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Abstract

Reward is a powerful modulator of behavior. Animals and humans are endowed with

the ability to learn to associate events and actions with reinforcing stimuli, and �exibly

adapt their behavior. The experiments described in this thesis use functional magnetic

resonance imaging (fMRI) to study the neural mechanisms of reward learning in

humans, the neural substrates by which reward associations in�uence behavior, and

the neural plasticity that can be induced by provision of reward.

Attractive faces have been shown to be a form of visual reward, but their in�uence

on behavior has yet to be characterized. We show that reward prediction errors in

the nucleus accumbens are engaged when subjects learn associations between neutral

cues and attractive faces, as has been shown with other reinforcers such as juice and

money. This learning increases the subjective value of cues associated with attractive

faces.

Animal studies have shown that Pavlovian cues can in�uence response vigor and

decision-making. We present the �rst investigation into the neural mechanisms by

which Pavlovian cues in�uence human decision-making. We �nd that activity in the

ventral striatum di�erentiates between decisions to act in a manner compatible or

incompatible with a concurrently presented Pavlovian cue.

In the next section we apply associative learning techniques to directly instru-

mentally condition neural activity, using reward feedback derived from fMRI images

processed and analyzed in real time. This technique presents an alternative to stan-

dard bio/neurofeedback approaches and may prove useful in many clinical and re-

search applications. We demonstrate that this method can be used to probe the

causal in�uence of regional brain activity; speci�cally we test the impact of medial
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orbitofrontal cortex (mOFC) activity on a�ective judgments. Subjects learn to ele-

vate mOFC activity on cue and elevated mOFC activity increases the propensity to

make a positive subjective valuation judgment.

Taken together these studies advance our understanding of the functional contri-

butions of ventral striatum and orbitofrontal cortex in in�uencing decision-making

and valuation, and illustrate the utility of applying associative learning techniques

in combination with real-time fMRI in order to evaluate the causal contribution of

speci�c brain regions toward particular cognitive functions.



vii

Contents

Acknowledgments iii

Abstract v

List of Figures viii

List of Tables ix

1 Introduction 1

2 Prediction error signals to attractive faces 24

3 Pavlovian cues in�uence decision-making 49

4 Direct instrumental conditioning of neural activity in motor cortex 66

5 Direct instrumental conditioning of neural activity in orbitofrontal

cortex 94

6 Summary 118

Bibliography 122

A Real-time fMRI 145



viii

List of Figures

2.1 Conditioning task and stimuli . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Behavioral results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Reaction times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Prediction error related activity in the nucleus accumbens . . . . . . . 39

2.5 Main e�ect of attractiveness in orbitofrontal cortex. . . . . . . . . . . 44

3.1 Illustration of trial types . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Behavior during training and test sessions . . . . . . . . . . . . . . . . 59

3.3 Imaging results from the Pavlovian-instrumental transfer phase . . . . 61

4.1 Conditioning task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Movement recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Experiment 1: ROI percent-change and whole-brain SPM analysis . . . 85

4.4 Experiment 1: Regions activated by motor imagery . . . . . . . . . . . 86

4.5 Experiment 2: ROI percent-change analysis . . . . . . . . . . . . . . . 88

4.6 Experiment 2: Whole brain SPM analysis . . . . . . . . . . . . . . . . 89

5.1 Conditioning task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 ROI percent-change analysis . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Whole brain SPM analysis . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.1 Conventional fMRI experimental setup . . . . . . . . . . . . . . . . . . 146

A.2 Real-time fMRI experimental setup . . . . . . . . . . . . . . . . . . . . 147



ix

List of Tables

2.1 Prediction error contrasts . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Main e�ect of attractiveness . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Trial composition for training and transfer sessions . . . . . . . . . . . 55

4.1 Movement recording comparisons . . . . . . . . . . . . . . . . . . . . . 81

4.2 Motor imagery tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Regions activated in OFC > HaM contrast . . . . . . . . . . . . . . . . 111

5.2 Regions activated in HaM activate > OFC contrast . . . . . . . . . . . 113



x

Nomenclature

AC-PC line anterior commissure-posterior commisure line

BOLD response blood oxygenation level dependent response

EPI echo-planar imaging

FDR correction False discovery rate correction

HRF hemodynamic response function

NAcc nucleus accumbens

OFC orbitofrontal cortex

voxel 3D pixel



1

Chapter 1

Introduction

Preamble

If I examine the list of things I did this morning before sitting down to write this,

I can evaluate each one in terms of the bene�ts it produced. I brushed my teeth;

this made my mouth taste better, will prevent future trips to the dentist, and will

improve my social interactions. I showered, dressed, and ate, all of which served to

refresh and energize me for the day ahead. In fact, I would be hard pressed to think

of any behavior I perform that does not have an expected consequence of delivering

me from an unpleasant situation or improving the situation in which I �nd myself.

The ability to adapt my behavior in order to meet my basic and not-so-basic needs

is one that I share with most animals. Natural selection should in fact favor animals

who can �exibly adapt their behavior to changes in their environment. Indeed, an-

imals from aplysia, to drosophila, to dogs, cats, and humans are endowed with the

neural faculties required to learn.

The scienti�c study of animal learning took a huge leap forward in the late 19th

and early 20th century, as researchers such as Thorndike and Pavlov began rigorous

empirical studies of learning [1, 2]. The paradigms that they, along with Watson,

Skinner, and others, pioneered laid the groundwork for studying learning behavior

[3, 4]. Behavioral neuroscientists studying animals took this work a step further,

side-stepping the nebulous issue of the mind by directly tapping into the brain, and

quantifying the neural processes involved in learning.
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Animal lesion and electrophysiology work has provided invaluable insight into the

neural underpinnings of reward representation and learning. While animal learning

is fascinating in its own right, many of us are interested in how these �ndings relate

to human behavior. While studying humans is appreciably less amenable to the high

degree of experimental control a�orded in animals, studying humans directly is the

only way of truly addressing this question.

Studies of human reward learning at the behavioral level have provided many

insights, but methods for probing the neural bases of learning in humans were for

a long time rather limited. The advent of functional magnetic resonance imaging

(fMRI) in the late 90s, for whole brain functional imaging, facilitated signi�cant

advances towards the goal of understanding how the human brain processes and

learns about rewards. This technique has allowed researchers to directly measure

neural responses to reward and observe dynamic changes in neural activity due to

learning.

fMRI studies of human reward learning have identi�ed several key brain regions

implicated in representing and learning about rewards. The experiments described in

this thesis build on this work, and are primarily concerned with the neural mechanisms

of learning, the neural substrates by which reward associations in�uence behavior and

the neural plasticity that can be induced by provision of reward.

Rewards, reinforcers, and emotions

How do you teach an old dog a new trick? Reward performance with food. How do

you train a student to study for a test? Reward correct answers with good grades.

Clearly many di�erent types of stimuli have the ability to elicit behavioral changes

on the part of an organism. Thus, we de�ne reinforcing stimuli not by their physical

characteristics, but rather by the responses they elicit. Reinforcers are things that

we seek to obtain or avoid; they are powerful modulators of behavior.

The term `reinforcer' is sometimes preferred to reward, because reward has an

emotional connotation of providing some kind of satisfaction. Many di�erent conse-
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quences can cause an animal to repeat a behavior, without necessarily putting the

animal in a `satis�ed' state [5]. However, in this thesis we will generally use the terms

`reward' and `punishment' to refer to positive and negative reinforcers.

While animals have dedicated sensory systems for detecting light, sound, and

touch, they do not have dedicated receptors for reward. Rewards exist across a range

of modalities, including auditory, visual, gustatory, olfactory, and social. What is

rewarding to one animal, may not be to another, and will also vary depending on the

animal's internal state. Rewards may cause measurable physiological responses, such

as symptoms of arousal (pupil dilation, heart rate, respiration, blood pressure) and

approach or avoidance behaviors [6].

Primary reinforcers are those that elicit responses without any prior learning,

while secondary reinforcers become rewarding only through an association with a

primary reinforcer. Money, for example, becomes a very powerful reinforcer over the

course of human cognitive development, as it is associated with food, material goods,

and social status.

Emotions, distinct from feelings, can be thought of as reactions to stimuli that

move us. Under this de�nition, physiological responses to reinforcers qualify as emo-

tions; paradigms such as fear learning have been used to study the neural basis of

emotions.

Passive learning of reward prediction

While it is intuitive that animals able to learn to predict rewards in their environment

will be more likely to survive and thrive, methods for objectively measuring associative

learning in animals were not developed until the 1920s. Using a preparation designed

to measure dogs' salivary secretions for the purpose of studying digestive processes,

Ivan Pavlov �rst observed dynamic changes in physiological responses as a function

of learning. Speci�cally, he noted that while salivation occurred in response to food

delivery, it also occurred at other times, such as when the dog heard the experimenter's

footsteps approaching. It became obvious to him that stimuli predictive of food
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delivery could come to elicit responses similar to delivery of the food itself. By

counting the drops of saliva produced in response to a stimulus, Pavlov's researchers

were able to quantify learning. The importance of this discovery cannot be overstated.

Since animal learning cannot be measured by subjective report, and even in humans

subjective reports are not always reliable, this �nding opened the door for empirical

study of animal learning [6, 1].

To describe learning associations, Pavlov coined terminology that remains in com-

mon use. A primary reinforcer, or unconditioned stimulus (US), elicits an uncondi-

tioned response (UR).

US → UR

A conditioned stimulus (CS) can be paired with a US, which provokes a UR.

CS + US → UR

By association, the CS comes to elicit a conditioned response (CR).

CS → CR

Pavlov and the legions he inspired set out to describe the conditions which fa-

cilitated successful learning. Temporal contiguity was presumed to be an important

factor in the strength of a learned association, and indeed this is the case. The

strongest associations are those formed when the CS is present until the time of de-

livery of the US [1]. However, some types of conditioning, such as taste avoidance,

are e�ective even if the US follows the CS by 24 hours [7], indicating that contiguity

is not strictly necessary.

While contiguity can play a role in the strength of an association, it was later

shown to be not only unnecessary but also insu�cient for conditioning. In 1966, a

paper by Robert Rescorla [8] highlighted the importance of contingency between the

CS and the US. That is, he demonstrated that it is not simply the number of times

that two stimuli are paired that determines how successfully the association will be

learned. What is much more important is the relative number of pairings among

the total number of times that the stimulus is presented. The predictive power of

the CS over the US is diminished when the US is presented at times other than

predicted by the CS. Therefore the e�ectiveness of a number of contiguous pairings in



5

creating an association can be severely degraded and even abolished by manipulating

the contingency of the US.

The importance of contiguity was further reduced when Leo Kamin's in�uential

1969 paper on the phenomenon of blocking was published [9]. In this study he demon-

strated that an outcome that is already fully predicted by a cue will not generate any

new learning to a second cue, when the two cues are presented together and paired

with the outcome.

CS1 + US → UR

CS1 → CR

(CS1 + CS2) + US → UR

CS2 → no CR

That is, learning to the second cue is blocked by the �rst cue, because the �rst cue

already fully predicts the outcome. Thus, the contiguity between the second cue and

the outcome does not seem to matter when the outcome is already fully explained by

the �rst cue.

Computational models of reward learning

The blocking paradigm served as the foundation for one of the most in�uential theories

of learning: learning requires an error in prediction. That is, in order for learning to

take place, there must be a discrepancy between the actual outcome and the outcome

that was expected. This rule was mathematically formalized by Rescorla and Wagner

in 1972 [10].

The Rescorla-Wagner learning rule describes the process of value acquisition, in

a trial-by-trial fashion. Over learning, the predictive stimulus acquires value V[i],

where `i' is the ith trial.

V[i] = V[i-1] + αδ

where

α is the learning rate
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δ = R[i] � V[i � 1] = prediction error

In this model the prediction error signal is generated at the time of expected outcome,

and in�uences the value of the cue on the subsequent trial.

The power of this rule lies in its ability to reconcile learning phenomena unex-

plained by previous theories. The phenomenon of blocking described above is grace-

fully accommodated: the �rst cue fully predicts the reward, therefore the prediction

error is zero and the value of the second cue does not change.

An obvious shortcoming of this model is how it might account for the not unre-

alistic situation in which the time of reward delivery relative to the cue is variable.

Reinforcement learning theorists [11] adopted this model as the inspiration for a tem-

porally extended version in which trials are subdivided into a number of temporal

epochs with value and prediction errors in each epoch. In temporal di�erence learn-

ing, the value signal represents the total expected value for the remainder of the trial;

the timing of value onset shifts backwards in time from the time of outcome to the

time of the cue. Upon initiation of conditioning trials, the cue is meaningless and

does not elicit value or prediction errors, while the presentation of the outcome is

unexpected and therefore generates a large error signal. After several similar trials,

the value will have shifted temporally closer to the time of the cue. Finally, learning

reaches an asymptote when the prediction error is positive at the time of the cue,

and neutral at the time of the fully predicted reward, and the value signal is elevated

starting at the time of the cue.

Reinforcing behavior: operant conditioning

Pavlovian conditioning describes a process of passive learning of reward associations,

but animals can also learn to modify their behavior in response to their environment.

Anecdotal reports of animals learning new and intelligent behaviors circulated in the

late 19th century, prompting EL Thorndike [2, 6] to begin formally studying processes

of animal learning of behavior. Using a device he termed a puzzle box, essentially
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a wooden crate with a door that could be opened by a mechanism inside, such as a

latch or rope, he studied the e�ects of reinforcement on cats' behavior. Hungry cats

placed inside the box with a bowl of food in view outside would scramble around

until they stumbled upon the response that would release them. When placed back

in the box on subsequent trials they scrambled in a similar way, but the latency with

which they performed the response to escape from the box gradually decreased over

repeated trials. He deduced that the animals were not learning the physics of the

latch mechanism, but rather that the reward of getting out of the box was `stamping

in' responses that led to this outcome.

Based on his observations, Thorndike formalized the Law of E�ect, which basically

states that the e�ect of an action has a strong in�uence over whether that action will

be repeated [2]. He called this learning `instrumental' because the animals in his

studies learned to manipulate an instrument (e.g., a latch).

As with Pavlovian learning, many researchers have advanced our understanding

of the principles of instrumental conditioning. Among the topics of interest were

developing e�ective schedules of reinforcement, and understanding what was learned

in instrumental conditioning: associations between the response and the outcome, or

between the cue to respond and the response, or between the cue and the outcome?

Several clever experiments have addressed this question, one which we will examine

in more detail below and in Chapter 2.

An important methodological advance was the development of automatic tools

for measuring responses. BF Skinner designed an `operant chamber' also known

as a Skinner box, to automatically measure responding and present reinforcers to

experimental animals [3]. Skinner coined the term `operant' to describe the responses

made, because responses operate on the environment; the term `operant level' refers

to the baseline level of responding prior to learning. Thus the study of conditioning

behavior with reinforcers became known as operant or instrumental conditioning.

Many types of reinforcers can exert control over behavior. Primary reinforcers

such as food, water, sex, and sensory stimulation [12] do not require any learning to

reinforce behavior. Secondary reinforcers that are learned through experience, such
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as money or tokens, can be equally powerful.

Indeed, reinforcing behavior is a powerful tool; animals will respond for many

hours for access to visual stimuli [13] or food rewards. But in order to reinforce a

behavior, the behavior must �rst be performed, so how does one train a behavior that

does not come naturally? One method for training complex behaviors is shaping, a

method of approximations whereby responses are reinforced which take an incremen-

tal step towards the goal behavior [4]. Shaping has been applied with some success to

smoking cessation [14] and academic task engagement [15], to cite only a few. How-

ever, in practice applying shaping techniques is still somewhat subjective. How large

a step must the subject take in order to earn reinforcement? While some attempts

have been made to formalize shaping procedures [16], �nding optimal parameters is

still largely a matter of trial and error.

Reward representation and learning in the brain

Rewards are stimuli that are de�ned by the responses they evoke in organism, rather

than by their sensory properties. Rewards exist in gustatory, olfactory, visual, and

auditory domains, and thus information about rewards is conveyed to the brain by

a range of sensory modalities. It is therefore an important question as to whether

these inputs converge in regions of the brain that respond speci�cally to the rewarding

properties of stimuli, independent of modality. We know that rewards from di�erent

modalities can have a similar impact on behavior; it would therefore be parsimonious

to have a common system for representing reward value which could be used for

decision-making and expression of reward-mediated behaviors.

A related issue is how secondary or conditioned reinforcers are learned and rep-

resented in the brain. When Pavlov described conditioned re�exes, he hypothesized

about the neural basis of this association. In particular he presumed that when an

animal is presented with food, there is a food center in the brain which is activated

and which in turn stimulates the physiological responses commonly seen to food.

There is also a region of the brain which is stimulated by exposure to the conditioned
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stimulus, for example areas which respond to the visual and auditory stimuli accom-

panying the arrival of an experimenter. He hypothesized that when these sensory

and reward regions are co-active, the connections between them are strengthened,

and this associative strengthening leads to expression of conditioned responses [6, 1].

This idea later gained strength at the synaptic level: the psychologist Donald

Hebb proposed that `cells that �re together, wire together', that is when neurons are

coincidently active the strength of the ability of one cell to cause the �ring of the

other increases [17]. Empirical studies have since shown that there is some truth to

this proposal [18].

Brain regions involved in both sensory and reward processing have been identi�ed.

However, we do not yet have a full systems-level description of the regional interactions

supporting learning. Nonetheless, signi�cant advances in understanding how the brain

processes and learns about rewards have been made. Here we shall brie�y review some

of the known functions of reward-sensitive regions of the human brain.

Orbitofrontal cortex

Lesion studies in animals and humans have identi�ed the orbitofrontal cortex (OFC)

as important for representing the current value of stimuli. Lesions to this region cause

de�cits in tasks that require response behavior to �exibly adjust when the value of a

given action changes [19, 20].

In terms of connectivity, the orbitofrontal cortex is well poised to integrate stim-

ulus properties across a range of modalities, as it is highly connected to sensory

processing areas, in visual, gustatory, and olfactory modalities [21, 22, 23]. Indeed it

has been shown that OFC neurons are sensitive to stimuli from all of these domains.

In non-human primates, both unimodal and multimodal food responsive neurons have

been found in this region [24]; some cells respond preferentially to speci�c food objects

independent of the modality in which they are presented.

While the sights, tastes, and smells of foods are certainly rewarding, the possibility

remained that OFC activity represented the sensory properties of stimuli, rather
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than their reward value per se. Sensory-speci�c satiation procedures have been used

to address this question [25]. In these experiments, monkeys were presented with

di�erently �avored food-related stimuli in visual, olfactory [26], or gustatory forms

[27], and subsequently fed to satiety on one of the foods. Following satiation, OFC

neurons showed decreased responding speci�cally to stimuli related to the food on

which they had been satiated, independent of the modality in which the stimulus was

presented. These results suggest that these OFC neurons are sensitive to the current

value of the food stimuli.

While single/multi-unit recordings are less feasible in human subjects, whole-

brain imaging techniques such as functional magnetic resonance imaging (fMRI) and

positron emission tomography (PET) have been useful in delineating human brain

regions responsive to rewarding stimuli. A typical methodology for studying reward

representation in the brain is to present subjects with stimuli from a common sensory

modality but di�ering in reward value, for example O'Doherty et al. [28] compared

neural responses to the taste of glucose (pleasant), neutral, and salty (unpleasant)

solutions. These authors found non-overlapping di�erential activity in the OFC in

response to both pleasant and unpleasant �avors, relative to the neutral �avor, sug-

gesting that OFC encodes both positive and negative valence, but potentially in

distinct neural populations. Similar studies have been performed in the olfactory

[29], visual [30, 31], and auditory [32] domains, demonstrating similar patterns of

OFC activity. Human OFC responses also appear to be sensitive to the current value

of stimuli: speci�c satiation on a food item signi�cantly decreases OFC responses to

that food [33].

The OFC also responds to secondary reinforcers such as money and social feedback

[34, 35, 36], and cues learned as predictors of reward [37]. Sensory-speci�c satiety has

again been used to test whether the OFC is sensitive to changes in the value of a

reinforcer with which a cue has been paired [38]. Indeed, OFC activity selectively

decreases in response to a Pavlovian cue when the outcome predicted by that cue is

no longer valuable.

Several studies have made a distinction between medial OFC and more lateral
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parts of OFC as representing pleasant and aversive stimuli respectively [28, 31, 39].

Although this medial/lateral distinction is not universally found in the literature,

activity in medial OFC seems to correlate speci�cally with increasing subjective value

[31, 40, 41].

Thus, converging evidence points to the OFC as an important structure for rep-

resenting current value. A task that has consistently shown medial OFC responses is

probabilistic reversal learning, in which subjects are required to choose between stim-

uli delivering reward probabilistically. However, the probabilities of reward delivery

are sometimes reversing, forcing subject to pay close attention to reward rates and

update the values of the cue stimuli. In Chapter 4 of this thesis, we use probabilis-

tic reversal learning as a functional localizer for medial OFC, and probe the speci�c

impact of elevated activity in this region on a�ective judgments.

Amygdala

The amygdala, a pair of almond shaped nuclei located bilaterally deep in the tempo-

ral lobes, have also been implicated in expression of emotion and emotional learning.

The amygdala are composed of a heterogeneous group of sub-nuclei, di�ering in both

composition and connectivity. These sub-nuclei are reciprocally connected to each

other, and other brain regions, in such a way as to be well poised to integrate infor-

mation about, and associate, unconditioned (US) and conditioned stimuli (CS) (for

a review see [42]).

Early reports of temporal lobe resections in animals described a range of aberrant

behaviors, including a lack of fear responses. The disrupted fear response was later

localized to the amygdala [43]; thus, much of the work on the amygdala has concen-

trated on fear responses. Pavlovian fear conditioning has been an important model

paradigm for understanding acquisition and expression of fear, as well as emotional

processing in the brain more generally. In particular it has been shown that lesioning

the basolateral complex (BLA) interferes with acquisition [44, 45], while lesioning

the central nucleus (CE) interferes with expression of learned fears [46, 47]. Human
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patients with amygdala lesions also fail to acquire conditioned physiological fear re-

sponses, despite having explicit knowledge of, and normal responses to, the aversive

outcome [48].

The amygdala are also involved in representing appetitive stimuli. Single unit

recordings in amygdala during a task in which a cue predicts �rst an appetitive

stimulus and later switches to predicting an aversive stimulus, showed that some

amygdala cells re�ect positive predicted valence, while others re�ect a negative pre-

dicted outcome; the activity in these cells changed to re�ect the reversal in stimulus

contingencies [49]. Human fMRI studies have corroborated amygdala involvement in

representation of both appetitive and aversive emotional stimuli. Both happy and

fearful faces activate the amygdala, relative to neutral faces [50], as do faces which

have been associated with either positive or negative emotional characteristics. The

amygdala also responds to both pleasant and aversive taste [28].

Evidence points to the involvement of human amygdala in representation of not

only primary but also learned reinforcers. Patients with amygdala lesions show im-

paired acquisition of conditioned preference relative to healthy controls and patients

with frontal lesions [51]. fMRI studies of reward learning have implicated amygdala

in representing the current value of stimuli [38]. In conditioning, it has frequently

been found that responses to the US decrease with repeated presentation, a process

known as habituation. Some studies have also found that amygdala response to the

cue habituates with repeated presentations [52, 53], which is related to behavioral

habituation. We will discuss the amygdala further in terms of Pavlovian learning and

expression of learned behaviors in Chapters 1 and 2.

Mesolimbic dopamine system

In 1954, Olds and Milner [54] reported that animals would work (e.g., lever press)

for direct electrical stimulation to certain parts of the brain. This discovery led to

a method for mapping out which brain regions animals seek to stimulate by means

of natural reinforcers. Dopamine is a neurotransmitter produced primarily by neu-
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rons in the midbrain. Neurons in the mesolimbic dopamine system project from the

ventral tegmental area (VTA) of the brainstem to frontal and temporal cortices and

limbic structures of the basal forebrain such as the nucleus accumbens. Olds and Mil-

ner found that stimulation to the nucleus accumbens, a known target of dopaminergic

neurons, was a very powerful reinforcer. In fact, stimulating all along this dopaminer-

gic pathway elicits strong reward responses. Similarly, direct injections of rewarding

drugs provide a neurochemical means for studying reward function. Animals will

self-stimulate the nucleus accumbens with amphetamine [55], a dopamine releaser,

and nomifensine or cocaine [56], which inhibit dopamine reuptake, indicating that

the presence of dopamine in this region is rewarding (for a review see [57]).

