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ABSTRACT

It is shown that the space charge wave modes of propagation which
are usually associated with the drifting motion of an electron beam can
also propagate and carry energy in stationary electron beams or plasmas
of Tinite tramsverse cross section. The propertles of these modes of
propagation have been studied by considering the plasma as a dielectric
and solving the field equations. The effect of d.c. magnetic fields have
been included, while lon motion and thermal velocities have been neg-
lected. These modes have phase velocities which are generally much less
than the velocity of light. Two distinct types of propagation are
reported; the Tirst involves charge density variation within the plasma
(body wave) and the second involves a perturbation of the surface of the
plasma (surface wave). Both of these types have modes which exist down
to zero frequency as well as backward wave modes. The angular dependent

modes can exhiblt Faraday rotation.

One of the potentially useful features of these modes of propaga-
tion is that of plasma diagnostics. The effect of radial charge density
variation within the plasma column has been investigated and methods for
experimentally determining this variation, as well as the average charge
density, are suggested. The effect of collisions on wave attenuation is

examined approximately.

The interaction of a moving electron beam with these modes is con-
sidered, as well as the backward wave start oscillation conditions for
backward wave interaction. A qualitative explanation of these modes is
given in terms of an equivalent electrical circuit transmission line.
Many of the features of these modes have been verified experimentally
by measuring the phase velocity along a mercury arc discharge column in

an axial magnetic field.



T
I INTRODUCTION

One of the fundamental limitations in the generation of higher
microwave frequencles with conventional negative grid vacuum tubes
comes from the Tact that an electron may spend an appreciable fraction
of a cycle in the cathode grid region. To overcome the deleterious
effects (1) of such a condition, the Heil brothers (2) and the Varian
brothers (3) proposed a device (Klystron) which utilizes a drifting elec-
tron beam to produce dense current bunches which are passed through a
cavity resonator where the r.f. energy can be extracted. Webster (M)
made the first satisfactory analysis of a klystron using a kinematic or
bunching theory. He assumed a single veloclty electron beam to be
passed through a narrow-gap cavity rescnator which perturbs the average
velocity of the electrons in the beam, sinusoidally in time. The elec-
trons which were decelerated by the cavity filelds will be overtaken by
electrons which were accelerated by the cavity flelds, but which left the
cavity at a slightly later time. This results in dense bunches of elec-
trons at some distance down the beam centered about the electron which
passed through the cavity when the cavity fields were changing from
decelerating to accelerating. The operating characteristics of the
klystron can then be determined by investigating the problem of passing
these dense current bunches through a narrow gap cavity resonator similar
to the one used to perturb the electron velocities. Although the kine-
matic theory satisfactorily accounts for klystron operation in most cases,
it is by no means complete since the mutual repulsion (space charge)
forces between electrons have been neglected.

A more general theory including space charge was worked out by Hahn

(5) and Ramo (6). One of the problems they considered was that of a
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drifting, ilon-neutralized, cylindrical electron beam in an irfinite axial
magnetic field. They found in general that there are two space charge
waves associated with the drifting motion of an electron veam; one of
these space charge waves has a phase velocity slightly greater than the
average velocity of the electron bteam (fast space charge wave) and the
other has a phase velocity which 1s, in the case of a one-dimensional
electron beam, an equal amount less than the average electror beam velo-
city, (slow space charge wave). The propagation eguation for these space

charge waves in a one-dimensional electron beam i1s¥*

2 2 /
w_ - (w - Bu = 0 I.1
o - (0= Bu) (1.1)
- 0,
<o 4 . “ 2
vhere W o= - 18 the electron plasma frequency, u,, 18 the average
- C

electron beam velocity, and all guantities are assumed to have

exp [j(ws - Bz)] devenderce. The solutions of this equation are

w +:@p
Er R (1.2
B - (1.2)
0z
w - w
- _ P ’/I 2
p . : (1.2)
0%
These traveling wave soiutions have different phase velocities <Vpha°e =
Pl
W/ B)
L - - 1}
Yo e (fast space charge wave) (I.A)
ph W= U oz )y
b
v =y (slow space charge wave) (I.5)
ph  w+a cz j ? ‘
P
but have the same group velocity (v? = du/dﬁ)
=S
v o= u . (1.8)

*A simple derivatiocn is given in Appendix 1.



Tae group veloclity represents the rate or energy transfer, and as can

be seen from .6, a stationary (u . = 0) one-dimensional electron beam
oz

does not propagate space charge disturbarnces. These space charge waves
are Jjust the natural plasma oscillations bodily transpcrted at the
average drift velocity of the plasma sc thalt an observer moving with
tne drift velocity would see a plasma resonance which does not depend
on the wavelength of the disturbance. As will be shown in this paper,
however, an average velocity of the elecvron beam 1s not essential to
the propagation of space charge disturbances when the electron beam has
finite transverse geometry. The propagation equations derived by Hahn
(5) ard Ramo (6) predict this behavior; however, their interest was con-
fined to the drifting electrcr beam sclutions anc the possibility of
propagation slong a stationary electron beam was not considered.

Rigrod and Lewis (7) considered the somewhat more difficult problem
of an electron beam formed in a region of zero d.c. axial magnetic fileld
injected intc a regior of noa-zero axial magnetic field; the magnetic
field being chosen tc be of the proper value to produce an inward force

on the electrons which just cancels the outward space charge force and

o

the centrifugal force on the electrons. This type of focusing i1s known
as Brillouin Flow (8). They found twc types of space charge wave
oropagation. One of these types of propagaticn involves a perturbation
in the average charge density, and the other type invcolves a rippling
of the surface of the electron beam with no perturbation of the average
charge density.

srewer (9) and Labus (10) have recently treated the even more
difficult problem of space charge wave propagation on en eletron beam

in an axial d.c. magretic fleld of arbitrary strength. Such ar analysis



was appropriate since the magnetic fields avallable In the laboratory
are less thar the intfinite value assumec by Halm and Ramo, but greater
thar the value necessary to produce Brillouin Flow.

Althcugh none of these later iavestigators considered the problem
of space charge wave provagation in the absence of any drifting mction
of the electron beam, the problem of electrcmagnetic wave propagation in
vaveguldes filled wizth stationary ion-neutralized plasmas in arbitrary
axial magnetic fields has recelved considerable attention. Buhl and
Walker (21), Gamo (12), Van Trier (13) and others, have examined how
the well-known electromagnetic modes of propagation in a wavegulde are
rodified by the introduction of a plasma into the wavegulde system. In
parcicular they examined how the cutofZ freguencies oI the various modes
cf provagation which exist in the system are perturbed by tte presence

of che plasma and how the plane of polarization of the angular dependent
A [}

modes 1s rotated (Faraday rotation) as a function of distance along the

a

Raal

waveguide., They found in general that the mode cutoff frequencies are
‘ncreased by the presence of the plasma and that the combinea presence
of plasra and axial magnetic field results In Faraday rotation. They
did not rind, however, that there exist slow wave space charge modes of
propagation analogous to those on a drifting beam at freguerncies which
are usually well below the cutoff frequency Zor the empty waveguide

4.

system (zctually belov the plasma frequency for the plasma-filled wave-

guide when the d.c. magnetic field is infipize) .

Cne of the useful applicatiorns of the space charge wave theory
described earlier is that of ca_culating the amouvnt of acise vower con-
tributed to the output of a klystron or traveling-wave tube (14) by the

electron beam in order to delermine what combination of parameters i1s
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required to make this noise power a minimum {15), (16), (17), (18).
At the cathode or potential minimum of an elecltron gun cr clode pro-
ducing an elsctron “eam, there are two scurces cf noise (19) which
serve as the boundary conditions for tae two space charge waves.
These roise disturbances propagate along the electron beam accoraing
to the space charge wave theory, ultimately appearing at the output
of the amplifier, which utilizes <the electron peam, with some finite
value. The extent to which tails noise power can be minimized deter-
mines the ultimaze sensitivilty or noise filgure® of the amplifier. In
most microwave devices using electron oeams, tac plasma frequency is
the order of hundreds of megacycles and the operating frequency is the
order of thousands of megacycles. This conditicn permits zhe effects
of [inite geometry on space charge wave propagation to be included as

a slight modification to the one-cdimensional space charge wave theory

The mcdification invoives using & plasma frequency which 1s less than
that appropriate to the average charge density. This reduced plasma
frequency is, Jjust as wizth the cne-~dimensional electron beam, the plasma
oscillation as seen by an observer moving with the electron beam. The
plasma osclliation frequency is reduced because come of the electric
field row terminates cn the charges induced in the conducting wall
(assuming tae electron beam is contained in a conducting cylinder),
thereby reducing the longitudinal restoring force. Tne amount by which
the plasma frequency 1ls reduced depends orn both the wavelengtn of the
disturbance aad the transverse geometry. For short wavelength disturb-

ances, The ficlads do not extend very far outside the eieciron beam, and

*The sum of the amplifiec thermal noise assoclated with the input inmpe-

dance and the roise power from the electron peam divided by the amplified

thermal noise



if the conducting wall 1s far removed, there is only a slight reduction
in the plasma frequency. However, for long wavelength disturbances,
the flelds do extend from the plasma and the reduction in plasma fre-
quency is quite significant; in fact, the plasma frequency 1s reduced
to zero for disturbances of infinite wavelength. Thus the propagation

constants for space charge waves in finite geometry can be expressed

@ R W

p= —= (1.7)
[0}

where the reduction factor R 1is in this case a function of the geo-
metry, beam velocity, and operating frequency. 1In the case of traveling
wave amplifiers operating at low frequencies, however, it is possible to
realize operating conditions where the plasma frequency near the poten-
tial minimum may exceed the operating frequency. In the course of
investigating the conseqguences of this situation on the propagation of
noise disturbances near the potential minimum (20), it became evident
that the approximate method of including the effects of finite geometry
Just described, was unsatisfactory. In fact, it became evident that
there were assoclated with very slowly moving and stationary electron
beams, modes of propagation other than the slow and fast space charge
waves (21). Presumably These additional modes of propagation are of
significance in determining how nolise disturbances propagate from the
potential minimum and may have a marked influence on the minimum noise
figure of a traveling-wave tube operating in this region. However,
these additional modes of propagation were of sufficient interest to
warrant investigation for thelr own sake; the noise Tigure investigation
therefore terminated in favor of a study of their properties. Smullin

and Chorney (22) have also recently reported the existence of these modes



of propagation.

It is the purpose of this paper to investigate the propagation of
space charge wave disturbances in stationary ilon-neutraligzed plasmas of
finite geometry, to describe the experimental measurements made to
verify their existence, and to demonstrate their relation to space charge

waves on moving electron beams.
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I7. PLASMAGUIDE MODES IN AN INFINITE AXTAL MAGNETIC FIELD

All of the "plasmaguide™™

modes of propagation which will be
treated in this paper are slow waves, 1.e., the phase velocity of the
waves is much less than the velocity of light. The properties of these
slowvwave mnodes can be adequately described by an approximate analysis
which neglects the a.c. magnetic fields (quasinstatic approximation);
however, it is appropriate to examine at least one of these modes of
propagation including the a.c. magnetic field. For small signals the
case of the plasma-filled guide in an infinite axial d.c. magnetic field
provides an example which can be treated by the complete Maxwell equa-

tions without becoming unduly complicated. This treatment can then be

compared with the approximate analysis for the same solution.

Definition of Plasma. The term plasma will be used in this paper

to denote a partially ionized gas which, in the absence of disturbances,
is electrically neutral. Unless otherwise noted, it will be assumed for
this plasma that: the ions are stationary, the electrons have no thermal
or random velocities and suffer no collisions, and the neutral gas
molecules play no role at all. Ionization and recombination will also
be neglected. BSuch a plasma as described above might be termed an ideal

electron plasma.

The Plasma-Filled Waveguide. Consider now a perfectly conducting

cylindrical waveguide completely filled with an ideal electron plasma

and letthere be an infinite axial magnetic field, Bo = .

* The term "plasmaguide” will be used throughout this paper to denote any
of the slow wave modes on & non-drifting, lon-neutralized, plasma column.

*%¥Subscripts zero and one will be used to denote d.c. and a.c. quantities
respectively.
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To study the propagation of waves in this system, the Maxwell

equations will be used,

OB
VxE =~ <= IT.1
x E 5 (IT.1)
vV x H J D (11.2)
X__ = “‘—'—B:E .
V.D =op (11.3)
vV-B =0 (IT.k4)
B = pH (11.5)
D = €E (1I.8)
along with the equation of motion,
5\/ e e
St (v -V)v = - —E-_-vxB, (11.7)
and the equation of continuity,
9p
Vedo=-5 (11.8)

where the convection current demsity J = pv , 1s assumed to be due to
the electrons only, and the symbol "e" i1s used to denote the magnitude
of the electronic charge only.

Assuming that all quantities have an average value plus a small

harmonic time dependent perturbation,

P(r,6) = F(r) +F (r) 5%, (11.9)

and are wave-like in nature,

s

F(xy,2) = F (%) e , (T1.10)
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where f" is the complex propagation constant,

r

= o+ JB, (11

gllows I1.1 and I1.2 %o be written in component form for cylindrical

coordinates in terms of the a.c. guantities as follows:

1 GELZ
== ) = =7 T
r oo r‘El@ J @ty }lr (11
e 1y = -jou H (1T
My S 79 P s g
OF
10 1 71 4
57 (P B - T = -dwn, By (1T
oH
L 1z : .
et f—'Hl@ - jwe B (1T.
OH
o Z_ 556 E (1T.
1r or o 1O
oH
10 1 ir
i (r ng) - 5 = Jw e By, ¥ I, (1T
where Jlr and Jl@ have been set equal to zero since the electrons
cannot move in the r- or ©O-directions. The above eguations, II.12
through IT.1l7, can be combined to give the field components Elr’ El@j
le, Hl@’ in terms of Elz and le only
E _ 1 aElz N S, 6le} (11
1r (l—‘2+ ]:i2> 51” r 5@
1e (["2+ k2) ] T o0 o 3
o - L [ J0 €, aﬁlz _fﬁ aHl? } (1T
1r (f—\g R kz) B RE or

J11)

.12)

.13)

16)

.17)

18)

19)

20)
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OE OH
-1 . 1z L 1z
Ho = =55 [ Jwe <+ 55 } s (IT.21)

where k2 = w2 By € is the free-space wave number. This demonstrates
that all field components can be derived from Elz and le . The dif-
Terential equations which Elz and le must satisfy are
Ve E 4+ B 4+ KB - jop J - -F-)i (11.22)
T "1z I 1z 1z~ IPHs “1g rﬂ € ’
2 2 2
= le+(r+k>HlZ = 0 , (IT.23)

where the symbol Vf denotes the transverse Laplacian which for cylin-

drical coordinates is

2
2 19 5) 1 9
7S o= =2 (r 2y s 2 (T1.2L)
T r or or r2 5@2
Since the differential equation for H does not depend on the presence

1z

of the electrons it can be concluded that the H-modes, i.e., those modes
which can be derived from le only, are not affected by the electrons.
This is argued physically by noting that the infinite axial magnetic
field constrains the electrons to z-motion only and the H-modes have no
electric field component along the z-coordinate to act on the electrons.
The H-mode solutions are therefore not of interest in this analysis.

The E-modes, i.e., those modes which can be derived from Elz only,
are influenced by the presence of the electrons. The solutions of the
differential equation IT.22 together with the appropriate boundary condi-

tions leads to the propagation equation for the plasmagulde modes. This

analysis 1s identical with the derivation for the ordinary Hahn-Ramo

space charge waves (5),(6), which are associated with the drifting motion
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of an eleétron beam; however, it will be shown that even in the absence
of any drift motion of the plasma, propagation of an electromechanical
nature can exist down at frequencies below the E-mode cutoff frequency
and the plasma frequency.

