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ABSTRACT

A first order in frequency theory is developed for
the aerodynamic loads on a harmonically oscilllating thin
wing of finlte aspect ratio in a subsonic compressible
flow. The downwaéh in the vieclinity of a horizontal tail
behind such a wing is élso evaluated to the same order in
frequency. The results are then used to determine the
stabllity derivatives of a conventional~type airplane and
to set up the stick=free longltudinal equations of motion
including the unsteady flow effects.

An important conclusion of this study is that, with-
in the limitations of a "lifting-strip" theory, the air-
loads on the oscillating finlte span wing are linear in
frequency in the neighborhood of zero frequency. This
1s in contrast with the two-dimensional results which
show a logarithmle singularity there. |

As an example of a practical application, calcu-
lations are made of the frequency, damping and transient
responses of the stickefree longltudinal motion of an
F-80A alrplane and the results compared with those ob-
tained using quasl=-steady aerodynamic coefficients. The
indications are that, while nonsteady flow considerations
show considerable iInfluence upon the control surface
motlion, they have a negligibly small effect upon the

alrplane motion.
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SYMBOLS AND NOTATIONS

velocity of sound in undisturbed fluild,
ft/sec.

translational displacement, ft.
agpect ratio

distance from midchord of wing to alrplane
c.g. (negative for c.g. forward of midchord),

angle of rotation about midchord, rad.
1ifting surface chord length, ft.

2, 3, 4, 5 = coefficients of frequency
quartic defined by eqns. (175)
and (176)

number of cycles to reduce amplitude to %
defined by C(%) = T(3)/P

flap deflection angle, rad.
function defined by eqn. (55)

distance from hinge line to c.g. of elevator,
ft.

~
ﬂz
Cicala's function defined by eqn. (E-3)

parameter defined by f =

function defined by ean. (D-3)

function defined by eqn. (30)

¢ mod

’oosw Cw

defined by equation of lifting surface = =#(xy47)

parameter defined by h, =

-~ Hankel functions of second kind and of
zeroth and first order respectively

y- 1"
#7y

parameter defined by 1ip = —5

» c,,
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A’

vi

~ parameter defined by 1, ° ”:Z,f
w

- moment of inertia of elevator about hinge 1line,
slugs £t2

- moment of inertia of airplane about y axis,
slugs £12

~ Bessel funetions of first kind and of zeroth
and first order respectively

-~ reduced frequency defined by k = w 1/U

-~ function defined by eqn. (29)

- semlichord, ft.

-~ distance from alrplane c.g. to hinge line, ft.

~ distance from airplane c.g. to base of fuselage,
ft.

- distance from airplane c.g. to nose of fuselage,
ft.

~ distance from airplane c.g. to midchord of
horizontal tail, ft.

- 1ift force, lbs.

BB R T
109

- mass of alrplane, slugs

- mass of elevator, slugs

- Mach number defined by # = U/a

- pitching moment, ft. lbs.

1 ", My, M - funetions defined by eqns.
2 E »
"pr ¥pr Mer Y illg;, (111), (112) and
11

- function of Mach number defined by egn. (B-10)
~ hinge moment, ft. lbs.
Nﬁ, N%, N&, N4 - functions defined by eqns.

C illug, (115), (116) and
117
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X, ¥V, 2

X, ¥, 2

X, ¥,
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vil

-~ pressure, lbs./'f‘c.2

- period of the oscillation defined by
P = 27/w , sec. ‘

- piteh rate defined by q = de/dt, rad/sec.
- function defined by ean. (39)

RR - rvegions in the X, Y plane (airfolil, wake,
remainder)

~ ratio of semispan to semichord at mldspan

- 1ifting surface area, £t.2

= base area of fuselage, £t,2

s) = function defined by egns. (72) and (75)
- time, sec.

-~ time to reduce amplitude by 3, sec.

- veloeity of undisturbed fluld in x-direction,
ft/sec.

~ vyolume of fuselage, ft.3
-« component of velocity in z-directlon, ft/sec.

wi, w - functions defined by eqns. (137)
B’ "B (138) and (139) |

-~ function defined by eqn. (13)
- Cartesian coordinates

- dimensionless coordinates defined by ean. (2)
(flutter axes)

yA -~ gtabllity axes

~ coordinate of leading edge of lifting surface
- coordinate of tralling edge of lifting surface
= V1-m*

- Euler's constant, § = 1,781072

~ function defined by eqn. (18)
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elevator deflection angle, rad.

downwash angle, rad.

. horizontal tall efficlency factor

pitch angle, rad.

: £ d
operator defined by A = 3 J5

A, (x,8), JNzLX,)ﬂ> - fgggtions defined following edqn.

/Z(Q,MU -
/4 -
” -
/0 -

function defined by eqn. (53)

parameter defined by «, = ;%%2%.
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differential pressure distribution, 1bs/ft2
density, slugs/ft3 |

o~(<2,M s) ~ function defined by eqns. (73) and (74)
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SUBSCRIPTS

(o
( )y
(g
( g

( )r.o.

hinge position, @ = » times % chord from
leading edge

transformed veloclty potential defined by
eqn. (4 '

funggions of hinge position defined by eqn.
11 '

circular frequency of osclllation, rad/sec.

parameter defined by <2 = k/ﬁ"

conditions in the undilsturbed flow
wing characteristics
fuselage characterlstics

horizontal tail characterlistics

"tall=off" characteristics



SUPERSCRIPTS

(2
() - two-dimensional (infinite span)

( )7 - three-dimensional (finite span)

Barred quantities ( ) are defined by ( )= (-3ei”t .

Several other symbols are defined in the text for
use only in the immediate vicinlty of thelr definition.



INTRODUCT ION

A knowledge of the dynamic stabllity of an airplane
is a prerequisite to the evaluation of its handling
characteristics and maneuverability. The need for the
accurate determination of an airplane's dynamic quali-
tles has become increasingly apparent with the advent of
modern high-speed configurations and thelr concomltant
reduction of stability margin in comparison with low-speed
designs. Furthermore, the recent trends toward automatic
flight controls necessitate an understanding of the air-
plane's dynamic transfer functlon in order to avoid in-
stabilities due to coupling between the control system

and the airecraft.