Dopamine responses to natural reinforcers

Electrophysiology work in animals has helped to clarify the role of dopamine in reward

representation and prediction. Approximately 75% of dopamine neurons increase

their �ring rates in response to unexpected rewards [58]. Their response is relatively

indiscriminate among di�erent types of food or liquid reinforcers, suggesting that

they respond to the reward value as opposed to the speci�c sensory properties of each

stimulus. However, these cells do distinguish between food and non-food objects [59].

Aversive events provoke a phasic increase in activity in only about 14% of cells, but

cells do show depressions or activations with slower time courses [60], suggesting that

aversive events may be coded by a depression rather than an activation.

Reward predicting stimuli, learned through Pavlovian or instrumental condition-

ing tasks, elicit activation in 55-70 % of dopamine neurons [61, 62]. Conditioned

stimuli are somewhat less e�ective than actual reinforcers, however they are similarly

indiscriminate among reinforcers and preferentially responsive to cues predictive of

appetitive stimuli [62].

Dopamine signals and learning

Of particular interest is the response of dopaminergic neurons over the course of

learning. Before learning has taken place and rewards are unexpected, dopamine
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neurons �re in response to primary rewards. However, once a predictive cue for

reward has been established, it is the cue which elicits dopaminergic �ring, and not

the reward itself [63]. There is a transient learning period during which both the cue

and reward elicit some amount of activity, but after learning only the predictive cue

and unexpected rewards generate a response [63, 61].

This pattern of responses bears a strong resemblance to the prediction error sig-

nals postulated by learning theorists [11]. An important similarity between neuronal

responses and a prediction error signal, derived from a temporal di�erence model, is

temporal sensitivity. Dopamine neurons respond when rewards arrive earlier or later

than predicted, even when it is certain that the rewards are to occur [64]. Dopamine

neurons are depressed when a predicted reward is omitted; this depression occurs at

the speci�c time the reward was predicted [64].

Kamin's blocking paradigm [9] was an important source of inspiration for the de-

velopment of prediction- error-based theories of learning, and makes speci�c predic-

tions about the role of expectation and surprise in learning. If dopaminergic neurons

were in fact coding for something like a prediction error, responses in a blocking test

should comply with the observed behavior [9, 65]. That is, learning of an initial

cue-outcome association:

CS1 → outcome

CS1 → CR (licking response)

should block learning of the predictive power of a second cue when the two cues

are presented together followed by the outcome:

CS1 + CS2 → outcome

In a blocking paradigm tested in monkeys, Waelti et al. [66] found that both licking

behavior and dopamine responses complied with a prediction-error based account of

blocking. The blocked cue did not elicit any licking behavior or dopaminergic �ring:

CS2 → no licking response

A second pair of stimuli were used to control for repeated exposure and to show

that learning can take place for one member of a pair of cues. A cue was �rst presented

alone, and then with a second cue predicting reward:
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CS3 → no outcome

CS3 + CS4 → outcome

The result was that the added cue became predictive of reward, as shown by both

licking behavior and dopaminergic �ring:

CS4 → licking response

These studies provide very strong evidence that dopaminergic signals from the

midbrain play an important role in learning. However, it is important to note that this

is not the only role played by dopamine in the brain. Patients with Parkinson's disease

show de�cits in movement, cognition, and motivation as a result of degeneration of the

nigrostriatal dopamine system. This and evidence from lesion and pharmacological

manipulation studies [67] point to a role for tonic and medium scale (on the order of

seconds to minutes) dopamine release in wide range of behaviors [68].

Functional MRI of reward prediction error signals

Mapping out the activity of reward responsive regions in the human brain quickly

turned from characterizing responses to primary rewards, to understanding how con-

ditioned stimuli acquire value. Animal studies provided very compelling evidence

that the mesolimbic dopamine system is involved in signaling reward prediction er-

rors related to learning. The search for prediction error signals in the human brain

began with the hypothesis that unexpected rewards should elicit increased dopamin-

ergic activity. This was tested in a block-design fMRI study by [69]; these authors

compared neural responses during a block when juice rewards were delivered at un-

expected times, to a block during which the same number of juice rewards were

given at predictable intervals. They found signi�cantly greater activity in the ventral

striatum/nucleus accumbens during the block of temporally unpredictable rewards.

Pagnoni et al. [70] further demonstrated that a temporally delayed reward elicits

a positive de�ection at the time that the delayed reward is delivered. However, this

is but one of the three components of prediction-error-based models. These models

predict that 1) unexpected rewards should elicit phasic activity, 2) omitted expected

rewards should elicit a depression in activity, and 3) fully predicted rewards should
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not elicit any change. O'Doherty et al. [71] demonstrated that responses in the

ventral striatum and orbitofrontal cortex correlate with the full range of prediction

error activity. Further evidence for temporal prediction errors in the human brain

comes from Seymour et al. [72], who demonstrated that the time course of striatal

BOLD responses comply with predictions from a temporal di�erence model for a

range of situations in a second-order conditioning procedure.

Prediction-error-related activity in the ventral striatum has subsequently been

demonstrated for a wide range of natural and secondary reinforcers such as food [73],

money [74], and pain [72]. As discussed above, the blocking paradigm is an important

test for determining whether behavior and neural activity comply with formal learning

theory. Tobler et al. [73] tested blocking with human fMRI and demonstrated that

indeed, blocking behavior was evident in a subset of subjects, and in these subjects

activity in the ventral striatum showed phasic activity in response to a non-blocked

cue relative to a cue for which learning had been blocked.

Prediction error signals to visual rewards

While our understanding of human neural responses to rewarding stimuli is arguably

still preliminary, whole-brain fMRI studies have shown remarkable consistency in cor-

relating activity in the OFC, amygdala, and striatum with speci�c aspects of reward

processing. Meanwhile, the reward value of speci�c classes of stimuli, for example

social stimuli [75], and the associated neural responses, continues to be probed. At-

tractive faces have recently been shown to be a form of visual reinforcer; male subjects

are willing to exert e�ort to prolong viewing of attractive female faces [30]. This block

design fMRI study and another event-related fMRI study of passive viewing of faces

[31] both showed increased neural activity in reward structures such as OFC and the

ventral striatum in response to attractive, relative to unattractive faces.

In Chapter 1 of this thesis we extend this work, exploring the e�ects of exposure to

attractive faces on behavior, and the neural bases of this e�ect. We demonstrate that

attractive faces can serve as a visual reinforcer in a classical conditioning task, and
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that some of the value of attractive faces transfers to a previously neutral cue over

the course of learning. We further provide evidence that a reward prediction error

signal in the ventral striatum is engaged during classical conditioning with attractive

faces.

Pavlovian-instrumental transfer

Operant conditioning, in which an animal learns to perform an action in order to

modify their environment, is one example of how reward learning in�uences behav-

ior. By de�nition, Pavlovian learning a�ects passive responding, but has additionally

been shown to in�uence active responding. It is quite natural to think that Pavlov-

ian associations can in�uence decisions: once a stimulus has acquired value through

Pavlovian learning, decisions made concerning that stimulus may be a�ected. For ex-

ample, foods are often associated with emotions felt at the time of their consumption,

a�ecting future choices related to those foods; so-called `comfort foods' are increas-

ingly prevalent in cookbooks and on restaurant menus [76].

These e�ects have been formally studied with Pavlovian-instrumental transfer

paradigms, which test the ability of a Pavlovian cue to in�uence an instrumental

response. This occurs despite no formal learning of the e�ect of performing the

action in the presence of the cue. [77, 78] �rst described that a cue predictive of an

outcome could cause an increase in the rate of performing a response that had been

associated with the same outcome.

1. Tone → food delivery

2. Lever press → food delivery

3. Extinction: Lever press → no food delivery

4. Tone: Lever press response increases

The implication was that the rats had learned a stimulus-outcome association for

the �rst association that could then exert control over other behaviors resulting in

the same outcome.

This work was important for theories of instrumental learning, which had long
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been concerned with what exactly is learned during instrumental conditioning. Do

animals learn response-outcome, stimulus-outcome or stimulus-response associations?

Arguably, Pavlovian-instrumental transfer paradigms provide evidence that both stimulus-

outcome and response-outcome associations are learned [79], since the stimulus could

not a�ect the response unless they had both been associated with the outcome. Ex-

tensions of the original transfer paradigm have shown that Pavlovian cues can bias

action choice towards responses associated with speci�c outcomes, in what is known

as outcome-speci�c transfer. An example of this can be seen in the work of Blundell

et al. [80], who trained rats to respond on one lever (on the left) for sucrose and

another lever (on the right) for pellets.

L → sucrose

R → pellets

They also trained the rats on Pavlovian associations between auditory stimuli and

reward: a click train predicted sucrose while a tone predicted pellets.

Click-train → sucrose

Tone → pellets

Following Pavlovian and instrumental training they performed a transfer test, dur-

ing which the animals were exposed to both levers in extinction (no reinforcement was

provided), and the auditory cues were presented in alternation with baseline periods

during which no Pavlovian cues were presented. During Pavlovian cue presentation,

the rate of responding increased, and was signi�cantly higher on the lever associated

with the same outcome as the Pavlovian cue.

Click train: L (increased)

Tone: R (increased)

A Pavlovian cue can also exert a non-speci�c in�uence over responding, that is it

can have a more general in�uence on motivation as measured by response vigor. For

example, several studies have shown that a Pavlovian association learned during one

drive state (stimulus predicts food when hungry) can in�uence responding under a

di�erent drive state (lever predicts water when thirsty) [81, 82].

A growing body of work is concerned with investigating the neural mechanisms of
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transfer. Lesion studies in rats have shown that regions of nucleus accumbens [83],

amygdala [84], and dorsal striatum [85] selectively abolish certain transfer behaviors.

In humans, Talmi at al. [86] demonstrated that general motivational enhancement

was correlated with activity in the nucleus accumbens and amygdala. In Chapter 2 we

present the �rst investigation of the neural correlates of outcome-speci�c Pavlovian-

instrumental transfer in humans. We scanned human subjects with fMRI while they

underwent sessions of both Pavlovian and instrumental learning, followed by a transfer

test. During the transfer test we were able to discern which regions of the brain were

preferentially engaged when subjects acted under the in�uence of the Pavlovian cue.

Direct instrumental conditioning of neural activity

As we have seen, reward is a powerful modulator of behavior, and necessarily exerts

in�uence over neural activity in the process; environmental stimuli come to evoke

behavioral responses as outcome contingencies are learned. Accompanying any be-

havioral response is a neural response; at the very least we can assume a motor

command to execute the action. It would therefore seem possible that if we could

record neural activity and make reward feedback contingent on that activity, we could

condition a neural response directly, perhaps even in absence of overt behavior.

Fetz developed a technique for recording single cell activity and making reward

contingent on neural �ring rates, to study the activity of motor cortex neurons in

relation to muscle activity [87]. It had previously been shown that human subjects

can learn to control the activity of single motor units (consisting of a spinal anterior

horn cell, its axon, and all of the muscle �bers on which the terminal branches of

the axon extend) [88], and that neural activity can be conditioned in rats [89]. Fetz

[87] combined these techniques and described isolating single motor neurons and

reinforcing the animal when neuronal �ring rates were elevated above operant levels.

Reinforcing elevated �ring rates proved to be an e�ective technique for training an

animal to learn operant control of newly isolated cells, whose �ring rates increased

50-500% in response to reinforcement.
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Later work showed that it was also possible to train monkeys to perform this

response while suppressing motor activity [90], and to some extent suppress neural

activity while performing a muscle contraction. This work demonstrated that neural

activity previously associated with a motor response can be dissociated from the

response, implying that while neural activity was correlated with the response it might

not have been strictly necessary for its performance. Another possibility is that the

neural activity was necessary to generate the motor response, but rapid plasticity

occurred, recruiting di�erent motor cortex cells for performance of the response.

This work exempli�es how operant training of behavioral and neural responses

can be used to investigate the precise causal relationship between local brain activity

and behavior. Measuring brain activity during performance of a task provides infor-

mation about correlations between brain and behavior, but from this evidence alone

we cannot infer that they are causally related, i.e. that the behavior could not be

performed in absence of the brain activity.

Causality can be investigated using lesion studies: a brain region can be inferred

to be necessary for a task if elimination of that region renders task performance

impossible. However it can be di�cult to �nd subjects with very speci�c lesions

and this method does not allow testing of the impact of varying levels or patterns of

neural activity on behavioral performance. Temporary lesions induced by transcranial

magnetic stimulation (TMS) are another method for establishing causal relations

between brain activity and behavior [91]. However, these techniques are limited in

spatial scope (most stimulating techniques are active only at the cortical surface).

Training subjects to voluntarily activate or suppress neural activity in speci�c brain

regions has the potential to complement these techniques. An interesting avenue of

investigation, not possible with lesion methods, is that if �ne-grained control over

regional activity can be achieved, the e�ects of varying levels of activity on behavior

can be investigated.

Training subjects to voluntarily control neural activity that can be measured by

an external device also raises the possibility of using these neural recordings as a

communication tool. Locked-in syndrome describes a condition in which a patient is
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paralyzed and has lost the ability to voluntarily control muscle activity except for eye

blinking. A large body of research has been concerned with helping these patients, and

also those with less severe paralysis, to communicate. It has been demonstrated that

human subjects can learn to modulate recordings of electroencephalographic (EEG)

recordings of neural activity at the scalp [92, 93]. Multi-unit recordings in monkeys

have also demonstrated that signals from posterior parietal [94] and motor cortex [95]

can be interpreted and used for control of a cursor or physical manipulandum.

Recent technical advances have allowed development of neurofeedback techniques

using functional MRI data processed in real time (see Appendix A for more details).

Despite the disadvantage of poor temporal resolution, fMRI has the very important

advantage of allowing whole-brain imaging at much �ner spatial resolution than that

a�orded by scalp EEG, while remaining less invasive than intracranial recordings.

Several groups have provided proof-of-concept that subjects can learn to enhance,

and sometimes suppress, brain activity in speci�c regions including motor cortex [96],

amygdala [97], auditory cortex [98], supplementary motor area and parahippocampal

place area [99], and rostral anterior cingulate cortex (rACC) [100]. A particularly

interesting application of this technique is choosing regions in which it is hypothesized

that elevated activity will result in speci�c changes in behavior. A nice demonstration

of this was provided by deCharms et al. [100], in which subjects were trained to

elevate and suppress activity in the rACC, a region involved in pain processing. They

showed that when subjects were successfully modulating activity in this area, their

perception of a painful stimulus was enhanced or suppressed.

Previous studies have typically used ongoing graphical feedback of neural signals

to facilitate learned control. In general it is unclear what kind of feedback is necessary

or most e�ective. In typical instrumental conditioning studies, reinforcing behavior

with reward is su�cient to modify behavioral responses. We were therefore interested

in investigating whether reward would be su�cient to induce instrumental learning

of neural responses. In Chapter 3 we present a series of experiments in which we

rewarded subjects for elevating brain activity in regions of motor cortex related to

hand and foot movements, respectively, on separate trials. We demonstrate that
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subjects can learn to modulate neural activity in this region using only monetary

reward feedback. We further investigated the impact of training on behavior by

measuring reaction times in a cued response task.

Next, we extended this work and attempted to condition neural activity in an

emotional brain region: the orbitofrontal cortex; this work is described in Chapter

4. Activity in medial OFC correlates strongly with the subjective value of stimuli;

we were interested in investigating the causal in�uence of OFC activity on subjective

judgments. To this end, we asked subjects to judge the attractiveness of rapidly

presented faces interspersed with the OFC-activate blocks. We included a control

condition in which subjects tried to regulate activity in a hand-motor area, in order

to control for the e�ects of elevating neural activity in order to obtain reward.

Contributions of this thesis

Attractive faces can act as visual reinforcers: male subjects are willing to exert ef-

fort in order to gain access to attractive female faces [30], and fMRI studies have

shown that attractive faces engage known reward circuitry in the brain, such as the

orbitofrontal cortex and nucleus accumbens [30, 31]. Advertising campaigns have long

paired products with pictures of attractive models in order to enhance the desirabiliry

of their product, a practice supported by marketing research [101, 102]. However it

has remained unclear how attractive faces exert an in�uence over behavior. In Chap-

ter 1 we investigate the possibility that attractive faces can transfer value to cues via

classical conditioning, and use fMRI to investigate neural signals related to learning.

In Chapter 2 we take a deeper look at the in�uence of Pavlovian cues on behav-

ior, speci�cally related to decision-making. Pavlovian cues predictive of a rewarding

outcome can in�uence response behavior when presented during a period of instru-

mental responding [77, 78], despite no learning of the consequences of performing the

response in the presence of the cue. In general transfer, the Pavlovian cue may be

associated with an outcome other than those available on the instrumental responses,

and causes a general enhancement in response vigor [82, 84, 86]. In speci�c transfer,
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a Pavlovian cue associated with a particular outcome will bias responding towards a

response associated with the same outcome as the cue [85, 84, 83, 80]. Lesion studies

in animals have probed the neural circuitry involved in expression of transfer e�ects;

these studies have found that partly dissociable regions of nucleus accumbens [83],

amygdala [84] and dorsal striatum [85] are necessary for expression of general and

speci�c transfer e�ects. However these studies have not addressed the mechanism by

which transfer e�ects are expressed. In Chapter 2 we implement an outcome-speci�c

Pavlovian-instrumental transfer paradigm in humans, and use fMRI to investigate the

neural mechanisms underlying the in�uence of Pavlovian cues over decision-making.

Recent advances in fMRI technology have made it possible to perform fMRI analy-

ses in real-time, and present subjects with information about their neural responses.

This technique has been used to train human subjects to learn control over neural

activity in circumscribed brain regions [96, 100, 103, 98, 104, 105, 106, 99, 107, 108].

In Chapters 3 and 4 we investigate the use of this technique for instrumentally condi-

tioning neural activity directly. We apply associative learning techniques, providing

subjects with reward for making speci�c neural responses upon presentation of dis-

criminative cues. This technique may prove important for a host of research and

clinical applications. In Chapter 3 we apply this technique to conditioning regions of

motor cortex related to hand and foot movements. In Chapter 4 we extend this work

to condition increased activity in medial orbitofrontal cortex, a brain region in which

has been frequently correlated with subjective value [30, 109, 40, 31, 41], and probe

the behavioral e�ects of increased activity in this area on an a�ective judgment task.
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Chapter 2

Prediction error signals to attractive

faces∗

Attractive faces can be considered to be a form of visual reward. Previous imaging studies have

reported activity in reward structures including orbitofrontal cortex and nucleus accumbens during

presentation of attractive faces. Given that these stimuli appear to act as rewards, we set out to

explore whether it was possible to establish conditioning in human subjects by pairing presentation

of arbitrary a�ectively neutral stimuli with subsequent presentation of attractive and unattractive

faces. Furthermore, we scanned human subjects with fMRI while they underwent this conditioning

procedure in order to determine whether a reward prediction error signal is engaged during learning

with attractive faces, as is known to be the case for learning with other types of reward such as

juice and money. Subjects showed changes in behavioral ratings to the CS stimuli when comparing

post- to pre- conditioning evaluations, notably for those CSs paired with attractive female faces.

We used a simple Rescorla-Wagner learning model to generate a reward prediction error signal and

entered this into a regression analysis with the fMRI data. We found signi�cant prediction-error-

related activity in the ventral striatum during conditioning with attractive compared to unattractive

faces. These �ndings suggest that an arbitrary stimulus can acquire conditioned value by being

paired with pleasant visual stimuli just as with other types of reward such as money or juice. This

learning process elicits a reward prediction error signal in a main target structure of dopamine

neurons: the ventral striatum. The �ndings we describe here may provide insights into the neural

mechanisms tapped into by advertisers seeking to in�uence behavioral preferences by repeatedly

exposing consumers to simple associations between products and rewarding visual stimuli such as

pretty faces.

∗Adapted with permission from: Bray S, O'Doherty J (2007) Neural coding of reward-prediction
error signals during classical conditioning with attractive faces. Journal of Neurophysiology 97:3036-
3045. Copyright 2007 Journal of Neurophysiology
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Introduction

Faces convey a wealth of information, and are perhaps the most important visual

stimuli for humans in social environments [110]. The attractiveness of a face is a fea-

ture which we can perceive quite automatically [111], can subsequently motivate our

behavior in terms of mate choice [112], and bias our beliefs about others' personality

and expected success in life [113]. The e�ect of attractiveness on human behavior

has been documented in the workplace, where it has been shown that attractive in-

dividuals enjoy higher salaries [114] and better employment prospects [115]. These

observations have led to the suggestion that preference for facial attractiveness may

have evolved to enhance reproductive success [116, 117].

Recent evidence indicates that attractive faces may act as a form of visual re-

inforcer, as human subjects are prepared to work in order to gain access to them

[30]. Although much is now known about the neural circuitry involved in processing

the perceptual [118, 119, 120] and a�ective aspects of facial stimuli [110, 121, 122],

the neural substrates of facial attractiveness are much less well understood. Nev-

ertheless, some preliminary studies investigating processing of facial attractiveness

have implicated brain regions known to be involved in reward processing, such as the

orbitofrontal cortex and ventral striatum [30, 123, 124, 125, 31, 109].

Here we aim to address the manner in which facial attractiveness can in�uence

one important aspect of human behavior: behavioral preference. Attractive faces

have long been used in advertising as a means of modulating behavioral preferences

for speci�c products. Indeed, marketing research has shown that people will evalu-

ate products more favorably when they are presented alongside physically attractive

models [102, 101]. One possible mechanism for this preference modulation e�ect is

through classical conditioning, whereby an arbitrary neutral stimulus acquires a�ec-

tive value through repeated pairing with a stimulus that has pre-established value

such as an attractive face.

In this study we set out to elucidate the neural mechanisms of this phenomenon, by

scanning human subjects with functional magnetic resonance imaging (fMRI) while
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they learned an association between arbitrary a�ectively neutral visual stimuli (frac-

tals) and attractive and unattractive male and female faces. Before and after the

conditioning procedure, we took ratings of pleasantness and preference for the arbi-

trary fractal stimuli, in order to establish whether behavioral preferences for these

stimuli could be modulated as a function of conditioning with attractive faces.

We aimed to characterize the neural processes underlying learning of these pref-

erence associations. Modern learning theories propose that such reward-dependent

learning is driven by the degree of surprise or unpredictability of a rewarding out-

come, or more speci�cally, errors in predictions of reward [10]. Electrophysiological

studies in non-human primates implicate the phasic �ring of midbrain dopaminergic

neurons in encoding reward prediction errors [126]. fMRI studies of human learning

have found evidence of reward-prediction-error-related activity in known projection

sites of dopaminergic cells, especially the ventral striatum, during learning with other

forms of natural and abstract rewards such as juice or money [124, 127, 73]. Given

that attractive faces can also be considered as a form of reward, we hypothesized

that learning with attractive faces would also engage brain structures known to be

involved in reward prediction error coding such as the ventral striatum.

Materials and Methods

Subjects

28 subjects participated in this study (15 females and 13 males), ranging in age from

18 to 27 (mean 20.8 ± 2.24 S.D). All subjects gave informed consent, which was

approved by the local research ethics committee. Due to technical di�culties (for

one subject the experiment stopped during the study due to a software problem, and

for two other subjects part of the data set was lost in transfer), three subjects were

excluded from the imaging analysis (N = 25), one subject was excluded from response

time analysis (N=27) and one subject's preference data were lost (N=27).
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Stimuli

The visual conditioned stimuli (CS) were complex abstract fractal images, and the

unconditioned stimuli (UCS) were photographs of human male and female faces,

attractive and unattractive. A set of 148 faces were previously rated by a separate

group for attractiveness on a scale from 1 to 7 [31]. Based on these ratings, 8 faces

were chosen to make up each of four conditions: female-attractive, male-attractive,

female-unattractive, and male-unattractive. The faces had forward head position, and

gazed forward with neutral to mildly happy expressions. The face images were masked

to remove hair, were adjusted to be of approximately equal size and luminance, and

centered in a 450 x 450 pixel grey background. We also used six abstract fractals, each

centered in a 170 x 170 pixel grey background. Stimuli were presented at a screen

resolution of 800x600. Example stimuli are shown in the time course of a conditioning

trial in Figure 2.1a, and additional example face stimuli are shown in Figure 2.1b.

Stimuli were presented using Cogent 2000, developed by the Cogent 2000 team at the

FIL and the ICN, and Cogent Graphics, developed by John Romaya at the LON at

the Wellcome Department of Imaging Neuroscience.

