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Abstract

The general problems of particle motion in the vicinity of a flat, non-
deforming fluid interface is studied. The approximate singularity method used
by previous workers in this research group has been generalized to consider the
motion of a sphere in any linear velocity fleld compatible with the existence of
the undisturbed flat interface, and the motion of slender rod-like particles
which undergo an arbitrary translation or rotation in either a quiescent fluid or
in a linear flow. The theory yields the hydrodynamic mobility tensors which are
necessary to describe Brownian movement near a phase boundary, as well as
general trajectory equations for sedimenting particles near a fluid interface with
an arbitrary viscosity ratio. These approximate solution results are in good
agreement with both exact-solutions where they are available and experimental
data for motion of a sphere near a rigid plane wall. Among the most interesting
results for motion of slender bodies is the generalization of Jeflfery orbit equa-

tions for linear simple shear flow.

The Brownian motion of a sphere in the presence of a deformable fluid inter-
face is also examined. First, the fluctuation-dissipation theorem is derived for
the random distortions of interface shape that are caused by spontanecus ther-
mal impulses from the surrounding fluids. This analysis is carried out using the
method of normal modes in conjunction with a Langevim type equation for the
Brownian particle, and results in the prediction of autocorrelation functions for
the location of the interface, for the random force acting on the particle
(evaluated by a generalization of the Faxen's law), and for the particle velocity.
The particle velocity correlation, in turn, yields the effective diffusion coefficient
due to random fluctualions of the interface shape. Finally, we investigate the
effects of interface deformation that are induced by the impulsive motion of a

sphere that is undergoing Brownian motion. In this phase of our study, we



consider both the spatially modified hydrodynamic mobility which occurs as a
consequence of hydrodynamic interactions, and influence on the mean-square
displacement of the Brownian particle of the interface relaxation back towards

the flat equilibrium configuration after an initial deformation that is caused by

the particle motion.
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Part 1. Slender Bodyin a Qui%cént Fluid



Particle Motion in Stokes Flow near a Plane Fluid-Fluid Interface

Part 1. Slender Body in a Quiescent Fluid’

by
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Abstract

The present study examines the motion of a slender body in the presence of a
plane fluid-fluid interface with an arbitrary viscosity ratio. The fluids are
assumed to be at rest at infinity, and the particle is assumed to have an arbi-
trary orientation relative to the interface. The method of analysis is slender
body theory for Stokes flow using the fundamental solutions for singularities
(i.e., Stokeslets and potential doublets) near a flat interface. We consider trans-
lation and rotation, each in three mutually orthogonal directiens, thus deter-
mining the components of the hydrodynamic resistance tensors which relate the
total hydrodynamic force and torque on the particle to its translational and
angular velocities for a completely arbitrary translational and angular motion.
To illustrate the application of these basic results, we calculate trajectories for a
freely rotating particle under the action of an applied force either normal or
paraliel to a flat interface, which are relevant to particle sedimentation near a

flat interface or to the processes of particle capture via drop or bubble flotation.



1. INTRODUCTION

When a small particle moves in the vicinity of a boundary. its motion will be
affected due to hydrodynamic wall effects. We have previosly considered the
motion of a spherical particle in creeping motion near a fluid-fluid interface
{Lee, Chadwick and leal, 1979; lee and Leal, 1980, Berdan and leal, 1982; Lee
and Leal, 1982). The present paper is the first of a series in which we extend this
work to consider the creeping motion of slender, rod-like bodies in the the same
circumstances. A number of different problems are of potential interest,
corresponding to various types of application. For example, the translation and
rotation of a fiber-like particle in a quiescent fluid system is relevant to sedi-
mentation phenomena, and to theories of Brownian motion for particles near a
fluid-fluid interface. Particle motions in more general flow fields such as pure
straining flow or simple shear flow are relevant in suspension mechanics, and to
some aspects of the process of particle capture at the surface of a large bubble

or drop (cf. Goren and O'Neill, 1971).

In this present work, we use the fundamental solutions of Lee, Chadwick and
leal (1979) in combination with slender-body theory for Stokes' flow (cf.
Batchelor 1970; Cox 1870,1971; Johnson and Wu 1979; Keller and Rubinow 19786;
Johnson 1980, among others) to study the translation and rotation of an arbi-
trarily oriented, straight slender body through a quiescent fluid near a flaf fluid-
fluid interface. The resulting solutions are valid, as a zeroth-order approxima-
tion, under any conditions where the interface deformation remains small (Lee
et al., 1979). On physical grounds, this occurs when either the separation dis-
tance between the particle and the interface is much larger than the charac-
teristic length of the particle, or when either the surface tension or the density

difference between the two fluids is very large.
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Recently, Fulford and Blake (1983) have considered the same general prob-
lem considered here, but only for translation with the body oriented either
parallel or normal to the interface. Fulford and Blake's analysis yields the
hydrodynamic force for these two particular orientations, as well as the induced
torque due to the interface, but cannot be used to calculate the instantaneous
angular velocity of the particle (as claimed by Fulford and Blake) without solving
for particle rotation in a quiescent fluid to determine the relationship between
torque and angular velocity in the presence of the interface. Furthermore, the
Fulford and Blake scolutions cannot describe the motion of an arbitrarily
oriented body, and thus cannot, for example, provide trajectories for particle

motion under the action of a force if the particle is free to rotate.

In the present paper, we consider translation and rotation, each in three
mutually orthogonal directions. The solutions of these six fundamental prob-
lems, each with an arbitrary orientation of the particle, provide all of the com-
ponents of the hydrodynamic resistance tensors which relate the hydrodynamic
force and torque on the particle to its translational and angular velocities, for
arbitrary particle motions in a quiescent fluid. These fundamental solutions are
then applied, for illustrative purposes, to calculate particle trajectories for "sed-
imentation” of a freely rotating particle due to an applied force which acts

either normal or parallel to a flat interface.

II. BASIC EQUATIONS

We begin by considering the governing differential equations and boundary
conditions for a rigid, nen-axisymmetric, straight slender body which moves,
with translational velocity U and angular velocity {} near an interface which
separates two immiscible Newtonian fluids. The fluids will be denoted as I and 11

with the body wholly immersed in the fluid II. It is assumed that the relevant



Reynolds number

2
Re = 193 or o
Va2 Vo

is sufficiently small (Re < < 1) that the quasi-steady, creeping motion approxi-
mation is applicable, where v, represents the kinematic viscosity of the fluid 11
and I is the half-length of the body. As the body moves it induces a disturbance
motion in the two fluids, and in slender body theory the associated flow field at
low Reynolds number is investigated by examining a nearly equivalent problem
in which the body is replaced by a line distribution of Stokeslets along the axis
of the body. A slender body with an arbitrary orientation is depicted in Figure 1.
We adopt a coordinate system in which the x;-axis coincides with the projection
of the body centerline onto the interface, which is itself located at xg = 0. Point
forces are distributed over the portion -l < x < ! of the body axis, with the mag-

nitude of the point force at any position X, on this line denoted as

fa(X0) = Bppa(x)0(x ~ %) |

in which é6(x) is the three-dimensional Dirac delta function. The vector density
(or weighting) function, a(x,), must be chosen as a function of position along the

particle axis so that the no-slip boundary condition

uz =U + () Xx,
(1)

is satisfied on the body surface. In component form, the position vector x, is

sirnply represented as:
X, = {¢écose, 0, ¢sine—d) .

in which 6 is the angle between the centerline of the body and the plane of the
interface, d is the separation distance between the interface and the body

center, and ¢ is the distance along the centerline measured from the center of



the body.

The fundamental solution of the creeping motion equations for a point force
located at an arbitrary point x, in fluid II was obtained independently by
Aderogba and Blake (1978) and by Lee, Chadwick and Leal (1979). The resulting

velocity and pressure fields can be expressed in the form:

WX, Xu ) = A(Xy) - ¥ (X.Xy)
(Ra)

P (X %) = a(xy) - [I{xxy)
(2b)

where ¥(x,x5) and [I(x,x,) denote Cartesian tensorial Green's functions with

components:
61.. r:r; [ i R‘le
nd = B B[R et [ ]
~ . S8 |d- g*sms)R, RIRS
Y (d — ¢sing) - (8 - G ~ 63 Oax ) Ry [ RO R R
and
_ r3 1-A B
 (xx) = 2ue | o5+ |31 % = doie |
oA 0 RS
TN ~(d —¢sing) - (6 - i — &g~ Oak ) - Ry [ES'H

(summation convention over { = 12 and k = 1,2,3)

where r=(x-—x,).R=(x—-x.').r={rf.R={Rl,?\zil—. and X, denotes the

reflection point of x4 in the fluid 1. Thus, for a line distribution of Stokeslets
with the line density a(xy), the resulting fluid velocity u(x) and pressure p(x) at

a point x in the fluid are given by:

1
u(x) = L a(xy) ¥ (x.%s) d¢



(3a)

3
o0 = [ a(x)Ti(x. x) 4
8 (3b)

The velocity and pressure flelds defined by these equations automatically
satisfy the conditions of zero normal velocity, continuity of tangential velocity
and continuity of the shear stress at the fluid-fluid interface, as well as the con-
dition of vanishing velocity in the far fleld (note that the Green's functions
¥ (x,X,) and [1(x,xs) are of 0(1/r) and 0(1/r?) for r >> 1). All that remains is to
satisfy the no-slip boundary condition (1), according to which the fluid velocity
must be U+ Q Xx, at the body surface. Thus, the unknown function a(xg)
representing the line density of Stokeslet strengths must be determined so that
the disturbance velocity given by (3a) is at least approximately equal to
U+ Q Xx, at all points of the body surface. It should be noted that, in general, a
line distribution of Stokeslets alone will not be sufficient to satisfy the no-slip
boundary condition at all levels of approximation for all points on a body sur-
face. Higher order singularities (e.g., potential dipoles) are also generally
needed, even in the case of an axisymmetric body. However, when the body is

slender, the boundary-condition at the body surface can always be satisfied to
2
R,

tion of the higher order singularities. Furthermore, the total hydrodynamic

-1
, without explicit introduc-

[
an order of approximation, 0(¢) where ¢ = {ln

force or torque acting on the body can be determined from the Stokeslet distri-

bution alone as pointed out previously by Batchelor (1970).

A point on the body surface can be expressed in terms of cylindrical polar
coordinates (r,m.x). It is assumed that the crosssection of the body has an
effective radius 7,(x) which is a function of distance x along the body centerline.
The maximum value of 7,(x) is denoted as K,. The cross-sectional shape need

not be circular provided only that we choose r,(X) such that the perimeter is
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equal to 27r(x) (Batchelor 1970). At the body surface,

X = Xp = (XC0S€ — I, $in7 siné, rocosn ,xsind — d + r, sinz cose).
Applying the no-slip boundary condition at the body surface to equation (3a)
yields an integral equation for the unknown Stokeslet distribution, a(xy), i.e.,

[3
U+Q ><~x.,=f_z a(Xy) - ¥ (Xp, Xg) d¢ . “

The theoretical analysis which follows will be based on the assumption that

1

both Ry/{ and 3 2 J are small. The first assumption is a slender-

T=isme| > d
ness criterion, while the second implies that the slender body is not closer than
a few radii from the interface. In view of the linearity of the problem, the trans-
lational and rotational components of the particle motion can be considered

separately, and we begin with translational motions of an arbitrarily oriented

body parallel and perpendicular to the interface.

II. FUNDAMENTAL SOLUTIONS FOR TRANSLATION OF A SLENDER BODY NEAR A
FLAT FLUID INTERFACE

A Motion parallel to the interface along the x;-axis

Let us then consider an arbitrarily oriented slender body which is moving
with a translational velocity U, e, in the direction of the x,-axis through fluid II
In this case, in order to satisfy the no-slip boundary conditions, it is necessary
to employ distributions of Stokeslets oriented in both the e; and ey directions.

By substituting
a(x) = [(¢) . 0 ag(9)). ulxg) = (U,.0.0)

into (4) we obtain three simultaneous integral equations of the form
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13
Uid;y = L [og (&) - ¥y (xg, )] d¢ o

(i = 1,2,3, summation convention over j = 1,2,3) .
These integral equations cannot be solved exactly (except by numerical
methods), but can be solved approximately by means of an asymptotic expan-

sion for small R,/4 and R,4d. After much algebra, expanding equation (5) to

R R -
O[l g ],we obtain:

(x,- component)

- (cos?@ + 1) — 2cos®6 + Rsin®n - sin®e + P(x:A,6.d)

Uy = o (%) {2 -i— + 5(x)

+ og (x) |sinRe -i—-+ S(x) — 1] - sin®n - sin26 + Q(x;A,6.d)
+ fl[aj (&) — o (x)] - ¥y (2 $d¢+ 0 'R:g‘ % ]
~ tod (62)
(x5_ component)
R, Ro]
0=0]—, —
=5 o

(x3- component)

.i. +S(x) -1 ] - sin®*n - sin6 + R(x;A,6,d)| + a3 (x)

[
0 = oy (%) lsinza

.[2

—i— + S(x) ] - (1 + sin®6) — 2sin®ny - cos®e — 2sin®e + W(x;A,6.d)

13
+ L (o (&) — oy (X)] - Vg (xB -f)de’O[gLi' %—] (6c)
C

IS

. [See Appendix for specific for-

2

o L]
” .S(X)"‘ln ————I'_';Z;)—————
Ro
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mulae for P(x:A,6,d), Q(x;A,6,d), R(x;A,6,d) and W(x:A,6,d).] The primary small
quantity &( < < 1) which will be used in the subsequent analysis represents a
slenderness parameter, and S(x) is a shape function of the body [specified once

ro(X) is given].

In an analysis of the similar integral equations for the infinite fluid case, Tuck
(1964), Tillett (1970) and Batchelor (1970) suggested an expansion of a(x) in

powers of ¢

oy(x) = eal(x) + 2o} (x) + f(x) + -

(7)

as a straightforward way to obtain an approximate solution of the integral equa-
tions (Ba-c) for the unknown function a(x). It may be worth pointing out that
solving the integral equation (5) using an expansion such as (7) in powers of ¢
requires retention of an infinite number of terms to insure that the associated
error is no larger than the error O(R,/!) that is inherent in (6a-c). In fact, we
determine the first two terms in the expansion (7) satisfying the boundary ‘con-
dition (1) up to O(¢?), following in the spirit of Batchelor (1970), Cox (1970) and
others who adopted the same level of approximation to calculate such parame-
ters as the hydrodynamic force and torque for slender-bedy motion in an

unbounded fluid.

The sin®7 terms [of 0(¢*)] which appear in (8a) and (6c¢) are indicative of the
fact that higher order singularities are necessary if the boundary conditions are
to be satisfied at 0(z%). Obviously, with the no-slip condition [cf. Eq. (5)] the fluid
velocity at the body surface is required to be independent of 7. To remove the 7-
dependence associated with the Stokeslet distribution, a line distribution of
potential dipoles must be superposed on the line distribution of Stokeslets at
0(&?). The fundamental solution for a potential dipole located near a plane inter-

face has been obtained by Lee, Chadwick and Leal (1979). The required line dis-
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tribution of potential dipoles can be shown to be related to a(x) by the relation-

ship

B(x) = — = [rf (x) - a(x)].

|

(8)
It remains only to determine the distribution function a(x).

After adding the fundamental solution for a line distribution of potential
dipoles with line density given by (B) to the Stokeslet solution in the form (7),

and utilizing the expansion (7), we find immediately that

_ (sin®e + 1)U, &2 3sin®e — 1 .
& () = —-——r—[ T [P0 Tiage TAReD| T o)
i [
o (x) = — 2RO Uy s~ £ [25(9) + 3 + B(xhed)] | + 0(%) .
B 2 (9b)

Specific formulae for A(x:A,6,d) and E(x:A,6,d) are given in the Appendix. Russel,
Hinch, Leal and Tieffenbruck (1977) have carried out an analysis of the interac-
tion between a cylindrical slender body and a single rigid plane wall. The
leading-order terms in (9a) and (9b) for A » = are identical to their asymptotic

solutions since the interface (or rigid wall) effects are of order &.

It may be noted that the shape function S(x) becomes singular at the ends of
the body for all but ellipsoidal shapes where S(x) = 0, and the solution for the
Stokeslet distribution (i.e., Egs. 9a-b) is not valid at the body ends. However, it

can be shown that the singular behavior of S(x) makes no contribution to the

lim

total hydrodynamic force and torque exerted on the slender body (since X » O*

(x"In x) -» O for any positive integer n), and we make no attempt to improve on
the solution near the ends of the body, though methods to do so have been

known for some time, Tuck (1964).

The total hydrodynamic force, F, associated with translation in the e, direc-
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tion can be calculated simply by integrating the line density of the Stokeslet dis-
tribution, a(x), with respect to x from - to i.

i
F=-8 (x) d
TI'/,LQLQX X (10)

The hydrodynamic torque, T, with respect to the center of the body, can alse

be obtained from the Stokeslet distribution and is equal to

T=-8 l xa(x) dx .
npe[lx,, a(x) dx (1)

For a circular cylindrical slender body [ro(x) = R,], the shape function is S(x) =

[ 2
1 X
é—lnll - [T]

by direct integration of (10) and (11). The results are

, and the total hydrodynamic force and torque can be obtained

3sin®6 — 1

F, = —4 U, ! (sin*@ + 1 1 —gllnR —1 + ——Ft—
! me Uy L (sin )E[ 8[“ 2(1 + sin®6)

i
+ ?117 J A(xn6.d) dx|| + 0(e%)
-1 (12a)
1
Fg = 2mup Uy L sin26 ¢ ll —elin2 + —é~+ le— S E(xiA6d) dx || + 0(s%)
-1 (12b)
[
Tp = Rmue Uy sing & [ xH(x:A6,d) dx + 0(c%)
- (13)

where H(x;A,6,d) is defined by:

R 2
H(zA6d) = il—’“—S—”l—glA(z;x,e.az) + EP—S-QE(x;A.e,d) ,

For an ellipsoidal body, for which the shape function is S(x) = 0, the total hydro-

:
dynamic force can also be obtained by substituting f S(x)dx = 0 in place of
1

2l(InR - 1) in (1Ra) and (1R2b). However, the hydrodynamic torque remains the

l
same since f x- S{x)dx vanishes for all even functions of S(x).
_L
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When the slender body is oriented perpendicular to the interface (6 = 90°),
equations (6a) and (6c) must be modified since secé is singular. In this case, the
resulting expression for the total force and induced torque on a circular
cylindrical slender body (i.e., the force and torque corresponding to the transla-

tional motion, U,e) is:

t
F, =-8mu, U, L {s —&? [In2 - —é— + fl— a(x;A,d) dx|| + 0(e8)
- (14)
l
T, = RBrug U, &2 f x-a(x;A,d) dx + 0(s%)
- (15)

where, again, the function a(x;A.d) is given in the Appendix. The special cases 6
=0° or 90° were considered by Fulford and Blake (1983), and the present results
(12a), (13), (14) and (15) for 6 = 0° and 90° reduce precisely to their results for
F, and T, through terms of 0(¢®). The instantaneous angular velocities calcu-
lated by Fulford and Blake are wrong, however. Although the analysis above
yields Tp as a function of U,, the relationship between T; and 1z must still be
determined, and this was not done by Fulford and Blake (1983) who instead used

the relationship for rotation in an unbounded fluid.

The effects of hydrodynamic interaction between the particle and the inter-
face are contained in the complicated functions A(x;A.6,d), E(x;:A,6,d), H(x:A,6,d)
and a(x;A,d) of Egs. (12)-(15). Thus, in order to illustrate the qualitative nature
of these effects, the force components F;, and F3, and the torque T, are plotted
in Figs. 2, 4 and 5 as a function of the orientation angle 6 for ¢ = 0.1887 (which
corresponds to R,/! = 0.01), and two values of particle position, d/{ = 1.01 and
2. For each value of d/I, we include three values of the viscosity ratio, A =0, 1
and «=. Also shown in each case is the corresponding result for motion in an
unbounded fluid. The gqualitative dependence of the drag force, F, on the orien-

tation angle 6 is unchanged from the unbounded case by hydrodynamic interac-
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tions with the interface. However, due to the presence of the interface, the mag-
nitude of F; is either increased or decreased for any arbitrary 6, depending upon
the viscosity ratio A, and this effect is a strong function of the particle position
relative to the interface. In particular, the ratio of the drag force, Fy, to the
drag in an infinite fluid for 6 = 0°, 45° and 90°, and £ = 0.1B87, is seen in Fig. 3 to
become a stronger function of A as d/l decreases except for the case of 8 = 0°
and A = 1. The existence of a critical value of A separating cases, in which the
drag is either increased or decreased due to the presence of the interface, was
noted for the special cases 6 = 0° and 90° by Fulford and Blake (1983), and is
also similar to the results obtained by Lee, Chadwick and Leal (1979) for transla-
tion of a sphere parallel to a flat fluid interface. The magnitude of the effect of
the interface on particle drag is, however, considerably larger for a sphere of
radius a, with its center at a distance d/a from the interface than for a cylindri-

cal slender body of length 2l with its center an equal distance d/l (= d/a) away.

The general features of the force component, Fs, normal to the direction of
motion, as a function of 6 are again quite similar to those for the case of the
same particle moving in an unbounded fluid. The fact that Fy is nonzero means
that a motion in the "1" direction cannot be sustained (say by a force in the "1"
direction) without simultaneous application of a force -F3 to the particle by
some external means. In the absence of an applied force, -F3, a positive force on
the body in the "1" direction will yield a component of motion toward the inter-
face for 0° < 6 < 90° (see Figure 1) or away from the interface for 90° < 6 <
180°., The normal force, I, is increased in magnitude for all A by the presence
of the interface. It may alsc be noted that the fractional increase in the hydro-
dynamic force for a given d/{ and A is much larger for F3 than for ;. Thus, the
normal force associated with translation at an oblique angle to the symmetry

axis is more sensitive to the presence of the interface than the drag.
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The induced hydrodynamic torque T, given by Egs. (13) and (15), is due
solely to the presence of the interface (ie.,, Ta » 0 as d/l » «). It is evident,
since Tz # 0, that a slender body cannot sustain a translational motion,
U = U,e;, without simultaneously rotating unless a torque -T is applied to the
body by some external means. Thus, a freely suspended slender body (ie., one
with T = o) will rotate with a sense (i.e., + or -) which depends on A and on the
orientation and position of the body relative to the interface (i.e., 6 and d). This
rotation can be viewed as a consequence of the gradient in the induced point
force strength along the body axis due to the presence of the interface, and is

also characteristic of spheres and rigid bodies of other shapes.

The translation of a rigid sphere parallel to a flat interface was analyzed in
detail by Lee and Leal (1980). In that case, the sense of rotation was deter-
mined, for a given d/a, solely by the viscosity ratio A. Here, it can be seen from
Fig. 5 that the orientation angle plays a critical role, in addition to A and 4/¢, in
determining the direction of rotation. Indeed, for A = 1 and =, rotation in
either direction is possible depending on 8. The angle between 90° and 180° (or
between -90° and 0°) where Ty = 0 represents a stable equilibrium orientation
for each particular value of d/! that is illustrated in Figure 5. It should be
noted, however, that d/{ will increase with time for 90° < @ < 180° unless a
force is applied to the particle in the direction normal to the interface. For A =
0, on the other hand, a slender body with its center at d/Il = 1.01 or 2 will rotate
in the clockwise direction for all 6 so that its leading edge turns away from the
interface. In Figure 8, the induced torque is plotted versus the distance between
the body center and theinterface for 6 = 0°, 45° and 90°, and A = 0, 1 and = . It
can be noted that the magnitude of the torque increases rapidly as d/I
decreases for 8 = 45° and 90°, whereas there exists a critical relative distance,

d/l, at which the magnitude of the torque has a maximum value for ¢ = 0°
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Although' it is tempting to conclude from Fig. 6 that the direction of induced
rotation is independent of d/ (thus depending only on the viscosity ratio A and
the orientation angle 6), it is dangerous to draw such general conclusions from
calculated results for only three values of A and three values of 8. Indeed, in the
case of a rigid sphere near an interface, Lee and Leal (1980) carried out a more
detailed examination of the sense of the induced torque and showed, in that
case, that there exists a critical distance beyond which the direction of rotation
changes for any A in the range 6 < A < «. This change in direction with d would
nol have been evident at all for A = 0, 1 or =, the three values considered in Fig.

8.
B. Motion Parallel to the Interface along the x;-Axis

Let us now turn to the case of a slender body of arbitrary orientation
translating parallel to an infinite plane interface along the xp-axis. In this case,
the no-slip boundary condition on the body surface is u(xg) = Uzep. By the same
approach outlined in the previous sub-section, we have developed a relationship

between the velocity Uge, of the body and the point force density og(x).

Uz = ag (%) ?8-+ 2S(x) + 2cos®n + B(x;A,6,d)

i

+ [ [0g(Q) —ag (x)] - ¥pp (x5, ¢)de+ 0

Ry Rq ]
In order to remove the n-dependence of the fluid velocity associated with the

Stokeslet distribution at 0(e?), we again need an additional line distribution of

potential dipoles with a density Ba(x) = —-é—r;?(x)ag(x). Then, an asymptotic

expansion of (16) together with the potential dipole distribution results in the

following expression for ay(x):
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oz (x) = %?- & - + 0(£9).

&
2

(2500 + 1 + B(xix.0.0) o
17

The hydrodynamic force and torque exerted on a circular cylindrical slender

body are thus

[
Fs = —Brmus Uglsll - &

!
BN : 3
In2 - =+ — f_l B(x)\,e,d)dx} + 0(&%) ()
and
11

Ty = —2rpe Uz sing e® [ xB(x;:x.6,d) dx + 0(e%)

- (19a)
[

Tg = 2mug Uz coso &2 fx-B(x:)\,e.d) dx + 0(&%) .

= (19b)

The force and induced torque for the special case of a body oriented perpendic-
ular to the interface must be calculated separately, but it is obvious from sym-
metry considerations that the results are exactly those already given by equa-

tions (14) and (15) [i.e., Fe = F; of (14), T, = =Tz of (15) and Ty = 0].

The results (18)-(19) are plotted in Figs. 7, 8 and 9 for the same set of param-
eters as in the previous section. In many respects, the results are similar to
those already described for parallel motion along the x;-axis. There is again a
critical viscosity ratio, A, above or below which the drag in the presence of an
interface is either increased or decreased relative to that in an unbounded flow
for all d/A. Furthermore, there is an induced torque due to the interactions
between the particle and interface, which will cause the particle to rotate in the
absence of externally applied couples, ~T; and —Ts. It may be noted that the
sensitivity of drag to the orientation angle is very weak. In the particular case
of A = 1, the drag force is, in fact, nearly constant irrespective of 8 Although
the drag force Fz; must be independent of 6 in an unbounded fluid, this would

certainly not be expected in the presence of the interface. Figure 8 shows that,
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for a given A, the x; component of the angular velocity due to the induced
torque T; will always have the same sign regardless of 6. On the other hand, the
induced torque Tg always changes sign at the orientation angles 6 = 0° (or 180°)

and 90° independent of the viscosity ratio A and d/! as shown in Fig. 9.

The implication of these somewhat complicated results for the trajectories of
a slender particle moving under the action of a force in the xz (or x,;) direction

will be considered later in the paper.

C. Motion Normal to the Interface along the x3-Axis

Finally, let us turn to the problem of a slender body which is translating nor-
mal to a plane fluid-fluid interface. The no-slip boundary condition on the body
surface is u(xg ) = Uz e5 . As before, this condition cannot be satisfied by a line
distribution of Stokeslets alone since the corresponding integral equations con-
tain an 7-dependence at 0(¢?), and a line distribution of potential dipoles is

again required with a strength
- _ 1 2
B(x) = - =130 a(x) .

The corresponding Stokeslet distribution is given by:

o (x) = — §—i-n—2——9—U3 [s _ g [BS(x) +3+ D(x;/\.e,d)} + 0(£%)
8 2 (20a)
_ (1 + cos®e) T _ & 3cosfe — 1 .
Qg — ) Us {5 5 ZS(X) + mcosze-l— 1 + C(X.)\,B,d) + 0(83) (ZOb)

For the perpendicular orientation, o;(x) = 0 and ag(x) can be obtained simply
by substituting 6 = 90° and b(x;A,d) for C(x:A,6,d) into (20b) [b(x:A.d), C(x:A,6,d)

and D(x:A,6,d) are given in the Appendix].

The total force and hydrodynamic torque acting on a circular cylindrical

slender body which translates with velocity U = Ugeg are
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' ¢
F, =Rmuy Ugl sinl6 ¢ [l —&{lng + -é—&- le— f D(x:\,6,d) dx} + 0(g%)
- (R1a)
[ 2g _
Fg = —4mu, Ugl (cosze+1)stl -a[lnz——l y Scos76 — 1

2(cos?e + 1)

l

+ —17 [ cxaed)dx|| + 0(e?)
A (21b)
and
i .
Ty = —Rmup Us cosé &2 f x-J(x:A,6,d) dx + 0(e%).
-t (2R)

These results for F;, F3 and T, are plotted in Figs. 10-12 as a function of the
orientation angle ¢ for the same set of parameters used in the preceding two
cases. The drag force in the direction of motion, Fg and the force normal to the
direction of motion, F,, both depend on & in the same qualitative way as for
motion of the same particle in an unbounded fluid. The drag force is increased
relative to the unbounded case, even for A = 0, and this effect is enhanced
strongly as the body moves closer to the interface. The force normal to the
direction of motion is also increased in absclute magnitude with increase of A or
decrease of d/l. 1t will be noted that F, changes sign at 6 = 0 and 90°. Thus, for
0° < 8 < 90° motion toward the interface will induce translation in the positive
"1" direction in the absence of an applied force —F,, while the induced transla-
tion will be in the negative "1" direction for 90° < ¢ < 180°. Finally, the hydro-
dynamic torque, Ty, induced by the presence of the interface, means that a
freely suspended slender body (one with T = 0) cannot translate towards the
interface without simultaneously rotating unless the body is oriented parallel or
perpendicular to the interface. The former orientation (6 = 0°) is a stable
equilibrium point for all A and d/¢ while the latter (6 = 80°) is unstable. Thus, a

slender body with an arbitrary initial oblique angle (¢ # 90°) relative to an inter-
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face tends to rotate , in the absence of an applied torque, -T; to a parallel orien-

tation as the body translates towards the interface for all A,

This completes our detailed study of fundamental solutions of Stokes' equa-
tions for translational motion of an arbitrarily oriented slender body in the
three mutually orthogonal axis directions specified in Fig. 1. We shall turn
shortly to the application of these solutions for trajectory calculations. First,
however, in view of the induced hydrodynamic torque which exists due to trans-
lational motion near an interface, it is necessary to determine the fundamental

solutions for rotation of a slender-body near an interface.

IV. FUNDAMENTAL SOLUTIONS FOR ROTATION OF A SLENDER BODY NEAR A FLAT

FLUID INTERFACE

We turn now to the case of a slender body rofating with an angular velocity
in the presence of a plane fluid-fluid interface. Since the problem is linear, the
solution for rotation with an arbitrary angular velocity can be obtained by
superposition of the three independent solutions in which the axis of rotation is
parallel to one of the three orthogonal x; (i = 1,2,3) axes. As noted earlier, solu-
tion of these three fundamental problems will provide all of the components of
the hydrodynamic resistance tensors that are not obtainable from the results of

the preceding section.

First let us consider a rotating slender body when the axis of rotation is
parallel to the x;-axis (i.e., 1 = ,e, ). In this case, the no-slip boundary condi-
tion on the body surface is given by

u(xpg) =[0,—(xsin6 + r, sinn cos6)Q, ,rocosn ;] .

We have performed an asymptotic expansion of the integral equation (4) with

this boundary condition, using a similar approach to the case of translational
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motion, and found the required line distributions of Stokeslets and potential

dipoles:

&

e- 2500 -1 + K(xine.0)]

+0(&%) .

(23)
The leading term in the line distribution of Stokeslets has a linear dependence
on the distance x from the body center, as a consequence of the fact that the

|x — xp|

magnitude of the velocity near the body surface (i.e., ]

<< 1) is also
proportional to the distance x for this rotational motion.

Evaluating (10) and (11), we obtain the total torque and force acting on a

cylindrical slender body which rotates with angular velocity (0, e;:

l
-_B 8 qin? _ _1u, 3 2. K(x:
T, 3 e 0;1%°sin*6¢g |1 —¢|lnd 5 WE L x? - K(x;A,6,d) dx|| + 0(&5)
(R4a)
Tg = =T cote
(R4b)
and
l
Fg = ~2mus Q| sing &2 f x'B(x;\,6,d) dx + 0(¢) .

- (5)

When a particle is oriented perpendicular to the interface, the torque and
induced force can be obtained simply by substituting 6 = 90° c(xA.d) for
K(x;A,6,d) and a(x;A,d) for B(x;A,6,d) into (24a,b) and (25) [c(x;A.d) and K(x:A,6,d)
are given in the Appendix]. Batchelor (1970) considered the rotation of a
straight rigid slender body of an arbitrary crosssection in an infinife quiescent
fluid, and calculated a hydrodynamic torque which is identical to Eq. (25a) with

6 = 90° up to order of ¢.

