Model Reduction and Minimality for Uncertain
Systems

Thesis by
Carolyn L. Beck

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

1697
Submitted January 12, 1996



ii

©1997
Carolyn L. Beck
All rights reserved



1ii

To My Parents



iv



Acknowledgements

I am deeply grateful to my advisor, Professor John C. Doyle, for providing me with his
perspective and his insight during the course of this research. He has always encouraged
me to push myself further, and faster, and has done so with humor and warmth.

It has been a pleasure to interact with the other members of the Caltech EE Controls
Group during the past six years, all of whom have contributed to creating an environment
which has been both challenging and enjoyable. In particular, I thank Matt Newlin for
many helpful and interesting discussions, and Pascale Bendotti for both providing the
power plant applications for my research and for collaborating on the implementation.

I was fortunate to have spent Michaelmas term of 1992 at Cambridge University with the
CUED group: my sincere thanks to Professor Keith Glover for this opportunity. My thanks
also to my committee, Professors Richard Murray, Jerrold Marsden and Yaser Abu-Mostafa
of Caltech, and Professor Roy Smith of UC Santa Barbara, who also gave me invaluable
encouragement early on during my graduate work at Caltech.

Throughout my term at Caltech I have been very fortunate to have had the support of
family and friends. I thank my parents and my siblings for always having provided a caring
and supportive atmosphere "at home", and for helping me keep it all in perspective. I also
thank Laura, Sean, Kelli, Carolyn, Colleen, Michael, Jaimee and Adam for all the fun and for
letting me be the true monster that I am. [ am extremely grateful to my friends Carey and
Becky for being there, and for sharing long runs, coffee breaks and movies. Additionally,
my thanks to the members of the Caltech Cross Country and Track teams of the past 6
years, especially to Coach Jim O’Brien for making the track a wonderful escape for me from
the office, and for also being a true friend.

Finally, an acknowledgement of my deepest gratitude to Geir, not only for his encour-
agement and advice during the past few years of this work, but more importantly for his
companionship and unconditional support. HS.



vi



vii

Abstract

The emphasis of this thesis is on the development of systematic methods for reducing
the size and complexity of uncertain system models. Given a model for a large complex
system, the objective of these methods is to find a simplified model which accurately
describes the physical system, thus facilitating subsequent control design and analysis.

Model reduction methods and realization theory are presented for uncertain systems
represented by Linear Fractional Transformations (LFTs) on a block diagonal uncertainty
structure. A complete generalization of balanced realizations, balanced Gramians and bal-
anced truncation model reduction with guaranteed error bounds is given, which is based
on computing solutions to a pair of Linear Matrix Inequalities (LMIs). A necessary and
sufficient condition for exact reducibility of uncertain systems, the converse of minimal-
ity, is also presented. This condition further generalizes the role of controllability and
observability Gramians, and is expressed in terms of singular solutions to the same LMIs.
These reduction methods provide a systematic means for both uncertainty simplification
and state order reduction in the case of uncertain systems, but also may be interpreted as
state order reduction for multi-dimensional systems.

LFTs also provide a convenient way of obtaining realizations for systems described by
rational functions of several noncommuting indeterminates. Such functions arise natu-
rally in robust control when studying systems with structured uncertainty, but also may
be viewed as a particular type of description for a formal power series. This thesis estab-
lishes connections between minimal LFT realizations and minimal linear representations
of formal power series, which have been studied extensively in a variety of disciplines,
including nonlinear system realization theory. The result is a fairly complete development
of minimal realization theory for LFT systems.

General LMI problems and solutions are discussed with the aim of providing sufficient
background and references for the construction of computational procedures to reduce
uncertain systems. A simple algorithm for computing balanced reduced models of uncer-
tain systems is presented, followed by a discussion of the application of this procedure to
a pressurized water reactor for a nuclear power plant.
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Notation and Symbols

S belongs to

C subset

U set union

M set intersection

X Cartesian product

) null set

° composition of operators

- tends to, maps to

- maps to

> (=) greater (or equal) value, or more positive (semi) definite
< (=) lesser (or equal) value, or more negative (semi) definite
Z,7% integers, non-negative integers

R, R* real numbers, non-negative real numbers

C complex numbers

Rrtxm Cnxm ring of n X m real and complex matrices

| x| absolute value of x € C

[V FEuclidean norm of v € C"

vl normofv eV

<U,V > inner product of u,v €V

I, n X n identity matrix

G (A) maximum singular value of the matrix A
Amin(A), A;(A) minimum eigenvalue, itheigenvalue of A

A* complex conjugate transpose or adjoint of A
7 square summable sequences mapping Z* to C" or R
L(V) bounded linear operators on V

A delay operator on [

spec(T) spectrum of the operator T

ImT Image of T

Ker T Kernel of T

NTl,—1, I, induced norm of T

G lloo H norm of the system operator G

Ha(M) structured singular value of an operator M

diaglo, ..., 0] n x n diagonal operator with elements «;,...,
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Acronyms

FPS Formal Power Series

LFT Linear Fractional Transformation

LMI Linear Matrix Inequality

LPV Linear Parameter Varying

LTI Linear Time Invariant

LTV Linear Time Varying

1/0 Input/Output

SISO Single-Input Single-Output
MIMO Multi-Input Multi-Output

SIMO Single-Input Multi-Output

MR Minimal Rank
BTMR Balanced Truncation Model Reduction
PWR Pressurized Water Reactor

RS Robust Stability
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Chapter 1

Introduction

Model based control methods are commonly used in the design of large, complex sys-
tems. Specifically, a mathematical model of the system is constructed, utilizing, for ex-
ample, first principles analysis and experimental data, which is then used for subsequent
control system design and analysis. For the purposes of feedback control highly accurate
models are desired. However, such accuracy often requires that complicated high-order
models be used, which in turn lead to more difficult control design problems from hoth
an engineering and a computational perspective. The emphasis of this thesis is on the de-
velopment of methods for reducing the size and complexity of the model while retaining
the essential features of the system description. The main goal of these methods is to find
a simplified system model which describes the physical system accurately enough so that
controllers designed based on this simplified model perform well when implemented on
the real system. Directly related to the topic of model reduction are the realization theory
concepts of minimality and its converse reducibility, which are also addressed in detail in
this thesis.

A fundamental limitation in achieving desired system performance via any control de-
sign process is the inherent uncertainty in modelling the dynamics of the system under
consideration. This uncertainty arises during the modelling process, which requires mak-
ing a number of assumptions, estimations and simplifications; for example, uncertainty
is often attributed to unmodelled dynamics such as nonlinearities and disturbances, and
to incomplete knowledge of exact values for many of the system parameters. The effects
of model uncertainty in feedback control may be substantial, particularly for high perfor-
mance systems, since many control strategies attempt to utilize all system information
present in the model in order to meet demanding performance requirements. If the un-
certainty in a system model is not adequately accounted for, the control strategy chosen
may rely on exploiting system dynamics which are not actually present. On the other
hand, overestimating uncertainty in the system model may result in designs which are too
conservative, giving poor system performance.

One approach for reconciling these requirements is to design controllers that perform



well on a set of models, rather than on a single model. The model set is defined using a
nominal model which is considered to be perturbed by a prescribed uncertainty set; that is,
the model itself explicitly includes an uncertainty description. By appropriately defining
and structuring the uncertainty set, a model set is constructed which covers a range of
possible system behavior, without allowing for too many unlikely or impossible models.
These models and the systems they represent are referred to as uncertain systems.

There has been much research activity on model reduction methods in recent years,
however, previous reduction methods have addressed only reduction of the state dimen-
sion of the model (that is, the nominal model) and fail to address the issue of reducing
the uncertainty description. In notable contrast to such methods, this thesis presents a
systematic model reduction method to reduce both the state dimension and the uncer-
tainty description, providing a greater reduction in the overall size and complexity of the
model. Furthermore, related realization theory for uncertain systems, including an explicit
method to determine the existence of, and compute, minimal order equivalent realizations
for uncertain system models is addressed. Both the model reduction methods and the
realization theory developed in this research are applicable to multi-dimensional system
realizations, and include the standard one-dimensional (1D) results as the simplest case.

1.1 Historical Overview

The development of earlier theory relevant to this research proceeded along two some-
what separate paths: one related to the robustness framework originally proposed by
Zames in 1966 [73], and the other to the state-space realization theory developed mainly in
the ‘60s by Gilbert [31], Zadeh and Desoer [72], Kalman [42], Rosenbrock [60] and others.
The intention of this section is not to give a comprehensive review of these areas, but to
note key ideas and results leading to the research described in this text.

In [73], Zames introduced the small gain theorem, which provides an exact robust sta-
bility test for systems perturbed by unstructured dynamic uncertainty. This test is said to
be robustin that it holds when the nominal model is subjected to all allowable values of the
uncertainty. These exact results for unstructured uncertainty give sufficient conditions for
robust stability of systems with respect to structured uncertainty. However, for structured
uncertainty, these results are often conservative. As a result, the notion of rearranging the
uncertainty into block diagonal form and using structured scaling matrices to reduce con-
servativeness in the tests was suggested in the early ‘80s by Doyle [20], and Safonov [62].
We consider the framework developed by Doyle and coworkers for modelling systems with
structured uncertainty, that of dynamic perturbations to a nominal system which enter in
a linear fractional manner; see [21], [26], [55], [71] and the references therein for further
details.



More recently, synthesis methods have been developed which provide systematic tech-
niques to construct controllers for systems subject to structured uncertainty, and for which
robust stability and performance are guaranteed (see for example [34], [71], [54]). These
controllers have at least the same state dimensions and uncertainty set complexity as the
original system model. Moreover, the synthesis of these controllers and the subsequent
system analysis often rely on complicated computational solutions which become increas-
ingly difficult to implement as the model size and complexity grows. Thus, the need for
reducing both the nominal model and uncertainty description has become apparent.

A number of methods for reducing the state dimension of models were proposed in
the ‘80s; examples include the balanced truncation model reduction method and its addi-
tive H, norm error bound, and the optimal Hankel norm model reduction method and its
Hankel norm error bound. These are state-space methods, and rely to a large extent on the
notion of finding balanced realizations for systems. The use of balanced realizations was
first proposed by Moore [51] as a means of better analyzing realizations for reducibility
based on the comparative controllability and observability of the system states. This was
intended as a more computable alternative to the problem of finding minimal state-space
realizations, originally put forth by Kalman [42] and Gilbert [31]. Thus, from its inception,
the notion of balanced model reduction has been intertwined with the notions of mini-
mality, controllability and observability, and solutions to state-space Lyapunov equations.
Specifically, when the controllability and observability Gramians, the solutions to the Lya-
punov equations, are equivalent and diagonal the associated state-space model is said to be
balanced. The states corresponding to the small-valued elements of the balanced Gramian
are both weakly controllable and weakly observable and can be truncated with relatively
little resulting error. The guaranteed a priori error bounds for the balanced model reduc-
tion method were found independently by Enns [24] and Glover [33]; the corresponding
bounds for discrete-time systems were presented by Hinrichsen and Pritchard [36].

The work in this thesis builds on the balanced truncation method for 1D systems, gener-
alizing these techniques and related realization theory to the linear fractional transforma-
tion (LFT) setting. The LFT models and results discussed herein are applicable to uncertain
systems, multi-dimensional systems, or formal power series; we will focus mainly on the
representation of uncertain systems in this setting but will include some discussion of and
results for the latter two. The main results in this thesis include a necessary and sufficient
condition for the exact reducibility of LFT systems, leading naturally to a notion of minimal-
ity for these systems. Furthermore, systematic model reduction methods with guaranteed
a priori upper error bounds are given for uncertain and multi-dimensional systems models.
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1.2 Outline of the Thesis

Chapter 2: Mathematical Preliminaries

In Chapter 2, basic definitions and facts from linear analysis and abstract algebra that
are used in the main text and appendices are stated. In Section 2.1, a general discussion
of normed spaces is given to provide background on the structure of the signal space with
which we are mainly concerned; bounded linear operators acting on such spaces are also
discussed. Topics of discussion include induced norms, convergence of sequences and
operators, and operator spectra. Section 2.2 contains definitions for the basic algebraic
structures of groups, rings and modules, along with one useful result on module homo-
morphisms; this latter section provides reference material for the formal power series
discussions in Chapter 6. Relevant matrix identities and factorizations are presented in
Section 2.3.

Chapter 3: Standard State-Space Realization Theory

Chapter 3 contains an overview of standard realization theory for one-dimensional (1D)
systems. The emphasis of this thesis is on the reducibilty of models, which naturally leads
to consideration of the concepts of minimality, controllability and observability, system
Lyapunov equations and the use of similarity transformations. Before presenting our re-
sults on the reducibility of uncertain system models, we review these definitions and results
from standard state-space realization theory in order to more readily note analogues and
differences.

Chapter 4: Realization Theory for Uncertain Systems

One of the main results of this thesis, a necessary and sufficient condition for the re-
ducibility of uncertain systems, is presented in Chapter 4. Prior to stating and proving this
result, we introduce the paradigm we use for modelling uncertain systems: the Linear Frac-
tional Transformation (LFT) framework. The main objects in these models are a constant
realization matrix and a structured uncertainty set, with the focus being on uncertainty
sets that have repeated scalar structures. We define a restricted class of similarity transfor-
mations for these LFT realizations, and then generalize the notions of stability, Lyapunov
equations, Gramians, and balanced realizations. The necessary and sufficient reducibility
condition is then stated and proved, and minimality is discussed. Comments on related
realization theory topics such as controllability and observability are then given.



Chapter 5: Model Reduction of Uncertain Systems

We review the balanced truncation model reduction method and related error bounds in
Chapter 5, first presenting the standard results for 1D systems, followed by the extension
of these methods to uncertain systems. New model reduction error bounds for uncertain
systems that are tighter than the original balanced truncation bounds are then presented.
In order to quantitatively evaluate these model reduction error bounds, we start by defining
an induced 2-norm for uncertain systems modelled by LFTs.

Chapter 6: LFTs and Formal Power Series

In Chapter 6 we discuss connections between the notion of minimality we present for
LFTs in Chapter 4, and the notion of minimal representations for formal power series (FPS),
developed mainly in the ‘70s in the context of nonlinear system realization theory. If we
consider LFT realizations where the only structure we assume for the uncertainty set is
the spatial structure of repeated scalar blocks, then the resulting LFT systems may also
be viewed as a representation of rational functions in multiple noncommuting indetermi-
nates, that is, as a particular realization of a FPS. The form of the FPS representations and
the definition of minimality used differ from those used for the LFT representations we
consider; we show that given a minimal FPS representation or a minimal LFT realization,
the other (minimal) form can be directly computed.

Chapter 7: Computational Methods for Model Reduction and Applications

In Chapters 4 and 5 we present the solution to the model reduction problem in the
form of two linear matrix inequalities (LMIs). In this chapter, we discuss general LMI prob-
lems and solutions, providing background and references on standard convex optimization
methods and interior point methods which can be used for constructing algorithms to re-
duce uncertain systems. We then present one simple suboptimal procedure for solving the
Lyapunov inequalities we consider, followed by a discussion of a "proof of concept" ap-
plication to a pressurized water reactor for a nuclear power plant. The pressurized water
reactor of this plant is described, controller designs based on full and reduced models of
the reactor are discussed, and performance comparisons are given.






Chapter 2

Mathematical Preliminaries

In this chapter, we present definitions and facts from linear analysis and abstract alge-
bra to be used as a reference in this thesis.

2.1 Normed Spaces and Bounded Linear Operators

We first define the basic underlying structure for the system spaces we consider in this
thesis. A very brief presentation is made here; for more details see [9].

Let 'V be a vector space over R (or €). A norm is a mapping from V into R*, denoted
by |- || and satisfying

i) x|l = 0if and only if x = O;
(i) ax| = || |lx]|| for all x € V and scalar «;
(i) [lx + |l < Ixll+ >l

The pair (V, ||-1]) is referred to as a normed space.
An inner product is a mapping from V x V into C, denoted by (-, -}, and such that for
all x,y,z € V and scalars « and f the following are satisfied:

() (x,x) = 0, with equality if and only if x = 0;
(i) (ox + By, z) = afx, z) + (Y, 2);

An inner product space is defined by the pair (V,{(-,-)). The inner product {-,-) on V
satisfies the Cauchy-Schwartz inequality:

{x, v 12 < (6, x) (v, »).

. ' 1

Note that an inner product on a vector space V defines a normon V, ||x|| = (x, x)?2.
The systems we will consider in this thesis have their inputs and outputs in the space
of all square summable sequences, I, that is, the space consisting of all sequences x =
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(x(1),x(2),...) mapping Z* to R™ such that

IS

x> = (Z |x(k>|§> < 0o,
k=1

where | - |, denotes the Euclidean norm; note that this normed space is also an inner
product space.

A sequence {x (k)}{ is said to converge to x, in a normed space 'V, if || x (k) — x|| — O as
k — oo, If |Ix (k) — x(I)|| = 0as k — o and | — « independently, then {x(k)}{* is a Cauchy
sequence. A normed space V is complete if every Cauchy sequence is convergent to an
element of V. A complete normed space is called a Banach Space; a complete inner product
space is called a Hilbert space. The space [, defined above, is the canonical example of a
Hilbert space.

A subset ' W C V is closed if every convergent sequence in ‘W converges to an element
of W, and is bounded if there is a constant K > 0 such that ||w| < K for every w € W. Let
‘W c €, then the Bolzano-Weierstrass theorem states that the following are equivalent
(see [48] for details) :

(i) W is closed and bounded.
(ii) Every sequence in ‘W has a subsequence which converges to an element of W.

Let 'V and W be normed spaces over the same field. A linear operator from V to W
isamap T:V — W such that

T(oxxy + Bx2) = «T(x1) + BT(x?2),

for all x;,x» € V and scalars « and 8. Furthermore, T : V — W is a bounded linear
operator if

| Tx||
IThy-w = sup EXw
xeV,x#0 [EIRY%

where [|T||v_w denotes the induced norm of T, and ||-|ly, ||-[w denote the respective
norms of the spaces V and 'W. The space of all such bounded linear operators is denoted
by £{V,"W); when V and ‘W are the same, this space is denoted by £(V). A sequence
Tk € £V, W) is said to converge to T in the induced norm topology if | Tx — Tlly_w — 0
as k — oo,

The image of an operator T is Im T = {Tx : x € V}, and the kernel of T is Ker
T = {x:Tx = 0}. T is avector space isomorphism if and only if Ker T = {0} and Im
T="W.

Let "V be a Banach Space. An operator T € £(V) is invertible, or nonsingular, if there
exists an element T~! € £(V) such that TT~! = T-!T = I. The spectrum of T is defined
as the set

)

spec(T) := {A € C: (AI - T) is not invertible in £(V)}.



Lemma 2.1 The spectrum spec(T) is a closed subset of the disc {A € C: |A| < ||T||}.

Details for Lemma 2.1 can be found in [9] (Chapter 12, Corollary 4).

2.2 Algebraic Concepts

In this section we state a few basic definitions from abstract algebra. This section should
be used for reference while reading Chapter 6, namely for the discussions on formal power
series, and the associated technical results in Appendix D. We present only those facts from
the theory of groups, rings and modules to which we will refer specifically in the sequel;
the reader is referred to [37] for more details.

Groups

A binary operation on a nonempty set G is a function G x G — G, which we will denote
by the product notation, that is (a, b) — ab.

Definition 2.2 A semigroup is a nonempty set G together with a binary operation
on G which is

(1) associative: a(bc) = (ab)c foralla,b,c € G;
a monoid is a semigroup G which contains an

(i1) identity element e € G such that ae = ea = a forall a € G;
a group is a monoid G such that

(iii) for every a € G there exists an inverse element

a™l € Gsuchthata™'a =aa™! =e.

A semigroup G is said to be abelian or commutative if its binary operation is

(iv) commutative: ab = ba forall a,b € G.

Our main interest will be in monoids.

Rings
Definition 2.3 A ring is a nonempty set R together with two binary operations, de-
noted by addition (+) and multiplication such that:
(i) (R, +) is an abelian group with identity element O;
(ii) (ab)c = a(bc) foralla,b,c € R;

(ii)a(b+c) =ab +ac and (a + b)c = ac + bc.
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(iv) If in addition, ab = ba for alla,b € R, then R is said to be a commutative ring.

(v) Furthermore, if R contains an element 1g such that lga = alg = a foralla € R,
then R is said to be a ring with identity.

A semiring is a ring without subtraction, that is, a ring with no additive inverse. For
example, the set of subsets of a monoid is equipped with the structure of a semiring, with
addition being defined as the union of subsets. Rings and fields (detined below) are also
semirings.

Definition 2.4 An element c in aring R with identity is said to be a unit if there exists
d € R such that dc = cd = 1g. A ring D with identity 1p in which every nonzero
element is a unit is called a division ring. A field is a commutative division ring.