Behavioral measures

Sexual orientation

Subjects �rst completed a questionnaire, in which they were asked to describe their

sexual orientation by choosing from a set of labels (heterosexual, homosexual, bisex-

ual, transgender, polyamorous, none). They were also asked to rate on a 10-point

scale how interested they are in having sex with men and women and how sexually

attractive they �nd men and women.

Behavioral measures of learning and preference modulation

During conditioning, attractive and unattractive faces were paired with a�ectively

neutral fractal pictures. Subjects were �rst exposed to the fractal stimuli before

conditioning, in order to obtain pleasantness ratings and preference rankings. Pleas-
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antness ratings were performed once subjects were installed in the scanner, before

fMRI data collection began. Subjects were �rst shown a screen with six fractal im-

ages; they were then shown each of the fractals once in random order and asked to

verbally report a pleasantness rating between -10 and +10 (where -10 = very un-

pleasant, 0 = neutral, 10 = very pleasant). Next, subjects were presented with pairs

of fractals and asked to indicate which of the two they preferred by pressing the left

or right button on a two-button pad. Pairs were presented in random order, with

each combination presented three times, and fractals randomly assigned to the left or

right side of the screen. Subjects responded to a total of 45 pairs, with each fractal

appearing a total of 15 times.

During the conditioning procedure, subjects were asked to respond with a button

press to indicate which side of the screen the fractal stimulus was presented on each

trial. During conditioning, subjects were presented with each fractal a total of 48

times. These reaction times provided an additional on-line measure of conditioning

[128].

After conditioning, the preference and ratings tasks were repeated in that order;

subjects were given the additional instruction that they should not try to match their

previous answers, but rather respond according to their present evaluation.

In order to assess explicit awareness of the contingencies, subjects were shown

each of the six fractals in random order and asked how likely they thought it was that

the fractal had been paired with an attractive face, using a scale from 0 to 10 (where

0 = not at all likely, and 10 = very likely). Subjects were also asked how unlikely it

was that a stimulus was paired with an attractive face. We then asked subjects how

likely and unlikely it was that each fractal had been paired with an unattractive face.

Evaluation of attractiveness of face stimuli

The �nal task in the experiment was to evaluate the attractiveness of the faces.

Subjects were presented with each of the 32 faces in random order and asked to

verbally report a subjective rating of facial attractiveness on a scale from -10 to +10.
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Behavioral Data Analysis

We used di�erential ratings and preferences as an index of conditioning. We hy-

pothesized that fractals paired with attractive faces would increase in pleasantness

and become more preferred over fractals paired with unattractive faces, especially for

fractals paired with faces opposite in gender to the subject. A preliminary inspection

of these data indicated that they were not normally distributed. Consequently, we

used non-parametric statistics for all behavioral analyses in this study.

The pair-wise preference results were ranked based on the number of times a

fractal was chosen as preferred, and category di�erences in ranking changes before

and after conditioning were compared (e.g., change in rankings for fractals paired

with attractive female faces compared to unattractive female faces).

Neuroimaging

Conditioning Procedure

Four of the fractals were randomly assigned to be paired with faces from one of

the four face gender/attractiveness categories, and two were assigned to never be

paired with any faces. The fractal/face categories were: attractive female, attractive

male, unattractive female, unattractive male, and unpaired. Each trial began with

the presentation of a fractal image, randomly displayed either to the left or right of

a central �xation cross. This fractal remained on the screen for 1.5 seconds. On

reinforced CS+ trials, after 1 second a picture of a face appeared in the middle of

the screen, next to the fractal. The two appeared together for 500 milliseconds,

the fractal then disappeared while the face remained on the screen for another full

second, followed by a �xation cross for 500 milliseconds. The duration of each trial

was 3 seconds, with the face and fractal each presented for 1.5 seconds, with 0.5

seconds of overlap. We chose to use a delay conditioning paradigm with a short

inter-stimulus interval in order to maximize conditioning e�cacy. The time course

of a CS+ trial is shown in Figure 2.1. In order to enhance conditioning, the �rst

three trials of each condition were reinforced CS+ trials in which the face followed
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b

a

Figure 2.1: a) Sample time course of a reinforced CS+ conditioning trial with a female
attractive face. b) Example face stimuli

the fractal, while for the remainder of the experiment 50% of trials were reinforced.

In order to obtain a trial-based behavioral measure of learning during the study and

also to ensure that subjects attended to the task, subjects were instructed to press

the left or right button on a two button pad, to indicate which side of the screen the

fractal appeared. They were also instructed to keep their attention directed toward

the center of the screen throughout the experiment. There were 48 trials of each type,

50% of which were reinforced, and each of the 8 faces in a category was presented up

to three times. Along with the 288 conditioning trials we included a set of 96 null

events, during which the �xation cross was presented for 3 seconds, in order to mimic

the e�ect of a jittered inter-trial interval and facilitate separation of neural responses

from consecutive trials. Trials were randomly ordered, and the total duration of the

conditioning session was approximately 20 minutes.
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Prediction error signals

We used a simple trial-based Rescorla-Wagner rule to model trial-by-trial prediction

errors in learning [10]. This model uses a prediction error signal δ which re�ects the

di�erence between the value of the outcome received on a given trial (R) and the

value of the expected outcome on that trial (V): δ = R − V . The expected value V

is then updated by adding delta weighted by a learning rate α : V=V+αδ.

In a follow up region of interest analysis, we employed a real-time extension of

the Rescorla-Wagner learning rule, a temporal di�erence model [11, 129], in which

the prediction error shifts backwards in time from the face presentation to the cue

presentation. We divided trials of each type in to early, middle, and late epochs, and

modeled the prediction error signal at the time of the face, 0.5s before the face, and

time of cue (1s before the face), respectively.

The speci�c values used in our implementations of the model were the following:

we modeled the presentation of a face with R = 1, the omission of a face with R

= 0 (for both attractive and unattractive faces), and derived the learning rate (α)

from subjects' behavioral responses. We used reaction times (responses to the con-

ditioned stimuli) as a trial-by-trial measure of learning, to derive model parameters

from subjects' behavior. Reaction times have previously been shown to be modulated

as a function of conditioning, and changes in reaction times over time have previously

been found to correlate with reinforcement learning models [130, 131, 38]. We derived

learning signals for each subject based on their individual conditioning histories for a

range of learning rates α (ranging from 0.01�0.5). For each type of trial we averaged

log-adjusted trial-by-trial response times across subjects and �t these to a regression

model which included the averaged learning signal curves. In order to account for

general changes in reaction time that would occur over the experiment we included an

additional regressor as a covariate of no interest that re�ected the change in reaction

times across the experiment in the neutral trials (speci�cally a spline-smoothed �t

of the averaged reaction times from the unpaired trials). This method allowed us to

determine the learning rates that gave the best �t to subjects' behavior (on average
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across subjects). We used the learning rates resulting from this procedure to model

the fMRI data for all subjects, by regressing these signals against the brain imaging

data as described below (the speci�c learning rates are given in the Results section).

fMRI scanning procedure

fMRI data were acquired on a Siemens AG (Erlangen, Germany) 3T TRIO MRI

scanner; Blood Oxygenation Level Dependent (BOLD) contrast was measured with

gradient echo T2* weighted echo-planar images (EPI). Imaging parameters were op-

timized to minimize signal dropout in medial ventral prefrontal and anterior ventral

striatum: we used a tilted acquisition sequence at 30° to the AC-PC line [132], and

an 8 channel phased array coil which yields a ~40% signal increase in this area over a

standard coil. The �rst 5 volumes of 620 were discarded to permit T1 equilibration.

Other parameters were as follows: in-plane resolution, 3 x 3 mm; slice thickness, 3

mm; repetition time, 2s; echo time, 30 ms; �eld of view, 192 x 192 mm. A T1 weighted

structural image was also acquired for each subject.

Imaging data analysis

fMRI data were preprocessed in SPM2 (http://www.fil.ion.ucl.ac.uk/spm/software/

spm2/). Images were corrected for slice acquisition time within each volume, motion

corrected by aligning to the �rst volume [133], and unwarped to correct for estimated

movement-related deformations in the EPI �eld [134]. They were normalized to a

standard EPI template in Montreal Neurological Institute space, and spatial smooth-

ing was applied using a Gaussian kernel with full width at half maximum of 8 mm.

The normalization parameters estimated for each subject were also applied to their

T1-weighted structural scans.

Statistical analysis was carried out using the general linear model, with the canon-

ical hemodynamic response function (HRF) as a basis set. We describe results from

two main analyses, designed to examine stimulus-driven e�ects and learning-related

e�ects, respectively. In the �rst analysis fractal and face presentation events were
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modeled as delta functions. In the second analysis, prediction error signals were

entered as parametric regressors for each trial-type, at the time a face would be pre-

sented, independently of whether a face had actually been shown. For all models,

the six ongoing motion parameters estimated during realignment were included as

regressors of no interest. The results from each subject were taken to the random

e�ects level by applying t-tests between contrast images to produce group statistical

parametric maps. We focused our analyses on brain regions of interest, speci�cally

the striatum, orbitofrontal cortex, and amygdala.

Results: Behavioral Measures

Face attractiveness ratings

Consistent with previous studies using the same set of faces [31], subjects rated the

faces in the attractive category as signi�cantly more attractive than those in the

unattractive category, for both female (Wilcoxon signed ranks test |Z| = 4.264, N =

28, p<.001) and male faces (|Z| = 4.623, N = 28, p<.001). Gender di�erences were

observed in evaluations of male faces, as female subjects rated them as signi�cantly

more attractive than did male subjects (Mann-Whitney |Z| = 2.374, N = 15, 13, p<.05

and |Z| = 2.097, N = 15, 13, p<.05, attractive and unattractive respectively). There

were no signi�cant gender di�erences in evaluations of female faces. Attractiveness

evaluations are shown in Figure 2.2a.
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Figure 2.2: a) Evaluations of attractiveness of faces in each category (attractive
and unattractive, male and female), averaged across the 8 faces in each category.
For both face genders, the unattractive mean was subtracted from the attractive
mean and the di�erences averaged across subjects in three groups: all subjects, males
and females. Bars indicate standard error. b) Di�erence in pleasantness ratings for
fractals pre- and post- conditioning, unattractive di�erence subtracted from attractive
di�erence, and this di�erence averaged across subjects in three groups: all subjects,
males and females. Bars indicate standard error. Stars indicate di�erences that are
signi�cant (Wilcoxon signed ranks test p<0.05). c) Di�erence in number of times
fractal was chosen as preferred pre- and post-conditioning, unattractive di�erence
subtracted from attractive di�erence, and this di�erence averaged across subjects in
three groups: all subjects, males and females. Bars indicate standard error. Star
indicates signi�cant di�erence (Wilcoxon signed ranks test p<0.05).
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Sexual orientation questionnaire

Based on self-reports of sexual orientation, our subject group consisted of 14 hetero-

sexual females and 1 bisexual female, 11 heterosexual males and 2 bisexual males.

Labels of sexual orientation were corroborated by ratings of attraction and sexual

interest to the opposite sex: female heterosexual subjects rated their attraction to

males to be on average 8±0.6, whereas male heterosexual subjects rated their attrac-

tion to females as 9±0.28. Similar scores were obtained on ratings of sexual interest

in the opposite sex: 7.47±0.41 in female subjects for males, 8.5±1.5 in male subjects

for females. The bisexual subjects rated their level of attraction and sexual interest

for the opposite sex within the same range as the heterosexual subjects, and were

therefore included in all analyses described here, unless explicitly stated otherwise.

Changes in pleasantness ratings of stimuli as a function of con-

ditioning

Signi�cant di�erences in pleasantness ratings for fractal stimuli were found from before

to after conditioning for the stimuli paired with attractive female faces (Wilcoxon

signed ranks test, |Z| = 2.169, N = 28, p<0.05) across all subjects (both male and

female). This e�ect was also signi�cant in the sub-group of male subjects (Wilcoxon

signed ranks test, |Z| = 1.992, N = 13, p<0.05), but not female subjects. We did

not �nd a similar e�ect for the fractals paired with male faces, in any of the subject

groups. Male and female subjects showed no signi�cant di�erences in pleasantness

ratings. Figure 2.2b shows di�erences in pleasantness ratings from before to after

conditioning for stimuli paired with attractive and unattractive faces, plotted for all

subjects and males and females separately.
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Changes in behavioral preference for fractal stimuli as a func-

tion of conditioning

In male subjects, the increase in preference for fractals paired with highly attractive

female faces was signi�cantly greater than for those paired with unattractive female

faces (Wilcoxon signed ranks test, |Z| = 2.428, N = 13, p<0.05), although this e�ect

was not signi�cant across all subjects. On the other hand, we did not �nd a similar

e�ect in female subjects for those fractals paired with either male or female faces. No

signi�cant e�ects were found in either male or female subjects for stimuli paired with

same-sex attractive faces, and no signi�cant gender di�erences in preference ratings

were observed. Figure 2.2c shows di�erences in preference rankings for the fractal

stimuli as a function of conditioning, plotted separately for stimuli paired with male,

and female faces, and groups of all, male and female subjects.

Correlations between reaction times and learning model

Our regression analysis showed that the Rescorla-Wagner model with the best �tting

learning rate was signi�cantly correlated with changes in subjects' reaction time data

over the experiment for all four trial types in which subjects learned the predictive

value of the fractal cues. The learning rates obtained for each trial type were [Attrac-

tive female: 0.026 (R2 = 0.59, p <0.05) , Attractive male: 0.04 (R2 = 0.43, p <0.05),

Unattractive female: 0.038 (R2 = 0.48, p <0.05), Unattractive male: 0.04 (R2 = 0.57,

p <0.05)]. Subject averaged reaction times are shown separately for low (0.0-0.2) and

high (0.2-0.5) value trials for each condition in Figure 2.3. This �gure shows that for

all four face-paired conditions, in both genders, there is a slowing in reaction times as

model-predicted reward value increases. The mean reaction times for each condition

are (mean±se, in ms): 469.19±88.66 (attractive female), 462.42±87.38 (attractive

male), 465.16±87.90 (unattractive female), 460.33±86.99 (unattractive male).
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Figure 2.3: Relationship between reaction times and predicted value from the
Rescorla-Wagner learning model. Individual subjects reaction times (RTs) were cor-
rected for drift by taking the residuals from a regression onto the averaged reaction
times for the neutral (never paired) conditions. Corrected RTs were then binned
according to the predicted value derived from the Rescorla-Wagner learning model,
using the derived learning rates for each trial type. The RTs were binned into low
(0-0.2) and high (0.2-0.5) value trials. The plot shows that trials high in value show
increased RTs compared to trials low in value.
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Results: fMRI

Prediction error contrasts

We performed a linear contrast between prediction error signals for attractive and

unattractive faces, and found signi�cant activation in one of our a priori regions of

interest: nucleus accumbens (NAcc) as shown in Figure 2.4a ([-9 15 -3], z = 3.38 and

[9 15 -9], z = 3.12; signi�cant at p<0.001, uncorrected). These areas survive small

volume correction using a sphere of 8mm radius de�ned around co-ordinates derived

from a previous demonstration of reward prediction error activity in the NAcc ([-11 11

-2] and [11 11 -2] [135]). The peak in the left NAcc is also signi�cant in the contrast of

learning with opposite-sex attractive compared to opposite-sex unattractive faces in

all subjects ([-9 15 -6], z = 3.52; p<0.001 uncorrected), and the subset of heterosexual

subjects ([-9 15 -6], z = 3.79; p<0.001 uncorrected). The contrast between learning

with same-sex attractive compared to unattractive faces did not show any signi�cant

activations. Activations for prediction error contrasts are shown in Table 2.1.

The prediction error contrast for learning with opposite sex attractive compared

to unattractive faces also showed activity in some of our other a priori regions of

interest, namely bilateral medial orbitofrontal cortex ([-6, 33, -9], z = 3.63; p<0.001

uncorrected) and ([9, 33, -12], z = 3.22; p<0.001 uncorrected), and caudate nucleus

([9, 15, 6], z = 3.37; p<0.001 uncorrected).
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Figure 2.4: a) Voxels in the nucleus accumbens were signi�cantly activated in a
contrast of prediction error signals for attractive faces vs. unattractive faces, voxels in
yellow are signi�cant at p<0.001, voxels in red are signi�cant at p<0.01. b) Parameter
estimates for prediction error at the peak NAcc voxel from the attractive-unattractive
contrast [-9 15 -3], averaged across subjects in three groups: all subjects, males, and
females. Bars indicate standard error in the mean. Stars indicate di�erences that are
signi�cant (one-tailed t-test, p<0.05). c) Subject averaged time courses, aligned to
the beginning of a trial, i.e., onset of the fractal cue; faces were presented at 1 second.
Bars indicate standard errors. Time courses extracted from each subjects peak voxel
in the left NAcc region. The leftmost plot shows the averaged over attractive and
unattractive trials, unpaired trials subtracted from paired. The middle and rightmost
plots show paired and unpaired trials separately for attractive and unattractive faces,
respectively.
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Table 2.1: Prediction error contrasts

Z scores and MNI coordinates of peak activation foci. Minimum cluster 5
contiguous voxels, thresholded at p<0.001 uncorrected.

Prediction error contrast

Attractive-Unattractive Opposite sex Attractive - Unattractive

Region # voxels Z #Voxels Z

Right inferior frontal gyrus 23 3.74(39, 30, 18) 42 3.79(36, 30, 18)

Left inferior frontal gyrus 32 3.7(-36, 33, 15) 12 3.38(-39, 30, 18)

Left nucleus accumbens 5 3.38(-9, 15, -3) 7 3.52(-9, 15, -6)

Left medial OFC 38 3.63(-6, 33, -9)

Right medial OFC 5 3.22(9, 33, -12)

Right caudate 5 3.37(9, 15, 6)

In the contrast of prediction error for learning with attractive compared to unattrac-

tive faces, we also found signi�cant e�ects in the right and left inferior frontal gyrus

(see Table 2.1). These areas remain signi�cant when we restrict this contrast to

opposite sex faces.

Prediction error responses to learning with same and opposite

sex faces

We explored prediction error responses to fractals paired with opposite and same sex

faces by conducting a post-hoc statistical analysis on the contrast estimates derived

from the left ventral striatum (plotted in Figure 2.4b) in heterosexual subjects. In

male subjects, we found a signi�cant di�erence in responses for attractive compared to

unattractive female faces (|t| = 3.01, dof = 8, p<0.05), but no di�erence for male faces,

whereas in female subjects, we found a signi�cant di�erence in contrast estimates for

attractive compared to unattractive male faces (|t| =3.16, dof = 12, p<0.05), but

not female faces. Pooling male and female subjects we found a signi�cant e�ect

of attractiveness when subjects were presented with opposite (|t| =4.31, dof = 21,

p<.001) but not same sex faces.
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Time-course plots

We also extracted time courses for peak voxels in the region of individual subjects' left

NAcc, and averaged over attractive and unattractive trials, subtracting the averaged

trials for which no face was presented from the averaged trials for which a face was

presented. The resulting time courses are shown in Figure 2.4c (left panel) and indi-

cate a positive increase in BOLD signal for positive prediction errors and a decrease

in signal for negative prediction errors. Figure 2.4c (middle panel) shows that the

NAcc responds positively to the presentation of an attractive face, and negatively to

the omission of an attractive face, while Figure 2.4c (rightmost panel) shows that for

unattractive faces this relationship is inverted, with increased activation seen to the

omission of a face.

Test for learning related changes over time

In order to establish whether activity in NAcc is associated with a temporally evolv-

ing learning signal as opposed to non-learning related e�ects induced by the presence

or absence of a face, we performed an additional analysis on the time-series data

extracted from the peak voxel in NAcc (at [9 15 -9]). For this, we included in the

analysis a prediction error regressor that temporally shifted from the time of face pre-

sentation to the time of cue presentation, using a real-time extension of the Rescorla

Wagner learning rule: temporal di�erence learning [129]. We included in the same

analysis a regressor at the time of face presentation, only when faces were actually

presented. The temporal di�erence prediction error signal was a signi�cantly better

�t to activity in the NAcc than the face regressor at p<0.05, suggesting that activ-

ity in this structure re�ects dynamic learning related changes and not merely e�ects

relating to the presence of absence of a face.
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Separate prediction errors during learning with attractive and

unattractive faces

Comparing prediction error responses during learning with attractive and unattractive

faces produced robust di�erences, due to the opposing direction of the prediction

error signal. We also examined learning signals in response to both attractive and

unattractive faces independently. A simple contrast for areas showing a positive

correlation with the prediction error signal for attractive faces produced a peak in

the right NAcc (at [6 15 -12]) which survived correction for small volume at p<0.05

FDR corrected in a 5 mm sphere centered on the peak identi�ed above ([9 15 -9]).

A simple contrast to detect areas showing a negative correlation with the prediction

error signal for unattractive faces, also produced a peak in the left NAcc (at [-6 12

-3]) which survived correction for small volume at p<0.05 FDR corrected in a 5 mm

sphere centered on the NAcc peak identi�ed above ([-9 15 -3]).

We found evidence for a positive correlation with prediction error signals during

learning with both attractive and unattractive faces in the amygdala, another of our

a priori regions of interest: for attractive faces in right amygdala ([24 0 -25], z =

3.31 p<0.001 uncorrected) and for unattractive faces in right amygdala ([18 -6 -21],

z = 4.02 p<0.001 uncorrected) and left amygdala ([-18 -6 -18], z = 3.26 p<0.001

uncorrected).

Main e�ect of attractiveness

We also tested for regions responding to receipt of the attractive faces themselves.

For this we performed a linear contrast of attractive�unattractive faces at the random

e�ects level (Figure 2.5a) and found signi�cant e�ects in medial OFC ([12 39 -9]

z = 2.93) extending into medial prefrontal cortex, a region previously shown to be

responsive to the receipt of attractive faces [30, 31]. The OFC area survived correction

for small volume at p<0.05 FDR corrected in an 8 mm sphere centered around co-

ordinates from a previous study of facial attractiveness (at [16 45 -11] from [30].

A number of other regions show responses to facial attractiveness (clusters larger
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Table 2.2: Main e�ect of attractiveness

Z scores and MNI coordinates of peak activation foci. Minimum cluster 5
contiguous voxels, thresholded at p<0.001 uncorrected

Prediction error contrast

Attractive-Unattractive

Region # voxels Z

Right inferior frontal gyrus 7 3.70(39, 24, 18)

Left inferior frontal gyrus 57 4.7(-39, 36, 15)

Left nucleus accumbens 8 4.28(-9, 15, -6)

Medial anterior cingulate 32 3.76(0, 36, 12)

Medial posterior cingulate 49 4.51(-3, -30, 30)

than 5 voxels signi�cant at p<0.001 uncorrected are tabulated in Table 2.2), including

the left NAcc at [-9 15 -6] (z = 4.28; p<0.001 uncorrected). The NAcc activity is in

the same region we found to be responsive to prediction error. A post-hoc inspection

of the time course plots from these two regions shows that the NAcc demonstrates a

response pro�le consistent with a reward prediction error and not face presentation

per se, as this region not only increases following presentation of an attractive face,

but also increases following the omission of an unattractive face (Figure 2.4c). On the

other hand, the OFC area only showed increased activity to the presentation of an

attractive face, and showed no change in activity to any other condition, suggesting

that this area is responding to the receipt of an attractive face and not a prediction

error (Figure 2.5b).
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Figure 2.5: a) Voxels in the orbitofrontal cortex extending into medial prefrontal
cortex were signi�cantly activated in a contrast of attractive faces vs. unattractive
faces. The peak in medial OFC ([12 39 -9] z = 2.93), survived correction for small
volume at p<0.05 FDR corrected in an 8 mm sphere centered around co-ordinates
from a previous study (see Results). For visualization, the threshold is set at p<0.01
uncorrected. b) Subject averaged time courses, aligned to the beginning of a trial,
i.e. onset of the fractal cue; faces were presented at 1 second. Bars indicate standard
errors. Time courses extracted from the medial OFC peak in response to the main
e�ect of attractiveness. The leftmost plot shows the averaged over attractive and
unattractive trials, unpaired trials subtracted from paired. The middle and rightmost
plots show paired and unpaired trials separately for attractive and unattractive faces,
respectively.
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Discussion

The impact an attractive face can have on human behavior, from product choice [102]

to hiring preference [115], has been well documented. However, to our knowledge,

this study marks the �rst demonstration of modulation of behavioral preference for a

neutral visual stimulus by conditioned association with an attractive face. Subjects

in our study rated neutral fractal images as signi�cantly more pleasant after they had

been repeatedly paired with attractive female faces. Our �nding of a modulation of

behavioral preference to previously neutral stimuli as a function of conditioning with

attractive faces resonates with other studies that have found similar e�ects through

acquisition of conditioned associations with other types of reinforcers such as food

and money [136, 51, 128].

