—'"zi—g—‘—) sin XcosX O
3 (g.n. - gi) . v
E = |-E., o e 3 3 sinXcosX 0 0 (43)

- EK‘I/ - E).,/ o 0 0 0
On the other hand, for the Fermi contact interaction

A = Gpp = Gyy= A = ___136" I’%(o)l2 (44)

with all off-diagonal components zero.

Isotropic Shifts for Molecules in Solids and in Solution, Hav-

ing the values of the components of ,\CAZ/ for the Fermi contact and the
pseudo contact interaction, we can now obtain formulae for the iso-
tropic shifts from the results of section A, These formulae are sum-

marized below,

Pseudo Contact Interaction

The general formula for the resonance shift (isotropic and
anisotropic components included) obtained from equation 16 before

averaging over ¥ and o is
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AH(S, ) = - (1/7%) Ipl & {gfcoszﬂ (3 cosz)c—l)

+ g_LZ sin’a# (3 sinz)c cos’n -1)

3 2
tZ (gll

1 +g) sinZ’DasinZ)écos_Q}. (45)

The isotropic shift for a paramagnetic molecule in a crystal from

equation 17 or 18 is -
AH = - () |8l & (Beos®x -1) (g, + g, -g)/3. (46)

The isotropic shift for a paramagnetic molecule in solution for

T\e » ’T’C is, from equation 28 or 29,
AH = - (Ur)) g [B] (3 cosx 1) [(g,+ 2g)/311(g, - g)/3]. (47)

From equation 33 or 34 the isotropic shift in solution with T‘ K T
—_— e c

is

AH = - (1/15:7) ¢ |81 (3 coszx—l)(-%g,,2 tg, 8- 4gf)o (48)

Fermi Contact Interaction

The isotropic shift, regardless of whether the molecule is in

a crystal or in solution is

ams g B g e 0g) BT v P (49)
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C, Discussion and Conclusions

Separation of the Contact and Pseudo Contact Interactions,

According to the foregoing results one can distinguish between the
contact and pseudo contact contributions to isotropic nuclear resonance
shifts. Thus, if all of the hyperfine interactions were purely dipolar
in origin., then the isotropic shift for a crystalline solid is calculated
to be greater than the isotropic shift in solution for the most likely

case, ’)’C<< Tle’ by the factor

g, +g)l(g, *28). (50)

This result is in marked contrast to isotropic shifts for a nucleus due
to the pure contact isotropic hyperfine interaction, which are the same
for both the solid and solution cases. As pointed out in the introduc-
tion, the basic reason that one can distinguish between contact and
pseudo contact contributions to isotropic shifts involves two factors:
(a) The anisotropic hyperfine terms in equation 1 contribute to the iso-
tropic shifts in the solid, but not in solution. (b) The presence of a
pseudo contact term in equation 1 implies the presence of anisotropic
terms.,

These considerations may be illustrated by reference to the

work of McConnell and Holm (6, 7) on proton resonance shifts in
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nickelocene, Ni(C 5H5)2, These shifts were interpreted in terms of
proton contact hyperfine interaction, and were used to draw con-
clusions regarding the unpaired spin density on the cyclopentadienyl
rings in this substance. The observation that the average proton
shifts in this substance in‘ solid and in solution were nearly the

same (1,20 and 1,10 +0.02 gauss, respectively) supports the previous

interpretation of these shifts in terms of contact interaction,

Limitations. It must be remarked, however, that there are

several possibly s.eriéus limitations in the present method for dis-
tinguishing the two possible contributions to the isotropic coupling,
In some cases there possibly might be important but quantitatively
uncertain bulk demagnetization corrections in the event that the iso-
tropic shifts are of comparable magnitude,

There are errors implicit in the paramagnetic point dipole
approxil"nation, In many practical problems the molecular paramag-
netic moment will be distributed, rather than concentrated at a point.
We may expect that the ratio of equation 50 will overestimate the shift
ratio, Zero-field splittings comparable to HS]HO would require
modifications of the basic Hamiltonian, equation 2, and the spin polar-
ization equations 6 and 7.

Finally, our formulae for the solid case have little quantitative

validity if in the single crystal the intermolecular exchange
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interaction J' (radians/sec) is large relative to ’g“ -g-'l Ho Iﬁ'/ h
and to the eiectron spin lattice relaxation time Tle" In this case an
averaged set of g-factors over certain molecules in the unit cell
would be necessary for calculating the approximate £(g). Of course,
the entire treatment breaks down in the limit ﬁlJf > kT. On

the other hand, we expect our calculations for the solid to be valid

in cases where I/Tle» ’J, ; l.e., when the electron spin relaxes
fast enough to pre‘clude any phase coherence between electron s.pins
in neighboring molecules. In favorable circumstances paramagnetic
resonance spectra can show whether or not any of the above com-

plications need be considered in any particular case.
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SOME SANDWICH MOLECULES
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Introduction

Of unceasing appeal is the aesthetically pleasing structure of
the "'sandwich' molecule: the bis-cyclopentadienyl metal and dibenzene
metal molecules and ions. The analysis of paramagnetic spectra is
simplest when the molecules have a high degree of symmetry - most
previous work has been done on molecules with cubic symmetry. So
it is interesting now to explore not cubic, but five-fold and six-fold
axial symmetry coupled with a center of inversion. As will be shown
first-order spin-orbit interaction may occur in one of the sandwich
ions. Moreover, while there is a fairly complete understanding of
the electronic structure of octahedrai complexes, the same is not
true of the sandwich molecules. Itis hoped that the paramagnetic
resonance study will shed some light on this problem as well,

Much of the early theoretical work was non-specific, as in-
sufficient experimental data had been gathered for guidance. How-
ever, after an X-ray crystallographic determination of the structure
of ferrocene Dunitz and Orgel (1) proposed a theoretical model,
which, except for a slight modification given by Moffitt (2), has had
a fair degree of success. The model finally obtained by Moffitt (2)

gave ferrocene two covalent bonds between the metal atom and the
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two cyclopentadienyl rings. The orbitals used in bonding were 3d
orbitals --- Moffitt assumed .that the 4p orbitals were too high ener-
getically to contribute appreciably to the bonding. This left three

3d orbitals which were assumed to be comparativelsr non-bonding or
magnetic orbitals, Then with ferrocene the six electrons beyond the
argon configuration of Fe+2 can be put into the three non-bonding
orbitals forming a diamagnetic compound, as is found experimentally,
Moffitt (2), following Dunitz and Orgel (1), considered the 3d+l“

orbitals to be the bond-forming orbitals of the metals atom, the ?:d.+2

and 3d0 orbitals being comparatively non-bonding., (The subscript
denotes the value of the angular momentum about the symmetry axis
in units of R .) On the other hand, Moffitt assumed that the 3d0
and 4s orbitals mix giving a low lying, non-degenerate, comparatively
non-bonding orbital (Sd('))q Liehr and Ballhausen (3) have more re-
cently attempted to correlate with Moffitt's model (2) the measured

magnetic susceptibilities (i. e., the number of unpaired electrons)

of a variety of metal atoms in various oxidation states. Liehr and

1

Ballhausen calculated the separation between the 3d0

and 3diz
orbitals using an electrostatic or ligand field approximation, re-
placing each of the carbon atoms by point charges.,

Dunitz and Orgel (4), admitting Moffitt's modification while

at the same time making their previous work more quantitative, ap-
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proximated the splitting of the 3d orbitals by assigning an energy
value to the degree of overlap between the 3d orbitals and the 7 -
orbitals of the cyclopentadiene groups rather than using the electro-
static model of Liehr and Ballhausen (3). This showed quite clearly
that the 3d0 and 4s and ?;d+2 orbitals could participate in bonding to
a limited extent by sharin—g— of the electrons in these orbitals with the
aromatic rings. Dunitz and Orgel (4) also attempted to calculate the
heat of formation of ferrocene and nickelocene, and their calculations
agreed fairly well with experiment, But still the role played by the
4p orbitals remained undetermined and its study somewhat neglected.
More recently the 4p orbitals have received a fair amount of
attention experimentally (5,6, 7). The‘K X -ray absorption edge data
is assumed to arise from the electronic transition from the metal
1s(K) level to the nearest unfilled np-orbital, Thus, if the 4p orbital
is involved in bonding, the nearest np-orbital is a 4p-antibonding-
orbitals This transition should be greater in energy than the cor-
responding 1s-4p transition in a free ion. However, owing to the dif-
ficulty in estimating the energy of the 1s-4p transition in an isolated
atom, the quantitative significance of this work is still uncertain (8).
Brown has considered just the rudiments of the theory of the 4p
orbital role in the sandwich compound (8). For the most part the para-

magnetic resonance experiments will not shed much light on the im-

portance of the 4p orbitals,
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Consideration is given in the present investigation to sand-
wich compounds containing the metals titanium to nickel in various
states of oxidation., Estimates of the magnetic resonance properties
are given for each of the transition metal sandwich molecules for
various possible electronic structures. As no one electronic struc-
ture is assumed superior to any other, the results are somewhat in-
determinate. However, as the paramagnetic resonance experiments
are somewhat difficult to perform, it is hoped that this work may be
a guide for experimentation. Also, itis iloped that this investigation
will provide a basis for later interpretation of spectra. Hence, upon
completion of more experimental work, those electronic structures
which conform to the experimental results can be selected, this work
then assuming the character of a theoretical calculation based on
experiment,

In this thesis, we will consider ligand field theory; ise., an
electrostatic field representation of the aromatic groups, for the bis-
cyclopentadienene metal ions and molecules. Then by considering the
covalent model we will see what changes are nécessary in the results
of the ligand field theory. For the dibenzene metal molecules and
ions we will consider only ti'le covalent model, But, except as a first-
order orientation, neither the ionic nor the covélent.models yield

detailed enough results to calculate the necessary magnetic resonance
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properties, Therefore, we will base estimates of the g-factors and
zero-field splittings on reasonable orbital arrangements which are
consistent with the observed magnetic moments from susceptibility
measurements,

We will consider the hyperfine structure expected, but enough
is still unknown about the magnitude in general to render our results

useful only as a rough guide,
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General Theory (9)

The paramagnetic properties of the sandwich compounds are
determihed by the interplay between various electromagnetic inter-
actions with different relative strengths. The Hamiltonian for the
molecules is given by the sum of the kinetivc energy of the electrons
and the terms representing the various electrostatic and magnetic
interactions. By far the dominant terms in the Hamiltonian are the
spin-independent terms representing the kinetic and electrostatic po-
tential energies, We will write these terms as 2ZW_ + W_ + V,

L F
'WL and 'WF are the kinetic and electrostatic potential energies of an
aromatic group and the free metal ion, respectively, and V represents
the interaction between the metal ion and the rings. We could add a
term representing the interaction between the electronic and nuclear
vibrational motions. This interaction becomes important if the ground

state of the molecule under ZWL + W_ + V is orbitally degenerate; and

F
it results in the distortion of the molecule to lower symmetry, Hence,

we will let

V = K+ T (1)

where K represents the metal ion-rings interaction when normal sym-

metry exists and T represents the interaction under lower symmetry.
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Next in importance to the electrostatic terms is the spin-

orbit interaction,

* 5 (2)

/s

WS-O =Z Zj

N

where the summation is taken over the unpaired electr'ons on the
metal ion, /v%i and ,.,Svi are the one-electron operators of orbital and
spin angular'momentaq g': is the one-electron spin-orbit coupling
coefficient, its value is determined by the hydrogen-like quantum
numbers n, £, Thatis, if all of the unpaired electrons are in 3d
orbitals, theﬁ (1 is the same for each electron and can be taken out

of the summation. Moreover, if it is sufficiently accurate to discuss

the ion as an atomic term of a configuration 3a " , We can write
w = A LS, (3)
" v

where L = > ii and S = > s, are the total orbital and spin angular
i ~ i

momenta, and A is relatedto & by a simple factor (see Condon

and Shortley (10)). Using the atomic term corresponds to the weak

ligand field theory. Another interaction, independent of the nuclear

spin and external fields, is the spin-spin interaction

w 250 ) 2% [s;Cry-x)]ls;e(x ;)]
B 3 -3 T . (4)
s-s .. !r.-—r. 5
SRS LN S )ri-—r.‘
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The summation in equation 4 is again over unpaired electrons and f
is the Bohr magneton. Ws_ is difficult to treat and its effects are
usually small so we will not consider it in much detail,