Obvious examples of fields include the real and complex numbers, R and C.

Definition 2.5 Let R be a ring, and S a nonempty subset of R that is closed under
addition and multiplication in R. If Sg is itself a ving under these operations then Sg
is called a subring of R.

Modules and Homomorphisms

Modules over a ring are a generalization of abelian groups, which are actually modules
over 7.

Definition 2.6 Let R be a ring. A (right) R-module is an additive abelian group A
together with a function A x R — A, (a,v) — ar, such that for all v,s € R and
a,beA:

(i) (a+b)r = ar + br.

(ii) a(r + 5) = ar + as.

(iii) {(ar)s = a(r¥s).

(iv) If R has an identity element 1gx and alg = a for all a € A, then A is said to be

a (right) unitary R-module.

If R is a division ring, then a (right) unitary R-module is called a (left) vector space.

Obvious analogous definitions can be made for left R-modules via a function A x R — A.

If R is a commutative ring, then every left R-module A can be given the structure of
a right R-module by defining ar = ra for » € R and a € A. Thus, every module over a
commutative ring can be assumed to be both a left and a right module, without loss of
generality.
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Definition 2.7 Let A and B be modules over a ving R. A function f : A — Bis a
(right) R-module homomorphism if for alla,c € A andv € R

fla+c)=fla)+ f(c) and flar)= f(a)r.

fis an R-module isomorphism (respectively epimorphism, monomorphism) if it is
bijective (respectively surjective, injective).

We also note the following result; see [37] for details (Chapter IV, Theorem 1.7).

Theorem 2.8 IfR isaring and f : A — B is an R-module homomorphism, then there
exists a unique R-module homomorphism g : A/Kerf — B such that g(a + Ker f) =
gla) foralla € A,Img = Im f and Ker g = &. g is an R-module isomorphism if and
only if f is an R-module epimorphism. In particular, A/Ker f is isomorphic to Im f.

Pictorially, this result can be represented by the commutative diagram shown in Figure 2.1.

f
A = B

A/Ker

Figure 2.1: R-module Isomorphisms

2.3 Matrix Identities and Factorizations

We use the following matrix inverse formulas and decompositions throughout the the-
sis.

The Matrix Inversion Formula

In the following, assume A and C are nonsingular n x n and m x m matrices, respec-
tively, then

(A+BCD) ' =A1 - A-1BDA 1B+ C 1)"1pA-!,
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Schur Complement Inverse Formula

Assume U is nonsingular, and I' = X — WU~V is nonsingular. Then

-1
U v v-lyu-lvr-lwu-l —y-lyr-!
W X B -r-'wu-! r-! '

I' is known as the Schur complement of U.

Singular Value Decomposition

Given a matrix A € C"*"™ with rank(A) = v < min{n,m}, then we can factor A as
follows:
A=UxV
2 0
0
2y = diagloi,...,07]. The o3 € R*, typically ordered by descending value, are called

where U € C", U*U = I,V € ("M VV* = [ and S = € R™M with

the singular values of A, and are equivalent to the square root of the eigenvalues of AA*.
The maximum singular value is denoted by & (A), and is also the induced 2-norm of A.

Cholesky Factorization

Any matrix A = 0 may be written in the form
A=LL*

where L is a lower triangular matrix with non-negative diagonal entries.
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Chapter 3

Standard State-Space Realization Theory

In order to facilitate the discussion of realization theory and reducibility of uncertain
systems, we begin with a brief review of standard realization theory, that is, realization the-
ory for one-dimensional (1D) systems for which uncertainty descriptions are not included
in the models. We state a number of results, which are now considered standard, without
proof. More complete details may be found in many texts on the subject, see for example
[41]; a geometric perspective for the concepts discussed in this chapter is given in [70].

We consider finite dimensional, linear time-invariant discrete time systems described
by state-space equations of the form

x(k) = AAx (k) + Bu(k) 3.1)
v(k) = CAx (k) + Du(k),
where A is the delay operator, x (k) € R" represents the state at time k, and u and vy
represent the input and output sequences, respectively; at any time k, u(k) € R™ and
y(k) e R, Ae R™" B e R"M C e R7" and D € RYX™ are the realization matrices.
Throughout this thesis we will denote this realization by

M:Z[gg]

For the 1D case, we denote the system operator by G := Al * M = D + CA(I — AA)~1B: that
is, G is the map that takes the input signal u to the output signal y := Gu.

Remark 3.1 We assume throughout this thesis that the realization matrices are real
matrices as this is commonly true; however, the results we present also hold for com-
plex valued realization matrices.
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3.1 Equivalent Realizations and Similarity Transformations

Given a realization M, one may obtain an equivalent realization by applying a similarity
transformation. Specifically, we say two realizations,

Ay B A> B
M = ! ! and M, = 2 72 ,
Ci D C> D>

are equivalent if G; = G». Given a realization M}, we can form another equivalent realiza-
tion by a coordinate transformation of the state variables. For example, suppose T € C"*",
nonsingular, and
X(k) = Tx(k), (3.2)
then
X(k) = TA\ T 'AR (k) + TBiu(k)
and y(k) = C;T AR (k) + Du(k).

Denoting Ay = TA1T™!, B = TBy, and C> = C; T}, it is straightforward to verify that
G = Go.
Two matrices related as A, = TA,T~! are said to be similar, thus state variable trans-

(3.3)

formations like that given in (3.2) and (3.3) are commonly referred to as similarity trans-
formations. By applying a properly chosen similarity transformation to a given state-space
realization, we are often able to find an equivalent realization with a more desirable struc-
ture, for example a balanced realization; this is discussed in Section 3.4.

3.2 Controllability, Observability and Minimality

The notions of controllability and observability of a state-space realization are central in
standard realization theory. Of particular interest is the fact that easily implemented tests
for controllability and observability can be used directly to determine if a given system
realization is minimal. One of the underlying results used in standard realization theory
is the Cayley-Hamilton theorem, which states that every square matrix A satisfies it’s own
characteristic equation a(A). That is, if A € R™*" has characteristic polynomial a(A) =
A"+ a A"y o ra, 1A+ ap, then a(A) = 0. In other words, A" can always be written
as a linear combination of the lower order matrix terms A"~ !,... A, I

Briefly, a state X is reachable if there exists a finite time k, and a sequence of inputs
u(0),u(1),...,u(k) such that the initial state x (0) can be transferred to X at time k, that s,
x (k) = x. Let Rq denote the set of all states that are reachable from x (0) = 0. Then Rg is a
linear subspace of R", and using the state-space equations of (3.1) and the Cayley-Hamilton
theorem, we see that R can be written in terms of the realization matrices as

Ro=ImB + A(ImB) +--- + A" (Im B).
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A realization M is said to be controllable if Ry = R™, that is, if the initial state can be
transferred to any fixed X € R™ via a finite input sequence. Defining the controllability
matrix T by

I =[BAB A’B--- A" !B] (3.4)

leads to the following resuit.
Theorem 3.2 A realization M is controllable if and only if rank(I') = n.

Similarly, a realization M is observable if, given an output sequence y (0),..., y(k), the
initial state x (0) can be uniquely determined, under the assumption u = 0. Again, we can
use the state-space equations of (3.1) to see that a realization is observable if

Ny = ﬁ Ker (CA"‘1> = 0.

k=1
Ny is referred to as the unobservable subspace. Defining the observability matrix O by
C
CA
O = _ (3.5)
CAn—l

gives the following dual result to Theorem 3.2.
Theorem 3.3 A realization M is observable if and only if rank(©®) = n.

Clearly, similarity transformations do not affect controllability and observability.

One of the important applications, theoretically, of the tests available for controllabil-
ity and observability is as an explicit test for minimality, the definition of which is fairly
obvious, but is given for completeness in the following:

Definition 3.4 A realization M of the system defined by G is minimal if there is no
equivalent realization for G,
Ay B
M, = 1 B ’
C1 D

If a realization is minimal, it is also irreducible, that is we cannot reduce the size of
the realization matrix M without incurring error. The following result, first established by
Kalman [42], is used to provide for a direct test of minimality.

such that dim(A71) < dim(A).

Theorem 3.5 A realization M is minimal if and only if it is both controllable and
observable.

Furthermore, an important fact is that all minimal realizations for a given transfer function
are related by similarity transformation.
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Duality

Note that the controllability and observability matrices are duals in the sense that con-
trollability (observability) of the realization M is equivalent to observability (controllability)

of the realization
T T
T [ AT ¢ }
BT DT |’

The realizations M and MT are referred to as dual realizations.

Decomposition Structures for Realizations

Given arealization M that is not minimal, we can always find a similarity transformation
T to produce the following decomposition of the realization matrices [42], [31]:

A\CO O A\13 O BCO

-1 ﬁ /@ ,2\ fl,/ B
[T o T 0 TAT-! TB 2L S F23 A2d ] Te
M= M - -1 0o o A, 00 [, @36

0 I 0 I cT ! 0 N ~
0 0 A4z Aga | O

| Co 0 G 0 |0

where we have assumed D = 0 for simplicity of exposition. The subsystem defined by
,@co, I?Co, and @co is both controllable and observable, and G, = G, that is, the system
operator is determined solely by the controllable and observable subsystem; alternatively,
the subsystem defined by
Ay | 0
Mes =
o= | Aefe ]

is neither controllable nor observable. The subsystem defined by

Ao O Beo .
Az = -~ ~ , Beo = N and Co5 = | Ceo O
COo [ A21 AC :I CcO [ B Co [ co ]

c

is controllable, but not observable; and similarly, that by

o A\co 213 Eco Y P
Ago = { 0 A\o ], Bzo = l: 0 and Cg, = [Cco Co]

is observable, but not controllable. One approach for obtaining a similarity transformation

that takes a given realization to one with the decomposition structure of (3.6) is discussed
in Section 3.4.
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3.3 Lyapunov Equations

Fundamental to our interests regarding realization theory and model reduction is the
concept of system Lyapunov equations and their relation to stability, and to controllability
and observability.

Stability

With regard to standard linear time-invariant (LTI) systems described by state-space
realizations, there are two definitions commonly used for stability, internal and external
stability. Informally, a system is said to be externally stable if a bounded input sequence
u results in a bounded output y; this is also often referred to as input/output stability.
Internal stability, also called asymptotic stability, refers to stability of the realization itself;
as a result, we are more concerned with internal stability in this work. Additionally, if a
system is internally stable it is also externally stable. We will refer to internal stability
simply as stability in the sequel.

A realization M is said to be stable if the solution of

x(k) = AAx(k), x(0) = xg

tends to zero as k — oo, for any xp. A well-known test for stability of a discrete-time LTI
system realization, is
1Ai(A)] <1

for every i = 1,...,n, where {A;(A)} are the eigenvalues of A. An equivalent stability
condition, based on a general method developed by Lyapunov in the 1890’s for the study
of both linear and nonlinear system stability, is given in the following.

Theorem 3.6 (Lyapunov) A realization M is stable, if and only if for any matrix
Q > 0, there exists a matrix Y > 0 satisfying

A*YA-Y+Q =0.

The matrix equation given in Theorem 3.6 is one example of a Lyapunov equation.

Controllability and Observability Gramians

Given a stable realization M, two important Lyapunov equations in systems theory are
the Lyapunov controllability equation,

AYA* =Y + BB* =0, (3.7)
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and the Lyapunov observability equation,
A*XA-X+C*C=0. (3.8)

It is important to note that the unique solutions Y > 0 and X > 0 to equations (3.7) and
(3.8) are equivalently defined as the Gramians

Y = > AFBB*(A*)¥ and X = ) (A")kC*cak. (3.9)
k=0 k=0
The infinite sums of (3.9) are guaranteed to converge due to the stability assumption. Y
and X are called the controllability Gramian and the observability Gramian, respectively.
A standard result from Lyapunov theory is that M is controllable if and only if Y > 0, and
M is observable if and only if X > 0. This can be seen by considering the rank conditions
of Theorems 3.2 and 3.3, or the decomposition structure discussed in Section 3.2.

3.4 Balanced Realizations and Reducibility

Balanced realizations were first proposed by Moore [51] to better evaluate the model
reduction problem, and the relation between lower order approximation and the minimal
realization theory developed by Kalman (reviewed in Section 3.2). Itis reasonable to assume
that if we are given a minimal realization with large dimensions, we might want to reduce
the size of the realization prior to completing system analysis or control synthesis. One
obvious approach to this is to eliminate the weakly controllable and weakly observable
states.

Consider the following realization:

-1 =321
1 1
-1 16 [0

The smaller valued element of Y corresponds to a weakly controllable state. Eliminating
this state from the model gives the lower order approximation,

[]
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However, note that ||G — G|l = 2 (which is larger than ||Gll«). The large relative error
in this model approximation results from eliminating a state which is weakly controllable,
but strongly observable, in fact the observability Gramian is

[ra]

This example is constructed based on consideration of the results of Moore [51], and
those of Enns [24] and Glover [33], which show that for the purposes of reduction, we
should use both Gramians to evaluate the relative controllability and observability of the

ol —

different state variables. In particular, we use a coordinate transformation on the state-
space so that the resulting Gramians are equivalent, thatis, ¥ = X = 3.

Definition 3.7 Let M be a stable, minimal realization. Then M is a balanced real-
ization if there exists a matrix = = diagl o, ..., 0y ] = 0 satisfying

ASA* -3 +BB* =0, and A*SA -3+ C*C = 0. (3.10)
The entries, oy, of £ are called the Hankel singular values of the system.

We refer to such a realization as balanced to reflect the fact that all the states are equally
controllable and observable, and therefore, if we now reduce the least controllable part of
the state-space, we also reduce the least observable part.

Observe that if we transform the realization matrices 4, Band C to A = TAT!,B=TB
and C = CT~!, then

Z ARBB*(A*)k =T Z ARBB* (A)KT* = TYT* (3.11)
k=0 k=0
and similarly
X=T"YXxT7, (3.12)

where Y and X are the Gramians for the original realization. Thus, we would like to find a
transformation Tjq; such that Ty YT}, = T, ¥ X T, Y. Transforming the original realiza-
tion M by T4 then gives a balanced realization. Given a minimal realization, a balancing
transformation Ty4; can constructed from Y > 0 and X > 0 as follows:

Y = RR*
US?U* = RXR* (3.13)
Tpar = SU*R™*,

Computational issues involved in balancing realizations are discussed in more detail in
Chapter 7. Error bounds resulting from the truncation of balanced realizations are given
in Chapter 5
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If the realization, M, of a 1D system is not minimal, then there exists a similarity trans-
formation, T, such that the controllability and observability Gramians are diagonal, and
the controllable and observable subsystem is balanced. The following theorem is standard,
so the proof is omitted.

A B
Theorem 3.8 For any stable system realization M = [ c D } there exists T such

o~ TAT-! TB
that M = [ cT-l D } has controllability and observability Gramians given by
21 21
b 0
Y = ’ and X =
0 23
0 0

respectively, with 1, 3, X3 diagonal and positive definite.

Since the uncontrollable and unobservable modes of any system realization are not
present in the corresponding system transfer function, we can truncate the associated
states, corresponding to the zeros in Y and X above, and obtain a minimal realization
which has both Gramians equal to ;. Such a system is reducible in the sense that there
exists a lower order equivalent realization. Thus, for 1D system models with no uncer-
tainty, singular controllability and observability Gramians indicate reducibility of a model,
and lower order equivalent realizations are found using similarity transformations and
truncations.

Specifically, one transforms a realization M to M as in Theorem 3.8, and then partitions
M as follows:

= Ay Ap B |,

. |:TAT‘1 TB
M
&G & D

Al Ap B
| cTt' D }"

where dim(A1;) = dim(X1). Finally, one truncates the blocks of M corresponding to the
unobservable and uncontrollable states, leaving

A, B
M, = i1 B -
i D
This reduced realization results in an equivalent transfer function, that is, D + C(zI —
A" 1B =D+ Ci(zl - A1)~ 1B;.
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3.5 Additional Realization Theory

A number of tests equivalent to Theorem 3.2 or Theorem 3.3 exist for determining
whether a given realization is controllable or observable; these can be found in any text
on the subject. However, a few remarks about the related properties of stabilizability and
detectability are made here for completeness and later reference.

Stabilizability
Consider again the standard LTI state-space equations, namely
x (k) = AAx (k) + Bu(k)

and suppose we may choose

ulk) = Fx(k) + r(k)

where v (k) is an external reference input, and F : R” — R™ is a state feedback matrix.
Note that the effect of introducing state feedback is to take the realization

A B A+ BF B
M = tO Msf = .
Cc 0 C 0
The following results are standard:

(i) If M is controllable, then M; £ is controllable.

(ii) Let A be any symmetric set of n complex numbers. Then M is controllable if and only
if there exists a map F : R" — R™ such that {A;(A + BF)} = A.

The result of (ii) leads us to the following.

Definition 3.9 A realization M is stabilizable if there exists amap F : R" — R™ such
that

[A;{(A+BF)| <1

foralli=1,...,n.

Thus, a realization is stabilizable if the uncontrollable subsystem is stable.
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Detectability

A dual property to that of stabilizability is detectability. We now consider injecting
some form of the output back into the system, that is,

x(k) = AAx (k) + Bu(k) + Ly (k)
y (k) = CAx (k)

where L : R4 — R™ is the output injection matrix, and

A+LC B
Moi: .
C 0

Then the obvious duals to (i) and (ii) hold, and we have the following notion of detectabil-
ity.

Definition 3.10 A realization M is detectable if there exists a map L : R? — R" such
that
A A+ LC) < 1

foralli=1,...,n.

That is, a realization is detectable if the unobservable subsystem is stable.

In the following Chapter, we generalize the notions of similarity transformations and
Lyapunov equations to multi-dimensional and uncertain system realizations. As a result,
we are able to define generalized Gramians and balanced realizations for uncertain sys-
tems, which lead to a necessary and sufficient condition for exact reducibility; in Chapter
5, we discuss the formulation of error bounds for non-exact reduction of uncertain system
models.
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Chapter 4

Realization Theory for Uncertain Systems

The term uncertain system refers to a system described by perturbations on a nominal
model, where the perturbations are represented in the form of structured uncertainty sets.
This paradigm, used for evaluating the effects of modelling errors, was first proposed in
[20], [62] and [21].

A convenient and general framework for representing and manipulating uncertain mod-
els is to use linear fractional transformations (LFTs) on the structured uncertainty sets. A
comprehensive theory has been developed for such systems involving a great variety of
assumptions on the uncertainty (see, for example, [55], [22], and the references therein).
We give a brief review of the general LFT framework, followed by discussions on realiza-
tion theory and related concepts for LFTs on repeated scalar uncertainty structures. The
main result of this chapter is the necessary and sufficient reducibility condition stated and
proved in Theorems 4.12 and 4.15. This result is based on reduced rank solutions to two
LMIs that generalize Lyapunov equations.

4.1 Linear Fractional Transformations

The LFT paradigm, shown pictorially in Figure 4.1, allows for a mathematical represen-
tation of uncertainty in system models.

A
" L _Jul
Yy Uu

Figure 4.1: LFT/Uncertain System
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A B
In general, A represents uncertainty, or a dynamic element, and M = I: c D } is a

realization of the mapping from u to y which is given by the LFT
v=AxMu AcA

where
AxM:=D+CA(I-AA)1B,

whenever the inverse is well-defined. Note that if we let A = AI then we recover the transfer
function operator AI * M = D + CA(I — AA)"'B and a standard state-space realization
with state x, input u and output y. There is both an extensive theory and a plethora of
software available for manipulating state-space systems. By simply allowing the A block
to represent more general system operators as described above, LFT systems provide a
convenient framework for adding uncertainty in which essentially all of the major state-
space results may then be generalized.

In much of the robust control literature, M represents the nominal system model, which
is assumed to consist of a linear time-invariant transfer function for the plant plus system
weighting functions on the inputs and outputs, and A represents the uncertainty. In the LFT
models we consider, the transfer relations for the plant and weightings are also explicitly
written as LFTs on the delay operator A; thus A is included in the uncertainty strucure A.
That is, we assume M is a constant matrix, and A represents both the system uncertainty
and delay operators. In particular, we refer to M as the system realization matrix, and we
assume A lies in a prescribed set A defined by

A = {diag[610ny, ..., SpIny, Ay, s By | 181 € L(L2), A, € LUT], (4.1)

where one of the §; represents A. We refer to the §;I,,; as repeated scalar blocks, and to
the A; as full blocks.