By measuring neural activity with fMRI while subjects acquired this association,

we were able to observe learning-related activity in the brain as the association was

formed. We found that reward prediction errors were engaged in the ventral stria-

tum, di�erentially for stimuli paired with attractive compared to unattractive faces.

Prediction errors have been observed during learning with other types of reward,

such as juice and money [74, 73]. The observation that attractive faces also engage

these signals further reinforces the proposal that attractive faces can be considered

to be a form of visual reward [30, 31]. The present result also provides insight into

the mechanism by which attractive faces transfer their rewarding properties to other

stimuli.

It is notable that increases in activity occurred in the striatum in response to pos-

itive prediction error signals following the unexpected presentation of an attractive

face, but the opposite e�ect was found in response to the unexpected presentation of

an unattractive face, in which case a decrease in signal was observed. These �ndings

suggest that ventral striatum shows a very di�erent response pro�le to prediction

error signals during learning with attractive as opposed to unattractive faces. These

results are similar to e�ects found for prediction error signals generated during learn-

ing with monetary reward and punishment [137]. These results are also compatible
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with response pro�les reported in striatum in fMRI studies involving delivery of mon-

etary reward and punishment, whereby ventral striatum has been shown to increase

in response to receipt of monetary reward, and decrease in response to receipt of

monetary loss [74]. By contrast, a di�erent pattern of responses has been observed

in ventral striatum in response to prediction errors produced during learning with

other types of reinforcers such as somatosensory pain and even non-preferred �avors

[128, 72]. In these cases, an increase in signal has been reported in ventral striatum

following the unexpected delivery of a cue signaling subsequent pain or unpleasant

�avor. Thus, ventral striatum appears to show very di�erent neural responses as a

function of learning with di�erent types of reinforcers. This raises the question as to

the nature of the di�erence between reinforcers that leads to such divergent response

pro�les. One possibility is that ventral striatum responds di�erently to learning with

primary as opposed to secondary reinforcers. Money can be considered to be a sec-

ondary or learned reinforcer, whereas pain and food can be argued to be primary

reinforcers [109]. However, facial attractiveness is often suggested to be a primary re-

inforcer, as judgments of facial attractiveness are suggested to be culturally invariant

[138], and attractiveness has been argued to signal reproductive �tness [112]. As a

consequence, the fact that attractive faces and money are similar in the way they ac-

tivate the striatum would appear to argue against a primary vs. secondary reinforcer

account of di�erential striatal function. An alternative possibility is that ventral

striatum is involved not in learning about the sensory properties or abstract value

of unconditioned stimuli, but instead learns associations between arbitrary stimuli

and the unconditioned responses produced by an unconditioned stimulus. Di�erences

in the nature of the unconditioned responses produced by di�erent reinforcers could

potentially account for di�erential activity in the striatum. Future studies will be

needed to investigate this possibility further. Although we found an overall e�ect of

attractiveness on prediction error activity in the ventral striatum, we also found that

in this area the e�ect was signi�cant when heterosexual subjects were presented with

opposite sex faces, but not same sex faces. That is, prediction error responses were

enhanced when learning about attractive faces of the opposite sex in both genders.
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This suggests that ventral striatum may be involved in mediating learning about

attributes linked to sexual preference, as opposed to learning about more general

aspects of visual aesthetics [123].

In contrast to the nucleus accumbens, the amygdala showed positive correlations

with prediction error signals during learning with both attractive and unattractive

faces, consistent with previous �ndings of a role for amygdala in conditioning involving

both appetitive and aversive stimuli [52, 38, 139, 49]. More generally, these results

add to an extensive prior literature implicating the amygdala in processing stimuli of

both positive and negative valence [140, 141, 142].

The results of this study also have important implications for understanding the

underlying mechanisms by which product advertising can in�uence behavioral prefer-

ence in the marketplace. Marketers have long attempted to bias consumer preference

by pairing a particular product with another stimulus that is already highly valued,

such as an attractive face. Indeed, changes in product evaluations and preference

have been observed in behavioral experiments as a function of such pairing proce-

dures [143, 101]. However, the precise mechanism by which preference modulation

takes place has remained an open question. One possibility is that changes in prefer-

ence evaluations occur through cognitive appraisal or top down modulation of a�ect

(as in cognitive appraisal cf Folkman [144]). Another possibility is that preference

evaluations occur as a function of classical conditioning [145]. We directly tested this

hypothesis using classical conditioning. Our results provide evidence that the change

in preference likely occurs as a function of classical conditioning, by showing that sim-

ilar neural mechanisms are engaged during evaluative preference modulation as are

engaged during other types of classical conditioning. Moreover, the fact that evalua-

tive preference modulation speci�cally engages prediction error signals in the ventral

striatum, suggests that this procedure may recruit dopamine neurons in the midbrain,

as is known to be the case during learning with other kinds of reward in non-human

primates [64]. Consistent with the above suggestion, a recent fMRI study has shown

that prediction error signals expressed in the ventral striatum during reward-learning

can be modulated through pharmacological manipulation of dopamine levels in hu-
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mans [146], indicating that the source of such signals in human fMRI studies may in

part be attributable to the a�erent input from dopamine neurons.

To conclude, in the present study we have found signi�cant prediction error-

related activity in the ventral striatum during conditioning with attractive compared

to unattractive faces. These �ndings suggest that an arbitrary stimulus can acquire

conditioned value by being paired with pleasant visual stimuli just as with other types

of reward, like money or juice. Such a learning process elicits a reward prediction

error signal in a main target structure of dopamine neurons: the ventral striatum.

The learning process we describe here may provide insights into the neural mech-

anisms used in advertising to in�uence behavioral preferences, whereby consumers

are exposed repeatedly to simple associations between products and rewarding visual

stimuli such as pretty faces.
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Chapter 3

Pavlovian cues in�uence

decision-making∗

In outcome-speci�c transfer, Pavlovian cues that are predictive of speci�c outcomes

bias action choice towards actions associated with those outcomes. This transfer oc-

curs despite no explicit training of the instrumental actions in the presence of Pavlov-

ian cues. The neural substrates of this e�ect in humans are unknown. To address this

we scanned 23 human subjects with fMRI while they made choices between di�erent

liquid food rewards in the presence of Pavlovian cues previously associated with one

these outcomes. We found behavioral evidence of outcome-speci�c transfer e�ects in

our subjects, as well as di�erential BOLD activity in a region of ventrolateral puta-

men when subjects chose, respectively, actions consistent and inconsistent with the

Pavlovian-predicted outcome. Our results suggest that choosing an action incompat-

ible with a Pavlovian-predicted outcome might require the inhibition of feasible but

non-selected action-outcome associations. The results of this study are relevant for

understanding how marketing actions can a�ect consumer choice behavior as well as

for how environmental cues can in�uence drug seeking behavior in addiction.

∗Adapted with permission from: Bray S, Rangel A, Shimojo S, Balleine B, O'Doherty JP (2008)
The neural mechanisms underlying the in�uence of pavlovian cues on human decision making. J
Neurosci 28:5861-5866. Copyright 2008 Journal of Neuroscience
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Introduction

It is well known that Pavlovian cues associated with rewarding outcomes can exert

biasing e�ects on action selection [147, 82]. A form of this e�ect relevant for decision-

making is outcome-speci�c transfer [79, 83, 84, 85, 148]. In outcome speci�c transfer,

an animal's choice between multiple simultaneously available instrumental responses

leading to di�erent outcomes can be biased by the presentation of a Pavlovian cue

previously associated with one of those outcomes, such that the animal will tend to

favor the instrumental action corresponding to the particular outcome with which that

cue has been associated. Outcome-speci�c transfer e�ects are evident, for example,

in the impact that in-store advertisements and other marketing strategies have on

consumer behavior [149], as well as in addictive behavior [150].

Lesion studies in rodents indicate that the following structures are necessary for

outcome-speci�c transfer to occur: the striatum, including the nucleus accumbens

shell [83] and the dorsolateral striatum [85], and structures a�erent to these regions

including the medio-lateral orbitofrontal cortex [151] and basolateral amygdala [84].

Outcome-speci�c transfer can be di�erentiated from another form of Pavlovian-

instrumental interaction called general-transfer in which a Pavlovian cue exerts a

non-speci�c energizing e�ect on instrumental behavior by increasing the vigor of in-

strumental responses [148, 84]. General transfer seems to depend on circuitry involv-

ing the ventral striatum and amygdala that is clearly dissociable from that involved in

the outcome-speci�c transfer e�ect: lesions of the nucleus accumbens core and amyg-

dala central nucleus a�ect general transfer but leave speci�c transfer intact, whereas

lesions in the nucleus accumbens shell and basolateral amygdala have the converse

e�ect [83, 84]. In humans, a recent fMRI study has implicated human nucleus ac-

cumbens and amygdala in general transfer [86], but the brain systems underlying

outcome-speci�c transfer in the human or primate brain more generally have yet

to be identi�ed. Furthermore, whereas rodent lesion studies have identi�ed regions

that appear to be necessary for speci�c transfer [83, 84, 85], the precise functional

contribution of each of these regions to this process has yet to be characterized.
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The aim of the present study was twofold: Firstly to determine the neural sub-

strates of the outcome-speci�c transfer e�ect in the human brain, and, secondly, to

gain insight into the neural computations within these regions that might underlie

this function. To address these aims we used event-related fMRI to measure BOLD

responses in human subjects while they made instrumental choices in the presence

of Pavlovian cues that were either associated with the liquid food reward outcomes

generated by some of the actions, or associated with an a�ectively neutral (control)

outcome. On the basis of the animal studies, we focused our analysis on the striatum,

particularly its ventral aspect, including the nucleus accumbens and adjacent ventral

putamen.We also tested for speci�c-transfer e�ects in the amygdala.

Methods

Subjects

Twenty-three healthy, right-handed subjects participated in this study (6 females),

ranging in age from 18 to 40 (mean 24 ± 5.3 S.D). One additional subject did not

complete the study and was not included in the analysis. All subjects gave informed

consent and the study was approved by the Caltech Institutional Review Board.

Stimuli

Visual stimuli were presented via a projector positioned at the back of the room.

Subjects viewed a re�ection of the projected image (800 x 600 pixels) in a mirror

attached to the scanner head coil. The food rewards were delivered by means of

four separate electronic syringe pumps (one for each liquid) positioned in the scanner

control room. For each rewarded trial, these pumps pushed 0.6 ml of liquid to the

subject's mouth via ~10 m long polyethylene plastic tubes, the other end of which

were held between the subject's lips like a straw while they lay supine in the scanner.

Stimulus presentation and response recording were controlled with the Cogent 2000

Matlab (Mathworks, Natick, MA) toolbox.
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Behavioral procedures

During both the Pavlovian and instrumental training subjects were explicitly asked

to learn the cue-outcome and action-outcome relationships. All 4 training and test

sessions described below were performed in the scanner.

Pavlovian training

Pavlovian training consisted of the presentation of associations between simple geo-

metrical visual stimuli (see Figure 3.1a for an example) and one of four liquid out-

comes, three of which were rewarding: chocolate milk (Hershey's, dist by Dean Na-

tional Brand Group, Dallas, TX), cola (Coca-Cola, Atlanta, GA), and orange juice

(Trader Joe's, Monrovia, CA) and an a�ectively neutral tasteless control solution,

which consisted of the main ionic components of human saliva (25mM KCl and

2.5mM NaHCO3) (Figure 3.1a). Cues were presented at the center of the screen

for 1.75 s, then 3 s after cue o�set rewards were delivered with a probability of 50%.

The intertrial interval varied uniformly between 1 and 5 s.

Instrumental training

During instrumental training trials subjects were asked to choose between two button-

press actions. Four grey squares at the bottom of the screen corresponded to the four

buttons on a response box (Current Designs, Philadelphia, PA) that the subjects

held in their right hand. Speci�c actions were made available for selection when

the corresponding squares changed color from grey to brown, two at a time. As in

the Pavlovian trials, the response cues appeared for 1.75 s. Subjects were asked to

make a choice during this time. The choice was followed by a 3 s delay before the

outcome associated with the chosen action was delivered on 50% of trials (Figure

3.1b). The intertrial interval varied uniformly between 1 s and 5 s. Responses on

each button earned distinct outcomes: two of the buttons led to rewarding outcomes

(for example, orange juice and chocolate milk) and two led to the neutral outcome.

Therefore, during Pavlovian training subjects experienced 4 di�erent outcomes, while
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in the instrumental trials they experienced only 3.

Training schedule

The �rst training session consisted entirely of Pavlovian trials, 10 of each type for

a total of 40 trials and a duration of approximately 6 minutes (see Table 3.1). The

second training session consisted entirely of instrumental trials, 6 of each type for a

total of 36 trials and a duration of approximately 5 minutes. In the �rst two sessions,

Pavlovian and instrumental trials were presented separately to enhance learning of

the respective associations. In the third session, Pavlovian and instrumental trials

were randomly intermixed, 60 (15 x 4) Pavlovian trials and 60 (10 x 6) instrumental

trials, for a duration of approximately 18 minutes. Before training and after each

session, subjects rated the pleasantness of the stimuli as described below.

Outcome-speci�c transfer

Following the three training sessions subjects performed a series of transfer trials.

During transfer trials one of the Pavlovian cues was presented simultaneously with

the instrumental cues (Figure 3.1c), and as in instrumental training, subjects were

asked to choose between two available options. This phase was conducted in extinc-

tion, meaning that no outcomes were delivered. The reason for performing this phase

in extinction was to allow assessment of the in�uence of the Pavlovian cues on in-

strumental responding without the confounding e�ects of the outcomes themselves.

Testing for outcome-speci�c e�ects in extinction is standard in animal learning studies

of this phenomenon [79, 80, 83].

There were �ve di�erent types of trials. Two of the trial types were designed

to test for outcome-speci�c transfer e�ects. On these trials subjects chose between

actions associated with two particular reward outcomes: O1 and O2 (for example,

orange juice and chocolate milk), while the concurrently presented Pavlovian cue was

associated with one of these speci�c outcomes. One of the speci�c trial types involved

the Pavlovian cue paired with outcome O1, and the other speci�c trial type involved

the Pavlovian cue paired with O2. Evidence for an outcome-speci�c transfer e�ect
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would be seen if the presence of the Pavlovian cue biased choice towards the action

associated with the same outcome as the Pavlovian cue. In the subsequent analysis

we pooled over both of the speci�c trial types, but di�erentiated between trials in

which subjects made choices compatible with the Pavlovian outcome from those trials

in which subjects made choices that were not compatible.

In a third `Pavlovian reward control' trial type, subjects were again presented with

the choice between two reward outcomes (O1 and O2), but instead the Pavlovian cue

was previously associated with a di�erent outcome (for example, cola), that was not

compatible with either response option.

In the fourth `Pavlovian neutral control' trial type, subjects were again presented

with the choice between two reward outcomes (O1 and O2), but the Pavlovian cue

presented this time was that associated with the a�ectively neutral outcome.

In the �nal `neutral choice control' trial type subjects made choices between ac-

tions associated with the a�ectively neutral outcome, in the presence of a Pavlovian

cue also associated with a neutral outcome. This last trial type was intended to be

a baseline condition for choosing between two options in the presence of a visual cue

but in the absence of predicted rewards. Each type of trial was presented 25 times,

for a total of 125 trials and a duration of approximately 20 minutes.

Behavioral measures

Reaction times

Reaction times to choices were recorded both during the learning trials and the trans-

fer test trials; these can be used as an online measure of learning [128].

Pupillary dilation

Pupil diameter was continuously measured during scanning using an Applied Science

Laboratories (Bedford, MA, USA) MRI compatible eyetracking system. Pupil re�ex
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Table 3.1: Trial composition for training and transfer sessions

S1-4: visual cues. R1-4: 4 button response actions, O1-3: liquid rewards, ON:
a�ectively neutral tasteless control solution.

Cues

Phase Presentations Pavlovian Instrumental Outcome

1

10 S1 O1
S2 O2
S3 O3
S4 ON

2

6 R1 R2 O1 O2
R1 R3 O1 ON
R1 R4 O1 ON
R2 R3 O2 ON
R2 R4 O2 ON
R3 R4 ON ON

3

10 S1 O1
S2 O2
S3 O3
S4 ON

15 R1 R2 O1 O2
R1 R3 O1 ON
R1 R4 O1 ON
R2 R3 O2 ON
R2 R4 O2 ON
R3 R4 ON ON

4

S1 R1 R2
S2 R1 R2
S3 R1 R2
S4 R1 R2
S4 R3 R4
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Figure 3.1: Illustration of trial types a) Pavlovian trial: A visual shape stimulus
was presented at the center of the screen for 1.75 s followed by a �xation cross for
3 s. The liquid outcome corresponding to the stimulus was then delivered with a
probability of 50 percent. 1 s was allotted for consumption and the interval between
trials varied uniformly between 1 s and 5 s. b) Instrumental trial: Two of the four
squares at the bottom of the screen changed color from grey to brown for 1.75 s
during which time subjects were instructed to push one of the buttons. The liquid
outcome corresponding to their response was delivered after 3s, with a probability of
50 percent. 1 s was allotted for consumption and the interval between trials varied
uniformly between 1 s and 5 s. c) Transfer trial: A visual shape stimulus was presented
simultaneously with two squares changing color. Subjects were instructed to press one
of the corresponding buttons. Timing was similar to the Pavlovian and instrumental
trials; however no outcomes were delivered during these trials.

amplitude has been shown to be modulated by arousal level and can thus be used as

an index of conditioning [152].

A�ective evaluations of stimuli

Before the start of the training procedure, and after each scanning session, we asked

subjects to rate the pleasantness of the shape images and the liquid outcomes. Within

each category, stimuli were presented in random order and subjects reported their

evaluation by moving a cursor along a scale from -5 to +5.

Swallowing motion

A motion sensitive inductive coil was positioned on top of the subjects' throat using

a Velcro strap around the neck. This measured the motion of the subjects' throat

during swallowing. The time course derived from this measure was used as a regressor
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of no interest in the fMRI data analysis. We do not have recordings for one subject

who found the coil uncomfortable.

fMRI scanning procedure

fMRI data were acquired on a Siemens AG (Erlangen, Germany) 3T TRIO MRI

scanner; Blood Oxygenation Level Dependent (BOLD) contrast was measured with

gradient echo T2* weighted echo-planar images (EPI). Imaging parameters were op-

timized to minimize signal dropout in medial ventral prefrontal and anterior ventral

striatum: we used a tilted acquisition sequence at 30° to the AC-PC line [132], and

an 8 channel phased array coil which yields a ~40% signal increase in this area over

a standard coil. The �rst 5 volumes of each session were discarded to permit T1

equilibration. Other parameters were as follows: 36 slices, in-plane resolution, 3 x 3

mm; slice thickness, 3 mm; repetition time, 2.25 s; echo time, 30 ms; �eld of view,

192 x 192 mm. A T1 weighted structural image was also acquired for each subject,

as well as a 49 slice EPI to improve coregistration.

Imaging data processing and analysis

Data were pre-processed using the SPM5 software package (http://www.fil.ion.

ucl.ac.uk/spm/software/spm5/). Images were corrected for slice timing and spa-

tially realigned to the �rst image from the �rst session. One of the 49 slice EPI

images collected at the end of the experiment was used to improve coregistration and

spatial normalization. The 36 slice EPI images were coregistered to a 49 slice EPI,

which was in turn coregistered to the T1-weighted anatomical scan. The T1 image

was segmented into white and grey matter, and the grey matter was coregistered and

normalized to the template grey matter image distributed with SPM5 (in Montreal

Neurological Institute space). These parameters were subsequently applied to the T1

image itself as well as the set of 36 slice EPI images. Spatial smoothing was then

applied to the 36 slice EPI images using a Gaussian kernel with full width at half

maximum of 8 mm.
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Statistical analysis was carried out using a general linear model (GLM). The

transfer session was modeled separately from the three training sessions, and here we

report results only from the transfer phase of the experiment. The GLM included

regressors at the time of cue onset, for 5 conditions: speci�c transfer when the option

compatible with the Pavlovian cue was chosen, speci�c transfer when the incompat-

ible option was chosen, `Pavlovian reward control', `Pavlovian neutral control', and

`neutral choice control'. We also included regressors at the time of expected outcome.

Each regressor was modeled as an impulse function (0s), and convolved with the

canonical hemodynamic response function. Regressors of no interest included missed

trials when no option was chosen, the six ongoing motion parameters estimated during

realignment, and motion due to swallowing. The results from each subject were taken

to the random e�ects level by applying t-tests between contrast images to produce

group statistical parametric maps.

Results

Behavioral results

Results of Pavlovian training

Behavioral results indicate that the Pavlovian stimulus-outcome associations were

successfully learned. Following each training session, subjects were asked to rate

on a scale from -5 to 5 how pleasant they found each shape stimulus and each liq-

uid. After training, subjects rated the stimuli associated with rewarding outcomes

as signi�cantly more pleasant than the stimulus associated with the neutral outcome

(paired t-test; t(22) = -3.0840, p<0.01)(Figure 3.2a). Pupil re�ex amplitude also dis-

criminated between reward and neutral conditions (Figure 3.2b). In the 16 subjects

who showed reliable amplitude changes in pupil diameter following cue presentation

the peak amplitude is signi�cantly smaller for rewarded outcome trials which indi-

cates a higher degree of arousal when subjects saw reward predictive cues (paired

t-test; t(15) = 2.4173, p <0.05) [152, 72].
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Figure 3.2: Behavior during training and test sessions a) Mean pleasantness ratings
for visual cue stimuli following the training sessions, plotted by outcome pairing.
The cues paired with the neutral outcome were rated as signi�cantly less pleasant
than the cues paired with reward outcomes (paired t-test; t(22) = -3.0840, p<0.01)
b) Pupil diameter in response to visual cues. The peak amplitude is signi�cantly
smaller for the cues paired with reward outcomes, for the 16 subjects who showed
reliable amplitude changes following cue presentation (paired t-test; t(15) = 2.4173,
p <0.05) c) Choice behavior during the second session of instrumental trials, above
cue invariant responding (50 percent). Plotted are responses during trials in which
subjects chose between a reward outcome and the neutral outcome. Subjects were
signi�cantly more likely to choose the action leading to the reward outcome (1-sided
paired t-test; t(22) = 1.8399, p<0.05) d) Choice data binned into 5, 10-trial bins.
There is no signi�cant linear trend across the session (linear regression of percent
compatible choice allocation onto bin number, p=0.239).
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Initial learning of instrumental associations

Subjects' choice behavior in the instrumental trials indicated that the instrumental as-

sociations were acquired. During the �nal training session subjects were signi�cantly

more likely to choose the action delivering a reward outcome when the alternative ac-

tion delivered the neutral solution (Figure 3.2c) (1-sided paired t-test; t(22)=1.8399,

p<0.05).

Outcome-selective transfer e�ects during test phase

We found evidence for an outcome-speci�c transfer e�ect in subjects' choice behavior

during the transfer test phase. During the transfer phase, subjects chose the compat-

ible option on average 66% of the time; this is signi�cantly higher than cue invariant

responding which averages to 50% over the two outcome-speci�c conditions (paired

t-test; t(22) = 3.6348, p<0.005). There were a total of 50 speci�c transfer trials for

each subject and separating these into 5, 10-trial bins, we found that there was nei-

ther a signi�cant increase or decrease in choice allocation across time (Figure 3.2d),

indicating that the biasing e�ect of the Pavlovian cues on choice persisted for the

duration of the extinction test and did not attenuate.

fMRI results

In order to gain insight into the mechanisms underlying outcome-speci�c transfer in

humans we performed two analyses. First, we compared brain activity during trials

assessing outcome-speci�c transfer when subjects chose the option compatible with

the Pavlovian cue to trials when they chose the incompatible option (one subject

who never chose the incompatible cue was excluded from this analysis) (Figure 3.3a).