In Fig. 13, the hydrodynamic torque, T;, given by Eq. (24a), is illustrated as a

function of the orientation angle, 6, for d/1 = 1.01, ¢ = 0.1887 and A = 0, 1 and
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. Also shown is the corresponding result for rotation in an unbounded infinite
fluid. The dependence on the orientation angle, 6, in the presence of an inter-
face is obviously very similar to that obtained for an unbounded fluid. Indeed,
the effect of the interface on the required torque becomes very weak when the
oblique angle, 6, of the slender body is in the range from 6 = -45° to 6 = 45°. In
view of the simple relationship between T; and T3 (Eq. 24b), an illustrative figure
for T3 is not necessary. The fact that T3 is also nonzero (equation 25b) shows
that a nonisotropic particle rotating with an angular velocity at an oblique angle
6 (# 0 or 90°) relative to its principal axis will also experience a torque normal
to the direction of rotation; a positive torque T; (in the absence of an applied
torque -Tg) will induce a simultaneous rotation in the '3" direction, provided 6 #
0° or 90°. The existence of a critical viscosity ratio separating cases of increas-
ing or decreasing torque, eivident in Fig. 13, is similar to the results of Lee
Chadwick and Leal (1979) for rotation of a sphere with an angular velocity

1 =Q,e near a flat interface.

A particle rotating near a flat interface will also experience a hydrodynamic
force, F; due solely to the presence of the interface, given by Eq. (25). The
dimensionless force, —Fz/up() 1%e®, required to sustain the specified rotational
motion {0 = Q,e,) without translation is, in fact, identical to the dimensionless
torque, ~T1 /442 Usl?e?, required to sustain the translational motion (U = Ugeg)
without rotation, which was illustrated previously in Fig. 8. This equality is
expected on general theoretical grounds for Stokes’ flow with linear boundary
conditions. In the absence of a force, -Fp, rotation in the "1" direction will
induce translation in the '2" direction. The sign of the induced translational

velocity depends only on the viscosity ratio, A,

Now let us consider a rotating slender body whose rotation axis is parallel to

the xp-axis. With the fluid velocity on the body surface,
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u(xg) = [(xsiné + r, sinn cos8 ) 0, , 0 ,~(xcosé — r, sinn sing ) Nz ],

the required line distribution of Stokeslets and potential dipoles is as follows:

oy (x) = 553%9;%.’28 1-L [e5() — 1 + Gxin0.d))| + 0(e)
{28a)
[
Qg (X) = - 3(3-%——82-——.02—)—{—8 [l - ;_ [ZS(X) -1+ Z(X;)\,@,d)] + O(a‘)s)
(26b)

The total torque and induced force on the particle can be readily evaluated from

the foregoing distribution of Stokeslets:

[ '
8 11 3
Ty = — o el 518 11— In2 — =+ - [ x®. L(x:A6d)dx|| + 0(e2
2 g TTHaltet"E £itn 6 4l3‘[4x ( ) ()(27)
:
F, = Rmup Qg sing & f x-H{x;A,0,d)dx + 0(c%)
- (28a)
L
Fg = —Rmup Q 5 cosé &2 f x-J(x;A,6,d)dx + 0(s%) .
~ (28b)

For the perpendicular orientation, Fg = 0,

i
Fi, =2mus Qg &2 f x-a(xA,d)dx + 0(e3)
-
and T can be obtained by substituting ¢(x;A,d) for L(x;A,6,d) into (27).

The hydrodynamic torque, Tz, corresponding to the specified rotational
motion, (2zey, is plotted in Fig. 14 for a circular cylindrical slender body as a
function of the oblique angle 6 for d/l = 1.01 and 2, ¢ = 0.1887 and three values
of A = 0, 1 and «=. Also shown is the corresponding result for rotation in an
unbounded fluid. It is evident that the hydrodynamic torque, Tz in an
unbounded fluid must be independent of the orientation angle 6 as shown
(indeed, this torque is simply given by equation (R7) with L{x,A,6,d) = 0]. How-
ever, the torque in the presence of an interface can be seen to deviate

significantly from that in an unbounded fluid with the details depending on the



-25 -

viscosity ratio and on the orientation and position of the body (i.e., 6 and d).
Given d/! (= R) and ¢ (= 0.1887), for example, a slender body rotating near a
plane solid wall (A » «) experiences a larger hydrodynamic torque than it would
be in an unbounded fluid for a certain range of 6 (i.e.,, -21°< €< 21°0or 75° < 8
< 1057, but a smaller torque for 21° < 8 < 75° or 105° < 6 < 159°. Further,
the torque becomes increasingly sensitive to the orientation angle @ as the
viscosity ratio, A, is increased. For example, in the free surface case (i.e., A -

0), the torque is still very nearly independent of 6 while, in the solid wall case

(i.e., A » =), the relative deviation is larger.

As in the case of rotational motion in the "1" direction, there exists an
induced hydrodynamic force in the present case, which is due to the presence of
the interface. The dimensionless induced forces, F;/uQ 21%e® and Fs/us() 1%, in
this case, are actually identical with the dimensionless induced torques,
Ta/ie Ul%e? and Tp/ue Usl®e?, for translation in the "1" and '3" directions, respec-
tively (again, as expected). The direction of the induced force, F;, given by equa-
tion (28a), depends on the viscosity ratio and on the orientation and position of
the body (i.e.,  and d), cf. Fig. 5. However, the direction of action of the induced
force, Fg, obtained from equation (28b), depends only on the orientation angle, 6

(see Fig. 12).

Finally, we consider a slender body rotating near a plane interface with an
angular velocity (1 ={3e3. The line distribution of Stokeslets and potential

dipoles necessary to satisfy the no-slip boundary condition is

cosg {1 gx
og (X) = ———=¢

5 + 0(&%).

1 - £ [25(x) - 1 + K(xiA,0.0)

(29)
The total torque and induced force exerted on a cylindrical slender body are

then
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4 . 11 .8 bt o,
Ty = 5 ke Q5 l® sin20 = Il - & {I,n?, T L xarlf(x.x,e,d)dx + 0(s%)

(30a)

Tg = ~cote T,

(30b)

and
1
Fa = 2mus 1 3 cosé &2 f z-B{x;A,0,d)dx + 0(ed) .
- (31)

For the body oriented perpendicular to the interface, the total torque can be
shown to be O(R,/!, R,/d) and the induced force is obviously zero. This latter
result is in agreement with the quiescent infinite-fluid case analyzed by

Batchelor {1970).

The hydrodynamic torque, Ty, given by equation (30b) is plotted in Fig. 15 as a
function of the orientation angle 6, including the corresponding result for rota-
tional motion in an unbounded fluid The effect of the interface is relatively
weak and the torque at d/1 = 1.01 very nearly equals that in an unbounded fluid
for all three values of the viscosity ratio, A. The existence of a 'critical” A
separating cases, in which the torque is either increased or decreased is again
similar to the results obtained by Lee, Chadwick and Leal (1979) for rotation of a
sphere whose rotation axis is normal to an interface. For rotation of a slender
body, however, the critical viscosity ratio depends on the particle orientation 8
and on the relative distance d/I, and cannot be uniguely determined (as could

be done for the sphere).

As in the case of rotation in the "!" direction, a nonspherical axisymmetric
body rotating in an unbounded fluid will experience a torque normal to the
direction of angular velocity in addition te a torque parallel to that direction

unless the axis of rotation is oriented parallel or perpendicular to one of the
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principal axes of the particle. The torque T, given by (30a), in the presence of
an interface has exactly the same value as the torque T3, obtained from (R4b),

which acts on a slender body with angular velocity, 1 =1 ,e;.

The dimensionless induced force Fa/upQ2 3l?e%, obtained from Eq. (31), in this
case, is equal to the dimensionless induced torque Ta/upUgl?s® of Eq. (19b), for
translation in the "2" direction. As may be seen from Fig. 9 (the general features
of which were discussed in subsection III.B), the direction of induced force F;

depends on the orientation angle 6 and changes sign at 6 = 0° or 90°.

We now have a complete set of fundamental solutions for the translation and
rotation of a slender body through a quiescent fluid near a flat interface. These
fundamental solutions provide the necessary relationships for calculation of
particle trajectories for an arbitrary applied force and/or torque. In general,
application of a force parallel to the x,-axis produces translation both along the
axis, and normal to the interface, as well as rotation, as we shall see shortly.
However, in an earlier paper, Fulford and Blake (1983) attempted to calculate
the instantaneous angular velocity for a slender-body which they assumed to be
translating along the x,-axis (only). It is a simple matter to repeat this calcula-
tion using (13), (15) and (27). In Fig. 16, the resulting dimensionless angular
velocity, Q ol £U,, is plotted as a function of d/¢ for & = 0.1887, and three values
of 6 = 0° 45° and 90°. The corresponding angular velocities calculated by Ful-
ford and Blake (1983) for 6 = 0° and 90° are in error, in some cases by as much

as 60%, since they used the relationship T = -8 ©1/3 u2l®:Q; instead of (27)

T In the final published revision of their paper, Fulford and Blake did not claim
to use this expression for Tp. Instead, they state that the zero torque
condition for the freely rotating particle "requires.. modification of the force
i.e., Stokeslet] distri{)utions ~." The terms they add to the Stokeslet

istributions are just the results precisely equivalent to the expressions, Tp =
-B/3 7wupl3sQ), for parallel orientation; and T, = 0 for perpendicular
orientation. Tghe hydrodynamic relationship for rotation in the xp-direction
is, however, Tz = -87/3 nusl%eQ » plus higher order terms in the e-power series
which represent the orientation effects (cf. Eq. (27) in the present paper).
Furthermore, a careful examination of Egs. ?17 and (18) in Fulford and
Blake (1983) shows that both of the two equations for angular velocities in
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(compare Figs. 3-a and 4-a of Fulford and Blake, 1983, and Fig. 16 in this paper).

V. PARTICLE TRAJECTORIES IN SEDIMENTATION

In the previous sections, we have analyzed separately the individual com-
ponents of force and torque for a set of mutually perpendicular translational
and rotational motions of an arbitrarily oriented slender body. The linearity of
Stokes' equations now enables us to solve for arbitrary motions of the body in
the presence of a plane interface by superposing the results for these individual

translational and rotational motions.

Equations of motion for a rigid body of arbitrary shape in creeping flow can
be expressed in general terms, provided the interface remains flat, by defining
the so-called translational resistance tensor Kr, the rotational resistance tensor
Kz and the coupling tensor K¢ (cf. Happel and Brenner, 1973). Two fundamental
relations exist between the translational and angular velocities and the force

and torque in terms of these tensors.

F=K -U+K-Q
(32)

T=K U+ Kz
(33)

where F and T are the total hydrodynamic force and torque, and U and Q are
the translatiorial and angular velocities, respectively. The tensors, Kr, Kg and K¢
can be expressed in the following component form relative to the Cartesian

coordinates described in section II:

KM 0 K2
Kr=| 0 KF* O
Kf! 0 Kf® (34)

each orientation (i.e., perpendicular and parallel) are still based on the
expression, Tp = -8/3 mual%eQ » quoted above.
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Kg! 0 Kg®
Ke=| 0 K& 0  K#® = K§!
K§' 0 Kg3 (35)
and
0 K& o
K= |KE' 0 KE&°
0 K& o (36)

and the various components of these tensors have already been evaluated in

sections III and IV.

Although complete, the equations (32) and (33) are inconvenient for analyz-
ing arbitrary motions of the body because they are based on the coordinate sys-
tem described in section II. In this coordinate system, we take the x;-axis to
coincide with the projecticn of the body center-line onto the interface, and the
x,- and xXp-axes must therefore rotate around the xg-axis as the body rotates.
For trajectory calculations, it is more convenient to use the fixed coordinate
system illﬁstrated in Fig. 17. We shall designate the fixed coordinates by the
superscript "o" Suppose the angle between the x,- and x{-axes becomes ¢ as the
body rotates. Then a simple relationship between the velocity and resistance
tensor components in each coordinate system can be established by introducing
an orthogonal rotation tensor Q For vector quantities, such as the transla-
tional velocities, the relationship between vector components is U=Q- U°,

where Q has components of

Q=

cosy sing O ]
—sing cosy O |.
0 0

L (37)

Furthermore, the same relationship applies also to the forces, torques and

angular velocities in the two coordinate systems. By substituting these relation-

ships into (32) and (33), we have
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F=Kf-U° +KP-0°

(38)
T=Ke-UP+Kg-0°
(39)
where the K®s and K's are related by
K=Q"'-K-Q
(40)

for each of the translation, rotation and coupling tensors.

With the preceding relationships established for the resistance tensors, the
velocity vectors and the force and torque vectors all based on a fixed coordinate
system, we can readily apply (38) and (39) to general trajectory calculations.
For example, let us consider the motion of a slender body near a plane fluid-
fluid interface under the action of an external force F°° and torque T°°. An
instantaneous solution for U° and (2° is easily obtained from (38) and (39),

re-l-k e K [P oKkt kg »

Q°= K3 (T°" +K&- U°) .
(42)

It is convenient to represent the particle trajectories corresponding to (41) and
(4R) in terms of the position vector, X, of the body center, and the orientation
angles (i.e., Euler's polar angles) 6 and ¢ of the body axis relative to the plane of
the interface (for the definitions of 6 and ¢, see Figs. 1 and 17). The relation-
ships between U° and (1° and time rate of changes in x,, 6, and ¢ (simply X, 6

and o) are as follows:

dXp
Xp = —i— = e
6 = () {sing — Q Jcosyp
(44)
¢ = —tane(Q fcosg + O §sing) + 0§, for 6 # 90°
(45a)

and
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0z

Qy

@ =tan“[ ] —90°, for 6=190° .

(45b)

These five simultaneous differential equations (43-45) in combination with
(41) and (4R) are solved below using a fourth-order Runge-Kutta method with
appropriate initial conditions. We consider trajectories for the special cases of a
torque-free slender body (T° = 0) under the action of non-dimensionalized
forces, ° = F°/|F°| = ef, parallel to the interface and P = ed, perpendicular to
the interface, respectively. The purpose of these calculations is primarily illus-
trative. However, these two elementary trajectory problems are relevant to sedi-
mentation phenomena near an interface, as well as being qualitatively related to
the processes of particle capture at the surface of a larger bubble or drop which
may be viewed as locally planar in the limit where the particle is very much
smaller than the collector. First, we begin with the particle motion due to an
external force parallel to the interface. This problem for the limit A == was
previously considered, both theoretically and experimentally, by Russel, Hinch,
leal and Tiefenbruck (1977). In Fig. 18, the trajectories for a slender body ini-
tially located at x3 = (0, 0, 2) with initial orientations §, = 0°, 12°, 22°, 50° and
79° and ¢, = 0° are plotted in terms of the separation distance d/! and the
angle of inclination relative to the interface, 8, for three values of A = 0, 1 and
e, In this case (¢ = 0°), the axis of the particle is initially in the plane defined
by the force and the normal to the interface, and it is only 6 and the position of
the particle center which change with time. Also shown is the corresponding
experimental data for the solid wall case (A » =) obtained by Russel et al.
(1977). The present theoretical results are in good agreement with the experi-
mental data of Russel et al. (1977), and show the interesting phenomena of
"glancing’ and 'reversing” turn trajectories that were first identified for A = = by

the same authors. For a slender body of initial orientation g, = 12° the force
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parallel to the interface not only produces translation of the body parallel to
the interface but also translation toward the interface with a simultaneous rota-
tion in the direction of decreasing 6 so that the leading edge turns away from
the interface. Once the particle becomes parallel to the interface, it begins to
move away from the interface as it continues to rotate in the direction of
decreasing 6. In this case, the particle does not intersect the wall for any A.
This is an example of a 'glancing turn,” which can be studied in detail in Figs. 18
and 19. For an initial orientation 6, = 22° a slender body near a free surface
(A - 0) still experiences a glancing turn. However, in the cases A = 1 and <, the
particle reaches the interface before the orientation becomes parallel (actually
up to d/! - |siné| = 0.01, which is the separation distance between the tip of the
body and the interface). As the initial orientation angle 6, is increased further,
the direction of rotation changes, and the particle trajectories exhibit so-called
"reversing'’ turns. In this case, the particle rotates in the direction of increasing
@ so that it eventually becomes perpendicular to the interface, pivoting about its
leading end before moving away from the interface. For example, a slender body
with initial orientation §, = 79° and A = = initially approaches the wall while
simultaneously rotating with & increasing until finally the particle is oriented
perpendicular to the interface. After this point, the body moves away from the
interface as it continues to rotate. It may be noted from Figs. 5 and 18 that a
slender body near a free surface (A » 0) never experiences a 'reversing" turn,
but instead always rotates in the direction of decreasing 6 regardless of the ini-

tial orientation, 6,, or the relative position of the body, d/1.

In the case g, # 0° the projection of the particle axis onto the interface is no
longer parallel to the external force, P = ef, and the trajectories are different
from those in Figs. 18 and 19, in which ¢, = 0°. To illustrate the effect of the ini-

tial g-orientation on the particle motion, we have calculated trajectories for a



-33 -

slender body with initial orientations ¢, = 30° 60° and 90°. The results are

shown in Fig. 20.

For small g, and 6,, the qualitative features are similar to those for the case
of ¢, = 0% however, significantly different features are found for larger ¢, and
6,. In Fig. 20, the trajectories of a slender body, which is initially located at x7 =
(0,0,2) with 6, = 0°, 1R°, 22° 50° and 79° and ¢, = 60°, are plotted in terms of
the orientation angle 6 and the relative distance d/l from the interface for
three values of A = 0, 1 and <. It can be seen from Fig. 20 that the trajectories
are significantly different from the case of ¢, = 0°, especially for large values of
6, and a large viscosity ratio, as the particle not only tumbles end-to-end but
also twists relative to the plane defined by the force and the normal to the inter-
face. A rather curious result can be seen for a slender body with ¢, = 50° or 79°
and g, = B80°. Such a particle will, at first, approach a solid wall (A » =) along
the trajectory AB shown in Fig. 20, but then moves away from the interface
along the reversing trajectory BAC. In this case, as the particle translates along
the x{-direction it initially moves toward the interface, and rotates in the direc-
tion of increasing 6 and increasing ¢ due to the induced torque T° of (13), (19)
and (22). The increase in ¢ corresponds to a twisting motion away from the
plane defined by the external force and the normal to the interface. Eventually
this twisting motion causes the particle axis to become perpendicular to the
force (i.e..¢ = 90° point 'B" in Fig. 20) and further increase in ¢ then causes the
end of the particle furthest from the interface to become the 'leading” end
insofar as the translational motion is concerned and further translation is
accompanied by motion away from the interface exactly along the reversing tra-
jectory BAC in the @ vs. d/[ representation due to the symmetry of the system

(see Figs. 2, 4, 5 and 7-15).
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The other problem considered here is the motion of a torque-free slender
body under the action of dimensionless force, = ej, normal to the interface.
In Fig. 21, the trajectories for a slender body, which is initially located at xg =
(0,0,5,) with orientations §, = 5° 30° 45° 60° and B80° and ¢, = 0° are
represented in terms of the orientation angle 6 and separation distance d/1 for
three values of A = 0, 1 and «. We also include the corresponding results for
trajectories in an unbounded fluid. It can be seen from Fig. 12 that the trajec-
tory (6 vs. d/1) for slender body initially oriented parallel or perpendicular to
the interface is a vertical straight line. Furthermore, for any initial orientation,
6,, the particle always rotates towards an orientation parallel to the interface.
This is perhaps the most interesting and important result of these illustrative
calculations. In Fig. 22, the separation distance, d/{, which can be regarded as
the 'sedimentation distance” is plotted as a function of the 'sedimentation
time," \ﬁ, |t /upl®, for three cases of particle orientation 6, = 5°, 30° and 60°. For
each orientation, we include three values of A = 0, 1 and «. Also shown in each
case is the corresponding result for an unbounded fluid. It is evident that the
sedimentation time increases due to the presence of interface for any combina-
tion of A and initial orientation. Although the effects of the interface are
greatest when the particle is parallel to the interface, the difference from the

unbounded fluid case is always relatively small.

This completes our illustrative trajectory calculations using the fundamental
solutions that were developed in sections Il and IV. It is worth commenting that
the scope of the analysis can be readily extended to calculate particle trajec-
tories in any general linear flow field which is consistent with the presence of an

interface.
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APPENDIX

In this appendix, we give detail forms of functions which are defined in sec-
tions III and IV that represent the interfacial effects on the motion of slender
body near a plane fluid-fluid interface. For convenience, we first define some

functions as follows:

!l + x cos2@ + 2d sins 1
2 coso (d — x sine) |

l ~x cos2g —2d siné |
2 cos6 (d — x siné) ]

+ sinh™!

g(x;6,d) = sinh™

[l —x cosR6 —2d sing]
VE)
l(l — xcos26 — 2dsine)? + [Zcose(d — xsiné) ]2]

h(x;6.d) =

[l + x cosR6 + 2d siné]
172
[(l + xcos26 + 2dsing)? + [Zcose(d - xsing) ]2 J

+

1
(I —xcos26 — 2dsine6)® + (Ecose(d — Xsiné) ]2

k(x;6,d) = (d — x sing) [ ]1/2

1
172
[(l + Xxcos26 + 2dsin6)? + [Bcose(d — XSino) ]2 ]

1
[(l — Xcos26 — 2dsin6)? + [Zcose(d — Xsine) ]2 ]

y(x;6,d) = (d — x sing)3 - 573

1
[(l + xcos26 + 2dsing)® + [Zcose(d — xsine) ]2

]8/2

[l — x cosRe — Rd sing]®
[(L — xcos26 - 2dsin6)* + [2cosa(d — xsiné) ]2

z(x;6d) = 372

[l + x cos26 + 2d sin6]®
57z -
(I + xcosR6 + 2dsin€)? + [Zcose(d — xsiné) ]2 ]

+

Now the specific formulae for the functions representing the 'interfacial

effects” can be expressed in terms of g(x;6,d), h(x;6,d), k(x;6.d), y(x;6d), and
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z(x;6.d). -

1 -A
1+A

P(x;A6.d) = (1 + cos®8) - g(x;6,d)

cos26((2 — cos®)\ — 2cos°6) h
Rcos?6(1 + A)

2 - 245y,
_ 2[2cos®e + (1 — 5cos?e)-A] sin6k(

1+A (x;6.d)

x;6.d) +

_ 16Asinecos2ecoste
(1+A)

Acos4 8 2(x:6,d)

YO FT s Meoste (A1)

Q(x;A6d) = —i—-—;:—;‘rcosesine - g(x;6,d)

2c0s@ e N e _ sing(Acos26 + 4cosfe)
+ —1———4_—}\—(00526 + BAsin®6)-k(x;6,d) 201 + Noose h

(x,6,d)

4Acos6cos4g.

o 2Acose2esing 2(x:6,d)

y(x;0.d) + (1 + A)cos6 (A2)

2cos8
1+A

R(x;A.6,d) = —cos6sing - g{x;6,d) — (cos 26 + Asin®6)-k(x;6,d)

sine(4cos?6 + BAcos26) ‘
2(1 + N)cose h(x6.d)

+

_ 2Acos26sing

AAcos8cos4 6 X
(1 +A)coso y(x6.d)

1+A (A3)

29in6((1 + sin®6)A — 2cos6) K
1+A

z(x;6,d) —

W(x;A,6,d) = —(1 + sing) - g(x;6.d) — (x;6,d)

2 2q
_ cosRe(Rcos®e + )\(Sc;os 6—1)) h(x:6,d)
2(1 + A)cos®e

Acos4 e

_ 16AcosR6cos®esing ’
2(1 + A)cos®e

(1 +A)

y(x;6.d) + z(x;6,d)

BSine[cosze (3sin®6 + 1) + A(1 + sin®6)-(1 — 3cos?6) ]
— k(x;6,d)
(1 +A)(1 + sin®6) (A4)

N cos26cos’6sind(1 + 3sin?6)
(1 +A)-(1 + sin®6)

A(xhe.d) = -2 y(x:6,d)

o g(x;ed) -
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A cos46 (1 + 3sin®6)

z(x;6.d
4(1 + A) cos®e (1 + sin®6) (xi6.d)

00829[200329 (3sin®6 + 1) — A(12sin%6 — 5sin®e + 1) ]
- ‘h(x;6,d
4(1 + A)cos?6 (1 + sin®6) (x:6.d)
1
Zs'me{cosze (3sin%6 + 1) + A(1 + sin?6)-(1 — 3cos?6) ]
(1 + A)(1 + sin®e)
_ _1=N _ RN }
B{x:A,6.d) = Y g{x;6,d) Y sine k(x;6.d)
A cosgé
- h(x;6,d
2( 1 + A )cos®6 (xe.d)
2A (1 + 3cos®6)sin46 cosé
Cix:\6d) = —g(x;6d) — y(x;6,d
(x ) g(x;6.d) (1 + A)(1 + cos®6) y(xed)
[ 2
A cos48 (; + 3cos 0)2 2(x:6,d)
4(1 + A) cos?6 (1 + cos®6)
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(1 + A)(1 + cos®e)
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cosBG[Zcosze(Bcosge + 1) + A(12cos*6 + 5cos?e — 1) ]
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4(1 + A) cos®e (1 + cos®6)

. e _ | A(4cos46 + 3sinRe sin4e) | ..
D(x;A,6,d) = —g(x;6.d) (L + ) sin® y(x:6.d)
+ 5N (3cos46 — BcosR6) 2(x:6.d)

{ 4(1 + \) cos®e "

[(3 2 0 20Y qin?
_ 1 (3sin?(26) + 4cosR6) + A4(4 + 3sin®6) sin®e |, .
2(1 + A)siné k(xi6.d)
2 _ _ 2
+ | cos 6 (B — Bcos26) +>\c03229(7 1Rcos”6) h(x:6.d)
4(1 + A)cos®6
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(A6)
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(AB)
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E(xA6d) = i :)): A(3sin46 sin26 — 4cos46)

(1 + A) sine

g(x;6d) - y(x;6,d)

-z(x;6,d)

Y (3cos46 + BcosRo)
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(d — xsin6) | 1 + sin®e

+ g (x; +
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e et o)
- E’(i’lS_ie_A% [[(l — xcosR6 — 2dsin6)? + {Bcose(d - xsine))z] e

1/2
- [(l + xcos26 + 2dsing)? + [Zcose(d - xsine)]z] ]
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2(1 + A)cos®o

z(x;6,d)

L(x;A,6,d) = sin?6G(x;A,6,d) + cos?6-Z(x;A,6,d)

For the perpendicular orientation (i.e., & = 90°),
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2d -1 —x| . 4\

A=l ~
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Description of the coordinate system and orientation of a slender

body.

Dimensionless drag force, F/jupU, le, as a function of the orienta-

tion angle, 6, for translation of a slender body; with U= U,e), £ =

2

0.1887, S(x) = 1/2 In

X
! L

. — — _, for an unbounded fluid

case, -~ ,ford/st =1.01, ford/si =2.

Ratio of the drag F, relative to the drag in an infinite fluid as a
function of the dimensionless distance, d/I, between the body

center and the interface: U=U,;e; ¢ = 0.1887, S{x) = 1/2 In

[1_

Dimensionless normal force, Fa/pU,le, as a function of the orien-

2

’l(— ,_ _ _fore=0°____ for &= 45° -—— for 6 = 90°.

tation angle, 8, for translation of a slender body; U=U,e;, £ =

2

X

0.1887, S(x) = 1/2 In [1 - [——- for an unbounded fluid

P e ek

i

case, - ford/l = 1.01, ford/i = 2.

Dimensionless torque, Ta/eU;l%% (or force, F/up)ql?:?), as a

function of the orientation angle, 6, for translation of a slender

2

body; U= Ue; (or @ =Qep), £6=0.1887,S(x) = 1/21n [l - zl(—

————— ford/1 = 1.01, dsi =2. _ _ _for an unbounded fluid.

Dimensionless torque, To/upU,l?e® (or force, F;/us(),l?%e?), as a
function of the dimensionless distance d/l between the body

center and the interface; U= U,e, (or 0 = ,e,), € = 0.1887, 3(x)

x for 6 = 45°, - for @

=1/21In [1-

2
],_ _ _fore=20°



Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.
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= 90°.

Dimensionless drag force, Fo/ApUsle, as a function of the orienta-

tion angle, 6, for translation of a slender body, U=Uzep, ¢ =
X
1 _[l

case, ——- ford/fL = 1.01, ford/L = 2.

0.1887, S(x) = 1/2 In

2
], — _ _, for an unbounded fluid

Dimensionless torque, T,/usUzl?s® (or force, Fo/up) l%e?), as a
function of the orientation angle, 6, for translation (or rotation)

of a slender body;, U= Uze; (or 1 =) ,e)), £ =0.1887, S(x) = 1/ In

-]

1.01, ford/l =2.

. — _ _ for an unbounded fluid case, -—- for d/I =

Dimensionless torque, Ts/ugUal?s® (or force, Fao/up()sl?e?), as a
function of the orientation angle, 6, for translation (or rotation)

of a slender body; U = Uzep (or ! = (Qgeg), £ = 0.1887, S(x) = 1/2 In

ey

1.01, ford/l = 2.

zl(— . _ _ _ for an unbounded fluid case, —- for d/1l =

Dimensionless drag force, Fy/upUsle, as a function of the orienta-

tion angle, @, for translation of a slender body, U= Uses, ¢ =

2
X
l ]

case. --—--- ford/l = 1.01, ford/t = 2.

0.1887, S(x) = 1/21In |1 — . — _ _.tor an unbounded fluid

Dimensionless normal force, F/usUgle, as a function of the orien-

tation angle, 6, for translation of a slender body, U= Ugzey, ¢ =

2

0.1B87, S(x) = 1/2 In . — _ .. for an unbounded fluid

X
! L

case, ~——-- ford/t = 1.01, ford/L = 2.




Figure 12

Figure 13.

Figure 14.

Figure 15,

Figure 186.
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Dimensionless torque, Ta/upUsl?e® (or force, Fa/up()ql?e?), as a
function of the orientation angle, 6, for translation (or rotation)

of a slender body; U = Ugeg (or 0 =Qzep), £ = 0.1887, 5(x) = 1/2 In

ey

unbounded fluid case.

%— — for d/l = 1.01,

for d/f =2, _ _ _for an

Dimensionless torque, T,/ 3¢, as a function of the orientation

angle, 6, for rotation of a slender body; 1 = ,e,, d/l = 1.01, ¢ =

\2
for an unbounded fluid

0.1887, S(x) = 1/2 In [1 - ll‘-

case. The force Fy induced by this rotation (due to the presence

of the interface) is given in Figure 8.

Dimensionless torque, Tp/ue(? L%, as a function of the orientation

angle, 6, for rotation of a slender body, 1 =Qge, d/l =2, &£ =

2
_ __for an unbounded fluid

0.1887, S(x) = 1/2 In [1 - 21‘—-

case. -— for d/1l = 1.01, for d/l = 2. The force components

F, and F3 induced by this rotation are shown, respectively, in Fig-

ures 5 and 1%.

Dimensionless torque, Ts/ue(? 3l%¢, as a function of the orientation
angle, 6, for rotation of a slender body; 1 =Qge3, d/l = 101, ¢ =

0.1887, S(x) = 1/2 In [1 ~ [31‘—

2
]. - - - -, for an unbounded fluid

case. The force components F; induced by this rotation is shown

in Fig. 9.

Dimensionless angular velocity, =5l /Ue, as a function of the

dimensionless distance, d/l, between the body center and the



Figure 17.

Figure 18.

Figure 19,

Figure 20.

Figure 21,

Figure 22.
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interface. U=U,e;, ¢ = 0.1887, S(x) = 1/21n [1 - (x/1)?]. _

for 6 = 0°, for @ = 45°, ..... for 6 = 90°.

Projection of a slender body onto the interface.

Trajectories for a torque-free slender body under the action of a

dimensionless force, = ef, in terms of @ and d/I; ¢, = 0° 6,

0°, 12°, 22°, 60°and 79°. _ _ _forA=0,----forA =1, for

A= for an unbounded fluid. Markers are the

UV UUNS  O—

corresponding experimetal data of Russel et al. (1977).

Trajectories for a torque-free slender body under the action of a
dimensionless force. F = ef, in terms of x/1 and d/; ¢, = 0°, 6,

=0° 12° 22°, and 50°. _ _ _forA=0,----forAx =1, for

A= ____for an unbounded fluid.

Trajectories for a torque-free slender body under the action of a
dimensionless force, P = ef, in terms of 6 and d/I; p, = 60°, §, =
0°, 12°,22°,50°and 79°. _ __ _forA=0,----forA=1___ for
A=,

____for an unbounded fluid.

Trajectories for a torque-free slender body under the action of a
dimensionless force, ¥° = €§, in terms of 6 and d/L; ¢, = 0°, 6, =
5°,30° 45°, 60° and 80°. . __ _forA =0, ----forA=1, for

A=, __ for an unbounded fluid.