Currently, calculations on the dynamic stability of
aireraft are generally made using "quasi-steady".aerody-
namic coefficlents. The quasi-steady theory assumes that
the aerodynamic loads are linearly dependent upon the
angular positions and the veloclties of the airfoil surface
producing them., The forces and moments are then prédicted
at any instant of the motion as 1if the airfoll were in
steady motion under the conditions pertaining at that
instant. Thils procedure leads to simultaneous differen=-
tlal equations wlth constant coefficients from which the
frequency and damping of free motion and the dynamie

responses to given inputs are easily determined.
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Quasi~steady theory, however, neglects the effects
 of certain aerodynamic lags, i.e., the transitlon time re-
quired for the wing loading to attain its new steady-state
level when, for example, the angle of attack of the air-
plane 1s suddenly changed. When rapid maneuvers are
considered, the aerodynamic derivatives can no longer be
considered constant but must be variable functions of the
accéleration. Unsteady aerodynamic theory accounts for
.the time lag between the growth of circulation and the
motion generating it by considering the influence of the
trailling and shed vortices in the wake of the wing.

When the unsteady air forces are consldered, however,
the aerodynamic derivatives become functions of the time
history of the motion and are no longer expressible in
terms of simple, easily computed quantities as in the
steady problem. In general, this makes the solution of
the resulting nonlinear equations extremely difficult, if
not impossible. Besides, at the present time, the solution
of the aerodynamic reactions cannot be expressed as a
function of any arbitrary motion. The only known solutions
are for responses to a step function or to sinusoldal

motion of an airfoll.

The theoretical evaluation of alr forces on oscil-
lating wings has been the subject for considerable research
during the past thirty years. Throughout the greater part

of this time, efforts have been primarily concentrated on



the incompressible~flow case. Functions that describe the
.growth of unsteady alirloads and their phase relationship

to the corresponding motion have been tabulated for differ-~
ent types of motion by Wagner (1), von KArmin and Sears (2),

Theodorsen (3), Luke and Dengler (4), and many others.

These results for incompressible flow were signifi-
cant contributions to the understanding of unstead& aero-
- dynamic theory but present day high-speed aircraft have
brought a need for knowing the effects of the compressi-
bility of air on the unsteady alr forces. These effects
cannot be accounted for by applying simple transforQ
mations such as the Prandtl-Glauert factor of steady
flow since the finite transmission velocity of distur-
bances causes not only a change In the magnitudes of the
forces but also ln the phase lags between the 1nstaht-
aneous forces and the associated instantaneous wing

motion,

The methods of calculating these forces in a two-
dlmensional, compressible, subsonic flow in most general
use are based upon the integral equation of Possio (5)
and lead to approximative solutions (6, 7, 8, 9, 10).
Another approach to the boundary-value problem for this
case developed independently by Haskind (11), by Reilssner
(12) and by Timman and van de Vooren (13) leads to a
mathematlcally exact solution but utilizes seriés of

Mathleu functions.
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In view of these remarks, it is obvious that before

-~ any extensive investigation of the effects of nonsteady
flow can be undertaken some reasonable simplifications
must be made. One such simplification was suggested by
Luke and Dengler (4). They proposed that the results
obtained by considering simple harmonic motlon in in~
compressible flow be applied to damped or diVergent oscll-
lations by replacing the reduced frequency in Theodorsen's
ecirculation function C(k) (3) with the appropriate complex
argument. Although it can be proven that this is mathe~
matically justifiable for divergent motion, Theodorsen's
method of solution is not valid for damped osclillations,
and the suggestion has been criticized on thils basls by
van de Vooren (14), Laitone (15), and others.

The condition that the motlion be divergent implies
that, downstream, the vorticity in the wake decreases
exponentially. Otherwise the derlvations not only fail
from a mathematical point of view but, for damped motion,
become physically meaningless. However, Greldanus and
van Heemert (16), by physical reasoning based on the
damping effect of viscosity on the vorticity In the wake
and by mathematical arguments based on analytic continu-
ation, have shown that a physical interpretation can be
glven the results even in the excluded cases, provided

the damping is small.
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Furthermore, the results obtained wlth Luke and
Dengler's method compare favorably, when the damping 1s
small, with those derived by more rigorous methods (17).
Their work indicates that for low damping and small re-
.duoed frequencies, the functional dependence of the
Theodorsen function on the reduced frequency is independent
of the amount of damping. There is no reason to suspect
that compressibility wlll affeet the essence of these
arguments, and, consequently, the philosophy of this
simplification will be utilized in this thesis.

Even though simple harmonic motion may be assumed
in order to derive the corresponding alr forces, however,
the resulting aerodynamic derivatives are such complicated
functions of frequenéy that theilr extensive use 1s réther
impractical. Besldes, an investigation made by the author
(18) showed that for the frequency range considered (fre-
quency less than 8 rad. per sec. for an F~80A corresponding
to a reduced frequency of less than 0.l), the unsteady flow
effects on the longltudinal stick~fixed, short period motion
were negligible except for the phase lag in the wing downwash
acting on the tail., However, even discounting the obvious
case of aero~elastliec problems, there are instances in which
the frequencies of the motions involved are sufficlently
high to warrant some consideration of the unsteady aero=-
dynamic reactions particularly with the Introduction of
the compressibility of the air. This may be true, for



example, In stick-free stability analyses or in auto=
ﬁatic control through control surface hinge moments such
as might be obtained by a servo~operated tab. Neverthe~
less, the interest lies in the lower freduency range in
rigid-body stabllity work, and further simplification of
 the problem would seem to be in order. Although it may
not be possible to neglect nonsteady flow effects entirely,
an approximate solutlion of this problem for low frequency
oscillations leading to simple expressions for the derivae~
tives would be of considerable advantage oﬁer tabulated

functions necessitating interpolation.