The interaction with the nuclear spin arises from two causes;
the mag‘netic interaction with the nuclear magnetic moment (linear in
the nuclear spin vector I), and the electrostatic interaction with the

electric quadrupole moment of the nucleus (quadratic in I), Explicitly,

the nuclear interaction is

(£.-8,)°1 (r.es.)(r.°1)
ZI vl Al v vl Al ANl e
Wy = 2[g| YA e +3 o

(5)

R CAICRE 43;(?1-1) < 2;}2;0{15%1@ + 1)}

The magnetic interaction includes the dipolar interaction with orbital
and spin angular momenta (the orbital magnetic moment is centered
on the nucleus) and the Fermi contact interaction. ¥ is the
gyromagnetic ratio of the nucleus in units of A . Q is the quadru-
pole moment in units of 10"‘24(:rn2 (a property of the nucleus), and &
is the time-averaged electrostatic potential (11), In writing the quad-
rupole interaction in the diagonal form given in equation 5 we have
assumed the molecules of interest to have axial or near -axial sym-
metry, which is, in general, true. We will not conéider the quadru-
pole interaction further as it is usually small and is here mentioned

only for completeness.,
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Finally, there is the interaction with the external magnetic

field H,
wmw

,B,(AE-I-ZASN)*'AI;{-Y’HIf'H., (6)

The total Hamiltonian is then

S 2W, +W_+VEW W
% L F s-0 s-8

Yhiem, (7)

N o~

+ |l (L + 28) - H+W

where the terms have been arranged in what is normally a decreasing

order of strength. The level separations of ZWL + WF are of the

-1 ' 4 -1
order of 1050m , V causes splittings of the order of 10 cm , Ws o’
1

- -1 - -2 -
10%em™, W__ o lem™, |8l(L + 28)* H, 1 cm L w._, 107%m™, and
- Vaod ~ P :

N

the last term 1O~3cm_1,

Equation 7 is then the basis on which we will estimate the
paramagnetic parameters, and we will see how each of the terms af-
fects the sandwich molecules, starting with the potential V in the next

section,
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Electronic Structure in the Absence of Magnetic Interactions

Ionic Model for Bis-Cyclopentadiene Metal Molecules and

Ions, Ideally ZWL + 'WF + V should represent the spin-independent

Hamiltonian for the entire bis-cyclopentadienyl metal molecule,

Even if ZWL + W_ + V represents only the interaction between elec-

F
trons in 3d, 4s, and. 4p orbitals of the metal, the 77 -orbitals of
cyclopentadienyl rings, and the shielded carbon and metal nuclei,
a far simpler problem than the first, we could not solve the wave
equation without a great deal of labor. However, we can obtain a
first orientation for the problem by considering a ligand field approxi -
mations Assuming the paramagnetism of the molecule is to be located
principally on the metal.atom, we will let V represent an electrostatic
field arising from the cyclopentadienide (cp) rings acting on the metal
atom. Later we will restrict V even more by letting the ligand field
arise from a geometrically simple distribution of charge.

As is customary in these problems we consider a central-
field approximation for the metal atom and let the effect of the elec-
trons in the argon configuration be a shielding of the nucleus, Then

for electrons formally in 3d orbitals we consider the perturbation

eZ )
ij r.. t V. (8)
1)
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The sumrnatién over i and jis the electrostatic repulsion between
electrons above the argon configuration, and V is the ligand field,

If V is considerably smaller than the electrostatic repulsion be-
tween 3d electrons, we let V act on the atomic states of WF, the
states being characterized by a total L. and S, This is called the
weak ligand field approximation. On the other hand, if V is consider -

ably larger than the electrostatic potential energy, we let V act on

the 3d, 4s, and 4p orbitals in a one-electron orbital approximation

. € . . .
and consider Z — to be a perturbation which determines the
i<j "ij

total spin S. This is called the strong ligand field approximation.
The ligand field approximation boils down to the evaluation of

matrix elements of the form
/ % V) o) dy’ (9)

whether the wave functions ¥ be atomic states or one-electron
orbital states. We will let Evbe the vector from the origin at the
metal nucleus to an element of change giving rise to the ligand field,
and 1etﬁa’ be an arbitrary field point. For the sandwich compounds

V(r') can be taken to be the potential energy arising from a simple
Vaad

distribution of charges. Thus,

V() :_e/ (ligand field) " (10)

~ |z-r'|
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We can expand (1/lr-r'l) in terms of a series of spherical harmonics
(12):
k

(2] K 4 ¢ 1
Lo 2wt ) v (v (#¢) W

tfv—};’l 0"

where r, and r, are the lesser and greater, respectively, of r and
r' and Ykm (4, ¢ ) is the normalized spherical harmonic which we
know to be the angular solutions of the hydrogen-atom problem.

Since the spherical harmonics form a complete set, we can

expand the ligand field in terms of them:
(ligand field) = Z R-(r)Y: _ (4, ¢) (12)

where Rf(r) is some function of r, Considering one-electron orbital

states and writing them as

V&) 2 R, E0Y,, (#) (13)

and

Y0 = R, 6Y,, () (14

we obtain
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@ k
[Henve) v e - X 5 4m x

k=0 m=-k 2ktl

1 w2 2 .
{/‘/ k+l [R[(r) ] Rnrﬂr(r )Rn,,ﬂ,,(r )r r' drdr ]"

o

x {‘[T/ZZZ‘ (U”/)Y- ('Iﬂ</)s1.n7} de d'ﬂ}

x {/0‘ «[,Ykm('?/a,"/l)Yg Y m.(’Va:'ef')Yinmn('ﬂ"f ,) sin ﬁldf'd,ﬁ?/ ] (15)

Integrating over 2} and ¢ gives (ékf 5 - )« We can sim-

mm

’

plify the resulting expression by looking at the integration over 7

and (/' » The product Y*'m' Y can be expanded in terms of

2" m"
spherical harmonics of c.)r'der (£' + 2") and lower. At most {£'+ £")
equals 4, because we are only considering 3d, 4s, and 4p orbitals,
Then for the one-electron orbital case,

x : < 47
/ V) VEDK(Nar e > =) 5o

k=0 -k

© o k
/] >
X{o 1) r>k+l [Rk(r)] Rn'j'(r') Rn'lﬂrv(rl) r r' drdr' x

m el .
x {/0 [Ykm(ﬂﬂ,'tf’) Y ¢ Yi,,m”(f,ﬂ)’y )sin# dy’ dﬂ}(m)

It is also worth noting at this point that s, d, g, ...-functions are

even, while p,f, ... -functions are odd., That is, under inversion the
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Psf, .00 -functions change sign while the s,d, g, ... -functions do not.
Thus, for example, in the expansion of Y*'m' Yl”m” where
L' = £" = 2 we obtain spherical harmonics of order 0,2, and 4 only.

If we are dealing with atomic terms with total L. and S, we

write V as

4 k ok ,
V=2 { > > 2;:; —~— [Rk(r)]rzdr Ykm(”"”}, (17)

i (k=0 m=-k ° ¥

b4

where we sum over the electrons in the term configuration beyond
argon. If the electrons in the configuration have the same n and £,
the radial integral can be factored out of the sum over i, and the sum
ziYkm(@dl’ 59/) can be handled most conveniently by expressing it in
terms of operators acting on the 2L + 1 states of the total orbital an-

gular momentum L (13). That is, if

’V/a 'L,mi; S’ms> (18)

and

1. 1
'L,mﬂ, S,ms> (19)

=
Hi

then
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k

* 4
[¥vpar e 5 3 unm

k=0 m=-k 2k+ ¥

© » k '
* {‘[/ r<k+1 [Rk(r)] (Rnnﬂq(ru))z rzr'zdrdr‘}x (20)

Ty

A '
x Ek<L,m£,fk(LX,Ly,LZ)(L,m£> m_,m'

i : i d H ’ =
where R _,,, is the radial factor of ’}La an ’y/b f.k(Lx Ly LZ)

is a function of L, ,L: ,L. , and gk is a constant from the transfor -
x'Ty' Tz
mation to operators. If, for instance, we consider the configuration

3

3d” of V+2, the ground state is 4 Then Rn =R and L = 3,

F° A 3,2
The convenience in using the operator method is that f(Lﬁ’Ly’Lz) is
determined only by the ligand field and Z-‘ K depends on the term
considered and is independent of m, and m}! .

A more complete treatment will be found in Stevens' paper
(13) where tables are given for the various matrix elements
<L, mﬂ]fk(LX’LY’LZ) 'L, m"a> Also values for é—k are given for vari-
ous ground terms by Bleaney and Stevens (14), although their values
of E‘ Kk 2re good only for terms obeying Hund's rule of maximum mul -
tiplicity. However, this operator method is not particularly conveni-

ent for determining the matrix elements between different terms.

(For the treatment of these matrix elements see Abragam and Pryce

(15).)
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Although the above equations for the matrix elements of the
ligand field are written in terms of complex spherical harmonics,
henceforth we will only be interested in real functions. Thus, we
will redefine the Y's so that the ¢ -dependence is in terms of

sines and cosines. We will let

20+1 (2 - )m])!: lel
Yz’lm|(«},ef)= 2w (L +jm)) ! t2

(cos? )sin m ¢

(21)

20+1 (2 -m))!
Yz,-1m|w’4)) =y 2™ (L+m|)"%

P;ml(cos #)cos m¢ |

With this definition the factor —-Zill—g-_::—l— in equations 16 and 20 should

be replaced by —2%1;1;1—— .

We will now consider an explicit form for the ligand field.

(ligand field) = 2. R (x) Y, (), (22)
km

we can use the fact that the spherical harmonics form an orthogonal

set of functions and can write

R (r) = foonkm(qﬂ,(f)[ligand field]sind d ¢ d*. (23)

By considering the symmetry properties of the molecule we can de-

termine for which k and m this integral vanishes because the spherical
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harmonics occurring in equation 22 must have the same symmetry
as the ligand field, First, if the origin is a center of symmetry for
the molecule, then oﬁly even spherical harmonics yield a non-
vanishing integral. Thus only spherical harmonics with k = 0, 2,
and 4 will give a non-vanishing result. Secondly, if the xy-plane is
a plane of symmetry, then spherical harmonics with sin m ¢ de-
pendence vanishes, because under = -¢ , sinmg—> -sinm¢ .
Thirdly, the molecule may have an n-fold axis of symmetry through
the origin. Then a rotation of the molecule or ligand field by ii-
radians about the axis of symmetry (the z-axis) leaves the molecule
unchanged. Thus equation 26 vanishes for all m except where m is
a multiple of‘n: Under | ¢ ¢F+;21—17-— , cosm¢y (or sinmy) —>
cos (m ¢ +rf 21 )or sin (m ¢ +r—1? 2m™)), But cos (mt,0+%n 21 )
zcosmd , or sin(my + 1’;1132."" ) =sinm¢ , only if mis a multiple
of n.

To evaluate the non-vanishing integrals it is convenient to
introduée a model for the ligand field, the model being a distribution
of point or line charges. First we will consider the model for the
normal sandwich configuration, where the cp rings are parallel and
the molecule has a five-fold axis of symmetry. One ligand field model

replaces each of the ten carbon atoms by point charges. From the

above consideration of axial symmetry we see that the lowest order
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spherical harmonic with m £ 0, which will describe the ligand field,
is of order five., But since we need consider only spherical har -
monics of order four and less, the ligand field will be adequately
represented by YO, 0,. YZ, 0’ and Y4’ g "~ We drop Yl,O and Y3’ 0
because they are odd with respect to both inversion through the origin
and reflection in the xy-plane. Therefore, we obtain the same energy
level splitting if we consider a circular line charge threading through
the five carbon atoms of each ring. This is a general physical re-
sult, Even if cp rings are not parallel or are translated with respect
to each other, the 3d, 4s, and 4p orbitals still "see“only circular line
charges and not the five-fold charge periodicity.