The source of perturbations or uncertainty in the model may be due to unmodelled
dynamics in the physical system, including nonlinearities and disturbances, or to para-
metric uncertainties, or any combination of the aforementioned. Because each perturba-
tion source is likely to enter the real system at a different location, collecting these into
one uncertainty block results in A having a diagonal block structure (see [74] and [23]
for examples). Furthermore, the perturbations are often assumed to be norm-bounded
operators, and frequently have additional structure, such as time-invariance or real para-
metric variance. For example, for analysis purposes we will often consider A which lie in
a norm-bounded subset of A, that is,

Ba={aea|al, -y, <1}, (4.2)
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where [-]/;,—;, denotes the induced norm. We will denote these uncertain system models
by the pair (A, M).

We assume throughout the sequel that y € l;’ and u € 13, although this assumption
is not required for the results in this chapter. For notational convenience, dimensions will
not be given in the sequel unless required for clarity.

Remark 4.1 Redheffer was the first to consider the analysis of LFTs on structured
sets [59], namely for the case of two full blocks (i.e., p = 0 and f = 2). As a result, the
expression (A « M) is sometimes referred to as the Redheffer star product.

Repeated Scalar Uncertainty Structures

In this thesis, we focus on repeated scalar uncertainty sets, that is,

511111

5217’1,;3
A= . . (4.3)

opln,

Many of the results we present are valid for the uncertainty structure of (4.1), with both re-
peated scalar and full uncertainty blocks; however, for the main results of this chapter (the
reducibility results), the repeated scalar case is the more technically interesting case. Fur-
thermore, for both the reducibility results of this chapter and the model reduction results
of Chapter 5, the presentation of the full block case is notationally cumbersome. Thus the
reducibility results of Section 4.4 are presented only for repeated scalar structures.

As we often consider inputs and outputs as signals in [, it is reasonable to view the &; as
arbitrary time-varying operators on I, for example in the case of power systems, which can
be modelled using non-periodic time-varying uncertainty. Alternatively, we may assume
the §; represent real valued parametric uncertainty, for example, component tolerances,
or we may assume the uncertainty block consists solely of multiple delay or shift operators
corresponding to multiple transform variables; in the latter case, the LFT (A * M) defines
a multi-dimensional system.

Generally speaking, the more structure that is imposed on A4, the more difficult compu-
tation for analysis and design becomes. If the only structure we assume for the uncertainty
block is spatial (that is, repeated scalar block diagonal), then the LFT of a matrix M on A re-
duces to a representation of rational functions in multiple noncommuting indeterminates.
Such an LFT system may then be viewed as a particular realization of a formal power series
(FPS) [8]. Connections between LFT and FPS realizations are discussed in Chapter 6.

For most of the results discussed in this chapter we take the most general assump-
tions for the uncertainty block, that is, we assume the §; are noncommuting variables, be
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they either completely abstract indeterminants in a power series or arbitrary time-varying
operators on l>. The results we obtain are then applicable to all of the aforementioned
cases; to the more abstract settings as well as to systems with parametric uncertainty or
multi-dimensional systems. Although this may lead to conservative conditions in the lat-
ter cases, results constructed for multi-dimensional realizations or parametric uncertainty
would not be applicable in the more general settings.

4.2 Equivalent LFT Realizations and Allowable Transformations

Analogous to the standard state-space framework, given an LFT realization (4, M), one
way to obtain an equivalent realization is by applying a structured similarity transforma-
tion.

For repeated scalar uncertainty structures, we define equivalence as follows.

Definition 4.2 Two realizations,

5lIn1

A = . 5; € L) ,MF{Al BIJ
Cy D
61’71"17
611T1 A2 BZ
and A» = :0; € L) ,MZZ{CZ D }
oply,

are equivalent if Ay x My = Ay « My forall §; € L(1), i=1,...,p.

This definition is quite easily generalized for uncertainty structures containing full blocks.
Similarity transformations are defined for LFT realizations exactly as in the standard

case. However, in order for a transformed realization to be equivalent to the original

realization, we require that the transformation commute with the uncertainty structure.

Definition 4.3 Letn = Zf’zl n;+ ZJ;:I m;. The commutative matrix set for a given
uncertainty set A is denoted by T , and defined by

T :={TeC"":TA=AT, forallA € A}.

When A is defined as in (4.1), the elements of 7 have the block diagonal structure T =
diag[Th,..., Tp, t1Imy, .- -, tflmf], where each T; € C"*™ and t; € C. We refer to a nonsin-
gular element T in the set 7 as an allowable transformation. The following lemma results
from a direct application of the definition of (A » M), and holds for both repeated scalar
and full block structures without any modifications required.
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Lemma 4.4 Given a LFT realization (A, M), and any nonsingular T € T , denote
—~ TAT™! TB
M= .
CcT-' D
Then (A » M) = (A * M) forall A € A.

Thus, allowable transformations lead to a change of coordinates for LFTs on structured
uncertainty sets.

4.3 Lyapunov Inequalities and Balanced Realizations

In order to generalize the concepts of Lyapunov equations and Gramians to uncertain
systems, we first discuss stability analysis of such systems.

Consider the system in Figure 4.1 with A and M defined as in (4.1). We say such a system
is stable when the map (A x M) is well-defined for every A € By; precisely speaking, this
is a robust [»-stability condition which we will henceforth refer to simply as stability.

A B
Definition 4.5 LetM = c D be a constant matrix and A C L(1»). The system

defined by the pair (A, M) is stable if (I — AA) is invertible in £L(1o) for each A € Ba.

Stability Conditions for Uncertain Systems

If the only assumption placed on the uncertainty set A is the spatial structure, that is,
A consists of full block and repeated scalar block (but otherwise arbitrary) linear operators
on I, then a necessary and sufficient LMI stability condition exists, which was first given
in [57], and is stated below in Theorem 4.6. A sketch of the proof is provided in Appendix
A; details can be found in [57]. This condition extends the sufficient scaled small gain
condition for robust stability, and recent results on the necessity of constant scalings
for linear time-varying uncertainty obtained independently by Megretski [49, 50] and by
Shamma [63] for full block diagonal uncertainty structures. Note that one of the §; may
represent the delay operator A.

Theorem 4.6 ([57]) Given an uncertainty set, A C L(1»), and a constant matrix A,
(I — AA) isinvertible in L(1y), for all A € Ba
if and only if there exists a matrixY > 0,Y € T such that

AYA* —Y <0 (4.4)
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Proof. See Appendix A. |

Since this stability condition is defined in terms of A and A, we will sometimes say
the matrix A is stable with respect to the A structure, meaning that the map (A = M) is
well-defined for all A € Ba.

Condition (4.4) directly extends the Lyapunov inequalities for stability of a standard
state-space system. Using the LMI condition of (4.4), we can readily show the following
stability condition for block structured realization matrices (see also Theorem 3.8 of [47]).
This result is used in the sufficiency proof of the reducibility condition in Section 4.4, and
again holds for both repeated scalar and full block structures without any modifications
required.

Lemma 4.7 Given a constant matrix A with an associated uncertainty structure A,
A A Ay O
A= 11 12 and A 1 ’
0 A» 0 A

then there exists a matrix Y > 0, Y € T satisfying AYA* — Y <0, if and only if there
exists matrices Y1 > 0,Y1 € Ty and Y > 0, Yo € T satisfying

where

A11Y1AT1 -Y; <0 and A22Y2A§k2 -Y> <0.

Proof. Necessity is immediate, thus we consider sufficiency; that is suppose we have
Y1 € 71 and Y» € T2, Y1, Y2 > 0, satisfying

A11Y1AT1 ~Y1 <0and A22Y2A3<2 - Y> < 0.

Let Y = diag Y1, Y2]. Consider the set of allowable transformations Ty = diag [ «l, I],
where o € RT, and denote Ay = TqAT;!. Note that

A 0
Ag = ,
0 Ap

AoYAY - Y <o.

and therefore

Since the eigenvalues of A,Y A% — ¥ are continuous functions of «, there exists a fixed
& > 0 for which
AxVAL -Y <0,

Defining Y = T YT ! gives AYA* — Y < 0. n
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Remark: Stability Conditions for Multi-Dimensional Systems

For multi-dimensional systems, as well as systems that are modelled using constant
parametric or LTI uncertainty, the stability condition given in Theorem 4.6 is sufficient,
but not necessary. Alternatively, the structured singular value is both a necessary and
sufficient stability criterion for these systems.

Definition 4.8 The structured singular value, us (M), of a matrix M with respect to
a block structure A is given by

-1
LA (M) = (mm [G(A) : det(l — MA) = 0}) . (4.5)
AcA

Recent results in [14] and [67] have shown that the u recognition problem - "is u > ¢?"
for a given real positive scalar ¢ - is NP-hard for A sets containing real valued and/or LTI
uncertainty blocks. It is generally accepted, although not proven, that a problem being
NP-hard means it cannot be computed in polynomial time in the worst case. The difficulty
in computing p affects not only stability analysis, but also the computation of system
norms and controller synthesis; upper and lower bounds for u problems are computed
instead. In this thesis, we use sufficient conditions for multi-dimensional systems, such
as those in Theorem 4.6, which can be computed using convex optimization techniques.
Furthermore, these conditions are sufficient for a larger class of uncertainties than is the
structured singular value, and are both necessary and sufficient for LTV uncertainty.

Structured Gramians

An equivalent stability condition to that of (4.4)is the existence of amatrix X > 0, X € T
satisfying A*XA — X < 0. By scaling Y and X by constant gains, we immediately obtain
the following corollary to Theorem 4.6, generalizing the notion of Lyapunov equations for
standard system realizations.

Corollary 4.9 If (A, M) is stable, then there existY = 0 and X = 0, both in T , which
satisfy the Lyapunov inequalities

AYA* - Y +BB* <0and A*XA - X + C*C < 0. (4.6)

We refer to any matrices Y > O and X > 0in 7T that satisfy (4.6) as structured Gramians,
with the understanding that these are non-unique solutions to the inequalities of (4.6) and
do not satisfy equations (3.9) as in the standard case. Inequalities are required rather than
strict equalities as these Gramians must commute with the uncertainty structure; there is
no guarantee that structured matrix solutions exist for the case of equalities.
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Note that the LMIs in (4.4) and (4.6) are not affected by permutations of the realization
matrices A, B, and C. For example, let I be any matrix such that I1 I17 = I, and suppose
we have a solution Y € T to (4.4). Denote A =TT AITl and Y = [IT PT1. Then,

AYA* -y =TT (AYA* — Y)II < O.
Using such permutations, we can easily prove the following lemma.

Lemma 4.10 Suppose
A A
0 Ax
A3z1 A3
0 Ap

Az A
0 Any
A3z Asgq

A=

is stable with respect to the uncertainty structure

A= { Ouln | O }
0 ‘ 021y,

A A
Then 22 24 is stable with respect to the structure A, =
A | Ayg

where v; < n,;.

51[7*1 O
0 521}/‘2 ’

One permutation which leads to the result of Lemma 4.10 is

A1 | Az

is stable with respect to the uncertainty structure
A3y | Ass

Similarly, we can show that {

o1l 0
Ay = L ] , where gq; < n;; additionally, 1 + g1 = 11 and 12 + g» = no.

Balanced Realizations

As in the standard case, balanced realizations for uncertain systems can be constructed
by using a similarity transformation T to transform the realization M to M, and the struc-
tured Gramians Y and X to ¥ and X, where ¥ = X = 5. Naturally, we allow only similarity
transformations that commute with the uncertainty structure, since they do not change
the mapping from u to y, that is, (A x M) = (A » M) for all A € A. Furthermore, for any
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allowable transformation T € 7', and structured Gramians Y and X, Y = TYT* € T and
X =(T"H)*XT-! € T are solutions to the Lyapunov inequalities for M.

Consider the system in Figure 4.1 where A is specified as in (4.1); we define balanced
realizations for uncertain systems as follows.

Definition 4.11 Let (A, M) be a stable, uncertain system realization. Then M is a
balanced realization if there exists a diagonal matrix = > 0 such that

AZSA* =T +BB* <0and A*SA -3+ C*C <0, (4.7)

and where
szlag[zl)' ) "Zpy' ) ',Zp+f] (4-8)
with £; = diagloiils;,, - - - ,oitilsiti] = 0; 091 =z - - - = ojt; and the dimension of block
Siisn; = Z;‘;l sij fori=1,...,p; and 3; = diagl o1, ) with dimension m; = s;;

fori=p+1,...,p+ f.

Note that since we now consider Lyapunov inequalities, more than one balanced realization
and accompanying balanced structured Gramian X are likely to exist. We will often refer
to the elements o; of X as generalized singular values.

The reducibility of an uncertain system realization can now be stated as a condition on
the realization matrices A, B and C and solutions X and Y to the Lyapunov inequalities.
Henceforth, we restrict the uncertainty set we consider to that containing only repeated
scalar blocks.

4.4 A Necessary and Sufficient Reducibility Condition for Uncer-
tain Systems

For standard 1D systems there is a well defined notion of minimality, or equivalently
controllability and observability. In order to develop similar definitions for system models
which incorporate uncertainty descriptions into the realizations, we first prove the fol-
lowing sufficient condition for exact reducibility, stated in Theorem 4.12. This condition
provides the first step in the development of realization theory results for uncertain sys-
tems. Theorem 4.12 holds when the §; are defined by transform variables, norm-bounded
real or complex perturbations, or time-varying operators on [, thus, this result is applica-
ble to both multi-dimensional and uncertain system realizations.

Throughout this section we denote the full and reduced system realizations by

A B Ay B
M = and M, = v ,
C D ¢, D
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with corresponding repeated scalar uncertainty structures:
A = {diag|816n,,826ns, ..., 8pln, |+ 8i € LUT, (4.9)

and
Ay = 1,(A) = {diag [611ny, 621, 8ply, | 1 8 € L1} (4.10)

where the notation 7, (A) is used to emphasize that A, represents a reduced or lower di-
mension copy of A, and is not an independent uncertainty structure; furthermore, dim(A) >
dim(A,). The difference between the full and reduced realizations, the error system, is
realized by

A O B A o
E=|0 A4, B, and5={[ }:AeA,AreAr}.

0 A
c -C 0 "

Note that as a result of the dependence between A and A,, the commutative matrix set
for A includes matrices with the following block structure:

- diag(T/") diag(T*")
| diag(T!™)y  diag(T))

where dim(T]") = n; X n;, dim(T{"") = n; x r;, dim(T]™) = 7; x n; and dim(T]) =»; x »;
foralli=1,...,p.

Theorem 4.12  (Sufficiency): Given the stable system representation (A, M), there
exists a reduced representation, (A,,M,), such that (A x E) = 0 for all A e By, if
there exists singular X = 0 or Y > 0, both in T, satisfying

(i) AYA* - Y +BB* <0
or
(i) A*XA-X +C*C < 0.

Furthermore, max (dim(A) — dim(A)y) is equal to the number of zero-valued eigen-
values of the product Y X.

Proof. Suppose there exists Y > 0 satisfying (i). (The proof for X > 0 satisfying (ii) is
essentially the same, and therefore is not presented.)

Without loss of generality, we can assume p = 2, that is, that A = {diag[611n,, 021n, ] :
6i € L(I2)}. The proof extends immediately to p > 2, either directly or by recursive appli-
cation.

Suppose Y = with Yy > 0 and Y» = 0, where Y; has the same dimensions

Yo
as In;, i = 1,2. (If Y1 = O, the proof is the essentially the same, but notationally more
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0 ~
cumbersome). Furthermore, we can transform Y» to { 0 ] with Y» > 0. We thus can

assume Y» has this structure.
Partition the system matrices accordingly with respect to the structure of Y, that is,

A1 A Al By
A= Arx1 Ar Arj B=1| B and C = [C] C» C3]
Az Azx Asg B3

where A1, By and C; are dimensioned compatibly with Y7; A22, B> and C» are dimensioned
compatibly with ¥>; and A33, Bz and C3 are dimensioned compatibly with the 0 submatrix
of Y. Partition A € A similarly so that A = diag[611n,, 5211,, 8214, ], where 12 + g2 = np,
and 7> is the dimension of Y.

By assumption, AYA* — Y + BB* < 0. In particular,

i 0 0][ A%
[A31 A2 Az3]| O Y; O || A%, | +B3Bf <0
0 0 0] Az

thus A3y =0, A3 =0, and B3 = 0, since both Y7 > 0 and f’z > 0. Denote

A A A g A | A~ Ay B Brt & Z1c o
11 = 3 12 = y 22 = 3, 1= y 1= 12
Ay A Apsz B

and 52 = (3.

An B
Let M, = [ 5’11 Dl J and Ay = {diag[d1ln,, 021, ] : 6; € L(I2)}. Construct the differ-
1
ence realization (5 * F ) = (A% M) - (Ay » My), and use the similarity transformation
In1+1’2 0 “In1+1’2
Ty = 0 0 Inj+mr
0 Iy, 0

so that the transformed difference system realization is

A1 0 Ap o0
0 Ay 0 B
0 0 %lez 0
¢, 0 G 0

and
A = {diag[Ar, Ay, 8204,1,Ar € Ay, 82 € L))

In order to show (A x E) = (A x M) — (Ay » My) = 0, we must first show both A;; and
Kzz are stable.
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A1 Ap Amg
By assumption, A = | Ap; Ay» A»z | is stable with respect to the uncertainty set 4,
0 0 Aszz
thus there exists
Q1 O 0
Q= 0 Q2 Q3 |>0: A*QA-Q <. (4.11)
0 Q33 Qs3

By extracting the upper left submatrix of (4.11) we see that Kfl QA - 0O < 0, where

CNQ = diag[Q1, Q22]. Therefore, ﬁn is stable with respect to the uncertainty set 4A,..
Similarly, we can show that A»» is stable with respect to the uncertainty structure dp1;2

by considering the lower right submatrix of the matrix inequality APA* — P < 0, where a

solution
Py 0 0
P = 0 Py Pz |>0

exists, also by stability of A.
Since both A;; and /?22 are stable, E is stable with respect to the uncertainty set A by
Lemma 4.7. Thus, it is then a routine calculation to show A » E = 0 for all A € Bx. [ |

By now proving that the existence of a singular LMI solution, X or Y, to the Lyapunov
inequalities is necessary for a lower dimension realization to exist, we have a complete
notion of reducibility for uncertain systems which is similar to that for 1D systems. The
proof for the necessity condition is based on the following two lemmas, the first of which
assumes the set A consists of noncommutative elements &;. That is, this condition is not
necessary for multi-dimensional systems, or systems with real or complex valued pertur-
bations. Proofs for Lemmas 4.13 and 4.14 are given following the proof for Theorem 4.15.

Lemma 4.13 Suppose the stable system realization (A, M) is given, where A C L(17)
is an arbitrary linear operator. If (A x M) = 0, for all A € Ba, then there exist X = 0
andY = 0, both in T, satisfying

(i) AYA* - Y +BB* <0
(i) A*XA-X+C*C <0 and
(i) XY = 0.
~ X X ~ Y "
Lemma 4.14 Suppose X = N >0andY = N > 0, where
dim(X) = dim(Y) > dim(X>) = dim(Y>).

If)?? = 0, then either X or Y is singular.
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We now state and prove the necessity condition.

Theorem 4.15 (Necessity): Suppose the stable system realization (A, M) is given. If
there exists a reduced realization (Ay, M) such that (A = E) =0, for all A € By, then
there exists singular X = 0 or Y = 0, both in T, satisfying

() AYA* - Y +BB* <0

or

(M) A*XA-X+C*C <0.

Proof. Recall that the difference system (A x E) = (A » M) — (A, * M,) is given by

A 0 B
~ ~ A O
E = O Ay "'Br s A = .

0 Ay
c G 0

By Lemma 4.13, if (A « E) = 0 then there exist X > 0 and ¥ = 0, both in T satisfying
the Lyapunov inequalities for the uncertain system (3, E ), and XY = 0. Since X and ¥
commute with A € A, they have the structure

where X and Y commute with A € A. Then X > 0 and Y = 0 satisfy the Lyapunov
inequalities for the uncertain system (4, M), and by Lemma 4.14 either X or Y is singular.
n

Proofs: Lemma 4.13 and Lemma 4.14

The following proof relies on expanding the LFT (A = M) as a formal power series; fur-
ther discussion of formal power series representations and connections to LFT realizations
is given in Chapter 6; this proof we developed for Lemma 4.13, which is based on using
2-norms of (A » M) rather than a series expansion, is given in Appendix B. The original
proof is much longer than that presented here, but leads more directly to an unobservable
- uncontrollable type of decomposition structure.
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Proof of Lemma 4.13:

Consider the series S =D + A x M = 37, CA(AA)XB. We first partition the matrices
A, B, and C accordingly with the A structure, that is,

Ann - A By
A=| + i |5 B=| i | c=[a - G
Apr - App By

Then, expanding the series S gives

.....

where, by assumption, S = 0.
Since the §; are noncommuting, S is identically zero if and only if each coefficient in
the series is zero, that is,

D=0, (iB; =0, CiA;jBj =0, CiAijAjkBy = 0,...,

for every i,j,k = 1,...,p. We consider each set of terms separately and show that the

given realization may be transformed to one having a particular decomposition structure,
similar to the decomposition structure given for 1D systems in equation (3.6).