We found signi�cant activation in right ventrolateral putamen (t(21) = 3.79, p<0.001

uncorrected; x = 27, y = -3, z = -3) extending posteriorly towards the pallidum (t(21)

= 3.81, p<0.001 uncorrected; x = 24, y = -18, z = 0). The left pallidum also showed

a peak at this threshold (t(21) = 3.82, p<0.001 uncorrected; x = -27, y = -15, z =

-3). These were the only regions to meet our signi�cance criterion in this contrast.
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Figure 3.3: Imaging results from the Pavlovian-instrumental transfer phase a) fMRI
results from the contrast comparing the outcome-speci�c transfer trials in which the
action compatible with the Pavlovian cue is selected to those in which the incompat-
ible action is selected (red = p<0.01, yellow = p<0.001). At a threshold of p<0.001
uncorrected we �nd signi�cant activation in the ventrolateral putamen (t(21) = 3.79;
p<0.001 uncorrected; x = 27, y = -3, z = -3), and bilateral pallidum (t(21) = 3.81;
p<0.001 uncorrected; x = 24, y = -18, z = 0) and (t(21) = 3.82; p<0.001 uncorrected;
x = -27, y = -15, z = -3) b) Parameter estimates from the peak putamen voxel for
each subject, for each of the 5 experimental conditions during the transfer phase (spe-
ci�c compatible, speci�c incompatible, Pavlovian reward control, Pavlovian neutral
control, neutral choice control). Parameter estimates in the speci�c compatible con-
dition do not di�er signi�cantly from any condition other than speci�c incompatible
(paired t-tests, p>0.05).
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Second, we plotted the average parameter estimates taken from the general linear

model estimates at the peak putamen voxel for each subject (Figure 3.3b). We found

that the di�erence between conditions was due to a signi�cant decrease in signal dur-

ing the outcome-speci�c trials where the incompatible response was chosen, relative

to the outcome-speci�c trials when the compatible response was chosen and to the

other control conditions. In fact, activity in the compatible condition did not di�er

signi�cantly from activity during any of the other control conditions (paired t-tests;

p>0.05), and more generally, activity in the outcome-speci�c trials did not di�er from

the control conditions (paired t-tests; p>0.05).

Discussion

Our results provide insights into the neural mechanisms by which Pavlovian cues

can modulate choice between di�erent instrumental courses of action in humans.

In outcome-speci�c transfer, subjects are more likely to choose an action that is

associated with a particular outcome in the presence of a Pavlovian cue that was

previously associated with the presence of that outcome. We found neural correlates of

outcome-speci�c transfer in a very circumscribed region of extended ventral striatum

in the ventral caudolateral putamen. This region and an adjacent region of ventral

pallidum were the only areas to meet our statistical criterion for signi�cance.

These �ndings add to an accumulating body of evidence from human fMRI stud-

ies of a role for an extended region of ventral parts of putamen alongside nucleus

accumbens in functions related to reward-learning and prediction errors [37, 124, 71]

and now in interactions between Pavlovian and instrumental conditioning. Such �nd-

ings resonate with anatomical and histochemical studies in primates which indicate

that ventral parts of putamen share many of the cytoarchitectonic characteristics of

nucleus accumbens, as well as sharing similar inputs [153, 154, 155, 156].

The present �ndings do suggest however, that di�erent parts of the ventral stria-

tum may contribute di�erentially to distinct forms of Pavlovian-instrumental transfer

in humans. This suggestion is based on a comparison of our �nding that ventrolat-
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eral putamen is involved in outcome-speci�c transfer in humans with the results of

a previous study implicating nucleus accumbens in the general excitatory e�ects of

Pavlovian cues on instrumental performance [86]. It is well established that Pavlovian

cues can exert a general, non-speci�c excitatory e�ect on the performance of instru-

mental actions [77, 78, 157, 147, 79, 148] an e�ect that Talmi et al. [86] demonstrated

is mediated by activation of nucleus accumbens and of amygdala. In the context of

the present study, these �ndings suggest that outcome-speci�c and general transfer

may depend on quite distinct neural substrates in humans, mirroring clear double

dissociations between the neural circuits known to be involved in implementing these

e�ects in rodents [83, 84]. Although the present study was not designed to assess

the e�ects of general transfer, in future it will be important to compare and contrast

outcome-speci�c and general-transfer e�ects within the same fMRI study in order to

provide a more direct test of the hypothesis that, as in rodents, outcome-speci�c and

general transfer in humans depends on distinct components of ventral striatum.

Note that although we found a remarkably good correspondence between our �nd-

ings and those from the rodent lesion studies at the level of the ventral striatum, other

regions besides ventral striatum have been implicated in speci�c PIT in rodents in-

cluding basolateral amygdala [84] and dorsolateral striatum [85]. We did not �nd

any evidence for a di�erential contribution of these regions in the present study. One

possibility is that these areas do play a role in speci�c transfer e�ects in humans,

but this does not result in a global increase in activity between conditions, and thus

does not become manifest with BOLD fMRI. The present results go beyond merely

pointing to homologies between outcome�speci�c transfer e�ects in rodents and hu-

mans. Previous animal studies on this topic have all involved lesion manipulations,

which, though important for identifying whether a given region is necessary for imple-

menting speci�c transfer e�ects, cannot provide insight into the neural computations

underlying such an e�ect. Here we measured dynamic changes in BOLD responses

as subjects made choices that were either consistent with the speci�c-transfer ef-

fect or inconsistent. Responses consistent with the speci�c transfer e�ect occurred

when subjects chose the outcome compatible with the Pavlovian cue, and inconsis-
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tent responses occurred when subjects chose the incompatible option. Even though

subjects showed a signi�cant bias toward the compatible action overall, sometimes

they chose the incompatible action; this allowed us to compare activity when trans-

fer guided behavior, with activity under identical stimulus conditions when subjects

chose independently of the cue. Activity in ventrolateral putamen was not signi�-

cantly elevated on trials when an outcome-speci�c cue was presented compared to

control trials where cues for other, unavailable, outcomes were presented, suggesting

that outcome-speci�c transfer e�ects are not mediated by an overall increase in activ-

ity in this area. Furthermore, even on outcome-speci�c trials where subjects chose the

action compatible with the Pavlovian cue, there was no increase in activity compared

to non-outcome-speci�c control trials. Instead, we found a signi�cant decrease in

signal on those outcome-speci�c trials where subjects chose the action incompatible

with the outcome, compared to compatible choice outcome-speci�c trials.

This �nding provides insight into the computations that might be taking place in

the ventral striatum during outcome-speci�c transfer e�ects. Outcome-speci�c trans-

fer e�ects are thought to be mediated by outcome-response (O-R) associations that

are activated by the Pavlovian cues [79, 158]. A natural hypothesis is that when the

action plan activated by the O-R association is feasible (because such an action is

available), it must be inhibited before another action can be taken. Note that under

this hypothesis, the O-R association needs to be inhibited during the outcome-speci�c

transfer trials when the incompatible response is chosen, but not when the compatible

response is selected, or in any of the other control trials. This provides a computa-

tional explanation for why suppression of activity in the ventrolateral putamen is

observed only in the incompatible outcome-speci�c transfer trials.

Speci�c transfer e�ects from Pavlovian cues have been argued to play a role in

addictive behaviors [159]. For example, Hogarth et al. [150] demonstrated speci�c

transfer of a tobacco-seeking response in the presence of a tobacco predicting cue,

relative to a money predicting cue. Here we demonstrate similar behavioral results,

using non-addictive outcomes, indicating that the observed transfer e�ects re�ect a

general property of reward-associated cues that are not speci�cally related to addictive
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stimuli. Nonetheless, there are clear parallels between our experimental design and the

potential in�uence of environmental cues on drug-seeking behavior. Our fMRI results

suggest the hypothesis that suppression of an outcome-response association might

contribute toward biasing behavior away from cue-compatible responding. This raises

the possibility of a future therapeutic intervention in addiction, in which ventrolateral

putamen circuitry could potentially be targeted (for instance via a neurofeedback

procedure; [100, 160]) to suppress e�ects of environmental drug cues on drug-seeking

behavior.

In this study we have demonstrated an outcome-speci�c Pavlovian-instrumental

transfer e�ect in humans, which serves to bias action choice towards actions asso-

ciated with an outcome consistent with a concurrently presented cue. BOLD fMRI

measured while subjects performed this task demonstrated a signal decrease in ven-

trolateral putamen when subjects chose the action incompatible with the cue. This

�nding points to a computational role for this region in suppressing outcome-response

associations, necessary in order to perform an action incompatible with the Pavlovian

cue only when a compatible action is feasible. This work adds to our understanding of

the neural mechanisms of stimulus-outcome guided decision-making in both animals

and humans, which is fundamental for understanding maladaptive choice behaviors

such as addiction.
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Chapter 4

Direct instrumental conditioning of

neural activity in motor cortex∗

Successful learning is often contingent on feedback. In instrumental conditioning, an animal or

human learns to perform speci�c responses in order to obtain reward. Instrumental conditioning is

often used by behavioral psychologists in order to train an animal (or human) to produce a desired

behavior. Shaping involves reinforcing those behaviors which in a step-wise fashion are successively

closer to the desired behavior until the desired behavior is reached. Here, we aimed to extend

this traditional approach in order to directly shape neural activity instead of overt behavior. To

achieve this we scanned 22 human subjects with fMRI and performed image processing in parallel

with acquisition. We delineated regions of interest (ROIs) in �nger and toe motor/somatosensory

regions, and used an instrumental shaping procedure to induce a regionally speci�c increase in

activity by providing an explicit monetary reward to reinforce neural activity in the target areas.

After training, we found a signi�cant and regionally speci�c increase in activity in the ROI being

rewarded (�nger or toe) and a decrease in activity in the non-rewarded region. This demonstrates

that instrumental conditioning procedures can be used to directly shape neural activity, even without

the production of an overt behavioral response. This procedure o�ers an important alternative to

traditional biofeedback-based approaches, and may be useful in the development of future therapies

for stroke and other brain disorders.

∗Adapted with permission from: Bray S, Shimojo S, O'Doherty JP (2007) Direct instrumental
conditioning of neural activity using functional magnetic resonance imaging-derived reward feedback.
Journal of Neuroscience 27:7498-7507. Copyright 2007 Journal of Neuroscience
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Introduction

In instrumental conditioning, an animal learns to increase the probability of making a

particular response in order to obtain reward or avoid punishments. Traditionally, the

response consists of overt behavioral actions, such as pulling a lever, traversing a maze,

or pressing a button [161, 2, 3, 162, 163]. As the ability to measure neural responses

has improved, it has become possible to perform experiments in which an animal

is rewarded merely for generating neural activity instead of actually performing an

overt motor response [87]. Musallam et al. [94] demonstrated that by recording from

neurons in parietal cortex, monkeys could be trained to generate neural responses in

order to obtain juice rewards, without emitting any behavior.

Parallel advances in human neuroimaging techniques have enabled neural activity

measured by fMRI to be processed and analyzed in parallel with image acquisition

(real-time fMRI), making it possible to provide rapid feedback of activity in speci�c

brain regions to the subject during an on-going experiment [164, 165, 105]. This

technique has previously been used to assess human subjects' ability to modulate

their own brain activity, by providing an on-line graphical representation of activity

in a speci�c brain region [96, 100, 107]. This approach has much in common with

traditional biofeedback techniques that have provided on-line feedback of physiological

responses such as heart rate or scalp EEG [166, 92].

In the present study we explore an alternative approach for modulating neural

activity to the standard biofeedback paradigm. Here, instead of providing an on-

line representation of neural activity and requiring subjects to actively modulate

that activity in order to reach a speci�ed goal, we used procedures derived from

instrumental conditioning, whereby an actual reward (monetary gain) is the only

feedback subjects receive contingent on their performance. This instrumental training

procedure allows one to employ `shaping' [4], in which the threshold for reward is

gradually increased in order to induce incremental improvements in performance.

The aim of the present study was to determine whether it is possible to use in-

strumental conditioning techniques to modulate neural activity in the human brain.
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For this we delineated two regions of left sensorimotor cortex (activated by imagined

�exion and extension of �ngers and toes), and attempted to train subjects to activate

one region in response to a visual cue, while suppressing the second region. A further

aim was to determine the extent to which learned modulation of motor cortex in the

absence of movement might subsequently in�uence overt motor behavior as assessed

by a speeded reaction time task. Subjects performed a task in which the cues used

during conditioning were alternately displayed on a screen and intermittent cues in-

structed them to respond as quickly as possible with �ngers or toes. Modulation of

reaction times by exposure to instrumental cues o�ers a measure of how learning of

cue contingencies a�ects concurrent processing of motor responses.

Materials and Methods

Experiment 1

Subjects

A total of 26 right-handed healthy normal human subjects participated in the exper-

iment, 14 males and 12 females, aged 18 to 39 years with a mean age of 25.4 years.

All subjects gave informed consent, which was approved by the local research ethics

committee. The �rst 7 subjects performed only the pre-training and conditioning

components of the study. The remaining 19 subjects also performed a reaction time

task before and after conditioning.

Four subjects were removed from the imaging analysis, three of which were also re-

moved from the reaction time analysis. One subject was eliminated from the imaging

analysis due to excessive head movements during the �nal run. Two other subjects

were eliminated from all analyses due to inability to learn the task. An additional

subject was removed from all analyses for failing to comply with task instructions.

For one subject the experiment terminated on the 9th trial of the last block due to

equipment failure. This left a total of 16 subjects in the reaction time analysis and

22 in the imaging analysis.
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Stimuli

During the conditioning task, subjects were presented with one of three brightly

colored abstract fractal images (100 x 100 pixels) centered on a grey background (800

x 600 pixels). One of the fractals had the word `Rest' written across it in white

letters, to clarify that this cue meant that the subject should be resting. A di�erent

set of stimuli were used during the pre-training and functional localizer, where each

task (real or imagined / hand or foot movements) was associated with a centrally

presented colored circle with a radius of 100 pixels, and lettering coding for each task

as described below. During the reaction time task, the fractal images were presented

at an o�set of 125 pixels above center and responses were prompted using the brightly

colored circles used in the localizer task. All stimuli were presented using the Cogent

2000 Matlab toolbox.

Pre-Training and Functional Localizer Tasks

The functional localizer task consisted of blocks of real and imagined movement, alter-

nating with periods of rest. Subjects ran through this task once outside the scanner as

pre-training, so that they could familiarize themselves with the task. Movement tasks

consisted of: 1) bending �ngers II-V at the metacarpophalangeal joint and 2) �exing

and extending all �ve toes through their full range of movement. During imagination

blocks, subjects were instructed to imagine what it would feel like to produce these

movements without actually moving. The functional localizer sequence of [resting,

�nger tapping, resting, imagined �nger tapping, resting, toe tapping, resting, imag-

ined toe tapping] blocks was repeated �ve times. During pre-training, blocks were

10 seconds in duration and during the functional localizer performed in the scan-

ner, blocks lasted 15 seconds. Subjects were cued as to which task to perform by

brightly colored visual stimuli with letters coding for the task: red circle with an `R'

for rest, green circle with a `HaT' for hand/�nger tapping, a blue circle with `HaI' for

imagined hand/�nger tapping, an orange circle with `FoT' for foot/toe tapping and a

yellow circle with `FoI' for foot/toe imagined tapping. During both the pre-training
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and scanner sessions, subject motion was recorded, as described below. Additionally,

during pre-training, we were able to observe subjects at close range to con�rm that

they were not moving during the imagined movement periods.

ROI selection

After completion of the functional localizer task in the scanner, the resulting images

were sorted into resting and task periods, and t-tests applied to generate probabilistic

activation maps. Two regions of interest were selected for each subject: one for

hand-motor areas activated by imagined �nger tapping and one for foot-motor areas

activated by imagined toe tapping. In both cases a mask was generated from the

contrast of actual movement vs. resting periods. The mask was used to spatially

constrain the results of a second contrast comparing imagined movement of �ngers to

imagined movement of toes. This contrast was chosen to identify regions associated

with imagining moving each body part speci�cally, rather than areas activated by

motor imagery in general. From this second map, an ROI center was chosen among

the most signi�cant regions, using prior anatomical knowledge of where �nger/toe

motor cortical areas should be located. A rectangular area of 6x6 voxels in the x-y

plane and 3 voxels in the z-direction was generated around the chosen center. The ROI

for each subject comprised a maximum of 108 voxels; in some subjects this number

was smaller if the volume de�ned by the rectangle stretched beyond the spatial extent

of the brain.

Neuroconditioning Procedure Task and Instructions

Subjects were instructed that during this part of the experiment, they should never

perform any real movements, but must only use their imagination or state of mind to

increase activity in the speci�c brain regions de�ned during the localizer task, corre-

sponding to imagined �nger and toe tapping respectively. A reinforced conditioning

trial is illustrated in Figure 4.1a. Each trial began with a resting cue for a variable

duration between 15 and 20 seconds. Next, the subjects saw one of two fractal cues

for 15 seconds. Each `active' cue meant that if the subject su�ciently activated one
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of the regions of interest, they could earn a reward. Data were analyzed online after

14 seconds, and after the 15th second subjects received visual feedback indicating

whether they had successfully earned a reward. Positive reward feedback consisted

of a picture of a dollar and the phrase `You have won ONE dollar', while negative

feedback was represented by a picture of a scrambled dollar, along with the phrase

`You have not won ONE dollar'. Dollars earned during the task corresponded to real

money paid to the subject at the end of the experiment. At the start of the exper-

iment, subjects did not know which cue corresponded to which brain region. They

were told that they would have to proceed by trial and error in order to discover the

meaning of each cue, and that once they learned the meaning it would stay the same

for the duration of the experiment.

Subjects were told that the `resting' period preceding each active period would

serve as a baseline against which the activity during the `active' periods would be

compared. Therefore, they should try to relax as much as possible during `rest'

periods and not practice mental imagery similar to during the `active' periods. They

were also told that in order to earn a reward they would have to activate one region

speci�cally and not both regions. Subjects were told that any kind of mental imagery

could be appropriate as long as it speci�cally activated brain regions delineated by the

imagined �nger and toe tapping tasks, but that strategies involving motor imagery

might be more likely to succeed, given the known functional responses of these regions.

Subjects were told that the threshold de�ning the minimum activity required to get

rewarded would be slowly increasing, therefore they would have to improve on their

strategy in order to continue earning rewards.

The total duration of the experiment was approximately 1.5 h in a single session.

In this time subjects performed reaction time tasks, pre-training, a functional local-

izer, and 4 conditioning blocks consecutively with 14 trials in each; trials were ordered

pseudorandomly so that each trial type appeared 7 times within a block without 3

consecutive trials being of the same type. Each block was approximately 8 minutes

long for a total of 32 minutes of training.
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Figure 4.1: a) Example time course for a conditioning trial. Subjects were presented
with a resting cue for a variable interval between 10 and 20 s, followed by a cue to
activate a speci�c brain region for 15 s. A percent-change value from resting to active
was computed online and compared to the current threshold. If the threshold was
exceeded, subjects were shown a picture of a dollar bill, indicating that they had won
one dollar, otherwise a scrambled picture of a dollar was shown, for 2 s. b) Diagram
showing typical fMRI slice coverage, overlaid on a sagittal slice from a single subjects
anatomical scan. We imaged 16 3 mm slices, straight across the top of cortex
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Post-experimental debrie�ng

After the experiment was completed, subjects were asked to complete a short ques-

tionnaire. This form asked them to brie�y describe what they were thinking about

when they saw each of the three cues (one rest, two active) on the display, and to

indicate how their strategy might have changed across runs.

Motion Recordings

To control for subject motion during periods of imagined movement, we recorded

EMG from the forearm (�exor digitorum super�cialis muscle) to measure muscle ac-

tivity related to �nger �exion and extension. We also used a �nger twitch sensor

(Biopac Systems Inc., Goleta, CA, USA), placed lengthwise along the bottom of the

foot and attached by Velcro around the big toe and below the ball of the foot. The

sensor is essentially a variable resistor sensitive to bending and compression, and

therefore generated a potential di�erence when subjects bent their toes downwards.

Both movement recording devices that we used are MRI compatible, but fMRI scan-

ning introduced noise into the recordings. These data were analyzed by comparing the

RMS signal value during resting, active, and imagined periods. Recordings obtained

while the scanner was running were smoothed using a 15 point (twitch sensor) or 25

point (EMG) median �lter to reduce the impact of scanner noise on signal detection.

fMRI scanning procedure

fMRI data were acquired on a Siemens AG (Erlangen, Germany) 3T TRIO MRI

scanner; Blood Oxygenation Level Dependent (BOLD) contrast was measured with

gradient echo T2* weighted echo-planar images (EPI). We used an 8 channel phased

array coil. The �rst 5 volumes were discarded to permit T1 equilibration. In order to

keep the repetition time (TR) at 1 s, we imaged only 16 3 mm slices across the top of

cortex. Typical slice coverage is illustrated on a single subjects' anatomical scan in

Figure 4.1b. Scan coverage was therefore limited to superior and middle frontal gyri,

pre- and post-central gyri, and superior parietal lobule. Other scan parameters were



74

the following: in-plane resolution, 3 x 3 mm; echo time, 30 ms; �eld of view, 192 x 192

mm. After the conditioning procedure a T1 weighted structural image was acquired

for each subject, as well as a set of ~6 32-slice EPI images (to improve coregistration

and normalization of images to a template).

Concurrent fMRI analysis and processing

As soon as images were reconstructed, they were transferred in real-time via TCP/IP

socket to an external Intel Xeon workstation (3.8 MHz 64-bit processor running Red-

hat Linux); data processing was performed using MATLAB 7.0 (The Mathworks Inc.,

Natick, MA).

Pre-processing Image pre-processing consisted of motion correction using AFNI

[167], and linear detrending to correct for low-frequency scanner drift. During func-

tional localizer scans spatial smoothing using a two-dimensional Gaussian of 5 mm

width was performed prior to performing statistical tests. During the conditioning

task no temporal or spatial smoothing was performed.

Reward Criterion Two thresholds shared equal priority in the decision rule for

determining whether a subject had earned a reward on a particular trial: one threshold

on the minimum %-change within a region and a second threshold on the di�erence

between the %-change in the rewarded region and the non-rewarded region. Both

thresholds had to be exceeded for a subject to earn reward on a given trial, and both

were adapted according to a modi�ed percentile reinforcement schedule [16]. They

both started at 0, and increased only after the current threshold had been exceeded

4 times. At this time, both thresholds were set to be the lowest of the four values

that had beaten the previous value. If a reward was not obtained on one of the next

4 trials, one or both thresholds was reset to its' previous value, depending if one or

both conditions was not met. In this way, the thresholds for the signal level and the

di�erence increased together, but were reset separately.

As images arrived on the external workstation, they were pre-processed and the



75

signal was averaged over all voxels in the previously de�ned ROIs. After one variable

length baseline period (10 - 20 seconds) and one 14 second active period had elapsed,

the ROI signal was averaged over each time period (excluding the �rst two seconds to

allow for some lag in the hemodynamic response), and a percent change from baseline

to active was computed for each ROI. For the ROI being rewarded, the %-change was

compared to the current threshold, and the di�erence between the %-change in the

two ROIs was compared to the di�erence threshold. If both conditions were met the

current trial was `rewarded' after the 15th second, when the subject would see the

`reward' feedback for 2 seconds. If the reward conditions were not met, they would

see the `no reward' feedback for 2 seconds.

Performance-based grouping of subjects

For some analyses, we divided subjects into groups depending on their performance

during the last experimental run: subjects who earned fewer than 5 rewards on the

�nal run were classi�ed as poor learners, relative to those who earned more than

5 rewards. Performance during the last conditioning run was especially relevant

to analysis of the reaction time measures taken immediately afterwards, since that

should give the most current estimate of the subjects' level of learning. Some sub-

jects reported tiring towards the end of the experiment, which could corrupt learning

related e�ects in the reaction time analysis. This criterion put 17 subjects in the

`good-learner' category and 6 in the `poor-learner' category.

Group fMRI %-change analysis

We performed a group analysis on the trial-by-trial percent-change values measured

during conditioning. Trials in which twitching movements were visible in the EMG

traces were eliminated, as were trials in which large head movements caused sharp

de�ections in the BOLD signal time course. We performed a repeated measures

ANOVA on the averaged %-change values during each run, with within-subject factors

of ROI (3 levels: hand ROI, foot ROI, and whole-brain background ROI), rewarded

ROI (2 levels: hand rewarded and foot rewarded) and run (4 levels), and a single
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between subjects factor, a binary value indicating whether or not the subject was a

`good-learner'.

To look for trial-by-trial increases in signal di�erence between the two ROIs, we

averaged the %-change value across subjects on each trial and performed a linear

regression on the di�erence between the signals in each ROI.