The radial part of the ligand field will be represented by Dirac
delta functions, delta functions of r, 7% , and ¢ for point charges
and functions of r and 7 for the line charge discussed above. When
the Dirac delta function is used in coordinate systems other than
Cartesian, we have to be careful about integrating factors. In fact,
the integrating factor has to be eliminated. Therefore, for a point

charge of strength -q at T 7}0, gﬁo in spherical coordinates, we

write the ligand field as

-q 6(1’0—1') o 5(4%0_1}) ° & ‘Fo— /) (24)

r r sin 7%

because a volume element in spherical coordinates is dr(rd %)

(r sin} 4 &( ). If we have a line charge independent of ‘f , We write
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the radial function as

) (”o"'})

r

—qg(ro—r)° (25)

where -q is the charge per unit line distance,
Working with two circular line charges instead of the ten

point charges,

4 k
2. 2 R () Y ()

k=0 m=-k

(ligand field)

-2(q 2 r_sin %) §lr-r) <  (26)

Tr 2
o

1 1 [5, 3 2 3 2 4
—_Y + = — (1 =¥ Fo—_— - y
x{zﬁ 0,03 —(1 > )YZ’O o (8-40Y "+ 35Y )Y4’0}’

where (-q 27 rosin 1}0) is the total charge of each circular line charge

and

Y =0,85 — (27)

where b is the carbon-carbon distance in the cyclopentadienyl groups
and ) is the distance from the origin to the circular line charge. We

will call the potential arising from this normal molecular configura -

tion K. Acting on one-electron orbitals, equation 10 can be written as
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K(nrN') z2elq 2mr sin 7}0) { 2ym 1 YO’O(qﬂﬁcf’)

Ty
1Tr<2 3 2. 1}/ / WT- 2 4
+E-—3-(1--2—Y)Y2’0( ¢+ YT (8- a0v% 3577 x
T
1'4 '’
<
x < Y4’0(1ﬂ,s”)} (28)
rs

Because of the explicit dependence of equation 28 on ¥, the
splitting of the 3d-orbitals has been calculated for various values of
this parameter., To make the calculation systematic, we have chosen
to keep the radius' of the charged loop constant (b = 1.41 &) and vary
r by moving the loops closer to the metal ion. These results are
shown in figure 1, Appendix, p. 106 . We have calculated these re-
sults using the 3d radial function for Mn-[_2 given by Hartree (16).

The energy units of figure 1 are based on letting Iql = 'e’ , the elec-
fronic charge. The orbitals are denoted by the subscript which is

the orbital angular momentum about the symmetry axis in terms of

4. . The carbon-metal distances for V( cp)z, Cr(cp)z, Fe(cp)z,
Co(cP)é, and Ni(c]_o)2 given in table I are also shown in fiéure 1.
However, because the T -electrons of the aromatic rings are distri-
buted in regions closer than the carbon-metal distance to the metal
ion, it may be better to evaluate the 3d-orbital splitting of these
molecules with r between 1,5 and 1,7 A, This corresponds to taking

the charged loops about 0,8 A, or a little less than half the
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Table 1

Carbon-Metal Distances

M M-C distance (A) ref,
v 2.3 0* (17)
Cr 2, 22* (17)
Fe 2,05 (18)
Co 2.1 3* (17)
Ni 2.20 (19)

*These values of the carbon-metal distance
were estimated by comparing these unit
cell dimensions with Fe(Cgz Hs ), , where the
carbon-metal distances are known from

X -ray work.



45

van der Waals radius of aromatics, closer than the aromatic groups
to the metal ion, Although we have calculated only the splitting of
the 3d orbitals, it should be pointed out that K mixes the 4s- and 3do—
orbitals, These are the only orbitals that mix under K, This will
lower the énergy of the (3do—4s) mixed orbital,

From these considerations, we will assume that the 3do- and

3d+2— orbitals lie close together while the 3d+1~ orbitals are con-

siderably higher in energy. We will later show that this assumption
is borne out by the observed magnetic susceptibilities,

Figure 1, Appendix, p. 106 shows that 3d+m and 3d_m are
degeneréte, This indicates that lz, the orbital angular momentum
about the symmetry axis, is a good quantum number, This is a result
of being able to replace point charges by a circular line charge.

We now turn to consider the ligand field splitting of atomic
states characterized by a total L and S under the potential K., The

potential can be written
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: 1 _
K = Zl‘ Ze(qZTrr031n 12%0) {Zﬁ (;—))1 YO, O(#‘.' 4)

4
fi 2 4y [r¢ ‘
)i YZ’O(q}g.'%)qu E- (8-40Y"+ 35Y )(—5)34,0(7}{.,%)

ry

3 r2
}1_7'_ 2 2y <
+5(12Y) 3

Ty

2
= Ze(qZ'lTrosin 7}0){(%>)3d+ %(1_%\:2)(1}3)3 [LZZ_L(L-H)]

4

Z

¢

4
4
B (8-40Y2+ 35Y ) > [35L
64 3

r75 d

30L(L+1)L ZZ+ 25 L Z2-6L(L+l)+ 3LZ(L+1)2]}

(30)

where in equation 30 we have substituted the operator equivalents to
the spherical harmonics as given by Stevens (13). Only for the metal
ions in V(Cs Hg ), , Cr(Cs H; );“ , Mn(Cg Hg ), , and Ni(Cs Hs ), is this
approximation possible because only for these compounds does the
magnetic susceptibility correspond to the multiplicity of the ground

state terms of the respective metal ions. The ground state terms of

+2 3

4 4
these ions are V. : 3d® "F; Cr+ . 3d® F; Mn+2: 343 68; and

Ni+2: 348 3

+2 '
F. The 6S state of Mn  is orbitally non-degenerate so
' 4
it is not split by the ligand field. For 3d® °F and 3d® 3F, Bleaney

and Stevens (19) give
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2
¢ 705
(31)
2
b= 315

Using these values for a and 3, and again using Hartree's radial
functions for the 3d orbitals of Mn+2(16) as representative, we plot in
figure 2, Appendix, i), 107, the splitting of the F -state versus the
distance between the metal atom and the charged loops with fixed ra-
dius (1. 22 A), The energy scale is based on taking the charge on each
loop to be equal to the electronic charge. Figure 3 shows that for
V(Cs Hs ), , Cr(Cs Hy )2+, and Ni(Cs Hj ), a;'l orbital singlet lies
lowest,

If under K the ground state is orbitally degenerate or nearly
degenerate we must consider the Jahn-Teller effect. The Jahn-
Teller effect results from the intéraction between molecular vibration
and the orbitally degenerate ground electronic state (see Moffitt and
Liehr (20), for example), But for our purposes the Jahn-Teller ef-
fect just produces a distortion of the normal molecular configuration,
We will consider the distortion where the cp groups remain parallel
and as regular pentagons, but are translated with respect to each

other (I), measuring the distortion by the angle a, We will not
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T«
(1)

consider distortions of the cp rings because it does not produce

splittings different from (I).

Then under the distortion (I), with a slight translation in the

y-direction,

2
1, 3.4 1.0 3.2 a (3 _2
—(1-2 —J1-= —— + -2 + 2
> zY),Yzﬂ rS -5V -5 ) 1Y, (tZ Yoy, #gvae 'y, , (32)

and

1 2 4 1 2 2 4 2,
1—6(8—40\( +35Y )Y4’O — l—é[s-v (40-36a") + Y (35-51a7) ] Y4’0

+

2 2 2 2.
3710 Y (1-5Y )aY4+ +§£ Y (2-3Y )a2Y4 5

16 1 16

y 2 2
64 4,43 128 4,-4 (33)

where we have used the convention for denoting spherical harmonics

as given in equation 21, From these transformations we see that we

can divide the potential V roughly into Kand T, V — Kas a —» 0,
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Qualitatively, this distortion removes the orbital degeneracy

as shown for the one-electron orbitals:

3dXZ 3dx2 —yz
3d —= I Aaz — 1 Baz
o
3d 3d
yz Xy

s . 2 . .
It is to be noted that the splitting varies as a , for small distortions,
as it should since a distortion of -a obviously cannot reverse the
splitting. Also, under the distortion the one-electron wave functions

mix, For the slight translation in (I) along the y-axis,

3d — 3d +a3d +b3d, ,
(o] (] X

Yz

3d ~— 3d -a3d +e3d, ,
vz Vz o x

3d  —» 3d  + e 3d (34)
XZ XZ Xy

3d — 3d - e 3d
x

Xy Xy z

-b 34 -
3dX2- 2 > 3dX2- Yz 3 o c 3d

Yz

where the coefficients a, b, ¢, and e depend on the strength of the dis-
tortion and on the energy separation between the orbitals under K.
Within the strong ligand field approximation we have tentatively

assumed that the do and d+2 orbitals lie considerably below the d+l
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orbitals energetically, But we have not been able to determine con-

vincingly whether the do—orbital lies lowest or the d+ orbitals.,

2

Nor do we know the extent of the Jahn-Teller distortion, However,
we are able to learn some of the answerrs empirically by comparing
the observed values of the magnetic susceptibility.

The experimental values of the magnetic susceptibility can be

expressed in terms of effective magnetic moments by the rlation

M =J 311§TX B (35)

after correcting the magnetic susceptibility X for the diamagnetism

of the ligands. In equation 35, kis the Boltsmann's constant, T is the
absolute temperature, N is Avogadro's number, and § is the Bohr
magneton. The effective magnetic moments for the sandwich com-
pounds are tabulated in table 2, The metal appears to be doubly -
charged in the bis—cyclopentadienyl metal molecules and correspond-
ingly more charged in the sandwich ions, but it appears to be uncharged
in the dibenzene metal molecules, We will come back to the dibenzene
compounds in the next section where we consider the covalent model.,
For the cp sandwich molecules and ions we can discern a gen-
eral orBital arrangement from table 2: three d-orbitals lie consider -
ablér below the other two d-orbitals (we are neglecting the 4s- and 4p-
orbitals for the moment, although the 4p-orbitals are presumably

considerably higher than the d-orbitals) and electrons are added to the
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Table 2

Experimentally Measured Magnetic Moments of the

C ompound* Number

Sandwich Compounds

Number of

of d- [ [ unpaired

electrons Expt.(p) Spin only(B) electrons Ref,
Ti(cp)zH 0 0 0 0 (21)
Ti(cp), 1 2,29+, 05 1,73 1 (22)
V(cp), *F 1 1.90+, 05 1.73 1 (22)
Ti(cp), 2 0 0 0 (23)
Vicp), T 2 2.86+.06 2.83 2 (22)
V(cp), 3 3.84+,04 3.87 3 (24)
Cr(cp), * 3 3. 734,08 3,87 3 (25)
Cr(cp); 4 3,20+, 16 2,83 2 (26)
V(bz), 5 1.68+,08 1.73 1 (27)
Cr(bz)(cp) 5 1. 70 1,73 1 (28)
Cr(bz), t 5 1,71 1.73 1 (29)
Mn(cp), 5 5, 714, 29** 5.91 5 (30)
Fe(cp), T 5 2.34+,12 1,73 1 (26)
Cr(bz), 6 0 0 0 (25)
Fe(cp), 6 0 0 0 (26)
Colep), T 6 0 0 0 (26)
Colcp), 7 1,76+.07 1.73 1 (26)
Ni(cp), T 7 1,82+, 09 1.73 1 (26)
Ni(cp), 8 2.86+,11 2,83 2 (26)

*cp = cyclopentadiene negative ion, bz = benzene,

**Diluted with Mg(cp); .
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three low-lying d-orbitals according to Hund's rule of maximum
multiplicity, There are two exceptions to this general pattern, how-

t2 co s s . .
ever, Ti ~ has only two d-electrons, but it is diamagnetic. This
might arise from the interaction with neighboring molecules in the
crystal which quenches the spin; although, it may arise from the
do—orbital being considerably below the d+2-orbita1. Mn(cp), has

five unpaired electrons instead of only one, This must arise from
the especially great stability of the 6S state of free Mn+2,

Except for Ti(cp), , the sandwich ion with two d-electrons has
two uniaaired electfons, while the compounds with three d-electrons
have three unpaired electrons. Except for Mn(cp)z, the cp sandwich
molecules with % d-electrons (7/ =4, 5, 6) have (6 -7) unpaired
electrons. These latter are Cr(cp); » Fe(cp):, Fe(cp), , and
Co(cp):, Then the molecules Co(cp), and Ni(cp)z+ with seven d-
electrons have only one unpaired electron.