For two~-dimensional, incompressible flow Goland (19)
has proposed using polynomial approximations for the un-
steady aerodynamlc forces near zero frequency. This makes
a most attractive simplification since the simultaneous
differential equations which arise in the quasi-steady
case are solved by factoring a characteristic polynomial.
Appealing though it may be, such a Taylor-geries expansion
is not permissible since Theodorsen's function has a
logarithmic singularity in slope at the origin. Hoﬁever,
Relssner's corresponding function (20) for the three=-
dimensional, incompressible flow problem does not seem
to have this logarithmic singularity when the aspect ratio
is small enough. As a matter of fact, plots of Relssner's
function vs. frequency appear to be linear near the origin.

It will be shown 1in this thesis that, within the limitations
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of the theory, thls 1is preclsely the result for the finilte
aspect ratio problem not only for incompressible flow but

for compressible flow as well.,

The purpose of this study 1s to evaluate the import-
ance of nonstationary flow effects on the dynamic stab;
111ty of conventional-type alrcraft at subsonic speeds.
In view of the preceding remarks a prerequisite to such
an investigation is the formulation of a sufficiently
accurate first order in frequency theory for the aero-
dynamic loads on a harmonically pscillating wing of
finlte span in a compressible flow. It 1is with this
problem that the present study begins.



NONSTEADY AIRFOIL THEORY

A. Formulation of the Boundary=-Value Problem of an

Oscillating Lifting Surface

It is assumed that a nearly plane surface 1s placed
in a nonviscous fluld which has a uniform veloclity U 1n
the direction of the positive x~axis far upstream of the
body. The disturbances created by the 1lifting surface
are agssumed to be infinitesimal with respect to the
asymptotic velocity and the equations of motion are line-
arized by retaining only the linear terms 1in the ﬁertur-
bation velocities. The equation for the velocity potential
of the oscillating airfoil in a subsonic compressible flow

can then be written in the famillar form

ny |
(””z)¢u*¢yy * Pez "é:' Xt }Lz Ber =0 (1)

where a is the velocity of sound in the undisturbed fluid,
and M is equal to U/a.

With the transformations
2, oy, .82 L
X-T ; Y—ﬂz— ; Z-/GT and T = 7 (2)

wherel/a = Y oz
eqn. (1) becomes
273 P =
/Zix *’4;y ’bfézz ;;E' Pxr ;;; ﬁér' o (3)
Now 1f simple harmonic motion 1s considered and the

following substitution is made in eqn. (3):
¢: e:-ﬂfxe‘-{rf(xl);z) (u_)
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where f is related to the circular and reduced frequencies

Aby
£ = :;;f = MO = ;f%qt (5)
then

: 2
fxx * f}’)’ "'fzz *f f‘a | (6)
Under the condition that the changes in density and
pressure are small compared with the undisturbed density

and pressure /1 and » the pressure can be written in
(-}

terms of the velocity potential as follows:

Y] +aﬂ (7)
Using eqns. (2) and (4) in ean. (7) gives
Y, . . :
;:— /o’ (l,{f{- 4”}!+.:_.f)e‘ﬂfx | (8)
but
(hreMf =82+ imi02 =2 (9)
and therefore
7200 A,
5 - Llting 2y (o)

The boundary conditions which are appropriate for
the wave equation (6) are specified as follows: The
prescribed oscillatory motion of the airfoil determines
the normal component of velocity of the fluid on the

surface. If the surface 1is deflined by z = H(x,y,t).
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and the boundary condition is satisfied on the x,y-plane
rather than on the 1ifting surface itself which is con-
sistant with the previous linearization, then on the air~
foll |

rl >H >H |
wilXx,y, o) --(——) = ~U 11)
*9 P [ o ot ox (
Now
_ﬁ ‘Mﬂ'{ ) 0;+££= .Z(,;{«i,a?!:
£ 2x 2 oX
2-’0 2"0 (12)
and, for convenience in later work, introduce a new vari-
able defined by
L _EMEX mlet
W =— ¢ e (13)
g
then on the airfoll
ey X
W(x, v, o) = ( L iy 7+ 2 ) (1%)
The fact that the pressure is an odd function of 2z
and that it must be contlinuous over all of the x,y-plane
except the portion containing the lifting surface results
in the following condition in the wake region of the alr-
foll when applied to eqn. (10).
o
iaf ~2L o (15)

oX
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or in the wake

| FOUY) _inx

¢ ( X0 0) = 2 e (16)
Along any line Y = constant which does not pass through

the wing region 7/~ (’)f Y)=0 from the condition of undis~
turbed flow at X = - ©0 . TFor the wake region, however,

3)
Vi ¢ (Y)1s in general not equal to zero. Therefore

f (X, ¥, 0) = 0 outside the wing and wake regilons
and

YY) —inx
g(x, ¥,0 =—F—¢ in the wake.

Then by using eqns. (15) and (16), it may be shown
that, in the wake

n~A%%y) .iax
§%=—‘ 2 (Y) g-¢ an

or since @ = O outside the wing and wake regions

. X
PPy et Lo T 28 (x,%0) 8
,\{ >x ax (18)

It 1s assumed that the Kutta-Joukowsky condition
is a reasonable way to take account of the effect of
viscosity even in the unsteady problem. Consequently
the condition 1s imposed that along the trailing edge

of the airfoll the pressure remains finite, i.e.,

‘g +f§ is finite along X = X, (¥) (19)
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(ot -FF)
In order to assure that g~ F¥(x,y,2)e (e

as z —» 2 and, therefore, that the waves are traveling
away from the source of the disturbance, the additional

condition 1s imposed that

. -"
gf(X,&Z)V?(X,Y,Z)e id as 2 = o0 (20)
where 2 Z X% » Y2 + 2° and $—> O  as Z —» c0

In summary then, the following problem has been posed:

The wave equation

2 =
Pox *Byy »Paz »F°F =0 (21)
i1s to be solved in the half space Z =2 O with boundary

conditions as follows: (see accompanying sketch)

T

=

74 X =z /
— o
$=0 e

-




(1)

(11)

(111)

(1v)

and

(v)