Neglecting the forces on the electrons due to the a.c. magnetic
fields and eliminating the a.c. convection current density and a.c.
charge density from IT.22 by means of the equations of motion IT.7, and

continuity IT.8, leads to

2

w
2 2 2 o) B -
Vi * 7+ x) (1 - “E:] B, =0 (1T.25)

w

2 Po°
where wb = - TR ig the electron plasma frequency. The differential
0

eqguation in Elz is a linmear approximation in that products and higher
order combinations of the a.c. perturbation guantities have been neg-

lected. Making the identification

2
w
2 2 2
< = ([7° + k) [1.—-421 . (11.26)
w
the solutions of II.25 are

B, = ElZ(O) Jn(Tr), (11.27)

where eJn@ angular dependence has been assumed and the second solution
which is not finite at the origin has been omitted.
Since the plasma completely fills the conducting waveguide, appli-~

cation of the appropriate boundary condition that the tangential electric

field must vanish on the wavegulde surface, leads to



Jn(Ta) = 0 5 Ta = p s (11.28)

where a 1s the wavegulde radius and.jpnv is the yth root of the nth
order Bessel function of the first kind. Solving for the propagation

constant in IT.26 using II.28

2
I S —— . (I1.29)

For propagating waves, « = O and r’g = “62 where 52 >0 . Setting
r,g equal to zero and solving for the cutoff frequency leads to the
familiar result that the E-mode cutoff frequency for a plasma-filled
guide is just the cutoff frequency for the empty gulde increased by the

plasma- fregquency

o =T ¢ +w . (11.30)

In addition to increasing the cutoff frequency, the presence of the

plasma allows B2 to take on positive real values for w < &§ thus
giving rise to a propagating wave. Figure 1 shows the phase velocity
versus freguency characteristics* of this additional mode in relation

to the perturbed electromagnetic waveguide mode. The lower branch rep-
resents the electromechanical or plasmagulde mode and has a high frequency
cutof'f at ab with no low frequency cutoff. Neglecting the free space
wave number k , the phase velocity of the plasmagulide wave at low

freguencies 1s approximately

*These will be referred to as w-p diagrams.
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Ph pnv

and can in principle always be made small compared with the velocity of
light by choosing the guide radius sufficiently small (@% << &co)’ plasme
frequency to be much less than the empty guide cutoff (wp << pnvc/a).

This would be a low paase velocity non-dispersive system at low frequen-
cles. The phase velocity at higher frequencies is always less than the
phase velocity at zero frequency, and is zero at w = o _ .

One of the interesting features of the plasmagulde modes is that the
high frequency cutoff is independent of the geometry and depends only on
tke plasma freguency. This is in contrast with the electromagnetic wave-
gulde modes where the cutoff frequency depends intimately on the geometry.
Also in contrast with the electromagnetic wavegulde modes where the number
cof modes which can propagate continues to increase as the frequency, is
the fact that at any frequency within the passband (0 <o < wD), all the
higher order (n > 0, v > 1) mecdes will propagate simultaneously as well
as the lowest order mode {(n = C, v = 1), if they are excited.

Power Fiow. Tae slope of the w-p curve at any point indicates the
group velocity or velocity at which energy is carried along in the systenm
and for the pliasmaguide mode the group veloclty is non-zero impiying that
there is a real power Tlow associaved with these mocdes.

The average power flow associated with these plasmagulde waves is

glven by

P, = %—Re j E. x I do (IT.32)

where z: is the guide area. For the lowest circularly symmetric mode

TI.32 becones



. w e B (C) A
P == Re J 2n - S Jo(Tr) (Tr) d(TIr)
Z < <_}:’2 - B = 1
0 > /
w € 3 ~ ¢ \ z -~
O z (Ta e \
= —s——s— B (0) =4 J (Taj
( ke . 8&.) lé 2 ,]_
w1y, o, L2 o

~

wnere k- has been neglected as compared with 62 in the last line.
Notice that the total power flow wili be the sum of the power flows over
all of the modes which are excited. The phase velocity 4m/B approaches
a constant value at low freguencies and B goes to zero as w . For
constant power flow, therefcre, the z-component of the electric field

B becomes small at low frequencies and in the limit is zero.

J.le

Simple Physical Explanation for Plasmaguide Modes. A useful con-

ceptual model in terms of electrical transmission lines can be given for
the plasmaguide modes as follows. The total current density (convecsion
plus displaoement) which flcws as a resull of an avpiiec field is, for

the longitudinal and transverse coordinates,

2
. j9) "
= foe A T 30)
Tgr = f06 (L= ) B, (T1.34)
68}
J ey T 0@ o h’lr : (I2.35)

Multiplying the currert densitiles by an area to get the total current,

and celculating the admittance gives

% = (constant)(ju + Tg) (IT.38)
” Jw

T . S

7 o= (constant) (jw) . (I1.37)
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The admittance of the plasme in the longitudinal direction is seen +o
ve just that of a parallel L-C section and the admittance in the radial
(o]

direction is just the susceptance of free space. Figure 2 shows a

transmission line made of such elements and as can ve seen, the passbands

g i
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2.  Hgwivalent leoiricel Transmission Line
Waves

of’ the iterative circuit are identical with that predicted oy the field
analysis, i.e., propagation is possible when the series branch is induc-
tive (0 <w < wp) and 1s not possible when the series branch is capsa-

s

citive {w > wp). such a transmission line analog obviously does not

predict the ordinary waveguide passbands.

Electromechanical Nature of the Plasmaguide Waves. As pointed out

carlier these modes are electromechanical in nature, i.e., the wave propa-
gation results from the interchange of the kinetlc energy of the electrons,
and stored energy in the electric field. To compare this with the electro-
magnetic modes of propagation where the wave oropsgation results from the

interchange of the electric and magnetic stored energy, see Figure 3 which

shovws the electric and wagnetic flelds for the lowest E-mode in a cylindrical
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Figure 3a. Tlectric and Magnetic Field Configuration for the
Lowest Circularly Symmetric Mode in a Cylindrical
Waveguide.
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Figure 3b. Electric Field Configuration and Electron Veloci-
ties for Hlectromechanical Plasmaguide Modes,
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waveguide and the electric fileld and electron velocity [or the lowest
plasmaguide mode in a cylindrical wavegulde. Thus it is seen that the

role of the ragnetic filela for the electromagnetlic waveguide modes has
fw Oy |5

been =sscentially taken over by the mass velocity of the electrons.

Review of the Features of Plasmaguide Propagation for an Infinite

Axial Magnetic Field. The principal feature of plasmaguide propagation

is that a plasma column can, in the absence of any drift mosion, support
a mode of wave propagation below the plasma frequency. The passband for
this mede extends from zero frequency to the plasma freguency and does
rot depend on the geometry except o the extent that the cross section

of tne plasma column ve finite. The pnase velocity of the waves, how-
ever, depends both on the plasma freguency and the geometry, and very
slow waves are possible for small waveguides. The presence of the metal-
lie conductor around the plasma is not essentia to the propagation of
waves, i.e., a plasma column in free space would have the same qualita-
vive but not guantitative propagation characteristics ag the plasma-filled
waveguide. All modes have the same passband and, 1if excited, will propa-
gate simultanecously. At very low freguencies all of the modes are
nondispersive 17 the guide~to-plasma radius ratio i1s finite. The phase
velocities for “ypical plasmaguide waves range from a few tenths to &
Zew hundredths <he velocity of light. Plasmaguide modes are electro-
mechanical in rnature in that the role played by the magnetlce field in
electromagnetic propagation nas been taken over by the mass velocity of

the plasma clecTrons.
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ITT . PLASMAGUIDE MODES FOR FINITHE D.C. MAGNEZIC FIE

In the wrevious chapter, space charge wave propagaticn in a

plasma-{llled wavegulde was examined for the case of an infinite axial

L

relic field using the complete Maxwell equations. It is of interest

1

te examine this problem for the case of [inite magnetic fields and

vaasma columns only partially filling the waveguide system. The propa-

gation eguations which result from the use of the Maxwell equations are

guite compiicated (11), (12), (13), thus making a systematic study of

the properties of the space charge wave solutions difficult. A result
n

of the analysis given in the previous chapter was that the wave solu-
J S b -

vions had vhasge velocities much less than the velocity of light

Vopase % < . (TTT.1)

This means that a free-space wavelength is much longer than the wave-
length of the disturvances in the wavegulde system contairing the plasma,
and the instantaneous electric fields are Zo a good approximation given
by a sclution cf Laplace's equation, or in the cases considered here,
Poisson's equation, providing the solutions satisfy the same voundary
conditions {23).

Dielectric Constant of a Flasma in a D.C. Magnetic Field. It is

permissible to treat an ideal electron piasma as descrived in Chapter IT
as an eguivalent charge-free reglor, frequency-dependent dielectric. The
dielectric constant for the plasma in a uniform nmagnetic field is a ten-
sor because the components of the electric field and the displacement
are no longer related by & simole isotropic constant.

The components ol this tenscr are calculated by adding the convec-

tion current density* to the free-space displacement current density and

*This neglects the term Py vy which is assumed to be small, since it Is
the vroduct of perturbation quantities.
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equating the sum to the displacement current of the equivalent charge-

free region. Thus

Jwe Ei+p vy = joe- E (I11.2)

1 1 ?

where the € 1s the tensor dielectric constant. Using the equation of

motion IT.7, the components of veloclty are

. e
Jov, . o=-o Bl -, Vg (II1.3)
jwv --SE s+ v (ITT.4)
16 m 10 c 1r
v, =-<E (TT1.5)
1z m 1z ’
eB
where W, = _52 is the cyclotron freguency. Solving for the components

of velocity yields

-—3 w B + w K ]
e 1r 10 .
Vip = "% 5 (111.8)
4y - WD
3 c J
i ~
Y R 10~ % P (II1.7)
6 " m 2 2 ’
L @ -
¢ J
B
e "1z
V]_Z = 5 *5—0—)‘ <III.8)

Using these components of velocity in IIT.2 and solving for the tensor,

err Jer@ o
€ =€, -deg, g 0 5 (111.9)
O 0 €
ZZ
“
where € = & =l+—>—> (I17.10)



@, u%
o = %r T T T2 (T11.11)
W o-w
c
2
ab
e, = 1- = (I11.12)
w
2 poe
and wp = - T is the electron plasma freguency.
o

Plasma Column in a Waveguide. Consider a perfectly conducting

cylindrical waveguide of radius b containing a plasma column of radius
a2 and let there be a finite axial magnetic fileld BO . To study the
propagation of waves in this system, the a.c. magnetic field will be set

equal to zero

VxE, = -joB = 0 , (I11.13)

in accordance with IIT.l, permitting the a.c. electric field to be

derived from a scalar potential
E, = -V ¢1 . (TIT.14)

2
Presumably the approximation 1s good for slow waves ( << c );

Vphase
however, the solutions obtained should be examined to see if the mag-
netic fields are indeed negligible in determining the propagation
characteristics. For the equivalent dielectric there is no free charge

and
VeD, = V-:(e-E) =0 (I1I.15)
which leads to the differential eqguation that the potential must satisfy

vVo-oe - v¢l = 0 5 (III.16)

i.e., Laplace's equation for an anisotropic medium. Written explicitly
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in cylindrical coordinates ITI.16 becomes

_]:._a._. T € %-F'E _J:_% +}_§_ -9 %—FE ;‘L_??i.]:
r ar rr- or J S T o8 r e Iy or 00 T %
(I11.17)
,I_,._.a.. £ %‘. = 0
oz zZZ Oz ’
where the fact that e = € = € = € = 0 has been used. Also using
rz zT ez 7o
the fact that 69@ = err and e@r = er@ leads to the following partial
differential equation for the potential
2 2
15, P 1 9P e, O
el e e B 5 = 0 . (I11.18)
T o r or rr Oz

To solve this partial differential equation, assume wave solutions

of the form

¢, = Rr) e™IB0 o= dPz (IIT.19)

and solve the resulting linear differential equation in the radial vari-

able,
2 €
1d dR n 2 77
e (r E}D -—5R-8 -—R =0 . (I11.20)
rr
Meking the ildentification
2, 2
€ 1 - (o /0%)
2
2 = .p° 22 < g ; Pg 5 , (1IT.21)
rr 1+ [wp/(wc - )]

permits the solutions of III.20 (the Bessel's equation) to be written

R(r) = AJ

n(Tr) + B Nn(Tr) 5 (I1I.22)

where, in this case, B = 0 , since the fields on the axis must be finite.



-2l

The complete time dependent potential and field components are:

¢l(r,®,z,t) = AJn(Tr) \ (II1.23)
E, (r,0,z,t) = -A T J'(Tr) (IIT.2k4)
Ler 7 n > ej(wt~n®—ﬁz), r<a .

El@(r,@,z,t) = A -‘l]? JE(Tr) (III1.25)
Elz(r,@,z,t) = A jB Jn(Tr) ) (II1.286)

Outside the plasma (a < r < b) the dielectric constant is €,
and the differential equation for the potential is given by III.20 where
€0 = Sop = & - The solutions of this equation are the modified Bessel's

functions of the first and second kind, and a suitable combination of these

functions which satisfies the boundary condition at r» =D (i.e., the

potential must vanish since El@ and Elz are proportional to ¢l) is
R(r) = ¢ [In(ﬁr) K (Bp) - I (Bb) Kn(Br)J , a<r<b . (T17.27)
Taking
-~ -1
A = Jn(Ta)] (II1.28)
b
and _ 1
¢ = |1, (pa) X (Bp) - I (Bb) anaﬂ (III.29)

satisfies one boundary condition, i.e., the potential or tangential com-
ponents of the electric fields must be continuous at r = a, the edge of
the plasma. The remaining boundary condition at r = a can be satisfied
in either one of two ways which are equivalent. One of these methods is

to calculate the charge perturbation at the surface of the plasma column

due to the radial motion of the electrons and make the normal component
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of the electric field discontinuous by the amount of the surface charge
density associated with the perturbation. Since such a calculation
determines the amount of radial polarization which is already accounted
for in the tensor dielectric description of the plasma, it 1s equally
correct to reguire that the normal component of the displacement be con-
tinuous; the dielectric constant in the plasma is that given by ITII.9.
The latter of these two methods is easiest in application and will be
used exclusively throughout the remainder of this paper. Requiring that

the normal displacement be continuous leads to

7t (Ta) I'(pa) X (Bb) - I (Bb) K (Ba)

n
e,..(Ta) 7 (a] +ne, = K(pa) T (pa) K (D) - T_(50) Kn(Bazl(III,gO)

where Ke is the relative dlelectric comstant of the region outside the
plasma. Prior to examining egquation ITII.30 for the various solutions of
interest, it will be useful to consider the solutions which result for
the special case b = a , and see how the plasma-filled waveguide solu-
tions treated in Chapter iI are modified when the electrons are allowed

transverse motion.

Properties of a Plasma-Filled Wavegulde. When the plasma com-

pletely fills the conducting wavegulde, the potential solution is

R = A Jn(Tr) , (III1.31)
where T is given by III.21. Requiring the potential to vanish at
r = a leads to

Jn(Ta) =0, (Ta) = P, - (I1I.32)

Since Ta is Jjust a numerical constant depending on the particular mode

of interest, the propagation constant can be expressed
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mE 2 _ 1/2
- ey /o) - 1 : (II1.33)
1+ [wz/(w2 - wg)]
o) c

B
T

This propagation equation is sketched in Figures ha and 4b. Examination
of these figures reveals that, in addition to modifying the infinite mag-
netic field plasmaguide waves, a non-infinite magnetic field introduces a
backward wave, i.e., a wave whose phase and group velocities are oppo-
sitely directed. When the magnetic field is large ®, > wp , the cutoff
frequency of the forward wave remains at wp ; however, when the magnetic
field is small wC < wb , the forward wave cutoff i1s now at the cyclotron
frequency. The backward wave branches have the same high frequency cut-
off at &gg + wé]l/g, but have different lower frequency limits, 1.e.,
when Qb < w, the backward wave branch cuts in at W, and when

> wc it cuts in at wb . The normalized phase characteristics for
several values of mc/wp are given in Figure Uec. It is of particular
interest to note that this backward wave is "structureless" and is not a
spatial harmonic of a periodic structure (24).

Perhaps the simplest physical explanation for the existence of a
backward wave can be made with the ald of the equivalent electrical
transmission line analog described in Chapter IT. The longitudinal and
radial admittances within tThe plasma for the finite magnetic field case
are obtained from the tensor dielectric constant III1.9

- “1

= (constant) | jo +

<[k
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The transmission line analog including the capacity from the edge of
the plasma column to the conducting waveguide is shown in Pigure 5.
The passpands, not including the effect of the dielectric surrounding
the plasma, are in exact agreement with the field analysis. Although
the shape of the phase characteristics obtained from this transmission
line analog are n qualitative agreement with the field analysis, they
are not guantitatively correct and will not be incluced.