The three low-lying orbitals are not pure 3d- orbitals, One of
them isvsome combination of 3d0 and 4s orbitals. The other orbital
formed from the 3do and 4s orbitals must be considerably above the
three low-lying orbitals,

Deviations of the observed magnetic moment from the spin

only value are a measure of the amount of orbital angular momentum

-1
in the -ground and low-lying ( ~ 103cm ) excited states. We will con-
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sider the results of the magnetic susceptibility measurements in
detail later when we discuss the fine structure for each of the

sandwich molecules in table 2.



54

Covalent Model., In considering quantum mechanically the

change in energy in the formation of a sandwich molecule from two
cyclopentadienide ions and a free metal ion, we calculate an exchange
integral and a coulomb integral. Except for using the point or line
charge model, the ligand field approach represents the coulomb in-
tegral. That is, the exchange integral is assumed to be zero., That
this is néf a good approximation in the sandwich compounds is demon-
strated by Dunitz and‘Orgel's calculation of the overlap between the
3d orbitals of iron in ferrocene and the cyclopentadienyl rings., Using
molecular orbitals of the appropriate symmetry for the rings Dunitz

and Orgel obtained (4)

S(a , 3d) =0,01
1g o

+1 _
S( eg"" 3 3dil> - Oo 37
(36)
+2 _
S( eg s 3di2) = 0.29
S( q,‘g, 4s ) = 0,50

These values, however, may be considered to be extreme, because
the carbon-metal distance in ferrocene is shorter than any others
that have been obtained (Table 1), Therefore, in this section, instead

of assuming that each of the magnetic electrons moves in an orbital
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associated completely with the metal ion, we will assume that the
q -electrons of the aromatic system and the electrons beyond argon
of the metal move in molecular orbitals, orbitals which are con-
structed from orbitals associated with both the metal atom and the
aromatic rings. We will start by forming 7, symmetry orbitals for
the aromatic rings.
For cyclopentadienyl using the five sz orbitals we can obtain

the symmetry orbitals

!

%1 - -I]o { Ps1 * P2 * P3 * P4 ¥ Pys5 } (37)
e : vn':n {pzl * ‘“mpzz * wzmpz3 * w3mpz4 * w4m Z5} 9
m = i—_l, -_l-_Z (39)
where w = eiZﬁ/S, the 7/ 's are normalizing factors, and the sub-

scripts of P, number the carbon atoms around the ring, We have
generated these functions by using the five-fold rotation operator Cjy ,

Similarly, for benzene we obtain the molecular orbitals

= g + + 4
21 ‘Vo { Po1 * P2 T P,3 * P4 ™ Pus Pzé} (40)
m _ o, m 2m . 3m 4m . 5m E
© Y m Po1 tw PZZ+ @ Pt W pz4+ w P,s" ® Pug

(41)

m =+1, +2 (42)
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- N _ - -
by * Y3 {le Pa2 T Pu3 " Puy T Pu5 m Py } (43)

, iz2m
where for benzene w = e12 /6, The calculated energy for these

molecular orbitals is shown in table 3. Q is a constant and B, which

is negative, is the usual resonance integral,

Table 3

Aromatic Molecular Orbital Energies

Cyclopentadienyl Benzene
Molecular Orbital Energy Molecular Orbital Energy
a Q+2p a Q+2p
+1 m
e Q+Z[3cos(—2g—) e+1 Q+p
-1 -1
e e
+ , +
e 2 Q-Zﬁcos(—z—;-T—-) e 2 Q-p
-2 -2
e e
bl Q-2p

Moreover, with the two aromatic groups of the sandwich
molecule in a staggered conformation, the molecule has inversion
symmetry, Then we can combine the molecular orbitals for the two
aromatic gro’ups into symmetrical and unsymmetricai (gerade and

ungerade) molecular orbitals under inversion., To a first



57

approximation, the g and u aromatic orbitals of the same rotational
symmetry remain degenerate.

We now have to see what metal ion orbitals mix with what
aromatic molecular orbitals. First we see that since s- and d-
orbitals are even functions they; will mix with g aromatic molecular
orbitals, while the p-funttions are odd so they will mix with u-
orbitals. Also, the em-molecular orbitals have been formed so that
they have the same rotational symmetry as metal orbitals with the
component of orbital angular momentum about the symmetry axis mo.

We thus obtain the molecular orbitals for the sandwich molecule

i = —1/0(do + Ys + Ba‘g) (44)
4, = ‘)/1(dil +e egil) (45)
4, - 7)2(c1iz + Kegiz) (46)
s' = 7)3(s trd + ';-,a'g) (47)
al =V la + o) (48)
e Vsl s A by (49)

T = 7)6(a\g +pd + L s) (50)
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where the 7 's are normalizing factors. Except for d' and s' we
o

have here defined only the bonding orbitals; there is an analogous

set of antibonding orbitals.

From table 3, for the dicyclopentadienyl system the ground

2, +1 -1 + -1
) (e "e e 1eu )6 and for dibenzene

. . 2
state configuration is (a ) (a
18 1u g g u

+1,4 , +1.4
(a.lg)2 (alu)2 (e—g—l) (e-l-l-) . Let us now consider the bonding between

a metal ion with two electrons beyond argon (e.g., Ti+2) and the
dicyclopentadienyl system., Which of the metal orbitals to be wused
in bonding will depend on a) the overlap with the aromatic rings and
b) promotional energy involved in rearranging the electrons in the

metal ion and the dicyclopentadienyl system. From these consider-

' ‘ , -+1.4
ations it would seem that the configuration (al‘g)2 (a‘u)Z (eal) (d-li-l)4

would be more important than the configuration (aig)2 (a,'u)2 (euil)4

4 +1 +2
1 . 3 — —
(d+2) : first, because S(eg s d+1)> S(eg R d+2) and secondly,

because the d_'kz—orbitals are presumably higher energetically than

dl

+
e Moffitt (2) has estimated that the eg—l-orbitals of the dicyclo-

pentadienyl system have about the same energy as the 3d+1—orbitals

of iron which gives considerable credence to the second mentioned
reason. However, a mixture of these two configurations is closer to
the reality than either alone. This explains how an ionic model gave

useful results: the d_'!_ and d(‘) orbitals lie considerably lower than

2

what is now the d_"_='~1= -antibonding orbitals.,

In the dibenzene metal compounds there may be only one low-
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lying magnetic orbital, the d(‘) orbital, because from table 2 the ob-
served value of the magnetic moment is the same as the spin only

value. The use of the d;_z—orbitals is of great importance to the

stability of the dibenzene molecules as follows from the electro~

neutrality principle (31). Charge transferred to the metal atom through

41
- oo -, and d_'l_l—orbitals is balanced by the charge

1
u

the a' -, a

transferred to the aromatic groups through the d_'l_z—orbitalso

Before the configurations for the ground states of the sandwich
molecules having unpaired electrons can be written down, we have to

investigate an apparent difficulty: If an electron in a d_"_ -orbital, say,

1

is out on the rings at a certain instant, does it '"lose its sense of
direction" and come back to the metal atom in the d_l-orbital? If
this were so it would admit sub-configurations of the form{d_"_l-I- d'_l}.
This problem has considerable relevance because in a later section
we will be interested in the effects of spin-orbit interaction on the
mixing of spin and orbital angular moments. However, we can dis-

+
pose of this problem by expanding the molecular orbitals e 2, e+1,

-1 -2 . . .
e , and e of cyclopentadienyl and benzene in terms of spherical
harmonics taking the origin at the center of the aromatic ring: we will

find that the sets of spherical harmonics associated with these four

molecular orbitals are mutually exclusive,
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If we let
2T
then
21 * £6 (Mo m)
[(em) exp(cmp) dy = 7, Pn:Zo' w : (52)

For cyclopentadienyl the right side of equation 52 can be written as

—ym P { l+4(-1)m‘—mcos(m'-m) 151 cos(m'—m)%z—} (53)

First, if we replace m' by m'+ 5 or m'- 5, the expression in equation
53 remains unchanged. Therefore, what we obtain for m' is true for
m'+ 5 and m'- 5, as well as m' + 10, m' - 10, etc, Proceeding further

we find

oo
"= X - '?1 }2, (m +52) (cyclopentadienyl)
== IZlm-f-Sz}/ (54)
Similarly,
m 2 . .
e == P f\?z \2 (m+67) (benzene)
Yz-00 12[m+6'7), ’ (55)

occurs in the expansion

From‘equation 54 or 55 we see thatif Y "

4, m
+1 ) ) . p +2 -1 -2
of e 7, say, it will not occur in the expansion of e , e , ore
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Therefore, if an electron is in the d+ -orbital it will not be found at

1

a later time in the d . -orbital. Formally, m , the orbital angular

-1 L’
momentum about the symmetry axis is still approximately a good
quantum number even with bonding, and configurations may be written
accordingly,

With regard to the orbital angular momentum operator, £, in
Viad

general,
(emliz\em) # 0 (56)

although the expectation value of lz for these molecular orbitals is
probably small, Also, these molecular orbitals will obey the same
rules for the raising and lowering operators as do the corresponding

d-orbitals, except that for cyclopentadienyl
+2 -2
(e ‘1-|e ) # 0 (57)
and for benzene

(e+2\1-|b1) :(bl]z-le"z)# 0 (58)

We will not be too much concerned about the magnitude of the matrix
elements of A{/Wi‘th respect to the molecular orbitals associated with
the aromatic system because our later results are dependent on spin-
orbit interaction and the spin-orbit coupling coefficient for the aro-

matic groups is quite small,
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The orbital splittings with the covalent model are essentially
in accord with those of the ionic model, The main difference is that

the orbital angular momentum is reduced. Thus, for instance,

(d;rz|gz|d;rz) = 2hk{ 24 o (59)
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Fine Structure

General Theory., Two important paramagnetic properties are

the spectroscopic splitting factors (g-factors) and the zero-field
splitting (when S2 1), Of the magnetic perturbations applied to the
ion in a ligand field, the g-factors are determined by the spin-orbit
interaction, while both the spin-orbit and spin-spin interactions de-
termine the zero-field splittings, The effect of the spin-spin inter -
action will be considered qualitatively only because a) it is usually
small compared with the spin-orbit interaction, b) it gives rise to
no further splitting of the energy levels beyond the spin-orbit inter -
action, and c) it is especially difficult to determine when the total
orbital angular momentum L is no longer a good quantum number,
Our method of handling the spin-orbit interaction depends on
whether the orbital ground-state of the ion in a ligand field is non-
degenerate or near-degenerate; i.e., whether the energy separation
between the ground state and the next higher state is very large com-
pared to the spin-orbit interaction (El —E0>> < ) or of the same order
of magnitude as the spin-orbit interaction (El-EO’V & )e We will first
consider the method of calculating the g-factor and zero-field split-
tings arising from spin-orbit coupling when the orbital ground-state

of the metal ion is non-degenerate,
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The method involving projection operators used by Pryce (32)
is the more general and elegant procedure for obtaining the necessary
relations, but the more straightforward method of Bleaney and
Stevens (14) will be used here. We consider the magnetic perturbation

Hamiltonian

ﬂl= Zﬁ'i jiosi + )sl2(£i+ zii) °H (60)

The ionic states perturbed by the ligand field, including bonding,
will be taken as our basis states., These states then represent the
solutions of the Schrddinger equation containing only kinetic and
electrostatic potential energies, both of which are reals Therefore
the states |n> can be chosen real and independent of spin variables

so the matrix elements of £. =-ir x 2
1 v a T

are purely imaginary,
As li is Hermitian, diagonal elements vanish and off-diagonal ele-

v

ments are antisymmetrical ( <ml £i ln> = - <n| ii lm> )« De-

noting the ground state by \O> , we have in first order

ol & 1)-50)

1

w® = G| [0

Vaad

+ 2 (20) + 25() < H o)) (61)

2|pls-H | (62)
~mw NV
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where S(i) acts on the ith electron and S = 2 s(i). (In the following
/W. i
we will reserve subscripts for denoting components of a vector.)