Sedimentation distance d/! as a function of dimensionless time
t)F° | fual?; @, = 0°, 8, = 5°, 30°and 60°. _ _ _for A =0,--- - for

A=1, forA=e,  _ _  foran unbounded fluid.
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Abstract

We consider the motion of a sphere or a slender body in the presence of a
plane fluid-fluid interface with an arbitrary viscosity ratio, when the fluids
undergo a linear, undisturbed flow. First, the hydrodynamic relatiocnships for
the force and torgue on the particle at rest in the undisturbed flow field are
determined, using the method of reflexions, from the spatial distribution of
Stokeslets, rotlets and higher order singularities in Stokes flow. These funda-
mental relationships are then appiied, in combination with the corresponding
solutions obtained in earlier publications for the translation and rotation
through a quiescent fluid, to determine the motion of a neutrally buoyant parti-
cle freely suspended in the flow. The theory yields general trajectory equations
for an arbitrary viscosity ratio which are in good agreement with both exact
solution results and experimental data for sphere motions near a rigid, plane
wall. Among the most interesting results for motion of slender bodies is the gen-

eralization of the Jeffrey orbit equations for linear simple shear flow.
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1. Introduction

In this paper we consider the creeping motion of a sphere or a slender body
in linear shear and axisymmetric straining flows near a plane fluid-fluid inter-
face. Previously, we considered translation and rotation of a sphere when the
fluids are at rest at infinity (Lee, Chadwick and Leal, 1979; Lee and Leal, 1980),
and, in Part 1 of the present pair of papers, the same problem was solved for a
rigid, straight slender body {Yang and Leal, 1983). Although the quiescent fluid
problem is of some intrinsic interest, and is a logical starting point for investiga-
tion of particle motions near a fluid interface, many problems of practical sig-
nifecance involve particle motions in a mean flow at infinity (c¢f. Goldman, Cox
and Brenner, 1967a,b; Goren and O'Neill, 197%; Spielman, 1977, and references
therein). This is true of boundary effects in the rheology of dilute suspensions,
theories of Brownian motion near a phase boundary and the development of tra-
jectory equations to model the "collection” of very small particles at the surface

of larger bubbles or drops in flotation processes (cf. Dukhin and Rulev, 1977).

The majority of previous analyses of creeping particle motion near a flat wall
or interface were restricted to spherical particles, and utilized separation of
variables in bipolar coordinates, cf. Jeffery (1912), Brenner {1961) and Lee and
Leal (1980) for motion in a quiescent flow. Goren and O'Neill (1971) used the
same approach to consider the motion of a sphere in simple shear flow near a
solid, plane wall, and, more recently, Dukhin and Rulev {1977) considered a
sphere on the axis of symmetry of a pure straining flow near a gas-liquid inter-
face. An alternative approach, which is essential if the particles are not spheri-
cal, is to construct solutions using spatial distributions of fundamental singu-
larities. This approach has been known since the pioneering work of Lorentz
(1907). Recently, fundamental solutions were developed for a point force and

higher order singularities near a fluid-fluid interface by a generalization of the
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Lorentz analysis, and used to solve for the creeping motion of a spherical parti-
cle when the fluids are at rest at infinity (Lee, Chadwick and Leal, 1979). The
same basic method has also been applied, in a slender-body approximation, to
investigate the translation and rotation of a straight, rigid slender body through
a quiescent fluid (Fulford and Blake, 1983, for translation with the particle axis
either perpendicular or parallel to the interface; Yang and leal, 1983, for trans-

lation and rotation with an arbitrary orientation).

In this present work, we use the singularity method to study the hydro-
dynamic interactions between either a sphere or a straight, rigid slender body
and a flat fluid-fluid interface in linear flows which are compatible with the pres-
ence of a plane interface. The solutions we obtain provide the hydrodynamic
‘resistance” tensors that define the relationships between the force and torque
on the particle at rest in the flow field, the undisturbed flow parameters such as
strain rate or shear rate, and the translational and angular velocities of the par-
ticle. These fundamental relationships are then used to calculate the particle

trajectories in simple shear and axisymmetric straining flows,

2. Basic Equations

We begin by considering the governing equations and boundary conditions for
a rigid particle (i.e., sphere or slender body) at rest near a flat fluid-fluid inter-
face of two immiscible fluids 1 and 2. The particle is assumed to be located in

fluid 2, and the undisturbed velocity field is given in the form:
U,=Ex for pure straining flow

or

ﬁl = %’FX

ﬁg = TI'x for simple shear flow
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(1b)
in which A(= @,/u4z) is the viscosity ratio of the two fluids, U; is the undisturbed
velocity field in fluid i (= 1,2), and x denotes a position vector measured from an
origin that is placed at the interface. These undisturbed flow fields are depicted
in Figs. 1A and D, and are consistent with the existence of a flat interface at
which the normal components of velocities are identically zero (i.e., Un = 0).

The linear coperator E for an axisymmetric extensional flow takes the form

Here, E and I'js (j = 1.2) are usually denoted as the strain rate and shear rate,

respectively.

In the present problem, the Reynolds number is defined by

Re =

R Tisld

o
where l. is a characteristic length scale of the particle (i.e., either the sphere
radius , a, or the half-length of the slender body, (), and v, represents the
kinematic viscosity of fluid 2. We assume that the Reynolds number is
sufficiently small (i.e., Re << 1) that the motion is quasi-steady and the creep-
ing motion approximation applicable. The equations of motion therefore reduce
to steady Stokes' equations in both fluids. Further, the linearity of the Stokes’
equation enables us to decompose the undisturbed flow field ﬁj = L;yx into a

constant vector (ie., a uniform streaming flow, Figs. 1B and E)
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0=t (2a)
a

and a linear part with vanishing velocity at the body center (i.e., Figs. 1C and F),

ﬁj zLi'X“Lg'Xp . ( )
2b

Here, L; denotes either the strain rate tensor K in each fluid, or shear rate ten-
sors wi/uz [' for i = 1 and 2. The Stokes' problem for U; = Lz x, of Eq. (2a), which
is simply a translation of the fluid system inciuding the interface past a station-
ary particle is precisely equivalent to the problem of particle translation with
velocity -Lg'x, through a quiescent fluid with stationary interface (cf. TFigs. 1B
and E). A complete detailed solution is available for this problem for both a
sphere and a slender body from Lee, Chadwick and Leal {1979) and Yang and
Leal {198B3) who determined the relationship between the hydrodynamic force F

and torque T on the body and the translational velocity

ke (30)
a

ek (3b)

where Ky and K¢ denote the translational and coupling tensors, respectively.

It thus remains only to solve the problem for the linear undisturbed flow
U =L;yx- L2 x, with U, = O at the body center (cf. Figs. 1C and F). We define,
for convenience, a disturbance velocity field u, as the difference between the

actual velocity 4 in the presence of the particle and the undisturbed flow, ie,,
u =0 - {Lyx - Lexd (i=1.2).

The equations of motion for the disturbance velocity field are

(4a)

Vaua=0 (i=12)
(4b)

in which the variables may be considered to be non-dimensionalized with
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respect to the characteristic variables: I = a (or {), t; = 1/E (or 1/T}3) and
pe = tiell (or wgl'g). Thus, for the following analysis, the non-dimensionalized
variables such as the hydrodynamic force and torque, F and T, and the transla-
tional and angular velocities of the body, U and Q, are based on the correspond-
ing characteristic variables, i.e., Fo = ugBl§ (or uel'al@). To = wpEL$ (or uel'5ld),
Ue = El¢ {or Uslc) and Q¢ = E (or I'j5), respectively. The boundary conditions for

u; and ug in this disturbance flow problem are:

wu > 0as [x]» =
(5a)

up = Lo (%3 — %) on xp€8,
(5b)

plus the interface conditions (i.e., continuity of velocity and tangential stress
and zero normal velocity). In Eq. (5b), xg denotes a point on the body surface
Sp. From the point of view of (4) and (5), the problem is seen to be exactly the
same as if a velocity field uz(xg) = -Lz'(%g ~ Xp) is generated at the surface of a

body which is near a flat fluid-fluid interface in a fluid at rest at infinity.

For a spherical particle, we consider the asymptotic limit
a
e <
é << 1

in which d is a separation distance between the sphere center and the interface.
In this case, the singularity method can be reduced to the superposition of fun-
damental solutions for a point force « (i.e., Stokeslet), a potential dipole 8 and
higher order singularities (e.g., a stresslet, a rotlet, a potential quadrupole, etc.)
at the sphere center. Fundamental solutions of the creeping motion equation
for a point force (and higher order singularities) can be obtained easily from the
corresponding solutions in an unbounded fluid by following the prescription of
Lee, Chadwick and Leal (1979). The fundamental solutions automatically satisty

the conditions of velocity and stress continuity as well as zero normal velocity at
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a flat fluid interface, plus the boundary condition (5a) of vanishing velocity in
the far field (cf. Lee, Chadwick and Leal, 1979). All that remains is to determine
the combination of these singularities at the sphere center, x;, which satisfies
the boundary condition (5b). In particular, we must determine the densities
and orientations of these singularities so that the disturbance velocity ug(x) is

at least approximately equal to -Lz (X — X;) at all points of the sphere surface.

For a slender body, the problem of particle motion near an interface (i.e., the
disturbance flow problem, Egs. (4) and (5) can be solved using the slender body
theory of low Reynolds number flow (Batchelor, 1970; Fulford and Blake, 1983;
Yang and Leal, 1983; and others). In this approach, the disturbance flow pro-
duced by the body is approximated by a line distribution of Stokeslets and
potential dipoles along the body center line (rather than a superposition of
higher order singularities at one point X, or a surface distribution of point
forces), and the orientation and strength of these singularities are determined
in order to satisfy the boundary condition (5b) to an order of approximation

0(¢®), where & = [In2«]™! and « is the axis ratio of the slender body.

The complete solution for a particle located at arbitrary point X, in a linear
flow field ﬁ, = Lyx near a flat interface is obtained by superposition of the
corresponding solution for the linear flow ﬁj =Lyx - Lgx, with ﬁg =0 at the
body center and the solution [i.e., Egs. (3a) and (3b)] for the uniform streaming
flow ﬁ,- = LzX;. In the theoretical analysis which follows, we consider the hydro-
dynamic force and torque acting on a stationary particle (sphere or slender
body) in the presence of both an axisymmetric uniaxial extensional flow and a
linear shear flow. These results are then used in Section 5 to calculate the tra-
jectories of a freely suspended sphere or slender bedy in the same flows near a

fluid-Auid interface.
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3. Solutions for a Spherical Particle
3.A Pure Straining Flow

We begin with the creeping motion of a fluid in the vicinity of a stationary
spherical particle that is located at an arbitrary point x, = (X'P;'XPz'-d) in fluid 2
when the undisturbed motion is an axisymmetric uniaxial straining flow. Eq.
(1a), with origin at the particle center. Here we utilize the disturbance flow for-

mulation defined by Eqgs. (4) and {5), and consider only the limit § = a/d << 1.

Since § << 1, the most convenient solution technique 1s the method of
reflections, as was also used and explained in some detail by Lee, Chadwick and
leal (1979) for the uniform streaming problem. The zeroth-order approxima-
tion in this procedure {uf® pi®), is the single fluid, unbounded domain solution
which satisfies boundary conditions exactly at the sphere surface. The problem
of a sphere in an axisymmetric straining flow, U=E(x ~Xp), for an unbounded
single fluid was solved by Chwang and Wu (1975), who showed that a potential

quadrupole (o ,v) and a stresslet (p.u), of the form

5

stresslet: (p.u) = (g—es,e‘s)

potential quadrupole: (o.v) = (éwes,ea)

were required at the sphere center to satisfy the boundary condition (5b) at the
sphere surface. Thus, the zeroth order (i.e., unbounded single fluid) solution in
the method of reflections expansion can be written as

[
{ 10 ‘ :
uiB(x) = 5 laxs up(X,Xpie3) + Hugs(X. Xy e3,€5) (63)

piV(x) = %pss(x.xp:es.e'a) -
(8b)

Here, up(x.xp:.8), uss(X.Xpp.u) and pss(X.X,p.u4) denotes the fundamental
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solutions for a potential dipole # and a stresslet (p.u) located at x, in an

unbounded fluid, cf. Chwang and Wu (1975).

Though uf¥(x) of Eq. (6a) exactly satisfies the boundary condition
uz(xp) = —E(Xg — xp) at all points on the sphere surface, it does not satisfy the
conditions at the flat interface. However, Lee et al. (1979) have already shown
that the first correction in the reflections method, {u!,pi!), for the presence of
the interface can always be obtained by simply utilizing the same form, Eqns.
(6a,b) as in the zeroth-order solution but with the fundamental solutions up, uss
and pss (for an unbounded fluid) replaced by the corresponding fundamental
solutions in the presence of the flat interface, obtained by the simple transfor-
mation rule of Lee et al. This yields (uf® + uf{V pf® + pfV). The first 'wall

correction” can then be obtained by subtracting the zeroth order-solution

(g, p%):

uf(x) = —;— -a;agi ug p(X.Xp;e3) — Up(X,Xp;e3)} + Biug ss(X, Xpies,83) — Uss(X, Xpies,€3)) ]
(7a)
pi(x) = -;— i;—pzp(x,xp:es) + 5{pe.ss(X.Xpie,03) — pss(x.xp;es.es)i} )

where we have denoted the resulting fundamental solutions in the presence of
the interface as upp and uggsg, respectively. Although the combined solution
(uf? + uf?,p® + pi) satisfies the interface boundary conditions, it now does
not satisfy the condition uy(xg) = —E(xg — x;,) and additional singularities are
needed at the center of the sphere that cancel the velocity field correction
uél)(x) at the sphere surface xg, namely, the interface 'reflection’ of the poten-
tial quadrupole (o,v) = (1/2 ey,e3) and the stresslet (p,u) = (5/2 eg,e3) which is

nonzero at the sphere surface.
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Since the detailed form of u,él)(xB) is highly complicated, it is not possible to
determine singularities at the sphere center which precisely satisfy the boun-
dary condition (5b) at all points on the sphere surface. Instead, we choose
singularities to cancel only the first few terms of uél)(xB) at the sphere surface,
with ui!(xp) expanded in powers of ¢ for § = a/d << 1. The leading terms of

as!) near the sphere, for small 4, are in component form:

5
uél) = &8 _}_(_1__ .l_i'__z_}L+ 0(54)

6 1+A | (8a)
5

Vi =g X2 1 RN 0(6%)
18 1+A (8b)

16 1+ 8 Trn (Xatd) +0(6h (6c)

W£1)=“62i2+3>\"685 1+ 2\

where the subscript 2 denotes the velocity components in fluid 2. It can be seen
from Egs. (8a,b,c) that the presence of the interface will induce a steady stream-
ing flow at 0(¢®) normal to the interface and an axisymmetric uniaxial exten-
sional flow at 0(¢6%) with a stagnation point at the sphere center. The singulari-
ties required to cancel this additional velocity field at the sphere surface can be
readily evaluated and the resulting solution for a stationary sphere near a flat
interface in the pure straining flow, ﬁz =E(x - xp), is as follows:

2

[
513 2+ 3 2+ |7 4 . _
u(x.X,) = 5 1 5 TN &* + FEEESY 6% + 0(6*) |ugs(x.X,e5) (Stokeslet)
513 2+3\ 3 2+3 ] 1
513 2, | 3. 3 1 .
* 3 l TN & + T T & + 0(6%) }ug,p(x,xp. 3 e3) (Potential Dipole)
5 5 1*2A s " :
telltg T ot 0(s )] Uz ss(X,Xp €3,63) (Stresslet)
[

1 5 1+2\ N , ‘

— e e + 0 6 P ; .
t 5 ll HETEEESY Y ( )} oxg uz p(X.X;;e5) (Potential Quadrupole) )
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Now, let us turn to the original problem of calculating the force and torque
acting on a stationary sphere that is located at arbitrary point %, in fluid 2
which is undergoing the axisymmetric uniaxial extension flow ﬁg = E'x with ori~
gin at the interface (i.e., Fig. 1A). As we showed in Section 2, the hydrodynamic
force and torque exerted in this case can be determined by a superposition of
the force and torque for a uniform streaming flow with translational velocity
0= E-x; and for a uniaxial straining flow ﬁi = B (x — x;) with stagnation point at
the sphere center. The force and torque in the latter case can be evaluated
directly from the strength of the singularities in the solution, Eq. (9). The result

is

Cowme o 13 .2+30 (3 .2+3A
F=-KrEx, - 57 86 N +[ 61+)\ 503*'0(‘54) (10a)
= Ko Ex, + 0(6%) .
(10b)

The components of the translation and coupling tensors, Ky and K¢, were deter-
mined up to 0(6%) by Lee et al. {1979) for motion of a sphere near a plane fluid-
fluid interface. The 0(¢%) terms in the components of the hydrodynamic tensors,
Kf and K; which are necessary to be compatible with the inclusion of 0(8%)
terms in (9), can be evaluated by expanding the corresponding wall correction
uit (x) up to 0(¢%) and superimposing the fundamental solutions for singulari-
ties in order to cancel the interface reflection at the sphere surface at the same
level of approximation, 0(6%). The resulting nonzero components of the hydro-

dynamic tensors Ky, K¢ are given by

1+ 2A

8 g8A-2 [ _
16(1 + A)

3
L+A 0

+ 0(8%)

KﬂlﬂSﬂila-lgl (1)

Kf? = K¢! :1b)
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n
3 . e+ 3A 1+ 4A
K = 6mr 1+Z [..._ - & | + 0(o%)
= 18 ° T+ B(1 + A) (110)
3 3 A -2
2 - S sBA—< 4
K& 621+A{1+1661+>\ O(d) ('ld)
and
K8! = —Ki2 .
(iile)
[ 3 n
Here, the terms in the summed series, [fﬁ §(BA —=2)A1 +A)| in Kt' and

n

-g—d (2 + 3A)A- +A)| in K2, are the corresponding n-th reflexions to the terms

of 0(d) in the first wall corrections, u(x), and the summed series continue
beyond 0(8%). The terms of 0(¢%), (-(1 + 2A)/16(1 + A))é® in K¢! and (-(1 -
40)/8(1 + A))6® in K, result from the correction terms of 0(6%) in ui?(x) which
represent a paraboleidal velocity field with origin at the sphere center and a
steady streaming flow, both either parallel or normal to the interface. The term
of 0(8%) in K¢® or K& is associated with the reflected simple shearing flow of
either the 0(4) term in uf{!(x) for translation parallel to the interface or the

0(6%) term in ui!(x) for rotation with axis of rotation parallel to the interface.

Dukhin and Rulev {1977) determined the drag force on a small solid sphere
which was located at the axis of symmetry in an axisymmetric uniaxial exten-
sicnal flow, U, = E'x, near a gas-liquid interface (ie., A » 0), using the eigensolu-
tions of Laplace's equation in bipolar coordinates. It is a simple matter to calcu-
late the drag force, Fg, on the sphere from the present asymptotic solution, Eq.
(10a) with x, = (0,0-d). The drag ratio (the drag Fy divided by Stokes' drag,

127 usadE) is simply given as

Drag Ratio =
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+ 0(6%) .
(1R)

13 . 2+32 " 1+4A 45 5 & . l3.z+a]
“El[s‘s 1+>\] BN S " Teall|E0 T

In Fig. 2, the drag ratio, Eq. (12), is plotted as a function of d, the distance
between the sphere and the stagnation point, for three values of A = 0, 1 and .
Also shown for comparison is the corresponding exact solution of Dukhin and
Rulev (1977). There is very good agreement between the two solutions except in
the region near d = 1. As expected, the difference between the two results
becomes larger as the sphere approaches the interface due to the poor conver-
gence of the asymptotic solution in powers of 8, Eq. (12). However, a detailed
comparison shows that the maximum error in the asymptotic solution, Eq. (12),
compared to the exact solution of Dukhin and Rulev (1977), is only 2.72% for d =
1.001 which is the smallest value considered by Dukhin and Rulev (1977), while

the error for d > 1.5 becomes less than 0.98%.

3.B Simple Shear Flow

Let us turn now to the case of a sphere located at an arbitrary point X, in a
simple shear flow, ﬁi = wi/Me T'x, parallel to the interface as shown in Fig. 1D (the
case in which ﬁj = C#0 at the interface can be treated by superimposing a uni-
form streaming flow past a sphere, ﬁi =C, with the simple shear flow
ﬁi = wi/ke I'X). Again, the problem can be decomposed into a simple translation
of the fluid system including the interface with velocity IAJ,- =[x, past the sta-
tionary sphere (i.e., Fig. 1E) and a linear shear flow, U; = u/jup ['x — I'x,, with
the velocity ﬁz = 0 at the sphere center (i.e., Fig. 1F). In view of the linearity of
the problem and the symmetry of the sphere-interface geometry, we need only

solve the case of ﬁ,- = W/l '3 X5 €, corresponding to

. shear rate tensor .
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In order to analyze the velocity field for a sphere in the undisturbed flow
U, = I'is[m/4e X3 + d] e; which vanishes at the sphere center, we follow the pro-
cedure of the preceding section and solve the equivalent problem in which a
velocity field ug(x) is viewed as being generated in a quiescent fluid by a nonzero

velocity distribution

ug(xp) = — ['3((xp)s + d)ey
(13)

at the surface of the sphere. As in the preceding analysis, we use the method of
reflections, with the solution in an unbounded fluid taken from the work of
Chwang and Wu (1975) who showed that the condition (13) was satisfied by
superposition of a stresslet, a rotlet and a potential quadrupole at the center of

the sphere, i.e.,

stresslet: {(p.u) = (- —Z-Flsel.es)
rotlet: v =-%T'ze

potential quadrupole: (g,v) = (- é—l‘wes,el).

As in the preceding example, the first correction for the presence of the
interface in the reflections expansion, can now be obtained easily from Chwang
and Wu's solution by simply replacing the fundamental solutions ug, up and ugss
(which pertain to an unbounded fluid) with the corresponding fundamental solu-
tions ug g, ugp and uggs that satisfy boundary conditions on the flat interface
(and are generated using the procedure of Lee et al., 1979). The result is the
first two terms in the reflections expansion, ie., (uf® + uf?, pi® + psY). Sub-

tracting the zeroth-order (Chwang and Wu, 1975) solution, we get

ui(x) = T3 %m,ss(x,xp;ex.ea) + %-ue.a(xxp;ez) + —é— f{;uz.n(x,xp;ex) - uf9(x).
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(14)

Although the combined solution (uf? + u?, p{? + pi!) satisfies the boundary
conditions at the interface, the boundary condition (13) on the sphere is not
satisfied because the 'reflected flow field” u§? is nonzero at the sphere surface.
Following the previous section, we examine the leading terms of this reflected

field at the sphere surface as a power series in 8.

Doge A2 n +ﬁ]'3A r d) + 0(6*
4 = 0(6"
(15b)
and

Thus, insofar as (15a)-(15c) are concerned, the presence of the interface is
equivalent to an induced steady simple shear flow at 0(¢®) either normal or
parallel to the interface and a steady streaming motion at 0(é%) parallel to the

flow field (i.e., e, direction).

| In order to satisfy the condition (13), additional singularities are required at
the sphere center. These can be determined following the procedures of Lee et
al. (1979), as well as the previous section of this paper. The resulting solution,
expressed in terms of the fundamental solutions for a Stokeslet, potential dipole

and higher order singularties near an interface (Lee et al., 1979) is

BA — 2 3 2 -3\
(Xxp)“HES(Xxpel)l S s ) &° [1 TEEESY

+ 0(6%) ] (Stokeslet)

L N
+ Ug p(X.Xp; 3 e) TEREESY + 0(6*) | (Potential Dipole)

~Ols 5A-2 |, _ 3 2-3A
B4 1+A
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« 5T
+ g ss(X.%pie1,€5) Tm‘[‘l S ey 0(64)] (Stresslet)
I'is [ 3 "
+ ug (X, X €7) = t-—l t 5 1—-——63 + 0(d%) (Rotlet)
3 s [ 13a-1 4| o 13 240\,
* oy VeniXXpie) 5= 11"8 1+A6] ox, Uep(XXpies) = S5 6% + 0(6Y)

(18)
(Potential Quadrupole) |
From this solution and Egs. (3a) and (3b), we can easily determine the hydro-
dynamic force and torque exerted on a sphere located at an arbitrary point X,

in the simple shear flow, ﬁi = e I x, with ﬁi = 0 at the interface. This result is
F= KT+ Kty
(17a)

= —KeT'x, + Kords
(17b)

in which £, is defined by ¢ = (I'j3, ['s3, 0) and the nonzero components of the

hydrodynamic tensors Kgr and Kgr are given by

3m BA—2 3 2-3A
Ké’;:g_ 1+>\6[1— T6 Ta 9| to (18a)
K&F = K¢
(18b)
K§F=——4n{1-—l~ 3 5|+ o0(e%)
B 1+A (lBC)
K& = — Kdf .
(18d)

The drag ratio (the drag divided by Stokes' drag, -6mue['13da) is simply given as

Drag Ratio =
3 3 ,2-3A" 142\
—t N\ —
1+,§1( 1)[165 1+A 16(1+)\)5
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!
Ty wl Dkl il IO

622“”5)‘ 3 2 - 3A
18 THA

(19)
where we have again adopted £, = (I";3,0,0) with no loss of generality.

For a simple shear flow parallel to a rigid plane boundary, Goren and O'Neill
(1971) calculated the hydrodynamic force and torque on a sphere, using the
eigensolutions of Laplace's equation in bipolar coordinates developed by Jeffery
(1912). In Fig. 3, the drag ratio, Eq. (19), is plotted as a function of 4, the dis-
tance between the sphere and the interface for three values of A = 0, 1 and «.
Also shown for comparison are the corresponding drag ratics determined by
Goren and O'Neill. As mentioned previously, we presume & < < 1 in the deriva-
tion of {19). Thus for § << 1 (i.e, d >> 1) the asymptotic solution, Eq. (19),
coincides almost exactly with Goren and O'Neill’s result which is the exact solu-
tion for the simple shear flow parallel to a solid wall. Even for d ® 1.5, the
approximate solution shows reasonably good agreement with the exact selution.
Indeed, the relative error is within 2.6% for d > 1.5. Wakiya (1957) considered
the case of a sphere in a linear shear flow between two rigid parallel flat planes
(i.e., A » =), in which one plane is held stationary and the other is moved paral-
lel to itself under the assumption that the motion of the sphere is parallel to the
walls, Wakiya determined the drag and torque on the sphere located at a dis-
tance 'd’ from the stationary plate and '3d’ away from the moving plate, using
the general method developed by Faxen {1921). The drag ratios asymptotically
calculated by Wakiya for the limit § < < 1 are also shown in Fig. 3. As might be
expected, Wakiya's results converge to the asymptotic solution, Eq. {19) with
A > o, as the distance d is increased, since the eflect of the moving plate
becomes negligible compared to the effect of the stationary plate with increase

in the distance.
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The hydrodynamic torque on a sphere in the flow ﬁi = e I'x can be

evaluated from (17b) and is equal to

T=anTy |1+ 5 6 — 1-§-¢s-2-—'-32‘m52} e + 0(6%) .

8 1+A 16 1+A

(R0)
This is the negative of the torque which is required to keep the sphere from
rotating. It can be compared directly with the corresponding results from
Goren and O'Neill's exact solution for a single rigid wall and from Wakiya's
asymptotic solution for two parallel plates with the same sphere location (ie., d
away from one plate and 3d away from the other). There is good agreement
between the asymptotic solution, Eq. (20), and the exact solution of Goren and
O'Neill (1971) in the region of § << 1, though it can be noted from (20) that,
when A » «, the interface contribution to the torque T is zero through 0(é%).
Although the discrepancy between the two solutions becomes larger as 6 » 1, it
still remains relatively small (e.g., the relative error at d = 1.01 is only 5.84% and
the error is within 3% for d > 15). As expected, Wakiya's solution also
approaches the asymptotic solution for A » « as the distance d is increased.
However. for the two-parallel-plate case the torque is increased in magnitude by

the presence of plane boundaries in contradiction to the single wall case.

In this section, we have determined the solutions of Stokes' equations for a
sphere at rest atl an arbitrary point either in a pure straining flow or in a simple
shear flow near a fluid-fluid interface with an arbitrary viscosity ratio. We shall
turn shortly to the application of these solutions for trajectory calculations.

First, however, we consider corresponding solutions for a rod-like slender body.

4. Solutions for a Slender Body

Let us turn now to the case of a rod-like slender body whose center is located

at an arbitrary point, x, near an interface in the presence of a linear
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undisturbed flow field (pure straining or simple shear), ﬁi = L.yx with origin at
the interface. The slender body is assumed to be at rest and completely
immersed in fluid 2 with an arbitrary orientation which can be expressed in
terms of Euler angles @ and ¢ relative to the interface. For present purposes, we
define 8 as the oblique angle between the body-axis and the interface, while p is
a subtended angle between the X;-x3 plane and the plane defined by the body-
axis and normal vector es to the interface (cf. Fig. 4). At the outset, we assume
that the body is oriented with arbitrary oblique angle e, but that ¢ = 0°. Thus,
the projection of the body-axis onto the interface exactly coincides with the x-
axis. The solution for an arbitrary g-orientation can be simply obtained from

the case of ¢ = 0°, by use of an orthogonal rotation tensor, @ defined by

cosy sing 0
—sing cosyg O
0 0 1

Qﬁ

4.A Pure Straining Flows

Now, let us turn to the case of a slender body held with its center fixed al an
arbitrary point x, in a uniaxial axisymmetric extension flow, ﬁi = Ex with stag-
nation point at the interface. The problem can be treated, as in the case of a
sphere, by decomposing the undisturbed flow into a simple translation U = Ex,
past the slender body and a linear flow ﬁ,- =E{x ~ xp) with stagnation peint at
X, The simple translation problem was treated in part I of this series. Here, we
solve the problem with undisturbed flow U; = E(x — x,). For this purpose, it is
convenient to consider the equivalent problem in which the body generates a
velocity fleld up(xg) = ~E(xg — X,) at the body surface; i.e., we solve

1
“E(xg~x,) = [ lalxm) ~ 5 B(x)7 2 ¥(xox)d¢ o
in which %(xp.%,) denotes the Cartesian tensorial Green function for a unit point

force located at X (cf. Yang and Leal, 1983).



The integral Eq. (21) cannot be solved exactly (except in a numerical sense),
but can be solved approximately by means of an asymptotic expansion for small

1/¢ and R,/d, where R, is the maximum radius of the body cross section. By

expanding Eq. (21) to 0(l/k, Ro/d) with a(¢) = (oy(¢).0,a5(¢)) and B(¢)
(81(8).0.85(¢)). it can be shown that the potential dipole strength, g(x), and the

Stokeslet strength, a(x), must be related according to

Bx) = = - r(x)a(x)
(22)

in order to satisfy the no-slip conditon (5b) at the body surface to 0(z?).

The simultaneous equations, which are obtained from (21) by substituting for
B(x) according to (22), can be solved by expansion of a(x) in powers of ¢ for ¢
<< 1. The use of an expansion in & to obtain an approximate solution of this
type has been widely reported (cf. Batchelor, 1970) for motion of a slender body
in a single unbounded fluid, and was used by us in part | for simple translation

and rotation near an interface. The resulting line distribution of Stokeslets, in

|

component form, is

2

_ & sin®e — 3
2

1 + sin®e

+ Sin*e) cose
— l i 2 X

. + U(x;A.0.d)

o (x) =

[BS(X) +

: [
_ sin®ecose X [ £ — ol [ RS(x) + 1 + X(x;A.0.d) ] }

2 E (23a)
and
- 29 |
as(x) = .S_l_nﬁigs_e—x [8 - "E;‘ { ZS(X) + 1+ V(X;A,e,d)] }
2a).qi 2 2o
+ {1 +cos 8)'sing x| s - & | as(x) + 808 e 23 FY(xA0.d)
2 2 1 + cos®e (23b)
< 212
T

where S(x) = In and ry(x) is the radius of the body cross sec-

ro(x)Ro
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tion which is a function of distance x along the body center line and has a max-
imum value of R,. Here, U(x;A.0.d), X(x;A,0d), V(x;A,6,d) and Y(x;A,8,d) represent
the effects of the interface on the slender body and vanish as d » « (see Appen-

dix for specific formulae of these functions).