13

On the airfoil: (Z2=0; X, Y in R,)

aé’) e U ~MFX,., = DA
L) =Wixro)=Le (A7 +2%)
(82 % >0 V<] 2 X
In the wake: (Z =0; X, Y in Ry)

28(X,¥,0) _ _ 2 mea _iax

At the trailing edge: (2 =0; X=Xj)

YA

(QF + 2= 1g finite
X

In the remainder of the plane Z2=0, l.e.,
X, Yin Ry, # =0

As Z —» CO:

F~FX YV E)e "

(22)

(23)

(24)

(25)
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~ B. Reduction of the Problem to an Integral Equation
for the Circulation

A solution of eqn. (21) which satisfles the condition
o
of eqn. (25) and which represents g5<;x' within the half
space Z > 0 in terms of the values of af/ax on the

boundaries is given by

9!(3 7.0) > -efr
zzf// 2Z (£+—) 959y (26)

where

2= (x-5)2+ (v-p)2+r2?

From this solution to the wave equation an expression
will be derived which relates the prescribed downwash on
the airfoil to integrals over the 2 = 0 plane of functions
of the transformed velocity potential, @ . The double
integration over the wing region will subsequently be
reduced to a single integral through the approximations
of a "lifting-strip" theory. Finally, after neglecting
terms of the order of frequency squared, an approximate
integral equatlon for the spanwise distribution of circu-
lation will be derived which 1is comparable to the Prandtl
lifting line integral equation in steady flow.

In Appendix A, 1t 1s shown that the following ex~-
pression for af/;g within the half space Z > 0 can be
determined from eqn. (26):
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2f -,,/"f(f'”)/ax [”’#”’( /(x-s)z,«z*'y

"'f/ h {2) (FY(x"~§)2r2% )dx '} /5
=/r-y/ | . -
z[/; 74) /y-n/ 3 e~ Y(x-¥2 » 32 »2 s
2”’ 9}9? Y- 2X VO(_E)Z +rz"zz
X /y..

/r— / oo F Vex~ s)Mﬂﬂ" y
. Z S X
/ /(x -¥)2 182 4+32° |
X . ’ 2 7
F Vex-B) A (Y-p)Rrm 2
'//aa e d rrE /d}( af}/? (27)
~o0 / Yex =E)2 + (r-p)* s 2?

In order to utlilize the boundary cOnditions as speci-

fied in egqns. (22) and (23), it will be necessary to con-
sider the limiting value of eqn. (27) as Z — 0., 1In the
cases where the region of integration is over the alrfoil
surface, however, the integrands become Infinite at 2 = O,
x=5 , Y= » o Relssner (21) has discussed this
problem for incompressible flow and has shown that the
Cauchy principal values are the proper interpretations

in these cases. The same result may be shown to be true

in this case of subsonic compresslble flow and consequently

the following integral equation may be written for the
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downwash on the surface of a harmonically oscillating

airfoil in a subsonic compressible flow:

f 2f (e A’[(x-f); #]o5
zrr// ;{;ﬁ? ? /-(X'f), (Y-)g)_;;f]dfa'?

wenlg

- ___//o’ (F) e 3G [Ce-5) (y—e)syydsdf
4 (28)

wWix, o) =7

where
. X o,
K= [Z @ re-sn] e Engixtsnar’
Zoo

and

-/y-n/ - - 2
G- Y a/’” VDT I
Y-y [ °X% f(x-$)2+ 5%

~co
X /19l otF Yx“8)2 152"
+;"2/] 2 — IEdx’
-—00 Zo00 ﬂX’-S)z*Sz
d 2 e".f Vex- 892+ (Y-2/2"
*/ gx’ (30)

3? /(xl_§)2* (Y_?)Z'
The first integral on the right-~hand side of eqn.
(28) 1is evaluated in Appendix B neglecting terms of order

frequency squared so that

o0 xr
#j[ a.efa(s,ya /( "y f/o’E ___/ aj(f Y, 0) Xagg
c- ‘ﬂfwm(/ =% a5 - "n) (31)
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where

» =,4.,-:';"- - Gl L

A

To evaluate the double integral over the wing region
a "1ifting~-strip" theory as proposed by Relssner (20, 21)
in the incompressible problem will be employed. For
sufficiently high aspect ratio / 7—?/ >> /X ~¥/ over most
of the airfoil surface. It is assumed that, over the
portion of the wing where the inequalilty Vo4 -7/ _>>/X-§/
is not valid, azf /33 2 varies sufficiently slowly with
7 so that it may be taken as effectlvely constant. How-
ever, since the kernel G 1s an odd function of /Y -7/
the contribution of this part of the wing area to the
value of the entire integral can be neglected. This
approximation is comparable to the lifting~line theory
for the stationary alrfoll but because of the mportance
of the chordwlse variation of the induced velocity, it is

not possible to speak of a lifting-line in unsteady flow.

The functlon G[¢x-§),(r-y); £] is evaluated to first
order in frequency terms in Appendix C. Therefore, to
first order in frequency and under the additional assump=~
tions of the 1lifting-strip theory the double integral

over the wing region in eqn. (28) may be written:

ff L2 ey
wos >E27 2*B(E, 1.0) [ inf 1Y-2/
= 7.2 [« -7
wjg 2¥27 ( 27y +Y-/7)J§J7(32)
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azév/
Since the factor of agaz does not depend on 5,
,'the integration with respect to this variable may be

carrled out explicitly as follows:

Xy X
/ a"ﬁ(f,’z,o)a, a/ T 58 Y dX, 128}  dx
2 df =2 _dgz-( J,.-.(_—- L%
{ 3. 2 FY3 25 d 2F d
ot 7& E =Xy ¢ =X 7

X,

and so using the condition that 22 /5 ¢ 1s zero immedi-
ately ahead of the leading edge and eqns. (18) and (23)

results in

"r 2 . :
P 1{5,7)0) -7 —e LK 4 /-;(3) )
/ 350y I¥ =—e 3y (7 (33)

X,

Therefore, if eqn. (33) is introduced into egn. (32)