In second order,

W(Z) _ Z <0|'g‘;,n?énl’f’( |0 (63)
n#o n

> S z{<oup(i;ln)~<r;lzy(j)lo>

w7 =x,y,z 1i,j ngo

n (o}

x (&s,0) 4 [B1H ) (a0 + (el )} . (64)

It is sufficiently general for our purposes to take (i = ( j
for all i and j because 3d, 4s, and 4p orbitals are not mixed under

spin-orbit interaction; i. e., considering hydrogen-like orbitals

"'pnﬂm and %n‘ﬂ'm' ’

/fy/n’;m FosV . dr =04 1EL (65)

Equation 64 can be simplified further. As \0> and |n> are

products of one-electron orbitals, the matrix element <O , ﬂp‘(i) |n>
vanishes if ‘0> and 'n> differ in more than one orbital (33) ---
|O> ‘and |n> will differ by at least one orbital, Let us say that by

permutation IO> and ln> differ in the jth orbital,. Then

<0’£H(j)|n> . <Ol£p(i)|n>gij . (66)
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Further, because the spin-orbit interaction is small it is a suffici-

ently good approximation to let S(i) operate on the manifold of spin
i

functions characterized by the total spin S, and S will have the value

of one-half times the number of unpaired electrons; that is, the

ground state has maximum multiplicity. Then since

<S,ms l Su(i) \S‘, m '> <S, ms‘ sp‘(j) 1 S, ms‘> (67)

we obtain

<s,m5' sH(i) ]s,ms'> 2 %é,ms‘suls,ms'> . (68)

Writing

bt 55 CHODGILOID
E -E

n#o i

n
equation 64 can be written
Y
}-L:7/=X:Y:Z 25 B H
z 2
+ 28| = AWSHHV + B AW}H}LHV . (70)

Combining with equation 62, to second order,

(1), (2 _ { R+
o Ms7=235y,z 2RIy 25 A SFY

2
'(Tz%) A wSSy - BZ‘AWHHHV } ) ()
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Equation 71 gives the energy in terms of the spin variables and the
applied magnetic field, The coefficient 2( SW; —2%- AW/) is the p,?
dyad of the g-tensor, the terms involving SPL SV represent the con-
tribution of spin-orbit interaction to the zero-field splitting, and the
terms involving HH H,) correspond to a temperature-independent
susceptibility,

If the orbital ground state of an ion in a ligand field can be
approximated by an atomic term with total angular momentum L,
then, as given by Pryce (32),

= Ol )yl o) (22)

M o E - E
n (0]

N

and

(1) (2) _
\ AR —p,‘V:Zx,y,z Z‘BI(SW"’\AW)SHHV

2 2
TAASS C PA WHHH”}" 7

Since A v is a symmetric dyadic, it can be diagonalized.
v

Therefore, we can write zero-field splitting terms as

2 2 2 1
A S+ A S+ A S -3(/\.XX+/\W+AZZ)S(S+1)

XX X VY y zzZ z
1 2 2\
A A s s )

Z_§s(s+1)]°

(74)

tLA,,-5(4 A IS,
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Neglecting the first term on the right side of equation 74 because it
gives rise to no splitting, we can write the spin-Hamiltonian for the

g-factor and zero-field splitting as

Y - loleH s _+ lp}gyﬂysy+ Blg B S

+D [SZZ__31_S(S +1)] + E (sXZ_syz) (75)
where
g, = 2- = AL (76)
D = - (5)° [AZZ——Zl—(AXX+Ayy)] (77)
B s 2(5) (A -n,)e (78)

If the molecule has axial symmetry, = A and
Y XX vy

4 = g, IFIHS + g lpl (HS_+ Hysy)

2

+D[s . —;- s(s +1)] . (79)

When the orbital ground state of an ion under a ligand field is
near ~degenerate (El—EON ¢ ), the g-value and zero-field splitting
caﬁ be calculated to second order in the orbital by the preceding
formulae, However, spin angular momentum is not approximately

conserved. When the orbital ground state is near-degenerate it is
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convenient to first apply Ws—o and consider the interaction with the
magnetic field later, This leads to a secular equation that may be
difficult to solve depending on the degree of the equation, However,
the general form of the resulting states can be predicted. If the
molecule has one electron or one hole (cf. Ti(Cs Hs ), T and Fe(Cgs Hy )2+
in the discussion below), the result of the ligand field and spin-orbit
interaction is to leave a Kramer's doublet lying lowest, If the mole-
cule has two unpaired electrons or holes (cf, Cr(Cys Hy ), below), the
ligand field and spin-orbit interaction leaves a group of low-lying
states: a singlet state separated from a doublet by the zero-field
splitting. We cannot predict without a calculation whether the doublet
or the singlet lies lower.

When Ws—-o is applied to orbital states which are near-
degenerate the resulting states are not eigenfunctions of Sz° There-
fore, to continue to use the spin-Hamiltonian formalism we introduce
a fictitious spin vector S', The spin-Hamiltonian for the g-value is

N

then
J%' HS ! H S ! H S
= + L'y
gx X X gy yy+gz Z Z (80)

1

With one electron or hole we use S' = > and denote the states of the

Kramer's doublet by | t -%->, and
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g, {(1/2[ + <-1/z[} L+ 28 {[1/z> + (4/2}} (81)
R PR (O SO

e, 2 <1/z)fzz +2s_[1/2) (83)

where é {,1/2> + |-1/z>} and —é {'1/2> + [_1/.2}}

are the diagonal representations of SX' and Sy'° There is a complica-

o
n

tion which results if the x,y, z coordinates are not the principal co-
ordinates, i.e., if the matrix elements such as <1/2 l £X+ ZSX [l/2>
do not vanish., These matrix elements will vanish if the x,y, z coor-
dinates are symmetry coordinates, But if thesé non-diagonal ele-
ments are not zero, then we can transform to principal axes x',y', 2z,
and equation 80 is written as
)

W= e H s '+ g, H S e, H S (84)

Likewise, with two electrons or holes we let S' =1 and

g <+1]LZ +25_ l+1> . (85)

However, the calculation of g, and gY is complicated by the fact that
in general l_—l;1> and '0> will be separated energetically by an

amount which is not small compared to 2|B|H ; but the diagonal

representation of SX'is% {‘+ 1> + V2 |0> + {-l>} o
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Therefore, a secular equation involving the matrix elements of

|Bl (,]J'u + 2S) < H has to be solved. The g-factor is then obtained by
~ ~m

operating on the energy solutions with J/d H . If 2A is the energy

difference between lil> and lO> the energy solutions have the

form+ A and + (-A i\ﬂ&?+ a? B2 H? ) with a~1, so for PHK A,
the g-factors vary linearly with H.

We have obtained the general formulae for calculating the -
g-factors and the zero-field splittings arising from spin-orbit inter-
action when the orbital levels are non-degenerate or near-degenerate
in the absence of magnetic effects. The first-order spin-orbit inter-
action was assumed to vanish so we had to go to second-order in the
orbital to obtain the preceding formulae. There is, however, the
possibility that the ground orbital state is degenerate in the absence
of magnetic effects. It may be recalled that in the section dealing
with the covalent model the molecular orbitals that were constructed
did not necessarily have zero expectation values for lzo It is thus
possible to have first-order spin-orbit interaction which will split
the orbital degeneracy. The spin-orbit interaction couples the elec-
tron spin with the orbital moment thus aligning the spin along the
symmetry axis. We again use the fictitious spin variable s' and

s

because of the spin alignment g, - 0 and g, is given by
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< ot st>

R (86)

The overall g-factor is then
g = g /3 (87)

We can obtain a g-factor in this manner for each of the two doublet
states into which the degenerate level is split by spin-orbit inter-
action. To obtain an effective g-factor with which we can compare
the magnetic moments in table 2 we have to consider a Boltzmann
average. Letting the lower state have g-value g and the upper g,

with respective energies El and EZ we obtain

-(E, -E;)/kT

Beff 1 o (B2 -E1)/KT

(88)

Since both states have the same multiplicity we have dropped this
factor.

""mon -

The doublets resulting from spin-orbit interaction are
Kramers doublets'' because transitions between the two levels do not
occur in the usual magnetic resonance experiments. Since gL(gX, gy)
is zero there is no magnetic moment perpendicular to the symmetry

axis fhrough which transitions can be induced by the rf-field. Itis

found that in several rare earth ions in a crystal field transitions
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occur between the non-Kramers doublets if both the rf- and applied
magnetic fields are parallel to the symmetry axis (34). Baker and

Bleaney (34) give as the fine structure spin Hamiltonian
= s'H + A s'+ '
Weog, IBls, 0, + Aas +As (89)

1
where s' is the fictitious spin variable (s' = —2—) and A and A do
~ X y
not have unique values but have a distribution of values; they repre-
sent the effect of random local departures in the molecule from the

normal symmetry, Transitions between the non-Kramers doublets

occur at the energy

s gl )? + aZea?]V? (90)



74

Fine Structure of the Sandwich Molecules, To calculate the

g-factors and zero-field splitting due to spin-orbit interaction we

will use the methods of the preceding section based on the knowledge
obtained from considerations of the ionic and covalent models and

the experimental values of the magnetic susceptibility. Since detailed
knowledge about the ground and low-lying excited states for the para-
magnetic sandwich molecules is difficult to obtain from either the
ionic or covalent models, we will use the experimental values of the
magnetic susceptibility to decrease the number of possible orbital
arrangements. Thatis, the greater the deviation between the experi-
mental and "'spin only' values of the magnetic moments given in

table 2, the more orbital contribution to the magnetic moment. There
is, however, an important difference between the g-factor one would
obtain in a magnetic resonance experiment and the magnetic moment
obtained from susceptibilities, This disparity results from the fact
that most of the data in table 2 was obtained at room temperature
(296° K), while magnetic resonance experiments need to be performed
at low temperatures (~10° K) when there is an appreciable contribu-
tion of orbital magnetism to the total magnetic moment. Therefore,
it is possible that most of the orbital magnetism is associated with a
staté that, although appreciably occupied at room temperature, is
vacant at low temperatures, Then the apparent g-factor from sus-

ceptibility measurements could deviate considerably more from
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g = 2,00 than the g-factor observed in a magnetic resonance experi-
ment. The converse may also occur; the deviation of the observed
values of the magnetic moments from '"spin only" may be larger at
low temperatures than at room temperature.

Since in our considerations of the g-factor and zero-field
splittings we will not be able to distinguish between the compounds
listed in table 2 with the same number of d-electrons, we will seg-
regate the work below into groups depending on 1) the number of
unpaired electrons and 2) whether we expect non-degenerate or

near -degenerate ground states, i.e., whether or not the observed

magnetic moment differs from spin-only or not. We will use the

fact that within the three magnetic orbitals @ electrons correspond
to (6 - p) holes, reversing the sign of the spin-orbit coupling coeffi-
cient.