First, consider the C;B; terms: C;B; = 0 if and only if there exists T; nonsingular, such

that N

B

CiT7'=100C);and TiB;i=| 0 | ,

0]
where & has full column rank, ﬁi has full row rank, and the submatrices of C; and B;
are equivalently partitioned, for each i,j = 1,...,p. We will henceforth absorb all such
transformations and assume the realization matrices are already structured into zero and
non-zero block submatrices. We then partition each A;; accordingly with the partitions of
Ci and B;.
Consider the C;A;;B; terms:

ALl Al2 413 B
CiAijBj =[00Cl;| A2 A22 423 0 | =GAB; =o0.
A3l A32 433 0 ‘
if J
Since C; and B; are both full rank, this implies that Af} =0

Next consider the C;A;;A;B; terms:
Al
CiAijAjB = [0 GAJ; CiAY 1| A3lB | =0 if and only if 43243} = 0. (4.12)
0
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721
A.J‘l

As with the C;B; terms, we can transform A7 to [0 0 A37] and A% to | O | where
21

0
K%jz has full column rank, Kfll has full row rank, and the submatrices of A,3]2 and Aj} are

equivalently partitioned. We now have the following decomposition structure for each A;;:

i All Al2 A13 ]
221
Ajj = 0 : A2? DOAB . (4.13)
0
| o 0 0 A% A3 |

Note that across each block row, indexed by for example i, the A%! blocks in the set of sub-
matrices {A; j}le are equivalently partitioned; similarly down each block column indexed
by j, the A32 blocks in the set of submatrices {A; j}’le are also equivalently partitioned.
Evaluating the next few sets of series coefficients, C;A;jA jAn By, ..., we obtain the
same decomposition structure for each of the A7? blocks as that in (4.13). This process
is repeated for a finite number of series coefficients, leading to a decomposition structure
for each Cj, A;j, B; subsystem,; this finite number depends on the number of variables, p,
and the dimensions of the realization matrices. As an example, for p = 2, the resulting

decomposition can be generally written as follows:

AL AR 0 Al AR B
0 A% I 0 A%
M=| (4.14)
Ay ANt Ay AR B
~ .
0 A% 0 A3
| 0 (/:\1 0 62 0 |

Note that the matrix partitions in (4.14) (denoted by " s) do not necessarily correspond to
the previous partitions (denoted by™'s). Note also that the above partitions are constructed
such that the A}} and A?? submatrices are square, and the lower left submatrix of each Aii
which is identically zero has the largest dimensions possible.

Applying Lemma 4.10, and carrying out the matrix multiplications, it is straightforward
to see there exist structured singular matrices

X = diag[0, X%%,0,X%%,...,0,822]1 2 0 and ¥ = diag(¥]!,0,7}1,0,...,¥},,01 20
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both in T, satisfying
AYA* —-Y <0 and A*XA-X <0.

Furthermore, scaling ¥ and X by constants, as necessary, gives X = 0 and Y = 0 both in
T, such that conditions (i) and (ii) are satisfied, and clearly XY = 0.

|

In the proof of Lemma 4.13, it is implicitly assumed that the uncertainty structure is

A = {diag [5lIn1, - 5p1np]}. The result can immediately be extended to uncertainty

structures such as A = {diag [511711, covy Opln,, 0117, ..., 51717‘,]} by permuting AtOA =

{diag [611n1+r1, ey Opln, +Tp]}, and also permuting E, Y, and X accordingly. We then can

show that Lemma 4.13 holds for (A, E) with Y and X in T by permuting back to the original
structures.

Proof of Lemma 4.14:

Let dim(X) = dim(Y) = n x n and dim(X») = dim(Y>) = k x k, where k < n. By contra-
diction, suppose both X and Y are nonsingular. Then XY is nonsingular and rank(XY) =
n.

Note that X¥ = 0 implies that XY = -X;Y{", thus rank(X,Y;") = n, where dim(X) =
n x k and dim(Y}*) = k x n. However,

rank(X;Y;") < min{rank(X;), rank(Y;)} < k < n.

Thus X or Y is singular and rank(XY) < k. |

Remark 4.16 We may consider reducibility of realizations with uncertainty struc-
tures containing full blocks, that is, A as defined in (4.1). However, the submatrices
Yj and X; of Y and X, respectively, corresponding to the full blocks, Aj, are diagonal
scaling blocks, for example, Y; = Yilm;, ¥j € R. Clearly, if Y; is singular, y; = 0.
In this case, in order for the Lyapunov inequalities to hold, entire sub-blocks of the
realization matrices A, B and C will be zero and the result obvious.

The results of Theorems 4.12 and 4.15 imply that, given an uncertain or multidimen-
sional system representation, if structured singular solutions to either of a pair of LMIs
can be found, then an equivalent lower dimension realization exists. Furthermore, if the
uncertainty can be properly described by time-varying, or noncommuting, operators on Lo,
then the existence of lower dimension realizations requires such singular LMI solutions.
The development of computational methods for solving such LMI problems is a popular
research area in the control community, and, in fact, many efficient convex optimization



39

algorithms exist (see [12] and the references therein). The fact that we would like to find
singular solutions to these LMIs complicates the computational requirements in that the
complete set of constraints results in an optimization problem which is not convex. A
suboptimal computational solution is presented in Chapter 7.

Decomposition Structures for Uncertain Realizations

Via the sufficiency proof (that is, the proof for Theorem 4.12), it is clear that the exis-
tence of a singular structured Gramian implies that an equivalent realization can be found
which has a decomposition structure like that in (3.6). For example, consider the realization

Al Ap | B ]
A= {diag [511111, 521712] 1 0; € L(lz)}, M=] Ay Ax» | B |,
Ci G2 |0 |
. X1 Y |
and suppose structured Gramians X = X >0andY = v = 0 are found
2 2

where X;, X, Y1 and Y» are all singular. Then, as in the sufficiency proof, we can find
an equivalent realization M, by allowable transformation, which has the decomposition

structure:
Ao AR o o0 A o B
Al AT AR AR 1 AR A, AR AR B
0 0 Ay o0 0 0 A% 0|0
143 144 143 444
0 0 AP aAf 0 0 A} A%l o0
M=| 42 o AB o i Ag o AB o |Br |. (4.15)
A2 n 423 3 : A A 423 % 5
A3 A5, AR AR 1 A5 A5, AR A3 BS
0 0 A3 o 0 0 A3, o0 o0
443 p44 443 344
0 0 A3 AY 0 0 A3 A3 0
[ ¢ 0o ¢ 0o i & 0 & 00

Note also that in the necessity proofs (that is, both the proof for Theorem 4.15 given in
this chapter, and the alternative proof given in Appendix B), a decomposition structure is
constructed for the error system (A, E); this suggests that iteratively solving for allowable
transformations will provide a means to find a decomposition structure for any reducible
realization, and hence to the computation of a minimal realization.



40
4.5 Minimality

One notable result which follows immediately from the proof for Theorem 4.15 is that
all minimal realizations for an uncertain system may be obtained by allowable transforma-
tions and truncations, where we define minimal as follows:

Definition 4.17 A realization (A, M) is minimal if dim(A) is lowest among all equiv-
alent realizations.

The minimality result is stated in the following corollary.

Corollary 4.18 Given a stable system realization (A, M), all minimal realizations are
found by similarity transformations,

—~ TAT-! TB
M -
CT™* D

]:TET,

and truncations.

If we consider the simplest case for these LFT representations of uncertain systems, that
is, there is no uncertainty and A = AI, we obtain the standard results, excepting the in-
equalities in the Lyapunov equations. At the other extreme, in the case of formal power
series, we do not even have the operator structure for A, as the §; are simply noncommut-
ing indeterminates. Thus stability and norms have no meaning, and indeed are artificial
in the context of realization theory. There are many ways to extend the LFT machinery to
this case, but the simplest way to remove the stability requirements for the A matrix is by
scaling. Note that there will always be some value y > 0 sufficiently small (for example,
y < 1/]|All) such that there exists amatrix Y > 0, Y € T satisfying

Y?AYA* - Y < 0. (4.16)
The input/output map (A » M) is then well-defined on [, for every
AeByA={AeBa: AL, < y],
and solutions Y = 0 and X > 0, both in 7 can be found satisfying the LMIs
Y?AYA* —Y + BB* < 0 and y2A*XA - X + C*C < 0.

If singular X and Y can be found, the realization is then reducible, as in Theorem 4.12,
with respect to the uncertainty set B, A, and further reducing the value of y does not effect
the existence of singular solutions to these LMIs. Note that this y scaling illuminates
the fact that the reducibility result may be viewed as a topological result, that is, that
(A M — Ay x My) is the zero operator for all operators A in a neighborhood of zero if
and only if there exist singular structured solutions to the Lyapunov inequalities.
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4.6 Additional Realization Theory

Up to this point, we have given reducibility conditions for a given realization in terms of
structured Gramians, without any discussion of controllability and observability, or a direct
test for minimality. Naturally, we would like to develop generalizations of the standard
controllability and observability matrices, and determine the relation these matrices would
have not only to the structured Gramians, but also to a direct notion of minimality. In
this section, we remark on these and related topics. We state the results that have been
generalized and discuss the interpretations that can be given to these notions for uncertain
systems.

Controllability and Observability Matrices

If we naively define the controllability and observability matrices, I and O, as in (3.4)
and (3.5), then we cannot directly generalize the relationships between the ranks of I and
O to reducibility via singular structured Gramians, as the structure of the uncertainty is
not taken into account. For example, suppose we take I to be defined as in 3.4, and denote
N = 37 | n;. If there exists a singular structured Gramian Y > 0, then it is easy to see that
rank(I') < N by considering the decomposition structure of (4.15). However, we cannot
necessarily say the converse is true.

Consider the following example:

ao | omooe) o Torw] o [[a i r)
| —048 017 ["7 7| 030 | - 5, |7 2

0.100 0.001
Then, T = has rank 1, but there is no singular ¥ = 1 >0
0.300 0.003 Vo

satisfying AYA* - Y + BB* < 0.

As amore reasonable generalization of the realization theory results associated with the
controllability and observability matrices, we propose the following constructions, which
do account for the inherent structure of the system realization:

Definition 4.19 Given an uncertain system realization (A, M), where A is structured
as in (4.9), then the controllability matrix is defined by

By AuBy .- ApBy A} By s AnlArpBy  AAn B
r By AxBi -+ ApBp AnAnB1 - AnApBy, AnAnB

Furthermore, we denote the block rows by T; = [B; Aj1B; - - -].
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The partitioning of this controllability matrix into block rows is similar to the partitioning
proposed for 2-dimensional system controllability matrices when a relationship to mini-
mality is desired (see [10] and the references therein). However the block elements of the
above controllability matrix are different than in the 2D case (or multi-dimensional case),
as the system variables represented by the §; in the LFT realizations we consider are as-
sumed to be noncommuting. As a result, there is not addition of the terms in the matrices
along block rows and columns.

We can now show that the following relation holds between singular structured Grami-
ans and rank conditions on T.

Theorem 4.20 Given a stable uncertain system realization (A, M), where A is de-
fined as in (4.9), then there exists a singularY € T,Y > 0 satisfying AYA*-Y +BB* <
0 if and only if rank(I;) < n; for somei=1,...,p.

Proof. Necessity is quite straightforward: If there exists a singular structured controlla-
bility Gramian Y, then, as in the proof of Theorem 4.12, using allowable transformations
we can construct a decomposition structure similar to that in (4.15) from which it is easy
to see that the block rows of the controllability matrix will have reduced rank.

Sufficiency can be shown using an approach similar to that taken for the proof of Lemma
4.13. For each i = 1,..., p, denote the rank(I}) by 7;, where we assume r; < n; for at least
one i. Then there exist nonsingular matrices T; € C">*" such that

Li
Tl = N

where IN“i has #; rows. This implies that

B; | B
T;B; = L and T;A;;B; = TiAl'jTj N

has the form I: : :|, and as a result

gu [112
0 A%’

TlAle;1 = [

where the zero block has dimensions (n; — #;) x 7;.

Using the allowable transformation T = diag(Ti, I»,..., Ty ] on the given realization
matrix M yields an equivalent realization with an uncontrollable-like decomposition struc-
ture similar to that of (4.15). Following the same steps listed at the end of the proof of
Lemma 4.13, we can construct a singular structured controllablity Gramian. u
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The obvious dual definition for the observability matrix can be given, along with the
corresponding rank condition which can be proven using a similar argument:

Definition 4.21 Given an uncertain system realization (A, M), where A is structured
as in (4.9), then the observability matrix is defined by

Cl CZ PR Cp
CiAn  ClAp -+ ClAp
0= ' ' : -
ClA%l C1A11AL - ClAllAlp
Ci
C1Aq;

Furthermore, we denote the block columns by O; =
A2

Theorem 4.22 Given a stable uncertain system realization (A, M), where A is de-
fined asin (4.9), then there exists a singular X € T, X = 0 satisfying A*XA-X+C*C <
0 if and only if rank(©;) < n; for somei=1,...,p.

Moreover, we conjecture that these rank tests can be completed on finite dimension
controllability and observability matrices, where the maximum dimensions are determined
by the number of copies of each §; in the structure A. Finite dimension results exist
for 2D system realizations [10], and for representations of power series over multiple
noncommuting indeterminants [65].

Stabilizability and Detectability

For a standard state-space system, the use of static state-feedback or static output-
injection for system stabilization is a well-known theoretical tool. In order to find state-
feedback or output-injection matrices stabilizing a given realization, certain conditions
must be satisfied, namely the realization must be stabilizable or detectable. If these condi-
tions are met, a stabilizing feedback controller can be constructed from the state-feedback
and a state-observer, and all stabilizing controllers can be parameterized. The extension
of these concepts to uncertain systems have been completed by Lu, et al., [47]. We state
the stabilizabililty and detectability results here, along with connections to PBH tests for
uncertain systems, which have been developed by Paganini [57].
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Consider the LFT system of Figure (4.1), where A contains arbitrary time-varying struc-
tured operators. First note that if (A, M) is stabilizable by a static state-feedback matrix
F, then by Theorem 4.6 there exists amatrix Y € 7, Y > 0 such that

(A+BF)Y(A+BF)* -Y <0.

If rank(B) = P < dim(A) = N, and if we find a matrix B, € RV*N-P) guch that B*B, =0
and rank(B,) = N — P, then an equivalent condition for static state-feedback stabilizability
is

BY¥AYA*B, —B*YB, <0.

Continuing this development leads to the following Theorem and Definition.

Theorem 4.23 For the LFT system of Figure (4.1), where A contains arbitrary time-
varying structured operators, the following are equivalent:

(i) There exists a static feedback matrix F such that A + BF is stable.

(ii) There exists a matrixY € T withY = Y* > 0 such that
B*AYA*B, -~ B¥YB, <O. (4.17)

(ifi) There exists a matrix Y € T withY = Y* > O such that
AYA* - Y — BB* < 0. (4.18)

(iv) The map [I — AA B]: I3 — 1% is surjective for all A € Ba.

Moreover, if Y € T with Y = Y* > 0 satisfies any of the above LMIs, then one such
stabilizing static state-feedback matrix is

F=—~B*Y 1B)"1B*Y1A. (4.19)

The equivalence of (i), (ii) and (iii) is shown in [47]; the equivalence with the PBH-like
condition (iv) follows from the related result in [57]. This leads to the following definition
(referred to as Q-stabilizability in [47]):

Definition 4.24 If any of the conditions (i) — (iv) of Theorem 4.23 is satisfied, we
say that the LFT system is stabilizable.

In this case, the analogy with the standard case is complete. The dual notion of de-
tectability can be characterized in the same manner [47].
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Reachable and Observable Subspaces

Straightforward generalizations of reachable and observable subspaces for uncertain
system realizations are presented by D’Andrea in [58], where the LFTs are now restricted
to be causal operators. We summarize these results in the following.

A
y A B u

C D

Figure 4.2: LFT Realization

Consider the LFT system in Figure 4.2, where A € A is a causal linear operator with
A B

the structure defined by (4.9), and M = [ c D

} e Rrraxntm Eirst consider the corre-

sponding system equations:
x = A(Ax + Bu)

4.20
x(0) =0. ( )

The reachable set of M with respect to a fixed operator A € A is denoted by Ra ) and
defined by:

Ram = {X¥ € R"|3u € I,k € Z*, such that x (k) = X satisfies(4.20)} . (4.21)

Due to the possible time variation of A, R (s ») may not be a vector space. The following
definition is from [58].

Definition 4.25 Thereachable set of M with respect to the set A is denoted by RaM)
and defined by:

Ream = U Riam- (4.22)
AcA

As R(am) consists of all possible vectors that may be reached in finite time, it is straight-
forward to show that Ra ) is a vector space, referred to as the reachable subspace of
(4, M). In [58] it is also shown that there exists a A € A such that Rizm = Ram), and
that an allowable transformation T, exists which results in a decomposition of M into
reachable and unreachable subsystems.

A similar development is presented in [58] for defining and constructing the unobserv-
able subspace of (A, M).
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An alternate method to that presented in this thesis for constructing a minimal real-
ization is given in [58] which based on decomposing the original realization into reachable
and unobservable subspaces; the definition used for minimal is that each separate block
dimension of A, that is each n;, is lowest among all equivalent realizations. The result-
ing decomposition structure is the same as that in (4.15). This method may be applied
to realizations that are not stable. However, the procedure relies on finding reduced rank
matrices, which may be numerically ill-conditioned. Furthermore, no related error bounds
can be computed when exact reductions cannot be found; thus, we prefer to solve the Lya-
punov inequalities for structured Gramians, which allows us to directly compute reduced
realizations with error bounds when exact reduction cannot be completed (see Chapter 3).

In this chapter, we have presented a fairly thorough treatment of the exact reduction
of uncertain system realizations, via the existence of structured singular Gramians, and
touched on related realization theory topics. To further complete the discussion on the re-
duction of uncertain system realizations, in the following chapter we present error bounds
for the reduction of uncertain systems when singular structured Gramians cannot be found,
that is, when the reduction is not exact.



47

Chapter 5

Model Reduction of Uncertain Systems

As discussed in Chapter 4, the most general way to interpret LFT models is to view
the 6; as noncommuting indeterminants. However, to quantitatively evaluate model re-
duction methods and their associated error bounds, we need a less abstract setting. In
particular, we may consider one of the §;, say d1, as the delay operator in an uncertain
discrete-time system. The remaining §; are then viewed as time-varying operators on ;.
Alternatively, we may view the §; as different transform variables in a multi-dimensional
system, or assume the uncertainty itself has additional structure, such as time-invariance
or real parametric variance. In these contexts, we may reduce a realization for an un-
certain or multi-dimensional system without finding singular structured Gramians, and
assess the difference between the full and reduced models using induced norms. In the
case of uncertain systems, model reduction implies simplification of the uncertainty de-
scriptions, whereas in the case of multi-dimensional systems, model reduction means state
order reduction, and a system model that may be reduced without error as discussed in
the preceding chapter is reducible or non-minimal as in the 1D case.

In this chapter, we review the balanced truncation model reduction (BTMR) method and
the related error bounds, first presenting the standard results for 1D systems ([51], [24],
[33], [36]), followed by the extension of these methods to uncertain systems, which were
originally presented in [69]. Simplified proofs for the BTMR error bounds are provided in
Appendix C. We then give a new model reduction result for uncertain systems that also
relies on the solution of two LMIs, and gives tighter error bounds than the BTMR method.
These new results, which were first noted in [4], are based on technical machinery presented
in [54] and [56].

5.1 Norms for Uncertain Systems

In order to quantify the error resulting from the model reduction process, naturally, we
use the induced 2-norm, as we are considering input and output signals, u and 7 in the
space of summable sequences, I>. For a 1D system with system operator denoted by G, so
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that y = Gu,

G}y, = sup TIG(E)] = Gllw;
0<[0,21]

this norm is commonly referred to as the H, norm of the system. For an uncertain or
multi-dimensional system represented by the LFT (A » M), we use the structured induced
2-norm, (SI2-norm), which we define as follows:

Definition 5.1 The SI2-norm of a stable system (A, M) is given by

A * Mllsrz = sup [|A x Mllj,—y, . (5.1
AeBa
Clearly, the SI2-norm is a generalization of the H, norm, and for 1D system realizations
with no uncertainty these norms are identical.