A T

"'n'xr d =(3) /)"7/ _ ‘”ff
—/ /-’ 67 "2 /Y

Although the assumptions of lifting-strip cannot be

WING

(34)

applied to the wake reglon, the approximation to G derived
in Appendix C 1s used in Appendix D to reduce this double
integration in eqn. (28) to the form

//T/'(y a8 G sy

waKE . -z-ﬂ’yd/},(i}/,r (r- ?)4’7

- X, r_ ~cXx (3 1y = 7/ pe
#)/- £ el £ 4710;_j7y_if’(c4ﬁ/'-‘ ///7
(35)




19

where FM 1s defined in Appendix D. This function 1s
-.evaluated approximately by neglecting terms of firste
order and higher in frequency in Appendix E where it 1s
found that

. /2Z/ Vi alid
FM(Z)=—E /= 2 ) /2/+ 7"'){/ (36)
Therefore, with the results presented in eqns. (31),

(3%), (35), and (36) and with the introduction of

Y= sgy* (37)

eqn. (28) may be written, for the case of a rectangular

wing where Xp = = XL = 1 independent of ¥, as follows:

/
—_— 2 y ¥o)
wWix,v'e) = ;,'—/ L8, s

-/ af X-g
¢ﬁﬁ(3)f7’y“e".ag e
27 X-F
. uz/"”(y’? ax - e j[ /*”’(2*9 Qsr*
(38)
where
7YY, M) = e L
Uy 770,8,7) = = B (Y= g™

. . .
T2 /Z_ zZ, ;n.f,.,/,asn(y-y)j/

Y'=7
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or by using the approximation to Fy given by ean. (36)
- this may be written

LA 7 = _ /
QUy~yY; a2, s,7) e

+¢11 /Yy -
4”‘ Y*_7#

- f:r")?* 77 - bon .Zr/esn/)’t{?
(39)

In using the approximation of eqn. (36) to the
function FM, an additional limitation has been imposed
upon this theory which is fairly obvious from the deri-
vations of Appendix E. Due to the combined manner in
which frequency and span appear 1n the preceding expres-
sions, the assumption of low frequency implies that the
span (or the aspect ratio) shall not be too large. Conse-
quently, it is not possible, in what follows, to permit
the span to become infinitely large and expect to obtaln
the two-dimensional result in the 1limit.

o8/

It now becomes necessary to solve eqn. (38) for DX

in terms of W and fq‘v{ The solution of the integral
equation (38) may be obtained by the method discussed by
Séhngen (22) and Reissner (20, 21). If

a2 - 2»«/ ’m 43 (40)
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where £(1) is finite then, by integral equation theory,

f(z)—-—- /::z/ //”:S 3(3) o (41)

So, by rearranging eqgn. (38) to conform with eqn. (40),

it may be shown that

e T3, e @ _n¥ “ 7C3), - X
) = L iy e _ e
Kl wixy,e) + 7z 7 75 X4

xX-¥ + 7
-~ L2 X ! )] ’ *
e ar . / 24(E,Y,0) dE
+ —Qdy* = Lo
2 /d? 3 t z”f( 2% x- g (2)
C Z

and since af/a‘; is finite at ¥ = 1 by eqn. (24), then
according to egqn. (41):

28(x,y,0) - _2 /+5 WCE, r,o)

ax /+X 2 /_ E

—=(3)
el (")/[,/”‘E SR E
/-5 CE- A.)(X s)
,,_/_f /'"‘” v (.0./7’”()'7 [7E e iR
d /-E X - E

Since it may be shown that (43)

J[/,Tg" Teioh o / X7 oAk
/-% (F-A)(x-g) ~/

-/
/
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ean. (43) may be written

28(X, ¥72) - /-x’ /+5 w(:—’ y,a) JE
X 7 7+X /-%
_ .(Z/"(”)(Y)//TL—'IT -t.n.l A
/

// (:)QJ? nl"‘”(ﬁ /,+5 -L.Q.E
+T Y /- X-3

Ll
Eqn. (41&) will now be integrated with respect to X. (44)
It will be useful in this regard to have avallable the
following relations:
/7-X’ - -
f =W+J/n/X+ At A,(X,g) ‘1
y rx’ 5 X 2 /8
> (45)

"

77 when X =/

X

f 7-x dX :#+;/n’x+ A - /\_(XA) W
Yrrxs a-x At/
</ - ()4-6)
= "r(/ -—]/ when X =/
At/
where y

/-XF§ + W~§2'\/;_Xz'
/-X§ -y -5 fr-x2

A, (X0) =2 fan%/ (-xXA+D [_ o
/+XIA-/)

A, (GF) = oo
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By using these relations and the condltlon that
@ 1is zero just upstream of the leading edge, the
integration of egn. (44) with respect to X may be written:

X
g (x; Ya) 7+ E
_/; 3x’ —/ /[/,_ ( +.va)
+ 4, W(.f O)JE ,__g_/'rf-’)(y} /I/'l*/ Zy sin” x)

,
e
) 4,[:./"(’)()’5 E <QE }
%/f/—l// * + S/n X}-I-A] F )

For the particular case when X = 1, eqn. (47) reduces to:

/—————aﬂx v,2) ”f( 2*3 W E Y 0) S E

) ax’

_ 4:1/"‘”{)// [257_, ) g-¢2Xx
/ A=/ -/)
// —a)QJ "_ zn./""')()’) //*.F -c.(ZE
/ F € (118)

It may be shovm that

(49)

and that

S et
/ _
.-.r[/—-‘z‘i+0(alf/ (50)
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After eqns. (49) and (50) are substituted into egn. (48)
'and only terms of first order in frequency and first

order times its logarithm are retained, then eqn. (48)

'become3°
o (x,yio) 7+ E
/ i //fw(sr‘)a/s
-/ -/
.a./"m()'j L4, 2 s i), /7“)(773'-”2
z .a. 2 2

/ -(J)Qa/ . (-Q/"(-’)(}’ﬁ )7/(/ (51)