The net force and torque exerted on a slender body located at the stagnation
point in the undisturbed flow field, ﬁ,- =B {(x - xp), can be evaluated simply from

the Stokeslet distribution and expressed in the following form:
- KPF'fp
(24a)
- KPTfp
(24b)

where the vector £, = (1,1-2), and the nonzero components of the hydro-

dynamic resistance tensor Kpp are

1
K3 = — m(1 + sin®8)cose-&® f xU(x:Ae,d)dx + 0(e%)
-1

(25a)
1
Kg} = msinecos®e &2 f X V(x:A,0,d)dx + 0(3)
-1 (25b)
1
K#f = mcosesin®e &2 f xX(x:A,8,d)dx + 0(£%)
-1 (25¢)
1
K8 = — m(1 + cos®e)sine & f xY(x:A,0,d)dx + 0(s) .
-1 (254)
The tensor Kpr has the following nonzero components:
K& = BT sinecoses | 1 ~¢|ng — L+ fl [ (1 + sin®e)-U(x;\.8,d)
3 6 8 v, e
+ cos?e-V(x;A.0,d) ]-xzdx] ] + 0(&%)
(R5e)
8 f 3
K&§f = — ——Slr—sinecosea 1 1—¢|ln@ — =—+ 5 f (1 + cos®e) Y(x;\,0.d)

+ sin®eX(x;A.0,d) ]'dex] ] + 0(e) .
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(25f)

In Figs. 5 and 6 the force components, F; and Fg of (24a), are plotted as a
function of the orientation angle & for ¢ = 0.1883 which corresponds to £ = 100,
and d = 1.01 and 2.0. In each case we consider three values of A = 0,1 and «. In
an unbounded, single fluid, the net force on a particle located at the stagnation
point of a linear straining flow would be zero. Obviously, in the case of a sphere,
this parallel force component is zero due to the symmetry of the sphere. The
existence of a nonzero force component, Fy, as shown in Fig. 8, was also found
for the sphere. The force component Fg is always oriented away from the inter-
face and the magnitude is increased as the viscosity ratio A becomes larger,
which is exactly the same as for the sphere (compare Eq. (10a) and Fig. 8).
Thus, a positive external force, ~Fg, would have to be applied to the body to keep
it from translating away from the stagnation point x, of the flow regardless of
the particle orientation and position, or the viscosity ratio of the two fluids. It
should be understood that, in this flow fleld G, = E(x ~ x,) of Fig. 1C, the inter-
face translates with velocity -2dey toward the stagnation point x, at which the
body-center is held fixed. This ‘interface motion" can be viewed as the source of

both F;, and Fj.

The hydrodynamic torque, Ty of (24b), is nonzero even in an unbounded sin-
gle fluid, but is significantly modified in the presence of an interface. The torque
Ty is plotted in Fig. 7 as a function of the orientation angle @, for d = 1.01 and
three values of A = 0, 1 and «=. The corresponding result in an unbounded single
fluid is almost identical to the case, A = 0. It is evident, since T, # 0, that a
freely suspended slender body (i.e., one with T = O) would rotate in a direction
which depends on A, and on the orientation and position of the body relative to
the interface (i.e. ® and d). For A = 0 and 1, there exist two possible equilibrium

orientations, at which T; = 0 and this is also true in a single unbounded fluid.
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However, only one of these, @ = 0° is stable, while the other, @ = 90°, is unstable.
When @ = 07, the particle axis is parallel to the interface. On the other hand, for
X ==, there exist two unstable equilibrium orientations corresponding to points
A and B in Fig. 7, and two stable equilibrium orientations with the particle axis
either parallel or perpendicular to the solid wall. The equilibrium orientation
which would ultimately be attained in this case by a freely suspended body
depends on its initial orientation. It should be noted that the qualitative
features evident in Fig. 7 for A == (i.e., the existence of two stable and two
unstable equilibrium orientations) will occur whenever the viscosity ratio A is
larger than a critical value (e.g., A;; = 3.273 for d = 1.01), for which the two
unstable equilibrium orientations overlap exactly at the perpendicular orienta-
tion (i.e. ,the unique unstable equilibrium @ = 90°). A detailed examination of
(24b) shows that the two unstable equilibrium angles, for a given viscosity ratio,
are also shifted to @ = 90° as the separation distance d is increased. For exam-

ple, for A » =, the two equilibrium angles (8¢) are 90° + 13.28° for d = 1.01

1

(which is the case illustrated in Fig. 7), but become equal to 90° + 10° for d
1.218, and eventually become coincident at @ = 90° for a critical distance do =
1.409, beyond which there exist the only two distinct equilibrium orientations, e
= 0° (stable) and @ = 90° (unstable), independent of the viscosity ratio A of the

two fluids for a given £ = 0.1887.

In Fig. 8, the critical viscosity ratio A is plotted as a function of the separa-
tion distance for three values of the aspect ratio ¥ = 20, 50 and 100 which
correspond to ¢ = 0.2711, 0.2171 and 0.1887, respectively. It can be seen that
the critical viscosity ratio is increased, for any given distance d (< d), as the
body becomes more slender, while the critical distance d., is decreased (i.e., der
= 1.876 for £ = 20, 1.580 for £ = 50, and 1.409 for £ = 100). Thus, for a given

aspect ratio (or £), the condition for existence of the two stable (& = 0° and 90°)
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and two unstable equilibrium orientations is A > A for a distance d < d.,.. The
implication of these somewhat complicated results for trajectories of a slender

bedy in an extensional flow will be considered later.

The undisturbed straining flow, ﬁi =E(x — xp), is axisymmetric around the x3-
axis with origin at the body center, X, and the magnitudes and directions of the
total force and torque therefore remain unchanged by rotation of the body
around the xz-axis (i.e., they are independent of g-orientation). Indeed, the vec-
tor components of the total force and torque for arbitrary ¢ can be obtained by
simply using Q 'K for each tensor quantity Kin (24a,b), which is the result for ¢
= 0° (i.e, the x;-axis coincides with the projection of the body axis onto the

interface).

All of the preceding discussion is concerned with the force and torque on a
body in the flow U; = E(x — x,) with stagnation point at the body center. In
order to determine the force and torque when the body is located at an arbi-
trary point x;, in the undisturbed flow ﬁ,- = E'x, which is zero at the interface, the
results of (24a,b) must be combined with the corresponding results from part I

for translation with velocity -E'x;; i.e.,

F=-KEx +Q Kerép (268)
a

and

T=-KEx, + Q Kerép . (260)

The resistance matrices Kr and K¢, were determined in part I of this work (Yang

and Leal, 1983). The hydrodynamic force and torque, (26a,b), will be used to cal-

culate complete particle trajectories for the general flow, ﬁz = E'x, in section 5.

4.B Simple Shear Flow
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Finally, we turn to the case of a slender body in the simple shear flow,
0, = wi/ue T'x. A general solution for this problem can be obtained by superim-
posing the results for a uniform translation with velocity ﬁ; =I"x, and a linear
shear flow with origin at the body center, ﬁi =I" (e X — X;). Without loss of
generality, we assume that the particle is oriented either parallel to the plane of
the flow [i.e., ¢ = 0°, U =T (/e X3 + d)e; ] or perpendicular to the plane [i.e.,
¢ = 0°, Ui = Tag (/e X3 + d)ez]. The solution for an arbitrary g-orientation can
then be determined from the solutions for these two cases using the orthogonal
rotation tensor Q which transforms any arbitrary velocity components of ﬁi
parallel to the interface to components parallel and perpendicular to the plane

in which the particle is placed (see Fig. 4).

First, we consider the case of a slender body with arbitrary e-orientation, but
¢ = 0% in the simple shear flow ﬁ,- =T"13 (/e X3 + d)e; which vanishes at the
body center. The required Stokeslet and potential dipole distributions along the
body center-line to satisfy the boundary condition (5b) can be determined using

the approach outlined in the previous section. The result is

T in2Q —
a,(x) = —(1 + sin®@)sine fx - -s;‘ 2S(x) + %%_255% + Ulx;ae.d) | | +0(D)
(R7a)
and
Tiax | 2
ag(x) = sin®6cose fx la - —%— [ZS(X) + 1+ V(x;:A0,d) ] + 0(%) .
(27b)

From the Stokeslet distribution we can evaluate the hydrodynamic force and

torque on the body (i.e., Fig. 1F).

1
F, = — rsine(1 + sin®e) [';3:8° f xU(x;A,0,d)dx + 0(3) )
-1 (RBa
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1
Fs = msin®ecose e [ xV(x:A6,d)dx + 0(&3)
-1 (28b)

and

8 r 11 3 !
- 2 e il S i
Ty = 5 7rsin e'ge [l ¢ |In2 =+ 5 f_l [(1 + sin®e)

U(x:A.8,d) + cos®e-V(x:A,8,d) [x?dx ” + 0(&%).
(28c)

In Figs. 9 and 10 the force components F; and Fg of Egs. (28a,b) are plotted as
a function of the orientation angle & for d = 1.01 and 2. It can be noted from
Fig. 9 that in the flow Up = [';3(x3 + d)e;, with origin at the center of the body
axis, the direction of the induced force F;, which is obviously zero in an
unbounded single fluid, depends on the viscosity ratio A with a degree of sensi-
tivity that is a strong function of the particle position and orientation relative to

the interface.

The force component Fg, which is very small compared to the parallel force
Fy, is a consequence of the the asymmetry of particle-interface geometry for ¢ #
0, 90° (indeed, the force F3 is zero for a sphere). The qualitative features of Fj
as a function of the orientation angle © are, in fact, quite similar for all viscosity
ratios A and particle positions relative to the interface. Thus, for 0° < & < 90°,
the interface will induce a translation away from the interface in the absence of
an applied force, —Fg, while the induced translation would be toward the inter-

face for 90° < & < 180°.

Detailed calculation of the hydrodynamic torque, Tz given by Eq. (8c) shows
that the qualitative dependence of T; on the orientation angle & is unchanged by
the interface. In fact, the effect of the interface becomes very weak when the
orientation angle & of the body axis is in the range from & = -30° to 30° (i.e., the

effect of the interface on the torque is significant only when one end of the body



passes close to the interface).

We have already noted that the existence of the normal force F3, Eq. (28b),
implies that a freely suspended slender body, in a simple shear flow
ﬁg = ["15(x3 + d)e; with origin at the body center, would move in and out relative
to the interface as it rotates around the xz-axis due to the hydrodynamic torque
Tz given by (28c). However, the trajectory is not periodic since the torque van-
ishes in the slender-body approximation at @ = n7, and the body is predicted to
experience a net outward displacement relative to the interface from its initial
position. Comparison with existing theoretical results for a slender body in sim-
ple shear flow of a single, unbounded fluid suggests strongly that this non-
periodicity in the particle motion is a consequence of the slender-body approxi-
mation. In particular, Cox (1971) showed that the force and torque on an
axisymmetric slender body which is at rest and oriented parallel to a simple
shear flow (& = nm) is 0( (1/k)? &), which is very small compared to the 0(s?)
terms retained in (28a-c), but is definitely nonzero. According to Cox's analysis,
a slender body will rotate very slowly through the aligned, or nearly aligned
state, but will experience a periodic rotation for any large (but finite) «. Similar
behavior in the present problem of particle motion near an interface would
imply that any real particle (with finite ) would both rotate and move in and
out continuously. We shall return shortly to the details of this motion, which is
a generalization of the famous Jeffery's (1922) orbit for rotation in simple shear

flow of a single, unbounded fluid.

Now, let us turn to the hydrodynamic interface effects on a slender body in
the simple shear flow, ﬁi = 'ag{t/ue x3 + d)ep, which is perpendicular to the
plane defined by the body-axis and normal vector eg to the interface. In this

case, the boundary condition at the body surface (5b) is
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. 1
Up(xp) = —['p3 X sinéep, + 0(—) , X €S, .
K
(29)
It may be noted, however, that this boundary condition is exactly the same as
for particle rotation near a flat interface with angular velocity Q =(Q ,e; through
a fluid at rest at infinity, with Q; = ;3. Equations for the hydrodynamic force
and torque in this latter case have already been derived by Yang and leal

(1983).

We now have a complete solution for a slender body in a simple shear flow,
ﬁi = I'"(/ue X — X,) with origin at the body center, and the undisturbed velocity
either parallel or perpendicular to the plane defined by the body centerline and
normal vector eg to the interface. From these results we can also evaluate the
force and torque on a slender body with an arbitrary orientation (8,¢) located at
an arbitrary position X, in a simple shear flow ﬁi = /e - I''x, with origin at the
interface. Combining the results of the present section with those for uniform

streaming flow, we obtain

F=-KTx +Q Ky Q&
(30a)
and
T=-KTx + Q" KerQ¢, .
(30b)

Here, the nonzero components of hydrodynamic tensors Kgr and Kgr are given by

1
K& = — (1 + sin®e)sine-&? f xU(x:A0,d)dx + 0(&%)
-1

(31a)
1
K& = — Rmsine-&® f x-B(x:A,8,d)dx + 0(5)
-1 (31b)
1
K& = msin®ecose-&® f xV(x:A,8,d)dx + 0(£3)
-1 (31c)

+ 0(£9)

11 .3 /!
1 ~¢g|ln2 - —+ = f xPK(x;A,0,d)dx

-_ 8B infes
K = msin®e-¢ st T,

3
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(31d)
1
K& = g—nsinze's- 1 —¢|lnR - %—+ —g— _[1 ((1 + sin®@)U(x;A.8.d)
+ coszeV(x;A,e,d)]xzdxH + 0(£)
(31e)
and
K§F = — K&f cote .
(31f)

Specific formulae for U(x;A.8.d), V(x:A.8.d), K(x;Ae.d) and B(x;A,8,d) are given in

the Appendix.

We now have a complete set of solutions either for a stationary sphere or
slender body located at an arbitrary point x, with an arbitrary orientation rela-
tive to the interface in either an axisymmetric pure extensional flow, or in a
simple shearing flow field. These solutions provide the necessary relationships
between the flow parameters (e.g., strain rate or shear rate) and the hydro-
dynamic force and torque for calculation of particle trajectories, which we shall

consider in the next section.

5. Trajectories near a Flat Interface

Whenever the creeping motion approximation is applicable, general relation-
ships can be written between the force and torque acting on a particle in a
quiescent fluid near a flat interface, and its translational and angular velocities

in terms of
F, = KU+ K:Q
(32a)

Tex = KU + KRQ
(32b)

the so-called hydrodynamic resistance tensors, Kr, Kg and K;. The components

of these tensors for a spherical particle were evaluated through terms of 0(¢%)
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by Lee, Chadwick and Leal (1979), and through terms of 0(¢®) in the present
study, Egs. (11a-e). For a slender body, Yang and Leal (1983) obtained the vari-

ous components of these tensors up to 0(¢?).

In the present paper we consider only the simplest case of a neutrally buoy-
ant freely suspended body. In this case, the translational and angular velocities
of the particle are given by

_ 9% _ 1
T = (K — K Kg ' Ko) 7 (F — KK T)
(33a)

= (Kr — Ko Ko K& (T — K K7 F)
(33b)

Here, F and T are the hydrodynamic force and torque acting on a stationary
particle due to the existence of a pure straining or simple shearing flow at large
distance from the particle. Thus, given the initial position and orientation of
the particle, these equations provide its complete trajectory (i.e., its position
and orientation as a function of time). In the present work, we use a simple

Runge-Kutta scheme described by Yang and Leal (1983) to integrate Egs. (33a,b).

5.A Trajectories of a Sphere

First, we begin with the case of a neutrally buoyant sphere freely suspended
in the pure straining flow ﬁi = E'x with stagnation peoint at the interface. The
results for the torque and force, F and T, in this case are given in Eqgs. (10a.b).
Substituting for F and T in Eq. (33), it is a simple matter to show that the trans-

lational and angular velocities of the particle are

5 @ 2+8A 1, 3 2+3)
16 1+)\l T

U:vap- 5 €3
2[3 52400 |7 1+an 5s] (34a)
= L+A B(1 + A)

and



(34b)

Thus, the particle does not rotate at all, at the level of approximation
represented by (34a,b), and it is only the Ug component of the translational
velocity that is altered from the undisturbed velocity of the fluid by the pres-

ence of an interface.

It can be noted from Eq. (34a), that the particle velocity Us is always
decreased in magnitude by the presence of an interface, independently of the
viscosity ratio A. Furthermore, the difference between U and the undisturbed
velocity of the fluid E'x; ey is monotonically increased as the separation between
the interface and sphere is decreased, but is independent of the distance from

the axis of symmetry of the undisturbed flow.

The motion of a sphere in a linear shear flow, U =- Mi/le Xg€, parallel to the
interface can be resolved in a similar manner. Since the hydrodynamic force on
the sphere is oriented parallel to the undisturbed flow, i.e., F=F;e, [cf Eq.
(17a)], the path followed by the sphere in the x, — X3 plane is exactly coincident
with a streamline of the undisturbed flow. However, the translational velocity of
the sphere is altered considerably from the undisturbed velocity of the fluid by
interaction with the interface. This is illustrated in Fig. 11, where the difference
between the velocity of the sphere and the undisturbed velocity of the fluid, U, -
d, is given as a function of the separation distance between the sphere and the
interface, d, for three values of A = 0, 1 and «. Also included for comparison are
the corresponding results of Goldman, Cox and Brenner (1976b) who obtained
an exact solution of Stokes' equations, using bipolar coordinates, for the trans-
lational and angular velocities of a neutrally buoyant sphere moving in a linear
shear flow in proximity to a single plane wall (i.e., A » ). It can be seen from

Fig. 11 that the present asymptotic result for the translational velocity is in
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reasonable agreement with the exact solution in the entire region of d > 1.
Indeed, the relative error associated with the asymptotic solution is less than

2.0% ford > 1.54.

The angular velocity, = 3[Eq. (33b)], for motion of a freely suspended sphere
in the simple shearing flow is plotted in Fig. 12 as a function of d for three
values of A = 0, 1 and «=. Darabaner and Mason (1967) experimentally measured
the angular velocity of a neutrally buoyant sphere in a Couette viscometer as a
function of the separation distance between the sphere and the wall of the
viscometer. Their results are included in the figure. In addition, the exact solu-
tion of Goldman, Cox and Brenner (1987b) for A = = is also compared with our
approximate solution in this figure. The present asymptotic solution is qualita-
tively consistent both with the experimental data and the exact solution over
the whole range of d, and is quantitatively accurate except in the region of d ~
1. Considering that the experimental data have not been corrected for wall cur-
vature nor for the presence of a second wall at a larger distance, and in view of
the difficulties of maintaining and measuring the separation distance from the

wall, the agreement is quite good.

5.B Trajectories of a Slender Body

Let us turn now to the case of a slender body suspended freely in a linear flow
field. Since each hydrodynamic resistance tensor in Egs. (33a,b) is a function of
the orientation of the body axis (6,¢), in addition to the position of the body
relative to the interface (i.e., d), it is convenient to relate the angular velocity Q

in (33b) to & and ¢, the time rate of changes in & and ¢ (cf. Yang and Leal, 1983).

We begin with the trajectory of a slender body in the pure straining flow
ﬁi = Ex As we noted in section 4.A, the hydrodynamic torque on the body in

this flow is due primarily to the basic flow rather than the interaction between
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the particle and the interface. Only for A= 0(1) with d - 1 << 0(1) and @ in the
range 45° ~ 135° so that one end of the particle is relatively close to the inter-
face is there a significant contribution to the torque from the particle-interface
interaction (cf. Figs. 7 and 8). We now thus consider a slender body initially
located at x§ = (0,0,-2), which is relatively close to the interface, with initial
oblique angles 6, = 0°, 30°, 80°, 70°, 75° 85° and 90Q° relative to the interface and
¢o = 0°. In this case (g, = 0°), the axis of the particle is initially in the x; — xg
plane and remains so as it travels along the flow field. In Fig. 13, the trajectories
for a slender body with prescribed initial position and orientations are
represented in terms of the orientation angle, 8, and the separation distance, d,
for three values of A = 0, 1 and «. We also include the corresponding results for
trajectories in an unbounded fluid, which nearly coincide with those for the A =
0 case. A slender body initially oriented parallel or perpendicular to the inter-
face will travel along the flow without rotation, and thus the trajectory (d vs. 8)
in each case is a vertical straight line. Furthermore, for any initial orientation
8., except the case of A = «» and 8, = 85°, the particle always rotates toward an
orientation parallel to the interface independently of A. For the case of A = =
and @, = B5°, on the other hand, the particle rotates towards the perpendicular
orientation which, as we have noted earlier, is a second stable equilibrium orien-
tation for this case. The final orientation for A = e is determined by the initial
position and orientation of the particle. This rather curious result for A = « will
actually occur for any value of A > A, which is determined from Fig. 8. It may
be noted that a slender body with initial orientation &, < 70° achieves an orien-
tation parallel to the interface before the particle reaches the interface [actu-
ally up to d/1 - |sine| = 0.01, which is the separation distance between the tip of
the body and the interface]. On the other hand, a particle with 8, = 75°, except

the case of A = 0 and €, = 75° touches the interface before it arrives at the
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equilibrium orientation either parallel or perpendicular to the interface,
depending on the viscosity ratio. The critical value of the initial orientation &,,
determining the final o.rientation. depends on the viscosity ratio A and the initial
separation from the interface. However, a particle initially located at
sufficiently large distance (i.e,, d » ) with arbitrary orientation (& # 90°) will

always rotate parallel to the interface before it reaches the interface.

The trajectories for other initial positions x§ = (0.5,0,-2), (1,0,-2), (3,0,-2) and
(5.0,-2), which are displaced from the axis of symmetry, were also examined.
The trajectories in the x; —xz plane (i.e., d vs. x) do not deviate significantly
from the corresponding streamlines of the undisturbed flow field. Furthermore,
the hydrodynamic torque on the particle in the flow, i.e., T — Ko Ky !'F from Eq.
(33b) in combination with Egs. (26ab), equals Q'Kpré, — Ko Ko Q VKo ép,
which depends on the separation distance d from the interface and the particle
orientation (8,¢), but is independent of the particle position relative to the axis
of symmetry. The terms, Q' Kpr€, and Q' Kpp £, are the hydrodynamic torque
and force on a particle in the pure straining flow which has its origin coincident
with position of the particle center, while Ko K7' Q' Kpp £}, is the torque acting
on the same particle as a consequence of force Q' Kpp £, and the reciprocity of
Stokes flow with linear boundary conditions. Thus, the angular velocity, Eq.
(33b), of a slender body located at arbitrary point xg is determined by the
separation d from the interface, for a given orientation (e.¢), and is independent
of the particle position relative to the axis of symmetry. The general features of
the particle trajectories in terms of the orientation & vs. the separation distance
d, which were described for x5 = (0,0,-2), are therefore preserved whether or not
the initial location is on the axis of symmetry, at least for the special initial

separation distance, i.e., d = 2, considered here.
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The other problem which we examine in this section is an undisturbed simple
shearing flow, ﬁg = — xge,, parallel to the interface into which a slender ellipsoid
of revolution (i.e., S(x) = 0) is placed with an arbitrary orientation being deter-
mined by spherical polar angles & and ¢ based upon the plane of the interface
{cf. Fig. 4). If the axis ratio for the ellipsoid is arbitrarily small, but nonzero,
and the ellipsoid is suspended freely in simple shear flow of an unbounded single
fluid, Jeffery (1922) showed that the motion of the axis of revolution of the par-
ticle is described, apart from a simple translation parallel to the flow, by
periodic (Jeffery) orbit equations, relating & and ¢ to £k, ® and ¢. The
corresponding equations for slender-body rotation in an unbounded single fluid
can be calculated readily from the present slender-body solution of 0(z%) by

using Egs. {(30) and (33),

& = cospsin®e(1 — 0.5z) + 0(&%)
(35a)

¢ = sinptane(l — 0.5¢) + 0(z%) .
(35b)

In the limit £ » = ( or £ » 0), the exact and slender body results are identical
except for 8 ® nn (where n is any non-negative integer), when the exact equa-

tions yield

6 N cospr ™
(38)

while the slender-body approximation reduces to & = @ = 0.

In an unbounded fluid, particles with an arbitrarily large but finite aspect
ratio x thus rotate periodically through the aligned (or nearly aligned) orienta-
tion, ® = n7, due to the small 0(x™®) term of (36), while the slender body theory
predicts that the particles asymptotically approach the aligned position, but do
not continue to rotate. Thus, although successful in giving the hydrodynamic
resistance for nonaligned orientations (i.e., @ # nm), the classical slender body

theory fails to give any results for the fully aligned state and this is a critical
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failure for adequate description of the periodic orbital motion in simple shear
flow. This problem was considered in detail for a slender body in a single,
unbounded fluid by Cox (1971). Cox (1971) determined the hydrodynamic
torque acting on the slender body with aligned orientation, & = n, in a linear
shearing flow of a single, unbounded fluid as an asymptotic expansion in terms

of 1/, Le.,

_ Bm cospr®e 3
T= 3 [1 —‘0.58] +O(,C ) ‘ (37)

which is responsible for the slow rotation of a real particle through the aligned
orientations & ~ n7. From (37) and the hydrodynamic relationship between the
torque and the angular velocity, we can readily evaluate the angular velocity é

through the aligned orientation (e = n).

6 = cospr?(1 + 0.25¢%) + 0(x2&%)
(38)

which is consistent with the exact Jeffery orbit equation with & = nm, i.e., Eq.
(36). Leal (1975) has shown that a useful and uniformly valid first approxima-
tion to the orbit equation in an unbounded single fluid case can be obtained
simply by combining the first-order slender body solutions of 0(¢) with the

expression (386) in the form

6 ~ cosp(sin®e + £ ?)
(39a)

and

¢~ sinptane ,
(39b)

and that the detailed orbit shapes corresponding to (39a,b) are nearly identical
to the famous (and exact) Jeffery orbits. We now examine the trajectories of a
slender body in simple shearing flow near a plane interface using the same
approximation (38) to describe rotation & of the body axis through the aligned

orientations near @ ~nr.
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First, we begin with the motion of a particle from an initial g-orientation, ¢,
= 0° in which the axis of the particle is in the x, — x5 plane defined by the flow
direction and the normal to the interface. Thus, the slender body remains
always in the plane, ¢ = 0°, and it is only @ and the position of the particle
center that change with time. In Fig. 14, the trajectories for a slender bedv
located initially at x3 = (0,0,-1.2) with initial e-orientations 8, = -30°, 0°, 10° and
50° are represented in terms of the increment of the orientation angle, & — o,,
and the separation distance between the body center and the interface, d, for
three values of A = 0, 1 and =. For an unbounded fluid, the es component of the
hydrodynamic force F — K& Kg!'T in (33a) is obviously zero (cf. Fig. 10) and thus
the trajectory, d vs. 0, in that case is a horizontal line regardless of the initial &-
orientation. Here, F denotes the hydrodynamic force acting on the slender body
in the simple shearing flow without rotation, Eq. (30a), and T is the hydro-
dynamic torque on the same particle without translation, Eq. (30b). The trajec-
tories (d vs. @) represented in Fig. 14 show, however, somewhat complicated
features in the presence of an interface. The present theoretical results show
that the hydrodynamic force, F — K¢ Kg''T in (33a), induced by the flow field
yields not only translation of the body parallel to the interface but also transla-
tion towards or away from the interface with a simultaneous rotation in the
direction of increasing & so that the leading edge turns towards the interface.
Although the hydrodynamic force is at equilibrium in the xg-direction at each
extremum point in Fig. 14, the particle orientation changes (i.e., @ is increased)
due to the nonzero torque, T — Ko’ K7''F in (33b). Thus, the equilibrium cannot
be maintained, and the body continues to move in and out relative to the inter-
face as it translates continuously parallel to the interface with a simultaneous
rotation. When the particle becomes parallel (¢ = 0° or 180°) to the interface

(which corresponds to the steepest peak point in the trajectory for each initial
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8,-orientation considered here), it begins to travel along the symmetrical trajec-
tory with respect to & = 0° (or 180°), as it rotates very slowly through alignment.
It is worth pointing out that, due to the symmetry of the systern, the trajectories
are exactly symmetrical with respect to @ = 0° (or 180°), as the particle rotates
very slowly through the aligned state. The trajectories are also exactly sym-
metrical with respect to @ = nm/2 (n: integer), and thus the particle eventually
reaches the initial separation distance from the interface (i.e., in this case d =
1.2) at the orientation angle @ = 7 + 6, beyond which the body passes along the

same periodic trajectories as those shown in Fig. 14.

Finally, we consider the case of a slender body initially oriented with ¢, # 0°
and the same 6,'s considered in the foregoing case. In the case g, # 0° the
body axis is no longer in the plane of the flow defined by the flow direction e,
and the normal to the interface es, and the trajectories are different from those
in Fig. 14, in which ¢, = 0°. In Fig. 15, we compare the detailed particle rotation
for ¢, = 0°, m/48, /36, w/24 and n/12, as indicated by the projection of the
end of the particle onto the plane of the shear flow in a frame of reference fixed
to the body center. The various orbital trajectories for different values of ¢,
indicate that the precise projection is quite sensitive to the initial orientation
(86.¢,). Most clearly evident, on comparing the calculated orbits, is the fact that
the general features of trajectories in Fig. 15 are preserved whether or not the
interface is introduced, and the orbital motion is periodic independently of the
viscosity ratio A and the initial orientation of the body axis. Indeed, the orbital
trajectories for A = 1 in Fig. 15 are almost identical to those in an unbounded
single fluid. However, the origin of Fig. 15 (i.e., the body center) in the presence
of an interface periodically oscillates relative to the interface. Thus, the trajec-
tories in terms of the separation distance, d, from the interface and the orienta-

tion angle, ©, are significantly different from the case of ¢, = 0° in which the
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angle © is continuously increased as the body rotates. In Fig. 16, the orbital tra-
jectories for one period in the plane of d vs. @ are plotted for g, = 30° and &, =
-30°, 0° 10° 50° and for three values of A = 0, 1 and = to illustrate the effect of
the initial g-orientation on the particle motion. Alse shown for comparison are
the results for an unbounded infinite fluid, in which the trajectory (d vs. @) is
the horizontal line. In this case of g, # 0° the body not only tumbles end-to-
end but also twists relative to the plane of the flow (i.e., Xx; — X3 plane) due to the
hydrodynamic force and torque, F - K¢ Kg' T and T — KoK ''F in Egs. (33a,b). A
detailed calculation shows that the twisting motion (i.e., rotation with @) is
enhanced by the presence of an interface, which tends to reduce the parallel
translation of the nearest end to the interface and yields additional

hydrdynamic torque on the body to increase gp

We have also examined the trajectories of a slender body with g, = 60° and
90°. However, the qualitative features of the trajectories (d vs. @) for these
cases are quite similar to the case of ¢, = 30° and illustrative figures are not

necessary.

This completes our illustrative trajectory calculations for a neutrally buoyant
particle (i.e., sphere or slender body) freely suspended in a pure straining or in
a simple shearing flow, using the basic solutions that were developed in sections
3 and 4. In future research, we plan to consider the application of the results of
this paper to particle capture at the surface of a large bubble or drop (i.e., cap-

ture rates in flotation processes), and to the rheology of dilute suspensions.
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APPENDIX

In this appendix, we give detailed forms of the functions defined in Section 4
in terms of g(x;6.d), h(x;e.d), k(x;e.d), y(x;6.d), z(xe.d), A(x:Ae.d), C(xAed).
D(x;:A.6.d) and E(x;A,8,d) for which definitions are given in the appendix of Part 1
of this series.

X -}2{2(1 xcos2e — 2dsiné)

Ulxae,d) = A(x;he.d) +

+ (2cose(d — xsing))?}# — {(1 + xcos2e + 2dsine)® + (Rcose(d + xsine))?} 4]

1 . sine(3sin®26 + B — 3A(sin®2e + 4cos?e))
+ —(d - o (x;0.d
x (@~ xsine) 2(1 + N)(1 + sin%) glxio.d)
2cos?e((4cos?e — 3)(1 + 3sin®e) + 3Asin®e(3cose — 2)) k(x:0.d)
(1 + A)(1 + sin®e) o

+

_ A(21sin®26 — 4sin®e — 8) .
201 + \) k(x:0.d)

[2(400526 —1)(1 + 3sin®@) + 9xsinecos2e _ A(6cos’e + 7cos®e - 4)
2(1 + A)(1 + sin®e) 2(1 + A)cos®e

— sing h(x;e.d)

2 2 dn .2
4xcos?e(l + 3sin 6)(1651g G; 12sin®e + 1) y(x:6.d)
(1 + A)(1 + sin®e)

>\sme(1 + 3sin®e)(16cos%e — 12cos?e + 1) ‘
5 3 z(x;0,d)
2(1 + A)cos®e(l + sin®e)

i :; i—{{(l — xcos26 — 2dsine)?

V(x;A0.d) = E(xA0.d) +

+ (2cose(d — xsine))?}2 — §(1 + xcos2e + 2dsine)? + (Rcose(d + xsine))?}'~#]

vine) | 4g _ in2
(d — xsine) | 4(3cos*e —2) + 3Asin*Re g(x:0.d)

* X [ 2(1 + A)sine

4 2 4 2o
231ne((12cos @ — cos*® (?)+ A)(BOcos @ — 19cos®e — 3)) k(x:6.d)
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3sin®26 — 5cos®e + 3 , Asine(12cos*e + 2cos?e — 5) h(x:0.d)
(1 + A)sine 2(1 + A)cos®e o

+

BA(16cosfe — 4cos?e — 7cose + 1
B (3 U G

N A16sin®e — 36sin*e + 17sin®e — 1)

0.d
(1 + A)sine-cos®e z(x;e.d)

X(x:Ae.d) = D(xA0.d) — X—{{(l — xcosRe — 2dsine)?