The difference between two realizations, (A1, M;) and (A», M>), is evaluated in the SI2-
norm by forming the difference realization of (A x E) = (A1 » M1) — (A2 » M), that is, by
setting

. A1 0 By N A0
E=]1 0 A B and A = l: 0 A } (5.2)
G -G D1-D;

and computing HZ * E”SQ'

An equivalent formulation for the SI2-norm of a system when A represents arbitrary
time varying I, uncertainty is given in the following lemma. This formulation more readily
allows for computation via software packages developed for solving LMIs ([30], [25]).

Lemma 5.2 The SI2-norm of a stable system (A, M) is equivalent to

TAT-! L TB

inf {y: there exists T such that & Loy 1 <1 (5.3)
;CT ?D

where T € T andy > 0.
A B
Proof. LetApe€ £(I}))and M, =| c é’fD . Then for a stable system (4, M),
y?

TAT-! LB

inf{y : there exists T such that & . Y1 <1
—fCT~1 S;D
y?2

Y O < Y 0
=inf{y: there exists Y > 0 such that M)[ 0 I }M;f - [ 0 I ] <O}, (5.4)
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for Y and T both in 7" and y > 0. Applying Theorem 4.6 and the stability assumption on
(A, M), we see that (5.4) is equivalent to

A0
inf{y: (I ~ My [ 0 A }) is invertible in £(I») for all Ar € BAF}
F

I - AA —LBAp
=inf4{y: 13'? is invertible in £(ly) for all Ar € Ba, (5.5)
0 I- (;A * M)Afr

= inf {;y - (Sl/-A * M)AFp) is invertible in £(Iy) for all Af € BAF}

= sup A« Mllj,—p,.
AeBa

Using Lemma 5.2, we can immediately prove the following result which generalizes a
similar result for 1D systems (see Lemma C.2 in the Appendix C) to uncertain systems.

Lemma 5.3 Suppose (A, M) represents a stable uncertain system, then ||A * M||gp» <
1 if and only if there is a realization M, where (A x M) = (A x M) forall A € A, such
that (M) < 1.

We say a constant matrix X satisfying o (X) < 1 is contractive, and is strictly contractive
if o°(X) < 1. If we consider uncertainty structures which contain LTI or commuting oper-
ators, for example, real parametric uncertainty, LTI dynamic uncertainty, or when the A
set represents mulitple shift operators corresponding to different transform variables in
a multi-dimensional system, then the expression on the right in (5.3) is an upper bound
for the system SI2-norm. Therefore, the existence of a contractive realization is a suffi-
cient condition for [|A x M|lg;» < 1 when the §; of the A block are LTI This sufficiency is
all that is needed for the balanced truncation model reduction bounds to hold for both
multi-dimensional and uncertain systems.

5.2 Model Reduction Error Bounds for Stable Systems

We begin by stating the BTMR results, first given for 1D discrete time systems in [36],
and for multi-dimensional and uncertain systems in [69]. The results for 1D systems are
given first, followed by the generalized results for uncertain systems. Proofs are provided
in Appendix C. We then state and prove a necessary and sufficient condition for satisfaction
of tighter model reduction error bounds, which are also measured in the SI?-norm.
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Balanced Truncation Model Reduction

Consider a stable discrete time system with the following realization

Ayl A By
M = A1 Axp By |, A=Al
¢; (C» D

Suppose Y and X are two positive semi-definite symmetric matrices satisfying the following
Lyapunov inequalities
AYA* - Y +BB* <0 (5.6)

A*XA-X+C*C<0. (5.7)

We consider Lyapunov inequalitiesin (5.6) and (5.7) in order to generalize the 1D continuous
time results to uncertain systems in discrete time. Note that Lyapunov inequalities are also
used in [36] for the development of BTMR error bounds for 1D discrete time systems. An
example is given in [36] to illustrate how the use of solutions to the inequalities may result
in better error bounds than the use of the true system Gramians.

The significance of these inequalities in the 1D case is that while the zero-valued eigen-
values of Y or X still have corresponding uncontrollable and/or unobservable states, the
converse need not be true. This is most easily seen via a simple example: consider the
system with realization

A=[0(')5 0?2},B=[(1)],C=[0 1.

2 0 00
Y = and X =
00 0 2

satisfy the inequalities of (5.6) and (5.7), as the first state is unobservable and the second

2 0
state is uncontrollable. However, Y = X = o o | for example, also satisfy the inequal-

It is clear that

ities of (5.6) and (5.7). Thus, we can truncate states in the same manner suggested by
Theorem 3.8, but the resulting system may not be minimal. Subsequently, we will assume
the states corresponding to the zero-valued eigenvalues of Y and X have been truncated,
and when we refer to balanced system realizations it will now be in a looser sense, that is
with Y > 0 and X > 0 satisfying the Lyapunov (strict) inequalities and

21 0
Y =X =
0 3

diag(ols,, 021,,...,0v15,) > 0

with
21
2

Il

(5.8)

diag(o-r+11_gr+l, ceny O-nlgn) > O,
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where s; denotes the multiplicity of ;. Note that the oy are not necessarily ordered, and
are assumed to be distinct, although distinctness is not required (see Remark 5.6).

The BTMR results for 1D systems, given below, are separated into a lemma stating that
the truncation of a stable, balanced realization is also stable and balanced, and a theorem
stating the upper error bound results, measured in the H, norm. The proof for the lemma
can be found in [36]. A proof for the theorem that is more concise than that presented in

[69] is given in Appendix C. This proof generalizes immediately to system representations
which include uncertainty.

Al A B
Lemma 5.4 Suppose M = | Ay Az B | is a balanced, stable realization. Then

i C D
the truncated system realization given by

A B
ALAZ { 11 1 }
Ci D

is also balanced and stable.

Al A By
Theorem 5.5 Suppose M = | A1 Az» By | is a balanced, stable realization for

i C D

. . 21 . .
the system described by G with X =Y = 0 s > 0, as defined in (5.8). Let
2
A
M, = Cll Dl :l denote the balanced, stable, truncated system realization for G,.
1
Then
n
IG-Grllw =2 > o
i=r+1
Proof. See Appendix C. =

Remark 5.6 Distinctness of the oy in =1 and 3 is not required for stability of the
truncated subsystem in the discrete time case, although it is in the continuous time

case. However, there is no reason to truncate the system in the middle of a oils; block
as this will not improve the error bound.
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BTMR Error Bounds for Uncertain Systems

In order to derive the model reduction error bounds for balanced uncertain systems, we
partition the realization matrices A, B, C, and the balanced Gramian 3 so as to separate
the subblocks that will be truncated. We again assume that the realization submatrices
corresponding to the zero eigenvalues of the structured Gramians have been truncated,
as suggested by Theorem 4.12. We then consider solutions Y > 0 and X > 0 that yield
strict inequalities for the system Lyapunov inequalities. Consider the block structure A =
{diag [511n1, e, 5pInp] 10; € L(lz)}; with A, B and C partitioned conformally with this
structure as

Al - Ay By
Apt -+ App By
We further partition each block of X by &; = diag[fli,zzi], for i = 1,...,p, where the
realization submatrices corresponding to $»; will be truncated. Denote
Sii = diagloiils;, - .., Oikds,, 1> 0,

and
Soi = djag[o‘l-(kiﬂ)lgi(kﬁl), ey UitiISiti] >0 ki<t

We then truncate both X;; and the corresponding parameter matrices, for example, we

All A1117 El ~
A = " , BL = and C; = {1 Cq,
[Allzl Al } [Blz } 6]

to 1311, 1§1 and 61. Partitioning and truncating each A;;, B; and Cj, i,j = 1,..., p similarly

truncate

results in the following truncated system,

An - Ay B

_ [A ﬁ} : Lo
M: ~ = ~ N ~ f

C D Afl AAW) B,

G -+ C, D

with uncertainty set A = {diag[éllﬁl, e 6p1ﬁ_p]} where #; = Zf;l Sij.

As in the 1D case, truncating a balanced stable uncertain system realization results in
a lower order realization which is balanced and stable; this is easily seen by considering
the system Lyapunov inequalities, and is given in Appendix C for completeness.

Lemma 5.7 Suppose (A, M) is the reduced model obtained from truncating the bal-
anced stable system (A, M). Then (3, M) is also balanced and stable.
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Proof. See Appendix C. n

We now state the BTMR error bound theorem for uncertain and multi-dimensional sys-
tems.

Theorem 5.8 Suppose (A, M) is the reduced model obtained from the balanced sta-
ble system (A, M). Then

14 ti
A *M) = (AxM)lsp<2> > oy (5.9)
i=1j=k;+1

Proof. See Appendix C. |

Improved Error Bounds: LMI-Based Model Reduction

A tighter model reduction bound then that given in Theorem 5.8 can be achieved using
the solutions to the system Lyapunov inequalities by utilizing machinery presented in
[54, 56]; similar machinery is also given in [40] and [1]. The tighter error bound is derived
from Lemma 5.2, and from the results of [54, 56], which are given below. Throughout this
section we again refer to the realizations and uncertainty structures:

M= [? g ], A = {diag [511n1,521n2,...,5p1np] 15 € £(l2)},

Ay B
MV = I: 4 " } 5 Ar = gr(A) = ‘{dlag [51[71,52172,...,6p1'rp:l .51 < £(l2)},

z—‘— :AEA,AyeA .
O Ar "

We again assume one of the §; represents the delay operator on [, and the remaining J;

and

are LTV operators on l;. The commutative matrix sets corresponding to these uncertainty
structures are denoted, as before, by 77, 7, and 7, where the set T for A includes matrices
with the following block structure:

T diag(T]") diag(T"")
diag(T/™) diag(T})

with dim(T}") = n; x n;, dim(T?"") = n; x 7, dim(T/™) = v; X n; and dim(T]) = r; X 7;
forall i = 1,...,p. For the uncertain system representations (A, M) and (Ay, M), the
difference system (A * E) = (A x M) — (Ay x My) is formed as in (5.2).
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Given a system representation (4, M), we show that for any € > 0, a lower dimension re-
alization (A, M, ) exists such that the SI2-norm of the difference system (A, E) is bounded
above by ¢ if and only if there exist solutions, X¢ and Y, to the Lyapunov inequalities (5.6)
and (5.7) that also satisfy a rank constraint.

Theorem 5.9 Given a system realization (A, M), there exists a reduced realization
(A, M) such that 1\5 * Ellgn < € if and only if there exists X > 0 and Y, > 0, both
in T, satisfying

(i) AXeA* — Xe + BB* <0
(i) A¥YcA — Yo + C*C < 0, and
(ifi) Amin (X Ye) = €2, with multiplicity ¥_, (n; — ;)

where € > 0.

The existence of solutions, X > 0 and Y¢ > 0, to the Lyapunov inequalities is both
necessary and sufficient for guaranteeing the bound of €. Note that when € = 0, we then
have the necessary and sufficient reducibility condition presented in Chapter 4. Thus, this
error bound is tight in the sense that if we can find optimal solutions to the Lyapunov in-
equalities, that is to a pair of LMIs, we will be able to find a lower dimension approximation
to the full model that results in the least possible error. Applying Theorem 5.9 recursively
to a balanced realization results in error bounds for model reduction which are lower than
those of Theorem 5.8 by a factor of two, however the resulting additive error bounds are
not tight.

To prove Theorem 5.9, we use the following results, Lemmas 5.10 and 5.11, taken di-
rectly from [54, 56]; proofs may be found in [56]. These results are applied to the error
system (A, £), in conjunction with Lemma 5.2, to construct the LMI conditions (i) and (ii),
and the rank constraint (iii) of Theorem 5.9. We provide proofs for each of these lemmas
for the sake of completeness. Let R € R, U € R and V € R2X!, where m, q < L.

Lemma 5.10 ([54, 56)): Suppose U, € R>U=m) gnd v, e RU-DxL gqtisfy U*U, = 0

¥

. ) V. .
VVE=0,with[U U,]and v invertible. Let Z € C*! be a given set of positive
is

definite Hermitian matrices. Then

inf  GZTR+UQV)Z %) <1
Q € R™M*4a

ez

if and only if there exists Z € Z such that

VI(R*ZR-2Z)V¥ <0 and UF(RZ™'R* - Zz7HU, <. (5.10)
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Proof. Fix Z € Z and denote f(Z) = infgermxr U"(Z%(R + UQV)Z‘%). Clearly f(Z) < 1
if and only if
ZY(R+UQV)*Z(R +UQV)Z™% —1 <0, (5.11)

or equivalently
1
ZTR +UQV)Z YR + UQV)*Z? — 1 <0, (5.12)

Multiplying out the terms in (5.11) and (5.12) gives f(Z) < 1 if and only if
Z-3(R*ZR + R*ZUQV + V*Q*U*ZR + V*QU*UQV)Z "t —1 <0
and
ZE(RZTIR* + RZ-IW*Q*U* + UQVZ™'R* + UQVZ WV*Q*U*)Z% - I < 0.
Now define I = Z32U and V = VZ-1. Note that (Z“%UJ_)*LNI = 0, thus the columns
of Z-3U 1 Span the space orthogonal to the range of U; similarly, since V(V, Z %) = 0, the

rows of V. Z 2 span the space orthogonal to the range of V. Substituting and simplifying
gives the final result. [ ]

The LMI conditions given in (5.10) are respectively convex in Z and Z~!, but the two
conditions together cannot be formulated as a convex constraint on either variable for a
general set of matrices Z. However, for the model reduction problem addressed in this
thesis (as for the synthesis problem discussed in [54]) these two conditions can be refor-
mulated into one jointly convex condition, coupled by a non-convex rank constraint.

Using the notation of [54] for our model reduction problem, we define

A0 B 0 0
0 I, 0
R=l00o0 |, U=|IL 0], V=
0 0 In
C 0D 0 I,

and
Q- Ay By .
~Cr -D,
Note that E = R + UQV. Furthermore, U, = [I00]T and V, = [I 0 0]; we then accordingly
define U7 = [Uf,1 ULTB]T =[10]Tand V = [V, V. 3] = [I 0], and note that the dimensions

m, q and [ correspond to the row and column dimensions of M, and the dimensions of R,
respectively.

T 0| o ~~ =~
In applying Lemma 5.10, if we set Z := {{ 0 I } TeT, T=T*> O}, then instead

of casting (5.10) as a pair of convex constraints on ¥ = T and X = Y~1, we need only
consider constraints on the (1, 1) blocks of X and Y, X* and Y}*, due to the structure of
R, U, V, and the set T. In particular the following lemma may be used to form one LMI
constraint on X!* and Y;*.
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Lemma 5.11 ([54, 56]): Suppose X € C"*" gand Y € C"*" gre given, with X = X* >
OandY = Y* > 0. Then there exist matrices Xo € CY and X3 € C"™*", with
X3 = X5 > 0, such that

-1
X X X X Y Yi»
. > 0 and ‘ = ;
Xy X3 X5 X3 Yor Y3
X I X I
> 0 and rank =Sn+r.
'Y 1Y

X 1 I
Proof. Sufficiency: Pre- and post-multiplying [ v ] >0by[I —Y !]and { vl },

if and only if

it is clear that (X — Y~!) > 0 and rank(X — Y1) < ». Defining X, via the (Cholesky)
factorization Xo X5 = (X — Y~ 1) and X3 = I completes the construction.
Necessity: Using the Schur complement formula,

-1 -1 -1 v y-l ~1y-1
[X X?l m[X + XX (X3~ XFX 1)1 X x}

X5 Xz X X

Denoting the (1,1) element of the inverse by Y, and using the matrix inversion formula
gives Y71 = (X - XoX51X¥), thus X - Y1 = Xp X7'XJ = 0 and rank(X — Y~!) < 7. n

For the reduction problems we consider, the dimensions n and » correspond to the
dimensions of A and A,; thatis, n = 37, n; and » = 3¥_; 7. Lemma 5.12 follows directly
from the preceeding lemmas, and is also a corollary to Theorem 6.3 in [54].

Lemma 5.12 Suppose the realization (A, M) is given, withR, U, V, U and V defined
as above. Then there exists a realization (A,, M,) and a matrix Z € T , Z > 0 satisfy-

B

if and only if there exist X[' > 0, Y/' > 0 fori = 1,...,p satisfying

. n ] . }’l -
(@ OT (M diag(X') 0 MT [ diag(X]') 0 }) F<o

0 0 1
o ( | diagy?y o] iag(Y?" N
) ¥ (MT la%( ) ? M- dla%(yl : ? 7T <0

Xt oI
(c) =0
I yn
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If these conditions are feasible, then the dimensions of A, and M, are determined by
defining ri = rank(X}* = (Y/")™1) foreachi=1,...,p.

We can now prove Theorem 5.9. For convenience, we denote the e-scaled difference
system realization by

A 0 LB
€2
Ee = 0 Ay —1:15'37 . (5.13)
e
+C —Cr (D-Dy)
€2 €2

Proof of Theorem 5.9:
By Lemma 5.2,

< ¢ if and only if there exists T € T such that

o[z )

Now we need only apply Lemma 5.12 to E. and multiply out the matrices in statements
(a) and (b) of Lemma 5.12. Then HK * f”m < ¢ if and only if there exist X = diag(X}*) >
0, and Y = diag(Y;") > O for i = 1,..., p satisfying

HSIZ

AXA*+%BB*—X<0, A*YA+—€1—C*C—Y<O (5.14)

Xt oI
> 0.
Iy

Multiplying the matrix inequalities in (5.14) by €, and denoting X, = €X and Y, = €Y gives
(i) and (ii). Additionally we have

and

X?’L‘ cl ) 1 ) _
|: e;l yn } > 0, with rank(-e-Z—Xe"i - (Y™ =mn. (5.15)
Condition (iii) is obtained by pre- and post-multiplying (5.15) by [ — (Y%)~!] and
1
€ respectively, givin
[-(Ygrl] pectively, giving

1
E—ng —(YH) t=o,

thus XY > €’I. Applying the rank condition implies rank(X/, Y — €°I) = v, thus

Amin (XGYE) = €2 with multiplicity n; — v, foralli = 1,. .., p. Since X, and Y, are block

diagonal compositions of X/, and Y/ the result follows. n
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When the uncertainty structure, A, contains time-invariant operators §;, as in the case
of multi-dimensional system representations, the existence of X, and Y. are sufficient to
ensure Hﬁ * E H o S € For 1D continuous time systems with no uncertainty, similar results
have been obtained by Kavranoglu and Bettayeb [43] via an alternate method that requires
simultaneously computing a pair of matrices By and Cy augmenting the system realization
matrices B and C, and solutions X and Y to the augmented Lyapunov equations, such
that Ay, (XY) = €2 with multiplicity n — v. Also, following the work presented in [69],
balanced truncation model reduction error bounds for continuous time uncertain systems
were presented in [16].

In this chapter we have shown that, via the computation of structured Gramians, we
are able to reduce uncertain system realizations with guarantee upper error bounds, where
these bounds are given in an induced 2-norm. From the preceeding chapter, we know that
if either of these structured Gramians is singular, the uncertain system may be reduced
with zero error. We now need only address the actual computation of these structured
Gramians, given a realization. Computational issues are discussed in Chapter 7, along
with a discussion of one application of these methods. Prior to the discussion of compu-
tational issues, we first address the connections alluded to in the proof of Theorem 4.15
between uncertain system realizations in the LFT framework and representations of formal
power series in multiple noncommuting indeterminants; we focus on the relations between
minimal LFT realizations and minimal FPS representations.
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Chapter 6

Linear Fractional Transformations and Formal
Power Series

In this chapter, we relate the notion of minimality presented for LFT realizations in
Chapter 4 to realization theory results for formal power series (FPS), recalling that a series
expansion of the LFT (A = M) was used in the necessity proof of our main reducibility
result, Theorem 4.15. In particular, we consider the realization theory originating from
the work of Fliess (see [28], [29] and the references therein), and Isidori [38], who used
recognizable series to develop realization theory for nonlinear and bilinear systems. Sontag
also used recognizable series for a realization theory of discrete time nonlinear systems
[64]. The realization theory based on formal power series results in a different definition
of minimality, which is related to the rank of the series Hankel matrix. We discuss the
relationship between the notions of minimality for LFT and series realizations, and present
a method for obtaining one type of minimal realization from the opposing type.

In order to relate LFTs and formal series, we first review standard notation and re-
sults for these series, focusing on the theoretical developments in this area, rather than
algorithms and computational results.

6.1 Formal Power Series

Formal power series have long been used in many branches of mathematics, most no-
tably in combinatorics and enumeration. First proposed by Schutzenberger [66] as a gen-
eralization of automata and formal languages, the application of FPS for bilinear and non-
linear system realization theory was developed extensively throughout the 70’s and 80’s
(see, for example, [28], [29], [64]).