SPM analysis

Data were pre-processed using the SPM5 software package (http://www.fil.ion.

ucl.ac.uk/spm/software/spm5/). Images were corrected for slice timing and spa-

tially realigned to the �rst image from the functional localizer. One of the 32 slice EPI

images collected at the end of the experiment was used to improve coregistration and

spatial normalization. The 16 slice EPI images were coregistered to a 32 slice EPI,

which was in turn coregistered to the T1-weighted anatomical scan. The T1 image

was segmented into white and grey matter, and the grey matter was coregistered and

normalized to the template grey matter image distributed with SPM5 (in Montreal

Neurological Institute space). These parameters were subsequently applied to the T1

image itself as well as the set of 16 slice EPI images. Spatial smoothing was then

applied to the 16 slice EPI images using a Gaussian kernel with full width at half

maximum of 8 mm.

The four conditioning sessions for each subject were modeled in SPM using a �nite

impulse response model, with separate regressors for hand and foot rewarded trials,

for each run. The six ongoing motion parameters estimated during realignment were

included as regressors of no interest.

Parameter estimates were modeled with a full factorial model with 2 factors:

rewarded region (2 levels) and session (4 levels). This created an 8 column design

matrix for each subject, each column corresponding to a session x rewarded-region

interaction term. Linear contrast images from these design matrices were taken to

the random e�ects level by applying t-tests between them to produce group statistical

parametric maps.
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Reaction Time Task

Subjects performed a simple reaction time task before and after conditioning. They

were randomly presented with one of the three fractal cues used in the conditioning

task (referred to here as the background cue), slightly above center on the screen for a

time uniformly distributed between 1 and 2 seconds. After this time the background

cue remained on the screen and a second cue appeared in the center of the screen

(referred to here as the response cue), either a green circle containing the letters `HaT'

or an orange circle containing the letters `FoT'. This second cue instructed subjects

to respond by pressing a button on the keypad in their hand (HaT) or strapped to the

bottom of their foot (FoT). Both cues remained on the screen for 1 second. Subjects

responded 30 times to each of the six possible combinations of background cue and

response cue.

During the conditioning task, subjects learned to associate the fractal cues with

either a hand-imagine or foot-imagine response, so that after the experiment the

background cues can be considered either compatible (e.g., hand imagine cue and

hand response cue) or incompatible (e.g., hand imagine cue and foot response cue).

Trial-by-trial reaction times measured before and after the conditioning task were

divided into three blocks, early, middle, and late, and averaged within each trial

type. The block-averaged reaction times were analyzed with a repeated measures

ANOVA, with within-subject factors of block (3 levels), time (2 levels: before and

after conditioning), cue-response relation (3 levels: compatible cue, incompatible cue,

rest cue), response type (2 levels: hand and foot), and a single between-subjects

factor, a binary value indicating whether or not a subject performed well on the task.

Experiment 2

In Experiment 1 the behavioral reaction time measure was taken outside the scanner,

before and after the experiment. This meant that subjects were exposed to the

cues in a di�erent context and that any response evoked by the fractal cues could

diminish since the test was performed in extinction (responses were not rewarded).
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We conducted a follow-up experiment to test the e�ect of performing the reaction

time measure in a similar context as the conditioning and interleaved reaction time

measurements with conditioning trials in order to minimize the e�ects of extinction.

In Experiment 2 we also included a condition to control for the e�ects of repeated

practice alone, without contingent feedback.

Subjects

We scanned an additional 9 subjects in an alternate version of the conditioning task

that included a reaction time measure taken during the conditioning trials (aged

21-38 mean 24.9, 3 males). One subject performed only 3 out of 4 sessions due to

discomfort, and the imaging data from another were not analyzed due to excessive

head movements. We also scanned 9 subjects (aged 21-34 mean 23.3, 4 males) in a

control condition.

Conditioning with interleaved reaction time task

A separate group of 9 subjects underwent a conditioning procedure nearly identical

to experiment 1, but with additional sets of reaction time trials randomly inserted

among the regular conditioning trials in each block. For this task subjects held a

button pad in their right hand and a second button pad was held against the bottom

of their foot in a sandal so that they could push a button with their toe. The reaction

time trials began with a central �xation cross presented for 250 ms, followed by one

of the two fractal cues from the conditioning trials for 1.75 s. Either `HaT' or `FoT'

then appeared on the fractal for 250 ms, instructing subjects to respond by pressing

the hand button or foot button, respectively. The �xation cross appeared for 1.75

s, during which time subjects made their response. Each session consisted of 14

conditioning trials with two sets of 30 consecutive reaction time trials inserted at

pseudorandom intervals. In the �rst session they always appeared after the 12th and

14th trial, to give subjects the opportunity to learn the response associated with each

fractal. In subsequent sessions, the blocks of reaction time trials appeared at random

intervals, with the condition that two blocks could not be presented consecutively.
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In each session, 15 of each type of trial: hand-cue/hand-response, hand-cue/foot

response, foot-cue/hand-response, foot-cue/foot-response, were presented in random

order in two sets of 30 trials. Across the four conditioning blocks, a total of 60 reaction

times from each type of trial were collected.

Control Task

We ran a second version of the task designed to control for the e�ects of repeated

practice of motor imagery. During the conditioning trials, these subjects were in-

structed to imagine either hand or foot movements when they saw the corresponding

cue, and to ignore the reward feedback. Unlike in the feedback task the rewards

delivered to subjects were not linked to neural activity but instead each subject in

the control group experienced the rewards obtained by a randomly assigned `yoked'

subject from the feedback group. The control task also included reaction time trials

identical to those in the feedback task.

Reaction time analysis

During the conditioning task, subjects learned to associate the fractal cues with either

a hand-imagine or foot-imagine response, so that the background cues can be consid-

ered either compatible (e.g., hand-imagine background cue and hand response cue)

or incompatible (e.g., hand-imagine background cue and foot response cue) with the

response. We hypothesized that there would be a facilitation for compatible stimuli

relative to incompatible, i.e., faster reaction times. We log transformed these data

and entered them into a 3-way repeated measures ANOVA, with within-subject fac-

tors of cue (hand/foot), response (hand/foot), and session (1-4), separately for the

feedback and control groups.
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Results

Experiment 1

Behavioral Results

Post-experimental debrie�ng According to the questionnaire responses, all sub-

jects excepting two correctly discriminated between the two cues, and were aware

which cue instructed them to activate hand or foot areas. The two subjects who did

not learn correctly performed very poorly at the task and were eliminated from both

the behavioral and imaging analyses. The self-reported strategies for activating these

areas all involved motor imagery of some kind. During the resting period subjects

either relaxed and let their mind wander or distracted themselves by repeating a song

or numbers in their head. Some subjects reported making eye movements during

these periods.

Subject performance on conditioning task Most subjects were able to success-

fully obtain rewards in the task. The mean number of rewards obtained per run were

[3.27 ± 0.40, 3.41 ± 0.31, 2.82 ± 0.30, 3.27 ± 0.35] for hand rewarded trials and [3.05

± 0.32, 2.82 ± 0.37, 3.09 ± 0.40, 2.82 ± 0.39] for foot rewarded trials. The number of

rewards remained relatively constant across runs, a repeated measures ANOVA with

between-subjects factors of rewarded region (2 levels) and run (4 levels) yielded no

signi�cant main e�ects or interactions. However the threshold for the activation level

which subjects had to achieve in order to obtain reward increased across trials. A

linear regression on the trial-by-trial mean threshold across subjects, shows a signif-

icant increase, both for the hand rewarded threshold (β = 9.05x10-5, R2 = 0.8717,

p<0.001) and foot rewarded threshold (β = 1.51x10-4, R2 = 0.9634, p <0.001). Since

subjects were able to maintain a constant rate of reward despite the increasing dif-

�culty of the task, we consider this a measure of overall success of the conditioning

procedure.
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Table 4.1: Movement recording comparisons

Condition (vs. rest) Subjects showing sig di�erence

Pre-training
(Wilcoxon ranksum,
n1 = 5, n2 = 5;
p<0.05)

Finger Tapping 16/22
Imagined Finger Tapping 0/22

Toe Tapping 21/22
Imagined Toe Tapping 0/22

Functional Localizer
(Wilcoxon ranksum,
n1 = 5, n2 = 5;
p<0.05)

Finger Tapping 19/22
Imagined Finger Tapping 0/22

Toe Tapping 20/22
Imagined Toe Tapping 0/22

Conditioning Task
(Wilcoxon ranksum,
n1 = 7, n2 = 7;
p<0.05)

Imagined Hand Movement 0/22
Imagined Foot Movement 0/22

Movement Recordings Movement recordings during the localizer task, both dur-

ing pre-training and in the scanner, con�rmed that subjects were able to perform the

imagination task without actually moving. We compared RMS values during resting

periods to real and imagined movement periods, during the pre-training, functional

localizer and conditioning task. The results are summarized in Table 4.1, and example

recordings for real and imagined movements with �ngers and toes are shown in Fig-

ure 4.2. For some subjects, the di�erence between rest and movement did not reach

signi�cance; inspection of the movement time courses showed that these subjects had

probably adjusted their position during the resting period of one of the blocks and

due to the small number of blocks (n = 5) the comparison did not reach signi�cance.

Although subjects were instructed that they should keep their hands and feet still,

some subjects showed evidence of hand twitches during certain trials. Trials in which

sharp spikes in the EMG indicated a small twitch in the hand or arm, either during

rest, hand-imagined, or foot-imagined periods, were removed from further analysis.

The mean number of trials eliminated per subject was 5/56, with a standard deviation

of 4.33.

Reaction times The repeated measures ANOVA performed on the reaction times

yielded a signi�cant main e�ect of response type (p<0.001; F(1,14) = 48.374), and
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Figure 4.2: Sample movement recordings from a single subject during Experiment
1. a) EMG during real hand movement. b) EMG during imagined hand movement.
c) goniometer recording during real foot movement. d) goniometer recording during
imagined foot movement

signi�cant interactions of time x cue-response relation x learner type (p<0.01; F(2,

28) = 6.011), and time x response type (p<0.01; F(1,14) = 13.292). Planned t-

contrasts showed that in good learners there was a signi�cant di�erence between both

compatible (paired t-test p<0.05; N = 11 |t| = 2.1871) and incompatible (paired t-

test p<0.05; N = 11; |t| = 1.8013) cue types after conditioning compared to before,

with both becoming slower after conditioning. However, contrary to our hypothesis,

we did not observe a signi�cant di�erence between responses that were compatible or

incompatible with the background cue. To address the possibility that the absence of

this e�ect was a consequence of the reaction time measure being performed outside

the scanner and therefore in extinction, in Experiment 2, reaction times were tested

in the scanner interleaved with conditioning trials to reduce extinction of the response

(see Methods: Experiment 2 for more details).
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fMRI Results

ROI location The mean ROI center for the hand region in Montreal Neurological

Institute (MNI) space was [-35 ± 1.24, -26 ± 1.9, 65 ± 0.941] located on the left

precentral gyrus (Broadmann area 4a, 6, 1) [168]; individual subject ROI centers

were located near the hand knob [169] on the pre- and post-central gyri. The mean

ROI center for the foot region was [-6 ± 0.729, -25 ± 1.5, 69 ± 1.1] located on the

left paracentral lobule (Broadmann area 4a, 6); individual subject ROI centers were

distributed from the posterior part of the superior frontal gyrus along the length of the

paracentral lobule. These areas are highly consistent with �nger- and toe-imagery-

speci�c locations found in Ehrsson et al. [170].

Trial-by-trial %-change in regions of interest Averaging the trial-by-trial %-

change data across trials within each session, and over subjects, we see a general

increase in signal in the rewarded ROI, and a decrease in the non-rewarded ROI,

corresponding to an overall increase in the signal di�erence between the rewarded

and non-rewarded regions; these data are plotted in Figure 4.3. In addition to the

two pre-de�ned ROIs, we also looked at the signal in a large background ROI which

included all brain voxels outside of the two task-related ROIs. The background ROI

did not show the same increase as the rewarded ROI, con�rming that the activation

in response to the cue was speci�c to the rewarded ROI rather than re�ecting a

nonspeci�c increase in brain activity.

To test for a learning e�ect we performed a repeated-measures ANOVA on the

trial-averaged %-change measures within each session from each ROI. Across all 22

subjects, we found a signi�cant main e�ect of ROI (p<0.005; F(6,120) = 6.246), and

signi�cant interactions of ROI x rewarded ROI (p<0.001; F(2, 40) = 14.308), as well

as an interaction between ROI x rewarded ROI x session that approached signi�cance

(p = .064), suggesting a learning e�ect. Restricting our analysis to a subgroup who

successfully met a learning criterion of 5 or more rewards during the last session (N =

17), this interaction became signi�cant (p<0.05; F(6,96) = 3.907). Taking the trial-

by-trial average across all subjects and regressing the mean di�erence between ROIs
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onto trial number, we found a signi�cant positive increase, both for [hand ROI-foot

ROI] in trials when an increase in the hand ROI was rewarded (β = 0.0001, R2 =

0.3840, p<0.05) and [foot ROI-hand ROI] in trials when an increase in the foot ROI

was rewarded (β = 0.0001, R2 = 0.2557, p<0.05).

Random e�ects analysis with SPM We generated a contrast to detect regions

in which signal increased during hand rewarded trials and decreased during foot

rewarded trials, and likewise a second contrast to detect regions with signal increase

during foot rewarded trials and decreases during hand rewarded trials. Taken to the

random e�ects level, the contrast to detect activity during foot rewarded trials showed

a signi�cant cluster with peaks surviving small volume correction around the mean

foot ROI center [-6 -24 69] at [-3 -24 75] (t = 5.06; p<0.01 FDR-corrected), [0 -21 72]

(t = 4.95; p<0.01 FDR-corrected), and [-3 -18 69] (t = 4.71; p<0.01 FDR-corrected).

The results of this contrast are shown in Figure 4.3c.

The contrast to detect activity during hand rewarded trials shows a large cluster

with a peak at [-39 -33 66] which survives small volume correction in an 8 mm sphere

around the mean of subjects' hand ROI centers [-36 -27 66] (k = 38; t = 3.13; p<

0.05 FDR-corrected). The results of this contrast are shown in Figure 4.3f.

The hand-region and foot-region activation tasks engaged a network of brain re-

gions in addition to the regions of interest, though activations in these regions re-

mained relatively constant across the study (see Table 4.2). As would be expected,

there was substantial overlap between regions activated by imagined hand and foot

movements, in dorsal pre-motor (PMd) extending into supplementary motor (SMA)

and pre-SMA as well as bilateral regions of the parietal cortex and precentral gyri. In

Figure 4.4 we have plotted the parameter estimates for the hand and foot rewarded

trials in each of the 4 sessions: in 4.4a the signi�cant regions in the foot-region activa-

tion task, and in 4.4b in the hand-region activation task. Despite the fact that these

regions were generally activated by subjects performing the task, our protocol caused

selective enhancement and depression of activity only in the delineated regions of in-

terest. This can be seen from the slopes and divergence of the curves in the topmost
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Figure 4.3: fMRI results from Experiment 1. a) Mean percent-change data averaged
over subjects within runs in each ROI during trials in which the foot ROI was re-
warded, b) Di�erence in mean percent-change data, averaged over subjects within
runs, between foot and hand ROIs during foot rewarded trials. c) Results of random
e�ects analysis in SPM from Experiment 1; t-test on contrast increasing during foot
rewarded trials and decreasing during hand rewarded trials, thresholded at p<0.01,
crosshairs indicate mean of subjects ROI centers for the foot ROI [-6, -25, 69]. d)
Averaged responses in each ROI during trials in which the hand ROI was rewarded
e) Di�erence between hand and foot ROIs during hand rewarded trials. f) Results
of random e�ects analysis in SPM from Experiment 1; t-test on contrast increasing
during hand rewarded trials and decreasing during foot rewarded trials, thresholded
at p<0.001, crosshairs indicate mean of subjects ROI centers for the hand ROI [-35,
-26, 65]
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Figure 4.4: Subject averaged parameter estimates across sessions from Experiment 1.
Hand and foot rewarded trials are plotted separately. Bars indicate standard errors.
Regional coordinates in Table 2. a) Regions identi�ed as signi�cant during trials
when subjests were rewarded for activating the foot region. b) Regions identi�ed as
signi�cant during trials when subjects were rewarded for activating the hand region.
(PMd = dorsal pre-motor, MFG = middle frontal gyrus, SMG = supramarginal gyrus,
SPG = superior parietal gyrus)

plots (from the peak voxel near the ROI centers described above), compared to the

other regions signi�cantly activated by a general task�baseline contrast.

Experiment 2

Behavioral Results

Reaction times The results of the ANOVA on the feedback group showed that

subjects were signi�cantly faster to make a response when the background cue was

compatible with the type of response, as demonstrated by a signi�cant interaction

between cue and response (p<0.05; F(1,7) = 7.23). We also found signi�cant main

e�ects of session (p<0.05; F(3,21) = 4.134) and response (p<0.01; F(1,7) = 17.7) �
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Table 4.2: Motor imagery tasks

Z scores and MNI coordinates of peak activation foci, p<0.001, minimum cluster
size 5 voxels

Contrast

Hand Rewarded Foot Rewarded

Region voxels Z # voxels Z

Dorsal pre-motor (PMd) 1001 5.79(-12 -3 69) 997 5.94(-12 -6 72)

Left precentral gyrus 6 3.29(-48 0 54)

Right precentral gyrus 68 4.79(57 0 48) 44 4.22(57 0 48)

Right parietal (supramarginal gyrus) 64 5.40(60 -27 51) 47 5.47(60 -27 54)

Left parietal (supramarginal gyrus) 79 4.49(-36 -48 60)

Left superior parietal gyrus 71 4.35(-18 -60 69)

Right middle frontal gyrus 5 3.51(30 -3 72)

subjects responded more quickly with �ngers than toes. In the control group only

the main e�ect of response was signi�cant (p<0.05; F(1,7) = 11.29), in that subjects

were faster responding during hand than foot movements, but no signi�cant cue or

cue x response e�ects were found in this group.

fMRI Results

ROI location The ROIs identi�ed in Experiment 2 were similar to Experiment 1.

For the feedback group, the mean ROI center for the hand region in MNI space was

[-39 ± 2.2, -25 ± 2.1, 58 ± 1.8], and for the foot region [-6 ± 0.7, -25 ± 1.5, 69 ±

1.1]. The ROI centers for the control group were statistically indistinguishable from

the feedback group, with the mean hand ROI center at [-37 ± 2.2, -23 ± 1.1, 56 ±

1.3] and the mean foot ROI center at [-7.6 ± 0.6, -29 ± 2.5, 69 ± 1.0].

Trial-by-trial %-change in regions of interest We averaged the trial-by-trial

%-change data across trials within each session, and over subjects. In the feedback

group we see a general increase in signal in the rewarded ROI, and a decrease in

the non-rewarded ROI, corresponding to an overall increase in the signal di�erence

between the rewarded and non-rewarded regions. In the control group the di�erence

between the two regions is stable or decreasing. These data are plotted in Figure 4.5:
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Figure 4.5: Percent-signal change plots across sessions for feedback and control groups
from Experiment 2 a) di�erence in percent-change between foot and hand ROIs when
foot responses were rewarded. b) Di�erence in percent-change between hand and foot
ROIs when hand responses were rewarded

4.5a shows the %-change di�erence for the foot-region activation task and 4.5b for the

hand-region activation task. Taking the trial-by-trial average across all subjects and

regressing the mean di�erence between ROIs onto trial number in the feedback group,

we found a signi�cant positive increase both for [hand ROI - foot ROI] in trials when

an increase in the hand ROI was rewarded (R2 = 0.23, p<0.05) and [foot ROI -hand

ROI] in trials when an increase in the foot ROI was rewarded (R2 = 0.22, p<0.05).

By contrast, no signi�cant linear increase was seen in the control group, either in the

hand-imagine or foot-imagine conditions, suggesting that repeated practice of motor

imagery is not su�cient to explain the shaping of neural responses demonstrated here

and in Experiment 1.

Random e�ects analysis with SPM We generated contrasts comparing activity

during hand-imagine periods and foot-imagine periods, and took them to the random

e�ects level. Consistent with the results from Experiment 1, signi�cant activity was

found in the foot region in the contrast of foot-cue trials > hand-cue trials (Figure

4.6a), within an 8 mm sphere corrected for small volume around the mean center of

the foot ROIs for the feedback group at [-6 -27 69] (t = 4.04; p<0.05 FDR-corrected).

Signi�cant activity was also found in the hand region in the contrast of hand-cue trials

> foot-cue trials (Figure 4.6b), which survived correction for small volume within an

8mm sphere centered around the mean of the hand ROIs for the feedback group at

[-42 -33 54] (t = 5.66; p<0.05 FDR-corrected).



89

Figure 4.6: Random e�ects and ROI analyses from Experiment 2. a) Results of
a contrast of foot-cue vs. hand-cue conditions across all four sessions. Crosshairs
are centered on mean of subjects ROI centers for the foot ROI [-6 -30 69]. Results
are shown at p<0.01 for visualization, but survive correction for small volume at
p<0.05. b) Results of a contrast of hand-cue rewarded vs. foot-cue rewarded trials
across all four sessions from the feedback group. Crosshairs are centered on mean of
subjects ROI centers for the hand ROI [-39 -27 57]. Results are shown at p<0.01 for
visualization, but survive correction for small volume at p<0.05.

ROI based comparison of e�ects in feedback and control groups We next

compared the mean parameter estimates from each ROI between the feedback and

control groups. During the hand-cue condition, neural activity in the hand ROI was

signi�cantly greater in the feedback than the control group during the last 2 sessions

once learning was consolidated in the feedback group (t(15) = 1.9, p<0.05 one-tailed).

During the last two sessions of the foot-cue condition, neural activity in the foot ROI

was also signi�cantly greater in the feedback group than in the control group (t(15)

= 3.2; p<0.005).

Discussion

In this study we have shown that it is possible to directly condition neural activity

using reward feedback derived from fMRI. Subjects were able to discriminate between

two cues and respond to each by activating the appropriate region of their left sen-

sorimotor cortex, while suppressing activity in a second region. Post-hoc analysis
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showed that the brain regions signi�cantly increasing in response to rewarded cues

and decreasing in response to non-rewarded cues were spatially limited to the speci�c

brain regions where activity was reinforced in our procedure. We also demonstrated

in a control group that repeated practice of motor imagery alone is not su�cient to

account for this e�ect. A behavioral reaction time measure showed that in the context

in which the association was learned, a neural response to a cue can have a facilitatory

e�ect on reaction times, when the physical response engages regions similar to those

activated by the learned neural response. Taken together these �ndings could lead to

development of therapies for patients who have su�ered stroke damage to the motor

system.

Behavioral shaping has long been known to be a powerful method for behavioral

modi�cation in both humans and animals [2, 4]. Here we have used the methods

derived from behavioral shaping to directly shape neural activity. Our goal in this

study was to show that by using a reward schedule based on behavioral shaping we

could train subjects to increase the level of their neural responses in a speci�c brain

region over time. Shaping schedules constantly adjust the threshold required to earn

reward, based on subjects' prior performance, thus ensuring that subjects are in a

state of constant learning [171]. Our procedure succeeded not only in increasing

activity over time, but also in selectively increasing and decreasing activities in the

speci�c regions of interest, while activities in other regions recruited by this task

remained stable.

The approach used here o�ers an important alternative to that employed in previ-

ous fMRI neurofeedback training studies [100, 96, 107, 99]. In these previous studies,

explicit visual feedback was provided to subjects, signaling the level of activity in a

particular area. Subjects were then instructed to modulate their activity in order to

attain a speci�c target level of activation. However, in the present study no visual

feedback was presented. Subjects were instructed to activate a speci�c brain region

and received an actual tangible reward (here winning one US dollar) if they succeeded

in reaching a criterion on a given trial. One potential advantage of the present tech-

nique over the classical biofeedback approach is that provision of tangible rewards
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may be much more motivating for subjects than the instruction to reach a target

activation level in the absence of extrinsic reward. Another possible advantage of

the present technique is that the use of instrumental conditioning instead of a visual

biofeedback procedure may render the task much less `cognitive' and thus less likely

to require high level or e�ortful cognitive processing. Thus, the present technique

may be e�cacious even under situations when subjects are either incapable or unwill-

ing to engage in e�ortful cognitive processing, or when a cognitively demanding task

is concurrently imposed. Furthermore, the present technique may not even require

subjective conscious awareness of task progress to be e�ective, given that instrumen-

tal conditioning procedures are known to work in a wide variety of animal species

including rats, pigeons, and even aplysia [172, 173, 174], which one might speculate

are unlikely to have developed conscious subjective awareness to the same degree as

in humans. This raises the intriguing possibility that human brain regions may di�er

in the degree to which successful neural conditioning is associated with a subjective

conscious correlate. Here, subjects reported using, and were instructed to use, a con-

scious strategy of imagining movement during task performance. Future studies could

probe the subjective correlates of conditioning in di�erent brain regions to examine

whether, for example, subjective correlates of neural conditioning in higher cortical

areas are qualitatively di�erent than those associated with sub-cortical structures.