From eqn. (18) , however

/ .
LR =¢3) )’* -t L
/ PECX, Y, 0) v = L (e

>x’ - 2
/, X

Consequently, after rearranging terms in egn. (51), an
integral equation for /‘:"('D(Y*) which is comparable to
the integral equation of Prandtl's lifting-line theory
(23) may be written as follows: |

—m()’)v'- (a, M/:;:J)Qa'7 = FE0yD (52)

where

.zr(/- ¢

e ”'—‘2 -in n é’-ﬂ- +iQ My = -2,//(& - /(53)

Al - _,/ 3 W Y)dE
/v _Q';a_ e 3y L_ oYX 4

2¢ (a,m) f /F W (E Y)dE

/az

fe
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and
. bod ol . io)
Clarm = /- +¢_cz£¢n—%—-»z) (55)
-—w —
/7 (Y") 1s the distribution of /7 according to two

’J/:’-(’)
dimensional theory. / ;—7-;;— Qa/?* represents the effect

of finite span. The’ function ¢ («£2,#) (a plot of which
appears in Fig. 1) will be discussed later,
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C. Solving for the Circulation Function

It now remains to establish some convenlent scheme
for solving eqn. (52) for the circulation function /74,
An approximate method of solution for this integral
equation has been suggested by Relssner (20) for the
corresponding 1ncompreésib1e flow problem which st;ll
gseems satisfactory in the present case, After Intro-
. dueing the transformation ¥* = cos & and >Z“b= cos 6, ,
it is assumed that the spanwise diastribution of the
eirculation function,‘/;(zkY#), may be approximated by

a trigonometric series of the form

— ad 5/
O =2 4, Z222 (56)
ns=s

Then from eqn. (52)

. ' 4 ' - |
£ 0250 o o nede | 70 o
o

This relation is further simplified by assuming that the
circulation function may be satisfactorily approximated
by considering only the first term of the serles expansion

of eqn, (56), 1.e., an elliptic distribution of the form:
—3) . .
/7 ) = A, sn & (58)

Reissner states that thls glves sufficliently accurate

results for a rigld elliptical airfoil 1n translating or



7
pitching motion or for a uniform deflection of a full
SEn fl&p.

Therefore, eqn. (57) becomes

r
A [sine -,a(-,a.,M)j.( @ cosedb, | = ¥ s)  (59)

o
and satisfying this integral equation at the midspan

point, i.e., at &= —zl-y glves

v
A,Z_/-/uﬂauﬂ} Q cos 8,46, /.,(.z)(a ;y
o

3)
(o) be the respective values at midspan so that

(3) /
(o) o (60)

7 cz)(a) - /-;a (ﬂ,ﬂ)}(% cosO, I8,
(]

where from eqn. (39), & at the midspan point 1is given by

8. s M = / (L Jeos 8,/ /
Q(co: 75 5% +#7sf cos 8, ” 47 coss, =y -rHM
-/f——- + n 2)«3/60- /cor & /) (61)
8o that

4

o

and 4 (2, M) is given by eqn. (53).
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D. Pressure Distribution

Having obtained a solution for the circulation func-
tion, it is now possible to derive an expression for the
pressure distribution. From egn. (10) the following re-

lation is valid for determining the pressure:

RY

where aj%é;x is given by eqn. (44) and & 1is evaluated

- ‘a2 :

in Appendix F from eqn. (47) as

/Xai(x,’ Y0 L __;._/.f./A Ww(gYIIE

), ox
Ty [ -dn) BA /"(")
STz / S 2l + ”"L.Q./ d *
/ -/
¢2)
t.ﬂ./’ ¢Y’) // w¥edl 3A, oE (63)

Combining the relations of eqns. (44) and (63) according
to eqn. (10) results in the following:

. /
58 o e‘”%ﬂx 7-X" [71~E / . — *
22 2 SGITVET sty -ina )P 57048

zn/"”’()’Y/ 7=x [Xrr 7/ 24, e-inidl
/+x R/ X-RA A

/"") .a./"‘ ’)(r)/ 5=

‘/ *x_ < X' [rer® 4
/f/ 2 ////*x V/i-e x-s
""5?") R jz (64)
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‘However, from the definltions of the functlons A and A,

ﬁ-x')[,z,«/' /v 2A,  [X

)/”‘"" A=/ X-2 oa | mx ,/;17—-7

/ 3-A-I _ /=X /
“F X% g srx Y2

so that eqn. (64) may be simplified to

— (/V 20X r— *,
B Y )
z.n./"""’()’)/ JFD
’ V/+x A.‘-/ dA /j‘[ d 9" Ry
) - - a;
) z.a./"’/)’j)?-// X ‘ (65)
%' v

Then by using the integral definitions of the Bessel and
Hankel functions, J, («2) and HO(E) (<1), this may be

written
oL . cﬁ'.a.x /7-_1(—' /f-g / . — *
0 /**, oy -e:::%,)vvzis)f)dz?
i ﬁ”’(y) 7=% L) ‘o iV
’ Viex [ @) [f 5
.rzﬁ"’)()’)
- = Y4 zr./ n) (66)
/7t X
or
PL . otMt R W‘Rx /——'/-x 75E
29

-;nA)W(f)’)JE FS] (67)
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where, after introducing the relation of eqn. (52) for

the integral occurring in the last term of eqn. (66),
the function S is given by

5____,-,(330,)/- L7, (0/12{//;;.):2 :V{)J)

e TR A

“ﬁw[--’- “’(n)-%#’%‘ )

(R i+ 5 rim]]

By using the value of Vadt (Y ) given by eqn. (54)
it may be shown that:

S= /t‘(n. M) =/ * ....(::) /[ffﬂ-ﬂ)f—j]]/f/*} /f)’)a’f

(69)

where € (.42, M) has been defined previously by eqn.
(55).