One Electron or Hole, Non-Degenerate Ground State, This situation

is applicable to V(CgHg), , Cr(CgHg)(Cs Hs ), Cr(C6H6)2+, and
possibly to V(Cg Hy );__HFo With benzene as the ligands it appears from
the results in table 2 that the sub-configuration (d_‘l_2)4(d6) lies con-
siderably below (d_'kz)s(d('))2 because the observed_magnetic moments
are essentiallybthe_same as the spin only values. The possible rea-

son for this has been discussed in the section dealing with the co-

valent model, The g-factors are expected to be near 2.00. The
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+
g-factor for Cr(CgHg), has been found to be 1.99 (35,36,37). We
. . H
will consider V(Cyz Hg ), below.
v o+

Co(Cs Hz ), and Ni(Cs Hsz ), each have one unpaired electron.
Two orbital arrangements for these compounds can be considered.
We can put the unpaired electron into the 4s' orbital giving g » 2. 00,
or we can put the electron into a dXZ* or dyz* antibonding orbital,
In this latter case we cannot use equation 71 to calculate the g-factor
because this dces not correspond to Hund's rule of maximum multi-
plicity. Since there is only one electron in the dXZ* and dyz* orbitals,
we take & positive and mix these orbitals with ﬂzo This yields

. % . 1 1 d 1

g, 2 £X and .@y mix dxz » say, with the do’ dxz_yz ’ an de
orbitals (which are filled so ¢ 1is taken to be negative) which yields
g, » 2. Since the energy difference between dXZ* and d;, d::c‘?—yz ;
and d>'<y is probably considerably greater than that between dXZ* and
d *, the overall g-factor may be less than 2.

Vz
If the d’il orbitals are degenerate in the absence of magnetic
interactions We—obtain with spin-orbit interaction two non-Kramers
doublets. We take & positive and obtain g, * 2(-k + 1) ~0 for the
lower doublet and g = 2(k + 1) ~4 for the upper doublet, kis the
orbital angulaf momentum reduction factor and is less than one.

With equations 87 and 88 this leads to an effective g-factor consider -

ably less than two. Since table 2 shows the effective g-factor to be
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about two, the Z'fl- orbitals probably are not degenerate in the ab-

sence of magnetic effects.,

One Electron or Hole, Near-Degenerate Ground State. This cor-

+ o+
responds to Ti(Cs Hs ), , Fe(Cs Hs ), , and probably to V(Cy Hy )2++,,
The three types of energy level arrangements we need to consider

are represented by (II), (III), and (IV) for one electron or one hole,

E ar
o o g
, + 2 E d ©
Byty? 1By @ xty? xZy?
——— dl
B ar B ar *2
o o Xy xy
(11) (111) (IV)

The energy level diagram (II) can be distinguished experimentally
from (III) and (IV) because of the difference discussed previously be-
tween magnetic susceptibility and magnetic resonance experiments,

Since d(‘) and d+2 do not mix in first order under £ , the g-factor

e

should be very close to 2,00 for the orbital arrangement (II), If the

d+2 levels are slightly split due to molecular distortion, but d; still

lies lowest,

2 2

- _lal LI

gx‘Z‘Z?[E' “E. " E, ,-E | (51)
xy o x~y o
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g T 2- z?[———————’clz + |e]2 ] (92)
Yy E 'E B 2 2 - E
xy o xX=y o
2
v = 2oty o
Xy o
where
a = (d(’)\zx\d}‘(y) (94)
b= (af] e lde 2) (95)
c = (d(‘)\iy[d;{y) (96)
e = (dé\?y\d'z_yz) (97)
£ = (al|e, a.) (98)

The matrix elements a,b,c, e, and f will be small, being dependent
on the mixing of orbitals, equation 34,

When d_, are split and d! v lies lowest, (III), we obtain
p: 4

g, = 2 - 22‘———“—"—E |a._lE (99)
o Xy

g = 2- zé‘,- 81” + Lol ] (100)

Y LEXZ—YZ "y Bo " Fxy
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P SR A
x=y xy o Xy
where
g = (d;qr”yld:lcz-yz) (102)
and
k = (d}'cy\gz|.d}'<(2_yz) (103)

While the matrix elements in a,b,c,e,f, and g will be small, k will
be of the order of one. Comparing with the susceptibility measure-

ments, table 2, we can expect

V(Cs Hs ), : gis a little less than 2.0 (~ 1.9)
Ti(Cs H; ), : g is considerably less than 2.0 (~1.2-1,6)
Fe(Cs Hs ), : gis greater than 2,0 (~ 2,1-2.3)

if d}'{ lies lowest,

These solutions for the g-factors (equations 91-93 and 99-101)
are correct to second order only, We have used the distorted con-
figuration in which the cyclopentadiene rings have been translated
with respect to one another along the y-axis, keeping the x-axis as a
two-fold symmetry axis. For a more exact formulation of the g-
factors we would have to turn to a secular equation, but this is not

warranted here because of the uncertainty in the mixing of orbitals,
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Also, we have neglected the contribution of the 9:_1 antibonding
orbitals in calculating the g-factors. -

(IV) represents an orbitally-degenerate ground state in the
absence of magnetic interactions. Neglecting the orbital reduction
factor (k=1), equations 86 and 87 give g = 3,46 and g, = -1.15 for
the two non-Kramers doublets. The doublet characterized by g
lies lowest in Fe(cp)2+ (& negative), while the doublet characterized
by g, lies lowest in Ti(cp)z+ and V(cp)ZH. In the absence of better
data for the spin-orbit interaction in these ions we will assume the
doublets to be split by 200 cxn—l in Fe(cp)z+° Using equation 88 at
room temperature ot ~ 3.0 for Fe(cp)2+ which can be brought into
agreement with the observed 8o 2,7 by letting k{1, Even letting
the energy difference between the doublets vanish yields 8ops ~ 2,6
for Ti(cp)2+ which is smaller than the observed Eofs = 2. 7. If the
observed magnetic moment is correct, energy diagram (IV) is untenable
for Ti(cp)z+q Taking the energy difference between the doublet to be

100 cm”1 in V(cp)z++ = 2.3 which is in agreement with the ob-

* Bets
served 8otf = 20,2 with k<1,

Two Electrons or Holes (S = 1), Non-Degenerate Ground State,

+ v
V(Cs Hg ), and Ni(Cz Hg ), are the examples of this category; we

\ . |
will discuss V(Cz Hs ), first. As was pointed out above, the matrix

element (d' | £ |d', ,) leads to the greatest deviation from g = 2,
xy' "z x°y
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Therefore, we need consider only three energy level diagrams. We
can put the two electrons in the de' and d'XZ g2 orbitals with the

d' level considerably higher, (V). Or we can consider the
o

-1
dlxy and d‘xz—yz to be split by 4/104 cm , and put the two elec-

trons into the low-lying d'Xy and d‘o orbitals, (VI). We will also con-

sider the orbital degenerate case (VII),

_ a' E - d!
Eo o Xz—yz XZ-YZ EY
____d-'l-z
-2
! 1 1
Exz—yz o dx2-y2 EO R do
1 1 dl
By T gy By T 4y —t %
(V) (V1) (viI)
~The energy level arrangement (V) leads to
2 2
- \a| |b]
g, = 2 Z[E _E R CES S (104)
o Xy o x%y
Il el ©
g 2 E 5. Y E-ESS (05)
o Xy o X<y
2
- [£]
8, T2 <CE B (106)
o Xy
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using the matrix elements as defined by equation 94 to 98, Using

equations 76-78,

D

TCle, - 5 te)] (107)

and

1

E -81- ¢ le - gY] o (108)

For the energy levels érranged as in (VI),

2
_ [bl
8« Z”é"EZZ_E (109)
X<y o
lgl2 !elz ] '
g = 2-¢ + (110)
Y EX;-YZ bl EXY Exz_yz - EO
2
i k|
g, 2—:E22-E (111)
x>y Xy

with the zero-field splitting given by equations 107 and 108,
Although we have considered the one-electron orbital approxi-
. R . . +2 . +
mation, it is possible to consider the ground state of V. " in V(Cjs Hjz ),
to arise from a 3F state. The ligand field theory gives a degenerate
ground state (ml = + 2) under K, Therefore, the potential K+ T
has to be considered in first order. However, the fine structure

parameters are essentially the same as obtained above with the one-

electron approximation,
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For the orbitally degenerate ground state (VII) spin-orbit
interaction yields three non-Kramers doublets. The g-factors from
equations 86 and 87 for the doublets are g =.0.,58, g, = 1.15 and
g3 1,73, if we set the orbital reduction factor equal to one, g
characterizes the lowest and g3 the highes doublets for V(cp)z+.,

Even taking the energy differences between the doublets to be zero
yields a 8 s smaller than the observed Eots ~ 2.0, Therefore, (VII)
cannot describe the orbital grouﬁd state of V(cp)z+° Moreover, (VII)
cannot describe Ni(cp), or Cr(cp), . Even though for these latter
molecules g4 characterizes the lowest and g the highest doublet,

the calculated g o5 is still less than the observed 8ofs " 2,0 for
Ni(cp), and 8ot © 2.25 for Cr(cp), regardless of the assumed energy
separations between the doublets,

There are various possible fine structure parameters obtain-
able for Ni(Cs Hz ), . First, NiT2 in Ni(Cs Hz ), can be characterized
as arising from a mixtﬁre of the 3F and 3P terms, In terms of one-

electron orbitals for the holes, the ground state has the form

lo) = {a a d  +bd d_z} (112)

with excited states
)
o)

{e d d + ed, d_l} (113)

{c dda + ed, d_z} (114)
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\1) = {c 4,4 - e d, do} (115)

|-1b) = {c a4, - e d d_l}» . (116)
This yields

g - 2.00 (117)

3 3
2.00 + ZR_' (ac\/§+ e‘b)2 N (aej_Z_——bc)Z

T (118)
E:I-_la.~ E, Eilb .
with the zero-field splitting parameter
B . o
2 - ' 2 -
D %Z,{(ac 2 - eb) 4 (ae¥2 - bc) ] (119)
Eia™ B Eyp B

These equations, when multiplied by a suitable reduction factor, cor-

respond to putting the two unpaired electrons into the d’j antibonding

1

orbitals, There are still other possible aufbau schemes.

We can put the two unpaired electrons into the 4p-orbitals,
Because of the small spin-orbit coupling coefficient for the 4p orbitals,
the g-factor should be very nearly 2,00 --- possibly a little less,
Finally, we could put one electron into a 4s' orbital and the other into
a diz or d;’;z antibonding orbitals ; these antibonding orbitals prob-
ably éplit because of the Jahn-Teller effect, This latter case cor-

responds to Ni(Cyz Hj )2+ and Co(Cs Hy ), as regards the g-factor.
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Although we have disregarded the spin-spin contribution to
the zero-field splitting, it gets progressively larger in proceeding
.2 .2 . . :
from Ti ~ to Ni ~ (38), and thus may be important in Ni(Cg Hg ), .
Also, it may well enter with the opposite sign of D obtained from
spin-orbit interaction,

Two Electrons or Holes (S = 1), Near -Degenerate Ground State,

Susceptibility measurements indicate that Cr(Cys Hs ), is an example
of this category. As a first orientation we can use the formulae for
the g-factors and zero-field splittings obtained for V(Cj; Hg )2+,
equations 104 to 111, ( & is negative for Cr(Cs Hz ), .) However, the
non-diagonal elements become important here, i.e., terms like
-A-yz’ complicating even this approximate approach.