The backward wave region, which is seen to be always above the
plasma frequency, exists for two separate givuations; ah > W and

u@ < W, For the<mp > W, case the existence of a backwgrd wave is
Justified by aoting that above wp the plasma is capacitive in itvs
longitudinal characteristics and inductive in its Transverse character-
istics. A lumped filter circuit having such a property is known to be
of a backward wave nature (14), i.e., shifting the phase of a generator
driving such a circuit causes some plane of known phase to be shifted
oppositely tc that of a forward wave. The same argument applies when

o< D
0 I

The va_ue of the equivalent transmission line for plasma of
finite geometry snould not be underestimated. It provides a convenient
conceptual tool toward understanding the propagation of waves in plasmas
as well as predicting other modes of propagation. Cne mode of propaga-
tion which was predicted from transmission-line considerations is the
packward wave wihich results when the d.c. magnetic fleld is made perpen-
dicular to the guide axis. This wmode will be treated in detall in a

later section of this chapter; however, to illustrate the usefulness of
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the transmission-line concept, the arguments for its existence will be
given now.

For the case of infinite axial magnetic field plasma-filled wave-
gulde, the transmission line reduces to series inductors and shunt
capacitors below the plasma frequency. Imagine now that the wavegulde
is of rectangular cross-section and that the magnetic field is perpen-
dicular to the guide axis. 8ince direction of the magnetic field
defines the orieatation of the inductive element, 1t can ove easily seen
that the rotation of the magnetic field has resulted in the interchang-
ing of the elements of the transmission line of the axial magnetlic field
case, The circuit is now one of longitudinal capacitors and traasverse
irductors and 1s a backward-wave type.

Returning to the finite magnetic field plasma-Tilled gulde, 1t
should be pointed out that the properties of tnhe lower branch are essen-
tially the same as for the infinite magnetic fleld case with the notable
exceptions of the cutoff Trequency which is at @, when @, is less
than ub and the low frequency phase velocity, which now depends on the
magnetic fleld,

@D W
a v ocC

A\ -

w 2 2, 1/2
9 [oy ol
Pry <wp+wmp) /

(‘) 2
and W .
e

2 2
o << w
B

It is now of interest to compare the magrnitude of the field quan-
tities as obtained by the rigorous treatment of Chapter I and the approxi-
rate method of this chapter. This compariscr 1s made below:

Maxwell's Eguation

. ) -3p s
i = B 0 —_— T T (Tr .
hlr llz()> K2 B BE 1 n<rr) (TI1.34)



B, = 5 (0) m~§19—~§~ % J (Tr) (1TI.35)

Elz

1l

g, (0) J (Tr) (II1.36)

Quasi-Static Approximation

- J .
E .= ElZ(O) 5 T Jn(Tr) (111.37)
E g = By, (0) é% g_(Tx) (171.38)
B, = ElZ(O) Jn(Tr) . (I11.39)

Note that neglecting k2 as compared with 62 in the Maxwell equation
solution gives the same electric field components as the guasil-static
approximation. Neglecting k2 is consistent with the meaning of the
guasi-static approximation which assumes the velocity of light to be in-
finite.

A. C. Magnetic Fields from Quasi-Static Approximation. The power

flow calculation made in Chapter II involved the a.c. magnetic field
which was shown early in this chapter to be sufficliently small to be neg-
lected in determining the propagation characteristics of the plasmaguide
waves. To obtain an estimate of the power flow for the case at hand, it
will be necessary to calculate the a.c. magnetic field components approxi-
mately. A first order estimate of these field components 1s obtained

using one of the Maxwell equations

VxH =Jjw g Ky, (ITI.40)

which in component form is

aHlZ ~ aal@

5@ aZ = j(D €O (EI‘I' Elr + J gr@ El@) (III.LEL)

L
r



- poes j(D'EO (—*J [ B (III-}’Lg)

., OH
\ 1 lr ; -
- 1 - e = € o TT.L7R
(r 1,; ) % Jw Co € = (ITT.k43)

waere Hl~ will oe set to zero since it is the solution of a second in-
I

deperdent differential equation. In a rigorcus treatment the le would

ve required “o match the boundary condition; however, Tor the quasil-

static approximation the tangential electric field at the boundary which

is derived from le i

143}

negligible. The comparison for the a.c. mag-
netic field components is glven below for the plasma-filled wavegulde.

From Maxwell's equation

- = -': .w@.ﬂm _J_:____ L 3 el 2 1 o l

Pig =74 73 2 5 hlz(c) < Jn(Tr) (TIT.44)
(<7 - B7) c

y e 2 1 g . o s

Bl = 3 62) 7 3 ulz(o) Jn(lr) . (TTT.45)
(NS l >

» - s 9‘_)___ l“___ nl mooT e _E h T - e
Big = =375 ¥ Elz(o) - € T Un(Lr) € T bn(zr) (ITI.48)

E= m ~ B C T g T L . . .l.’
B, 5 T ]le(K) 6@1’ T ]n<l.f) C@@ - Jn(Tr) (.LII 47>

Again in the limit of large magnetic field and neglecting k= as compared
with 87, the rigorous treatment using the Maxwell eguations in Chapter
IT agrees with the results using the guasi-static approximation becauvse

€ = € and € =0,
T o re

Pover Tliow for Plasma-~-Filled Wavegulde. To investigate the inter-

action of moving electron beams with the plasmaguide modes (see Chapter V)

it will be necessary tc evaluate the average power flow associated with
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this mode. The power flow will be calculated here in association with
the case discussed rather than in Chapter V where the results will be
used.
The power flow for the plasma-filled guide in a finlite magnetic
field can be calculated using the sppropriate field components from
III.37 through IIT.39 and IITI.46 and IIZ.47 in II.32 . TFor the axially

symmetric mcdes

= - il b « 72 \ E_D_ o e m 3 { 1T
P, = 2 R, 8ﬂ_}~ LlZ(Q) 3 € Spp Jl(Lr) a(rr)
B
O
w2 (0) QL "o e (Ta)? 7%(ra) (IT1.L48)
- lZ)ﬂBBZer (T . 7.48)

Since Err goes tc urnity at infinite magnetic field, the power flow

given above agrees with the power flow calculated in Chapter II when

]

"

k° << 8“ (see Equation IT.34). SimpliZying the above expression by

using III.21 leads to,

— 2
ZPZ w ®
- . - = (£-1)3 (111.49)
o N Wl ”
ma € Jl(L ) hlZ\O) W

which is a sort of normalized power flow. This expression illustrates

the fact that the vackward wave passband will always be above the plasma
frequency since the power {low and phase veliocities can have opposite sign
cnly 1f the exciting frequency 1s above the plasma frequency. The power
flow caleculated above using the approximate a.c. magnetic field ig in
agreement with a calculation of power flow made by multiplying the time

average stored energy per unilt length by the group velocity of the waves.*

Prcperties of a Plasma Column in a Waveguide. When the plasma does

kY

* See Chapter V, Power Conservation for Plasmaguide Waves.
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not completely £ill the conducting waveguide, the properties of propagation
are obtained by simultaneously solving IIT.21 and TIT.30. Contrary to the
case of the plasma-filled guide, where one normalized w-p diagram describes
the properties of all the modes of higher order radial and angular varia-
tion, the partially filled guide exhibits quite diverse properties for the
different modes. A limited study of these modes has been made with the aid
of a digital computer. The results of the study will be presented for the
circularly symmetric mode and the mode of one angular variation only.

For the lowest circularly symmetric mode, the forward wave phase
characteristics are as shown in Figure 6. The limits of the passbands are
obtained by large and small Pa approximations in IT1.30. For the geometry
of Figure 6 the maximum frequency of transmission of the forward wave pass-

band for wc < mb occurs when

1 1
w (Kg— l)w2 2 m?+ w2 2 (Kg- l)w2 2
w = L S Sl _h B S (k5 )| - eS¢
2 w2 mg © mg
2(K - 1) D D P
2 2 =
The cases w,= 0O or Ke: 1 are particularly simple, wmaxf: Bu®+wc)/2 2 ;
/2,

K=1, o # 0, and W = u2#1,+Ké) ;K £, ®,= 0 . This result was
obtained by observing that the maximum freguency of transmission occurs
when Pa = o, and by using the fact that grr and ezz are both negative
when wc << &b; providing wc < wp. This means that T2 < 0 and ap-
proaches infinity as 62 so that II1.30 becomes € Ezz = Ki . Substi-
tuting the expliclt expressions for €. and ezz and solving for
yields the above result. When w, > ab the passband extends to &b

This result 1s obtained by noting that €. > 0 while € . < 0 so that
Tg > 0 and that the right side of IIT.30 becomes proportional to Pa at

large Pa so that JO(Ta) must approach zero if the equation is to be
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satisfied. This means that Ta must approach a constant, the value for
a root of JO(Ta). In order that ITI.Z21 also be satisfied as fa ap-
nroaches iafinity, €., must approach zero. In the limit of large Ba ,
W = mp , thus defining the edge of the passvand. The backward wave pass~
bands are rot influenced by the geometry for the situation considered here.
The zero PBa 1limit is obtained by observing that the right side of III.30C
*s constant for Pa = O so that the left side must also ve constant. From
IIT.21 Ta = O and the equation cannot be satisfied unless € = o . Ir
Err =0, Ta % 0 and III.30 can be satisfied providing Ta 1s a root of
- Thus e = = 0 defines the zero pPa passband limit, w = (wEA—wi)l/z
for ak > wp and for mc < wp. The other limit of the backward wave pass-
band occurs when fa = . For this case, JO(Ta) = 0 and Ta 1s con-
stan<. To satisfy IIT.21, EZZ = 0 for ub >.wc and err = 0 for
mp < wc. Tre tvwo limits are w = uﬁ ané o = w, respectively.

The principal difference in the phase characteristics for this case
as compared with the completely filied guide is that the magnetic field
ig not essential to The propagation, and that when the cyclotron frequency
‘s less than the plasma frequency, the lower branch of the phase charac-
teristics is not cut off at the cyclotron frequency, i.e., the phase
characteristics pass smoothly tonrcugh the cyclotrcr freguency for this
lowest circularly symmetric mode only. Below the cyclotron frequency the

potential variation across the guide goes as JO(Tr) (0 < Ta < p At

Ol)'
the cyclotron frequency, Ta = ¢ and thne potential within the plasma Is
uniform. Above the cyclotron frequency (but within the passband) the po-
tential variation goes as Jo(jTr):zIO(Tr) {0 < jTa < oo ). These 3 cases

are illustrated in Figure 7. As the frequency passes through the cyclotron

frequency (mc <fab) the mechanism of propagation passes smoothly from one

which involves mostly charge accumulation within the plasma to one waich
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uvolves mostly a perturbation or "rippling' of the surface of the plasma
column. In the 1limit of no magnetic field (mn = 0), there is no charge
accamulazion at all within the plasma. The properties of these "surface
waves' are examined in detaill in the next chapter.

The phase characteristices of the first few higher order circularly
symretric modes are shown in Figure 8. WNotice that only the lowest mode
has the behavior just descritved, i.e., the phase characteristics pass

smoothly threugh the cyclotron freguency (mc < ¢b> for the lowest mode

only. All the higher order radial modes with axial symmetry are cut off
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at the cyclotron frequency. This behavior is explained by considering
the potential variation (see Figure 9) within the plasma column. The
potential for the mode having one zero within the plasma goes as JO(Tr)
(pOl < Ta < p02> . As the cyclotron frequency is approached, Ta ap-

proaches and the ootential outside the plasma approaches zero,

Fou
which is to say that Pa is quite large. At the cyclotron frequency

Ba dis infinite, denoting the edge of the passband. Just above W, the

propagaticn equation has no solution for Ta > 0O and a stop band exists.

Faraday Rotation. The principal reason for considering the mode

of one angular variation was to investigate the possibility of Faraday
rotation ¢f the plare of polarization. Such considerations were of im~
portance in the analysis of the perturbation of waveguide modes by the
plasma (11) and seemed appropriate to investigate in this analysis. A
superposition of the n = +1 and n = -1 modes of equal amplitudes
yields a composite wave in which the transverse field is polarized in a
certain direction. If the n = +1 and n = -1 modes have different
phase velocities, the direction of polarization of the composite wave
will be rotated as a function of distance along the guide. For the

n = +1 and n = -1 modes to have different phase velocities, it is
necessary for the propagation equation IIT.30 to be an odd function of
n . The propagation equation wil: be an odd function of n as long as
the plasma does not £i1ll the wavegulide. When the plasma fills the guide,
all higher order modes of any angular or radlal order have equal phase
velocities for n equal to plus and minus the same integer and there
will be no Faraday rotation. FHigure 10 shows the phase characteristics

for the mode of one angular variation for the case of plasma frequency
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twice the cyclotron frequency. The lower branches in Figure 10 do
display different phase velocities for n = +1 . The distance along
the guide, measured in gulde wavelengths, for one complete rotation of
the plane of polarizaticn is plotted in Figure 1.
In additicn to the lover branches which were expected, there are
other passbands. These other passbands are the surface waves which
will e examined in the next chapter. These surface waves are degenerate

I angular index in the absence of ar axial magnetic field. The addition
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of the axial magnetic field removes this degeneracy and the modes are
split‘as shown in Figure 10. For very small magnetic fields these sur-
face waves can also exhibit Faraday rotation, however, no calculation

of rotation is given for these upper modes.

Plasmaguide Mode for Magnetic Field Transverse to Direction of
Propagation. As a final topic for plasmaguides in finite magnetic
fields, consider»a>rectangular cross section waveguide completely filled

with an ideal plasma as shown in Figure 12. The dielectric tensor is

€
XX
€ = € : € +ie
= o vy ZICyy (III.50)
_Jezy €zz
where
2, 2
€, =1~ (wp/w ) (T11.51)
mg
€y = €, =L+ A (111.52)
>
Cl)c (Dp
eyZ = ezy = -(—D—- m . (III-SB)

Paralleling the analysis for a plasma column in a waveguide (ITT.13 to
III.18), the differential equation which must be satisfied by the small

signal phasor potential is

€ 2 2
o 3 g 9

o)
g, +<—=¢. = 0 . (IIT.54)
€y 32 L ay2 1 oz"1

Assuming wave solutions,
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Figure 12.  Coordinate System used in Transverse magnetic
Field Analysis.

- 7z i o
g, = X(x) ¥(y) e Pz (11T.55)
leads to
€ .2 2.
xx 1 d¥X 147y 2 _ .
c ¥ B3 ty—m-F = 0. (III.56)
Yy X dy
Setting
: 2
1 4ax 2 .
X ~3 - 7F (T1T.57)
dx
gives solutions
X0 = 0y st (Tx) + 0 cos (Tx) . (111.58)

The eqguation in Y 1s now givenby



o

..__d;f - Eart Lg% - gt (I1I.59)
€

dy Yy

=

and the solutions are

Y(y) = C/5 sin (Sy) + Ci¥cos (sy) . (IIT.60)

The boundary condition at the waveguide surface (E - = 0)
tangential
is satisfied by taking C, =C =0, T = mr/a and S = nx/b . The

potential and field components are

#(x,y,2,t) = A sin (m’gx) sin <n"by> (171.61)
)
mat mw X, ., (M
Elx(x,y,z,t) = —A(?;) cos( = ) sin( t)y) (I11.62)

) St -B2) (117 63

_ DTy .o mua nny
Ely(xfy)z"t) - A( b Sln{\ a ) COS( b )

nny
=)

JA8 sin( (ITT.84)

sin(

i

mx
E1Z<X;Y;Z;t) a )
The eqguation of propagation 1s obtained by substituting the values

of S and T , which satisfy the boundary condition, in the two terms
on the right of equation IIT.59 and solving for the propagation constant

B

€
2 XX M2 ni, 2 -
BT = - — () - (% . (111.65)
Yy

Substituting the explicit expressions for €XX and €yy , III.65 may be

written
2y, 2 2 1/2
(0 = &) (0™~ w
b c m by2
(%;) - S (2 ) - . (TTI.66)
w e +o, - )

A typical w-p dlagram is shown in Figure 13. Examination of this figure

reveals that, as predicted by the transmission line arguments given
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Figure 13. Phase characteristics for rectangular plasme-filled wave-
guide with a transverse d.c. magnetic field.
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earlier in this chapter, there is a backward wave region from zero
freguency up to some frequency which depends on the particular mode

and the geometry. Tals upper freQuency for the backward wave band is

1/2
o = | (0% o) - (w24-w2)2 C PR e 0<a< oo
1 5 p c P o c 1+ p c ?
' (I1I.87)"
where o = (22)2 The fact that « must be finite means that a mode

nb

of propagation such as described here does not exist for two parallel
planes with plasma between them for a d.c. magnetic field either parallel
or perpendicular to the planes. Figure 13 also shows a forward wave
region which has a passband from

1/2

L
y O<<a<w

l+c

2]1/2

2
w_ow
P ¢

1 o 2 > o2
w, = - (ab-+wc)-+ Edﬁﬂkwc) -

(I11.88)

up to w = [%p + wc] 1/2 . This.forward wave mode would have been pre-
dicted by the transmission line arguments if a finite magnetic field
case had been considered; it is essentiélly the backward wave region of
finite axial magnetic field plasma-filled wavegulde vhere the transmis-
sion line elements have been rotated through 900.