+ (2cose(d — xsine))?}2 — §(1 + xcos2e + 2dsine)? + (2cose(d + xsine))?}2]

(d — Xsine) {33111229 — Bcos2e — 2 + 12Asin®e(1 + sin®e)
X [ 2(1 + A)sine

g(x:e,d)

2(Bcos®e — 14cos®e + 2 — A(30coste — 87cos®e + 27)) K(x:0,d)

+
1+A

+

2(4cos®e —9cos®e + 4)  Asine(1R2cos’e + 2cos®e + 7) ,
: - h(x;e,d)
(1 + A)sine 2(1 + A)cos®e

BA(lScosee — 36cos*e + 17cos?e — 1)

TN y(x:0.d)
A(18sin% — 4sin*e — 7sin%e + 1) 2(x:0,d)
(1 + A)sine-cos®e a

Y(x;A0.d) = C(x:A.0,d) — }1{—{5(1 — xcos2e — 2dsine)?
+ {2cose(d — xsine))?? — {(1 + xcos2e + 2dsin®)? + (2cose(d + xsine))?} 4]

+ (d — xsine) sme(4(3cos’*e — 1) + 3Asin®26)
X (1 + A)(1 + cos®e)

g(x;e.d)

2 20 _ 2 2 26
4+ 2cos e{{4cos*e — 3)(1 + 3cos°6) +23>\sm 8(7cos®e — 4)) Kk(x:0.d)
(1 +A){1 + cos®e)

_ 2A(9cos*e — 13cos?e + 3)
(1+A)

k(x;e,d)
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2(4cos®e — 1)(3cos®e + 1) — 3Asin®e(2cos®e + 1)

St 2(1 + A)(1 + cos®e)

+ A{18Bcos*e — 7cos?e + 1)
2(1 + A)cos®e

h(x;e.d)

+ 2Acos®e(l + 3coe)(16sin*e — 12sin®e + 1)

e.d
(1 + N(1 + cos?e) yixied)
- 4q _ 2 2
+ Asine(16cos?e 12(:203 e + 1)(21 + 3cos°8) 2(x:0.d)
2(1 + A)cos®e(1 + cos®e)

For specific formulae of the functions B(x:A,8,d) and K(x;A.e,d) in Eqns. (31b)

and (31d), refer to the Appendix in Yang and Leal (1983), Part 1 of this series.
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Figure Captions

Figure 1.

Figure 2:

Figure 3:

Figure 4.

Figure 5:

Coordinate system with an interface in the X, — Xz plane and descrip-
tion of decomposed problems. A: a sphere in the pure straining flow
ﬁi = kx B a uniform streaming flow ﬁi = E'x, past a stationary
sphere at x,; (' a sphere at the stagnation point x; of the pure
straining flow ﬁi =B (X —x;); D: a sphere in the simple shear flow
ﬁi = pi/ue 1'%, B0 a uniform streaming flow ﬁi = "%, past a stationary
sphere; F: a sphere at the stagnalion point x; of the simple shear
flow U; = I (/e x — Xp).

Drag ratio for axisymmetric extensional flow relative to Stokes' drag

in an unbounded fluid as a function of the dimensionless distance, d,

between the sphere center and the interface: ﬁg = Ex, for A = =,
———forA=1 —-—- —for A = 0. O's are the corresponding exact

solution results (A = 0) of Dukhin and Rulev (1977).

Drag ratio relative to the drag in an unbounded fluid as a function of
the dimensionless distance, d, between the sphere center and the
interface: ﬁg =["axge;, —forA =ew, —— —forA=1, —- —- —forA =
0, A's are the corresponding exact solution results of Goren and
O'Neill (1971). O's are the data of Wakiya (1957) for two parallel

plates.

Orientation of a slender body in a simple shearing flow with the ori-

gin at the body center. The x; — X3 plane is parallel to the interface.

Dimensionless force, F,/£%usEl? of Eq. (24a), as a function of the
orientation angle & Up =E(x—-x,), ¢ = 0.1887, S(x) = 1/2 In (1 -

(x/1)?), —ford = 1.01, — ——for d = 2.0, —- —for an unbounded



Figure 6:

Figure 7:

Figure B;

Figure 9:

Figure 10:

Figure 11:
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© fluid case.

Dimensionless force, F3/&%upEl® of Eq. (24a), as a function of the
orientation angle & Uy = B(x —x,), ¢ = 0.1887, S(x) = 1/2 In [1 -

(x/1)?], —ford = 1.01, ———ford = 2.0.

Dimensionless torque, Ts/supEl® of Eq. (24b), as a function of the
orientation angle ©: Up = BE(x—-x,) ¢ = 01887, S(x) = 1/2 In [1 -
(x/1)*],d = 1.01, —for A=, — —- —forA =1, ———for A =0, —

- —for an unbounded fluid case.

Critical viscosity ratio, Ay, as a function of the separation distance d
for aspect ratios £ = 20, 50 and 100: Up = EB(x — X,). and S(x) = 1/2

In[1-(x/1)?]

Dimensionless force, F,/A%usl'13l? of Eq. (2Ba), as a function of the
orientation angle 8: Up = I'jg(xs + d)e;, &£ = 0.1887, S(x) = 1/21In [1-
(x/t)?], —ford = 1.01, — — —for d = 2.0, —- —for an unbounded

fluid case.

Dimensionless force, Fa/&2usl'isl? of Eq. (28b), as a function of the
orientation angle &: U = I'j5(xs + d)e;, £ = 0.1887, S(x) = 1/2 In [1 -
(x/1)?], —ford = 1.01, — ——for d = 2.0, —- —for an unbounded

fluid case.

Dimensionless disturbed translational velocity, (U; —I'j3d)A" 132, as a
function of the dimensionless distance d between the sphere center
and the interface: ﬁg = ["gXg@, —for A=e, ———forA =1, —- —-
—for A = 0, — - — for an unbounded fluid case. Q's are the
corresponding exact solution results of Goldman, Cox and Brenner

(1967b).



Figure 12

Figure 13:

Figure 14:
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Dimensionless angular velocity, —{1/A"13, as a function of the dimen-
sionless distance, d, between the sphere center and the interface:

ﬁ2=F13X391. forA=oo, ———forA=1, —- —- —forA =0, —-

—— for an unbounded fluid case, O's are the corresponding exact
solution results of Goldman, Cox and Brenner (1967b). A's are the

experimental data of Darabaner and Mason (1967).

Trajectories for a neutrally buoyant slender body in a pure straining
flow, ﬁg = Ex in terms of the & and d: ¢, = 0°, 8, = 0°, 30°, 80°, 70°,
75°, B5° and 90°, £ = 0.1883, S(x) = 1/21In [1 - (x/1)?], —for A = =,
———forA=1 —- —- —for A = 0, —- —for an unbounded fluid

case.

Trajectories for a neutrally buoyant slender body in a simple shear
flow, ﬁg =T"|3Xge;, in terms of the separation distance d and the
orientation angle 6: ¢, = 0°, 8, = -30°, 0°, 10°, 50°, « = 20, S(x) = 0, x5
={0,0-1.R), —for A=, —- —forA=1, —- —- —forA =0, ———

for an unbounded fluid case.

Orbital trajectories as obtained by the projection of the end of the
particle onto the plane of the shear flow, U, = I"j3xae;: @, = 0°, /48,
m/38, m/24 and /12, 8, = 0°, k = 20, S(x) = 0, x5 = (0,0,-1.2), —for
A=, — - —forA =1, —- —- —for A =0, —~— —for an

unbounded fluid case.

Trajectories for a neutrally buoyant slender bedy in a simple shear
flow, ﬁg =T"1sXge,, in terms of the separation distance d and the
orientation angle e: ¢, = 30°, 8, = -30°, 0°, 10°, 50°, £ = 20, S(x) = O,
x5 =(0,0,-1.8), —for A=, —- —forA=1, —- —- —forA=0, ——

—for an unbounded fluid case.
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Chapter 111

Motions of a Sphere in a Time-Dependent Stokes Flow —

A Generalization of Faxen's Law
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Abstract

A general solution of the unsteady Stokes’ equation in spherical coordinates
is derived for flows in both the exterior and interior of a sphere, and then
applied to study the arbitrary unsteady motion of a rigid sphere in an
unbounded single fluid domain which is undergoing a time-dependent mean flow.
Calculation of the hydrodynamic force and torque on the sphere leads te a gen-
eralization of the Faxen's law to time-dependent flow fields which satisfy the
unsteady Stokes’ equation. For illustrative purposes, we consider the relative
motion of gas bubbles which undergo very rapid oscillations so that the general-
ized Faxen's law derived for a solid sphere can be applied. We also demonstrate

that our results reduce to those of Faxen for the steady flow limit.
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1. Introduction

When a particle is immersed in a viscous fluid that is undergoing a time-
dependent mean flow, the disturbance flow due to the presence of the particle
has a number of characteristic properties. In this work we consider the motion
of a spherical particle through a single unbounded fluid domain in the presence
of an unsteady creeping motion at infinity. It is worthwhile to study the time-
dependent motion of a sphere in a viscous fluid, not only because it is interest-
ing in its own right, but also because the solution leads to a resolution of the ini-

tial value (or startup) problem for Stokes flow.

The motion of a single, small particle suspended in a Newtonian fluid which is
undergoing a nonuniform undisturbed flow has been the subject of a large
number of theoretical and experimental investigations. One main source of
interest in this problem is its central role in theoretical determinations of the
rheological properties of a dilute suspension. The majority of previous theoreti-
cal investigations were therefore restricted to sfeady creeping motion of parti-
cles in a linear flow, and solutions were obtained using eigenfunction expansions
generated from the creeping flow equations by means of separation of variables
in an appropriate coordinate system (cf. Brenner, 1963). Faxen (1921) con-
sidered the creeping motion of a sphere in an unbounded fluid subject to an
arbitrary steady Stokes flow, in this case utilizing an eigenfunction expansion in
spherical coordinates. The solution yields the so-called Faxen's law for the
hydrodynamic force and torque on a rigid spherical particle in an arbitrary
Stokes flow. The extension of the analyses to time-dependent flow has not yet
received much attention in spite of its obvious importance. The earliest investi-
gations were concerned with the motion of an oscillating sphere through a fluid
at rest at infinity, due to Stokes (1851), Basset (1888) and Lamb (193R).

Although this quiescent-fluid problem is of some intrinsic interest and provides
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a resolution of the well-known paradoz in the Langevin equation for motion of a
Brownian particle (cf. Hauge and Martin-Lof, 1973), many problems of practical

significance involve particle motions in a mean flow at infinity.

Recently, Mazur and Bedeaux (1974) and Hills (1975) independently obtained
Faxen-like relations expressing the hydrodynamic force and torque exerted on a
rigid sphere which is undergoing unsteady translation and rotation in a mean
flow at infinity which may also be time-dependent. They adopted the singularity
method, in which the sphere is replaced by a surface distribution of point
forces, utilizing the fundamental "point force” solution of the Helmholtz equa-

tion.

In the present study, we derive a general solution of the time-dependent
creeping flow equations for flow regions both interior and exterior to a sphere.
The analysis is formally carried out as an eigenfunction expansion in terms of
spherical harmeonics, based on the creeping motion approximation but with the
local inertia term retained in the equations to accommodate rapid accelera-
tions. These general solutions can be, in principle, extended to the motions of
spherical drops and bubbles, though this is not done here. The solution for a
solid sphere that we do obtain yields a generalized Faxen's law which is identical
to the results of Mazur and Bedeaux (1974) and Hills (1975), which were unfor-

tunately not discovered until after the present work was completed.

The generalized Faxen-type law will be used in the analysis of Brownian
motion of solid spherical particles in the next chapter of this thesis. In addi-
tion, in the present chapter we consider several additional applications, as well
as demonstrating that the results reduce to those of Faxen for the steady flow
limit. Current research in our group is presently completing the generalization

to spherical drops in an unbounded fluid, and considering the related problem
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of unsteady motion of a spherical particle or drop near a flat fluid interface.

II. Basic Equations and General Solutions

We begin by considering the governing differential equations and boundary
conditions for time-dependent motion of a spherical body (fluid or solid)
through an incompressible Newtonian fluid. The fluid is assumed to be undergo-
ing a time-dependent undisturbed flow, which is defined by a velocity U*(t,x) and
pressure p~(t,x). The expression of Cauchy's first law appropriate to an
incompressible Newtonian fluid with constant viscosity is the Navier-Stokes
equation. By non-dimensionalizing, using appropriate characteristic length I,
velocity u, and time scales t;, it can be seen that the solution of this equation,
plus the continuity equation, will generally depend upon two basic dimensionless

parameters. The first of these parameters is the Reynolds number defined by

Re = Ucle

v (1)

which we shall assume here to be sufficiently small that the creeping motion

approximation is applicable. Here, v(=u/p) is the kinematic viscosity of the fluid
and l; is a characteristic lengthscale of the particle (i.e., the sphere radius a).
The second dimensionless parameter is the Strouhal number St, which is the
ratio of the characteristic time scale {, relative to the advection time scale, 1.A1,;

lLe,

e (2)
When this parameter is sufficiently small, the local acceleration term in the
equations of motion cannot be neglected, and this is the limit that we consider
here. In this case, then, Re » 0 but with Re/St = 0(1), and the governing equa-

tions reduce to the unsteady Stokes' equation plus the continuity equation for
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the fluids both interior and exterior to the sphere.

For convenience, we consider the problem specified with respect to a distur-
bance flow field (u,p) defined as the difference between actual flow (u’,p’) in the

presence of the sphere and the undisturbed flow; i.e,,

(wp) = (u"p’) - (U”p~).
(3)
Here, the undisturbed velocity field (U®,p~) satisfies the unsteady Stokes' equa-
tion plus the continuity equation. In this formalism, the disturbance flow is at

rest at infinity. The equation of motion for the disturbance velocity fields inte-

rior (j=1) and exterior (j=2) to the sphere is

ou,
P =— VP + Y Py @

and

Vu=0.
(5)

The boundary conditions for (w;,p;) in this disturbance-flow formulation are as

follows:

(Uzpz) » 0 as x| - =,

(6)
(u;,p;1) bounded at the sphere center
(7)
and at the interface of the sphere surface, x = Xxg,
tu;, =tuz, nu =nug= %%—
(8)
[[tno[]=0
(9)
[lnna|] = 2L
2 (10)

The parameters appearing in (9) and (10) are the unit vectors, n and t, that are

normal (outward) and tangential to the sphere surface, the stress tensor ¢ and
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the interfacial tension y between the two fluids. Equations (8) and (9) are the
kinematic and continuity conditions for velocity and tangential stress, while the

normal stress jump condition is represented by (10).

We now derive a general solution of the unsteady Stokes' equation (4) plus
the continuity equation (5) in terms of the fundamental eigensolutions for a
spherical coordinate system (r,0,¢). It is convenient, for this purpose, to

represent the disturbance flow field fu(t.x),p(t.x){ as a Fourier integral:

(wp) = [ (GB)e " dw.
(11)

Upon taking the divergence of the vector equation (4), expressed in terms of
Fourier components (d,5), and utilizing (5), it can be seen that the pressure

field is harmonic, thus satisfying Laplace’'s equation; i.e.,

V3 =0.
(12)

The pressure can therefore be expressed as an infinite series in the general

form:

p= _Z Pn(r..¢)

n (13)
in which p, is a solid (or volume) spherical harmonic of order n. Let us now con-
sider a general solution for the velocity field @ with P given by (13). The govern-

ing equation (4) in terms of Fourier components is given by

(VE+h?)d==Vp

1
s (14)

where h is defined as

(15)
Here h can be determined uniquely by taking a branch-cut along the positive

real axis in the complex plane. We consider, for convenience, the velocity field @
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as the sum of a homogeneous solution, Gy, satisfying the Helmholtz equation

(V2 + B2, = 0
(16)

and a particular solution, satisfying the Laplace's equation. The particular solu-

tion can be obtained by inspection,

Py 1 A~ 1 <
= Vp= Vpn-

The homogeneous solution @, can be represented as an expansion in terms of

products of solid spherical harmonics x,. ¢, and Hankel functions of the second

kind, Héi)_l_ of order n + —é— Hence, a general solution of the unsteady Stokes'
2

equation plus the continuity equation for a general velocity field, expressed in
terms appropriate to a spherical coordinate systemn, is

n=-—o0o

[ 1
['@L‘V Pn — fa(hr)V X (rxn)
+ Z(H + l)fn-—l(hr) - nfn+1(hr)h2r2g’v %n t n<2n + 1)fn+1(hr)h2§0nr

(18)

in which

: -y

W) =i-VA72¢ 2 HB ()
2 (19)
and r is the position vector. It should be emphasized that Eq. (18) is just the
general solution form for the unsteady Stokes' equations, and does not yet
satisfy any of the boundary conditions, (6)-(10), of the problem. We now special-
ize the general solution, (18), to determine the solution forms interior and exte-

rior to a spherical body.
A. Flow Exterior to a Sphere

In the derivation of the general solution, (18), we defined the disturbance

velocity field as in (3), thus reducing the problem to a vanishing velocity at
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infinity. For the situation in which the velocity is required to vanish at infinity

[i.e., boundary condition (8)], we must have

pn=0 for n= -1
(20)

PuXn =0 for n= 0
(1)

and thus we are restricted to the harmonic functions ¢,, x, of positive order and
pn of order less than -1. We recall that variables exterior to the spherical body
have been identified by the subscript '?", i.e., (Gz,02). Taking into account condi-

tions (20) and (21), we see that

~ < 1
Uz = nzzjl Mzhez v pg(n+l) - fn(th’)V X(I'Xr?)

+2(I’l + 1)fn~1(h2r) - nfn+l(h2r)h22r2;'v Wr? + 1’1(21’1 + 1)fn+l(h2r)h22¢l(1}r ( )
22

and
52 = 2 p-q(n+1) :
n=1 (23)
The superscript "0" associated with the harmonic functions ¢J, xS and p%pu4) is
inserted to stress that the solution (22) and (23) represents the flow exterior to

the sphere, and hy = (iwAs)”.
B. Flow Interior to a Spherical Body

When the fluid occupies the interior of a sphere, the condition of bounded-
ness of the velocity at the sphere center limits us to positive harmonics in the

general solution form (18); thus we must put

Ph=¢n=xn=0 for n=< O
(R4)

—~n

+-1-)
and replace the function f,(¢) =i-vVnR ¢ *? Hr(i)l_((‘) by
2
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—(n+%-)
Wl =VE72E B0 1(0)
2 (5)
where J 1 (¢) is the Bessel function of the first kind. The resulting flow field
2

(d,.p;) is given by

o= . .
8= 3 | 5= bk ~ Ya(hur)¥ Xrxd)
n=1 TH1

+ {(n + ¥y (hyr) = 0¥ (hr)hfr?iV el + n(@n + 1)¥n,(hir)hfeir (26)
26

and
Br1=2 pa
n=1 (27)
in which the harmonic functions pl, xi and ¢} with superscript 'i" denoting the

corresponding functions for the interior flow field and h, = (iwA, )2
C. General Expression for Hydrodynamic Force and Torque

So far we have derived a general solution for the flow fields both exterior and
interior to the sphere by satisfying the governing differential equations (4) and
(5) plus the boundary condition (6) at infinity and the condition (7) of bounded-
ness of the velocity and pressure at the sphere center, All that remains is to
determine the unknown solid spherical harmonics p,, x, and ¢, in each flow
from the boundary conditions (B)-{(10) at the interface of the sphere surface.
However, if we wish only to calculate the hydrodynamic force and torque on a
sphere (fluid or rigid), and not the velocity field itself, it is possible to do so by
evaluating only a small number of spherical harmonics p,, Xn and ¢, as a conse-
quence of the integral theorem for the spherical harmonics (see Happel and
Brenner, 1983). To show this, we now derive a general expression for the Fourier
component of the hydrodynamic force F and torque T on an arbitrary body by

integrating over a circumscribed sphere in the fluid,
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The Fourier components of the hydrodynamic force and torque exerted on
the sphere can be obtained from the general solution for the disturbance flow

field either interior or exterior to the sphere, using the basic definitions

(28)

(29)

Here, & is the Fourier transform of the stress tensor associated with the
disturbance-flow problem, and ry is the position vector of a surface element ds
(=r®sinededy) relative to the sphere center. Then, the Fourier component of the
total hydrodynamic force I and torque T for the actual flow field (u’,p") can
also be determined from the actual stress tensor ¢* =0 + 0>
ﬁ=fn'(€+6“)ds=f+fn-€“ds (30)

™= fro X{n'(€‘+ ~Nds =T+ fro A(nG)ds 51)
31

in which the stress tensor " is associated with the undisturbed flow field

(0~ 5™) and defined by

% = —p~1+u[vVO + (V™).
(32)

Here I is the idemfactor and (Vv U°)T is the transpose of the velocity gradient
tensor. Utilizing the unsteady Stokes' equation which is satisfied by the undis-
turbed flow (U~.5~) and applying the divergence theorem to the surface integra-

tion of (30), we can easily show that
fn-&“""ds = —iwp fﬁ“’dv .
(33)
Thus the Fourier component of the total hydrodynamic force is
F=F- iwp f U~av
| (34)

where dv(=r®sinedrdedy) is the volume element of the sphere. Here the addi-
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tional term, -iwp f 0~dv can be interpreted as an apparent {or 'fictitious') body-
force that compensates for the acceleration of the external flow. Similarly, the

total hydrodynamic torque relative to the sphere center is

T=T-iwp f(ro x0”)dv .
(35)

We now evaluate the Fourier component of the stress vector én(=n'd) acting
on the surface of a sphere associated with the disturbance flow in order to
determine the total hydrodynamic force and torque on the sphere. The stress

vector &y on the sphere surface of radius a, in general, can be expressed as

. pd _ 4

_r= 123 G
n rp+u[6r - +rV(ru)

(36)
for an incompressible Newtonian fluid (cf. Happel and Brenner, 1983). By means

of the general solution {13) and (18), Eq. (368) can ultimately be expressed in the

form
- 2
N~ ?nr-z:—w l_Qn(hr)V X(rxn) + h_g (n — 1)V py — par
+ Ry(hr)¥ g — BB 5 (g r
r (37)
where

Qn($) = ptétn'(§) + (n — V(N
Ra($) = w(n + D§¢t@-1)(9) + 2(n — DEa1(0)3 — wnei¢tne'(§) — tnn ()3
and
Sn(Q) = — e tmay'(§) — fan (O3

The Fourier components of the hydrodynamic force and torque exerted on
the sphere can be obtained from (28), (29) and (37) by integrating the stress

over the sphere surface. This general expression can be evaluated by resorting
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to the surface integral theorem for spherical harmonics outlined by Brenner

(1963). The result is

2 41
F=- "é_[rsv P t+ v (rsp—z)]r=a

+ 4mafRy(ha) = Sy(ha)V ¢1lrea + 25-Sp(ha)[V (% 2)hee
_ (36)

T = — 1050, (na){¥ Xy Jrmsm Qb)Y (¥ o) eme] -
(39)

It should be noted that the general expressions, (38) and (39), have been derived

for an arbitrary motion satisfying the unsteady Stokes' equation plus the con-

tinuity equation without application of any boundary condition,

Now, however, we determine the general form for the fofal hydrodynamic
force and torque on the sphere from (34) and (35), evaluating the hydrodynamic
force and torque associated with the disturbance flow ezxterior to the sphere by
applying the conditions (20) and (21), corresponding to a vanishing velocity at
infinity, to the general expressions (38) and (39). The result is

= = 20 (7 (r%p%)]ema + 4maiRy(hza) = Si(b2al}[V ¢flrsa — iz [ Oy (0)

T =- jasﬂ‘ aSQl(hza)[v X?]r:a = iwps fro x07dv . (41)
41

Thus, in order to evaluate the total hydrodynamic force and torque, it is
sufficient to determine the unknown spherical harmonics p%, ¢? and x? by
applying the boundary conditions, (B8)-(10), at the sphere surface using the solu-

tion, (26) and (27), for the flow field interior to the sphere.

Similarly, starting with the general expressions, (38) and (39), we can also
readily derive a general expression for the total force and torque in terms of the

disturbance flow interior to th;e sphere



F=- %’— a3[V pilr=at+ 4mafR,(h1a) ~S,(ha)}[V ¢llr=a —iwpz [ O7dv )

T = — B 2%Q)(1,2)[V xileea — 1002 f 1o X U7dv. )
4

Here, the functions R;(¢), S,(¢) and Q,({) are defined in terms of function ¥y(¢),

(25), instead of f,(¢) using the previous definitions following Eq. (37).

This completes our derivation of the general solution forms for the flow fields
both exterior and interior to a sphere. If we are interested in evaluating the
hydrodynamic force and torque on the sphere, it is possible to do so by deter-
mining the spherical harmonics, either p%, ¢f and x{ for the exterior flow or p},
¢} and xi for the interior flow, by applying the boundary conditions, (B8)-(10), at
the sphere surface to the general solution forms, (22), (23), (26) and (27). In
the next section, for illustrative purposes, we shall consider motion of a solid
sphere in an arbitrary unsteady creeping flow. In this case of a solid sphere, the
boundary conditions, (8)-(10), at the sphere surface together with the bounded-
ness condition (7) of the velocity at the sphere center can be simply replaced by

the-"no-slip’ condition,; i.e.,

u=U+0Q Xrp —U” at the body surface
(44)

which enables us to determine the unknown spherical harmonics, p2%, ¢2, and
x?. Here, Uand Q are the time-dependent translational and angular velocities

of the figid sphere, respectively.

. Flow Exterior to a Rigid Sphere

Let us now consider the specific problem of a 7igid sphere which moves with
translational velocity U(t) and angular velocity Q (t) in an undisturbed flow field
{U™(t,x), p~(t,x)} which itself satisfies the unsteady Stokes' equation and the

continuity equation. As we shall see shortly, this problem may be solved
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directly, for an arbitrary time-dependent translation and rotation, using the
general solution obtained in Section II. All that is required is a specification of
the unknown functions of pE(nH). qp,?. and x,ﬁ’ from the boundary conditions at
the sphere surface, ie., the no-slip condition, (44), with
G(w,x3) = U(w) + 0() Xrp. In the present section, we shall use the general
method of Brenner (1983) for obtaining these solid spherical harmonic func-

tions when the velocity field is prescribed on a spherical surface,
Utilizing Euler’s theorem for the homogeneous polynomial of any solid spher-
0
ical harmonics £, of order n (i.e. r %— = nf,), we now represent the radial com-

ponent of velocity G0(=aG"n) from (22).

= [in + +
=3 1 I;hz 1 Ynen) + n{mr—llfnﬂ(hr) +(n + 1)fnyy (hr)h®r el
n=1

(45)

Differentiation of (43) with respect to r and again applying Euler's theorem

yields
807 _ & {(n+1)(n+2) o n? -1
" Br - nz=:1 rh2u Pouen) ¥ 1 Lr_Lf““(hr)
+ (n + 1)%h?rf,, (hr) + (n + 1hi;'(hr) + (n + 1)h%2,,'(hr) }tp,ﬁ’] ,
(46)
Similarly, we have another relationship from (22)
rv 1’i°=—2 (n + 1)f,(hr)xs .
n=1 (47)

Thus, at the surface of a sphere (r=a) we can obtain the quantities of df(r=a),

[ age
lr :; and [PV X@];=, from (45)-(47), which are necessarily equal to those
r=a

given by the boundary condition (44). Let us now suppose that the boundary

condition (44) has been expressed as a uniformly convergent series expanded in
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terms of surface spherical harmonics Xp,, Yy and Z,. Then

82(r=a) = {0 - [0"Teed = 2%

n=1 (48)
8ay . >
r 3; =aV (U L= = zYn
r=a n=1 . (49)

and
00

[l"V xﬁ°]r=a = 21'1.')'[2(f -V x[ﬁw]ra]; = Z Zy .
= (50)

Since the functions X, Y, and Z, are known in principle from the prescribed
velocity field at the sphere surface, any boundary value problem may therefore
be considered to be solved in principle, with the unknown functions pE(nH), @9,
and x2 determined from (45);(47) combined with (48)-(50). If we wish only to
calculate the hydrodynamic force and torque on a rigid spherical particle, but
not the velocity field itself, it should be possible in view of (40) and (41) to do so
by determining only p%, ¢?, and x{. Indeed, it can be shown, by solving the tedi-

ous algebraic Eqs. (45)-(50) for n=1, that

ha2[3X1 +Yl] eﬂlﬂ

[¢Pl=a =
= 6 (51)
0 u[(3 + 8iha — h?a®)X; + (1 + iha)Y;]
{p—z]r=a = 2
a (52)
and
hﬂaseihaz
[X0)rea = = o

in which we have used the special property of the function £;(¢):

—iha

¢

e

$ina($) = —£'(§) with fo(¢) =

Finally, recalling the relationship between an arbitrary solid spherical harmonic
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¢, and the corresponding surface spherical harmonic [£p]r=a, i-€. &3 = (i—)“[sn],ﬂ,

we can obtain the unknown functions p%,. ¢{, and x? and thus derive the general

formulae for the hydrodynamic force and torque as follows:

= = 6mpa(1 + ah)(V (¢X)]eze + Z2E- 2%V (X)) ema.

—2rua(l + ahi)[V (rYy)]r=a — iw;; fﬁ"“dv
(54)

3 + 3ahi — a®h?

oo 4mrpas
1 + ahi

3

[V (rZ))]r=a — iwp fro xU~dv.

(56)

All that remains is to determine the unknown surface harmonics X;, Y, and %,

from the boundary conaition (48)-(50) utilizing the orthogonality properties of
the spherical harmonics. For example,

X = i fm1€(0.9)

m=-1 (56)

where £ is the normalized surface harmonic of order 1 and degree m; ie.,

9 = cose, £§ =sine(cosy +ising) and £;! = sine(cosy —ising), and fm,; is the

corresponding coefficient defined by

P43 ki
1 o~ o~ .
f1 = — n{U — [U”],= ) Msineded
m1 = ) _{ .{ ¢ (U™ ]r=e¢i ¥ (57)

an  (n+ |m])!
2n+1 (n—|m)t

with the normalizing factor Ny, = Similarly, the surface

harmonics Y; and Z, can also be determined, and the resulting general solution
for the total force and torque including the fictitious body force and couple

terms is given by

o~

22 -
F1'=67r/.ba[l + ahi — 22 }'E[U"“]O—Ui

9

+ muadlB(1 + ahi) (ah —sinah)  ,

a’hs h3a’ 3

sinah —ah - cosah _l_] }[V zﬁw]o —iwp fﬁ"dv
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(58)

oo _ 4mua®. { 3 + 3ahi — a®h? ]{ sinah

T 5 o [V xU°]g —20} —iwp [ (ro XU™)dv

ah (59)
with h = - Ve Rv (1 +1i).

Here, (=u/p) is the kinematic viscosity of the fluid and the symbol [ Jo
implies that the quantity in the bracket is to be eva;luated at the location of the
sphere center. The solution (58) and (59) is identical to the results of Mazur
and Bedeaux (1974) and Hills (1975), which were derived using the singularity

method in the Helmholtz equation (18).

As we noted earlier,- the undisturbed velocity field U~ which satisfies the
unsteady creeping-motion equation can be divided into two parts
(ﬁ“" = ﬁ;" + ﬁﬂ")t one is the irrotational part ﬁ;" governed by Laplace’'s equation
v 213;’ ='0 and the other is the rotational part ﬁﬁ' satisfying Helmholtz equa-
tion (V 2 + h®)UF = 0. For the purpose of evaluating the integrals (58) and (59),
it is convenient to utilize the mean value theorems for the Laplace's and

Helmholtz equations, respectively; i.e.,

J0eay = 215 107 o + WR)[OF 1o )

where W(h) is a weighting function defined as

rsinah cosah
Wih) = 3[ a®h®  a?h?

(61)

So far we have determined the Fourier components F and T of the hydro-
dynamic force and torque on a sphere which moves with arbitrary translational
and rotational velocities through an unbounded fluid that undergoes an undis-
turbed flow (0°,p°) that is governed by the unsteady Stokes' equation. In the

next section, we shall briefly consider the application of the fundamental results
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II. Discussion

Let us now begin with the creeping motion of a solid sphere in an undisturbed
steady Stokes' flow, thus providing a basis to check the present results against
Faxen's (1921) law. It is a simple matter to reproduce Faxen's law by taking

limit h -» 0, in the solution (58) and (59):

F = 6muaf{U°]o — U} + muald[V *U],
(62)

and

' 3
T = QE&LE;_[V XU]o - Q3.

3 (63)

According to this well-known result, we can evaluate the hydrodynamic force
and torque on a sphere with an arbitrary motion U and Q0 in an unbounded fluid
that is itself undergoing a steady creeping (but otherwise arbitrary) flow at
infinity (U”,p®), in terms solely of the values of U*, V XU” and V U™ at the posi-

tion occupied by the center of the sphere.

As another simple illustration of the application of (58) and (59), we consider
the problem of a rigid sphere moving with an arbitrary time-dependent velocity
U(t) through a fluid which is at rest at infinity (i.e. U® =0). We can readily cal-
culate the hydrodynamic force on the sphere by taking an inverse Fourier-

transform of expression (58). The result is

t
= _ Rmpa® 29U _ e [ U, _dr
F Brpal 3 3t 8mpa~vuAT L = (64)

The solution (64) was originally developed by Stokes (1851) and Basset (1888).
The first term is the so-called Stokes drag; the second is known as the added

mass contribution and accounts for the change of fluid inertia in incompressi-

ble flow past an accelerating sphere; the last term is called the Basset term and
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expresses the effect of the previous history of the particle velocity on the hydro-
dynamic force. It may be noted that the added mass contribution is indepen-
dent of the viscosity of the fluid, and would thus be expected even in an inviscid

potential flow.