Experimentally, Cr(Cs Hs ), may be difficult to study because
the zero-field splitting may be 0.3 cm—1 or 1arger.§

Three Electrons (S = 3/2). V(Cs Hg ), and Cr(Cs Hg )2+ make up this

category, We can view this case from two points, First we can
consider the one-electron orbital approximation where the g-factors
are determined by the distance between the dé, d+2—orbitals and the
df'lfl antibonding orbitals, Secondly we can consider the molecule to
be essentially ionic, so that the metal ions are characterized by a

. 4 4 ) 4 . .
mixture of the "F and P terms., For this latter case we will write

the orbital ground state as
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o) = {a d,,d d +bd, d d_l} (120)

with the excited states as

12y = {ca,,da a + eqa,d, da,] (121)
|12y = {c d d d, + ed d, d_z} (122)
| |1b) = {c d,,d d, - edd d_l} (123)
|-1b) = {c d,,d d, - ed d d_z} (124)
This leads to
g = 2,00 (125)

1

3 3
i({[a(c-l-\/; e)+’bc]2 [a(e —J_-Z: c)+be]2}
3

g, - 2 - (126)
E:_l-_la— Eo E_—_l—_lb B Eo
and the zero-field splitting is
N - U S
D = _Z(;_ {[a(c +12 e) + bc] N [a(e -V2 c) + be] } (127)
E. -E - EO

Hla” "o Ei1p

The observed g-factor for V(cp), is 2.00 in solution (39).
Recent measurements (40) of D for diluted crystalline V(cp), show it
to bg fairly large (~ 40 kMc)., Such a large zero-field splitting is
understandable, for a small difference between g " and g, canlead

"~ to a large value of D because g is large.
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Five Unpaired Electrons, Mn(Cz Hs ), . All of the molecules we

have considered thus far seem to have three low-lying orbitals which
must be filled before electrons are added to higher orbitals, How-
ever, Mn(Cjs Hs ), must be considered as an ionic molecule with the
I\/In+ ion having five unpaired electrons characterized by the 65
ground state term., The difference between Mn(Cz Hg ), and the other
bis-cyclopentadiene metal molecules must be due to the especially
great stability of the 6S term. Although, since the ferric ion in
Fe(Cjs Hg )z+ (also with five d-electrons) is not characterized by a 65
ground state, the ligand potential V in Mn(cp), must be almost as

2
strong as the correlation energy, Z e . Since . {',ﬂi"Si
T .

i<j r.. i

1] ~ W

does not affect the 6S term, the g-factor is expected to be near 2 ---
the observed values are between 1,99 and 2. 01 (41).

The calculation of the zero-field splitting is different for
Mn+2 than we have considered previously, Neither spin-orbit inter -
action alone nor the ligand field alone gives rise to a zero-field
splitting, but the combined effects of the two do, by consideration of
the excited states of the ion (42), Matrix elements of the spin-orbit

interaction, 2"2 £i°.Si , vanish between two states unless
LW

AL = 0, +1 ) AS = 0, +1, | (128)

while matrix elements of the ligand field, K, vanish unless
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AS = 0, (129)

The lowest order correction which does not vanish is the

fourth order correction

NC <6S|WS_0] 4P><4P{K[4D><4DlK'4P><4plws_oIés>
, E 2 (2 -E, )

_E, )
p % b % (130)

(E

The third order correction vanishes because the matrix element
<4P | K| 4P> vanishes, Itis the YZ, 0(1}2, 7 ) term in K, V, , which

produces the splitting. Letting V, = 5"103 crh—l, %’z 300 cm—l, and
4 -1

(, -E, ) =2(E, -E, )= AE =~ 3°10  cm
4 bg 4y g
2.2
D~ & ?3 ~ 0.1 cm™ (131)
(AE)

As mentioned previously, besides the spin-orbit contribution
to the zero-field splitting there is the magnetic dipole interaction
. +2 . o .
between electron spins, In Mn the spin-spin interaction deforms
the otherwise spherical symmetry of the ion producing elliptical sym-
metry. Thus the combined effects of the spin-spin interaction and

the axial field produce a zero-field splitting (43):

2/ -3
D ~ E——<5—-—2—-I§ ~ Olecm™ (132)
AE
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In equation 132 AE is the energy difference between the 3d 445 6D

and the 3d5 6S states, and K represents a matrix element of the
form <3d IK |4S> . Since the zero-field splitting term D in equa-
tion 132. usually enters with opposite sign from D in equation 131 (40),

the zero-field splitting will probably be of the order of 0,01 cm_lo
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Hyperfine Structure

The interaction between the paramagnetic moment of the
molecule and nuclear magnetic moments will produce a hyperfine
structure in the paramagnetic resonance spectra. There are two
types of nuclei that can produce hyperfine structure with the sandwich
molecules; i, e., there are two nuclear species with non-zero mag-
netic moments, These are the protons of the hydrogen atoms bonded

to the aromatic rings, and the metal nucleus.

Proton Hyperfine Structure. The Hamiltonian for the proton

interaction is

E L. - I,
W = Zlﬁl 7 ’f\ Z €w1 31) ]
P protons electrons ' 3

r.-r,
~ml ]

L ][(5-53.);;3]

|5 - 550
e

+ 2“ S(r—r)SI}o (133)

et VS

The dipole part of equation 133 is very difficult to calculate., Thus,

as an approximation one might consider a paramagnetic dipole moment
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fixed at the nucleus. This, however, tends to reduce the importance
of the dipolar interaction to the hyperfine interaction because of the
short-ranged nature of l/rj3,
The Fermi contact term can act in two ways. First, there is
the direct ovérlap of the metal orbital containing an unpaired electron
and the proton. This effect will be small when the metal orbital is
made orthogonal to the 1s orbitals (strictly the C-H bond orbitals) of
the hydrogen atoms as required by the Pauli principle (44, 45).
Secondly, there is the indirect contribution which acts through the

carbon atoms. This has been considered by McConnell and Chesnut

(46), who give the formula

ay -22.5 FN gauss, (134)

where Ay is the proton hyperfine splitting and FN is the unpaired
electron density at the adjacent carbon atom (in a p-orbital), The
numerical coefficient, 22.5, in equation 134 has been obtained from
free aromatic molecules, but due to the influence of the metal atom
we must expect a different coefficient for the sandwich molecule.
This latter is presumably the principal source of hyperfine splitting
in Cr(C6H6)+ and related benzenoid molecules having phenyl substitu-

tion in the benzene rings. For these molecules |a = 3,5 gauss

2 |
(35,36,37).
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Metal Nuclear Hyperfine Structure, The hyperfine structure

in the sandwich compounds of Ti, Cr, Fe, and Ni will not arrest our
attention because of the small natural abundance of the isotopes of
these nuclei with non-zero spin and the small magnetic moments of
these isotopes., Therefore, this section is principally of interest as
regards the sandwich molecules of V, Mn, and Co,

The Hamiltonian for the metal nuclear interaction is that

part of W__, equation 5, which is linear in the nuclear spin vector I:

N v

lﬁl”‘z (€ -8 L 3 (55) (D)

3 5
+ —gir— 5 (r (s, 1)] ) (135)

WN' acts on the energy levels, split by the ligand field and modified
by spin-orbit interaction. Therefore, we can also consider the per -

turbation

/
“%7 =Wt Wy (136)

applied to an atom in a ligand field, When the ligand field produces
a non-degenerate orbital ground state, it is convenient to consider
/
the perturbation }a( o But when the orbital ground state is degenerate
or near -degenerate, it is more convenient to let W_' act on the

N

ground state resulting from the combined effects of the ligand field
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and spin-orbit interaction.
First we will consider nuclear interaction when the ligand
field produces an orbital singlet ground state. Writing the ground

and excited orbital states as ]O> and in> , in first order,

1

H= 5T lpl7h) (o] Z ()81 o)

+.2,5|7¢i > Z<o[ (32{7 ] 5:-;1[0} Sp(i)IV .

¥ =x,y,2z i

(137)

If 10> and ln> are products of 3d orbitals only, then integration

over the radial part of each orbital in equation 137 gives the common

factor 1/r3 . Also, letting s(l) operate within the manifold of
Vo

states of total S, we can replace s(i) by (1/2S)S. Therefore,

~~/

1(1) 1
49 2% (21gl7h) <Z1 J (x(1)) Sz(i)>m g 51

S

+ P> Zl<{3

25 MY EX, Y, Z

rplr
= O(HV}i >7}i ‘fisulﬂ/ ’

(138)

where

P = 2 [p|Yh r-3 (139)
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Then, in second order

) o[w___|ny{n|wy' [0
IC - < [2) (n | Wy [0)

n o En - Eo

= Oy, o

n#o

(140)

&le I%JF r“r’-ﬂ] o)
N 7w .
|p—s|7ﬁ%" ST > 2 s SwSpLI?/

S  wu,’=x,y,z n¥o i E - E

T

r T 2/“7/ .
ey s o el 'T]J DO

S  wp,Y=x,y,z n#o i E . E

n o

(141)
where we hawe followed the considerations leading to equation 70
concerning the total spin S, Although the second and third lines of
equation 141 do not appear to have the spin-dependence SP‘IV , they
can be put into this form with the use of the commutator for spin
angular momentum, However, since these terms are complicated
and also probably small we will not consider them further. Then,

using the first term in equation 141 with equation 138,
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() () g,
B S CRAEIE s 0y s
_P ' TR i
T 38 p%y,z{€<3 r? l>/; Z?AWJ Sulu
(142)

where we have diagonalized the dyadic in the braces, This has the

1

)

have axial symmetry. However, if the distortion is not too great,

effect of shifting the coordinates r{\L tor ' if the molecule does not

we can use r in place of r ', This we have done in table 4 where

r2 N\
5 -1/7}/,L/

assume axial symmetry, the hyperfine spin Hamiltonian can be writ-

we give the values of (3 for d-orbitals., If we

ten as
A s I+ B(SX I+ sY Iy), (143)
where
o= BT sk (=5 e s 0 )
3S \i L z" m S
2
+ zsP ;lz 3 1.12 -1>%%. 28 AN ZZ]., (144)
and
16 7T ; - .
B =g [eI7h \/z (x(@)) sz(1>>ms - s
2
+

P R
55 {fj<3rz -1>W4 -zg‘_/}xx}. (145)

)
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Table 4

2

r
Values of <3 —1;— - 1> for d-Orbitals
@%q’ '

T

7 Jr(s5-)vdr Jv (3 -1 wdr [V EE-)vdr
a5 27 -2/7 47
d:l-_l -1/7 -1/7 2/7
étz 2/7 217 -4/7
d 2/7 -4/7 2/7
Xz

d -4/7 2/7 217
YZ

d 2/7 2/7 -4/7
xy

a, 5 2/17 217 -4/17
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A useful experimental parameter is the hyperfine anisotropy given

2 2
z, X,
vzl 3]
: i \r A T (A7

+ (g, —gL)} o (146)

by

In V(Cs Hy ), , for instance, we can consider the orbital ground state

to have the form

{a a,,d d_, + b d, 4 d_l} (147)
with
2% +p% =1L (148)
Using table 3 we find
_ P {6 2 2 }
A - B == {-7-(—3. +207) (g, -g) . (149)

If, with the molecule in solution, the spin lattice relaxation time Tle
is long compared to T¢ , Tle » % , which should be true for
V(Cs H; ), and with g, ~ g, » then only the isotropic hyperfine splitting

will be observable. Then,

o P/ A1 + (g, -2) (150)
A'solid— Asolution © 25 {2\3 r2 fbo,fﬂ "

o= {%—(—a2+2b2)+(g" —2)} (151)
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Therefore, we can find a, b, and P from equations 149 and 151, using
the condition of equation 148, It will be interesting to compare P for
the V(Cz Hs ), with P for a free ion (~ 330 Mc) (47). As P varies as
l/r3, this is a sensitive measure of the degree the magnetic orbitals
of V(Cs Hs ), are spread toward the cyclopentadiene rings, i.e., the
amount of mixing between the 3d orbitals with the orbitals associated
with the rings.

Similar considerations apply to the other sandwich molecules,
Equations 149 and 151 also apply to Cr(Cs Hs )2+, although the small
natural abundance of Cr53 (9.5%) coupled with its small magnetic
moment may defy detection of nuclear hyperfine structure in this ion,
In Mn(Cy Hs ), there will be little anisotropy because the metal ion is
essentially spherically symmetrical, Because of the uncertain mixing
of orbitals in V(Cjs Hj )2+, V(C¢Hg), , V(Cs Hg )ZH, and Co(Cs Hs ), ,
general relations for the anisotropic hyperfine splitting are not par -
ticularly useful, so we need not record them. Before considering

the Fermi contact term, we will point out that when the energy levels

under the ligand field are degenerate or near-degenerate we treat

(£;-5,)-1 (z,°8)(z;° D
W' = z)sjvhz —-r——3——— 3 } (152)
1 1 ]:"i

in the same way we treated '{3' (L + 28) * H when we discussed the
AN e An
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fine structure for a near-degenerate orbital ground state.