This analysis suggests the existence of still other interesting
propagation phenomena at frequencies near or below the cyclotron or
plasma frequency in other geometries. Although such are known to exist,
the systematic investigation and presentation of the analyses would be
lengthy and not germane to the purpose of this paper which is the pre-
sentatlion of the notion that electromechanical modes of a slow wave

nature can propagate and carry energy below the plasma frequency in

finite plasmas in the absence of any drifting motion to the plasma.
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Iv. PLASMAGUIDE WAVES FOR ZERO D.C. MAGNETIC FIELD

If the magnetic field is reduced to zero for the plasma-filled
waveguide, propagaﬁion is no longer possible; however, if the plasma
only partially fills the waveguide, a'surface wave mode of propagation
which involves no charge bunching within the plasma is possible. In the
ahsence of a d.c. magnetic field the plasma is a homogeneous isotropic
dielectric and the propagation characteristics of these waves could be
investigated using the complete Maxwéll equations without becoming unduly
complicated since mixed modes (i.e., both E and H modes simultaneously
present) are not required to match the boundary conditions (11). However,
in anticipation of slow wave solutions, the quasi-static approximation
Wi;l again be used since the results appear in a somewhat simpler form and
are correct to a good approximation when k2 << 52. Although the plasma-
guide modes of propagation involve a mixture of surface rippling of the
plasma column and charge accumulation in the interior region of the plasma
for small d.c. magnetic fields (wc < wp), enough interesting results are
associated with the pure surface wave case (wc = 0) to warrant separate
discussion.

For zero magnetic field the tensor permittivity for the plasma,

equaticn ITT.9, reduces to
2
i
€ = ¢ (1-—%) , (1v.1)
-0

and the equation which must be satisfied by the small signal potential is,

from equation III.16,
2
wp 5
(1-;-2-) v ¢l = 0 . (Iv.2)

This equation has two solutions,



o
@D

1 - —g = 0 (1v.3)
[6))

v2¢ = 0 . (Tv.4)

The former solution represents plasma oscillations and in the case of a
stationary plasma does not imply wave propagation since any disturbance
would, in the absence of collisions or thermal veloclties, persist in-
definitely at the location of the disturbance. Assuming the exciting
frequency to be different from the plasma frequency requires solutions of
the latter type, i.e., the potential must satisfy Laplace's equation.
Assuming wave solutions (see III.19) leads to the modified Bessel's
equation (III.20, with -ezz = € = 1) and the solutions for the radial

rr

function inside and outside the plasma column are

3s}
H

a1 (pr) (Iv.5)

B|1,(Br) X (pb) - I (pp) K (Br)| , (Tv.8)

oy}
]

where the second solution cf the modified Bessel's equation has been omit-
ted inside the plasma since the fields on the axis must be finite. The
solution outside has been chosen to satisfy the boundary condition of zero
tangential electric field at the conducting boundary of the cylindrical

waveguide containing the plasma column. Teking

=
it

-1
[In(Ba)] . o (IV.7)

[vs)
{

-1
[In(aa) K _(gb) - I, (gP) Kn(sa)] (1v.8)

satisfies the requirement that the tangential electric fields be con-

tinuous at r = a . Applying the remaining boundary condition, continuity
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of normal displacement leads to the determinantal equation for the propaga-

tion of waves

N wg) L [raee) ] [ritee) x (e0) - T (80) Ki(Br) -
T2 K 1, (pa) T, (Ba) X (8b) - I,(Bb) K (Ba) ; .9

where Ke is the dielectric constant of the region between the plasma and
the conducting wall of The waveguide. The solution of this equation is
shown in Figure 14 for the circularly symmetrical mode. Propagation is
seen to exist from zero frequency up to the frequency

[0)]
® = =L, (Iv.10)

\/l + Ke

This cutoff frequency is obtalned by usiﬁg the large argument .approximations
for the modified Bessel's functions and can be argued physically as follows.
The potential variation in the plasma column and surrounding diélectric is
as shown in Figure 15. For large pa the potential is quite large at the
plasma~dielectric interface and the fields extend only slightly into the
plasma and dielectric. For tﬁis reason, the phase velocity of the waves

at large Ba mnmust depend only on the properties of the interface region.
As will be shown later, this requirement can lead to backward waves in an
isotropic homogensous plasma filling a thin dielectric cylinder in free
space. Since Ke > 1 for most dielectrics, the circularly symmetric sur-
face waves cannot exist at frequencies above gp/yﬁ?. The low frequency
region is nondispersive for all finite b/a values,

byl/2

= 2 wa . (Tv.11)

@
Bl =0 2K P

log

vthD=O) =
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Figure 15

Potential Variation with Radius for Surface
Waves on Plasma Column in a Dielectric Lined

Cylindrical Waveguide.

When

o/a = ®, (i.e., for

tric) the determinantal equation

& plasma columm in an infinite dielec-

simplifies to

(1v.12)

(1 - ﬁE) I La(P2)
* 2’ K .
w e Ilfl (Ba)

The ow~-p diagranm for this case is
the cutoff frequency remains at

is, however, not linear

also shown in Figure 1h. As can be seen

wp/#].+ K.e . Tre low freguency benavior
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) Al 2
= w/p = [0.116 + log, -%-]’*/

o2 2 A
Von | wa o, o <<Qb , pa <1 (IV;13)

‘and the gystem is;&ispersivé'in this region. That the dielectric space
surroundiﬁg the ﬁlasma is essential to'the-existence of these waves can be
understood by observing that making b/a = 1 leads to the degenerate case
w =0 for all pB . That the dielectric space is essential, can also be
argued by observing that the waves depend on surface charge accumulation,
and the presence of a tight-fitting cénducting cylinder prevents such ac-
cumulation. The rippling of the boundary of the plasma colum is well

1"

described by the term "peristaltic". That is, one of the planes where the
column has minimum diasmeter or is constricted, moves with the phase velo-
city of the wave. The perturbed shape of the plasma colvmn and the

electric field distribution is shown in Figure 16.

S8imple Method for Obtaining Low Frequegcy Phase Velocitieé of Plasma
Waves. The expression for the low frequency.ﬁhase velocity, equation.IV.ll,
was obtained by using the small argument approximations for the modified
Bessel's functions. In matching the boundary conditions, the ratic of the
normal displacement to the potential was made continuous across the boun-
dary r =a . Passing to the limit of small Pa for this ratio using the
functions in the région outside the plasma gives an expression which is
independent of Pa . It therefore seems gppropriate to go directly to the
solution of the differential.equation with B set equal to zero. The

potential will be a solution of Laplace's eguation,

2
14 dR 0 -
r P& R -0 (2v.15)

The solutions are
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1l

A+ 3B logr for n =0 (Iv.16)

R

-l

art o+ B for n £0 (Tv.17)

The application of the method involves writing the solutions in each of
the régions outside the plasma, and starting with the most remote boundary
(where the boundary condition is presumed to be known such as the conduct-
ing wall cf the waveguide), transferring the solution to the next discon-
tinuity, and requlring that the normal displacement-potential ratio be
continuous across the boundary. This process is repeated until the surface
of the plasma has been reached. At this point the normal displacement-
potential ratio for the zero R solution outside the plasma is equated to
this ratio for the small argument (Ba approaching zero) solutions inside
the plasma giving the desired solution. The reason that the zero 8
solution 1s not used for the interior of the plasma is that the normal
displacement-potential ratio does not approach a constant value for small
B , but rather goes to zero as 52. Thus it would not be possible to
realize a solution of the propagation equation IV.9 using the zero £
solution within the plasma.

This method is most usefuilin cases of complicated geometry or for
investigating the higher order angular variation modes. To illustrate the
method, however, only the simple two-region geometry considered here for
the circularly symmetric case will be used. Other applications of the
method will appear only as results. The zero B solution of Laplace's

equation for axial symmetry outside the plasma, is

R, = A+Blogr . (1v.18)

The solution within the plasma is still given by IV.5 . Equating the
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normal displacement-potential ratios

w

2
p OR,/or BRo/br

(l - ;—2— T = Ke—'—f{;—'— ’ (Iv'lg)

and evaluating at r = a gives

2

w It (
(1 p)B o) . g e (IV.20)

I(B) € log% ’

where the small fBa forms of the modified Bessel's functions must now be
used for the left hand side. This leads to the same result as given in
Iv.1l.

Plasmagulde Surface Waves of One Angular Varistion. For the n = 1

case, the behavior is as shown in Figure 17. The upper cutoff frequency
remains at wb/v 1+ Ke . In contrast with the circularly symmetric
mode, however, it is seen that the lower cutoff is not at zero fregquency,
but occurs at some freguency between zero and the upper cutoff. The
lower freguency 1limit can be calculated using the small B scolution

method just described. The result is

b2 4+ 52 -1/2
®w = |L+K Aa— w . (Iv.21)
co e 2 _ a2 o)

The small Pa limit is in a region where the quasi-static approximation
is not necessarily valid, and the result should be viewed with suspicion.
This mode has opposiltely-directed phase and group velocities for small
Ba and large b/a , and is therefore a backward wave in this regicn.

Examination of the differential equations reveals that n , the angular



W/
D

Freguency

K =4
e
5_5
a
0.3 b
N
(o
plasma
0.2 [~
gielectric
conductor
0.1
l ] | ] l
0 2 L 6 8 10
Propagation Constant PBa
Figure 17. Thase Characteristics for Surface VWave lode of One

Angular Variation.



=60~

index, appears as a squared term only. Choosing the n = -1 solution
would have, therefore, led to the same determinantal equation which is

to say that degéneracy exists for the angular dependent modes of opposite
index. The addition of an axial magnetic field removes this degeneracy.¥*
For the n = +1 mode, the perturbation of the surface of the plasma
column is such that, at any instant of time the column would be of a
helical or serpentine shape; the reason being that in any one plane the
electrons move together as a disk which executes a small circular motion
at an angular rate equal to the exciting freguency. A linearly polarized
wave (equal amplitudes n = +1 and n = -1 superposed) would perturb the
plasma column to be sinusoidally scalloped, viewed at right angles to the
plane of polarization and to be undisturbed when viewed along the polari-
zation axis. The reason for this pattern is that the electrons in any
one piane again move as a disk except now the disk moves sinusoidally in
time, along the éxis of polarization at the driving frequency.

Bguivalent Electrical Transmission Line for Surface Waves. A qguali-

tétive description of the surface wave propagation can be given in terms
of an equivalent electrical transmission line by the same arguments used
in Chapter II. For the circularly symmetrié modes on a plasma column
only partially filling the wavegulde, the transmission line is as given
in Figure 18. The parallel L-C sections represent the transverse and
longitudinal dielectric properties of the plasma, and the shunt capaci-
tors represent the dielectric region between the plasma surfacg and the
conducting waveguide. Examination of the total series and shunt reac-

tances reveals (see Figure 18) that below the plasma frequency, the series

reactance is inductive, and that at some slightly lower frequency

*See Chapter ITI Plasmaguide Modes of One Angular Variation in Finite
Axial Magnetic Field.
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the shunt reactance is capacitive. Below this latter frequency (shown
in.the previous section to be wb/\fi—:—fgﬂ, the transmission line has.a
passband down £o zero frequency. That a dielectric region around the
plasms is essential to the surface wave propagation can be seen by imag-
ining the dotted line denoting the edge of the plasma in Figure 18 to

be the conducting wall of the waveguide. For this case, the total series
and shunt reactanceé can never be opposite in sign as required for a
passband. That a plasma column in free space can also support a surface
wave mode is understood by noting that removing the guide wall to infinity
s5till presents a capacitance to the plasma column. Allowing the radius of
the plasma column to extend to infinity, however, stops propagation since
an infinite plasma column will have no dielectric region surrounding it
and again the necessary condition of opposite signs for the totai series

and shunt reactances cannct be satisfied.

Backward Surface Waves on a Plasma Colum. Consider now a plasma

colum of radius a filling a dielectric cylinder (outer radius b and
relative dielectric constant Ke) in a conducting waveguide of radius c.
The determinantal equation for the propagation of waves in this system

isg%*

Pa (Iv.22)

3 (pe) K1 (B0) - T2(80) Ki(8a)] + AERL 1 (gb). 1y (pb) - 13 (B0 (80)]

e
k[, (8a) 11(80) - 1 (80) K (pa)] + HEL [T (ev) K (o) - T, (pa)ic (p0)]

*The method used in obtaining this equation is cutlined in Appendix ITI.
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where

T,(Be) X1 (Bb) - I)(BD) K (Bc)
" I_(o) K_(B%) - I_(P0) K (o)

Bb;Be, ) =

Using the simple method described earlier in this chapter leads to the
following expression for the low frequency phase velocity for the circu-

larly symmetric mode:

b o/2
log a + Ke log oy
vph(w==0) = : W _a . (Iv.23)

oK P
e

The addition of an air space between the dielectric surrounding the plasma
and the wavegulde is seen to modify the low freguency phase velocity. This
can be understood from the transmission line arguments by observing that
at low frequencies the inductive reactance of the plasma is linear with
frequency (constant inductance) and the phase velocity is determined by
the effective inductance of the plasma and the shunt capacitance from the
edge of the plasma to the waveguide. Changing this shunt capacitance oy
altering the dielectric configuration should then modify the low freguency
phase velocity és shown in IV.23. 'Examination of the large pPa behavior

reveals that
W = wp/\/l + K, (1v.24)

when fa goes to infinity. The physical reason for this is that, as with
the case of the dielectric-lined plasma-filled waveguide discussed earlier
in this chapter, the pctential is a maximum at the plasma dielectric inter-
Tace and fields extend only slightly into the two regions when Ba is

large. Thus the asymptotic phase velocity should depend only on the prop-

erties of the plasmé and the dielectric immediately surrounding it. For

this case, however, the frequency given by IV.2k is not the maximum
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frequency of transmission for the system. An w-B diagram obtained from
IV.22 is shown in Figure 19. Instead of monotonically approaching the
large PBa limiting frequency, the w-f curve rises to a maximum value
above this limit and then approaches the large Ba solution. This be-
havior is best explained by considering two limiting cases. The first is
that of s plasma column in free space and the second is a plasma column
in an infinite medium of dielectric constant Ke' The w-p diagrams for
these twc cases are shown in Figure 20. Imagine now the situation of a
plasma cclum completely filling a thin dielectric cylinder which is in
turn surrounded by free space. At low frequencies where fa 1is small,
the effect of the dielectric cylinder is slight because the waves extend
well into the free-space region and the w-p diagram will closely follow
the upper curve in Figure 20. However, when f Is sufficiently large
that Bt (t is the thickness of the dielectric surrounding the plasma)
is greater than unity, the fields will be confined largely to the dielec-
wric shell and the phase velocity will be determined more by the dielectric
and less by the free space surrounding it. In the limit of large f(a the
solution will approach the lower curve of Figure 20. The maximum frequency
of transmissicn will depend primarily on thé relative thickness and dielec-
tric constant of the dielectric surrounding the plasma column. An expres-
sion for the maximum frequency of transmission could be obtained by teaking
the derivative with respect to Ba in IV.22 and equating it toc zero; how-
ever, such an expression lends nothing to the discussion and will,
therefore, not be included. |

A gualitative physical explanation can be given for the existence of
this backward wave as follows. When gt 1is the order of unity, the

fields are confined primarily to the dielectric. The longitudinal dis-

placement current in the dielectric leads the electric field by 900,
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Figure 21. Approximate Equivalent Electrical Transmissiocn
Line for Backward Surface Waves on a Plasma
Column.