Closely related to the problem of an accelerating sphere in a stationary fluid
is the complementary problem of an accelerating ﬁniform streaming flow U”(t)
past a stationary sphere. It is tempting to suppose that the hydrodynamic force

in this case is simply the force evaluated from (64) with U= -~ U”(t). In this

8
case, however, we must take into account the fictitious body force dmap QUL,

3 dt
owing to the acceleration of the external flow. Then
du- ‘aur dr
= 8 Ny .
F = 6rual” + 2npa at + 8mpa~vuAT | ar G (65)

When a freely suspended, spherical particle is immersed in an oscillating
fluid, the particle motion has a number of important properties. In order to
study these, it is convenient to begin with a simple but typical example that was
considered previously by Batchelor (1967). We now consider the problem in
detail, demonstrating that the present result, (58), reduces to that of Batchelor
(1967). Let us suppose that an unbounded, incompressible fluid executes a sim-

ple harmonic oscillation corresponding to the passage of a second wave; i.e.,

U° = coiottkx | = |k = 2_;7_

(66)
and that the magnitude of this undisturbed velocity, ¢ = |¢| is small enough for
the convective inertia associated with the sound wave to be negligible. Then,
isince the undisturbed flow (i.e., the sound wave) will be governed by the

unsteady Stokes' equation, we can apply the general expressions (58) and (59)

to determine the hydrodynamic force and torque on a solid sphere for any arbi-
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trary frequency » and wave number k. For purposes of the present discussion,
however, we make the further simplifying assumption that the frequency is large

enough that the vorticity boundary layer is vanishingly thin compared to both

2 2
the sphere radius a and the wave length A (i.e. %?—— >> 1 and %j)\—- >> 1). In

this case, by non-dimensionalizing the unsteady Stokes’ equatioﬁ, using the
characteristic length a, velocity ¢ and time w™, we can easily show that the
viscous stress contribution in the equation of motion is negligible relative to the
local acceleration du/t. The flow exterior to the sphere is therefore irrotational

except for the very thin vorticity boundary-layer around the sphere surface, and
| 2
the hydrodynamic force can be determined easily by taking a limit 23—- >> 1

2
and 92—- >> 1 to the general expression (58) to be

_ 2mpa® [|dU” | _ dU ag~
F==3 {dt a )t T (67)

It should be noted that the hydrodynamic force, (67), is valid for any spherical
body (solid or fluid) and is actually independent of the fluid viscosity —indeed,
in this limit the fluid motion exterior to the sphere can be regarded as an
irrotational-potential flow. This hydrodynamic force is balanced in the equation
of motion for a spherical body (solid or fluid) by the particle inertia contribu-

amapy U

. s U= .
3 T Evaluating the fictitious body force term, p f m dv in

tion,

(67), by means of the mean value theorem for Laplace's equation, we can use the
equation of motion for the particle to cobtain its velocity as a function of the

instantaneous velocity of the external undisturbed flow

U= —2£ __[y~),.
2 [0 o

Here p, denotes the particle density. For a neutrally buoyant particle, it can be
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seen.that the amplitude of 'the oscillation of the sphere velocity is exactly the
same as that of the undisturbed motion of the surrounding fluid. If the sphere
is lighter, however, its velocity oscillates with greater amplitude than the undis-
turbed velocity of the fluid. Indeed, for a gas bubble (i.e., pp » 0) immersed in a
fluid, the instantaneous velocity is approximately three times larger than the
local undisturbed velocity of the fluid evaluated at the location of the bubble
center, a result which can be observed in flow-visualization experiments as

Batchelor (1967) has pointed out.

Finally, let us turn to a further application of the general result, (58), to
investigate the 'relative motion' of two gas bubbles which undergo very rapid
and small amplitude oscillations in volume in the same phase As we mentioned
in the foregoing problem, the existence of high frequency (i.e., wa?/ >> 1 and
%4 >> 1) and small amplitude bubble oscillations ensures that the viscous
boundary layer is very thin and thus the general solution (58), which is initially
derived for a solid sphere, can be applied to the fluid sphere problem in this
asymptotic limit. Conditions for validity of the high-frequency approximation
can be derived by expressing the oscillation amplitude in terms of the physical

properties of the system. For a spherically expanding bubble, the velocity field
exterior to the sphere is given by u = (%—)2 %i— n, and this is ari irrotational velo-

city distribution (i.e., V Xu = 0). The corresponding Navier-Stokes equation, in
this case, reduces to the Rayleigh-Plesset equation for the instantaneous bubble

radius a(t)

2
d?a 3 |dal|"_4uda _ 1| _ o Ry

(69)
Here p is the pressure inside the bubble which is related to a(t) by the thermo-

dynamic equation
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B a_o]s

Po

a

(70)
provided the gas inside the bubble is ideal and remains at a constant tempera-
ture. In (70), po and ag denote the equilibrium pressure and radius, respec-

tively. We seek a solution of (69) combined with (70) in the form:

a(t) = ag(l + g2 ), & <«< 1
(71)

Substituting (70) and (71) into (69) and then expanding the resultant equation

in terms of small g4, we can determine ag and wq:

ag = —22
Pe — P~ (72)
pad (73)

Thus, the conditions for validity of the high-frequency approximation are
4y[2pg + P~
7[2po > 1 5> 1

p¥(po — P) (74)

A*(2pg + p*)(po — p*)?

(Rpo Pg(Po PN

When these conditions are satisfied, the viscous terms in (58) will be negligible.
We now consider two adjacent gas bubbles 1 and 2, each executing rapid but
small-amplitude oscillations in volume such that (74) and (75) are satisfied. In
view of (71), the volume v of each gas bubble is approximately v = vo(1 + )
with £=3g (<<1). BEach oscillating bubble will then induce an acceleratiné
velocity field in the surrounding fluid and thus influence the other’'s motion.

" The velocity field generated by the second bubble in the direction of the first

bubble, say ey, is simply



(¢] 0
ll“ = — —-—el

47r® (76)
in which r is the distance from the center of the second bubble. But, the equa-
tion of motion for the first bubble in the flow field U”, under the limiting condi-
tions, (74) and (75), can be derived by balancing the particle inertia,

amppa® dU
gp "dt—l with the hydrodynamic force evaluated from (58) in the limit of

wali>> 1, ie.

pp AU _ 1 4 o e |40
p @z a2 LU Uﬁ“l de ]o' (77)

Upon substituting the expression for a, (71) combined with (72) and (73), into

(77) and expanding U, asymptotically in powers of &,

Uy = 5oUf + sUP) + sJU + -
(78)

we can readily evaluate the acceleration of the first bubble with the additional

condition pp/ ~» O:

dUu d . =i
_chEL - 3{%::: + Bicoeo[U™Joe " + 0(zf) .

o (79)

The average acceleration of the first bubble over one cycle of oscillation can also

be determined by combining (76) with (79),

du, 6efy{Rpo + p~}
{ Y= — e, + 0(&§
Nt (po —p~)pd® ¢) (80)

in which d is the separation distance between the centers of the two gas bubbles,
It is obvious, from the definition of the vector e, and the expression (80), that
the first bubble undergoes a mean displacement over each cycle of oscillation in
the direction of the second bubble. Thus, it appéars as though there were an
interaction force, between the two gas bubbles, that is attractive and results in

a tendency for gas bubbles to approach one another and ultimately coalesce,
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The "attractive force" is normally small, but ultrasonic vibrations of a liquid can

be used to clear it of gas bubbles as noted by Batchelor (1967).

This completes our illustrative applications of interest using the general solu-
tions that were developed in Sections Il and IlIl. In the next chapter of this
thesis, the present results of Faxen-type law will be used in the'analysis of
Brownian motion of spherical particles. A generalizéiion of the present analysis
is currently under way in this research group to an arbitrary motion of a spheri-
cal drop through a time-dependent Stokes flow in either an unbounded fluid or

in the presence of a plane fluid interface.



-160-

References

10.

11

. Basset, A. B. 1888 A Treatise on Hydrodynamics, Vol. II. Dover, New York.

. Batchelor, G. K. 1967 An Itroduction to Fluid Dynamics. Cambridge

University Press, Cambridge.

. Brenner, H. 1963 Chem. Fng. Sci. 18, 1.
. Faxen, H. 1921 Dissertation, Uppsala University.

. Happel, J. and Brenner, H. 1983 Low Feynolds Number Hydrodynamics. Mar-

tinus Nijhoff Publishers.

. Hauge, E. H. and Martin-Lof, A. 1973 J. Stat. Phys. 7, 259.
. Hills, B. P. 1975 Physica BOA, 360.
. Lamb, H. 1932 Hydrodynamics. Dover, New York.

. Lighthill, J. 1978 Wawves in Fluids, Cambridge University Press, Cambridge.

Mazur, P. and Bedeaux, D. 1974 Physica 76, 235.

Stokes, G. G. 1851 Trans. Camb. Fhil. Soc. 9, 29.



_161_

Chapter IV.

Brownian Motion of Spherical Particles near a Deformable Interface
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Abstract

The motion of a Brownian sphere in the presence of a deformable fluid inter-
face is studied by considering both the randeom distortions of interface shape
due to spontaneous thermal impulses from the surrounding fluid, and interface
deformations that are caused by impulsive motions of the Brownian particle.
First, the fluctuation-dissipation theorem is derived for the spontaneous
fluctuations of interface shape using the method of normal modes in conjunc-
tion with a Langevin type equation of motion for a Brownian sphere, in which the
fluctuating force arises from the continuum motions induced near the sphere
by the ﬂﬁctuations of interface shape. This analysis results in the prediction of
autocorrelation functions for the location of the dividing surface, for the ran-
dom force acting on the sphere, and for the particle velocity. The particle velo-
city correlation, in turn, yields the effective diffusion coefficient due to random
fluctuations of the interface shape. The effect of the interface on the impulsive
motion of a Brownian sphere is also investigated. In this case, we consider both
the spatial modification of the hydrodynamic mobility due to hydrodynamic
interaction effects, and the interface relaxation back toward a flat configuration
from the deformed shape that is initially caused by the impulsive particle

motion.
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1. Introduction

The irregular random motion of small particles suspended in liquids, known
as 'Brownian motion", was first described by the English botanist, Robert Brown
in 1828. Controversy concerning the origin of the Brownian motion persisted for
many decades and it was not until 1905 that Albert Einstein first advanced a
satisfactory theory, and eventually confirmed the miolecular nature of matter by
relating the Brownian motion to the thermal fluctuations of molecules in the

suspending fluid.

In his pioneering paper, Einstein (1905) showed that the irregular motions of
uncharged noninteractiﬁg particles can be modeled as a diffusion and thus the
probability distribution function P{x) of Brownian particles in the configuration
space x must be governed by the so-called Einstein-Smoluchowski diffusion

equation

_66.%. =V [DV P(X)] (1)

in which D denotes the diffusion coefficient tensor, and t is the time variable. In
.deriving Eq. (1), Binstein assumed that the movements of a Brownian particle
could be idealized as a Markoff process, in the sense that the course which a
Brownian particle will take depends only on the instantaneous values of its phy-
sical parameters and is entirely independent of its whole previous history. Util-
izing the solution of the diffusion Eq. (1) with an appropriate initial condition,
Finstein (1905) also derived the relationship between the diffusion coefficient D

and the mean square displacement < |Ax|?> of a Brownian sphere:

< |Ax|®> =86DAt .
()

The mean square displacement is therefore proportional to the time interval At,

This general relationship, (R), in conjunction with the velocity correlation func-
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tion plays an important role in determining the diffusion coefficient, as we will

see in Section IV,

The diffusion coefficient in (1) and (), according to Finstein's theory, can be
determined from the molecular-kinetic theory of heat, employing only thermeo-
dynamic concepts and the properties of systems in dynamic equilibrium. For a
suspension of uncharged, noninteracting particles ﬁth spatial number-density
gradient, the translational diffusion flux at equilibrium is evidently the same as
the convective flux resulting from the application to each particle of a steady
thermodynamic force which is due solely to the existence of osmotic pressure.
As far as osmotic pressure is concerned, solute molecules and suspending
Brownian particles are identical in their behavior at great dilution. According to
van't HofT's law, the osmotic pressure in dilute solution obeys the relationship,
p°® = cigl, in which ¢ denotes the nurmber density of solute particles that may
be regarded as the probability density P(x) in the configuration space of a dilute
suspension. Then, the thermodynamic force, as a consequence of the concen-
tration gradient of Brownian particles, can be derived from the osmotic pres-

sure and is given by

Fo? = — 5TV In{P(x)] .

(3)
Thus, the corresponding convective flux is equal to
~P(x)M[xkgTV In{P(x)3] .
This convection flux is balanced by the diffusion flux
jp = - DV P(x)
(4)

with the diffusivity tensor D related to the hydrodynamic rﬁobility tensor M for a

‘ particle by the Nernst-Planck-Einstein relation:
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D= ICBTH ,
(5)

Here, «p is the Boltzmann constant aﬁd T is the absolute temperature. This clas-
sical expression for diffusivity of uncharged particles has been verified experi-
mentally in many types of diffusion. It is noteworthy that Einstein's approach
employs only the concept of a thermodynamic driving force on the particle as
representation of thé diffusive effect of Brownian‘motion, without taking into

account the dynamics of the particle motion in the suspending fluid.

Brownian movements of individual particles in a single unbounded fluid
domain can also be modeled as a diffusion process in a dilute suspension by a
"rigorous" generalizatioﬁ of the Liouville equation (cf. Kreuzer, 1981) of classical
dynami’cs to include Brownian motion. This approach to Brownian motion
begins with a consideration of the equation of motion for a suspended particle,

i.e., the Langevin (1908) equation |

—=—8U + A(t)
dt ~ (8)

where U denotes the particle velocity. According to the Langevin equation, the
influence of the surrounding medium on the motion of the Brownian particle
can be split up into two parts: first, a very rapidly fluctuating part A(t) with a
molecular motion time scale, 7y (~107!% gec for water); and, second, a sys-
tematic ‘hydrodynamic friction part —g-U associated with the much siower
response of the fluid to motion of the particle with a characteristic time scale
Typ = B! (~107® sec for a free sphere in water). Assuming that 7y << 7p <<
0(1), as is characteristic of Brownian motion, we can introduce time intervals At
" in which the physical parameters such as position, orientation and velocity of
the Brownian particle change by infinitesmal amounts, while the number of
fluctuations arising from collisions with surrounding fluid molecules remains

extremely large:
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Tt << Typ << At << 0(1). @
7

That a transformation of Liouville equation into the famous Fokker-Planck
equation should be possible under these circumstances is apparent when we
recall that the Brownian movements in a time interval At satisfying (7) can be
regarded as a Markoff process so that the‘ probability distribution
P(U+ AUx + Ax,t + At) in the phase space go&erning the probability of
occurrence of U+ AU at time t + At can be derived from the distribution
P(Uxt) at the present time t and a knowledge of the transition probability
I(U,AU) that U suffers an increment AU in the time interval At. According to the
Langevin equation (8)
t4AL

AU=-gUAt+ [ A(s)ds, Ax=UAt
t (8)

in which the integral denotes the net acceleration arising from fluctuations that
a Brownian particle suffers in the time interval At. From the molecular-kinetic
theory, the probabilty distribution of the integral must be Maxwellian and thus
it follows at once that the transition probability has the Maxwellian distribution
in terms of AU+ B-UAt. With condition (7), it can also be expected that a
Maxwell-Boltzmann distribution of the velocity will be established at all points
after time intervals At as the result of superposition of large number of random
accelerations caused by collisions with the individual surrounding molecules (cf.
Chandrasekhar, 1943, and Batchelor, 1978). Thus, the Fokker-Planck equation
in the phase space {UX) can be applied to the configuration space, X, indepen-
dently of the velocity space, U, provided that we are interested only in the time
intervals At. Then, integration of the Fokker-Planck equation over the velocity
space U provides us the Einstein-Smoluchowski equation (1), ie., differential
equation for the probability distribution function, P(xX), of Brownian particles in

the configuration space, X, and yields the same diffusivity coefficient matrix of
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(5) as Einstein's thermodynamic approach.

It will be evident, however, that the Langevin equation (6) with the instantane-
ous friction law determined from the steady Stokes' equation gives only a partial
picture of the effect of thermal fluctuations in the system and predicts a rapid
exponential decay on the time scale 87! in the velocity correlation function. The
first indication of a deficiency in the Langevin equation came in numerical simu-
lations of the molecular motions in liquids which produced velocity correlations
of spherical particles with a long tail decaying as t 32 rather than exponentially
as predicted by (8) (cf. Rahman, 1964, and Alder and Wainwright, 1967).
Recently, several separate analyses, e.g., Hauge and Martin-Lsf (1973) and Hinch
(1975), which allow for the distribution of thermal fluctuation throughout the
fluid, have predicted correctly the full velocity correlation as well as the
diffusion coefficient matrix of (5). Linearity is, however, preserved in the govern-
ing differential equations for fluid motion, because the velocities remain small
enough to render the convective terms negligible. It is important to realize that
both the classical Langevin method with g determined from the sieady Stokes’
equation and the above corrected approaches lead to exactly the Einstein-
Smoluchowski diffusion equation (1) with the same diffusion coefficient matrix

(5), provided the condition (7) is satisfied.

Recent years have witnessed an increasing amount of interest in the descrip-
tion of Brownian diffusion neér a rigid wall or a fluid-fluid interface (cf. Brenner
and Leal, 1977 and 1982, and Larson, 1982, and Gotoh and Kaneda, 1982). Treat-
ments of this kind are designed to provide a theoretical basis in terms of molec-
‘ular properties, for understanding and predicting the wvarious transport
coefficients that enter into the description of the same processes from a
macroscopic point. of view. Of considérable importance is prediction and

interpretation of interphase mass-transfer rates in liquid-liquid systems, which
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are usual in many industrial operations, liquid extraction being a primary exam-
ple. However, little is known about the effects of a fluid interface on the motion
of Brownian particles. Indeed, our objective in the present study is to investi-
gate the effect of the presence of an interface on the motion of Brownian parti-
cles by employing the general methods of statistical physics in combination with
fundamental fluid mechaniecs. It is, of course, obvious from the point of view of
nonequilibrium thermodynamics that the interface will fluctuate around equili-
brium due to the thermal agitations of the surrounding fluid molecules, and
these random changes in the interface shape produce random motions of
Brownian particles in the vicinity of the interface. Further, due to the impulsive
motion of a Brownian particle the interface exhibits also a continuously chang-
ing shape which depends on the prior history of the particle motion and the
interface shape at earlier times. Although the interface deformation is small,
resulting from infinitesimal displacement of the Brownian particle on the time
interval 7vp, the displacement of the particle induced by interface relaxation
back toward equilibrium may be of the same order of magnitude as that initially

caused by the random impulse.

In the present study, first we derive the fluctuation-dissipation theorem for
the random fluctuations of interface shape that are caused by spontaneous
thermal impulses from the surrounding fluids. This analysis is carried out using
the mef.hod of normal modes in conjunction with a Langevin-type stochastic
equation for the Brownian particles, and determines the autocorrelation func-
tions for the location of the interface, for the random force on the barticle, and
for the particle velocity. The velocity correlation function will produce the
effective duffusion coefficient due to spontaneous random fluctuations of the
interface shape. Finally, we also investigate the effects of interface deformation

that are induced by the impulsive motion of a sphere which is undergoeing
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Brownian motion, by considering the effects on the velocity correlation (or
Brownian diffusivity) of the interface relaxation back towards the flat equili-
brium configuration after an initial deformation that is caused by the particle
motion. However, we begin by considering a relatively simple model system in
which the interface remains flat, nondeforming in spite of the arbitrary motion
of particle in order to explore the validity of the diffusion equation (1) for

Brownian particles near an interface.

. Brownian Motion near a Nondeforming Flat Interface

Let us begin by considering a model system consisting of Brownian particles
dispersed in a viscous incompressible Newtonian fluid in the semi-infinite
domain —» < x3 < 0, bounded by a plane fluid interface at xg = 0 (cf. Figure 1).
In the region xg > 0, we suppose that there is a second unbounded fluid. The
viscosity ratio A between the two fluids is assumed to be arbitrary. In the
present section we assume that the interface remains flat. Later in this

chapter, we consider the effects associated with interface deformation.

The difference between the problem discussed in this section and the classical
problem of Brownian motion in an unbounded domain is the possible existence
of a short-range force of interaction (attractive or repulsive), Fex(%), which we
assume acts between the particles and interface (Brenner and Leal, 1977), and
the dependence of the hydrodynamic mobility M [i.e., (mf)™"; m is the particle
mass] on the configuration of the particle relative to the interface (i.e., its posi-
tion, and if the particle is nonspherical, its orientation), as a consequence of
hydrodynamic interactions. For a freely rotating torque-free particle in creep-

ing flow, the hydrodynamic mobility is given by

M= (mf)™" = [Kr - K Ke K]
()

where K, K, and Ky are the so-called translation, coupling and rotation tensors
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(cf. Lee, Chadwick and Leal, 1979, and Yang and Leal, 1983). These so-called
resistance tensors provide a complete description of the effect of hydrodynamic
interactions with the interface on the relationships between the translational
and angular velocities of a particle in steady creeping flow and the force and

torque that act on the particle.

Application of the so-called "thermodynamic appf‘oach" that was outlined in
the preceding section shows that the same relationship holds between the
mobility and diffusion tensors as in (5) even in the presence of a nondeforming
flat interface in the absence of a physicochemical interaction force. Further,
this approach shows that the relevant hydroaynamic mobility is still that for
steady creeping motions. For spherical particles, each component of the mobil-
ity tensor M can thus be determined either from the exact solution results of
Lee and Leal {1980) or the asymptotic solutions of Lee et al. (1979) and Yang

and lLeal (1984), and the diffusion tensor is given by

Dno o
D=| 0 Dgg O |, Dy; =Dgp
O 0 Das (10)

in which the components Dy; are functions of the particle position relative to the
interface as a consequence of spatially modified mobility. In order to illustrate
the qualitative nature of these effects, the components D;; and Dag based on the
approximate singularity-method solution of Yang and Leal (1984) are plotted in
Figure 2 as a function of the distance between the sphere center and interface
for A =0, 1 and «=. The magnitudes of the diffusion coefficients, D,, and Dg3 is
either increased or decreased owing to the presence of an interface, and the
effect is a strong function of the particle position relative fo the interface aris-

ing from the spatial modification of hydrodynamic mobility.

For nonspherical particles {e.g., elongated slender particles), the mobility is,
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in general, dependent on the particle orientation relative to the interface in
addition to the separation distance d between the particle center and interface.
In Figure 3, as an example of this orientation dependence, the diffusivity
coefficient D;; of a slender rod-like particle with the length of axis 21, is illus-
trated as a function of the oblique angle @ between the body axis and the inter-
face for two values of particle position d/1 = 1.01 and 2. For each value of d/I,
we include three values of the viscosity ratio, A = 0, 1 and =, Also shown is the
corresponding result for diffusion in an unbounded single fluid domain. The
quantitative dependence of the diffusivity on the particle configuration (ie., d
and ©) relative to the interface is a consequence of the spatially modified and
orientation-dependent hydrodynamic mobility due to the direct hydrodynami;:

interactions between the particles and the interface.

The presence of a short-range physicochemical attraction (or repulsion)
between the particles and the interface will generate steep spatial gradients in
the particle number density, P(x) (cf. Leal and Brenner, 1982). The resulting
nonuniform hydrodynamic interactions between particles will also lead to non-
isotropic and spatially dependent mobility. These indirect interface effects
owing to particle-particle hydrodynamic interactions will contribute to noniso-
tropy and spatial dependence of the diffusivity. Furthermore, although success-
ful in determining the relevant diffusion coeflicient of Brownian particles near
an interface in the absence of a physicochemical interaction, the thermo-
dynamic approach cannot provide any conditions for the validity of the normal
diffusion theory in the presence of the physicochemical attraction (or repul-

sion).

Let us thus turn to the fundamental statistical approach in which the govern-
ing differential equation for the probability density in the phase space (U,X) is

the Liouville equation, in order to explore the conditions for validity of the
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diffusion process defined by (4) and (5) in the presence of a nondeforming flat
fAluid-Auid interface. Compared to the case of a single unbounded fluid demain,
the Langevin equation is modified by the interface in that the hydrodynarmic
mobility is dependent upon proximity to the interface (and is anisotropic even
for spherical particles) due to the direct and indirect hydrodynamic interaction
effects that were described above, and by the existence in some cases of an

interface-induced physicochemical force field Fex(X):

U =~ B(x) U+ Funlx) + AY)
(11)

When one observes the process of Brownian motion in the averaging time inter-
vals At sbatisfying the condition of (7), the stochastic movements of a Brownian
particle can be regarded as a Markoff process. Further, if the length scales
characteristic of variations in B(X) and Fe(X) are sufficiently large relative to
the mean-square displacements <|Ax|?> of a Brownian particle in the time
interval At, the physical parameters 8(x) and Fe(X) can be approximated as
constant during At. In effect, this is the condition of a fixed "configuration” over
the averaging period, At, in which the increments Ax and AU in position and

velocity of a typical particle are given by

tHAt

AU = - [B(x)U ~Fox(®]At + [ Als)ds
t (12)

with Ax = UAt. The integral in (12) represents the net acceleration that a
Brownian particle may suffer during At due to the thermal fluctuations of sur-
rounding molecules. We now assert that the invariance of the Maxwell-
Boltzmann distribution requires that the probability of occurrence of different
values for the net acceleration be governed by the Maxweliian distribution func-
tion, and it follows that the transition-probability distribution T'(UAU) is

Maxwellian in terms of AU + [B(X)'U — Fg(x)]At.
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A conservative estimate of the length scales of variations in Fe(x) and g(x),
i.e., Iy and lg, respectively, which are allowable for (11) and (12) to be valid, can
be obtained by using the Stokes resistance for a particle at large distances from
the interface, 8 (cf. Leal and Brenner, 1977, and Larson, 1982). The resulting
condition for the fixed configuration is

(_’Eﬂ_/tn_)_l_/im 0(< |Ax|?>) .
A (13)

lgly >>
For the extremely short-range interaction force Fe(X), the condition (13) may
not always be satisfied for the very small Brownian particles (i.e., large solute
molecules), for which the mean-square displacements in the average time inter-
vals At can be quite large (cf. Larson, 1982, for the case in which the condition
(13) is not satisfied). If we adopt (12) and (13), a generalized Einstein-
Smoluchowski equation governing the time evolution of the local number den-
sity P(x) in the configuration space x can be derived from the Liouville equation

via the Fokker-Planck equation by averaging the probability distribution P(U,x)

in the phase space over the time interval At satisfying the condition (7):

Q%thL: \Y '[D(X)'V P(X) - M(X)'Fex(x)'P(x)]
(14)

in which the mobility and diffusivity tensors M(x) and D(x) refer to a torque-free
particle and are related by (5). Thus, the simple Fickian form of the diffusion
equation is obtained in the presence of a flat fluid-fluid interface under the con-
ditions (7) and (13), and the diffusivity tensor can be calculated from a
knowledge of the mobility tensors for steady motion of a freely rotating particle

in the vicinity of a plane interface.

All of the preceding results discussed in this section so far pertain to the case
in which the interface remains precisely flat, in spite of the motions induced in

the two fluids by the motions of the Brownian particles. It is, of course, obvious
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that a real interface cannot remain precisely flat except for the limiting case of
A~ o (ie, a 'solid" wall case), In particular, the motions induced in the two
ﬂuids by the motions of a Brownian particle will generally lead to a normal
stress difference across the interface which can only be balanced by capillary
forces if the interface deforms. In general, then, the interface will exhibit a con-
tinuously changing shape which depends on its shapé at earlier times, and thus,
on the prior history of the particle motion (cf. Lee and Leal, 1982). Although the
magnitude of interface deformations will be small compared to the particle size,
corresponding to infinitesimal displacements of the Brownian particle on the
inertial time scale B87!, the displacement induced in the particle by interface
relaxation back toward equilibrium (i.e., the flat configuration) may be of the
same order of magnitude as that caused initially by the random impulse A(t)
and this 'rebound” effect may have an appreciable affect on the mean-square

displacements (or the Brownian diffusivity) of the particle.

In addition, the interface will fluctuate around the equilibrium flat
configuration due to thermal agitation of the surrounding fluids, even in the
absence of Brownian particles, and these random changes in the interface shape
will produce fluctuating velocity fields and so induce random motions of the
Brownian particles in the vicinity of the interface. These induced random
motions are in addition to the random motions caused by direct interactions
between the Brownian particles and the molecules of the suspending fluid. Thus,
the interface effects on the motion of Brownian particles are of two distinct
types: first, mechanical effects due to the spatially modified hydrodynamic
mobility and the interface relaxation back toward a flat configuration from the
deforméd shapes caused by the particle motion and second, nonequilibrium
thermodynamic effe;:ts due to the fluctuating velocity fields caused by the ran-

dom changes in the interface shape. In the next section, we first examine the
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interface” fluctuations due to random thermal impulses, and evaluate the
corresponding velocity fields in order to determine the induced particle
motions. This is done by employing nonequilibrium thermodynamics in combi-
nation with a capillary-wave model to describe the interface dynamics. Follow-
ing that, wé consider the second effect of interface deformation: namely, the
meodification in mean-square displacement due to the "elastic rebound" associ-
ated with the motion that is induced in the particle as the interface relaxes
back toward equilibrium. We begin with the theory of nonequilibrium thermo-

dynamics for the interface fluctuations.

II. Theory of Nonequilibrium Thermodynamics for Interface Fluctuations

Whilst considerable progress has been made over the last decade in under-
standing the equilibrium properties of the liquid-vapor interface (cf. Evans,
1981 and Buff, Lovett and Strillinger, 1965, and references therein), the macros-
copic structure and thermodynamical properties of an interface between two
immiscible fluids are relatively less well understood. One approach, in principle,
to understanding the structure of the fluid-fluid interface would be to use the
same type of detailed microscopic molecular theory that has been used widely in
the study of liquid-vapor interface (cf. Teletzke, Scriven and Davis, 1982). In this
present study, however, we approach the problem from a macroscopic statistical
framework in order to develop physically appealing and mathematically tract-
able theory for systems of this type. Philosophically similar macroscopic sta-
tistical methods have been very successful in determining macroscopic proper-
ties of gases (e.g., the relationship between pressure and temperature in the sys-
tem) that are identical to the results from the moleéular kinetic theory.
Further, essentially the same macroscopic method that we describe here has

been the cornerstone of theoretical descriptions of the relevant dynamics of
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Brownian motion. In particular, we adopt the conceptual idea of separating the
phenomenon into two parts: one associated with rapid fluctuations with time
scales characteristic of molecular motion, and the other associated with a much
slower response time characteristic of viscous relaxation of the system. The
objective of our study in this section is to determine the statistical properties of
near equilibrium fluctuations of an interface between two immiscible fluids
based on macroscopic statistical mechanics coupled with the concept of a
fluctuation-dissipation principle as developed by Landau and Lifshitz (1959).
According to the fluctuation-dissipation principle, the statistical properties of
nonequilibrium fluctuations, linear in the external forces from a macroscopic
point of view, can be related to equilibrium self-correlations. We thus begin our
analysis by determining the equilibrium seli-correlations of interface fluctua-

tions.
A. EKquilibrium Fluctuations

Before turning to the details of calculation referred to in Section I, we believe
that it may be helpful to the reader to review briefly the fundamental founda-
tions of classical statistical physics, that are relevant to the remainder of this

chapter,

Nonequilibrium thermodynamics, which is a phenomenological macroscopic
field theory concerned with states and processes in systems that are not in
equilibrium, examines relaxation phenomena during the approach to equili-
brium. The physical quantities describing a macroscopic body in equilibrium
are, almost always, very nearly equal to their mean values. Nevertheless, devia-
tions from the mean values (i.e., fluctualions around equilibrium), though small,
are induced by opening a system to an external supply of energy or matter (Lan-

dau and Lifshitz, 1980). The relaxation processes, whether they are stationary



~177-

or time dependent, will always evolve with a positive entropy production, and the
problem arises of determining the probability distribution of the deviations

from equilibrium based upon a knowledge of the entropy change in the system.

Let us consider the equilibrium state of a thermodynamic system with a set
{03 of linearly independent extensive variables. If the system is in contact with
appropriate reservoirs, these extensive variables wﬂl not be constant but will
fluctuate randomly around their equilibrium values owing to transfers to and
from the reservoirs. These random variables denoted by 2®~n§ constantly fluctu-
ate around the equilibrium state, {®,]. According to the postulational approach
to thermodynamics (cf. Callen, 1960), there exists a function of the instantane-
ous extensive parameters of the system, S(@n), called the instantaneous
entropy, such that the probability distribution for the occurrence of fluctua-

tions {£,} characterized by &, = @;1 — 0, is given by

W(¢) = Q exp[tAS(£) s}
(15)

where 0 is a normalization factor and AS denotes the entropy deviation, S(@n) -
S(@,), from the equilibrium value, which is a function of ¢ = (£,£z, . . . .én). The
relationship (15) is commonly known as the Einstein fluctuation formula (Ein-

stein, 1910).