In the most general form, a formal power series S is a function Xt — R, defined by
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where X1 is the monoid generated by a nonempty set X of p indeterminants, and R is
a semiring. An element x € X is called a letter, and an element w € X' a word, where
the length of a word w = x1x7 - - xy is n, and is denoted by |w|; the empty word is
denoted by 1. The product operation of the monoid X' is the concatenation defined by
(X1 xn) - (V1 Vi) =X1~XnV1- - Vi

A coefficient of the series S is denoted by s(w), and is the image by S of a word w,
that is, s(w) € R. The support of S is defined by supp(S) = {w € XT| s(w) = 0}. Note
that a polynomial is a formal series with finite support. The ring of polynomials in p
indeterminants (defined by X) over R is denoted by R{X), and similarly the ring of formal
series in p indeterminants over ‘R by R{(X)); R(X) is a subsemiring of R{(X)).

A formal series may also be represented in matrix form by an associated Hankel matrix.

Definition 6.1 The Hankel matrix of a formal series S is the matrix Hs indexed by
X1 x X1 defined by Hs(u,v) = s(u - v), for all words u,v € X1,

A standard result for formal series connects the rank of a series S with the rank of
the matrix, Hs. To define the rank of S, we must first define the kernel of S. Although
we will lose some generality, at this point we assume R is a field, and we consider series
with coefficients in R%*™, This is the case most relevant to the remainder of this chapter.
We first endow R ((X)) with the structure of a right R(X)-module by allowing the
operation of addition of series to be defined coefficient-wise, and the product of a series
S € RPM((X)) and a polynomial p € R(X), denoted by S - p, to be defined as follows:

@Hs-1=S§8
(ii) for all x € X the series S - x is given by
(S x)(w) = s(wx),forw € X7 (6.1)
(iii) for all py, p2 € R(X)Y, o, 00 € R
S-(oapr +axep2) = x1 (S p1) + x2(S - p2)

We then define the kernel of S by

Ker S = {p € R(X)|S - p = 0}.

Definition 6.2 The rank of a formal series S is equal to the codimension of Ker S,
that is rank(S) = dim(R{(X)/Ker S).

Note that by applying Theorem 2.8, we know that (R{X)/Ker S) is isomorphic to Im S
as a right R (X)-module; thus rank(S) = dim(Im $), which leads to the following result:

Theorem 6.3 ([15], [28], [38]) The rank of a formal series is equal to the rank of its
Hankel matrix.
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6.2 Recognizable Series and Nonlinear Realization Theory

A recognizable series is a formal series S for which there exist linear representations
with the following form [66]:

there exists N € Z*, a morphism f : Xt — RNXN
and matrices h € RI*N, g € RN*™ guch that (6.2)
stw) =hf(w)g, forallwe X,

These are often referred to as rational series: a formal series is called a rational series if it
is an element of the smallest subset of R((X)) which is closed under a set of operations
called the rational operations. Basically, a FPS is a rational series if it can be expressed as
a finite number of sums, products and inversions of polynomials. Schutzenberger showed
that rational and recognizable series are equivalent [66]. As we are interested in the linear
representations of a formal series, we refer to these series as recognizable series.

Similarity amongst linear representations for a series is defined as for state-space sys-
tem realizations, thatis, via the existence of an invertible matrix T that is used to transform
h, g and f(w); thatis, h — hT~1, g ~ Tg, and f(w) — T f(w)T~!. Minimality for series
realizations is defined as follows:

Definition 6.4 A minimal linear representation of a series S is a representation with
minimal dimension N among all its representations.

The dimensions g and m are always fixed. Strictly speaking, the standard definition
given for recognizable series has g = 1 and m = 1 in the above, which would give us a
series corresponding to a single-input single-output (SISO) system mapping. The following
definitions and results for recognizable series are basic to the remainder of this chapter,
and were also originally developed for the SISO case, where, in particular, R is assumed to
be a field. These results can be extended to the multi-input multi-output (MIMO) case, that
isq = 1 and m > 1. The LFT realizations we consider throughout this thesis represent
MIMO systems.

Theorem 6.5 ([66], [28] [15])
(a) A given series S is recognizable if and only if the rank of its Hankel matrix is
finite.
(b) The rank of a recognizable series is equal to the minimum of the dimensions of

all linear representations of S.

(c) Two minimal linear representations of a series S are similar.
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Part (¢) of Theorem 6.5 leads to the following corollary, originally noted by Schutzenberger,
also in [66].

Corollary 6.6 Suppose {h, f,g} and {h, f,G} are two linear representations of a
series S, and assume the latter representation is reduced. Then there exists a third
representation {ﬁ,f, g} similar to {h, f, g} with the following block decomposition:

10 0 0
h=[xh0l, f=| x f 0|, d=|3
X X fo X

Necessity of Theorem 6.5, part (a) is immediate for the MIMO case; sufficiency of part(a),
and part(b) have been shown for the case of SIMO bilinear system mappings by Isidori [38],
[39], and for MIMO state-affine nonlinear system mappings by Sontag [64]. The results of
either Sontag or Isidori are applicable to the uncertain systems we consider. The extension
of part(c) to the MIMO case is given in Appendix D; as a result the extension of the corollary
follows.

We consider only recognizable, or finite rank series in the sequel. In keeping with
the notation used for recognizable series in the development of nonlinear realization the-
ory, to which we will draw the most explicit connections, we consider the set of p non-
commuting variables, X = {81,...,0,}, and the associated index set 7 = {1,2,...,p}.
Let 7, denote the set of all sequences of k elements (ij...i;) of 7, where the empty
sequence is denoted by @. Define 77 = Jy»07k, where 77 has the composition rule,
(k... 1) (... j1) = (k...i1Ji...j1), and 79 = @. Then, to each multi-index (ix...ig)
we associate the word (6, - - - §;,). As in [38] and [64], we consider a formal power series
in p noncommutative indeterminates with coefficients in the ring of real matrices, R4*",
that is, the mapping S: 77 — R*™ represented by the form

%0 p
S=s(@)+ > > slix--i0)8s - - - Sy
k=01g,...,ix=0
where s(iy - - - ip) is the coefficient of the (i,..., ig)-th term. The Hankel matrix associated

with this series is the infinite matrix whose elements are defined by
Hs(ig. .0, J1---Jo) = s(ig -~ -iof1- - - jo).

Given a recognizable series in p indeterminants, constructive procedures exist for ob-
taining specific forms of minimal linear representations: Fliess presents a procedure for
constructing a representation in the form of (6.2) corresponding to a nonlinear SISO map
[28]; Isidori gives procedures to obtain SISO and SIMO bilinear system realizations in [38]
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and [39]; and Sontag gives a procedure for constructing a minimal MIMO state-affine real-
ization from a discrete-time nonlinear input-output map [64]. Sontag’s realization proce-
dure can be modified to give matrices {H, F;,G}, i = 1,...p, satisfying state equations of

the form
x =3V Fidi(x + Gu)

v =Hx +HGu.

These equations are relevant to the LFT systems we consider. We will henceforth refer to
{H, Fi, G} as series realizations, where the equivalent series is

p A 4
S=HUI-> F&) 'G=H > (> Fid)kG. (6.3)
i=1 k=0 i=1

Alternatively, if one is given a series realization {H, F;, G}, this realization is minimal if
the matrices @s and I's defined by

Os(ik...i0) = HFj, - - - Fi; and Is(jy ... jo) = Fj, - - - FjoG

are both full rank; furthermore, the rank test for @s and I's can be performed on finite
matrices [65]. Note also that Hs = OgIs. (See also [10] for discussions of related results
in 2-dimensional system realization theory).

6.3 Connections: Minimal LFT and Series Realizations

Given an uncertain system realization, (A, M), with corresponding 1/0 behavior de-
scribed by the LFT, D + CA(I — AA)~ 1B, recall that we can form a power series by expanding
the (I — AA)~! term, giving

S=A*xM=D+ > CA(AA)*B. (6.4)
k=0

To obtain arelation between a LFT realization and a minimal series realization {H, F;, G}
we compare the terms in the respective series defined by these realizations. We first par-
tition the matrices A, B, and C conformally with the A structure, that is,

Apr - App By
Then, expanding the series S defined in (6.4) gives

14 e p
AxM=D+3 CiBiSi+ > > CiAnin, " AiigBiySiy - - - 51,.
i=1 k=0 ig,...,ip=1
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As discussed in Section 6.2, we can compute a minimal realization {H, F;, G} for a given
series S, such that

4
S=H > (> Fspke. (6.5)
k=0 i=1

Suppose we start with this minimal series realization {H, F;, G} and factor F; = L;R;, where
L; has full column rank and R; has full row rank. This factorization is nonunique; we will
henceforth refer to such factorizations of a matrix as minimal rank (or MR) factorizations.
By equating terms in (6.4) and (6.5) we obtain an LFT representation from the series repre-
sentation:

D =HG, Ci=HLj, B; = R;G, and Aij = RiL;. (6.6)

It is readily seen that dim(A;;) = rank(F;).
Conversely, if we are given a minimal LFT realization, we may obtain a corresponding
series realization, {H, F;, G}, by computing a minimal rank factorization

A B R
[£2]-[%]ue

R
where H has full column rank, and [L G] has full row rank, and R and L are parti-

tioned into p submatrices, for example, L = [Ly Ly - - Ly ]. Defining F; = L;R; gives the
realization, {H, F;, G}.

The conversion procedure of (6.7) is clearly reversible, up to an allowable similarity
transformation which accounts for the nonuniqueness; however, the minimal dimension
for LFT realizations is dim(A), and for series realizations is dim(F;) = rank(Hs). These two
dimensions are in general not equal, with the dimensions of LFT realizations being related
to the rank(F;) of the series realizations. Bounds can be constructed to relate these dimen-
sions, but neither dimension is always greater than or equal to the other. For uncertain
systems the dimension dim(A) is more natural since it measures the number of copies of
the 6; required to build an interconnection that realizes the series, a generalization of the
number of delays or integrators needed to realize a 1D transfer function. Furthermore,
the rank(#s) depends on the constant term s(@) = HG = D, whereas dim(A) clearly
does not. We could allow an additional constant term in the series realization so that the
rank(H) is minimized, then the dimension of the “minimal” realization {H,F;, G} would
also be minimized. However, a more interesting question is whether the above formulas
transform one type of minimal realization into the other. The answer is affirmative.

Proposition 6.7 Given a minimal LFT realization (A, M), the series realization ob-
tained via a MR factorization is minimal.
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Proof. By Corollary 4.18, we know all minimal LFT realizations are found using similar-
ity transformations and truncations, operations which necessarily do not increase rank.

A B
Thus, for a minimal LFT realization rank({ c D }) is minimized over all equivalent

realizations.

A B
Now, we compute {H, F;, G} from [ c D } using a MR factorization, where

(23] (3]0 o)

= dim(L;R;) = dim(F;).

We then have the following corollary, from Proposition 6.7 and Theorem 6.5:

Corollary 6.8 Suppose we have a minimal LFT realization (A, M), and form the as-
sociated series S as in (6.4). Then

k(Hs) = k A B 6.8
rank(Hs) = ran c D . (6.8)

The converse result, that of obtaining a minimal LFT realization from a minimal series
realization, can be shown in the same manner, using Corollary 6.6.

Proposition 6.9 Given a minimal series realization {H, F;, G}, the LFT realization
obtained via a MR factorization is minimal.

Proof. From the minimal series realization, we compute the LFT realization via the MR

factorization
Fi=| Li |[R;],
giving
Ajj=[Ry]| Lj
Thus dim(A) = 3, dim(A;) = 37| rank(F;), so dim(A) is minimal if the rank(F;) is

minimal for all i = 1,..., p, which is easily shown: Rank(F;) is not changed by similarity
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transformation, thus rank(F;) is a constant over all minimal series realizations. Further-
more, by Corollary 6.6, rank(F;) for all non-minimal realizations of a series is either equal
or greater to that for minimal realizations of the same series. |

In this chapter, a brief presentation of the relation between minimal LFT realizations
and minimal FPS representations is given. These results could lead to alternate methods for
computing the minimal realization for an uncertain system. Using the series formulation
given in equation (6.4) for a (nonminimal) uncertain system, a minimal FPS representation
may be constructed via the procedure proposed by Sontag in [64]). A minimal LFT real-
ization could then be obtained using a MR factorization. Computationally, however, there
still exist numerical problems in the construction procedures for series representations.
Thus, at this point, implementation of reduction methods for uncertain systems, as for
1D systems, are completed in the most computationally robust manner by balancing the
realization and reducing with the guaranteed error bounds of Chapter 5.
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Chapter 7

Computational Methods for Model Reduction
and Applications

The results stated in Theorems 4.12 and 4.15 indicate that the existence of struc-
tured singular solutions to either of two Lyapunov inequalities for an uncertain or multi-
dimensional system realization ensures the existence of an equivalent lower dimension
realization. Furthermore, if the system uncertainty can be properly described by time-
varying operators on [p, then the existence of lower dimension realizations requires such
singular solutions.

The computation of solutions to these Lyapunov inequalities belongs to a large class of
problems, widely known as Linear Matrix Inequality (LMI) problems. The development of
computational methods for solving LMIs has progressed rapidly in the control community
in recent years, and, in fact, convex optimization algorithms for LMIs may now be obtained
commercially ([30], [25]). The fact that we would like to find singular or rank constrained
solutions to the LMIs we consider complicates the computational requirements, resulting
in non-convex optimization problems for which heuristics must be used; these heuristics
frequently rely on LMI solution methods.

In this chapter, we first discuss general LMI problems and solutions, with the aim of
providing sufficient background and references for those interested in constructing com-
putational solutions for reducing uncertain systems. We then present a simple suboptimal
procedure for solving the Lyapunov inequalities for balanced model reduction of uncer-
tain systems, followed by a discussion of the application of this procedure to a pressurized
water reactor for a nuclear power plant.

7.1 Linear Matrix Inequalities

General LMI problems can be succinctly described by the following decision problem:

Does there exist X : A* XA+ XB+B*X +C*C <0

subject to: X € T (7.1)
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where T describes the feasible set for X, that is, the set of block diagonal structured
Hermitian matrices, and A, B, and C are constant matrices having corresponding block
partitions. Additional constraints on X are sometimes required, for example, in the model
reduction problems we consider, X must be positive semi-definite; for examples of systems
and control problems that can be formulated as LMIs see [12]. Denote A(X) = A*XA+XB+
B*X + C*C. One way of reformulating the above LMI decision problem as an optimization
problem is

Hgn Amax (A(X)) (7.2)

subject to: X € 7.

Amax (A(X)) is referred to as the objective function, and the condition X € 7T is a con-
straint. When A(X) is an Hermitian matrix which is affine in X, Ayqx (A(X)) belongs to
the class of convex, non-differentiable functions, for which numerous optimization meth-
ods exist. For general LMI problems, applications of the theory of self-concordant functions
and the use of such functions in interior-point methods have recently found widespread
use (see [53] and the references therein; see also [52] and [68] as examples). We provide
general but brief descriptions of convex optimization and descent methods, and interior-
point methods.

Convex Optimization Methods

Descent methods are used to iteratively solve unconstrained optimization problems.
Denoting the objective function by f(x), the basic steps in a descent algorithm are as
follows: start from an initial point, x, determine by a fixed rule a direction of movement;
move in that direction to the point x., which gives a minimum value for f(xj) on that
line. In equation form, each step of a descent method computes

Xk+1 = Xk — CkQrgx

where g; is the descent direction, and the specific algorithm used determines Q. The
main difference between descent algorithms is the rule by which the descent direction is
determined at each stage. If f is differentiable, the gradient of f is often used to determine
the descent direction. For example, in Newton's method, gy is the gradient of f, and Qy is
the inverse of the Hessian of f. A line search may be done to determine the value ¢; € R
which minimizes f(xy — cxQrgx).

For smooth objective functions, descent methods are relatively simple to apply since
gradients may be used for descent directions. Additionally, many of these methods con-
verge quadratically to a local minimum. However, for non-differentiable problems, the
determination of descent directions can be quite complicated and computationally expen-
sive; convergence is not always guaranteed. In particular, for LMI problems, determining
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descent directions may be as difficult as solving the original problem. However, the appli-
cation of interior-point methods to LMI problems yields smooth subproblems which can be
solved using standard descent methods. More detailed descriptions of descent methods
can be found in most texts on optimization, including [27], [46], and [32].

For non-differentiable optimization problems, convex programming methods such as
cutting-plane methods and ellipsoid methods are much simpler than most descent methods
to implement. They guarantee convergence to a solution to within a prespecified toler-
ance of a global minimum; however, they often require a substantially greater number of
iterations than descent methods, and hence are much slower. Convex programming algo-
rithms rely on the ability to compute values of the function and a subgradient for a given
objective, f. A subgradient of f at a point x is any g € R" such that

f(z2)=f(x)+gT(z-x) forall ze R™ (7.3)

For example, the gradient of a differentiable convex function is a subgradient. Convex
optimization algorithms have previously been applied to LMI problems; see for example
[11] and [13]. For in-depth coverage of convex programming methods see [32] or [27].

Interior-Point Methods in Convex Programming

In the past five years, the most common approach taken for solving LMIs has been via
the use of interior-point methods. Interior-point methods are used to convert constrained
convex optimization problems into unconstrained optimization problems, to which gen-
eral algorithms such as Newton's method may be applied. These methods utilize a penalty
function which is added to the objective function and greatly increases the objective func-
tion cost for violation of the constraints.

The basic idea behind interior-point methods is to convert the inequality constraint
functions into a barrier function; that is, a function whose value approaches infinity near
the border of the feasible region. For example, suppose we have a standard optimiza-
tion problem with the objective function denoted by f and inequality constraint functions
denoted by h;,1 < i < m. One example of a barrier function commonly used is the loga-

rithmic barrier function,
m

P(x,7) ==r > Inh;i(x)

i=1

where the parameter + determines the weight of the function. A new unconstrained opti-
mization problem is then given by

min P (x,7) = ngn(f(x) +¢(x, 1)) (7.4)
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where v decreases as the iterations progress. Typically, a Newton type minimization
method is then used. Under mild conditions ([46], [27]),

lin(l)(rr&inP(x,r)) = rrg(inf(x).

This minimum is achieved in the interior of the feasible region, since near the boundary of
the feasible set, P(x,*) approaches infinity.

In [53] it is shown that for a large class of logarithmic barrier functions, the resulting
unconstrained (LMI) optimization problems (for example, P(x, ) above) solved via interior-
point algorithms satisfy a desirable property called self-concordance. A function P is said
to be self-concordant with value a if [P (x)| < 2a~%(P"(x))? for any x in the feasible
domain, where the derivatives are taken along any direction in the vector space in which
the feasible domain is a subset. P is strongly self-concordant if P is self-concordant and
the level sets of P are closed. If P is strongly self-concordant, then minimization of P
via Newton-type methods will be quadratically convergent under easily tested conditions.
Nesterov and Nemirovskii further prove that tight bounds exist on the number of iterations
required to find the optimum point.

There are two main classes of interior-point methods used in convex programming:
path-following methods and potential reduction methods. Path-following is the more tra-
ditional approach, relying on tracking the minimizers of P as the value of » decreases.
Potential reduction methods generally allow for much larger step sizes in the minimizing
iterations than do the path-following methods, and as a result are more computation-
ally attractive. A number of potential reduction methods were developed in the '80s: the
method of Karmarkar, the projective method of Nemirovskii, and the primal-dual method
of Todd and Ye (see [53] for references). A projective method has been used in the LMI op-
timization routines of the MATLAB-based software package The LMI Control Toolbox [30],
which we have used to develop a suboptimal algorithm for balanced model reduction of
uncertain systems. These algorithms are described in the following section. Primal-dual
algorithms for LMI optimization have also been developed [25]. A thorough discussion of
interior-point methods is provided in [53].

7.2 A Suboptimal Algorithm for Balanced Model Reduction IL.MIs

Recall that the LMIs with which we are concerned are system Lyapunov inequalities
constructed using the realization matrices from an uncertain system realization (A, M):

AYA* - Y +BB* <0and A*XA - X + C*C <0,

where Y and X are required to be semi-definite matrices which commute with the A struc-
ture. Ideally, we would like to find minimum rank structured Gramians Y and X to the
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above LMIs, or structured Gramians for which we can balance and truncate our uncertain
system representations with minimal error. Thus, we would like to solve the following
optimization problem:

Given an uncertain system realization (4A, M) find:

minA, maxR: det(YX — Alg) =0

Subject to:

AYA* - Y +BB* <0

A*XA-X+C*C=<0

Y, X=0, V" XeT
That is, we want to find solutions Y and X for which the product YX has a very small-
valued minimum eigenvalue with high multipicity. Although feasible solutions, X and Y,
may easily be computed using convex programming methods (in particular, using any of the
recent LMI solvers [30, 25]), the optimization problem itself is a reduced rank LMI problem
and thus presents a more difficult computational problem. Unfortunately, reduced rank
LMI problems result in neither convex nor quasi-convex optimization problems, thus we
cannot directly apply the existing LMI algorithms to obtain solutions. However, some of
these LMI methods may be used in heuristic algorithms to obtain suboptimal solutions for
reduced rank LMI problems [17], [18].