(capacitive). Since the exciting frequency is less than the plasma fre-
gquency, the transverse displacement current into the plasma lags the
electric field by 900 (inductive). The transverse displacement current
intc the free-space region cutside the dielectric will lead the electric
field by 9C° (capacitive). Using the equivalent transmission line concept
leads to the circult shown in Figure 21. The backward wave region of such
a circuit occurs wher the transverse incuctance predominates the trans-
verse capacivance. Although the actual equivalent circuit is much more
complex, the essential nature of the backward wave region is illustrated
nere and any attempt to include the other elements wcald only complicate
the issue.
L A . 4 .
The backward wave described above can be enhanced by making the

dielectric region thin and of a material of high relative dielectric
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constant. Passing a directed electron beam along the axis of such a
system at a velocity near the phase velocity of the backward wave region
should result in interaction and growing waves. If the interaction region
length and beam current are correctly chosen, the system should operate

as a backward wave oscillator.*

The Effect of Radial Charge Density Variation on the Plasma Column

Surface Waves. In the course of performing experiments to verify the

various characteristics of the plasmagﬁide waves, 1t became evident that
the variation in charge density with radius might play a significant xole.
Figure 22 shows a typical theoretical curve for a uniform plasma andvsome
typical experimental points. The experimental points fall below the;theo-
retical curve for values of PBa greater than unity and appear to be
approaching different asymptotes. Since the large pa behavior is deter-
mined by the properties of the plasma-dielectric interface region, the
observed experimental asymptote could be attributed to a lower charge
density at the edge of plasma columm. To investigate such a possibility,
the differential equation for the potential inside the plasma column was
solved assuming a parabolic variation in charge density with radius. The
solution obtained was then matched to the solution outside.

Congider a cylindrical isotropic plasma column of radius a whose
charge density is a function of radius only. Regarding thg plasma as a
spatially dependent dielectric requires the potential tc be a solution of

Laplace's eqguation for an inhomogeneous medium,

vV - e(r) v ngl = 0, (Tv.25)

*The subject of interaction is treated in detail in Chapter V .
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if the quasi-static approximation is assumed. Assuming wave solutions

of the form
v¢l = R(r) e In0 3Bz (Iv.26)

leads to the following differential equation for the radial function

2
. (% vz %% _g; - (p% + P-é)} R(r) = O . (zv.27)
r

Let the radial charge density variatién be given by

or) = o, [1-a<-g->2] , v

where N is the axis charge density and « 1is a parameter between zero
and unity which determines the degree of radial charge variation. The

permittivity for this parabolic charge density variation is

2
abé r2
e(r) = e [1--5(1l-a=) ; (Iv.29)
w a
2 pae
where u%a = - <n is the axis plasma frequency.

Defining a dimensionless independent variable ¢ = (Br) and a
dimensionless fregquency variable f = m/aba , the differential equation
in the radial function becomes
2 2
& E+ 2 ] %E' (L-2)¥Rr(E) = 0, (Iv.30)
ag E -G £
where G = (1 - fg)(Ba)g/a . To solve this differential equation, multiply

through by 52(52 - G) and assume a power series solution of the form*

(only the n = O mode is considered)

¥This differential equation has the origin as a regular point and the
roots of the indicial equation are identical and zero.
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oo
R(g) = o C, ¢ . (Tv.31)
The recursion relation obtained for the 'Ci‘s is

(i+2)(i+4) C, - C.
L i+2 i
Cipy = (i+4)2 5 + Ci o . (Iv.32)

Examination of power series which results from substituting IV.3Ll in the
differential equation IV.30 reveals that the coefficient of the first
pover term C. , must be zero for a solution. This in turn requires

C to be zero. By the recursicn relation then all odd povwer terms in

3
the series are zero. CO is arbitrary because 1t multipliés the indicial
equation which is equal to zero. The second solution of the differential
equation is singular at the origin and is therefore not of interest and

will be excluded. The first few coefficients of the power series and

the general term are

CO
c, =
CO CO
Cy e " Tea
(Iv.33)
c
o 1 1
C = + + C
6 b(31)2 [26 ¢ 2h GQ] °
c
o 2 63 1 J
8 7 Bun? [26- 3 208 3ec
1 i-2 b .
Co, =g -k ——Xi—] C
2i [22§(i!)2. vgo GV+l e}

Setting CO = 1 and comparing the power series solution just obtained

with power series for the mcdified Bessel's function of the first kind
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reveals that the solution can be expressed as the Bessel's function plus
E a correction term

‘ _ (e0) 1 b . .
R(¢) =I(8) + ¥ [ Y —-’“-—2—1-] g 2(1+2) (1v.34)

iZo Lv20o o1

wherevthe bvi's are determined from the recursion relation.

To examine how the radial charge variation affects the propagation
of waves, it is necessary to consider a specific geometry. For the case
of the plasma column filling a dielectric-lined waveguide of radius b ,

the solutions are

R ()
g, = A ) r<a (IV.35)
I (wt-Bz)
1. (g) x (o) - K (&) I_(Bb)

= A a<r<b (IV.36)
1o
I, (Ba) x,(B0) - K (pa) I (Bo)

where subscripts o and 1 denote the dielectric and plasma regions
respectively and the boundary condition on the tangential electric field
has already been satisfled. Requiring the normal displacement to be con-

tinuous leads to tae following propagation equation:

[o0) i b ' ' .
[]_ - _l_(l_ OA)] Il(Ba) i i§=:O (VZ:O _(_}Z%I) (2i+l|')(55«)21+3 B
2 =

o 00 i b v+l
T 1+k o 2i+h
I (Ba) + ( v,2Lt — )Ba
° igo go (1- £9)VH (gg)eV*2

- (Iv.37)
Il(Ba) KO(Bb) + Io(ﬁb) Kl(Ba)

Ke 1_(pa) x (B0) - I (B0) K (=)
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An w-B curve obtained from IV.37 showing the effect of charge density
variation with radius is given in Figure 23. As can pe seen, the w-B
curves break gway from the uniform charge density w-p curve for Pa
greater than unity. The reason for this is that for Ba > 1, the phase
veldcity of the waves depends more on the edge charge density than on
the average charge density.

It is now of interest to examine the sclutions for two limiting
cases, Ba =0 and fa = o0 . From IV.28 and the definition of plasma

frequency,

w =Vi-a wpa s (Iv.38)

pe

where wpe is the edge plasma frequency. Since the phase velocity of
the waves at large Pa depends only on the plasma-dielectric interface
properties,

V1-«

w(pa = ©) = —Dm—s - (Iv.39)
1/ 1+x. P
e
To obtain the low frequency phase velocity, it is necessary to

examine the radial functions inside the plasma for small pa . Keeping

first order terms in PBa for the correction term to the modified Bes-

sel's function (see IV.31l) gives

(ga)° @ 1 o i+l
a
Im F(ge) = =5 L ey =) , (1v.40)
Ba = 0 - i=0 1-7
where F denotes the correction term,
rR(g) = I (g) +F(g5G) - | (Iv.h1)
Letting r = o/l- £2 , the series in IV.LO can be written
o n+l 2 3
r x r T
S=H§O n+2-—§+7§'+—£—+ . (IV.k42)
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The sum of this series is

S = L log L

= — -1 - (Iv.k3)

This series is convergent for all r2 < 1 . The condition for conver-
gence will be satisfied at f = 0 %Dy requiring « to be less than
unity. Thus the solutions cobtained will be good at £ =0 for all
cases except that of zero edge charge density. Since F 1is of order
(Ba)2 and I is of order (Ba)o, the radial function approaches unity
in the limit of small Pa when the series S, is convergent. Keeping
the first order terms in Pa for the derivative of the correction term
gives

i+l= B Ba (l fzg

1 ) 00
m EE| e v 2 =
e =0 T1-£2 (1v.hh)
which, as before, is valid for all (Ct/l-fg)2 < 1 and the arguments
about range of validity of the £ = 0 solution also apply here.

Using the small PRa approximations for the modified Bessel's
functions and the results for the small Pa behavior of the radial

functions within the plasma obtained above gives for the zero freguency

phase velocity,

1og 2TV2
vop = 0) = e%a 1-2 w8 - (IV.h5)
Since the average value of tThe parabolic distribution i1s
a 21 .
5 = —%jf o(r) raras = p (1 -3) , (1v.148)
wa Zy <q

the expression for the phase velcclty becomes



1
| 10g 2 |2 _
Vph(CL):O) = —'é:g;——— u)pa ’ (IV-M-?)
o Pe
Where ab = = E—ﬁ'_is the average plasma frequency. The low frequency
o}

phase velocity is thus seen to be constant; i.e., the system is nondis-
versive and depends only on the average charge density while the largé
Ba. behavior is determined primarily by the gggg plasma frequency.

A potentially useful plasma diagnostic tool is indicated here in
that two measurements should in principle determine the axis charge
density and the best parabclic fit to the actual charge density. These
two measurements are the iow frequency phase velocity and the frequency
for which PBa = @ . The former of these two gives directly the average
plasma frequency for the column as a whole. Unfortunately, however, an
experimental measurement of the frequency for which pa is infinite is
difficult. The reason for the difficulty is that at large pBa the
group velécity of the waves 1s high, the losses¥* are large and the large
Ba ireguency 1s not always the maximum freguency** of transmission. An
alternate method of measuring the variation in radial charge density
which avoids the above difficulties i1s to obtain a family of w-B diagrams
in the parameter  and then compare the ekperimental results with theo-
retical curves and select the value of ¢ which gives best agreement.¥¥¥

Power Flow Associated with Surface Waves on a Plasma Column. In

Chapter V, where the subject of interaction of moving electron beams and

the plasmaguide modes of propagation is treated, it will be necessary to

*¥Losses are treated in Chapter V.

*¥The arguments concerning backward waves and the maximum freguency of
transmission for the three-region problem given in the previocus section
apply here. , .

*¥*¥This work is being extended and will appear in a separate paper (25).
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have expressiohs for the power flow associated with the various plasma-
guide modes. The expressions for the power flow in plasma~filled wave-
guides given in the previous two chapters. are not satisfactory since
there is no power flow at zero magnetic field for the cases examined
(i.e., when b = a).

Consider a homogeneous isotropic plasma column of rédius a in
free space. For the circularly symmetric mode, the potential and elec-

tric fieid components are

I (pr)
8 T _(pa)
- I (pr)
PR T Tra)

il

¢li(r’ z,t)

(ot -pz)

By, (¥52,%) r<a (IV.48)

I (6r)
Elri(r’z’t> = A ——

I(pa) |

K_(pr)
K_(pa)
K (gr)
K_(5a)

K, (pr)
Elro(r,z,t) = +5AW

¢lo(r’ z,%)

JBA

]

Elzo(r’z’t) > ej(amf-Br) a<r < oo (IV.E9)

/
where P 1is & soclution of IV.21 with n set equal to zero. The a.c.
nagnetic fields were set equal to zero in the determination of the
propagation characteristics using the guasi-static approximation. A
first order estimate of their value which is consistent with this ap-
proximation is obtained with the aid of one of the Maxwell equations,

IT.2 . The result is



2
[6V)
=2 . P -
ngi.(r,z,t) =35 (1 ;g) Elri(r,z,t) r< a (1v.50)
- _
:Ilgo(r,z,t) =3 % Elro(r,z,t) a<r<oo . (1Iv.51)

The time average power flow is from II.33

, of TPrI(pr) % rx (pr)1°
FZ G GO%) - E f [ ] (pr) d(ﬁr)+,f[i(]j@] (pr)a(pr)
Ba
(1Iv.52)
2

2 a a a ' a)- a)K.(Ba

_ 2 (BZ) e, (1__P)[ 12(pa) - I_(Ba) T,(8 )] _[Kl(s ) I;O(a )K(B )]
® IO(Ba) K- (pa)

The power flow is seen to be zero at both zero frequency and at the upper
cﬁtoff frequency and presumably has a maximum value between these limits.
The power flow calculated above using the approximate a.c. magnetic fileld
is in agreement with a calcuiation of power flow made by multiplying the
time average stored energy per unit length by the group velocity of the

waves . ¥

Review of the Features of Plasmaguide Propagation for Zero D.C.

Magnetic Field. In the absence of an axial magnetic field or drifting

motion, a homogeneous isotropic, plasma column only partially filling a
waveguide can suppcrt a slow surface wave, electromechanical mode of
propagaticn. The fields associated with this mode are strongest at the
surface of the plasms and decay exponentially with radius from the plasma
surface. The surface is perturbed when the plasma column is driven at

some frequency within the passband, and the time dependent shape of the

* See Chapter V, Power Conservation for Plasmaguide Waves.
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plasﬂa column is peristaltic. All of the surface waves for two-region
geometry have an upper frequency cutoff which depends only on the dielec-
tric propertie; juét outside the plasma column and the charge density
Just within the plasma colurm. The circularly symmetric mode is non-
dispersive at low frequencies; <the phase velocity depends on the average
charge density of the plasma column and the capacitance presented to the
column by its surroundings. Backward waves can exist for the circularly
symmetric mode when the plasma colurn in free space is surrounded by a
thin dielectric shell. The linearly polarized mode of one angular
variation also exhibits a backward wave property and has a non-zero
lower frequency limit. It is also dispersive over the entire passband.
The plane of polarization is not rotated as the wave travels down the
guide because of degeneracy of the right- and left-hanc circularly
volarized components.

Perhaps the most useful feature assocliated with the surface wave
propagation is that of plasma diagnostics. Compariscn of theory and
experiment provides a means of determining such properties as the average

plasma frequency and the charge deasity distribution.



-80-

V. INTERACTION OF AN ELECTRON BEAM WITH THE PLASMAGUIDE MODES

The électrgmechanical modes of propagation in plasma columns discus-
sed in the precediﬁg chapters usually can have phase velocities much less
than. the velocity of light. For instance, the phase velocity of the
waves in a plasma-~filled waveguide is vph = wpaqunv and can be made
quite small if the waveguide radius or plasma frequency is made small,
i.e., wpa/jpnv <K ¢ . BSince almost any circuit capable of supporting a
slow wave can be used tc interact wiﬁh the space charge waves of a moving
electron beam, 1t seems reasonable to expect that the plasmaguide modes
could be used as such a circuit. Of particular interest is the possi-
bility of allowing an electron beam to interact with any of the ﬁackward
wave plasmaguide modes described earlier (chapters III and IV) making &
"structureless" backward wave cscillator. Such a backward wave oscil-
lator might be useful in generating very high microwave frequencies. The
proplem of achieving millimeter waves would be shifted from fabrication
of very small and delicate slow wave clrcuits toc that of obtaining high
electron densities or large magnetic fields. Knowledge of the electron
bean characteristics (velocity, etc.) and the resulting frequency of
oscillation gives a good measure of the plasma frequency, thus providing
& plasma diagnostic tool.

The rate of growth for the interaction of an electron beam with the
plasmaguide modes 1s obtained by two methods. The first is a field analy-
sls which is exact to within the approximation of the quasi-static
analysis used in this paper. The second method uses the notion of an
interaction impedance (le and calculates the traveling wave tube inter-
action parameter C for several cases including the backward wave. The

difficulty of solving the resultant transcendental obtained in the Ffield
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analysis necessarily restricts the solution to a simple case which will
be used to check the validity of the approximate method for the same
case.