By substituting ean. (69) into egqn. (67), the result
1s finally obtained that

57 . »/-3_rzx
,fj (Wff,)’) v//fﬁ){f'/*.\} l _ _s0aA,
o

m;r—f)d (G eanrr{ G5 et
cn
//f 5 ey )a/f> (70)

—Z =_: 4” .D.X / /*‘E / _ .
/ﬂfd %[W(F Y) = T R4,
/+E [+ &
/ \/ —‘[//*:v T 3(12,/% s)/a’f (71)

/
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where
S(a,ms)=Cla,m+ i, r,s) (72)
and
. /-,—(-U L .
T(n;/@’)=(/-;(zJ ~/ /0(-0-,/") T (73)

Eqn. (70) shows that, as in the incompressible case,
the aerodynamic span effect manifests 1tself as an addi-
tive correction, o , to the basic two-dimensional func=-
tion, € within the limitations of the lifting-strip
theory.

Upon substituting the approximate expressions de-
rived in eans. (53), (55), (60) and (62) into egn. (73),
it may be established that, to terms of first order in
frequency and first order times the logarithm of frequency,

o~ 1s given by

. ﬂ‘.ﬂ.@dz +2)
e A o

+(ﬂ,R)*"(’-,z 2"/‘77‘,@’:27)‘/64‘\’)7‘-2]} (74)
where the aspect ratlo for wing of elliptical planform
isR = 43/77’ .

By introducing eqns. (55) and (T74) into eqn. (72),

the following approximate expression is obtained for § :
2400

S(a,mR)= ,0,421-2, (/quu)z/_(/a‘ﬂ) (/--—’]ma»;gm-a-#’) _/(75)
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In later work it will be convenlent to refer to the real
'and imaginary components of this expression. Hence the

following notation is introduced. Let
/ . J
$=5+:8"

where

’ R
S ‘ﬂ'i+2 v ('76)

"

£ - (,aaa)’[/e'ﬂ) (/—-—ﬁm,zrr/e»n+-—)]

It is worthwhile to pause at this point to gilve more

careful consideration to the implications of this func~
tion 5 , which 1s plotted in Fig. 2. S (2,m R)
may be recognized as the three-dimensional analog of the
function € (£2, M) which is the compressible versioxi of
Theodorsen's function C?(}ﬁ) . As a matter of fact for
zero Mach number € (£, M) represents the first few
terms of the series expansion of Theodorsen's functlon
in the neighborhood of the origin. It should be noted
that, just as in the incompressilble case, the imaginary
part of € (L2, M) has a logarithmic singularity in
its slope at zero frequency. The same 1is not true, how-
ever, for the finite span function ;S' which 18, fortue=
nately, linear 1in frequency within the limitations of the
assumptions in 1its derivatlion. It 1s this conclusion

which justifies the work of this thesis. If the loga~
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rithmic term had not cancelled out, the assumption of the
 ex1stence of a first order in frequency theory would have
lacked the deslred mathematical rigor in the same sense as
Goland'!'s polynomial approximation in the two~dimensional
incompressible problem which was discussed in the intro-

dﬁction to this thesis.

From the expression which has been derived for the
pressure on the upper surface of the airfoil in eqn. (71),

the differential pressure distribution may be written:

T, v, 2) 2 -G ima ﬁfwy y)/ [CH/EE 1
_ 7=-X'[7+¥§ __AE
‘ea, //*x // = l//+x/ S (2, M &R) a'_ti'/ (77)

or by introducing the definition of W given by ean. (13)

and by considering airfoll motions which are independent
of spanwise position, it may be shown that

PrAY.4 JAard oAyt —
wixz) - L miax /a’;-/f)e 4 “":‘/’-/—7'/’_"‘_'
773 7, /-8 X-§
_£a, [/1-XE+ TRENEXT) (X [E
2 /-x¥-Yr-52yr=x7) V /#XV /- g

- § [{=X [1+¥ 8
S//+x //_5/45] (78)

Upon iIntroducing the transformations X = - cos & ,

§ = - cos @ , and after some trigonometric manipu-
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lations, eqn. (78) may be written
»

' faot ‘agd o d .
. M ANosO) __. AMALCo3 S <
N a7, t):-—L———‘& A ] /w—(a)e‘ /- sin= 9
/ - /
o

/7 Sin 8 (cos §~cos8)

L2

+ s/in 8, h(/—cufa-e,)

-cos(&rS8,) ‘
’ (cate—SCot-;-)(/- 4'459/)‘/0/6, (79)

For purposes of practical application, it is con-
venlent to express the downwash function &~ (®) in a

Fourier seriles of the form

— ce?Z Cos O oo
w-(8)=le ¢ @ (e r23 ezco:)za) ‘ (80)
ns/
where
/ ‘20 cosE, __
L=/ e” " & (6,)d8 (81)
o
and
, v d
- ‘rENL oSS,
n ~”/” e‘” e ar/é,) cos )26, dé, (82)

o
Then by application of the generalized Parseval formula

as discussed by Greidanus and van Heemert (16), eqn. (79)
for the differential pressure distribution may be expressed
in terms of the Fourier coefficlents of the downwash. The
process 1s described briefly in Appendix G for the sake of
completeness, but for the mathematlcal details the reader

is referred to the above mentloned reference.
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Upon the introduction of the results presented in
.Appendix G into eqn. (79), the following expression may
finally be obtained for the differentlal pressure distri-
bution in terms of the Fourier coefficients of the pre=~

seribed downwash on the airfoll.