A Supobtimal Approach

Rather than focusing on the development of general algorithms to solve minimum rank
LMI problems, we have instead used a straightforward alternative to obtain suboptimal
solutions for model reduction. This suboptimal algorithm is given in the following, which
we henceforth refer to as the Trace algorithm:

Given an uncertain system realization (A, M) find:

o{/m? Trace(Y) : AYA* - Y +BB* <0, and Y = 0
S

and
o)r(mg Trace(X):A*XA-X+C*C <0, and X > 0.
<

Note that for any Hermitian matrix, Trace(Y) = >;A;(Y); additionally, Trace(Y) is a

differentiable function of the elements of the matrix Y, thus the objective function in our
Trace algorithm is computationally attractive. We also note the following:

Proposition 7.1  Given two positive semi-definite matrices Y and X,

Trace(YX) < Trace(Y) Trace(X).
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Proof. Since the Trace function is a matrix inner product,

Trace(YX) < ( Trace(Y?))Z( Trace(X2)Z = (3 A{(Y)2)2 (S Ai(X)%)?,
i i

by the Cauchy-Schwartz inequality. Furthermore, for any v € R”, ||v{» < ||v|l;, thus,
Trace(YX) = (O A(Y) (D Ai(X)).
i i
n

Thus, separately minimizing the trace of Y and of X leads to solutions for which the
value of > ; A;(YX) is lowered, and hence the value of each A;(YX) is also often lowered.

Preliminary tests of the Trace algorithm have been completed using LMI-LAB [30]: we
have constructed 20 uncertain system realizations, each with 2 to 5 uncertainty variables
and dimensions ranging from 5 to 15. These realizations are constructed to be reducible,
that is, for each realization there exist singular structured matrices X and Y satisfying the
associated Lyapunov inequalities. Evaluation of the Trace algorithm on the test realizations
is based on the eigenvalues of the resulting LMI solutions X and Y. Specifically, we consider
the ratio, denoted by n, of the largest "zero valued" eigenvalue to the smallest non-zero val-
ued eigenvalue. So, for example, if eig(X) = {1.000, 0.724, 0.711, 0.531, 1.000 x 10‘6},
then n = 5.31 x 107>, As we know a priori the dimensions which may be reduced with
no error for each test case, we are then able to determing the "success” or "failure" of the
Trace algorithm. The results based on three different criteria for n are given in Table 7.2.

n Upper Bound | % Models Reducible

5x10°° 100%
1x10°6 86%
1x10°10 77%

Table 7.1: Preliminary Trace Algorithm Results

Recall that finding feasible (sub)optimal solutions to the Lyapunov inequalities is only
the first step of the model reduction procedure. To complete the balancing and reducing,
we must also find an allowable transformation that simultaneously diagonalizes Y and X.

Simultaneous Diagonalization Algorithms

In Chapter 3, one method for computing a balancing transformation is given in equation
(3.13), for which itis assumed that Y and X are strictly positive definite. This assumption is
standard; if either of the (structured) Gramians is singular, the realization may be reduced
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without error as shown in Theorem 4.12. This method extends directly to the structured
solutions we obtain for the Lyapunov inequalities, resulting in an allowable balancing trans-
formation, as required. However, this balancing procedure is invariably poorly conditioned
if either Y or X has a large condition number - a situation which is often desirable for small
reduction errors. The following modified procedure helps to alleviate this problem:

GivenY >0and X > 0:

Compute Cholesky Factorizations: Y=RR*and X = Q*Q
Calculate Singular Values: QR =UZV*

Construct Balancing Transformations: T = U*Q; Tjpy = RV

Balance: A= TATipy; B=TB; C=C Tinv

Note that this is not a similarity transformation, strictly speaking, since TTipy = &5
also, TYT* = Ti’;WX Tiny = >2. However, the original realization (A, B, C), is similar to
(5"t As"3,5°%8,C Zl“%). Thus, after reducing (A, B, €), the resulting lower order realiza-
tion is scaled by Z, %, where 3, is the reduced order I. This procedure, developed for
standard 1D systems [34], is also immediately applicable to uncertain system realizations.
Specifically, if Y € T and X € T, then T € T and Tjpy € 7, assuming the singular value
decomposition is computed block by block (or does not sort the singular values), so that
the block structure is left intact.

The development of balancing and simultaneous diagonalization algorithms that have
reasonable numerical properties has also been addressed in the literature; for example,
see [44], [61] and the references therein. Detailed accounting of the computational costs
of two balancing algorithms is also given in [44].

7.3 Application: A Pressurized Water Reactor

In this application, we focus on identifying and controlling a model of a Pressurized
Water Reactor (PWR) in a nuclear power plant. The PWR has parameters that vary slowly
over time as the fuel ages, and as the power load on the plant changes. We model the
PWR as an uncertain system using the LFT framework, where the activity of the fuel and
the power load are considered uncertain parameters. Although the PWR is a continuous
time system, the final model we use is obtained through standard system identification
techniques and is in discrete time, that is, we use sampled input/output data. Thus, the
model reduction methods of Chapter 5 may be applied to the uncertain (discrete time) sys-
tem models for the PWR, resulting in simplified models for which p-synthesis techniques
are then used to design controllers. We first consider only variation of the plant dynamics
with the fuel reactivity, as a test case for the combination of system identification, model
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reduction and p-synthesis methods; the results obtained using the systematic model re-
duction techniques are compared to a control design completed for a PWR model which is
simplified based on engineering knowledge of the system. We then consider variations in
both the operating power and the age of the fuel, assuming bounded arbitrary time-varying
perturbations. Comparisons are made of the full and reduced order closed-loop models.
We will not emphasize the system identification and control design processes in this dis-
cussion; see [55] and the references therein for an explanation of u-synthesis, and [5] for
a more detailed description of the identification and control design for this project. This
work is part of an ongoing collaboration with Pascale Bendotti, who is employed with the
Direction des Etudes Recherches, Electricite de France.

We briefly review the operation of and control objectives for the PWR. State-space mod-
els for the PWR are then discussed and LFT models are derived. The model reduction
results are given, and the simulated behavior of the closed-loop models described.

Operation of the Pressurized Water Reactor

The main objective in controlling a PWR is to provide the commanded power while re-
specting certain physical constraints. Consider the application depicted in Figure 7.1. This
is the primary circuit, and our goal is to control this part of the reactor. The pressurized
water in the primary circuit transmits the heat generated by the nuclear reaction to the
steam generator. In the steam generator, water of the secondary circuit is converted to
steam, which drives a turbo-alternator to generate electricity.

The PWR has an inner control loop which maintains constant pressure in the primary
circuit. As aresult, as the steam flow increases in the secondary circuit, the temperature in
the primary circuit decreases. From a control standpoint, the required power corresponds
to a specific steam flow that may be viewed as a measurable disturbance. Hence, one
natural control objective is to track a temperature reference derived from the steam flow.
The rate of the nuclear reaction is regulated by the control rods. The rods capture neutrons,
slowing down the reaction; withdrawing them increases the reaction. Because the control
rods enter the top of the reactor, the rate of reaction is always higher at the bottom of the
reactor. The axial offset is defined as the difference in power generated between the top
and bottom of the PWR. Safety specifications require minimizing the axial offset; this also
increases the lifetime of the fuel and reduces operating costs.

To achieve these objectives the PWR has two independent sets of rods. The two control
inputs are the rates of motion of the control rods, denoted 1, and uy. The positions of the
control rods, denoted vy and v», respectively, are measurable.

New nuclear fuel is more active than older fuel and thus the plant dynamics may be
quite different as the fuel ages. The resulting changes observed in the behavior of the
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Figure 7.1: Primary Circuit and Steam Generator.

plant are described in the next section. These dynamics are also dependent on the power
demand, since the load on the plant also modifies the operating point of the PWR.

Modelling the PWR

The physical system dynamics around an operating point are modelled by the transfer

function:
Ys(t) = Gy (A)V(E) + Ga(A)d ¢ (1) (7.5)
with
ys(t) =1 Pr(t) and v(t) =
vo (t)
AO(t)

where A denotes the delay operator. The inputs for this model are the steam flow distur-
bance dy and the positions of the two sets of rods; the outputs are the mean temperature
T, the primary power P;, and the axial offset AO, respectively (see Figure 7.1).

To quantify the change in behavior of the plant as the fuel gets older, and as the power
load varies, a nonlinear simulator has been used which is based on first principles models.
It includes models for the pressurizer, steam generator, and the turbine, but not the alter-
nator. Models have been identified using the technique presented in [7]; the identification
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method consists of estimating coefficients for state-space realizations of the system at dif-
ferent operating points by minimizing a quadratic criterion via an iterative Gauss-Newton
algorithm [45].

As an example of the variation of the system dynamics with changes in the system
operating point, step-responses of the models are shown in Figure 7.2 for the fuel at half-
life, and operating at both 0.57, (dashed lines) and 0.997P,, (mixed lines); these models
are denoted by 650, and (?99, respectively. For comparison purposes, step responses cor-
responding to models assuming the fuel is new, and operating at 0.57, (denoted Gsg), are
plotted in the same Figure (solid lines).

~

Figure 7.2: Step-responses of Gsg, Gso and 599

PWR Model Variations with Fuel Age

As the fuel gets older it is less active, thus the control authority is decreased. However,
the plant is more maneuverable, that is the plant has lower gains and shorter time constants
for its dominant dynamics. Note in Figure 7.2 that the gains corresponding to the second
control position, v2, do not change as much as those of the first control position, vy, with
respect to the fuel age. This is because the static characteristic of the second set of rods is
periodically re-identified, hence the corresponding gains are rescaled. At lower power, the
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second control input has more authority than the first, especially when the fuel is older,
and using the second control results in a smaller axial offset. At high power, however, the
second control input has less authority, so more control must come from the first control
input.

In considering only the variation of the plant dynamics with the fuel age, we restrict the
operating range, and only the behavior of the plant around 0.57,, is considered. However,
previous work has shown that a robust controller designed at 0.57,, will maintain perfor-
mance up to 0.97y [7]. In order to simplify the notation, the subsystem G- defined in (7.5)
and obtained from the models Gso and Gsq will be denoted G and G, respectively.

If we consider state-space models like those discussed in Chapter 3 for the PWR, the
coefficients in the realization matrices are not fixed, but vary slowly over the lifetime of
the fuel, thus their exact values are uncertain at any fixed point in time. To model this
uncertainty, we assume the coefficients in the realization may take any value in a fixed
interval, that is we consider parametric uncertainty as follows:

p(0) = Prnom + Pdeld (7.6)

where p represents a vector of uncertain coefficients and § is a vector of bounded, scalar,
slowly time-varying parameters.
The uncertain system model with realization matrix

s - [ A(5) B(8) }

C(6) D(d)

is rewritten as an LFT, §(8,A) = A x M, where the diagonal uncertainty structure A is
comprised of repeated entries of § and the delay operator A, and M is a constant matrix.
M has much larger dimensions than M (§). In particular for the PWR, two uncertain sytems
are considered. The first, denoted S;, contains a subset of uncertain coefficients selected
based on engineering knowledge of the physical system. The second system, denoted S»,
where all of the coefficients are uncertain, is subject to model reduction. The respective
realization matrices M; (6) and M>(8) are as follows:

a(d) | by, (6) by,
ctm(8) | drm, (8) d1m, (0)

Mi(6) = 4
1o cpy dpr, (6) dpr, an
CA0 dA01 (6) dA02
a(d) by, (5) by, (8)
Mo (S) = ctm(6) | drm, (8)  drm,(5)

cp (0) | dpp(6)  dpp, ()
€a0(8) | dao, () dao, ()
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The coefficients related solely to the steam flow demand, d s, do not vary with the age of
the fuel, thus only two inputs, the control rod positions v, and v», are listed above.

To derive the realization corresponding to S;, each term of the two first-order models
G and G is compared. The greatest variation in responses is related to the first input (see
plots on the first row in Figure 7.2), hence we model the coefficients in the second column
of the realization M;(9) as being uncertain. To account for the variation in the dominant
time constant and the temperature gain, the coefficients a and c7y, are also modelled as
being uncertain. Finally, the slight variation in the authority of v, is reflected in the direct
term drm,-

Placing the representation of S; into the LFT framework with a constant realization
matrix M; results in a Ay structure defined by

Ay = {diag[SI7, A]:|6] =<1 6,A € L()}.
The representation for S; is similarly placed in the LFT framework with M> constant and

A> = {diag[déI2, Al: 6| =1;6,A e L)},

Model Reduction and Design Results: Variations with Fuel Age

The objective is to determine if S» is reducible, in particular with respect to the uncer-
tainty block 6I12. Applying the model reduction results discussed in Chapter 5, we first
obtain solutions X > 0 and Y > 0 to the Lyapunov inequalities using the Trace algorithm
discussed in the preceeding section. The elements of the diagonalized matrix = = ¥ = X,
which we refer to as the generalized singular values for the model, are given in Table 7.3.
The realization is then balanced and truncated. We obtain a reduced realization for the

block Singular Values
6l | 0.5709 0.0577 0.0512 0.0377 0.0048 0.0024 0.0021 0.00201s
A 1.3657

Table 7.2: Generalized Singular Values for the PWR

uncertain system Sp, with an uncertainty structure of
Ayy = {diag[dls, A]: 18] <1; 6,A€ L)},

The model reduction error bound based on the results of Chapter 5 is 1.13 x 1072. As a
check on this predicted error bound, a magnitude response plot of

l?llp (A2 x Mp) — (Apy * MZr)le**lz
<1
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Figure 7.3: RS, RP and p bounds: 1st and 2nd D-K iteration

is used to determine an observed error bound. From this plot, the maximum observed
error is less than 2.5 x 10~4. We denote the reduced realization by S»,.

Using the models S} and S»,, controllers were designed using complex p-synthesis,
which we denote by Kmul and Kmu?2 (details can be found in [5]). The robust performance
(RP) u-bounds for the closed-loop systems are shown in Figure 7.3 (solid and dashed
lines), where two iterations (of bounds computation) were completed; also shown are the
nominal performance bounds (dotted lines) and the robust stability (RS) bounds (mixed
lines). Basically, lower valued bounds indicate better system performance. Thus, from a p-
theory perspective, the results for the controller designed using S»;, the reduced model, are
better. As aresult, we can trade robustness over a larger and more conservative uncertainty
set for increased performance on a smaller but more appropriate uncertainty set.

The behavior of the closed-loop systems was also evaluated using the nonlinear simu-
lator of the PWR. The nuclear fuel is assumed to be at half of its expected lifetime. Figure
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7.4 shows the simulation results for Kmul, and Figure 7.5 shows the same simulation re-
sponses for Kmu2. In each of the Figures, Ty, (solid lines) is the mean temperature, and
T,y (dashed lines) is the reference temperature; Py (solid lines) is the primary output power
and dy (dashed lines) is the steam demand; AO is the axial offset. The control signals are
plotted in solid (1) and dashed (u») lines.
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Figure 7.4: Closed-loop response: Controller Kmul

The two control designs result in similar step response behavior, however, note that
the closed-loop response with Kmu?2 results in less axial offset than that for Kmul. Both
controllers result in minimal use of the control rods, as the controls do not change sign for
the commanded step change; this lengthens the lifetime of the fuel. Overall the controller

designed using the reduced model S, performs better than that using the model simplified
based on engineering experience.

PWR Model Variations with Fuel Reactivity and Operating Power

We now consider simultaneous variations in the state-space coefficients with respect
to the age of the fuel and the power demand. The state-space realization for the system is

a(oé1,62) by, (61,62) by, (61,02)
crm(01,62) | drm, (61,62) drm,(61,82)
cp(61,62) | dpr(61,62)  dpr,(81,62)
€a0(61,62) | dao,(61,02)) dao,(81,02)

M(61,62) =
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Figure 7.5: Closed-loop response: Controller Kmu2

The coefficients in M (81, §2) vary with the uncertainty in a more complicated manner
than described before. The parameter dependence is evaluated over a range of operating
power (1) and fuel reactivity (62). All coefficients of the selected first-order models are
individually fit with rational functions of the form e + f&,(1 — g&1)"th and [ + mé&», for
which the coefficients are obtained using a least-squares technique. The complete param-
eterization is of the form

e+ (fh—eg)b
1-g6;

(I +mdyp) + (' +m' 6») (7.7)

where ~1 < §; < 1,i = 1,2. We can again rewrite this as an LFT, $(51,82,A) = (A » M),
where the uncertainty structure for the full LFT realization is

A = {diag [61]12, d2612, A]:[6i] = 1; 8;,A € L(I)},

and M is a constant matrix. See [6] for more details on modelling and control synthesis
for the PWR with respect to two uncertain parameters.

With two varying parameters, this model is too complicated to simplify using intuition
about the physical operations of the system. Thus, we compare u-synthesis controllers
designed using the full model and a reduced model.
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Model Reduction and Design Results: Variations with Fuel Age and Operating Power

Applying the model reduction method of Chapter 5, we obtain solutions X > 0 and
Y > 0 to the Lyapunov inequalities, again via the Trace algorithem, and a diagonalized
matrix £ = Y = X with elements shown in Table 7.3.

block Singular Values

601112 | 1.0014 0.3054 0.1239 0.0812 0.0229 0.0058 0.0055I5 0.0051
62I1p | 1.2099 0.5362 0.1876 0.0402 0.0193 0.0074 0.0055I5 0.0037
A 1.9040

Table 7.3: Generalized Singular Values for the PWR

The realization (A, M) is then balanced and truncated. We obtain a reduced realization
for the uncertain system, denoted by S,, with an uncertainty structure of

Ay = {diag 6114, 6213, Al : 161 = 1; 6;,A € L(I2)}.

The model reduction error bound based on the results of Chapter 5 is 1.1 x 107!, As
a check on this predicted error bound, magnitude response plots are used to determine
an observed error bound. From these plots, the maximum observed error is less than
4.5 x 1073,

Controllers for both the full and reduced models were designed using p-synthesis meth-
ods. RP and RS bounds have been compared, and nonlinear simulations run on the two
closed-loop systems. There is no degradation in performance with the controller designed
for the reduced model; the RP bounds are essentially the same. Nonlinear simulations of
the closed-loop systems are shown in Figures 7.6 and 7.7. The nuclear fuel is assumed to
be at half of its expected lifetime, and the load at maximum operating power. These re-
sponses, along with the u-performance analysis, indicate that the controller designed using
the reduced model performs almost identically to that designed using the full model.

A general discussion of methods for computing reduced uncertain system models has
been given. One simple approach was implemented and applied to LFT models for the
PWR circuit of a nuclear power plant. The results, to date, of this application show the
model reduction techniques described in this thesis to be beneficial in the control design
and analysis of uncertain systems.
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Chapter 8

Conclusions

We conclude with a brief summary of the work presented in this thesis, and a few
remarks on future directions for related research.

8.1 Summary

The emphasis of this research has been on model reduction methods and the devel-
opment of related realization theory for uncertain systems. These uncertain systems are
generally modelled by a nominal LTI system and a set description of uncertainty or pertur-
bations on the system. Using the LFT framework, we can rewrite these models as a LFT of a
constant realization matrix on a block diagonal structured set containing both uncertainty
and delay operators. In this setting, we can compute guaranteed error bounds for reducing
the dimensions of both the state-space and the uncertainty description by generalizing the
notions of balancing and truncating state-space realizations.

When the model reduction can be completed with zero error, the model is said to be
reducible. Naturally, this has led us to consider related realization theory concepts for
these uncertain system models, most obviously reducibility and minimality, and to a lim-
ited extent the construction of meaningful controllability and observabilty matrices in this
setting. We have presented a necessary and sufficient reducibility condition for systems
represented by LFTs on structured uncertainty sets, which is also sufficient for multi-
dimensional state-space realizations, and which has allowed us to draw connections to
nimimal representations of formal power series.

Practical aspects of this thesis include the implementation of the model reduction meth-
ods for uncertain systems in Matlab subroutines, and the subsequent application to a pres-
surized water reactor of a nuclear power plant.
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8.2 Future Research

We note related future research topics.

In this thesis, we have addressed the reduction of stable uncertain systems. Ob-
viously, reduction methods and error bounds for unstable uncertain systems are
needed. One immediate method would be to scale (or damp) the realization and un-
certainty set, as discussed in Section 4.5, and apply the techniques discussed herein.
Alternatively, a coprime factorization approach could be used; an initial attempt at
this is discussed in [4].

We have focused on balanced truncation model reduction techniques. Other methods
such as singular perturbation approximation and frequency weighted techniques are
also being developed.

Realization theory for uncertain systems can be further developed; complete connec-
tions among all existing results have yet to be established.