The Fermi contact term in WN', equation 135 or 152, is the
principal soﬁrce of hyperfine splitting, and for molecuies with only
a slightly anisotropic g-factor it is the only source of hyperfine
splitting in solution, This splitting depends on the s-orbital spin
density, which can arise in two ways. There can be a positive
s-orbital spin density from the unpaired electrons having a certain
probability of being in the 4s-orbitals Too, there can be a negative
spin density resulting from the slight exchange polarization of the
electron spins in the Is, 2s, and 3s orbitals due to the paramagnetism
of the ion (48,49).,

For an electron in an s-orbital the hyperfine splitting is given

by a semi-empirical equation due to Goudsmit (50, 51):

2 2
8 Ra Z({1+ =z 1
a = SgmRe 2lra (1
3 n*~ 1838

, Z) cm ™t (153)

where g(I) is the magnetic moment of the nucleus in units of the
. 5 -1 .
nuclear magneton, R is the Rydberg constant (1,09:10" cm ), a is
-3 . .
the fine structure constant (7,28°10 ~), Z is the nuclear charge, zis
the degree of ionization, n* is the effective quantum number of the
orbital, and K(-é- , Z) is a relativistic correction which is near one

for V, Mn, and Co. If the unpaired electron in Co(Cs Hs ), goes into
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the 4s' orbital rather than into 3d;:;z or 3d;57<Z antibonding orbitals,

we expect a large hyperfine splitting, possibly as large as ~ 4800 Mc,
as would be expected for an electron in the 4s orbital of Clo-‘.z° Also,
as mentioned before, the 4s orbital can mix with the 3do orbital
under the ligand field, This will contribute to the hyperfine splitting
in V(Cg5 Hz ), » Therefore, when due care is taken in correcting for
the slight exchange pélarization of the Is, 2s, and 3s electron spins,
the amount of mixingkof the 4s and 3d0 orbitals in V(Cs Hs ), can be
calculated from the hyperfine splitting.

By an exchange polarization of the electron spins in the 1, 2,
and 3s-orbitals we mean that the electron with spin a is in a slightly
different orbital than the corresponding electron with spin . This is
a result of the fact that when the ion has a net spin a, say, there is
an exchange integral between this unpaired electron and the electrons
with spin a in the 1s, 2s, and 3s orbitals, but none between the un-
paired electron and the electrons with spin . Doing a rough

"unrestricted'' Hartree-Fock calculation, Heine (48) found

from Zsz AX =~ -8,6
, @54)
from 3s AYX 7 5,3

where X is defined by

4T . .y
e A <21 3 () s, ) - (155)
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These results can be interpreted by thinking of the 3d exchange
potential as attractive. This pulls the 2s orbital with a spin outward,
pulling the 3s orbital with a spin inward. Neglecting AX from lsz,
X for the ion is -3,3., Wood and Pratt (49), doing a more detailed
calculation, found AX from 152 to be comparable and of the same
sign as AX  from Zsz.. Then, for the ion they found X = -2,4,
Therefore, the values in equation 154 may be somewhat in error,

but both Heine and Wood and Pratt obtain values which agree fairly
well with experiment, In table 5 are given the values of X obtained

2

- +2 +
experimentally for V. °, Mn , and Co 2, along with the isotropic

hyperfine constant, a, for these ions (47),

Table 5

Hyperfine Structure Parameters of Ions

ion X (a.u.) a(Mc)
vt 2.8 _264
Mn+2 -3.1 -273
Co'* -2.5 210

The observed hyperfine splitting in V(Cz Hg ), (39) of only

77 Mc in solution can be understood by assuming that there is about
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341 Mc

2600 Mo or about 7.4% 4s-orbital mixed with the 3d0 orbital be-

cause

+ 341 Mc - 264 Mc = + 77 Mc, (156)
s . P . 187
although it is possible that the splitting is -77 Mc, meaning 2600

4,1% 4s-orbital is mixed with the 3do orbital, The actual sign of
the isotropic splitting will have to be obtained from the analysis of

the anisotropic hyperfine structure.,
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Discussion

In the present work we have tried to estimate the paramagnetic
parameters where feasible, but more, we have tried to lay a theo-
retical basis for understanding the experimental results as they be-
come available. To establish what orbitals would contain the un-
paired electrons we considered the ionic and covalent models; and
the qualitative results of these models were compared with the ob-
served magnetic moments. In addition, we noticed that orbital angular
momentum about the symmetry axis was not necessarily zero., But
first-order spin-orbit interaction seems to be important only in
Fe(cp)2+ and V(cp)ZH, and maybe not even in these molecules,

| Although the great advantage of the ionic over the covalent
model is that energy splittings can be calculated quite simply, we
have not inserted the energy splittings into the expressions for the
magnetic resonance properties because orbital mixing and the extent
of distortion are unknown. In fact, we have stressed a fair degree
of generality in obtaining these expressions rather than definite values
so that a firmer comparison can be made with the experimentally
derived Valués. It is possible to eliminate the energy level separa-

tions as parameters if they were known from optical spectra. The
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intensities of the lines from optical spectra could also help establish
the orbital mixing.

Our treatment of the hyperfine structure is rough and incom-
plete. However, it does contain the essence of what is presently
known concerning the magnetic interaction between electron and

nuclear spins,
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APPENDIX
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Fig, 1. Splitting of the 3d-orbitals under K., The energy units
are for unit charge -e on each ring. T is the disf;ance between the
charged rings and the metal atom; and the lines marked V, Cr, Fe,
Co, and Ni represent taking the charged ring at the normal position
for the carbon atoms of the aromatic groups for the respective

molecules,
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- Fig. 2. Orbital splitting of 3d3 4F‘ and 3d8 3F states under K.
The energy units are for unit charge -e on each loop. T is the dis-

tance between the metal atom and the symmetrically placed charged

loops,
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PROPOSITIONS

1. The proton hyperfine splitting, ap for Cr(CgHg), * has been
found to be + 3.5 gauss (1). Such a large hyperfine éplitting is rather
surprising since from the study of the g-factor it appears that the un-
paired electron is in the do -orbital of chromium and hence is in an
orbital associa’ced very little with the 4r-orbitals of the benzene
rings. Itis suggested that the hyperfine splitting results from the
overlap between the do-orbital and the smaller lobe of the C-H ¢~

orbital,

2. The diamagnetic chemical shifts for N14 in urea and thiourea
are 298 x 10—6 and 268 x 10—6, respectively, compared to NO; (2).
Since the C=O group is more electronegative than the C=8 group, it
seemed surprising that the chemical shift in thiourea should be para-
magnetic compared to urea. However, from the theory of the long-
range chemical shift (3), it can be shown that to a good approximation
there is a paramagnetic shift which varies inversely with the energy
difference between the non-bonding orbitals of the oxygen or sulfur
atom and the anti-bonding 7 -orbital., Assuming that the energy of
the T <— n transitions of CO;  and CS;  of 46,000 cm™" and
20,000 cm—l, respectively (4), apply in the ureas, it has been es-

timated that the long-range shift accounts for at least 20% of the
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paramagnetic shift of thiourea compared to urea.

3. Walsh and Bloembergen (5) found that the zero-field splitting
D of nickel fluosilicate changed at the rate of +8.9° 10_5 cm_l/atm
with the application of pressure. From the ionic model for the sand-
wich molecules it is likely that for‘ some of these molecules D would
change much more rapidly with pressure. For example, the zero-

field splitting of Cr(C 5H at atmospheric pressure may be so large

5)2
that the paramagnetic resonance will be impossible to detect except

at extremely high fields. However, with moderately high pressures

it may be possible to obtain the ground state

[0 > {ad ddd2+ bdlddod_l){

which would easily yield a spectrum with standard magnetic resonance

equipment,

4, The spin-orbit interaction in benzene negative ion is esPecially
small so the g-factor is essentially that of the free spin value (gfs).
However, it may be possible to obtain a g-value different from 8¢

by forming the negative ion with rubidium or cesium., Itis envisioned
that a bond, mostly ionic, but partially covalent, will be formed be-
tween the benzene molecule and the appropriate p- or d-orbitals of

the alkali metal,
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5. Matsen (6) calculated the d-orbital splitting in the sandwich
molecules by assuming a potential expansion to the second power.,
This gave the d+2-orbita1s highest, the do-orbital lowest, and the

d+1-orbita,ls intermediate in energ‘j° However, the fourth-power

terms in the potential definitely are not negligible. Using a simple
two-ring model, one can find that the d+1—orbitals lie highest and the

d+2— and do—orbitals lie below in energy and are closely spaced.

Inclusion of the fourth-power terms gives considerably better agree-

ment with magnetic susceptibility measurements.

6. It is proposed that the first step in polarographic reduction of
many halogenated hydrocarbons is the addition of an electron to an
antibonding orbital. Thus, E] is dependent upon a) the energy of

the antibonding orbital, b) che overlap between the antibonding orbital
and the electron cloud surrounding the mercury drop, and c) the

electric field in the immediate vicinity of the mercury drop. Itis

Ni (7)

suggested that (Et)4 NBr is a better electrolyte than (Bu.)4

because the region where the potential drops most rapidly is smaller
with the first electrolyte. The reason for this smaller region may

be as stated by Lambert and Kobayashi (7), however.
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7a The diamagnetic nuclear resonance shift of H 017 in the pre-

2
+3 . s .
sence of Gd ~ ion has been described as arising from the preferential
+3 . .
transfer from the oxygen to the Gd ~ ion of an electron with spin
parallel to the paramagnetic moment of the ion (8,9), However, I
wish to stress a description which is more general and more intuitive
(10).
. +3

Assuming the ground state of Gd ~ tobeS =7/2, m_ = 7/2,
there will be exchange integrals between the unpaired electrons and
the electrons with spin a of the ligands. As an exchange integral
acts in some ways as an attractive potential, the a-spin in s-orbitals
of the ligands will be drawn toward the metal atom while the B-spins
are unaffected. There is thus left a net B-spin at the nuclei of the
oxygen atoms. This description does not imply that the electrons
associated with the ligands are to be found part of the time in orbitals

associated with the metal atom so much as that the orbitals of the

a-spins of the ligands are just drawn closer toward the metal atom.

8. Venkataraman, et al. (11) found that the half-widths of the para-
magnetic resonance spectra of p-benzosemiquinones increased from
about 0,06 gauss with unsubstituted p-benzosemiquinones to about

0.46 gauss with trichlorosemiquinone. It is proposed that the
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explanation lies in the increasing anisotropy of the g-value as more

chlorine atoms are added (12).

9. I propose that the molecule Ti(CSHS)Z tends to form bonds be-
tween neighboring Ti atoms in the crystal. Itis found that solid

| +
Ti(C5H5)2 is diamagnetic (13) while Ti 3 in Ti(C 5H appears to

5)2+
ha.ve a near-degenerate orbital ground state with a magnetic moment
2.3B (14) éompared to the spin only value of 1. 738, Therefore, it
seems somewhat unreasonable to ascribe the diamagnetism.of
TJL(CSI-?[S)2 to 7it2 having two electrons in an orbital which lies con-
siderably beléw any others. Also V(C5H5)2+ which is iso-electronic

with titanocene has spin 1 (14). The tendency to form Ti-Ti bonds

would show up in the crystal structure determination of titanocene,

10, Evans (15,16) has shown that the T¢~S transition of aromatic
hydrocarbons can be induced by paramagnetic molecules. Letting A’];:
be the dipole-dipole tensor (3i££)/r3, Cfl the highest filled orbital
and c(2 the lowest unfilled orbital of the aromatic molecule, the
energy of interaction between the aromatic and paramagnetic mole-

cules giving rise to the allowedness of the T< S transition is

v T 41, ]
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In order that W' be large it is necessary for either ¢1 or %Z to
extend far into the region occupied by the paramagnetic molecule.

It is suggested that the orbital of the unpaired electron is of the form
(a X +0b fz) where X is the orbital of the paramagnetic molecule and

the triplet state is formed by the promotion of an electron in ‘fl to

(b X - a% ‘fz)o
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