Field Analysis of Electron-Beam Plasmaguide-Interaction. Consider

& smooth, perfectly conducting cylindrical wavegulide of radius b con-
taining an electron beam of radius a and completely filled with s
stationary ideal plasma, and let there be a finite axial magnetic field
B, . The tensor dielectric constant within the moving beam (r < a) is
easily obtained from the tensor dielectric constant given in Chapter III,
equation IT.9, by adding the susceptance of an additional charge column
which has been modified by a coordinate transformation.¥* Using the same
notation for the components of the tensor dielectric as in III.L4, the

components for the beam-plasma region are

w2 w2
P pb
€op T G =t T * > (v.1)
wi e [w - (@ - 5“0) ]
2
w mp ®, wpb
€ =€ + — (v.2)
TR -0 (o) [, - (@ - pu)]
c o] c o]
w2 w2
€z = Lo- “%'_ - 5 (v.3)
w [wc - (o - Bub) ]
where
p e
mg - = "plasma' plasma frequency
b €
8
2 ob e
abb_ - —Eg - beam plasma frequency
w, = % B cyclotron frequency

1
u_ o= [EE v }2 d.c. beam velocity
¢ m o

*See Chapter VI.
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The dielectric constant without the beam 1s obtained by setting mbb
equal to zero, thus giving III.9.

| To study fhe propagationland possible growth of waves in this sys-
tem, the quasi-static approximation wiil again be used. The differential

equation which must be satisfied by the radial function is obtained

directly from Chapter IIT, equation III.Z20,

2
1 d dR n 2
;a-;(ra;)—FR+Tl}2R = 0, (V.l)
where inside the beam
N 2 2
W w
1--2. P2 ]
2 2
o 2 % 2 L of (0-By)
T = —B = —B (V'S)
1 2 2
rrl r w w b
1+ 5 12 + P ]
2
| NN (w=-pu_)
and outside the bean
- 2
w
€ L _%
W
Tg - _pP EER L gP . . (v.6)
rr2 w
1+ IS
2 2
o w - 4
c
Suitable solutions in the two regilons are
Rl(r) = A Jn(Tlr) inside the beam (a < 7) (v.7)
R2{r)\= e} I:Jn(Tzr) Nn(Tgb) - Jn(T b) Nn(Tgr)}
outside the beam (a<r <b) . (v.8)

Matching the ratio of normal displacement to tengential electric field at

the beam-plasma interface (r = a) leads to the following determinantal
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equation

Jn(Tla) )

err-l(Tla) ——<————)Jn' o) tneg -

JA(T2a) Nn(TEb) - Jn(TEb) Ng(Tga)

Jn(TEa) Nn(TZb) - Jn(T2b) Nn(Tga)

€rro{To2) TR0, (v.9)

This equation, V.9, and the eguations defining the radial separation con~
stants, V.5 and V.6, must be solved fér complex values of Ta in order to
examine growing wave solutions. A systematic examination of the solutions
of such an equation would be a formidable task and is not undertaken here.
The eguation was derived only for completeness and to serve as a con-
convenient point Qf departure for the work to follow.
By allowing the beam to also fill the wa&eguide a = b, the complexity

of the problem is reduced considerably. Considering the axially symmetric

mode (n = 0) for this restricted case reduces V.9 to

JO(le) =0, T,b = Poy ? (v.10)

where the povfs are the vy roots of the Bessel function. Using the

definition of T.b ,

1
| 2 2
w
[1__ L. _Egﬁkél__g]
2
2 Beb - Bb
p,, =-Bb = Ce )2 ; (v.11)
@ (B.,P)
P pb
Lt—m=>+ 2 2
wo- w” (pb) - (B - Bb)
where
Beb = ab,/uo is the electronic or beam wave number
B.b = mcb/uO is the cyclotron wave number
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prb = wbbb/uo is the beam plasma wave number.

A limited number of solutions of V.1l have been obtained for
typical values of the parameters. The rate of growth b, obtained
from these solutions is plotted as a.function of the electronic phase
constant mb/ U in Figure 24 for the first twe circularly symmetric
modes (v = 1,2). The perveance (P = lIo/ Vog/gl , vhere I is the
d.c. beam current) and the ratio of operating to plasma freguency is
held constant. The fact that Beb less than a certain value for a
given axially symmetric mode does not result in gain 1s explained by
considering the sketched w-p diagrams for the first two modes (Figure
25), and recognizing that the phase velocity of the waves in the plasma
mast be nearly in synchronism with the electron beam velocity for inter-
action to take place. Shown on this diagram is a curve representing the
electron beam velocity u - As can be seen, increasing a4 above the
value which corresponds to the phase veloclity of the waves u >\n /p
for the plasma-filied wavéguide in an infinite axial magnetic field) at
low frequencies results in no intersections of the - curve and the
electron beam velocity as required for interaction. This corresponds to
the minimum value of 6eb of Figure 24. On the other hand, decreasing
the beam velocity will result in interaction with higher order modes
since there will be intersections of the d.c. beam velocity curve and
the w-p curve for these higher modes. Increasing the plasma frequency
will also result in interaction with higher order modes for a fixed beam
velocity. This is understood by observing that the points on the w-B

curves for the plasmaguide waves are scaled upward when the plasma fre-

guency is increased, thus resulting in an intersection of the w-f curve
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and the d.c. beam velocity curve.

Approximate Analysis of Electron Beamu-Plasmagﬁide Interaction.
Pierce (14) shows that the rate of growth for the waves on an electron
beam in the presence of a slow wave circuit can be calculated approxi-
mately in terms of an interaction impedance Whicﬁ is a measure of the
eiectric field available tc act on the electrons for a given power
flow on the circuit. ©Such an analysis can include the effects of the
space charge of the electron beam; The effects of space charge will
bé neglected in this analysis and the electron beam will be assumed to
be concentrated on the axis of symmetry. This simplified analysis is
usuvally referred to as a "thin beam" theory.

Regarding the plasmaguides as slow wave circuits permits the
calculation of an interaction impedance winich can then be used to
evaluate the traveling wave tube interaction parameter (14). The in-

teraction impedance

2
E,,(0)
K = 5 s (v.12)
2B PZ
enters in the traveling wave tube interaction parameter C by
3 KIO
= —— V.1l
C lI-VO ’ ( 3)

?Z is the time average z-directed power flow associated with the plasma-
guide waves. Using the expression for power flow in Chapter ITT,
equation IIT.L8, the interaction impedance on the axis for a plasma-

filled waveguide in a finite magnetic field is given by
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- (“i _ we) 1/2 .
X = : —_— (v.14)
3 an (Ujg + (L}E _ 032) ((Dg _ (D2) D Jg(p )
‘ ') c D ov 1l ov

This expressicn is plctted in Figure 26 as a function of frequency. The

impedance is seen to be zero when o = w, (except when ) = wc), and

infinite when o = ab or w = [Qg + @511/2 .

It is of interest to compare the rate of growth as predicted by

the interaction impedance calculation with that predicted by the field

analysis. Consider the following operating conditions:

Plasma frequency = 300 me
Operating frequency = 150 mc
Beam voltage = 130 volts
Beam current = 1.0 ma.
Cyclotron frequency = oo

Radius of plasna = 2.0 cm.
Radius of waveguide = 1.0 cm.

The Interaction parameter C and the corresponding rate of growth in
db/gm as calculated by the two methods are given below:

Field Analysis Interactlon Impedance

Analysis
C = 0.166 ¢ = 0.187
Rate of 4 .
arowth 2.73 db/cm 1.95 db/cm

The two methods are thus seen to be in reasonable agreement. The
discrepancy might be attributed to the fact that the interaction impe-
dance analysis is based on the assumpsion that electron beam is concen-

trated on the axis where the electric field is a maximum Ez(r)==EZ(O)
Jo(Br). This gives a higher rate of growth than if the electron beam

were spread uniformly over the entire cross section. An estimate of the
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reduction in the rate of growth calculated by the interaction impedance
method is obtained by using the mean square z-directed electric field

to compute the’intéraction impedance rather than the square of the elec-
tric field on the axis. The value of C obtained using this approximate
reduction factor is 0.134 .

.Figure 27 shows the gain per unit length as a function of frequency
for a plasma-filled waveguide of 1 cm diameter in an infinite axial mag-
netic field with a 0.5 ma. electron beam on the axis. The plasma fre-
guency is 1000 megacycles, and the electron beam velocity has been taken
to be the phase velocity of the slow waves in the plasma, i.e., the elec-
tron beam and slow wave are in synchronism. This rate of growth has been
calculated using the interaction impedance method where the electron beam
has been assumed to be concentrated on the axis.

Although backward wave interaction between an electron beam and a
plasma has not been observed as yet'in the laboratory, 1t is presumed
that the possibility of realizing a ﬁackﬁard wave osclllation exists for
this interaction process much in the same way as for a helix or other
backward wave circuit. The essential difference is that this backward
wave interaction process is "structureless”-and doesg not depend on a
spatial harmonic of a periodic structure, such as a disk-loaded wavegulde.
Taking a simple point of view and using the start oscillation conditions

for backward wave oscillation (26)

(cw) = 0.314 s (v.15)

star®
where N =L f/u.O is the length of the interaction region in electronic

wavelengths (L. is the length in meters, T 1s the driving frequency in
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Beam current 0.5 ma.
Plasma frequency 1000 nc.

Plasma diameter 1 cm.
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Rate of Growth for an Flectron Beam in a Plasma-Filled
Waveguide in an Infinite Axial Mangetic Field. Electron

Beam Velocity is Synchronous with Phase Velccity of the
Waves.
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cyclés rer second, and uO is the electron beam velocity in meters per
secqnd) it will be possible to evaluate the start oscillation current
for the electroﬁ beam. For a 10 cm. interaction region of plasma-filled
waveguide (diameter 1 cm., ab = @ = 2% X 109), the start oscillation
current as a function of frequency is as shown in Figure 28. The other
backward waves in plasmss described in this paper could also be used,
in principle, to interact with a moving electron beam; however, their
behavior is not essentislly different and will therefore not be examined
here.

The expression for the interaction impedance V.15 is not suitsble
to examine the interaction of an electron beam with the surface waves
(see Chapter IV) since that expression is for a plasma-filled waveguide
where there is no surface wave propagation. Aithough the case of a
vlasma only partially f11lling & waveguide in a finite magnetic field
could be examined for surface wave electron besm interaction, 1% is
simplier and no less instructive to consider a plasms coiumn in free
space., The interaction impedance V.12 is evaluated using the expression
for power flow IV.52

o
K= —2— J(2)(pa) (1—3;) SEU] N e (v.1€)
w ®2 g I Kg X ‘

™

W € ma
b o P

where the modified Bessel functions are of argument pa . The dimen-
sionless interaction impedance from V.16 is plotted in Figure 29 as a
function of uyai . The gain in db/cm for the same operating ccnditicns
(beam current, C.5 ma; plasma diameter, 1 cm; plasma frequency, 1000 me;
cyclotron frequency, zero; electron beam velocity and phase velcelty

appropriate to operating frequency), used in the infinite magnetic
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field gain cslculatior i1s used shown In Figure 30 as a function of
frequency.

| This anaiysis is not intended to be a complete study of interac-
tion of electron beams with stationary plasmas, but rather was included
to demonstrate that the slow waves which propagate on a plasma column
may interact with an electron beam to produce growing waves, and to
show that this interaction can e achieved with plasmas and electron
beams which are available in the laboratcry. The most important impli-
cation of this analysis is that the backward wave interaction could be
used to generate frequencies in the millimeter range or to investigate
the properties of plasmas whose densities correspond to plasma frequen-~
cles in the millimeter range. The usefulness of these calculations is
primarily that of demonstrating the method of obtaining quantitative
results for plasma-beam interactions by regarding\the plasma as a slow

wave circuls and evaluating the interaction impedance.

Energy Conservation in Plasmagulde Waves. To obtaln the propaga-

tion characteristics of the plasmaguide modes, it was assumed that the
a.c. magnetic field could be neglected. TQ obtaln an estimate of the

a.c. magnetic fields for power flow calculations, it was assumed that

they were not zero and that they were given by V x H = jw €e-E. A

demonstration that the power flow thus cbtained is consistent with the
initial approximation can be given Dy computing the time average total
stored energy in the plasmaguide and multiplying by the rate at which

energy propagates in the system (group velocity).

An expression for the total stored energy can be derived starting

with the differential form of Poynting's theorem
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Beam current 0.5 ma.
Plasme freguency 1000 mc.
Plasma diameter 1 cm.
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Figure 30. Rate of Growth for an Electrcn Beam Interacting with the
Surface Waves on a Plasma Column. Beam Velocity is Equal
to the FPhase Veloclty of the Waves.
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V-.(E XH)+-—6—(EE2+“—9HE)+E - J, = 0 (v.17)
= 5= 8t 2 1 2 "1 =1 -1 ’
5 2 Ho 2
where El b4 El is the Poyanting vecth and - El and -5 Hl are respec-
tively the electric and magnetic energy densities, and El . il is the
rate at which the electrons extract energy from the field. El . 51 is

evaluated from the eguation of motion

azl )

= - _E (v.18)

| i

l J

where either infinite or zero magnetic field has been assumed, and the cur-

rent 51 =Py ¥y s thus

2 %, 23 2 -
B v dp = (@7 (Freysevp o (v.19)

The kinetic power flow is zero and the kinetic energy density is

= (S (v.20)
Neglecting the magnetic energy density, the time average total stored

energy ver unit length is

= 0 2 om2 2 2
Wp = Rej (El + (g) @, vl) ds (v.21)
S

where 8 is the guide cross section. When the d.c. axial magnetic field
is infinite, V.21 becomes for the plasma-filled guide of radius a, using

the fielc components given in Chapter ITT

~~
e
no

ne
= 0 .2 ;32 2
W, = ——2— A (‘Ia) Jl(Ta)

. , (v.22)

—~

Sl\)i'del\_) "dgl\)
1
=
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where A is the excitation amplitude. The time average power flow is

given by’
P, = Vg W, s (v.23)
where 2
w2 w u@
v - 3 3B (=% - 1) (v.2kh)
g mp w

is the group velocity. Thus,

(Ta)® 35(Ta) (v.25)

2
_ GOﬂ A ©
P = ————
Z 2 B
which is the same ag the vower flow calculated by integrating Poynting's
vector over the guide cross section, ITT.48. The agreement of these two
methods indicates that the approximate values for the a.c. magnetic field

obtained with the quasi-static approximation are probably close to the

actual magnetic field.

Attenuation of Plasmaguide Waves. Waen the plasma electrons are

produced by an electrical discharge in a gas, attenuation may arise be-
cause of collisions of the electrons with neutral gas molecules, posi-
tive ions, or the wall of the discharge tube. These collisions inter-
rupt interaction with the wave and remove energy from it. An approximate
way of including this effect is to define an average electron collision
frequency Vo and replace ® by w - jvc in the preceding equations.

An spproximate solution to these equations is obtained oy writing
. . . dplw,0 .
awyv,) + 2Blwyv) = 38(,0) + 5 BEOL (g ) s oo (v.26)

When Vo is small the first twe terms give a satisfactory approximation
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a(w,vc) = %E v, (v.27)
Blw,v) = Blw,0) . (v.28)

Thus to a first approximation the phase velocity is uwmaffected by colli-
sions and the attenuation is proportional to the collision frequency and

inversely proportional to group velocity, dw/dﬁ .
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VI. RELATION OF PLASMAGUIDE MODES TO SPACE CHARGE WAVES
ON DRIFTING ELECTRON BEAMS

It is usuaily assumed that a drifting motion is essential to the
propagation of energy by space charge waves. Actually this is true only
for the case of a one-dimensional electron beam and does not apply for
finite electfon beams. The term "plasmaguide" has been used in this paper
to denote the various electromechanical modes of propagation in stationary
ion-neutralized plasma columns of finite cross section. These mcdes of
propagation are the same as space charge waves as seen 0y an observer in
a coordinate system moving with the electron beam. A knowledge of the
propagation characteristics in a system where the electrons are at rest
can be used to investigate the properties of space charge waves on a
roving electron beam oy means of a coordinate transformation. If o and
B are the frequency and propagation constants in the coordinate system
where the electrons are at rest, the frequency ' and propagation
constant PB' 1in the coordinate system where the electrons drift with

velocity u, are

(D!

@+ B ug (vr.1)

B! (VI.2)

i
w

The wavelengths are the same, and ' is Just the Doppler shifted fre-
guency. Although each of the plasmaguide solutions given in the previous
chapters can be easily modified to include a drift velocity, only the
plasma-filled guide in an infinite magnetic field will be considered
here. A typical w-p diagram coastructed from Figure 1 with the aid of

VI.1 and VI.2 1s shown in Figure 31l . The slanted dashed lines are the
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Figure 31.

Phase Characteristics of Waves in an Electron Beam of

Velocity u,

‘in an Infinite Magnetic Field.
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phase characteristics of the one-dimensional or beam-of-infinite-radius
space chérge wave solutions (see I.6 and I.7). The deﬁarture from <he
one-dimensional soiution when the beam is small can be explained as
follows. When the electron beam is of infinive radius, all the electric
fields from the electrons terminate on positive ions and the natural
frequency of oscillation is just the plasma frequency appropriate to the
average charge density; however, when the electron beam has a finite
radius, the electric fields of electfons do not ail terminate on other
positive ilons, but rather terminate on induced wall charges when the
beam is in a conducting tube. The restoring force on a displaced elec-
tron is therefore reduced, and the net effect is to reduce the plasma
frequency of the system. The amount by which the plasma frequeacy is
lowered, due to finite geometry i1s called the reduction factor. The
lower curve of Figure 1 i1s Jjust the reduction factor as a function of
the vpropagation constant. This is easily shown by considering the
propagation equation which would have resulted in the analysis of Chap-
ter IT if the plasma or electron beam had been allowed to have a drift

velocity uj along the axis of symmetry (w = o' - Buo)

pnv 2 2 wi
) - | (VI.3)
w' - Bu

2
where k2 has been neglected as compared with pB . This equation may

be expressed

1 l @
p= —x . 2 (VI.k)
o] O

Comparing this with I.7 it is seen that the reduction factor is
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1
R = )
o 291/2 (VI.5)
1+ (-2
Ba
vhich when solved for B/T (T = pnv/a),
| -1/2
B _ 1L ., . (VI.6)
T Rd .