Before proceeding to examine the consequences of equation (15), let us con-
sider its range of applicability. All the arguments leading to (15) tacitly assume
that the quantity & behaves classically so that quantum effects are negligible,
Landau and Lifshitz (1980) developed a condition which ensures that the for-

mula {15) is applicable

A (107 sec at T = 300°K)

T>
2micgT (18)

or T >>
RTTKBTE ¢

in which h is the Planck constant and 7; denotes a time scale that is charac-
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teristic of the rate of change of the fluctuating quantity ¢£&. When the tempera-
ture T is too low or when the quantity £ varies too rapidly (i.e., 7; is too small),
the fluctuations cannot be treated thermodynamically, and purely quantum

fluctuations become of major significance.

Let us then turn to a thermodynamic system which is not at equilibrium (i.e.,
the state at which £ = 0), and satisfies the conditi;ms (16) so that the formula
(15) is applicable. For sufficiently small fluctuations § = (£;.62, ..., ¢y) of the
thermodynamic variables around the equilibrium state, the assumption of local
equilibrium (cf. Kreuzer, 1981) can be used to expand the entropy 3(8,) of the

system as a Taylor series about its equilibrium value S(0,):

S(8) = 5(80) + 5u(®n) £ — & Skm(On)im + -

(17)
with
a3 o3 0AS
S (O = == = — = =
k( n) 00y ]5‘:8n 0éx £=0 Oy ¢=0
and
a°S #2S PAS
Siem(®) = — —2— = - =-== |
tm{ On) 00,00, |6,=6, B4u0m £=0 OB m £=0

Since the entropy has a maximum for £ = 0, it follows that Sy = 0 and Si,, > 0
near equilibrium. Neglecting all higher order expansion terms in (17), we can

thus write

AS(€) = 5(B2) ~ S(8.) = - 2~ Sinbiben < 0.
(18)

The probability distribution for the fluctuation £ is then given by (15) and (18),
and its form can be seen to be Gaussian. Using (15), the expectation values of

the near equilibrium variables can be shown to be
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<&> =0

(19)

and

< &icfm> = KB5Sk - (20)

Let us now apply these results to a system which consists of two immiscible
Newtonian fluids 1 and 2 that are separated by an interface, as depicted in Fig-

ure 4. The surface of the interface is denoted as Ilg, defined by
[ls = %3 —n(Xet) =0

where X, is a position vector representing points lying in a plane parallel to the
undeformed, flat interface. In our model system, the shape functioﬁ n(Xg,t) is
envisioned as fluctuating around equilibrium, ie., 7{(Xst) = 0, due to the spon-
taneous random impulses from the surrounding fluids. Indeed, our objective in
this section is to evaluate fhe autocorrelation function < 7?(x,t)> of the inter-
face fluctuation by determining the probability distribution of interface distor-
tion, (% t), and utilizing the preceding general results, (19) and (20). The auto-
correlation function < 72(x,t)> will in turn provide the statistical properties of
the system at equlibrium necessary to calculate the random wvelocity field
induced by the spontanecus fluctuations in interface shape. In order to deter-
mine the probability distribution of 7n(xst), we thus need to be able to evaluate

the entropy change due to the interface fluctuations.

The entropy change AS{n(x,t)} associated with the interface distortion can be

related to the free energy functional A{n(x,t)} corresponding to the distortion
n(X,t) as:

aStn(z,0 = - AT o

and thus the derivative of the entropy change with respect to the free energy is

just -1/T, where T is the temperature of the system; the temperatures of fluids 1
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and 2 are the same, since the system is assumed to be in equilibrium. The free
energy functional Afn(x,t)} associated with the distortion 7(x,t) is defined to be
the isothermal reversible work necessary at equilibrum to impose the distur-

bance, i.e.,

Afm(x,t)} = —é— 4, [(Ap)gin(%e.t)}? + 7|V on(xait) [¥]dx; . @2)

Here, Ap(= pz — p1) is the density difference between fluids 1 and 2, V 4 denotes
the two-dimensional gradient operator on the plane defined by x; and v is the
surface tension between the two fluids. The first term in the integrand
represents the free energy associated with the external acceleration due to
gravity g and the second is associated with an increase in surface area. The

required probability distribution for n(xt) is thus

Win(Zs,t)} = Q -exp|- 2/613T 4 {(Ap)in(xs.t)iz + 7|V n(xait) Iz]dxs] :

(23)

The distribution (23) is a Gibbs (or canonical) distribution for the interface dis-
tortion (cf. Landau and Lifshitz, 1980, and Buff, Lovett and Stillinger, 1965). We
now determine the autocorrelation function <7?(x,t)> using the probability
distribution, (23), and the general results, (19) and (20). Since the integrand of
(23) contains |V ¢n(x,t)|? however, we cannot apply the results of (19) and (20)
to evaluate the autocorrelation function < 7?(x,,t)> of the interface fluctuation
n(x,,t) directly from (23). We now proceed via an alternative approach of Landau
and Lifshitz (1959) by resolving the arbitrary fluctuation 7{x,t) into indepen-

dent modes of a two-dimensional Fourier-transform

n(xst) = f Ak t)exp(ik xs)dk .
k (24)

In this formulation, the disturbed surface is represented as a collective coordi-

nate of decoupled surface harmonic waves, and the entropy change can also be
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expressed in terms of the Fourier-transform variables,
. 2m)~*
asttiet)} = B [ k0P (o) + 7k,
B (25)
Here k is the wave vector (i.e., the wave number k = |k|), and A(k.t) is a Fourier

component of 7(Xgt). Let us now replace the integral in (25) by a discrete sum

for a large number of surface elements Allg (= AklAkg) in the k-plane:

astitet)) = ZEZ 5 ak)iRH(80)g + 73ATI |
o7 % (26)

Since each term in the sum depends only on the specific wave vector k around
which the surface element Ally is taken, the fluctuations for two different wave
vectors k and k' are statistically independent. Thus, the correlation of the

fluctuations Ak,t) and A(K',t) between two wave vectors k and k' is zero, ie.,

<AkHAK > =0

(7)
if the two quantitatives are taken in different surface elements Ally and
<A A(k)> = (m)* = Hdo)g + 7k
k (28)

if the same surface is involved. The autocorrelation function, < {#(kt)}®> of
(28), can be determined simply from the result of (20) combined with the sumed
form of (26). Passing now to the limit Ally » 0, one can evidently write both

these formulae together as

<Ak A L)> = (2m)° keTi{Ap)g — Yk K} 6(k + k) (29)
2

where 6(k + k') is the two-dimensional Dirac-delta function. The correlation
function in terms of the position vector X; can then be evaluated by Fourier

transformation of (29). The result is
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kmax
< (X )N(2 1)> = wpT ,{m (_A%I;—(?%'{z— (30)

in which r = |x; — x| and Jg is the Bessel function of the first kind of order 0.
The lower limit, K, of possible wave numbers is inversely proportional to the
largest length scale of the system and thus kp;, » 0 if the interface is
unbounded. The choice for an upper cutoff on wave number, Kp,y, is somewhat
arbitrary, and the present continuum treatment cannot make a rigorous
identification of this quantity. However, in a theoretical treatment of a liquid-
vapor interface, Buff et al. (1965) selected k. as being inversely proportional
to the interface width, L, across which a sharp discontinuity in density may
occur. In addition, thermodynamic perturbation theories have been developed
for the study of a planar interface which show that the order of magnitude of L,
is approximately the same as the intermolecular length scale ¢ of surrounding

molecules (cf. Evans, 1981), and in fact I, & 1.5¢ ~ 3.00.

The mean-square fluctuation, which provides a measure of the magnitude of
interface distortion via spontaneous fluctuations, can be obtained readily from
(30) withr = 0 and kpy, = O

T I
B> = f’i_l 1+ -L—kéwx
<(mOF> = 2l + e

(31)
It can be noted from (31) that the mean-square fluctuation < n(xat) >
becomes magnified as either the density difference or the surface tension
between the two fluids becomes smaller. In fact, in the limit Ap » 0, the auto-
correlation function of 7(%st) diverges logarithmically. This weak divergence is
related to the fact that 7(Xgt) characteristic of distortions of the interface is a
symmetry breaking collective coordinate in termé of decoupled harmonic sur-
face waves (i.e., the Fourier decomposition, (24), breaks down in this particular

case of Ap = 0), which was also noted by Jhon, Desai and Dahler (1978). Jhon et
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al. (1978) have developed the so-called memory function approach for interface
dynamics and found that, associated with the symmetry breaking variable,
n(%,t) is a propagating mode whose long-wave length dispersion relation is
identical to the classical hydrodynamic result for capillary waves, ie., w(k)
= {yk3AAp)}'# in which w is the frequency of capillary waves. It then follows that
capillary waves must always exist if a nonuniform density distribution exists
(i.e., Ap # 0), even if v = 0. It is noteworthy, in this context, that the mean-

'CBTkgmx

square fluctuation <7?(x,t)> approaches a finite limiting value, ————, as
q 7*(%at)> app g an(Ap)e

"the surface tension between the two fluids vanishes (i.e., ¥ » 0).

So far'we have dealt only with fluctuations around the equlibrium state of the
system using Gibbs ensembles, i.e., we have derived the equilibrium correlation
funictions for the interface distortion in terms of ensemble averages. According
to the ergodic hypothesis {Landau and Lifshitz, 1980), however, ensemble aver-
ages yield the same results as long-fime averages over the history of a single
system providing the system is statistically stationary. Thus, we can regard the

correlation functions in (29)-(31) as limiting time-average values with t » «,

In the Section III.B, the time-dependent interface fluctuations and the
corresponding velocity fields will be considered explicitly. The time-averages
from these detailed time-dependent fluctuating fields must have the same long-
time values {or forms) as calculated in the present section using the concept of
an ensemble of near-equilibrium fluctuations (cf. Landau and Lifshitz, 1980, and

Kreuzer, 1981).

B. Time Correlations and the Velocity Field Induced by Spontaneous Fluctua-

tions in Interface Shape

The impulsive motion of a body surrounded by a 'viscous" fluid is accom-
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panied by frictional processes, which ultimately bring the motion to a stop. The
kinetic energy of a Brownian particle, contributed by thermal fluctuations of the
surrounding medium, is thereby converted into heat and is said to be dissi-
pated. This is the basic concept _of the fluctuation-dissipation theorem
developed by Landau and Lifshitz (1959). A rigorous, purely mechanical treat-
ment of such a motion is clearly impossible. Since the energy of macroscopic
motion is converted to thermal energy of the molecules of the suspending fluid,
such a treatment would require a solution of the equations of motion for all of
these molecules. The problem of setting up an equivalent description, with a
macroscopic scale of resolution proportional to the Brownian particle dimen-

sions, is therefore a problem of statistical physics.

In our present system, it is the interface which fluctuates around the equili-
brium flat configuration, and thereby generates velocity fields in fluids 1 and 2.
In the presence of fluctuations, however, there are also spontaneous local
stresses in the bulk fluids 1 and 2, which are not related to the velocity gradient;
Landau and Lifshitz (1959) determined the statistical properties of these ran-
dom stresses, including formulae for the correlation between the components of
the stress tensor. Recently, Hauge and Martin-Lof (1973) and Hinch (1975)
showed that the macroscopic framework with fluctuating stresses could provide
a self-consistent theoretical description of Brownian motion. In their theories,
the fluctuating stress acts on the particle through its divergence, which drives
fluctuations in the bulk fluid and thence fluctuations in the viscous stress on
the particle and relates the white noise A(t) in the bulk fluid, see equation (6), to
© the fluctuating stress in the surrounding fluid. It is the white noise contribution
to the motion of Brownian particles, i.e., A(t), that will continue to be present
even when the particle is far removed from the interface. The random force

contribution on a Brownian particle due to interface fluctuations is in addifion
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to the white noise A(t) that derives from the fluctuating stresses in the bulk
Aluids. In the present section we thus determine the statistical properties of the
fluctuating velocity fields in fluids 1 and 2 caused solely by spontaneous random
changes in the interface shape. In our analysis, we introduce a fluctuating forec-
ing function y(x,t) in the normal stress balance for the interface as the "energy

source' for interface shape fluctuations.

The energy of the interface imparted by thermal impulses decays via viscous
dissipation in the surrounding fluids, and this process is governed by a
fluctuation-dissipation theorem (cf. Landau and Lifshitz, 1959). The construc-
tion of this fluctuation-dissipation theorem begins from a purely macroscopic
description of the system, based upon the equations of motion for the fluctuat-
ing quantities, e.g., the interface position 7(x,t), and the velocity and pressure
fields (u® p®) in fluids j (= 1 and 2). The equations describing the fluid motions
are simply the Navier-Stokes equations with appropriate boundary conditions.
Provided the order of magnitude of the fluctuating velocity ul is sufficiently
small, as we shall assume here, we can neglect the convective inertia terms in
these equations (see Section II of Chapter III), and we thus find that the fluid
motion is described by the unsteady Stokes' equation plus the equation of con-

tinuity for each fluid j (= 1 and 2)

vuald =0,
(33)

The boundary conditions to be satisfied in dimensional form are the following:
u and u® > 0 as [x| » = .
(34a)
At the surface of the interface, defined by [y = xg —7(X,t) = 0
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a®) = u®
(34b)
n_ _ 1 on(xat)
pul) = nu® = VI o 050
[[tnT|]=0
(34d)
and
[InnT|] =7V n) + (Ap)en(Xat) + y(Zat) .
(34e)

The parameters appearing in (34c¢)-(34e) are the unit outward pointing normal
vector n from fluid 2 (i.e., n = VIly/|V [I ), the unit tangential vector, t in the
interface and a fluctuating forcing function y(x,t) which is introduced in this
"macroscopic theory" as the source of the interface fluctuations. The statistical
properties of this white noise function y(x,t) will be discussed in detail shortly.
Fquations (34b) and (34d) are the conditions of continuity of velocity and
tangential stress, respectively, while (34c) is the kinematic condition which
relates the rate of change of the random displacement, 7(Xgt), to the normal
velocities at the interface. The objective of the present analysis is to derive
from equation (32)-(34e) a Langevin-type stochastic equation for the unknown
fluctuation function 7(x,t) which is driven by random forcing function y{x,t). A
correct formulation of the stochastic equations ultimately requires that this
forcing function (i.e., white noise) y(x,t) be chosen so that the interface fluctua-
tions exhibit the correct equilibrium correlations (i.e., those from the equili-
brium fluctuation theory of the preceding section) on taking the limit t - .
The procedure for determining y(x,t) is very similar to the method used to
specify the statistical properties of the white noise function A(t) in the Langevin
equation (6) from the assumption of equipartition of ener"gy at equilibrium (cf.

Batchelor, 1978).

The problem represented by (32)-(34e) is, of course, both time-dependent and
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highly nonlinear due to the fact that 7(X,t) is unknown. As noted from (31),
however, the magnitude of 7{X,,t) is very small and we can therefore linearize
the terms in (34c) and (34e) to proceed analytically. The most effective
approach to solving the resulting linearized problem is to apply the method of
normal modes, whereby the small fluctuations 7(%,t) are resolved into a com-
plete set of normal modes. In particular, we resolve the arbitrary fluctuation

7(Xg,t) into independent modes of the form:

_ i(lexy —wt)
7(X,t) —_{l,ﬂﬁ(k.w)e dwdk (35)

and it follows from this and equations (32)-(34e) that

(udp) = [ [ 160 (xgk.). 59 (g, )} 5 M deodic .
A (36)

In this formulation, the fluctuating variables 7(%,t) and (ul?,p®) in the problem
are being expanded in terms of the same Fourier-transform normal modes,
Alkw) and (69,59, that are usually employed in theories of linear dispersive
wave motion and hydrodynamic stability. It can be seen that the normal mode,

as usual, has an exponential dependence on time with a complex exponent.

On substituting the expressions (35) and (38) into equations (32) and (33)
[i.e., applying the Fourier-transform directly to equations (32) and (33)], we
obtain a system of ordinary differential equations for $69(xg:k,0), b9 (xg:k.0)3
and 7(k,w). We adopt here the Squire (1933) transformation in order to reduce
the three-dimensional fluctuation problem, i.e., 4 = (d°¢°wW’) to an equivalent
two-dimensional problem @ = (3,0,#). For this purpose, we transform the coor-
dinate system by rotating the X; — Xz plane about the xz-axis so that the new x,-

axis has the same direction as the wave vector k. Then the velocity field in the

kG + ky®

” ,V = 0 and

equivalent two-dimensional problem is given by 4=

# = W° with the unit vector in the x,-direction defined by e! = k/k. The resulting
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governing equations for G = (q%,0,%9) and g% are as follows:

(37)
(D? — k¥)[iwp; + p(D? —k3)Jwid = 0
(38)
and
ikp® = icpal) + (D — k2)qW
(39)

with D representing the differential operator D = d/dxs. The general solution of
equation (38) is a linear combination of the solutions e*™® and e*%<s [with
o = (k® — 1o44)'2 and Y = /0], Recalling the boundary condition (34a) which
requires that wl must vanish both when xs » —= (j = 2, in the lower fluid) and

X3 » + o (j = 1, in the upper fluid), we can write

W‘m(xa;k,w) = Al(k,c.))e_kx3 + Bl(k,w)e_alxs , (%3 > Q) (
40)

and

R (xg k) = Az(k,a))ekxa + By(k,w)e’®™® | (xg < 0). (1)
41

The velocity component GY can also be evaluated by combining (37), (40) and
(41). All that remains is to determine the coefficient functions A(kw) and
Bi(k,w) from the boundary conditions at the interface. Substituting the general
solutions, ¥ and #9, into the conditions of continuity of velocity, (34b), and
tangential stress, (34d), we obtain a set of four simultaneous algebraic equa-

tions for the unknown functions A; and B; (j = 1,2). The resulting solution is
Aj(k,w) = &;(k,w)A(k,w)
(4R)
and
Bi(k,w) = ¥;(k.w)i(k,w)
(43)
in which



-189-

N Tk + o) + vglag — K)RIP(A — 1)(=1)! + iwA* ]
vi{k — 1) + Ave(k — o) (44)

B(kw) =

and

RicokN 1y — 2uk?(A — 1)(=1)i(0q — k)

¥i(kw) = Aa(og — K) + v (0, — K) _ (45)

Here A (= p1/ip) is the viscosity ratio of the two fluids and the subscript q is

defined by q = j - (-1)L.

So far we have determined the Fourier components of the velocity and pres-
sure field (d9$9) in each fluid in terms of the stochastic function 7(k.w)
representing normal modes of the interface shape, which is related to the ran-
dom forcing function §{k,w) through the normal-stress balance across the inter-
face according to equation (34e). To obtain the stochastic Langevin-type equa-
tion for A(kw), in terms of the random forcing function §{k.w), we therefore
substitute expressions for the stress components calculated from (ﬁ(j).pm) into -

(34e). The result is

[Ai(k0) ] Ak.w) = Flkw) .
(46)

If the function ﬁl(k,w) is specified, the response A(k.w) of the interface to the
random force §(k,w) is completely determined. The functional quantity HAi(k,w),
which is known as the generalized susceptibility (or system function), plays a

fundamental part in the theory described below and is given by
fi(ke) = > fod2(kw) + p2 (k)

— (g — )tk a(kw) + ag¥a(kw)} — {(Ap)g + 7K? . ()

The statistical properties of the fluctuating forcing function f{k,») must now
be specified so that the statistical properties of the interface normal modes,

#{k,w), at equilibrium are the same as those derived in the preceding section via
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equilibrium fluctuation theory, i.e., equations (28)-(30). Thus, for the fluctuat-

ing random force #(k,w), the following principal assuniptions are made:
i. §(k.w) is independent of Ak,w),

ii. f(k.w) varies extremely rapidly compared to the variations of A(k,w).
The second assumption implies that time intervals of duration Atl exist such
that the expected variations in A(k,w) in period At; are very small while the
number of fluctuations in J{k,w) is still very large. Thus, the fluctuating force
$#(k,w) appears as white noise (i.e.,, random and uncorrelated) on the time scale

characteristic of variations of #(k,w):

<flkew)> =0.
(48)

However, it is evident from (46) and (28) that the self-correlation of #{k,w) can-

not be zero but must take the general form:

<y(Zet)y(Xa' t')> = Ry(%e, %5 )0(t ~t)
(49a)

or

< Fkw)FK 0)> = Bkk)o(w + o) .
(49b)

The unknown function Ry (or ﬁy), which specifies the intensity of fluctuations in
y(Xet) [or f(kw)], must be chosen so that we obtain the correct equilibrium
correlation results. The very drastic nature of the ad hoc assumptions implicit
in (48) and (49) lies in the presumption that the forces that the surrounding
fluid molecules exert on the interface can be divided into two parts; one associ-
ated with rapid fluctuations y(X,t) with time scales characteristic of molecular
motion, and the other associated with a much slower response time characteris-
tic of viscous relaxation of the system. They are, however, made with reliance
on physical intuition and an o posteriori justification based on the success of

the hypothesis, which will be shown shortly.
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In order to determine the functions Ry and ﬁy by comparison with the equili-
brium correlation function, (29), from the preceding section, we must solve (46)
together with (47). Using white noise (k) with properties (48) and (49) as
input into (48), we can evaluate the correlation function <Ak .w)f(k .w)> in
terms of ﬁy(k,k') and H(k,w). Then, from the Fourier inversion formula, it fol-

lows that < Ak, t)A(Kk't + t%)> can be expressed in the form:

» 0
<aROmKL+ 0> =Rk [ gt (50)

It can be seen from (50) that the correlation function for A(kt) is independent
of the present time t but depends only on the time difference t%, and thus
satisfies the invariance of the equilibrium state under a time translation t » t'
which is expected as a consequence of the hypothesis of microscopic reversibil-
ity in statistical physics. The unknown function ﬁy(k,k') can now be determined
from (50) by setting t® = 0 and comparing the result with the equilibrium self-

correlation function given by (29). From this, we see

Ry(k k) = 'CBT‘S(][‘ + K){(Bp)g — 7KKy
) dw (51)

(2m)? _/_; B (k.0) (K )

The central importance of the fluctuation-dissipation theorem can now be
grasped from equation (51). The left-hand side of (51) involves a correlation
function which results from and is a measure of the magnitude of spontaneous
fluctuations about the equilibrium state, i.e., of the ever-present thermal noise
y{xs,t). The response function on the right-hand side incorporates the macros-
‘copic mechanical (i.e., dynamical) response when the system has been removed
from equilibrium by the imposition of external forces or constraints. The
fluctuation-dissipation theorem then says that the time-correlations of the

nonequilibrium fluctuations, linear in the external forces, are related to and
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can, indeéd, be calculated from equilibrium self-correlations. Finally, with ﬁy
determined, we have all the statistical properties that are necessary to specify

the system from a macroscopic point of view. In particular,
kaTi(Ap)g — Yk k™ 18(k + K)O(w + o)

= ds | (52)
(2m)? [,, Fi(k.s) Ak, ~s)

<fkw)Fk )> =

and, thus

xpT§(Ap)g — YK K} 16(k + K)6(w + &)

< Alkw)AK w)> =
(563)

(2m)? L kS)HI( g (k) Ak ')

The statistical properties of the random velocity fields 6D = (0 ,0,%9) associ-
ated with the interface disturbances can be evaluated readily from (37) and

(40)-(45), i.e.,
- - i - ’
89 = (~1)m168 (w)el ™ + 120 g e w)e T (e w)
and

w = iéj(k.w)e(“’"‘xﬂ - \Pj(k,w)e(_l)]a‘xsfﬂk.ﬁ)) )
(55

along with the correlation function (53) for Ak,®).

So far we have developed a general theory for the spontaneous "thermal”
fluctuations of shape which occur in a real fluid interface, and determined the
statistical properties of the fluctuating flow field (@,5) driven by the random
boundary fluctuations, A{k,w). Before concluding this section, we turn, for illus-
trative purposes, to a detailed evaluation of the correlation function, given by
(83). It.can be seen from (54) and (55) that the vorticity generated by the inter-
face disturbances diffuses towards the interior of each fluid and the depth of

penetration of the vorticity is of order ()2, Two important limiting cases
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are thus possible; the length scale for vorticity penetration may be either large
or small compared to the wave length 2m/k. We consider only the case of
k2 >> wA4, in which viscous effects on the interface relaxation cannot be
neglected. In this asymptotic limit (& /{»k®) << 1), we can expand the func-

tions ®; and ¥; defined by (43) and (44) in the forms:

' 2
, = Kk? W w2
$i(kw) =k VJ[B i iy +0 @ ] (56)
and
¥ (k,w) = Keu{—2 + 0 || = 2}
(ko) =B —2 + —_
- J[ Iy, (57)

and thus the susceptibility ﬁl(k,w) of the system becomes

2
W

k2 Vj

W
k2 Vo

s~ [
Ai(k.w) = (Ap)g + yk® + iwkl,wz[z -i + Uy

LW
—i——| +0
2 1k2u1]

It can be noted that the dynamical response of the system to an impulse, in this

(58)

limit, contains an inertial contribution, (o; + pz)/k, a viscous damping, contribu-
tion 2k(u, + uz) and an elastic contribution, (Ap)g + ¥k®. Utilizing the general

formula (51) together with Aj(k,w) given by (58), we have

@

ﬁy(k.k‘) = m2iep Ty + pe)d(k + k’)[k +0 e
]

R
I

comprising a fluctuation-dissipation theorem, for the particular limiting case
w/Ak?y) << 1, relating the strengths of the random fluctuations y(Xgt) to the
macroscopic viscous forces, thereby reflecting their common origin in the
interactions between the interface and the surrounding fluid molecules. Taking
the inverse Fourier-transform of (53) combined with (58).‘ we can also evaluate

the correlation function
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To(k + k')
(Rm)*[(Ap)g —7k'k']

<Hlk)Ak t)> = =¢|7

.{cos\/f:——'r+ —L—,l__._gsin\/l———? [7] +o[k_f2,)’_};_]2}

(60)

in which 7= (t' — t)/no and ¢ = Tjo/rg. The time scales Tjg and 7 are defined by

12
TI(_)l =g = [M]

p1 + 2 (81)
and
R = P11+ P2
K3 + ) (62)

Here, wy is the natural frequency for interface oscillation in the absence of
viscous friction, while 7iz denotes the viscous relaxation time scale for the inter-
face displacement on which the initial amplitude due to the impulse decays
exponentially. It is noteworthy that, although the results (60)-(62) pertain to
the limiting case in which w/(ujkz) < < 1, the physics inherent in the description
via ¢, Tp and TR is preserved in the general case. The same exponential attenua-
tion of capillary waves at the free surface of a body of liquid {i.e.,, #; =0 and p, =
0) was predicted by Lamb (1932) from the fact that the loss of total energy
(kinetic plus potential) of the liquid over one cycle is necessarily equal to the
rate of viscous dissipation of energy per cycle, provided the net flux of energy
into the volume of liquid concerned is zero. In Figure 5, the correlation function
given by equation (80) is illustrated as a function of the dimensionless time
difference 7 for ¢ = 0.2, 0.6, 1.0 and 1.4. It can be seen that the restoring pro-
cess which drives the system back to a flat configuration exhibits three particu-
1af modes depending on the ratio ¢ of viscous forces lto capillary elastic-
response forces: an oscillatory damping (¢ < 1), a critical damping (¢ = 1) and

underdamping (¢ > 1).
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This completes our study of the spontaneous fluctuations of interface shape
that are caused by the thermal agitation in the surrounding fluids. In the next
section, we shall consider motions of spherical Brownian prticles due to the ran-

dom flow field that is induced by these interface fluctuations.

IV. Brownian Motion near a Spontaneously Fluctuating Interface

In the previous section we studied and derived a fluctuation-dissipation
theorem for spontaneous fluctuations of a fluid interface around its equilibrium
configuration. In this section we will consider the motions of a nearby Brownian
particle which oceur as a consequence of the velocity field, (54) and (55), that is

generated by these fluctuations.

In general, a Brownian particle near an interface will undergo random
motions due to random fluctuating forces of two types: the first, which we shall
denote as Fg{x;t), is caused by the boundary-driven random velocity field associ-
ated with spontaneous interface fluctuations, and the second, which we shall
denote as A(t), is caused by random fluctuations in the molecular environment
immediately adjacent to the particle. It is this latter contribution which will
continue to be present even when the particle is far removed from the interface.
In this section, we consider the motion of a spherical Brownian particle of radius
a that is near a fluid interface. The usual supposition is that, for sufficiently
small fluctuations, the independent random forces and the macroscopic time-
evolution of particle momentum have to obey a linear law or a macroscopic rate

equation of the Langevin type, i.e.,

I+ B(H) U = Fa(xit) + AV
| (83)

in which B is a linear operator (called the Boussinesq operator) determined

from the unsteady Stokes' equation such that B-U represents the time depen-



-196-

dent viscous forces including the virtual mass and Basset memory contribu-
tions, as well as, in principle, the hydrodynamic ‘wall” effects due to the pres-

ence of a nearby interface.

In the present section, we consider the motion which results from the ran-
dom force Fp(x;t) that results from the fluctuating velocity field (54) and (55).
In so doing, however, we consider only a first appro;éimation in which we imagine
the particle to be moving in the absence of direct hydrodynamic interactions
with the interface. That is, we suppose that the particle moves as though it
experienced the velocity field (54) and (55) in an infinite fluid domain. The
analysis. which follows therefore pertains to the case in which the random velo-
city field due to interface fluctuations is longer range than hydrodynamic
interactions between the particle and the interface. It can be noted from (54)
and (55) that the velocity field corresponding to a particular Fourier mode of
the interface deformation decays exponentially on the scale of the wave length,
k™!, Thus, the range of significant induced particle motion by the random velo-
city field is d ~ 0(k™!). On the other hand, hydrodynamic "wall" effects owing to "
.particle-interface interactions, are significant within the range of d ~ 0(a).
Thus the conditions, in which we can neglect the hydrodynamic wall effects but
still have significant induced motion of the Brownian sphere, are simply ka < <
1 and a/d << 1. In this case, we can evaluate the random force Fr(x;t)
corresponding to the velocity field (54) and (55) using the generalization of
Faxen's (1921) law to an arbitrary time-dependent unbounded flow that was

derived in Chapter III.

We begin by taking the Fourier-transform of the Langevin equation (83) to

obtain
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[ﬁU(w)]ﬁ(d;k.w) = Fr(d;k,w) + Alw)

(84)
in which the susceptibility for the particle motion is given by
. . Bmupa _ 2rpzaie
Hy(ew) = —wi + 1+ aVvwAR) (1 —i) ) ~ ——1i.
3m (65)

The Fourier component of the random force fg(k.w) determined from the gen-

eralized Faxen's law, (58) of Chapter II], is given by

61 uza
m

Rmradpaw

ﬁR(d;k.ﬁ)) =

{1 + avVwABwy) (1 —i) }[ﬁ“(k,w)]&‘ - i[ﬁ"(k.w)]az. )
66

Here, []1§ and []§ denote the average values of the quantity in the bracket over
the sphere surface and \;olume, respectively, and each component of the undis-

“turbed velocity U® = (4®(k,©),0,#®(k.w)) is defined by (54) and (55). Since the
velocity field ﬁ”(k,w) can be divided into two parts, i.e., 0" = ﬁ;’ + ﬁﬁ‘ , an irrota-
tional part ﬁ; which satisfies the Laplace's equation and a rotational part ﬁﬁ"
which is governed by the Helmholtz equation, it is convenient to utilize the mean
value theorems associated with these differential equations in order to evaluate
the average values in (66). Indeed, by defining the weighting factors for the
Helmholtz equation as follows:

sin avwiAs

We(w) = avwife (67)

sin avwiAy — avViAs cos avwl iy

i) = o) (68)

We see that the average velocities in (88) can actually be evaluated completely in
terms of the local undisturbed velocities at the location of the sphere center,

ie., (070 and [G5 1o

[5~18 = [G5 Jo + Wel(@)[OF Jo
(69)

and
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[6~18 = (G5 ]o + W) [Tr To
(70)

Since the random fluctuating forces fR and A are not correlated (ie.,
<fR§> =0) and the problem is linear, we can consider the contribution of the
random force Py in (64) independently of the white noise A We thus examine
the net effect of random fluctuations of the interface configuration on the
motions of a spherical Brownian particle by determining the velocity correlation
of a Brownian sphere that is freely immersed in the fluctuating velocity field
driven by the spontaneous interface distortions. Then, the particle velocity
correlation function wﬂl in turn, determine the net diffusion coefficient of the
Brownian particle associated with the random force Fg. First, we now evaluate
the particle velocity correlation function Ry(dkk w,&) = < O(d;k,0)0(dK o')>

by solving the Langevin equation (64) for each mode of random force Fr(d:k,e)

Ro(d kK ,0,0)= ﬁf(d:k']f'w'w')

Hy(w) Hy(w') (71)
and then relating the required statistics of the random force (i.e., the correla-
tion function Ry for the random force Fg) to the statistical properties, (52) and
(563), of the interface fluctuations. The correlation function for the randem
force fR can be determined from the generalized Faxen's law of (86) together
with the random velocity field (54) an (55) which is related to the random sto-
chastic fluctuations A(k,w) by (53). The resulting expression in terms of the

correlation function for A(k.&) is simply

Re(dk K, w,0) = < Fa(dik,w)Fr(dk @)> = G(dikw)< Alk,o)AK o)> )
72

‘in which each component of the tensor G can be obtained from (563)-(55) com-
bined with (66). Taking the inverse Fourier transform of (72) with respect to k

and k', and utilizing the properties of the Dirac é-function, we get
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o~

'ﬁF(d;w.w') - I;B: { G(d:k ~k,w,—w)(Ap)g + ¥k3] 8o + ' )kdk .