Finally, the use of an approach based on instrumental conditioning means that we

can bene�t from the extensive work done in this area to inform our understanding of

the neural and behavioral processes mediating this learning [163, 131, 125, 175, 176].

The task of di�erentially activating two motor cortical regions seemed to engage

parallel learning processes: as the signal in the ROI being rewarded increased over

time, we saw a corresponding decrease in the ROI not being rewarded. Subjects

reported activating the rewarded ROI using kinesthetic motor imagery; however the

signal decrease observed in the non-rewarded ROI may not be attributable to the same

deliberate control. In order to continue earning rewards throughout the task, subjects

had to increase the di�erence in signal between the two ROIs. Such di�erential neural

sensitivity to the reward conditions may tap into covert associative learning mecha-



92

nisms over and above the explicit imagery strategy the subjects reported employing,

as demonstrated in previous instrumental conditioning experiments [177, 178].

While not all functional imaging studies of motor imagery have reported acti-

vations in primary motor cortex (M1) [179, 180], several fMRI studies have shown

evidence for somatotopically organized activations in primary motor cortex during

motor imagery [170, 181]. We report here that activation in somatotopically speci�c

regions of primary motor and sensory cortices increased over the course of condition-

ing. This enhancement could arguably be a side-e�ect of repeated practice of mental

imagery, and not dependent on the reward feedback. However, it is di�cult to explain

the suppression in the non-rewarded ROI without the requirement that we imposed

for di�erential activity in order to earn reward, suggesting that in our study provision

of reward based on neural activity led to speci�c shaping of the neural response.

Nyberg et al. [182] compared the e�ects of mental practice to physical practice

in a recent fMRI study. They found that practice in general led to a more regionally

speci�c activation in motor cortex. They also found a di�erential increase in visual

cortex activity in the mental practice group. Studies comparing kinesthetic and visual

imagery have found that they evoke di�erent patterns of neural activity [183, 184].

Since we found an increase in activity speci�c to sensorimotor cortex, perhaps the

feedback from this area caused subjects to re�ne their imagery strategy to favor

kinesthetic rather than visual. A similar e�ect was found in Yoo et al. [98], in

which verbal feedback of auditory cortex activation was found to in�uence subjects'

strategies during selective attention to auditory stimuli. Similarly, Posse et al. [97]

gave subjects feedback of amygdala activation during sad mood induction, resulting

in amygdala activations that correlated with sad mood. Generally speaking, training

subjects to activate a particular part of their brain while performing a task could be a

way of enhancing task performance or correcting de�cits. Training subjects to make

more e�cient use of neural resources could potentially lead to long-term alterations

in neural plasticity related to performance of speci�c tasks.

In summary, we have presented an instrumental conditioning technique which suc-

ceeds in shaping an increase in sensorimotor cortical responses over time, as measured
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with fMRI. We have also used a behavioral measure to explore the e�ects of training

on behavior. The method presented here extends previous work [97, 107, 96, 100, 98]

by incorporating a well-studied operant conditioning paradigm with fMRI derived

neurofeedback training. This method was successful in conditioning a di�erential re-

sponse between two regions with a very high neuroanatomical precision� a �nding

that could have clear bene�t in future clinical applications.
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Chapter 5

Direct instrumental conditioning of

neural activity in orbitofrontal cortex

Functional neuroimaging studies have found correlations between activity in human

orbitofrontal cortex (OFC; especially its medial aspect) and subjective ratings of

reward value for a diverse range of stimuli including attractive faces. However, it is

unclear from these studies whether orbitofrontal cortex activity has a causal in�uence

on subjective evaluations of reward value, or is merely an epiphenomenon. To address

this question, we used a real-time fMRI procedure involving instrumental condition-

ing with monetary reward in 13 male subjects who were trained to selectively increase

activity in medial OFC, interleaved with binary attractiveness judgments on a set of

female faces. Over several sessions subjects showed increased di�erential activity in

OFC relative to a control condition during which they were instead conditioned to

activate the hand area of motor cortex. After controlling for other factors such as

whether a trial was rewarded or not, the di�erential OFC signal was found to be a sig-

ni�cant predictor of increased attractiveness ratings, while di�erential activity in the

hand-motor area was not. These results demonstrate that a neurofeedback procedure

can be used to condition increased activity in OFC and that by selectively modulat-

ing activity levels in medial OFC it is possible to in�uence subjective judgments of

attractiveness.
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Introduction

Activity in medial OFC (mOFC) correlates with subjective ratings of reward value

for a diverse range of stimuli, including liquid rewards [28], willingness to pay, [40]

and attractive faces [30, 31]. Recent evidence also suggests that mOFC represents the

experienced pleasantness of a stimulus, which can be in�uenced by factors other than

the sensory properties of a stimulus, and the internal state of the subject [41]. While

these studies have demonstrated correlations between subjective value and mOFC

activity, they have not established whether mOFC has a causal in�uence on subjective

judgments. Patients with OFC lesions are able to express a range of emotions [185],

however they show impairment at relative valuation of sets of options [186]. OFC-

lesioned patients are able to express preferences, but their preferences are internally

inconsistent, pointing to a causal role for OFC in accessing stimulus value. However,

it remains unclear whether elevated mOFC activity causes positive evaluations, or

is merely epi-phenomenal. In this study we sought to test whether elevated mOFC

activity can positively bias a�ective judgment of a concurrently presented stimulus.

To elicit reliable increases in mOFC activity on a trial-by-trial basis, we imple-

mented a neural conditioning procedure [96, 100], in which subjects were rewarded

for elevating mOFC activity upon being presented with a discriminative cue. Similar

procedures have been employed in emotional brain regions such as rostral anterior

cingulate cortex [100], and insula [108], but as of yet neural conditioning of mOFC

has not been reported.

It is unclear what mental strategy is the most e�ective for elevating activity in the

OFC. Based on prior reports of emotional recall activating OFC [187, 188], and the

known responses of this region to both primary and abstract reinforcers [33, 189, 109],

we instructed subjects that imagining things that they �nd personally rewarding

would be a good initial strategy.

To test for e�ects of mOFC activity on a�ective judgments, subjects were asked

to evaluate the attractiveness of a face at the end of each trial. Prior reports have

shown that mOFC activity correlates with ratings of facial attractiveness [30, 31].
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To control for general e�ects of elevating regional neural activity for reward, we

included a second condition in which subjects were trained to elevate activity in a

region of motor cortex related to hand movements, and received rewards contingent

on successfully activating that region past a given threshold [160, 96].

Because the mOFC is important for subjective evaluations and decision making,

the ability to train reliable increases in mOFC activity has important clinical im-

plications for treating patients who show impaired decision-making abilities, such

as depressed or addicted individuals. The results of this study also have important

implications for understanding the precise in�uence of mOFC activity on expressed

preferences.

Materials and Methods

Subjects

A total of 18 healthy right-handed male subjects aged 19 to 29 years (mean age 21 ±

2.3 years) participated in the experiment. All subjects gave informed consent, which

was approved by the local research ethics committee. One additional subject did not

complete the entire session.

Scan-to-scan motion can have a detrimental impact on learning, as subjects cannot

tell whether changes in BOLD response are due to head motion or neural activity.

We therefore eliminated subjects who showed large amounts of head motion. We

summed the total scan-to-scan motion, estimated during SPM pre-processing (as

described below) over all three directions in each session, and eliminated subjects

who showed > 30 mm of movement in more than one session. According to this

criterion, �ve subjects were removed from the imaging analysis. This study included

a behavioral response on each trial, as described below; one subject was excluded

from the behavioral analysis for making the same response on every trial. This left

13 subjects in the imaging analysis and 12 in the behavioral analysis.
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Stimuli and tasks

Visual stimuli were presented via a projector positioned at the back of the room.

Subjects viewed a re�ection of the projected image (800 x 600 pixels) in a mirror

attached to the scanner head coil. Stimulus presentation and response recording were

controlled with the Cogent 2000 toolbox in Matlab (Mathworks, Natick, MA).

Functional localizer tasks and ROI selection

Functional localizers for the three ROIs were run in two sessions, one for mOFC and

one for hand-motor (HaM) and V5/MT, as described below. The order of the two

localizer sessions was counterbalanced across subjects. Following the two functional

localizer scans, subjects waited in the scanner for several minutes as the ROIs were

selected.

OFC functional localizer: Probabilistic reversal learning

Evidence from both human and animal lesion and functional imaging work has shown

that the mOFC is engaged during tasks that require subjects to keep track of vary-

ing stimulus values. One such task that has consistently been shown to recruit the

mOFC is probabilistic reversal learning [189, 125, 20, 190]; thus we used this task as

a functional localizer for parts of medial OFC sensitive to reward value. The imple-

mentation of this task was similar to Hampton et al. [190]. On each trial subjects

were presented with the same two abstract fractal images, randomly assigned to the

left or right side of a central �xation cross. These stimuli were presented for 2.9 s,

during which time the subject was asked to choose between the two images, and press

the left or right button on a button box held in their right hand (Current Designs,

Philadelphia, PA), to choose the image on the left or right side of the screen. The

chosen image then became brighter for 2.9 s, followed by feedback indicating whether

the subject had won a quarter or lost a quarter for 2.9 s. The next trial immediately

followed. Rewarding feedback was indicated with a picture of a US quarter in the

center of the screen, while punishing feedback was indicated by a picture of a quarter
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with a red X across the image. A running total of subjects' earnings during this task

was presented above the quarter. Missed trials were indicated with a red X in the

center of the screen and no change in the running total.

The images were randomly assigned to be the `correct' or `incorrect' choice. Choos-

ing the `correct' option was associated with the subsequent delivery of a monetary

reward (gaining 0.25 USD) on 80% of trials, and a monetary punishment (losing 0.25

USD) on 20% of trials. Subjects were instructed to sample both choices in order

to ascertain which was more rewarding (they are not told the exact probabilities,

but merely that one image delivered rewards more often). The subjects were also

instructed that sometimes the contingencies associated with the images would re-

verse, that is the image that delivered reward more often would begin to deliver less

often and vice versa. Subjects were not informed of the speci�c details of the rever-

sal probabilities, but contingency reversals would only occur after they demonstrated

learning which was the `correct' image, by choosing this image on 3 consecutive trials.

Once this association had been acquired, the contingencies had a 1 in 4 probability

of reversing on each subsequent trial. Subjects practiced this task for several minutes

outside the scanner during the pre-training session. In the scanner, subjects per-

formed a session that included 40 task trials with 20 null events (during which the

�xation cross was presented for the duration of a normal trial) randomly interspersed,

for a duration of ~8.5 min.

Within the same scan, subjects then saw a �xation cross at the center of the screen

for 8.5 s, followed by the letters `ImR' presented in the middle of the screen for 17 s.

This was a cue for subjects to begin a period of reward imagery. Subjects were not

given speci�c instructions about the contents of the imagery that they should use,

but were simply asked to conjure imagery that they found personally rewarding. The

imagery condition, alternating with the �xation cross, was presented 6 times.

mOFC ROI selection

A t-test was performed comparing reward to punishment scans, and the resulting sta-

tistical map was thresholded at p<0.001 and overlaid on the subjects' anatomical scan.
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The p-value was iteratively increased or decreased until the lowest p-value was found

that included some activity in the region of ventromedial prefrontal/orbitofrontal

cortex (typically between p<0.05 and p<0.001). This image was used as a mask for

a second contrast, comparing imagine-reward to rest scans. With this method we

aimed to identify regions that were activated by both real and imagined rewards.

An ROI center was chosen among voxels active in this masked contrast, near medial

orbitofrontal cortex; the ROI extended 3 slices in the vertical direction and 6 x 6

voxels in plane.

Hand-motor and V5/MT localizer

The hand-motor and V5/MT localizer tasks were run in a single session. The stimuli

presented to the subject consisted of a central �xation cross for 8.5 s, which then

alternated with blocks of task speci�c stimuli, each presented for 14.5 s. All stimuli

were low contrast, light gray presented on a darker gray background. The �rst three

task-speci�c stimuli consisted of an array of 10,000 dots arranged in a circle at the

center of the screen with a 100 pixel radius. In the �rst two blocks the dots moved

outward from or inward to the center of the circle at a rate of 66 pixels/sec. The

third stimulus was a similar array of dots, but not moving. The fourth stimulus was

the letters `ImM', which indicated to the subjects to imagine visual motion. That

is, any kind of visual imagery of motion in the visual �eld, similar to the moving

dot patterns. The �fth stimulus was the letters `HaT', for `hand tap'; here subjects

were instructed to bend �ngers II-V at the metacarpophalangeal joint at a rate of

approximately 1 Hz. The sixth and �nal stimulus was the letters `ImHaT', in response

to which subjects were instructed to imagine the sensation of tapping their �ngers as

in the previous task, without actually moving. This series of stimuli cycled through

�ve times. This task was practiced with a slightly shorter duration (3 cycles) outside

the scanner during pre-training, where subjects could be observed at close range to

ensure that they were not making real movements during the imagine-moving blocks.
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Hand-motor ROI selection

A t-test was performed comparing reward to punishment scans, and the resulting

statistical map was thresholded at p<0.001 and overlaid on the subjects' anatomical

scan. The p-value was iteratively increased or decreased until the lowest p-value was

found that included some activity in sensorimotor areas related to hand movements

[169] (typically between p<0.05 and p<0.001). This image was then used as a mask for

the contrast of imagine-hand motion vs. imagine-visual motion. With this method we

aimed to identify brain regions responsive to both real and imagined hand movements.

An ROI center was chosen near the hand region of sensorimotor cortex [169].

V5/MT ROI selection

A t-test was performed comparing reward to punishment scans, and the resulting

statistical map was thresholded at p<0.001 and overlaid on the subjects' anatomical

scan. The p-value was iteratively increased or decreased until the lowest p-value

was found that included some activity near the ascending limb of the inferotemporal

sulcus/lateral occipital sulcus [191] (typically between p<0.05 and p<0.001). This

image was then used as a mask for the contrast of imagine-visual motion vs. imagine-

hand motion. With this method we aimed to identify brain regions activated by

both real and imagined visual motion. A region of interest was then chosen near the

inferotemporal sulcus/lateral occipital sulcus [191].

Neural conditioning Task

Subjects were instructed that during this part of the experiment, they would be asked

to activate speci�c brain regions on cue, using only their imagination. They were

speci�cally instructed not to make any real motions while the scan was running. Two

gray-colored shape cues, one triangle and one parallelogram, were assigned to either

the mOFC-activate or HaM-activate condition, counterbalanced across subjects. A

third hexagon shape with the word `Rest' written in the center in white lettering, was

assigned to the resting/baseline condition.
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A reinforced conditioning trial is illustrated in Figure 5.1a. Each trial began with

presentation of the rest-cue for a variable interval between 11.5 and 23 s, followed by

either the mOFC-activate cue or the HaM-activate cue. During this time subjects

were instructed to try to elevate activity in the target region, using only their imag-

ination. Before scanning, subjects were told which target brain region was assigned

to each cue.

Subjects were given ongoing feedback of neural activity with a thermometer-style

graphic [108]. At the start of each block, below the shape cues, a white bar (50 x 150

pixels) was displayed with two black lines 25 pixels from the bottom and 25 pixels

from the top. After two scans were acquired, the bar �lled with a grey rectangle

representing neural activity in the target area. The signal depicted the %-change

from baseline to active in the background ROI (V5/MT) subtracted from the %-

change from baseline to active in the target ROI. During rest blocks the bar appeared

similarly, but the height of the bar �uctuated randomly. The signal was calibrated so

that 100 pixels corresponded to the di�erence between zero and the current threshold.

The bottom (zero) line indicated the level at which there was no di�erence between

the target and background regions. Below this level, the signal appeared as a darkly

colored bar. If the signal was greater than zero, it appeared as a medium grey bar

between the bottom and top lines, and if the signal di�erence exceeded the current

threshold, the medium grey bar extended up above the top line and the part above

the line was colored in lighter grey. After a minimum of three scans (~9 s), if the

signal exceeded the current threshold, the trial ended immediately and following the

face attractiveness judgment, described below, the subject was presented with reward

feedback. Reward feedback consisted of a picture of a dollar bill with the words `You

have earned ONE dollar'. If 23 s elapsed and the subject was not able to bring

the activity level above threshold, the trial ended and the no-reward feedback was

displayed. No-reward feedback consisted of a picture of a scrambled dollar and the

words `You have NOT earned one dollar'. Dollars earned during the task corresponded

to real money paid to the subject at the end of the experiment.

Subjects were told that the `rest' period preceding each `active' period would
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serve as a baseline against which the activity during the `active' periods would be

compared. Therefore, they should not practice mental imagery similar to during the

`active' periods. They were also told that in order to earn rewards they would have

to activate the speci�c brain region being targeted in each condition. Subjects were

told that any kind of mental imagery could be appropriate as long as it speci�cally

activated brain regions delineated by �nger tapping or reward, but that strategies

involving motor imagery and reward imagery might be more likely to succeed, given

the known functional responses of these regions. Subjects were told that the threshold

de�ning the minimum activity required to get rewarded would be slowly increasing,

therefore they would have to improve on their strategy in order to continue earning

rewards.

The total duration of the experiment was approximately 2 h in a single session.

In this time subjects performed pre-training, two functional localizer sessions, and 4

consecutive conditioning blocks with 12 trials in each; trials were ordered pseudoran-

domly so that each trial type appeared 6 times within a block without 3 consecutive

trials being of the same type. Blocks were on average 8 minutes long, for a total of

32 minutes of training.

Attractiveness ratings

Upon completion of each activate block, but before the reward feedback was shown,

subjects were asked to make a rapid subjective judgment. A single female face was

presented at the center of the screen for 250ms, followed by the instruction: `Please

press the left button for below average attractive and the right button for above aver-

age attractive'. Subjects responded using a button pad in their right hand (Current

Designs, Philadelphia PA). Faces were generated using computer software (FaceGen;

Singular Inversions), and were all forward gazing with a neutral expression; 48 faces

were used during the conditioning task. In order to get accustomed to responding to

rapidly presented faces, subjects practiced responding to a set of 20 faces outside the

scanner, during the pre-training session (this set of faces was di�erent than the faces
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Figure 5.1: a) Illustration of a conditioning trial. Subjects are �rst presented with
a resting cue for 6-22s, followed by a cue to activate one of the two target regions
(subjects are informed prior to scanning of the cue-ROI assignment). The trial ends
when the current threshold is exceeded or 22 s has elapsed, at which point subjects are
presented with a face for 250 ms. They have 2.9 s to respond to the face, and �nally
receive reward or no-reward feedback. b) Square around mean center of subject ROIs
for OFC region. c) Square around mean center of subject ROIs for HaM region. d)
Square around mean center of subject ROIs for V5/MT region
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used during the conditioning task).

We hypothesized that faces were more likely to be considered above average at-

tractive during the OFC-activate trials, and that the signal level in OFC might impact

on the attractiveness judgment. To test this we used a mixed e�ects logistic regres-

sion to model the e�ects of local signal levels on the decision to rate a face as above

or below average attractive (function lmer, the R Foundation for Statistical Com-

puting). Because OFC responses were indistinguishable between conditions in the

fourth session, we restricted our analysis to the �rst three sessions. At the time that

subjects were asked to evaluate a face, they were aware of whether or not the trial has

been rewarded, thus reward can be a potential confounding in�uence; we therefore

restricted this analysis to the trials which had been rewarded which included a total

of 100 OFC-activate trials and 106 HAM-activate trials.

Post-experimental questionnaire

After leaving the scanner, subjects were asked to complete a short questionnaire.

They were asked to brie�y describe what they were thinking about during the imagine

blocks of the functional localizer and the conditioning tasks, and to indicate if and

how their strategy changed across sessions.

Motion Recordings

To control for subject motion during periods of imagined movement, we recorded

EMG (BIOPAC, Goleta, CA) from the forearm (�exor digitorum super�cialis muscle)

to measure muscle activity related to �nger �exion and extension. These data were

recorded at 200 Hz. This recording device is MRI compatible, but fMRI scanning

introduced noise into the recordings. Due to technical di�culties, recordings from 6

of the 13 subjects used for imaging are not usable, leaving 7 subjects. Single trials

were individually inspected for signs of motion artifact and those trials removed from

further analysis (0-6 per subject, mean 2).
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fMRI scanning procedure

fMRI data were acquired on a Siemens AG (Erlangen, Germany) 3T TRIO MRI

scanner; Blood Oxygenation Level Dependent (BOLD) contrast was measured with

gradient echo T2* weighted echo-planar images (EPI). Imaging parameters were op-

timized to minimize signal dropout in medial ventral prefrontal and anterior ventral

striatum: we used a tilted acquisition sequence at 30° to the AC-PC line [132], and

an 8 channel phased array coil which yields a ~40% signal increase in this area over

a standard coil. The �rst 3 volumes of each session were discarded to permit T1

equilibration. Other parameters were as follows: 49 slices, in-plane resolution, 3 x 3

mm; slice thickness, 3 mm; repetition time, 2.88 s; echo time, 30 ms; �eld of view,

192 x 192 mm. T1 and T2 weighted structural images were also acquired for each

subject

Concurrent fMRI analysis and processing

As soon as images were reconstructed, they were transferred in real-time via TCP/IP

socket to an external Intel Xeon workstation (3.8 MHz 64-bit processor running Red-

hat Linux); data processing was performed using MATLAB 7.0 (The Mathworks Inc.,

Natick, MA).

Pre-processing

Image pre-processing consisted of motion correction using AFNI [167], and linear

detrending to correct for low-frequency scanner drift. During functional localizer scans

spatial smoothing using a two-dimensional Gaussian of 5 mm width was performed

prior to performing statistical tests. During the conditioning task no temporal or

spatial smoothing was performed.

Online analysis

As images arrived on the external workstation, they were pre-processed and the signal

was averaged over all voxels in the previously de�ned ROIs. Each trial began with a
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variable length baseline period (6 - 23 s), followed by an `activate' period. Starting

from the third scan into each `activate' block, the %-change from baseline to active

was computed in both the target ROI (either HaM or mOFC) and the background

region (V5/MT), and activity in the background subtracted from the target. This

quantity was compared to the current threshold, and after a minimum of three scans

the trial ended if the threshold was exceeded.

The threshold was updated according to a modi�ed percentile reinforcement sched-

ule [16]. The threshold started at 10−4, for the �rst three trials in each condition.

Following that, the threshold on each trial was set to the smallest value from the last

three trials, so that the condition for reward on each trial was to improve on 1/3 of the

previous responses. This rule was augmented with a shifting baseline parameter, so

that if the lowest of the three most recent trials was below the baseline, the threshold

value was instead set to the baseline value. When a trial was rewarded, the baseline

increased to the smallest value in the entire trial history greater than the previous

baseline. This ensured that the threshold did not signi�cantly decrease across the

experiment.

Group fMRI %-change analysis

In order to test whether regional signal levels increased over sessions as a function

of condition, we performed a group analysis on the trial-by-trial %-change values

measured during conditioning. We modeled the di�erential signal level (mOFC-V5 or

HaM-V5) in a linear mixed e�ects model, with �xed e�ects of experimental session and

condition, a session x condition interaction, and a random subject intercept (function

lme, the R Foundation for Statistical Computing).

Post hoc SPM analysis

Data were pre-processed using the SPM5 software package (SPM5 http://www.fil.

ion.ucl.ac.uk/spm/software/spm5/). Images were corrected for slice timing and

spatially realigned to the �rst image from the functional localizer. The EPI images
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were coregistered to the T1-weighted anatomical scan. The T1 image was segmented

into white and grey matter, and the grey matter was coregistered and normalized

to the template grey matter image distributed with SPM5 (in Montreal Neurological

Institute space). These parameters were subsequently applied to the T1 image itself

as well as the set of EPI images. Spatial smoothing was then applied to the EPI

images using a Gaussian kernel with full width at half maximum of 8 mm.

For each subject, we constructed a general linear model in SPM with all four

conditioning sessions. We modeled trials from the mOFC-activate and HaM-activate

conditions separately, face presentation for faces during rewarded trials and non-

rewarded trials separately, and onset of reward feedback and no-reward feedback

separately. The six ongoing motion parameters estimated during realignment were

included as regressors of no interest. Linear contrast images from the single subject

analyses were taken to the random e�ects level by applying t-tests between them to

produce group statistical parametric maps.