By identifying R with w/mb and comparing this equation with the propa-
gation equation cbtained in Chapter II, equation II.29, it is apparent
that the ©-f diagram for the propagation gf space charge disturbances in
ccerdinate systems where the electrons are at rest is just the svace
charge reduction factor curve {(provided the ordinate is measured in units
of a/ab ). A simple graphical method (27) for obtaining the reduction
factors of the fast and slow space charge waves in terms of Sea =ooa/u.o

can be given by plotting

Ba = Ba LR, gpa (VI.7)

on the plasmaguide w-p diagram when it is plotted as a/a® as a function
of Pa . This is done in Figure 32. The intersections of the w-B curve
and the curves of VI.7 represent the solutiohs, the value of wﬁwp being
Just the reduction factor for a beam in that geometry having the value of
Bea selected to plot VI.7 . Considering many values of 5ea allows the
fast and slow space charge wave reduction factors, R+ and R_  respec-
tively to be plotted as a function of the beam propagation’constant, Bea.
The curves thus obtained do not include the usual approximation made in
investigating space charge waves, namely that ab << w . A typical reduc-~
tion factor curve obtained from this method is shown in Figure 33.

This section shows the relation of plasmaguide waves to the space
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charge wavgs‘on a drifting electron beam. The method of obtaining the
moving beam reductiqn factérs described here is much simpler than that
of solving the field equations including the drifting motion of the elec-
tron beam. Thus the properties of space charge waves for many cases can
» be determined by solving Poisson's equation in a system where the elec-
trons do not have a drift velocity and. transferring to a coordinate

gystem where the electrons have the desired drift velocity.
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VII. SLOW WAVE PROPAGATION IN FERRITE WAVEGUIDES

In Chapter III it was shown that for a plasma-filled waveguide in
a Tinite axiai d.c. magnetic field the necessary condition for propagé—
tion was that the ratic of the zz-component of the dielectric tensor
for the plasma to the rr-component be negative

(54
02 - .g° 2% (TIT.21)
GI'I'

for the reason that T2 is greater than zero and for propagating waves
Bg - must be positive. TFor a ferrite~-filled waveguide in a finite axial
magnetic field there exists a region where the zz-component and the
rr-component of the permeability tensor are of opposite sign, and it
seems quite likely that there should exist a "magnetic dual" to the

plasmaguide waves.

Ferrite Rod in a Cylindrical Waveguide. Consider a perfectly

conducting cylindrical waveguide of radius b containing a homegeneous
lossless ferrite rod of radius a , and let there be a finite axial mag-
netic field Bo . The ferrite will be treated as an anisotropic medium

of tensor permeability (11)

Hpr -Ju_G 0
b=y +ug Moo 0 (vIr.1)
0 © Moz
where
o P
HI‘I‘ = “QQ = 1 - -i—:—-gé' (VII .2)
— —_— P —
Hro Mor = T_ 2 (VII.3)
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h, = 1 (VIT.4)
and
1
P = 2 = VII.
|v] i (VII.5)
1
o= |r|H 2 (ViI.s)

MO is the d.c. magnetization, HO is the d.c. magnetic intensity and
v 1is the gyromagnetic ratio for the electron. A sketch showing the
variation of components of the permeability tensor is given in Figure
3h.*

To study the propagation characteristics of this system the quasi-
static approximation will again be used. In this case, however, it
will be the a.c. electric field which will be neglected. Unfortu-
nately a situation analogous to the infinite magnetic field case for
the plasma filled guide (Chapter II) which can be treated simply and
rigorously does not seem to exist. The validity of the approximation
here will have to rest on making a test of the solutions to see if the
a.c. electric field components are negligible. Setting the a.c. elec-

tric field to zero in the curl B Maxwell equation

VxH

1= JwekE

1 _ (VII.7)

permits the magnetic intensity to be derived from a scalar potential

H =-V ¢l (VII.8)

where the differential equation which must be satisfied by ¢l comes
from the requirement

VB = V- (g- H) = 0 . (VIT.9),

*¥This sketch is taken from reference 1l.
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in an Axial Magnetic Field.
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Using the tensor permeability given in VII.1 leads to the following

partial differential equation,

S r H, -Jj H +
3t |F HPrr M1 Mg F1g

N

19 |. )
T 56'[3_”er Hy* Heg Hl@] * §EE*ZZ le]_o.

(VII.10)

The partial differential equation in the magnétostatic potential is

2 2
0P, p O
19 el 1 1 z 1
= E (I‘ '5}- ¢:L) + —-—2- 5 + z ) = 0 . (VII.ll)
B o 08 Her 3z
Assume wave solutions,
. = K(r) eI o3Pz (VII.12)

leads to the following differential equation which must be satisfied by

the radisl function,

14 dRy n 2 Mgy

= S (p &Y R g gt 22 g _ . .13

- I (r = 5 R - B m R 0 (VIT.13)

r rre
Letting

i

T2 - .g® 22 , (VII.1k)
l‘L}:'.‘r:'

the solutions of the Bessel's differential equation VII.19 are

R(r) = A Jn(

Tr) + B Nn(Tr) . (VII.15)
Omitting the second solution which is singular at the origin, a suitsable

solution for fThe potential inside the ferrite and the associated field

compenents are:
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gﬁli(r,@,z,t') = AJ (Tr) (VII.16)

Elr{r,G,z,t) =-AT Jr'l(‘I‘r) (VII.17)
, \ ej(wt—n@—ﬁz), r<a .

B (r,6,2,5) = A J—lfl J_(Tr) (VIT.18)

HlZ(r,@,z,t) = A jp Jn(Tr) (VIT.19)

/

The solution outside the ferrite is obtained by setting Moo= uZZ= 1

in VIT.13 ,

¢ =c [I (pr) K!(Bb) - I'(pb) K (Br) od(wt-ne-pz) (VII.20)
_ n n n n

a<r<b.

This solution satisfies the boundary condition that the normal com-
ponent of the a.c. magnetic induction vanish at the conducting wave-
guide. One of the boundary conditions at the surface of the ferrite
rod, i.e., that the tangential component of the a.c. magnetic intensity

be continuous, is satisfied by taking

=
]

-1
[Jn(Ta)] | (Vir.oi)

oe}
i

-1
[In(Ba) Kr'l(Bb) - zr'l(sb) Kn(aa)] . (VII.22)

The other boundary conditiocn, that the normal component of the a.c.
magnetic induction be continuous, leads to the equation for propagsation

of waves in this system,

Ty (Ta) [T (a) K} (8b) - T (Bb) X! (pa)]
b (Ta) —T——)-Jn =oy t B kg = (Pa) [1_(pa) K' (gb) - I (8b) K_(Ba)]
(VII.23)

As discussed in Chapter ITT the fact that VII.23 is an odd function of

n indicates that the value of p for +n is different from -n ,



-111-

resulting in the rotaticn of the plane of polarization of a linearly
polarized wave (for this case slow wave Faraday rotation). Since this
paper is primarily concerned with wave propagation in plasma-filled
waveguides, a systematic examinaticn of the properties of slow wave
propagation in ferrites will not be given; howevér, it is of interest

to examine at least one case and obtain the w-f diagram.

Ferrite Filled Waveguide in Finite Axial D.C. Magnetic Field. When

the ferrite f£ills the guide (b = a), the numerator of the right side of

VIT.32 vanishes and the propagation equation i1s

Jﬁ(Ta) Hrg
(Ta) W = -n L—l;; . (VII.ELI-)

In contrast with the plasma-filled guide, the ferrite-filled guide
can produce a rotation of the plane of polarizatién of the higher order
modes (n > 0). Again, the higher order modes undoubtedly have in-
teresting properties which could be systematically investigated; however,
interest will be confined in this paper to the case of axially symmetric
modes (n = 0).

For the circularly symmetric mode (n = 0),
Jl(Ta) =0 , Ta=p_ (VII.25)

where are the v roots of the Bessel function of order unity. The

plv

normalized propagation constant cen then be expressed

(%)2 I . (VII.26)

Examining Figure 34 reveals that there is a narrow frequency band just

above the precession resonance where the quentity (p,,/ Hpp) on the
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right side of VII.26 is negative. The w-p dlagram for this pass band
is shown in Pigure 35 and as can be seen, the waves are of a backward
wave nature.

A possible use of the ferrite modes would be that of measuring
the properties of the ferrite. The technigue would be similar to that
deséribed in Chapter VII for plasma diagnostics, i.e., by measuring the
attenuation, it should be possible to deduce the losses in the ferrite,
and by measuring the phase velocity versus freguency, it should be

vossible to establish the permeability tensor components.
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Tigure 35. Phase Characteristics for Slow Wave Propagation
in a Ferrite-PFilled Cylindrical Weveguide in an Axial
Magnetic Field HO. Axdially Symmetric Mode.
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VIII. EXPERTMENTAL RESULTS

Mosf of the analysis given in the preceding chapters was made
either to explain.results which had been observed experimentally or to
predict in advance what results to expect in a given experiment. The
experiment is guite simple and involves nothing more than exciting a
wave, such as described in earlier chapters, on an lon~-neutral plasma
colum and measuring the wavelength in the plasma waveguide. By mea-
suring tke wavelength for a particulér frequency of excitation and a
given geometry, it is possible to calculate the propagation constant
(B = 2n/x). Repeating this measurement at various fregquencies within
the passband gives an experimental curve of the phase characteristics
of the waves (w versus B). Such measurements were made and in each
case the agreement between theory and experiment is quite gcod. The
experimental results will be presented in relation to the analysis
which is being verified.

Description of Experiment. A schematic diagram of the apparatus

ased to investigate the properties of the various modes of propagation
is shown in Figure 36. The plasma is the pqsitive cclumn of a mercury
arc discharge that is maintained by applying a é.c. voltage (through a
large external resistor waich limits the discharge current) between the
thermionic cathode and the anode. The anode i1s a disk whose diameter is
slightly less than the diameter of the glass cylinder which contains the
plasma. The oxide-coated cathode is a conventional type taken from a
commercially available mercury arc rectifier tube. To excite the waves
in this system, a radio freguency signal is coupled to the plasma

thrcugh the discharge anode. This is accomplished by operating the anode
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at zero d.c. potential and the cathode at a negative voltage and by
pringing the r.f. signal to the anode along a coaxial conductor. The
d.c. path for the current is provided by placing a length of shorted co-
axial conductor in parallel with the  line supplying the r.f. Actually,
several of these shorted sections (usually referred to as stub tuners)
of line were strategically located so as to provide a better impedance
ratch between the 50 ohm output of the signal generator and the plasma
(the r.f. input impedance of the plasma waveguide has been estimated to
be on the order of 1000 ohms). The signal along the plasma column is
sampled by means of a moveable probe as schematically indicated in
Figure 36. The guide wavelengths are measured in two ways. The firssg
is to measure the standing waves which result from the reflected energy
at the.unterminated end of the plasnms wavegulde. This method was useful
when the loss was low and the wavelengths were long (10 cm). The length
of the plasma column is abcut 25 cm. thus making 1t possible to con-
veniently measure 15 cm. wavelengths. Using the standing wave method

1t is therefore possible tc measure guide wavelengths up to 30 cm. since
the guide wavelength is twice the measured wavelength. When the losses
become rather high and the wavelengths short (one or two cm.) little or
no energy is reflected from the unterminated end of the plasma column
and no standing waves are observed. To measure the wavelength under
these circumstances, a second method was used. This method involves
adding some signal from the generator <o the signal coming from the
probe. As the probe is moved along the plasma column, the phase of the
probe signal goes through 2w radians every guide wavelength. For some

probe position, the constant phase of the signal from the generator is
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180° out of phase with respect to the probe signal, and the two signals
partially caﬁcel. By adjusting the amplitude of the added signal, it
is.possible in'principle to make the two signals cancel completely. Thus
as the probe is moved along the plasma column, the combined output will
have a minimum at points which are éeparated by one gulde wavelength.
The éttenuation of the signal with distance away from the input was
measured by observing the probe signal amplitude as a function of probe
pesition.

The pressure of the mercury within the tube is controlied by regu-
lating the temperature of a mercury well which is attached tc the glass
envelope at a point near the cathode (not shown in the schematic). The
temperature is held between 26.7°C and 26.9°C (about 300°K), and the
corresponding ovressure is a few microns. For this pressure, “he mean
free path of the plasma electrons (a few centimeters) is long compared
with the diameter of the discharge (0.328 inches). To make accurate
quentitative measurements, it would be essential to immerse the entire
discharge tube in a thermostatic bath. This would be difficult from a
practical standpoint and was not done because the experiments were not
performed to provide accurate gquantitative fesults, but rather were per-
formed to verify the gross features of the waves reported in the analy-
sis. In spite of only regulating the temperature of the mercury well,
the results are quite reproducible, and it would seem that the most
serious consequence of only partial immersion is to place all the re-
sults in errcr by a small but constant amount.

Propagation was investigated from 10 megacycles to 4000 megacycles.

The cyclotren and plasma frequency are variablie over about the same

range. The axial d.c. magnetic field is provided by a solenoid. The
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diameter of the plasma is 0.328 inches, and the outer diameter of the
glass cylinder containing the plasma is O;MlO inches. One of the cylin-
drical waveguiaes in which <he plasma column is placed closely fits the
glass cylinder, and the other waveguide which is used in the experiment
is 0.750 inches in diameter. Whean empty, the cutoff freguencies for
these waveguides is in the tens of kilomegacycles so that the frequen-
cies used in the experiment are all well below cutoff. The frequency
range over which propagaticn was investigated was determined by the
equipment avallable in the laboratory.and does not represent any funda-
menﬁal lirmitation.

Plasma Column in a Cylindrical Waveguide. Finite Magnetic Field.

In Chapter IIT it was shown that the propagation characteristics depend
on the strength of the axial d.c. magnetic field. In addition to forward
wave pass bands, there are backward wave pass bands near the cyclotron

or plasma frequency depending on which is larger. TFigure 37 is a theo-
retical w-B diagram for a plasma column in a glass cylinder which tightly
fits a cylindrical waveguide. Experimental points for several discharge
currents and magnetic flelds are shown. As can be seen the experimental
points are in agreement with tae theoreticai phase characteristics.
Notice that in contrast with the presentation of the phase characteris-
tics in the theory sections of this papey, the operating frequency is
normalized to the cyclotron frequency rather than the plasma frequency.
The reason for this is that the cyclotron frequency is known and until

a comparison with the theory is made, the plasma frequency is unknown.
The packward wave pass bands are not indicated in this diasgram for the

reason that using the cyclotron frequency as a normalizing frequency

causes the backward wave pass bands to cross the forward wave pass bands,
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créating a confusing diagram. Another reason is that no backward waves
were observed for this geometry of a tightly fitting metallic slesve.
The inabilitykto observe the backward waves is probably a result of high
attenuation, bad input mismatch, and poor prcbe coupling to the r.fT.
fields. The poor probe ccupling résults from the fact that the probe
is in a narrow slot cut in the sleeve and can at most touch the glass
cyiinder contalning the plasma. Another factor which contributed to
difficulty in observing backward waves was a rather high noise level.
This noise was distributed rather uniformly over the entire frequency
range investigated. The source of this noilse, which seemed to be a
function of the r.f. signal level, is not known. A more complete des-
cription of this noise spectrum is given in the next chapter. To
remedy the pcor probe coupling, a second geometry was considered. This
geometry allows for an alr space between the glass cylinder and metal-
lic sleeve thus permitting better coupling between the probe and the
r.f. field. For this geometry, transmission was observed in regions
where backward wave pass bands are predicted theoreticaily; however,
the high attenuation made phase velocity measurements virtually impos-
sible. Figure 38 shows the regions of probagation for this geometry
as a function of the cyclotron frequency. The range over which propa-
gation was experimentally observed is seen to be in reascnable agreement
with the theory. The reason that points in the backward wave region
were not taken at higher frequencies is due to the lack of sultable
signal generators in the frequency range where the pass bands occur.
Limited phase velocity measurements in the backward wave region were

made. These are shown in Figure 39 along with measurements made in the

forward wave pass band for the same operating conditions. The backward
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wave passband is gquite sensitive to the choice of eitker cyclctron or
plasma frequency and the forward wave pass bands are guite insensitive
to.small chenges in these guantities. The dashed phase characteristics
curve which best fits the experimental backward wsve data is for

aé/w; = 1.9 . As can be seen this is rather far from the mp/mc =2
curve for the backward wave pass band. For the forward wave pass band,
however, the mpﬁwc = 1.9 curve is very close to the ab/wc = 2.0 curve
sc that both would fit the data equally well. For this reason,

ab/wc = 1.9 is probably the best value. Thus the plasma frequency for
this discharge current (5 ma.) is 475 megacycles.