We presented one suboptimal algorithm for computing reduced realizations. Al-
though this algorithm is relatively fast, and is easily implemented, the development of
good heuristics for computing reduced rank solutions to general LMI problems would
benefit not only the model reduction and reducibility results we have discussed in
this thesis, but would also have more widespread application within the control com-
munity. In particular, the primal-dual potential reduction methods discussed in [68]
may be of use for this problem type.

Lower error bounds for model reduction of uncertain systems are currently being
investigated.
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Appendix A

Robust [»-Stability Results

We provide a sketch of the proof for Theorem 4.6, the LMI condition for robust [»
stability to block structured time-varying uncertainty. Sufficiency of this stability condition
can be shown using established analysis results given in Chapter 2. The necessity condition
is somewhat trickier: the following lemmas, due to Paganini [57], will be used in the proof.

Lemma A.1 Letz €1} andv € IT*. The following are equivalent:

@ [vI3-1zl3 =0
(i1) there exists A € LT, 1T, Al <1: Av =2z

Lemma A.2 Letz,v e lf}. The following are equivalent:

(i) [T v(e/®)v(el®)* — z(el®W)z(e/®)*dw = 0
(ii) foralln € C4,|In*v|l, = lIn*zll»
(ii1) there exists 6 € L(I),[|6]| <1: élzv =z

Lemmas A.1 and A.2 are immediate, with the exception of Lemma A.2, (ii) = (iii),
which we do not use directly, and hence will not discuss in detail.

The uncertainty structure defined in (4.1), with both full and repeated scalar blocks is
considered. Let z € 1%, and consider the conformal partitioning of z,

=17 T T T T
Z~[zl---2p2p+1---zp+f].

An analogous partitioning of Az can be made. Consider the following functions of z and
&= Az
Di(2) = D pew ERE K — zi(k)zi(k)*, i=1,...,p
2 2
Pp+j(x) = H(Ax)pﬂ'H - Hzp+j’ sy J=1...f
A(z) = diagl®1(2),...,p(2), pp+1(2)Iny, - -, Py f(2) I, 1.

Recall that the set of constant matrices that commute with A is denoted by 7. Now consider
the following sets:

T ={TeT:T>0},7T ={TeT:T=0}, and
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V={A(2) izl = 1}.

Note that we can define an inner product space based on 7 by defining

p S
(T, W) = Z Trace(T;W;) + Z tpejWpasj-
Jj=1

i=1

Lemma A.3 [57] V is convex and compact in the inner product space T .

Proof of Theorem 4.6:

Sufficiency follows from a straightforward application of spectra properties of opera-
tors on Hilbert spaces. First note that there exists Y > 0,Y € 7 such that AYA* -Y < 0 if
and only if 7(Y"2AY?) < 1. Therefore ||y "2 AYZA| < |[Y "2 AYZ|[ A < 1 for all A € By,
and as a result

1¢ spec(Y‘%AY%A), for any A € Ba

by Lemma 2.1. Thus
(I- Y ZAYZA) = Y~2(I — AA)Y? is invertible in £(I») for all A € B,.

The result is then obvious.

Necessity is shown via two main steps: first, if (I — AA) is invertible for all A € B, then
VNT =@;andsecond, VNT =& implies there exists Y € T : AYA* — Y < 0.

Assume VN 7T = @, then there exists z € I : ||zl = 1 and A(z) = 0. Let & = Az.
Then ||Epes|| =[|zpes|* 2 0, for j = 1,..., fand Sy E(k)E k) * ~ 21 (K)z: (k) * = 0, for i =
1,...,p. By applying Lemmas A.1 and A.2, we can construct a A € Ba, LTV, such that
AAz = z, leading to a contradiction.

Now, since V and T are disjoint convex sets in the inner product space 7, and V is
compact and T is a closed cone, we can use a separating hyperplane argument to find
Y € T and n > 0 such that

(YA = —-np<0=<{(Y,T)

forall A€ Vand T € 7. Note that (Y,T) = 0 for every T € 7 ' implies Y > 0. Using a
small perturbation of Y to ensure Y > 0, then by continuity and compactness of V we can
scale n to 17 such that (Y,A) < -7 <0, forallA € V.

Then, forany z € I}, |lz|| = 1, € = Az,

p S
(Y,A(2)) = D> Trace(Yi®i(2)) + D> YpiiPpsj(2) = (A*YA-Y)z,z) < 7.
i=1 Jj=1
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Appendix B

Necessary and Sufficient Reducibility
Condition: An Alternate Proof

An alternative proof for Lemma 4.13 is given which is based on evaluating reducibility
of the system representation in the structured induced 2-norm. We use the form of the
SI2-norm given in Lemma 5.2 to prove Lemma 4.13, thus again this condition is necessary
for time-varying operator uncertainty.

The Bolzano-Weierstrass theorem (see [48] for example) is used without reference in
this proof of Lemma 4.13. The following lemma is also used in this proof.

Lemma B.1 Suppose we are given two sequences, o, € R and b, € R", such that
limg— Oxbg = 0, and limy_. , by = by, where by and bg are bounded. Then

lim oy by, = %irn oxbg = 0.

ko0

Proof. If by = 0, the result is trivial.
If bg # 0, then for any € > 0, there exists N such that ||bg — bi|l» < € for all k = N. But
lokbillz = okl (lboll2 — €), implying limg .. 0% = 0, thus limk_.., oxbo = 0. |

Proof of Lemma 4.13:

We first consider the special case A € A where
A = [diag [61,62,...,8,]: 8 € LU},
Thus, the matrix set 7 consists of strictly diagonal matrices, that is,
T = {diag[ti, to,...,tp]: t; € R}.

By assumption, and Lemma 5.2, ||A x M|[g;p =

TAT! -L-TB
inf 4y : there exists T such that & y? <1y=0
Y ~rCT"t iD ’

y?
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which implies we can construct a sequence yx € R*, where limy_. yx = 0, and an accom-
panying sequence of matrices, Ty € 7, such that for each y; > 0,

TAT;' -4+ TiB
T 1 . Vit <1
T CTy A—/ZD

Without loss of generality, we assume that
lim T(TAT ) < 1, lim TyB = 0,

and lim CT;! =0, (B.1)

otherwise, we can construct a subsequence of Ty to satisfy these limits. If neither T} nor
T, 1 converge to a finite limit, we similarly assume they converge in an extended sense by
refining the sequences: limy .. Tx = T, and limy .o T}, 1 = 7-1 where

f:diag[O,...,0,0'1,...,(Tm,oo,...,oo],

T~! = diag[eo,..., 00,07 %,...,0,1,0,...,0]

and m < p.
Partitioning A, B and C correspondingly, and applying (B.1), we obtain an uncontrol-
lable/unobservable decomposition, that is

By
TB=T| By | =0implies B» = 0 and B3 = 0;
B3

CT™ ' =[C, G G317 = 0 implies C; = 0 and C» = 0;
and
TAT1T-1*A*T* < I implies Ao = 0, A3, = 0 and A3
Al A Az By
0 Ax» Ay O
0 0 A3z O
0 0 C3 0
We know by stability that there exists a nonsingular T € T such that T(TAT 1) < 1.
We then partition T into three subblocks corresponding to the partitioning of A, that is,

i
«

Thus we can write M =

T, 0 o0
T=| 0 T 0 | and define
0 0 T;
U™ 0 0 00 o0
Y= 0 0 0 |andX=]|0 0 0
0 00 0 0 T&T
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Since Ap Ty T AY, — TTYITY < 0 and AR T T3A — T4 T5 < 0, by scaling X and ¥ we
can then find X and Y which satisfy conditions (i) — (iii).

A similar, but less general, argument is used to show that conditions (i) — (iii) hold if
either limy . Tk; and/or limy; .« Ty L exist.

The proof for uncertainty structures with repeated §; is obtained by extending the
above using fairly standard linear algebra and analysis techniques. In this case the com-
mutative matrices, Ty, are block diagonal, rather than strictly diagonal. Using singular
value decompositions we set Ty = UxZxVy', where 3 is strictly diagonal and Uy and Vj are
block diagonal unitary matrices. Since the maximum singular value is unitarily invariant,
we drop the Uy terms and rewrite the limits in (B.1),

lim T VEAVEY < 1, lim S, Vi'B = 0,

and lim CViZit =0, (B.2)

again, without loss of generality, assuming we've properly chosen the subsequence k so
that these limits are satisfied.

Since V = {Vi : V'V = I} is a closed bounded set, Vi has a convergent subse-
quence in V. Similarly, W, = ZkV,fAVkZ,;1 has a convergent subsequence with unity
bounded maximum singular value. We take a series of subsequences denoted by k such
that limg__ yp = 0, lim;_  Vp = Vo and limg | W; = Wo, where Vo € V and WyWy < L.
Denote By = VB, Cg = CVp and Ag = V§AVy. Applying Lemma B.1, we can show that the
limits in (B.2) can be written as

lim S¢Bo = 0, lim Co=7' =0 (B.3)
k— o0 k—co

and,
}iin;lo Wy = I&ri A E = Wo (B.4)

where Ay = VIS‘AV,;, and limg_  A; = Ao. We then apply methods of the preceeding proof
to each &; block of 5 and Ag, Bo and Cy to obtain an uncontrollable/unobservable like
decomposition. Finally, we use stability and permutations to obtain matrices, X > 0 and
Y = 0, both in T, satisfying (i) — (iii).

In particular, consider the case A = {diag[61ln,, 82In,]}. Suppose neither lirn,zﬁoo =

k
nor limg_ Zil exists. Then, as in the preceeding non-repeated case, we assume these

limits exist in an extended sense, so that there is subsequence IQ, and a permutation within
each &; block such that lim,;_ﬂoo - S = diag[ﬁl, S, ] where

21 = Cﬁag[o,...,0,0'11,...,0'17-,1, [o . OO]

and

S, = diag[0,...,0,0%1,...,0%;,%,...,0]
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with $-1 described analogously.
Permuting and partitioning Ag, Bop and Cg corresponding to s, and using the subse-
quence for S in (B.3) and (B.4), leads to the following decompostion:

Al A Az | Aiw Ais Ais | By
0 Az Axz| O Axs Ax | O
0 0 A3z O 0 Azs]| O

Mo=| Ay Agr A4z | Agy Asgs Age | By

0 As2 Asz3| O Ass Ase| O

0 0 Aez O 0 Ags| O

0 0 3 0 0 Cs | O

where M, represents the realization after transformation by V. The partitions of My are
shown which correspond to the partitioning of £. For simplicity we have not changed the
notation of the system matrices after permuting.

As Ay is stable, the submatrices

A3z Aszp Ar Ay
and
Agz  Age Agn Ay

are stable by Lemma 4.7. By Lemma 4.9 there exist
~ Y17 O ~ X3 O
0 >0and X =| >0
0 Yy 0 Xg
An A A Au | B
oAl | g 11 Alg ¥y 1 [Bf B}] <0
Ag Agy Agyl Agg By

>k
A3z Asze | ~| A3z Asg o Cy
X - X+ [C3 Cg] < O.
[ Agz  Ago } { Aez  Ass } { ¢ 0

Now, setting Yy = diag[Y1, 0,0, Y4,0,0] and X, = diag(0, 0, X3, 0, 0, Xg] gives

satisfying

and

A()Y()Ag - Yy + B()Bai< <0, ASX()A() - Xo + C(;k Co <0

and XoYy = 0.
Finally, define Y = V{YoVp and X = VoXoV{. Then Y > 0 and X > 0 are commutative
and satisfy conditions (i) — (iii). |
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Appendix C

Balanced Truncation Model Reduction: Proofs

In order to prove that the balanced truncation error bounds of Theorem 5.5 and The-
orem 5.8 hold, we require a number of preliminary lemmas. We begin by discussing con-
tractive matrices and associated results which are of general use for both 1D and uncertain
systems. An initial version of these results were first published in [69].

C.1 Contractive Realizations

Definition C.1 A matrix X is contractive if || X|| = ¢ (X) < 1, and strictly contrac-
tive if || X]| < 1.

If the matrix X is a realization matrix, the following lemma gives a well-known result ([13],
[22]) on the relationship between the #, norm of a transfer matrix and realizations of the
transfer matrix.

Lemma C.2 Suppose G represents a stable discrete time transfer matrix, then ||G || <
A B
1(< 1) if and only if there is a realization for G, denoted by M = c ol such that

M is contractive (strictly contractive).

A generalized version of this lemma for uncertain systems is given in Chapter 5. Lemma
C.2 and the following lemma, which relates the contractiveness of a matrix to that of re-
lated submatrices, provide the main steps in the proof of the error bounds for balanced
truncation model reduction.

Uy U \% Z
Lemma C.3 Suppose U = e and V. = H are contractive
Z Uxn Vor Vo

(strictly contractive). Then

0 »Un  Un
M = %Vu Z ‘Jl_gUZZ
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is also contractive (strictly contractive).

Proof. The result is easily proved by dilating M to the following matrix,

0 \—}—Z—Uu Uiz %Uu
T/L?Vu Z %Vzg : 0
Ma:=1| vy, %sz 0 : —;%sz
Ly 0 -LUp -7
| 2Vl J2H2 i
and noting that MM, < I. |

Given a balanced system realization with 3, = I, we can prove the following lemma.

]>O,

21 0

Lemmma C.4 Given a balanced realization (A,M) withY = X = [ 0 I

satisfyving the Lyapunov inequalities, then

1
-1 _1 1 _1 Azlzl 2 Ad»
%A 5 7A53] 3B VL
1 and leAHZl - ZIAIZ
Az A} By 1

are contractive.

Proof. Rewriting equations (5.6) and (5.7) gives

[A B] ro AT <Y (C.1)
0 I B* |~ '
and
X 0 A
A* C* < X. C.2
Premultiplying and postmultiplying (C.1) by Y~ and (C.2) by X~ 2 shows that the matrices
i 1
X2AX™2
[Y—%Ay% Y—%B] and \ (C.3)
CX™2

. S 0
are contractive. Substituting I } for Y and X in (C.3), and permuting the resulting

matrices gives the desired result. |
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C.2 Balanced Trunction Model Reduction Error Bounds

Proof of Theorem 5.5:

The proof of Theorem 5.5 relies heavily on the preceeding lemmas. We assume that
Z» = I. In this case, we must show that

G- Grlle = 2.

The final result follows from scaling and applying this result recursively.

By Lemma C.2, it suffices to show that there exists a realization for %(G — G4 ) which is
contractive. One realization for —Zl-(G — Gy) is given by

Motivated by the results of Lemmas C.3 and C.4, we consider the following similarity trans-

formation,
- 1 _
T < 0 0 I 0O
Lsit st o0 |
V2=l V2l
0 0 0 I
giving
- 1 L _
ZfAuZl - ﬁZfAlz 0 0
1 1
1 -3 1 3 1
=Ax X A “=A2127 =B
TMT“1= S22l 1 _2%2 Vii 21 1l \{2% 2
_1
€z, ? G 0 0 |

To prove the main result, we will show that TMT~! is contractive, and hence M is contrac-
tive. Note that

TMT ! =

o~ 0o o
c o~ o
o o O ~
~ o o o
=)
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where ) 1 1 1 o
0 _\/17221_21412 ZIEAHZIZ Zl 231
1 . - | 1 A % 1
M\: ﬁAlel ) Ao : 'ﬁAzlzi \—/?Bz
, e B . - ‘
ZfAule S iAo 0 0
-z . 1 :
Clzl . ﬁcz : 0 O |
Let

1 1 11 1
Uil =%,°A1p, Up=I[27A1nZ] 2,°B1], Ux =[AnZ{ B,

1 1 1

-1 SPAE, 2

Vii=AnZ %, Vo1 = ! 11_;1 , Voo = { 21412 } and Z = Ap.
Clzl 2

Uy U Vv 4
Note that U = [ ZH 12 :} and V = [ H } are contractive by Lemma C.4. Ap-

Uz Vor Va2
plying Lemma C.3 shows that M is contractive, and therefore M is contractive. Thus
%—HG-—GTHOQ < 1 by Lemma C.2. N

Proof of Lemma 5.7

Suppose (A, M) is stable and balanced, and

A A B R
A= 120 = candC=[C G |.
Ay A B

Then there exists ~
>
3= [ } > 0, diagonal,
2o

such that
ASA* -3+ BB* <0and A*SA -3+ C*C <0,
which implies

A A

ASA* — S+ ApSrAf, + BB* <0and A*SA - S+ A5 540 + C*C < 0.

Thus, (3, M) is also stable and balanced. n

Proof of Theorem 5.8:

The proof for Theorem 5.8 follows from a strict generalization of the proof given for
the 1D case.
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By repeated permutations, scalings and truncations, we can apply the methods of The-
orem 5.5 along with the sufficiency direction of Lemma 5.3 to obtain the stated bound.
That is, we assume the system realization is reduced from

A A B
M=1] Ay Ax» B
c C» D

~ ~

—~ A B N
toM = [ & D },with 2 = diag[Z,I]. The corresponding uncertainty structure is reduced

from A = diag[61ln,, -+, 6pIn,] to A = diag[811y,, - - - 1 6p-1In,_;, 0pl5, ], where np =
tp—1 ) ) . .

Zﬁ-z”l )5,, j < Np, that is, only the representation submatrices corresponding to the last

uncertainty variable 6, in A and the last singular value oy¢, in £, are reduced. As in the

1D case, we assume 0y, = 1 and subsequently show that 3 H(A * M) — (A * ]W)HSIZ <L
Let

A 0 0 =B
ya 0 A A Y?B
0 A1 A 5B
1A 14 1
~5C £C Lo o

and A = diag[ﬁ,A], with corresponding commutative matrix set 7 . Using a similarity
transformation T like that in the proof of Theorem 5.5 gives

0 01T O
~ O I 00
TMT ! = My
I 000
0 0 0 I
where
0 Lsba, i sHAst S4B
ol al

My = -lgAle_Z A %Azlzz %Bz

S1As-t i Lsta,
“ “ . V/'Z‘ < 12 . O O
| Cs-3 : -V%Cz : 0 0 ]

Now defining U and V as in Theorem 5.5 and using Lemma C.4 and the fact that the
Lyapunov inequalities are satisfied by assumption, gives us that U and V are contractive.
Applying Lemma C.3 then implies that M; is contractive, and hence M is contractive. Finally,
from Lemma 5.3 we have that —;— Hﬁ * ]WHSIZ <1 [ ]
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Remark C.5 Note that although the similarity transformation T used in the preceed-
ing proof is not strictly an element of T , it can be written as the composition of an
element of T and a permutation, and thus is allowable.
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Appendix D

An Extended Proof for Recognizable Series
Realizations

We provide a proof for the result given in Theorem 6.5, part(c), that two minimal lin-
ear representations for a series are similar, where we assume R is a field, and we consider
series with coefficients in R4*™, Recall that R9*"™((X)) has the structure of a right R(X)-
module as described by the identities in equation (6.1). The presentation of these results
combines both the notation and the logic of the proofs used in [38] and [8] for the (respec-
tive) "SIMO" and "SISQ" cases.

We consider linear representations {h, f, g} such that s(w) = hf (w)g for all w € XT,
thus f - p for p € R(X) is defined analogously to S - p. Furthermore, for the proof we
assume, without loss in generality, that the g "outputs” of the series map are distinct (that
is, the map defined by the series is injective, or h is full rank).

Theorem D.1 Two minimal linear representations of the same series are similar.

Proof. Suppose {h, f,g} is a minimal linear representation of dimension N for a series
S, and define

J={p e RX)hf p=0}

Then R(X)/J is isomorphic to h(Im f) by Theorem 2.8, thus
dim(R(X)/J) =dim(h(Im f)) < N

as an R-vector space.
Clearly J C Ker S, thus

dim(R(X)/J) z dim(R(X)/Ker §) = dim(Im S) = rank(Hs) = N.

Thus dim(R(X)/J) = N, J =Ker §, and the R(X)-modules Im S and h(Im f) are isomor-
phic. Furthermore, using the distinctness assumption, we have that h(Im ) f = RI*N,
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As aresult, there exists an R-isomorphism  : R9*N — Im S such that for any p € R(X)
and v € RN,

Cvf-p)=Cv)-pand T(h) = S.

Now let @ be defined on Im S by @(S) = 5(1). Then for v = hf - p, we have @ (L(v)) =
@) -p)=@(S-p)=(S-p)(1) =hf- -pg=vg. Thus

ol =y,

if g is defined by v — vg.

Now, suppose {ﬁ,f, g} is another minimal linear representation (of dimension N) for
S. Then there exists an analogous isomorphism f Therefore, there exists an isomorphism
W =CloC: RPN . RN gatisfying

wwfwﬂ:WWU“m wh)=h,andgoy = g.

The final result is obtained by writing these relations in matrix form. ]
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