[
ds
[«» | Fy(k,s) |2

-~ 73
| Hk,w) [? 3

Thus, the particle velocity correlation function < U(d;t)U(d;t + %>, which
relates the present particle velocity to its velocities at other times, can be deter-

mine from (71) and (73), i.e,,

40y = : gt = [ Re(dioo,—w)e™t”
Ry(d;t%) = < U(d;t)U(d;t + t%)> f_w o) ©. e

It can be seen from (74) that the velocity correlation function Ry(d;t%) is
independent of the present time t and depends only on the time difference t°
between the present time and other times as a consequence of the time-
translational invariance of the equilibrium state (cf. Kreuzer, 1981). Equations
(71) and (74) are two versions of the famous fluctuation-dissipation theorem;
the correlation function ﬁp is defined with reference to the equilibrium state of
the system and contains statistical information about the spontaneous random
force fluctuating at equilibrium. The fact that the velocity correlation Ry(t®)
has to do with energy dissipation in a fluctuating system was already proved in
the theory of Brownian motion in an unbounded single fluid domain (Hauge and
Martin-Lof, 1973, and Hinch, 1975). In order to show the fluctuation-dissipation
theorem and the statistical properties of the motions of the Brownian sphere in
the presence of the random velocity field due to interface fluctuations, we now
calculate one component < Us(d;t)Us(d;t + t%)> of the velocity correlation func-
tion Ry. From (53)-(54) together with (66), we can determine the corresponding

component Ggs of Gin (73)

Gaa(d;k,&)) = —l’iz—

[61ryea{1 + avwARvg) (1 — i)} — 2mppadin]®a(k,w)e
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+ [s’ﬂp,aa{l + avVwARe) (1 ~1) }Ws(w) — 2mpalicWy () [¥a(kw)e 2 2 o
75

Since equation (75) contains the terms e e, $,(kw) and ¥ (k,w), which are

defined by (44) and (45) and functions of the complex variables

et

fi

J=1.2 ] it is not possible to derive analytically an ezpiicit expres-

sion for the particle velocity correlation from the general formula (74). In order
to proceed analytically, there are two possible asymptotic limits corresponding

to the relative importance of viscous damping forces on the interface relaxation

compared to the capillary forces (ie., k% >> ;’— or k® << %—) In the weak dissi-
i i

pation limit (i.e., k® << %—). however, the amplitude of interface fluctuations
i

caused by an initial impulse sustains and does not decay since the viscous

damping effects are negligible. We thus consider the asymptotic limit (k? >> -;‘;—)
i

in which the length scale characteristic of the vorticity diffusion from the inter-

face is very large compared to the wave length of the interface fluctuation so

that the viscous effects are important. In this asymptotic limit, k® >> —;—’— there
|

exist two limiting cases depending upon the relative magnitude of the particle
radius a compared to the length scale of vorticity penetration generated by the

particle motions, i.e wAwa®) >> 1 ( or << 1).
(i). Velocity Correlation Function for the Limiting Case of 1/ wa?)>> 1

let us first consider the limiting case, wpAwa®) >> 1 and vpk°w >> 1, in
which viscous effects have a significant influence on both the particle motion
and the interface fluctuation. Taking the limit of vyAwa®) >> 1 in (67) and (68),

we can easily show that
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ol W) Wy(w) > 1
s, (76)
]

and thus from (85) and (75) we have
Gas(dik,w) = 36mRm2ugawle2dk

(77)
and

- 6

Ay(w) =iw + B with g = —r22
o (78)

We now utilize the result of (53) for the correlation function of the interface dis-

placement function 7(k,w), which in combination with (77) and (78), will deter-

mine the correlation functions for the random force ﬁz and the velocity 3]

36kpTus (e + uz)kauw?o(k + k)e 2

< Fr(dkw)fp (dk 0)> =

)
o, + o) (6 — ) [ ] (79)
and
~ “ < Fr (dk,w)FR (dkw)>
< Og(dike,e) Oa(dik ) > = ——2 (mz:;”g) . 0

Let us now take the inverse Fourier transform with respect to w and &' in order

to calculate the time correlations

9rcpTusakd(k + k)e=dk
m?(p; + pg)

<Fr (dkt)fp(dk t + 7)> =

¢l

cosVl =& 7 — v—l_L?g—sin\/l ~& |7

kg Trga?d(k + k')e 2K
m?[(Ap)g + YRPI[4NZR — (A&, + 1)7]

(81)

< Ug(akt)Us(dk' t + 7)> =

[ Aol Tl 2 —(|-r1[ N/ 1 - A ¢ N -
.120\0&;9 "(l +)\w)e ICOS 1-¢&T+ ) +7\E“ . : _42 sinVi —(2 lTl
(82)
Tio

in which Ag, [= —7;——] is the ratio of the time scale for the interface fluctuation
vp
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(i.e., wg') to that of the viscous relaxation of the particle velocity, 7is the dimen-
sionless time difference, i.e., 7 = (t' —t)/mo and ¢ = 1o/ [cf. (61) and (62)]. The
nature of the response, in this limiting case in which wAwa?) >> 1 and kb
>> 1, can be understood most clearly by plotting (81) and (B2) as shown in Fig-

ures 6 and 7, where the correlation functions for ﬁRs and ffs are given as a func-

tion of 7 for the same values of the parameter ¢ aé: in the previous Figure 4. It
can be seen from Figure 6 that the force on the sphere that is generated by the
random impulse of the interface decays exponentially on the same viscous dissi-
pation time scale, Tr(= (p; + p2) / (K3(u, + 1)), as the amplitude #(k,t) of the
interface distortion. The viscous damping of the force on the particle can be
characterized by three typical modes depending on ¢ (ie., the ratio of viscous
forces to elastic-response forces) as can be expected from the result of (60), and
the frequency of the oscillatory damping case (¢ < 1) is exactly the same as the
frequency of the interface oscillation. The force correlation lags behind the

interface fluctuation. The phase lag ¢y is always negative

@F = — Rtan™

=
1-¢

(83)

and dependent on the ratio of the two intrinsic forces of the system [i.e., ¢p(¢ >
0) = 0 and ¢§(¢ » 1) = -7]. The velocity correlation function indicates that the
energy imparted to a particle by each thermal impulse on the interface decays
exponentially on the two independent time scales, Tr on which the amplitude 7

and the induced force ﬁRs decay, and Typ(= m/(Bmuga)) characteristic of the

viscous relaxation time for motions of Brownian particles in an unbounded fluid.
Thus the correlation functions of (80) and (Bl) constitute the fluctuation-
dissipation theorem for the motion of a Brownian sphere due to the spontane-
ous fluctuations of a nearby fluid interface. They relate the spontaneous

fluctuations in interface shape caused by the thermal white noise to the viscous
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dissipation due to the correspnding motions of the surrounding fluids. From
(82) we can evaluate the phase lag gy for the velocity response of the particle to

the interface oscillations

2
= —~tan™! __L_ t —1[1_}\‘”". ¢ ’
¥u an [ TR + tan T+2E, i-@ | (84)

However, the velocity oscillates with the same frequéncy as the force and inter-
face fluctuations. Recently, Chaplin (1984) experimentally measured forces act-
ing on a horizontal cylinder with radius a which is located at a distance d =
Ra~ Ha from the undeformed plane of a free surface which is executing wave
motions with the range of the dimensionless wave number, ka = 0.146~ 0.824.
The existence of phase lags in the fluctuating force and the particle velocity with
respect to the phase of the incident waves, which has been predicted in the
present analysis, was demonstrated by the experimental data of Chaplin. It
should be noted, however, that the present analysis is based on the condition, ka
<< 1l and a/d << 1, in order to neglect the hydrodynamic wall effect due to the

particle-interface interactions.
(ii). Velocity Correlation Function for the Limiting Case of v,A{wa®) << 1

Now, consider the other limiting case, vota® < < 1 and k4 >> 1. In this
case viscous effects on the particle can be neglected since the frequency w is
large enough to make the vorticity boundary layer very small. By taking the
limit vpAwa?) << 1 in (65), we find the susceptibility Hy(w) for the particle

motion

Rmpgadwi

Hulw) = —oi ~ B : (85)

and, with the vanishing weighting functions (i.e., Wg(w), Wy(w) - 0),
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2
Gss(dik,w) = 16m*m—2ufa?u?i(ka)t + afw e?dk
Rve (86)

Utilizing (73) and (74), we can determine the correlation functions for the

induced force on the particle caused by the interface fluctuations and for the

particle velocity

eTudaké(k + K')e 2k
m?(p; + pz)

< ﬁRs(d;k,t)ﬁRs(d;k’,t +7)> =

[ — 48
. l4>\62‘r + [4_(ak)4 + 1 A24 ] e_tl‘rl

147} 127}
[ -{4@k¥k2+43~481 ]
= cos\/l—?"'r— s ¢ sin\/l—? T
l | 4{ak)\Z, + 1 — 48] Vi-¢& 7] (87)
and
- . xpTudals(k + K)e 2k
<Usg(dkt)Us(dk .t +7)> =
(G > = e )P (8P + 7]
1+ 4(ka)*A%, [ 4(ka)*AE, — 1
Y S im0 P 4L Vi —- p {2 W
{ % e oSVl =& T+ k) ag, + 1
g —-(-—sin\fl - T
VI-§ i (88)
: . . . , , 2mrado,
in which m' is the virtual mass of the Brownian sphere (i.e., m' = ). It can

3
be seen from (B7) that the force acting on the particle, induced by the thermal

impulse on the interface, exhibits a delta function 6(7)-response at the initial
instant, and then  decays exponentially on the time scale
Tr(= (o1 + p2)A{ie + 141)k?)). The exponential decay on the time scale T is a
consequence of the fact that the amplitude of interface displacement due to the
thermél impulse decays exponentially on g in the limiting case of ugkz/w >> 1,
which has been considered in detail in Section II1.B [cf. (80)]. The initial 6(7)-

response in (87) is due to the virtual mass contribution to the force on the
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particle which exhibits a d-function response to the sudden change in the flow

velocity, i.e., when a sphere is brought instantaneously into uniform motion

U = Ue,, the impulsive drag on the sphere at 7 = 0 is zsipasUd(T)el due to the

virtual mass effect. In the previous case of 1sAwa®) > > 1 and wk?*w >> 1, the
parameter Ag! (= a®wo/s) characteristic of the virtual mass contribution to the
total force is sufficiently small that the impulsive response did not appear in the
final result (81). The correlation function (88) shows that the particle velocity
will decay exponentially on the same time scale 7R as the fluctuating force and
the interface displacement 7. In this limiting case, 1,A{wa®) < < 1 and vk®/& > >
1, the velocity correlation of (88) does not exhibit the viscous relaxation of the
particle velocity [i.e., e e’ decay in (B2)], since the viscous friction force is very
small compared with the virtual mass and fictitious body force contributions to

the total force on the particle.

So far we have determined the general formulae of the correlation functions,
(73) and (74), for the fluctuating force induced on the particle and for the parti-
cle velocity, respectively. We have also derived explicitly, in the asymptotic cases
of eAwa?) >> 1 and wk? >> 1 and of wAwa®) << 1 and vk’ >> 1, the
fluctuation-dissipation theorem for the interface fluctuations and the particle

motion.

Let us now turn to the general expression for the velocity correlation func-
tion, equation (74), in order to consider the effect of interface fluctuations
caused by the thermal noise of surrounding molecules on the Brownian diffusion
of particles in the vicinity of the interface. As we mentioned earlier, the relaxa-
tion of the interface distortion, 9, back toward the equilibrium configuration is
very rapid and the displacement 7 after receiving a thermal impulse decays

exponentially on the time scale 7R (~ 1078 sec in water). Further, the correla-
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tion functions of (82) and (88) show that the relaxation of the particle velocity
is exponentially rapid on the time scales Ty, and 7g characteristic of the viscous
relaxation of particle motion and of the interface relaxation. In a time interval
At which is very large compared to the relaxation time scales 7r and 7, (ie.,
At >> TRTyp), the motion of a particle can therefore be viewed as random and
the mean square displacement <[x(t)[?*> and the Brownian diffusivity D are

related at equilibrium (i.e., t » =) according to

dt ' ’(89)
Recalling the fact that the time differential is commutted with the ensemble
averaging and the displacements written as integrals of the velocity from the
initial zero conditions (i.e., x(0) = 0), it follows that

D)= [ <U@OUdt +10)> dt®
0 (90)

in which the integrand is the velocity correlation function Ry(d;t®) given by (74).

The diffusivity, being the time integral of Ry(d;t%), is immediately recognized as

G,H.I,no Ry(d;e) which is the Fourier transform of the velocity correlation, that is,

the spectral density function at frequency & = 0. Utilizing (74), we thus have

(R Rp(d;w,—w)

= li
D(d) wl-rano l | Uw)lz

(91)
In this low frequency limit, the functions (k) = 2k?u, ¥i(kw) = -2k*y;, and
the susceptibility for the interface fluctuations Ai(k.0) = —[(Ap)g + k%y]. Thus
we can readily evaluate the diffusion coefficient by substituting the various func-

tions into (73) and (74). The result is

D=0,
(92)

The fact that the diffusion coefficient turns out to be identically equal to zero
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implies that the fluctuating velocity field caused by the random distortion of an
interface does not produce any net rate of change of mean-square particle dis-
placement. Thus, the Brownian diffusion coefficient for spherical particles near
a fluid interface can be determined from the Langevin equation (63) without
considering the induced force term Fr(x:t), in spite of the fact that the velocity
correlation function is altered by the presence of the fluctuating force. One pos-
sible explanation of the present result, (92), stems from the linear theory of
plane progressive waves which predicts that at any fixed point the fluid speed
remains cbnstant, while the direction of fluid motion rotates with angular velo-
city w. Thus, a particle of fluid displaced by the waves moves through a circular
orbit and the time average of net displacement is identically zero in the linear
theory, since the second order [in the wave amplitude, 0(n®)] mean Stokes' drift
in the direction of the wave propagation can be neglected in the low frequency
limit, @ » 0. In the low frequency limit, which represents almost steady motion,
the trajectories of a Brownian sphere are exactly the same as those of the fluid
particle, provided the effects of hydrodynamic interaction with the interface are
neglected. It is noteworthy that the present result for the diffusivity, i.e., equa-
tion (92) is based on the fluctuating force field determined from the generaliza-
tion of Faxen's law to include the effects of time-dependent local inertia of the
flow on the fluctuating force, but without taking into account the hydrodynamic
interaétion effect associated with the presence of an interface. The force covari-
ance Ry in (91) therefore pertains to the case in which ka << 1 and a/d << 1
so that we can neglect the hydrodynamic 'wall” effect due to the particle-
. interface interactions while still having significant induced motion of the parti-
cle by the random change in interface configuration. In order to extend the
present results to include the hydrodynamic wall effects, it would be necessary

to generalize Faxen's law to take into account the hydrodynamic interactions
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between the particle and the interface. However, this is not done here.

Up to now, we have considered the motions of Brownian particles in the
fluctuating velocity field induced by the random spontaneous changes in inter-
face shape owing to thermal impulses from the surrounding fluid. We have, in
addition, determined the various covariance functions and the c'orresponding
effect on the diffusion coefficient. A second effect, noted earlier in Section II, of
interface deformability, is that the interface will also deform as a consequence
of the impulsive motion of the Brownian particles that occur due to direct ran-
dom forces of the type that would exist even if the fluid interface were absent.
Although the deformation will be small, corresponding to the small displace-
ments on the inertial time scale 7, of a Brownian particle caused by the ther-
mal impulses, the displacement induced in the particle by the relaxation of the
interface back towards equilibrium may be of the same order of magnitude as
that initially caused by the impulse. In Section V, we will examine the effect of
this relaxation process on the Brownian diffusion of the particle, applying the
general solution obtained in Section III to describe the relaxation of deformed

interface.

V. Brownian Motion near a Deformable Interface

The motion of particles in the presence of a fluid interface is, in general, non-
Iinear.and depends on the prior history of the particle motion and of the inter-
face deformation. This nonlinear interface deformation problem cannot be
solved exactly {except by numerical methods) but can be solved approximately
by linearizing the boundary conditions at the interface in the case of sufficiently
small deformations. It is obvious that the difficulty arising from the time-
dependence of the interface shape can be resolved by considering limiting cases

corresponding to either very slow or very rapid particle motion. In particular, if



-209-

the procéss of interface deformation is very slow relative to the time scale
characteristic of particle motion, then the interface will not be able to deform
significantly and remains arbitrarily close to flat at all times. At the other end
of the spectrum, if the time scale for particle motion is very long compared to
an intrinsic time scale for interface deformation, the interface shape at any
instant will be the steady equilibrium form, in Which un = 0 at the interface. In
the analysis which follows the two bulk phase fluids are assumed to occupy the
domain x5 > 0 (fluid 1) and xg < 0 (fluid 2) as depicted in Figure 8. A uniform
bulk concentration (i.e., number density) gradient is presumed to be maintained
at the constant value parallel to the bounding interface and to be characterized
by a macroscopic length scale L > > a. This gives rise to a steady flux of
Brownian particles in a direction normal to the interface; one-dimensional
description is therefore appropriate. Analysis of this normal mode of diffusion
transport has been motivated both by potential important applications in the
fields of aeroscl and hydrosol deposition, and also as models for transient, none-

quilibrium adsorption processes.

Let us consider the consequences of small deformations caused by rapid ran-
dom motions of Brownian sphere normal to the interface, since the random
Brownian displacement, \/<—|A_i|2_>, of a sphere is only about 10?2 a~ 1023 ain
the very short fluctuation time 7y, of the particle velocities. In view of the
infinitesimal displacement corresponding to an impulse on the inertial time
scale Ty, characteristic of the motions of a Brownian particle, we can assume
that the relevant hydrodynamic mobility is that associated with a flat, but
deforming interface. In this limiting case, the equations governing the motion
in each fluid are then the quasi-steady creeping fnotion equation and the equa-
tion of continuity. Since the deformation is sufficiently small, the boundary

conditions at the interface can be linearized as:



-210-

an(x,.t)

) = pg = 078
nu nu'® =
ot (93)

[InT{]=0
(94)

plus the continuity condition of tangential velocities.

Recently, O'Neill and Ranger (1983) derived a solution to the problem posed
when a rigid sphere normally approaches an interféce between two immiscible
viscous fluids by utilizing a general solution of Stokes' equation, plus the con-
tinuity equation in terms of the fundamental eigenselutions for bipolar coordi-

nates (£,8,0) which can be related to the cylindrical coordinates (r,0.xg) by

csinh{ csinf
Xg = and r=

cosho — cosé d r= oshe —cosf (95)

Fach coefficient of the eigenfunction has been determined by satisfying the
boundary condition at the sphere surface [i.e., ¢ = g5 = — cosh™!(dA)], the con-
dition of vanishing velocity at infinity, together with the conditions (93) and (94)
at the interface which we can identify with the coordinate surface £ = 0. Thus,
the solution pertains to the limiting case, in which the interface remains arbi-
trarily close to flat at all times albeit with uwn # 0 due to the particle motion,
and can be applied to the present study. According to O'Neill and Ranger's solu-
tion, the stream function ¥ in fluid 1I is given by

Yz = c*(cosho — cost) ™ 3] Wy(0)Qnu(cost)
n=] (96)

where Q,.;(cos¢) is the Gegenbauer polynomial of order (n+1) and degree — -é—-

and W,(o) is determined from the boundary conditions. From this solution (96),
the normal component of velocity at the surface qf interface can be found which
is the first approximation to the rate at which the surface is deforming . It fol-
lows that the first approximation to the nonzero deformation can then be

obtained by integrating the kinematic condition (93).
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We now consider the first order approximation for the interface shape by cal-

culating the velocity at the interface from the solution of (96). The velocity

d
component w = —I;_J— —;f_i can be evaluated readily, and utilizing

9 - —{sinf'sinha . (1 — cosé cosha) %]

“or 80 (97)
¢ 2= (1 — cosho-cos¢) 2 _ sing¢-sinho 2 .
3x5 Gl 0 (98)

we have the maximum velocity component wp,,; corresponding to the largest dis-

placement 7, of the interface, as shown in Figure B:

Wiag = a’;"t‘“ =-2vEUY (~1)"H(d) .
n=1

(99)
Here U is the magnitude of the particle velocity and Hy, is defined by

Hn(ao) =

V2 n(n+1)[(1 + N){(2n+1)?sinh?oq — (2n+1)sinh2aq + 2] + 2(1 — A)e—(znﬂ)%]

(2n~1)(2n+3)[4fcosh(n+ —é—)ao ~ Asinh(n+ -;—)00;2 + (1-733)(2n+1)%sinh?a,] (100)

The effects of hydrodynamic interaction between the particle and the interface
are contained in the complicated function Hy(d) (i.e, Hy» 0O as d » «) in (99).
Thus, in order to proceed analytically to illustrate the qualitative nature of
these effects, we will expand H, in terms of the small ¢ (= aAd< < 1) assuming

that the particle is not closer than a few radii from the interface. The result is
_ Mpax _ 3 9 1-A 1 9 1-x _F
Wmax = g = T Ul g T SR YlE Tea o YO

| (101)
The kinematic condition (101) provides a relationship between the particle velo-

city and the maximum deformation rate, Wy, of the interface. The maximum

displacement 7ma.y caused by a thermal impulse can then be obtained by
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integrating (101).

2
nmax:.i_f__x_mme{l—i l:—’i-s--l-su[i. — -s] +0(83)].

(102)
In (102), the viscous relaxation time T,,(= 1 /8 = m /Cp) is a function of the dis-

tance d between the sphere center and the interface, and the drag coefficient Cp

in this case is given by

Cp= -\E(l + A)sinhag )}, Hy .
3 n=1 (103)

Again, utilizing an asymptotic expansion for H, in terms of small £ and

sinhog = — i— + é— £ +0(82), we can show that

[ 9 1-a 9 1-a [
CD—S‘IFMgal—B—'m'S-F —_— —

+0(e%) . (104

The effect of the viscosity ratio, A, on the drag coefficient in the presence of a
deforming interféce is clearly evident in (104) for the limiting case in which the
interface is instantaneously flat. In particular, for A = 1 the instantaneous
values of uwn along the interface are identical to the values which would exist
along the same plane for sphere motion in a single unbounded fluid domain. As
a consequence, the instantaneous fluid motion is unaffected by the interface
and the drag coefficient is identically equal to Stokes' drag coefficient 8musa.
For values of A < 1, on the other hand, the drag for a sphere near a flat, deform-
ing interface is decreased as the sphere moves closer to the interface, while for
A > 1 the drag is increased under the same conditions. These results are all a
~consequence of the fact that the normal velocity given by (101) at the interface
is smaller for A > 1 and larger for A < 1 than it would bé on the same plane if
the sphere were moving through single unbounded fluid. Thus, the drag for a

flat, but deforming interface is highly sensitive to the viscosity ratio A between
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two fluids.

Since the energy imparted by the thermal noise is dissipated very rapidly with
respect to the averaging time scale At, the particle motion due to thermal agita-
tion can be regarded as an impulsive fluctuation source for interface displace-
ments. In Section III, we developed a general solution for the attenuation of
capillary waves on an interface. From this solutioﬁ. the time variation of wave

amplitude can be written as

7T = Pmexze ¥|cosVL = E 1 + —14—\/_:?—— sinV1 — &1 | . (105)

From (72) and (75) combined with (105), the force acting on the sphere can be

evaluated as

_{br
F = —67 a7 maxe ¥ —————sinV1 — {*T ey .

vi-¢§ (108)

It can be seen from (105) and (108) that the interface displacement and the

associated force decays exponentially on the same time scale T [= _&_-l-_p_g__]
K3(y + ig)

characteristic of the interface relaxation back toward the equilbrium flat
configuration which has been studied in detail in Section III. Solving the
Langevin equation for motion of the particle under the action of fluctuating
force F given by (108), we can readily evaluate the velocity correlation function

of the particle as

ﬂnmaxwge—k v ’CBT/h:1
(¢wo — B)® + (L — &F)of

Ry(d;m) = < UR)U(t + 1)> = —

(107)

Thus, the energy of the Brownian particle will be dissipated by the irreversible

frictional processes of both the exponential viscous relaxation of the particle
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velocity on the time scale Typ(=m/Cp) which would be m/(Bmuga) in an
unbounded single fluid and of the interface relaxation on the time scale ig. In
Figure 9, the velocity correlation function Ry(d;7) is plotted as a function of the
dimensionless time difference Tfor ¢ = 02,06, 1.0and 1.4, A =1 and d/a = 3.
As we can anticipate from the previous results in Section IiI, the viscous relaxa-
tion of the particle velocity exhibits the three typibal modes depending on the
values of ¢ (i.e., oscillatory damping for ¢ < 1, critical damping for ¢ = 1, and
underdamping for ¢ > 1). It is obvious from (101) that the interface displace-
ment due to the impulsive motion of a Brownian particle is decreased as the
viscosity‘ ratio A becomes higher since vthe normal velocity at the interface is
smaller. As a consequence, the magnitude of the particle velocity induced by
the interface relaxation back to the flat configuration is decreased for the
higher viscosity ratio A, which is illustrated in Figure 10 for ¢ = 0.2 and d/a =
3.0. But, the particle mobility is also decreased so that the initial impulsive dis-
placement will also be smaller. Perhaps the relafive importance of the relaxa-

tion process is not so highly decreased in the limit of high viscosity ratio.

It is important to realize that the solution of (107) contains the Einstein-
Smoluchowski theory [ie., (1) and ()] for the Brownian diffusion process as a
limiting case when At >> 7, and 7R, so that the non-Markovian effects can be
negligible in the averaging time At (cf. Hauge and Martin-Lof, 1973). Under these
circumstances, we can simply evaluate the Einstein-Smoluchowski diffusion

coefficient from (90) combined with (107)

T N _ 2
S T S S SN I )

i 4
Co|' “T+A T+ A 3o ]|+ o)

(108)

where the drag coefficient Cp is given by (104). We now consider, in detail, the
condition At >> 7, and TR for validity of the Einstein-Smoluchowski equation

(1) with the diffusion coefficient D of (108). The time scales 7,, and TR, on which
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the particle velocity and the interface displacement relax exponentially, are

approximately determined as

e O[pra }
Otz (109)
~ (p1 + p2)
R D[( 1+ U2) a] (110)

Thus, we can certainly choose an averaging time scale At which is much smaller
than the observation time interval [~ 0(1 sec)] but still very large compared to
Tvp and 7R which are O(~ 107® sec) in usual systems of Brownian particles in

water.

In Figure 11, the diffusion coefficient D given in {108) is illustrated as a func-
tion of the separation distance d between the interface and the sphere center
for viscosity ratios A = 0.0, 0.5, 1.0, 5.0 and 10.0. As is obvious from (108), the
diffusion coefficient is either increased or decreased by the presence of an inter-
face depending on the viscosity ratio A and the particle position relative to the
interface. For A = 1, although drag coeflicient Cp is unchanged by the nearly
flat, deforming interface, the displacement induced in the particle by the inter-
face relaxation back toward equilibrium is increased as the particle moves
closer to the interface. As a consequence, the diffusion coefficient, which
approaches «pT/ABmuza) as d - =, is decreased as the separation distance
becomes smaller., For values of A < 1, on the other hand, the diffusion
coefficient is greater than it would be in a single unbounded fluid for larger
separation distances due to the spatially modified drag coefficient. However, for
‘smaller separation distances, the dominant effect of the interface relaxation
again éauses the diffusivity to decrease. Whe;l the viscosity ratio is greater than
one, the presence of an interface yields very low mobility (i.e., higher drag) for

the particle motion and thus the diffusion coefficient is always less than
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©g T/ BT uza).

This completes our illustrative calculations of the diffusion coefficient using
the solutions of particle motion near a deforming interface in combination with
the fundamental solutions developed in Sections III and IV. Before concluding
this work, it is worth commenting that the scope of the analysis can be extended
readily to study the Brownian motion of a drop 6r any deformable body (cf.
Zatovsky and Lisy', 1983). It is expected from the present results that the relax-
ation of shape fluctuations could contribute an effective impulse to the particle
so that the rate of change of the mean-square displacement is either increased
or decreased by the shape fluctuations. In general, the surface of a drop can be
expressed in terms of the spherical coordinates (r,@,¢) so that the instantane-
ous shape is given by an eigenfunction expansion of the radial distance r from
the origin in the form

r=ajl+e i o Yin(@,¢)e i 3.
I (111)

Here Yj, is the normalized spherical surface harmonic of order Ln which is
defined in terms of the Legendre polynomial Py(cose) of order 1 as

d"Pi(cos@) .
Yi.(8,¢) = (1 — cos?e) 2 —————"— ¢l
(0.9 = ( P ey .
with
1=0,123.. and n=0+1,+2,...+1l.

Thus, for each choice of 1, there exist (21+1) modes of the shape fluctuations.
The fluctuations for the values 1 = 0 and 1, however, are impossible for an
incompressible drop and the smallest possible mode of drop surface oscillations
is a quadrupole (or ellipsoidal) deformation corresponding to the | = 2 mode.

Now, for convenience, we consider the simplest case in which the drop surface
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executes oblate (or prolate) spherical fluctuations. Utilizing the incompressible
condition, we can readily evaluate the coefficient matrix oy, in the general
expression (111) for 1 = 2, Further, the free energy functional A(s) for the shape
fluctuations can also be evaluated from the reversible work against surface ten-
sion that is necessary to impose the disturbances ¢ at equilibrium -
Alg) = _7:.37_"_751282 .

(113)

Following the general procedures described in Secticn III, we have the average

values of £ and £ as follows:

<g> =0
(114)
BT
<> = ——IEB—T

In order to derive the time-correlation function <z(t)e{t + 7)>, which will in
turn provide the solution of the shape relaxation problem, we must develop an
appropriate fluctuation-dissipation formula by following the general procedures
presented in this work, thus solving the hydrodynamic flow problems of both the

interior and exterior to the drop.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

‘Figure 5.

Figure 6.

Figure 7.

Definition sketch for a planar interface. The instantaneous coordi-
nates of the center of the Brownian sphere are x = (X;,Xz,Xg) and the
points lying in a plane parallel to the interface are conveniently

represented by the planar position vector X; = x;€; + Xgeg

Dll

Daz )
kpTABmuUga)

(or T /BT uqa)

Dimensionless diffusion coefficients,

Dag

m—. as a function of the separation distance d/a; — —

and

— for Dy, (or Dgg); —— for Dss.

———-—'ﬁ-l——-— as a function of
kpTA4muple) '

the orientation angle ©; the aspect ratio of the circular cylindrical

Dimensionless diffusion coefficients,

slender body & = 100 (i.e., ¢ = 0.1887); , for d/1 = 1.01; -, for

d/1 = 2.0; —- —- —-, for an unbounded single fluid case.
Schematic sketch of the fluctuating interface and a Brownian sphere.
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Dimensionless correlation function

as a function of the dimensionless time difference 1.

Dimensionless correlation function

< fna(d;k.t)FARﬂ(d:k’.t + 7>

. as a function of the dimen-
9epTa?k(k + K)e 23/ [m?(p; + pe)] °

sionless time difference 7.

Dimensionless correlation function

< Ua(dik t)Os(dk t + T)>

OrpTiEato(k + K)e 2%/ [mP{(Ap)g + VB (BAu + Ay + 1)] as a func-

tion of the dimensionless time difference 7for A4, = R.0.



Figure B,

Figure 9.

Figure 10,

Figure 11,
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"Schematic sketch of the geometry of the problem when a sphere

approaches a deforming interface.

Dimensionless correlation function

<UR)UR + 7)>
BNmaxwofe 29 ipT/m / {(¢wo — B)* + (1 — F)wb}’

dimensionless time difference 7 for A,, = 2.0.

as a function of the

Dimensionless correlation function

<UR)Ut + 7)>
Blimazwbe % g/ / §(¢wo = B)F + (1 — F)wf)

dimensionless time difference 7 for Ay, = 2.0.

. as a function of the

D . as a function of the

. ; i i ient, ——————
Dimensionless diffusion coefficien KaT A6 1z8)

separation distance for ka = 1.0.
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Fluid I Interface, x3=0

Fluid II

Figure 1
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Figure 4
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Fluid I

Mst xn(x,t)=0 [ uc)e,

Fluid II

Figure 8
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