Plasma Column in a Cylindrical Waveguide. Zero Magnetic Field. In

Chapter IV, the surface waves which propagate on an isotropic plasma,
column are discussed. To verify the features of these modes, the same
experimental set up and Sechnique described earlier was used. The mag-
netic field of the solenoid was reduced to zero. Figure 40 shows the
theoretical vhase characteristics (for the geometry used in the experi-
ment) which would result if the charge density were uniform over the
cross section of the tube. In Chapter IV it was shown that if the charge
density was a function of radius (maximum oﬁ the axis and minimum at the
edge) the phase characteristics would be modified. As can be seen from
Figure MO, the experimental points for Ba > 1 are below the uniform
charge density curve, which is as expected from the analysis. The ex-
perimental points are normalized to the average charge density of the
plasma column so that they all havelfhe same behavior at low frequencies.
The fact that their low frequency phase velocity depends only on the

average charge density is explained in Chapter IV. The experimental

points for the larger of the two discharge currents are the lowest on
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the diagram. From the analysis of Chapter IV, this would indicate that
the edge charge density is lower relative to the axis charge density for
higher discharée currents. Such behavior can be explained quaiitatively
by noting that the rate of production of plasma electrons increases with
increasing discharge current and by assuming that the radial diffusicn
constant is not a function of discharge current; this means that the
curvature of the distribution, which is proportional to the rate of
production~diffusion constant ratio, increases with discharge current.
The value of the parameter « used in Chapter IV to denote the parabo-
licisy of the radial charge distribution, nas been calculated for a few
cases; however, the values are at best crude estimates for reasons

cited in Chapter IV snd will therefore not be given as results.

Plasma Diagnostics. It was shown in Chapter IV in the section in-

volving the effect of Variation of charge density with radius, that the
phase velocity at low frequencies is asymptotic to a constant velocity
which depends on the average charge density and the geometry. A mea-
surement of this low frequency phase velocity therefore provides a
measure of the average plasma ffequency. This was shown only for the
éurface waves which exist in the absence of én axial magnetic field.

It is assumed, without prcof, that the low frequency phase velocity of
waves which propagate in the presence of an axial magnetic field also
depends only on the average charge density. TFigure 41 shows curves'of
the plasma frequency squared (proportional to average charge density)
as a function of the axial magnetic f£ield for several discharge currents.
As the magnetic field is increased from zero, there is a sharp enhance-

ment of the average charge density. This is explained by observing

that the plasma electrons gd from a regime at zero magnetic field where
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wall collision (the mean free path of plasma electrons is several times
the diameter of the glass cylinder containing the plasma) is the primary
losé mechanism to a regime where only a few electrons collide with the
wall because thelr cyclotron radius is much less than the diameter of

the piasma column. Thus at a magnetic field greater than the value re-
quired for 'a cyclotron radius equal to the plasma column diameter for few
volt electrons, the plasma electrons should drift along the axis of sym-
netry spending a longer time in the plasma thus resulting in a higher
average charge density. It would be expected that once the cyclotron
radius was much less than the diameter of the plasma column that a further
increase of the magnestic field would produce no further enhancement of the
charge density. As seen in Figure 41, this is in agreement with the ex-
perimental observation.

Eguation V.33 relates the average collisicn Irequency of plasma
electrons to the wave attenuation and wave group velocity. A measurement
" of the wave attenuation along the plasma column ard simultaneous evalusa-
tion of the group velocity therefore provides & measure of the collision
frequency. Figure L2 is a plot of the collision frequency as a function
of discharge current for zero axial magnetic-field. The nmeasured colli-
sion frequency is in agreement with a calculation based on a few volts
energy for plasma electrons and a mean free path long compared with the
one centimeter diameter (the calculated collision frequency is the order
of 100 megacycles). Attenuation measurements in the presence of an
axial magnetic field have been made. The loss was in most cases low and
reflected energy from the eand of the plasma cclumn prevented accurate

measurements. The results are questionable and will not be included.
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IX. SUMMARY AND CONCLUSIONS

Some of the features of slow electromechanical modes of wave
propagation iﬁ a stationary plasma of finite transverse cross section
have been examined by considering the plasma to be a dielectric and
solving the field equations. It has been shcwn that there exist two
basié types of propagation, both of which have phase velocities that
are generally much less than the velocity of light. The first might
be described as a body wave since it involves a perturbation in the
average charge density of the plasma; the presence of a d.c. magnetic
fieid is essential to the existence 6f body waves. The second is a
surface wave which involves a perturbation or "rippling" of the plasma
surface but no charge accumulation within the plasma; this type exists
for elther zero or small d.c. magnetic fields and does not exist when
the plasma completely T©ills a conducting waveguide. Rach of these
types of propagation has modes which can exist down to zero frequency
and modes which for certaln conditions are backward waves. 3Backward
waves usually exist as a spatial harmonic on a periodic circult and not
as separate and disfinct modes as observed here. Five distinct back-
ward waves are reported and the possibility of interacting an electron
beam with one of them is considered briefly. The interaction of an
electron beam with this "structureless" backward wave has potential
application in the generation of very high microwave frequencies since
the emphasis would ve shifted from the febricatior of delicate slow
wave structures to that of obtaining very high charge density plasmas.
Faraday rotation of the plane of polarization was an important consi-

deration in the perturbation of the electromagnetic waveguide modes by
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the introduction of a plasma into the waveguide system. Significant
Faraday rotation is shown to exist for the angular dependent slow wave
modes in a plésma colum partially filling a conducting waveguide in a
finite axial d.c. magnetic field. It is shown that it is not essential
for.the d.c. magnetic field to be coaxial with the waveguide system

Tor propagation to exist by considering the problem of a plasma-filled
rectangular wavegulde with a d.c. magnetic field perpendicular to one
of the guide surfaces. The mode types which result are a backward wave
which propagates down to zero frequency and a narrow pass band forward
wave near the plasma frequency.

The surface waves which involve no charge accumulation within the
plasma are quite sensitive to the radial charge density variation of
the plasma column near the eége of the pass band. At low frequéncies,
however, the phase velocity of the waves depend only on the average
charge density. The effects of tne radial charge density on the propa-
gation characteristic are examined and experimental methods for obtain-
ing a measure of the radial charge variation and the average charge
density are described. It seems likely that one of the most useful
applications of surface wave propagaticn ié that of plasma diagnostics
since the frequencies required are much less than the plasma frequency.
This is of particular interest where the charge densities correspond
to millimeter wavelength plasma frequencies and signal generation is
rather difficult. A measurement of the attenuation of the wave ampli-
tude 1s shown to provide a measure of the average collision frequency
in the plasma. This method could be guite useful in obtaining the col-
lision frequency in regimes where an analytical solution would be guite

difficult.
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Bach of the modes described are closely related to space charge
waves associated with drifting electron beams. A method for obtaining
the properties of drifting electron beam space charge waves by a coor-
dinate transformation is described. The space charge wave reduction
facfor for drifting beams is easily obtained from the stationary plasma
phase characteristics by a simple graphical construction. This results
in a considerable lessening in the labor of obtaining the space charge
wave reduction factor as well as providing a better understanding of
the nature of space charge waves in general.

Slow wave magnetostatic modes of propagation in ferrite waveguildes
which are essentially the magnetic dual of the waves in a stationary
plasma are examined briefly. These modes do not appear to be of much
usefulness at the present time except for purposes of ferrite diagnos-
tics. The electric fields associated with these modes are small and
the possibility of interaction-of electron veams with these modes seems
unlikely. For an axial magnetic field there is one slow béckward wave
rassband near the precession resonance frequency, and for a transverse
magnetic field a forward wave passband in the same vicinity.

"Many of the features of the plasma modes have been verified ex-
perimentally by measuring the phase velocity on a mercury arc discharge
column. These measurements have ylelded estimates of charge density
which are in essential agreement with other methods of obtaining charge
density.

The analytical and experimental work reported in this paper does
not pretend to be exhaustive; in fact, more problems were uncovered
which remain to be solved than were solved. One of the more interesting

of these problems is the nature of the nolse which seriously hampered
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efforts to obtain precige experimental data. This noise is present
.both with and without magnetic fields. With magnetic fields there was
a more or less‘continuous spectrum with several discrete prominences
for which the amplitude of successive peaks was lessened as the fre-
quency was increased. For some operating conditions, the amplitude of
the nolse was a function of position along the guide. It is not known
whether these signals were growing or decaying since their origin is
not known. For other conditions, there weredefinite standing waves of
noise voltage along the mercury discharge column. In most cases the
level of noise voltage at any plamne along the discharge column appeared
to be related to the level of the incident signal (the noise increased
as the signal level was raised.) One of the types of noise which is
known to exist in discharge columns is that of moving striations; al-
though it is not known to be the mechanism in this case.

Another interesting problem is that of slow wave propagation in
discharges of the thermonuclear type. The primary differences should
come Irom the rather large circumferential magnetic field which results
from the large currents carried by the discharge. A knowledge of the
properties of these waves and experimental ﬁrocedures similar to those
described in this paper should permit the diagnostics of such discharges.

The possibility of interacting an electron beam with any of the
backward waves described to make a "structureless" backward wave oscil-
lator is particularly intriguing. Although interaction of an electron
bear with one of the forward wave modes has been observed, the results
were entirely too preliminary to be reported in a systematic way. Work

is being continued in the hope that backward wave interaction will be

found.
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Certain deviétions from the theoretical surface wave behavior
which were'not reported in the chapter on experimental work can probably
be attributed to the variation in charge density near the edge of the
plasma column.

The primary conclusion to be drawn from this analysis is that a
drifting motion of a plaéma is EQE essential to the propagation of space
charge wave disturbances provided that the plasma is of finite trans-
verse cross section. The most important result of the analysis is that
of describing methods whereby the properties of plasmas can be inves-
tigated by rather simple experimental techniques involving freguencies
which are much less than the plasma freguency. Also of interest is the
conclusion or implication that the propagation of nolse disturbances
near the potential minimum of a diode may be considerably different from
that predicted by one-dimensional space charge wave theory when <he
plasma frequency is of the same order as the frequency of interest.
Finally, it seems likely that an understanding of these slow wave modes
of propagation may ve useful in studying the radiation or reception of
radio signals in gulded missiles since the hot exhaust gases are a low
frequency propagating structure, and the antenna, pattern might be modi-

fied by the exhaust gas column which r.f.-wise is part of the missile.
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APPENDIX I. ONE-DIMENSIONAL SPACE CHARGE WAVES

Consider an ion-neutralized, drifting electron stream of average
velocity a4, and average charge density Py - A simple derivation for
the space charge waves which propagate in this system begins by assuming
the total velocity and charge density to be the average value plus a

small, harmonic time-dependent perturbation,

w(z,t) = u 4w, edlwt-Bz) (AT.1)

07 1z

1l

fl

Jlot-p2) (aT.2)

p(z,t) Py T P €

The total convectlon current demsity J = pv passing a given plane is

also assumed to have an average value plus a small perturbation,

J(z,t) =J -+le(z,t) =p u _+(u * o, Vlz) ej(wt"ﬁz) , (AL.3)

0% 0 03z 0% pl

where the term Py le has been neglected since it 1s the product of per-
turbation quantities and is of second order. For the assumed time and
space dependence, the a.c. current and a.c. charge density are related

by the equation of continuity IIL.8
J. -2 = 0. (AT.L)

The a.c. electric field is related to the a.c. charge density by the

divergence relation II.3

Py
B ElZ + E; = 0 . (AT.5)

The a.c. velocity and a.c. electric field are related by The equation of

motion IT.7



. e
(w-pu,) v, -3-F, =0 (AI.6)
vhere
dt =~ ot oz dt T ot oz ot
since v is a function of both 2z and t . Taking dz/d:t = u,, as-

sumes the drift velocity to pe much larger than the a.c. velocity. The

a.c. convectlon current density from AT.3 can be written
J1g = Uy P = Py V1, = 0 . (AT.7)

The equations AT .4 through AT.7 constitute a set of homogeneous algebraic
equations which relate the a.c. velocity, charge density, current, and
electric field. To have a non-trivial solution, the determinant of the
coefficients associated with these variables must vanish. The interest-

ing soluticn

2
w§ - {(w - Buoz) = 0 , (AT.8)

is the propagation equation for the space charge waves assoclated with

o e
the drifting motion of the electron stream. aﬁ = = EEE is the electron

plasma frequency. The implications of this equation are examined in the

introduction (see I.1l).
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APPENDIX IT. ADVITTANCE TRANSFCRMATION

The characteristic equation for the propagation of waves in multi-
reglon systems‘can'be obtained by calculating the surface admittance
(ratio of tangential H +to tangential E when surface currents are
absent) in two adjoining regions and equating them at the boundary.
Birdsail (28) shows that the surface admittance at a plane (or as in the
case considered here, at some cylindrical surface) can be easily calcu-
lated by means of cutoff guide admittance transformation if the admittance
is known at some other plane such as at the conducting wall of a waveguide.
Thié method need conly be modified slightly to be used with the quasi-static
approximgtion to obtain the propagation equation of a multi-region system
containing a plasma column.

The boundary condition for the quasi-static approximation is con-
tinuity of the normal displacement—tangential electric field ratio at
each discontinuity. This ratio is presumed known at the conducting sur-
face of the wavegulde and can be transformed to the surface of the plasma
column by successive appllcation of the transformation through each
region between the waveguide wall and the plasma surface. In each region

outside the plasma, the phasor potential is
¢l = A _Ln(BI‘> +BK Br . (ATI.I)

The normal displacemert and tangential electric field are

5¢l
€E,=-c5 = <8 [AL(er) +BK(Rr)] (ATT.2)
B
B, = ss =+ [AT(er) + B Kn(Br)] : (AII.3)

Defining a surface admittance
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E ATI'(x) +BK'(x)
J q(x) € I n (ATT.k)
. AT (%) +3BK(x)

m

i
i
1

S

where the notation x = Br has been used. At some other radius

(Br' = Y) ’

I (y) + K1(¥)

L) +x (v)

Qly) = e (ATI.5)

oel b fesl |

Solving AIT.4 for the ratio of A/B and substituting in ATI.5 ,

e [1) K- 1) K@) + e [ 1,00 K - 1) K, (x)]

aly) = e
e [1,00 K6 - 160 k(] + @) [ 1,00 1,0 - I () K, (0)]

(AII.8)

This equation allows the evaluation of Q(y) given @(x) and the values
of x,y and the dielectric constant € .

As an example, consider the three-region problem (i.e., plasma
column of radius a f£illing a dielectric cylinder of outer radius b in
a waveguide of radius ¢ . @(Bc) is infinite, and Q(Bb) (Bb < Bc) 1is
given by
[12(8) 3(6) - T3(80) (0]

- (ATI.7)
[14(pe) x,(80) - T,(80) K (8)]

Q(pbsBe,e ) = €

A second transformation from b %to a gives the value of Q(Ba+) Just
outside the plasma radius. Equating this to the value of @(pa_) Just

inside the plasma radius gives
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“) 1.(ga)
- ol T, P (ATI.8)
Ke[Ir‘l(Ba) K (po) - I'(pb) Kr'l(sa)]_+ Qéab) [In(Bb) K!(pa) - Ir'l(ga)Kn(gb)]
K 0 '
x_[1_(8e) K (89) - T)(g0) k_(ga)]+ be) [1,(e0) x_(Ba) - I, (Ba)x, (po)]

where Q(Bb) is given by AII.T7. Each of the quantities within the
brackets in ATI.7 and AIT.8 are tabulated (28) For a limited number of

cases permitiing numerical solutions to be obtained with relative ease.