Results

Post-experiment questionnaire

After the experiment, we asked subjects to complete a short questionnaire about their

experience during the experiment. Speci�cally, we asked subjects what they were

thinking about during the imagery portion of the functional localizer: 1) imagine vi-

sual motion, 2) imagine hand tapping, 3) imagine reward. During the imagine visual

motion task, subjects reported imagining the moving dots or other moving patterns,

moving in a vehicle or other things moving around them like baseballs and joggers.

During the imagine hand tapping task, subjects reported using motor imagery includ-

ing tapping, contracting muscles and squeezing motions. During the imagine reward

task, subjects reported imagining monetary rewards, praise, compliments and erotic

imagery.

We also asked them what they were imagining during the conditioning task in each
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type of trial, and whether their strategies changed across the study. The strategies

reported were generally similar to those used during the localizer tasks. During the

HaM-activate condition, 5/12 subjects reported that they used the same imagery

throughout, while 4/12 subjects reported that they had to imagine more intensely or

di�erent kinds of movements during later trials. During the mOFC-activate condition,

7/12 subjects reported having to imagine di�erent scenarios in order to continue

earning rewards while 2/12 just modulated the intensity of a particular scenario (e.g.,

increasing amounts of money), and 2/12 settled on one strategy after trying di�erent

things.

ROI locations

The mean ROI center (± SE) for the hand-motor region in Montreal Neurological

Institute (MNI) space was [-34 ± 0.5, -17 ± 0.5, 62 ± 0.4]. This is similar to our

previous study [-35 ± 1.24, -26 ± 1.9, 65 ± 0.941] [160], and consistent with reports

of localization for hand-motor activity [169] and imagery [170]. The mean ROI center

for the OFC was [0 ± 0.3, 34 ± 0.5, -19 ± 0.3]; previous probabilistic reversal learning

studies have reported similar regions in reward-punishment contrasts, for example [12

36 -18] in [125] and [6 24 -24] in [189]. The mean ROI center for V5/MT was [-45

± 0.4, -69 ± 0.5, 8.5 ± 0.7], consistent with [-38 -74 8] from [192] and [-47 -76 2] in

[191]. ROIs are overlaid on a single subject's anatomical scan in Figure 5.1bcd.

Subject performance on conditioning task

All subjects were able to earn rewards during both tasks. The mean number of rewards

(± SE) per session (out of 6 possible) for the mOFC-activate condition was [3.2 ±

0.4, 3.5 ± 0.3, 2.9 ± 0.3, 2.1 ± 0.3] and for the HaM-activate condition [4 ± 0.5, 4 ±

0.3, 2.7 ± 0.4, 3 ± 0.4]. A repeated measures ANOVA with between-subject factors

of condition (2 levels) and session (4 levels) and their interaction, showed a signi�cant

main e�ect of session (F(1,96) = 5.993, p<0.05), re�ecting a slight decrease in reward

count across sessions, that did not depend on condition. We also constructed a linear
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mixed e�ects model on the trial-by-trial reward threshold, with trial and condition

as factors, and a random subject intercept. This analysis showed a linear increase in

threshold across sessions, independent of condition (β = 1.496 x 10−4, t(608) = 6.39,

p<0.0001). Thus, as the threshold for reward increased, the rate of reward slightly

decreased.

Trial-by-trial %-change in regions of interest

We were interested in whether activity in the regions of interest showed a condition

speci�c increase across sessions (Figure 5.2ab). Post-hoc plots of the di�erential

mOFC-V5 signal, showed a sharp decline in the 4th session. We therefore constructed

a linear model to test for an e�ect of learning across the �rst three sessions. We

found a signi�cant session x condition interaction (β = 0.174; t(442) = 2.9093315,

p<0.05), indicating that the mOFC-V5 signal di�erence increased in a condition-

speci�c manner across the �rst 3 sessions.

We also tested for a condition-speci�c increase in the HaM region (Figure 5.2cd).

Using a similar model, the session x condition interaction does not reach signi�cance

across 3 (p = 0.4) or 4 (p = 0.19) sessions. However if we compare signal levels in the

�rst session with their peak value in the third or fourth session, we �nd that signal

in later sessions is signi�cantly higher (paired t-test, t(12) = -1.8994, p<0.05 one-

tailed). Restricting this analysis to those for which we have good EMG recordings,

we see the same trend (paired t-test, t(6) = -1.798, p = 0.06 one-tailed). Despite some

di�erences in training procedure, this result is highly consistent with the �ndings from

our earlier study [160].

Post-hoc SPM analysis

We performed a post-hoc SPM analysis in order to validate the �ndings from our

ROI-based analysis, and also to test for involvement of brain regions outside the

target ROIs. We tested for regions with relatively stronger activity in each of the two

activate conditions, across all four training sessions.
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Figure 5.2: ROI percent-change averaged within condition in each session and across
subjects. a) Averaged OFC-V5 di�erential signal in OFC and HaM activate condi-
tions. b) Di�erence in OFC-V5 signal between OFC and HaM activate conditions,
averaged over subjects within each session. c) Averaged HaM-V5 di�erential signal
in HaM and OFC activate conditions. d) Di�erence in HaM-V5 signal between HaM
and OFC activate conditions, averaged over subjects within each session
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Table 5.1: Regions activated in OFC > HaM contrast

Regions activated in OFC activate > HaM activate contrast across 4 sessions,
p>0.001.

Region
Contrast:OFC-activate>HaM-activate

voxels Z

Superior frontal gyrus 333 4.81(-12 48 12)
Posterior cingulate 68 3.92(-3 -63 27)
Anterior cingulate cortex 14 3.54( 9 30 -9)
Left superior frontal gyrus 7 3.45(-9 15 60)

For the contrast showing areas more active during the OFC-activate condition

compared to the HAM-activate condition (Figure 5.3a), we �nd activity in anterior

cingulate cortex, orbitofrontal cortex, and extending along the medial frontal gyrus

to the superior frontal gyrus (see Table 5.1). Performing a small volume correction

in an 8 mm sphere around the mean of subjects' ROI centers, we �nd peaks at [-3 30

-12], [-6 36 -15], and [0 27 -21] that survive FDR correction at p<0.05.

For the contrast showing areas more active during the HaM-activate condition

compared to the OFC-activate condition (Figure 5.3b) across the four sessions, we

�nd activity at the mean HaM ROI center at p<0.005. The peak voxel in this area is

at [-27 -12 57]. Small volume correction around the mean ROI center shows activity

at [-30 -15 57] surviving FDR correction in an 8 mm sphere around the mean HaM

ROI center. This contrast also shows activity in bilateral post-central gyrus extending

into inferior parietal lobule at p<0.001 (see Table 5.2).

Face attractiveness

We modeled the e�ect of the mOFC signal on attractiveness ratings in the subset

of rewarded trials (from both conditions) and found that it signi�cantly predicted a

positive attractiveness judgment (β = 0.66, z = 2.255, p<0.05). Adding the HaM

signal or the V5 signal to this model did not signi�cantly improve the �t (HaM: χ2(1)

= 4.281, p = -.5 ;V5: χ2(1) = 1.85, p=-0.17). Modeling the HaM and V5 signals on

their own in separate models also did not result in signi�cant predictors (HaM: z =
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Figure 5.3: Post-hoc SPM analysis. a) Contrast showing regions more active in OFC
activate condition over HaM activate condition across all four sessions, shown at
p<0.005. Crosshairs centered at the mean of subjects OFC ROI centers. b) Contrast
showing regions more active in HaM activate condition over OFC activate condition
across all four sessions, shown at p<0.005. Crosshairs centered at the mean of subjects
HaM ROI centers
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Table 5.2: Regions activated in HaM activate > OFC contrast

Regions activated in HaM activate > OFC activate contrast across 4 sessions,
p>0.001.

Region
Contrast:HaM-activate>OFC-activate

voxels Z

Left inferior frontal gyrus/precentral gyrus 33 4.48(-60 9 33)
Left precentral gyrus 8 3.56(-27 -12 57)

5 3.46(-60 3 12)
Left post-central gyrus/inferior parietal lobule 285 4.42(-60 -24 33)
Left inferior parietal lobule 11 3.61(-45 -48 57)
Right post-central gyrus/inferior parietal lobule 191 4.31(54 -30 39)
Right superior parietal lobule/precuneus 17 3.78(27 -60 51)
Right precentral gyrus 34 3.73(60 12 9)
Right inferior frontal gyrus 37 3.62(39 33 15)

7 3.36(63 6 21)
Middle frontal gyrus 32 3.96(-3 -6 57)

1.14, p = 0.25; V5: z = -0.18, p = 0.86). This analysis suggests that mOFC activity

is the most signi�cant predictor of the propensity to judge a face as above average

attractive for this subset of responses. This means that elevated mOFC activity is

more likely to result in a face being rated as above average attractive than relatively

lower activity levels, and that this in�uence is not shared by the other regions of

interest that we recorded.

Discussion

In this study we have demonstrated that subjects can learn to voluntarily increase

local activity in mOFC. This study represents an important extension of our earlier

work using reward feedback to instrumentally condition neural activity. In order to

validate this technique it was important to train a region that cannot be activated

as easily by endogenously generated overt behaviors. Although we attempted in our

previous study to control for real movements [160], motor cortex could potentially be

activated by small movements not detectable by our MEG sensor, or by movement of

muscles other than the one we monitored. However, the �nding that mOFC can also
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be conditioned by provision of rewards helps to reinforce the validity of this technique.

We have also demonstrated that mOFC activity a�ected subjective ratings of fa-

cial attractiveness. This �nding dovetails nicely with studies showing that mOFC

activity represents an integrated value measure, a�ected by endogenous and exoge-

nous in�uences over and above sensory input [41].

We note that due to the design of this experiment, reward delivery may confound

our estimates of the impact of the regional BOLD signals on attractiveness ratings.

At the time that face judgments were made, subjects were aware whether the trial was

going to be rewarded, and that could cause a more immediate e�ect on neural activity

that we are unable to account for. Also, since the mOFC and HaM signals are stronger

in rewarded trials, this could arti�cially in�ate their impact on the attractiveness

response. That said, since the in�uence of mOFC activity on attractiveness judgments

was more consistent across subjects than the in�uence of HaM, we may infer that

activity in this area plays a stronger role in a�ecting judgments.

It will also be important to test whether this in�uence is related to the role of

mOFC in representing reward value speci�cally, as opposed to any kind of subjec-

tive judgment task. Although it would be impossible to test all possible judgment

tasks, we can compare these results with those from a control group who perform a

nearly identical paradigm, but who are asked to make a subjective evaluation of the

faces that does not depend on di�erential reward value, for example we could ask

subjects whether the faces are above or below average roundness. We predict that

this judgment would not be a�ected by trial-by-trial variation in mOFC signal.

It is impressive that we observed this mOFC-behavior correlation considering the

relatively long acquisition time (TR) for each image (2.88 s) and the inherent lag in

the BOLD response (~2-6 s behind peak of neural activity). In this study, subjects

began to attempt to elevate regional activity upon presentation of the discriminative

cue. The trial ended when recordings of the BOLD signal showed that the threshold

for di�erential signal level had been reached. Unfortunately, due to the lag in the

hemodynamic response, the time at which the face stimulus was presented probably

does not represent the peak in underlying mOFC activity. Although the lag in hemo-
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dynamic response is an unavoidable issue in fMRI studies, it might be interesting to

perform a similar study with a reduced number of slices centered on OFC, e�ectively

sacri�cing brain coverage to gain some temporal precision.

It is notable that the strategies used to continue regulating mOFC and HaM ac-

tivity over the course of 4 conditioning sessions di�ered between brain regions. All

subjects reported using strategies related to motor activity in order to activate the

hand region of motor-cortex. In this condition, variation in strategy was largely a

matter of making imagery more intense or vivid, or thinking about di�erent kinds

of motor tasks. Conversely, subjects used a wider range of strategies for the OFC-

activate task, which included imagining �nancial rewards, praise, erotic imagery, and

food. While this is undoubtedly related to the relative vagueness of the initial in-

struction, it also re�ects the heterogeneous nature of rewards and reward processing

in the mOFC. Several subjects also reported that they frequently had to change strat-

egy in order to continue earning reward. This �nding has important implications for

future implementations of mOFC conditioning: if subjects must continuously change

strategies in order to continue earning reward, can this activity be sustainable in the

longer term? In this study there was of course the confounding e�ect that strategies

that produced reward would also lead to an increase in the reward threshold. In order

to develop a robust procedure for conditioning mOFC activity it will be important

to test whether repeatedly imagining the same rewarding scenario, with and without

reward feedback, generates diminishing levels of mOFC activity.

Potentially related to the issue of repeatedly using the same strategy, in the

mOFC-activate condition we observed an initial period of learning over the �rst 3

sessions, followed by a sharp decrease in di�erential activity in the fourth session. We

did not observe a similar pattern in the HaM-activate condition. There are several

reasons why this might have been the case. The �rst is that subjects are simply tired

by the last session, and that mOFC is more sensitive than HaM to fatigue. Another

possibility is that rewards become less valuable and mOFC habituates more rapidly

to receipt of reward. We did not explicitly ask subjects whether they found one con-

dition more di�cult than the other, however we did observe a trend towards earning
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more rewards in the HaM condition, indicating that subjects likely found the mOFC

condition more di�cult.

In our previous neural conditioning study [160], we used reward feedback to rein-

force performance of the neural response. However, following some initial piloting, we

decided to supplement this with ongoing feedback of di�erential activity. We cannot

quantify the impact that the addition of ongoing feedback (updated at ~3 s lags)

had on subjects' performance. While graphical methods tend to be favored, there

is no published evidence that this is the most e�ective; some groups are attempting

to quantify the utility of di�erent feedback methods [193]. Methods for delivering

feedback have included graphical visual [107, 99, 106, 108], auditory [103], and visual

reward [160]. In general, feedback modality can also be largely dependent on the

goal of training: graphical feedback may be inappropriate if subjects are concurrently

engaged in attention-demanding tasks. It will be important to test that the feedback

we used contributed signi�cantly to learned improvement, and rule out the possibility

that the increase in mOFC activity occurred as an e�ect of repeated practice. This

can be tested, as in our previous study [160], by scanning a group of subjects whose

feedback and rewards are yoked to those from a previous subject.

An intriguing question for future study is whether it is possible to down-regulate

activity in mOFC in order to earn reward. This region is intimately involved in

reward representation and expectation. A functional dissociation between mOFC

activity and reward would have implications for causally linking mOFC activity with

positive reward value. It would also be interesting to test the behavioral impact of

down-regulating OFC. Extrapolating on the present �ndings, we would expect that

down-regulating OFC should make subjects less likely to rate a face as attractive.

In general the technique of using feedback training to regulate local brain activity

combined with testing of behavioral responding has the potential to complement

existing techniques for establishing the causal in�uence of regional brain activity,

such as TMS [91] and lesion studies [194]. Studies similar to the one presented here

could be used to probe the precise functional impact of varying levels of regional

activity. In this study we used a binary response so that subjects could respond
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quickly without excessive cognitive deliberation; however, allowing more variability

in response might show an even stronger correlation.

In this study we have shown that with feedback of regional BOLD activity subjects

can learn to voluntarily increase activity in mOFC, and that elevated mOFC activity

in�uences a subjective judgment. This work has important implications both for

clinical applications of regulating mOFC activity and for our understanding of how

mOFC activity can in�uence subjective judgments.
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Chapter 6

Summary

In recent years functional MRI studies of human reward learning have signi�cantly

advanced our understanding of how the brain represents rewards and learns reward

associations. The studies presented in this thesis build on this work to further char-

acterize the functional contributions of regions such as the orbitofrontal cortex and

ventral striatum, with a focus on understanding how neural activity relates to behav-

ior, speci�cally in terms of valuation and decision-making.

Attractive faces have been shown to be a form of visual reward, suggesting that

they should a�ect behavior and neural activity in a manner similar to other types of

reinforcers. In Chapter 1 we tested this hypothesis and demonstrated that attractive

faces can act as reinforcers in a classical conditioning paradigm. The a�ective pleas-

antness of a set of neutral visual cues increased as a result of repeated pairings with

attractive, compared to unattractive, female faces. We found that reward prediction

errors in the ventral striatum were engaged during learning, as has been found for

other types of reinforcers such as food, pain, and money.

The change in valuation for cues paired with attractive female faces was especially

pronounced in male subjects, while female subjects did not show a similar e�ect in

response to male faces. Interestingly, in male subjects prediction error responses

were strongest for female faces, and prediction error responses in female subjects

were strongest for male faces. This suggests that learning takes place similarly in

the brains of male and female subjects, but is expressed di�erently at the behavioral

level. An avenue for future study would be to employ di�erent behavioral probes to
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investigate if and how female subjects express this learning.

More generally the results of this study are relevant for marketing studies, which

have shown that the presence of an attractive female model in an advertisement can

in�uence customer perception of a product [101, 102]. Our �ndings suggest that

classical conditioning mechanisms may contribute to this e�ect.

Pavlovian cues elicit passive responses but can also exert control over instrumen-

tal responding. In Chapter 2 we presented the �rst investigation into the neural

mechanisms by which Pavlovian cues exert control over human decision-making. We

showed that a Pavlovian cue predictive of a speci�c liquid reward can bias action

choice towards responses associated with the same liquid reward. We found that a

region of ventrolateral putamen was relatively suppressed when subjects made choices

incompatible with the Pavlovian cue. While lesion studies in animals have shown that

regions of ventral striatum are necessary for the expression of Pavlovian-instrumental

transfer e�ects [83], this study is the �rst to show the dynamics of neural activity

involved in outcome-speci�c transfer.

Current theories propose that transfer mechanisms are mediated by stimulus-

outcome and outcome-response associations [79]. Our results �t nicely with this

theory: we interpret our �nding of a relative suppression when an incompatible cue

is chosen as related to the suppression of an outcome-response association stimulated

by the Pavlovian cue.

We note that the regions we found to be involved in outcome-speci�c transfer are

distinct from those found in a recent fMRI study on general transfer e�ects, in which

a Pavlovian cue enhances response vigor rather than in�uencing decision-making per

se [86]; this mirrors the dissociation in neural circuitry found in animal studies of

general and speci�c transfer e�ects [83, 84, 85]. However, it will be important in

future studies to demonstrate both general and speci�c transfer e�ects in the same

paradigm.

Several interesting features of Pavlovian-instrumental paradigms have been iden-

ti�ed in the animal literature, of particular interest is the e�ect of reinforcer devalua-

tion. It has been shown that in certain situations devaluing the reinforcer associated
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with the Pavlovian cue does not suppress the expression of transfer e�ects in animals

[148, 79]. This �nding has clear parallels with addictive behaviors, in which environ-

mental cues trigger drug-seeking, even when the outcome has known aversive e�ects.

Few studies have directly probed the links between transfer e�ects and addictive be-

haviors [150], but this line of research could prove important in understanding the

neurophysiological underpinnings of addiction. One potential avenue for treatment

could involve training subjects to suppress regional activity in order to successfully

avoid making choices associated with environmental cues [100, 160].

A further extension of the work presented in chapters 1 and 2, related to the impact

of attractive faces used in advertising, would be to test whether cues associated with

attractive faces can exert control over instrumental behaviors, as has been shown with

other types of reinforcers [150, 86].

In Chapters 3 and 4 we investigate how provision of reward can in�uence neural

plasticity: we trained human subjects to activate speci�c brain regions in order to

earn reward. We demonstrated that a shaping procedure in which subjects were given

monetary rewards for making improvements on their past performance was successful

in training an increase in di�erential activity across sessions. This technique presents

an alternative to standard bio/neurofeedback approaches and may prove useful in

many clinical and research applications.

In the study described in Chapter 3 we successfully trained subjects to di�eren-

tially activate regions of motor cortex related to hand and foot movements, in absence

of overt movements. We investigated behavioral e�ects of this learning, and showed

that reaction times in a cued response task were di�erentially a�ected by presentation

of the learned cues.

A primary motivation for developing this technique was to condition neural activ-

ity in emotional brain regions, in order to study the causal e�ects of elevated activity

on behavior. In the study described in Chapter 4 we trained subjects to activate me-

dial orbitofrontal cortex (mOFC) activity and probed the impact of this training on

an a�ective judgment task. We demonstrated that subjects can improve at elevating

mOFC activity on cue, and that elevated activity was associated with a positive bias
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in a�ective evaluations. This study represents a signi�cant advance in our under-

standing of how mOFC activity a�ects our perception of value, as previous imaging

studies have been unable to establish this causal link.

Taken together, these studies advance our understanding of the functional con-

tributions of ventral striatum and orbitofrontal cortex in in�uencing decision-making

and valuation, and suggest that applying associative learning techniques to real-time

fMRI training can be a powerful method for characterizing the causal in�uence of

regional neural activity.
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Appendix A

Real-time fMRI

General principles

In typical fMRI studies, 3D images are collected at a rate of every 1-2 s for the

duration of the scan. Each image consists of ~216 voxel elements (equivalent to a 3D

pixel), and it is not uncommon to collect hundreds of such images. As the images are

acquired on the scanner, they are reconstructed (transformed from k-space, in which

they are acquired, into physical space), and stored in a database. At some later

point, the images are downloaded, pre-processed, and analyzed by the experimenter.

Pre-processing and analysis can take several hours to perform on a large data set.

The earliest fMRI studies were run in blocked designs, due to limitations on scan-

ner technology and to improve signal-to-noise. However, practically since the advent

of technologies for rapid event-related imaging, researchers began describing tech-

niques for analyzing fMRI data in real-time [164]. The term `real-time fMRI' (rt-

fMRI) typically describes processing that keeps pace with image acquisition. Lags

between image acquisitions are on the order of 1-3 s, therefore with modern computers

this is certainly feasible.

Typical processing steps in an rt-fMRI study are listed below, and are in fact quite

similar to those employed in ordinary o�ine fMRI analysis.

1. Image acquisition and reconstruction

2. Pre-processing: may include
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Figure A.1: Conventional fMRI experimental setup
This diagram illustrates the setup of a typical fMRI experiment. Images collected
during the scan are stored in a database and downloaded at a later time.

(a) online motion correction

(b) temporal �ltering for high frequency noise or slow drift

(c) spatial smoothing

(d) normalization to template

3. Analysis

Typically signals are extracted from one or several regions of interest and statis-

tical analysis may be performed, e.g., comparing task to rest blocks or comparing

target region of interest to background region of interest

Technical implementation

The technical setup employed for conventional fMRI studies at the Caltech Brain

Imaging Center is illustrated in Figure A.1; the fMRI scanner is a 3T Siemens TRIO

(Siemens, Erlangen, Germany). As subjects lie in the scanner, stimuli are presented

to them visually or auditorily, controlled by a dedicated stimulus computer located

in the control room. During the experiment, images are acquired, reconstructed, and

stored in a database for o�ine analysis.
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Figure A.2: Real-time fMRI experimental setup
This diagram illustrates the setup of a real-time fMRI experiment. Images are
transferred to an external workstation for online analysis. Feedback derived from
the analysis can be presented to the subject in the scanner.

In order to implement real-time image processing, we inserted an extra node into

the network (Figure A.2): an external Intel Xeon workstation (3.8 MHz 64-bit proces-

sor running Redhat Linux). As soon as images are reconstructed, they are transferred

in real-time via TCP/IP socket to this dedicated rt-fMRI processor. This is accom-

plished with a modi�ed pulse sequence program running on the scanner, in which a

command to open a TCP/IP socket and transfer the newly reconstructed images was

inserted into the regular processing stream.

Online analysis of fMRI images

On the external computer, data processing was performed using MATLAB 7.0 (The

Mathworks Inc., Natick, MA). Images were motion corrected [167], and a linear de-

trend was applied to correct for low-frequency scanner drift. Online analysis consisted

of applying a mask over each of the regions of interest and averaging the signal over

the region. Temporal averaging was then performed over the baseline and active

blocks, and a %-change from baseline to active computed. Information derived from

this signal could then be used as feedback to the subjects in the scanner. The rt-fMRI

computer communicates with the stimulus PC via Samba (http://us1.samba.org/
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samba/).

Applications

In the studies described in this thesis, and several others [106, 99, 107, 105, 104, 98,

103, 96, 100, 108], rt-fMRI was applied to deliver feedback of neural responses to

subjects as a training signal. Other potential applications of rt-fMRI include surgical

applications [195] and online monitoring of experiments for desired e�ects and quality

assurance.