. 0[2 ‘bz‘ - '”Jﬁea;é
Tge) 2o o }{[’(xs-ene cot 2

/3

0 Vo3 . :
"".25 “zf‘i{’?z-/'ﬁn,ﬂ)"ﬁ]”" "5} (83)
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E, Forces and Moments

Expressions for the 1ift and moments may now be
derived in terms of the Fourler coefficients of the down=-
wash. The total 1ift force acting on the airfoil is glven

by
r

L = %/77'(9,1‘) s/ 8 6
o

where S is the area of the wing. Substituting egn. (83)
into this integral for the 1ift results in

— /%”zsem-‘ ) Z’ cn
L= (/0 -~ ""/D 6‘42"-—-4-»2":, (n-/_ezﬂ)
S ArR
../p] S/n nai/ e .[14059;”2 O/ (8’4-)

In the following work it 1s convenlent to use a notation

introduced by Timman and van de Vooren (13) where

”‘
e mrZ os &
ﬂ; (7%, P -‘-'/e CNLLA03E s nO I8 _ (85)

P
Then

' ”y
_iM30 005 & . MR
/e ‘ cat—fa’/n - =/e ‘ easﬁ//f ca:é)a’&

o o

=& (mie,0)r @m0, 0)  (86)
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and

4 ”w
~im21c036 . ) -iMm¥Laos &
/e ‘ ° S/n n6 smede =/e‘ /;_’cos(n-/)s
o o

- 2’- cosln+/) 9_/0’9

/ * -3 _ * 2 '
_-‘_2_/,;'&_, (m°,0) /E,'”/(M_a,a)

so that, by using eqns. (86) and (87), ean. (84) for the

(87)

1ift may be written

P‘aage-:’wt -
PP ey P APy

m ”
2 /o - - * (20 o) -2 (M2
+nZ£/’ 2n (e"/ e’*’) %-/ (r.0) s 4 ‘QJd// (88)

Similarly the moment about the midchord of the airfoil is
»
52 [7r(52) cos® sinOd8

2 A ”
@”251 fot
= 7 e ///}(@-g)f,?/cot-f-

2 ‘R . -imincose .
*’2”%; i-;-t //;,_/"/f’ﬂ )_,a’z s réle ‘ d cosd smdJ6
(89)

and after evaluating the integrals as before in terms of

the function defined in eqn. (85), this may be written
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finally

cet
M- 03313 //}’./p -2) *p]/:g (m7<n,0)

7‘3"/%*/ ‘7.[20)*“‘/?//‘7“"-‘7-0)] IZ zn( n=s

=% ﬂ) % ] [ /?: -2 (”z'al a) -"eniz /”Z'QJ o) ] / (90)

The final aerodynamlic quantity to be considered
1s the moment of a control surface about its hinge

line at @ = ¢ o This moment may be written

N = ‘9] ;‘/6 2)(eos @~ cos &) s/n 948
ﬂ,ﬂzsle‘“t/}//;f(p -p),«p]cat =
*22 /P -, n-r-/}
- ,o”_-/;,',,, ne _¢”4_Q.aose(c‘s¢ .cos a)sinodd (91)
or finally

a(/z‘s, et

+ (M3, @)[cos @ - £ (730, @) - }1 £, Z)

__.,q 202 gv)/ .zn//a s ~"ars)

-,a]/ [ ,(720,2)- B, (#3ia, Plcos @
,z[e'z*.z (i, @) -, (720, ?’{]/) (92)
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Consistent with the order of accuracy consldered
in this thesis, the following approximations to the
functions R;(/V‘fn, #)will be made which are valid to
first order in frequency.

/?o*(/‘f‘a.ﬂ-, @) = 7r-@ 'fv.d'/‘f‘a.ﬂ. sin @

/?/*(MzﬂJﬁ) Z-sng —t'/‘fzﬂ/.z;(ﬂ’—ﬁ) —;’-s/nZ?/

S lria,p) = _Shng wimip |Snn P
2 2ln-/)

sin (nr)@
> N
z(nry _/’ n=2
and forg) =0

R mE2Q,0) = 77

R M2, 0) =-imia
4 2

<

,e):(/v".n.,o) =0 ;=22

L(93)

> (o4)
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F. Fourier Coefficlents of the Normal Veloclty
Distribution for Particular Airfoil Motlons

For an airfoll which 1s undergoing uniform vertical

translation and a rotation about 1its midchord
cwl
H=e Pl +8x) (95)

and so from eqn. (11) the normal velocity on the surface is

oM < .
77 L X74 24 =le “? Z/f(,-f-ﬁaosé)"-ﬁ—/ (96)
ot X

By defining another functlon simllar to that‘of edqn.
(85) such that

”r
@
/e)z/ﬂ‘erpjz/e‘” L2 cos B, cos 2 8, d9/ (97)
@

where to flrst order in frequency
2 - _ s 2 .
R (M2 0,D) = P ~dM UL sin P

£ (2, P) = -5/ ﬂ'/vzfz(_”_'jf-.i : )
7 ¢ n @ 3 b S/ .ZP

. (98)

. nn :
£, n0,g) - Y imia) Zn el
” 20~ *rl)

‘vl =
smin-/)P ;22
2(n-7)
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and by substituting egn. (96) into eqns. (81) and (82),
1t may be established that

2 =;;— (z}f/?fﬁ)/?o (#7%0.,0)-i g BR (130, o)‘/ (99)
and

4 -2 ftrra) minian-La)e,, a0

* R, (M"n-,o—)]/ ; 2/ | (100)

For rotation of a full-span control surface with

hinge position ‘9? at its leading edge

A =0  for 0% £ 9’
»(101)
W= Ch(cos@-cos) e for pLoOL 7
and therefore § _ -
. . 3
ar =0 Sfor 0£686<£ g
| . 1(102)
w =UC/-/+¢'{(cos @ -cos a)je‘“’t for PEOZ7

The relatlion between 9& and the hinge position in
terms of percent of chord is shovm in Fig. 3.

The Fourler coeffleclients corresponding to this
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motion are

p- _:7 (32, @) v if cos PR, (47, @) p B (102, p)/ (203)

and

A =;c//e)& (#2720, @)+ f cos P R, (2, ¢)
- .‘__’t.. 2 (”Z-Q,ﬁ)*/en-/ 6@{()_}¢{4// IR =/ (104)

In summary, then, the Fouriler coefflcients for combi-
nations of all three types of motion, after taking into

account the approximate expressions of eqn. (98), are to

first order in frequency

-:,{/#57«-—/»/—? HQ/}»‘ 2N - /r’—)eosfw

~(7-2M%) sin ;{//

Clqzﬂ Piled

= (A - .5//—2/!‘) +-—-— -sin @

+ z.a.[ 7 ¢J{/ 2% - L sin zg?]/
' >(105)

and for n =

. c :/'n.)z¢ el /- 2
M == " * L7 *IJ”‘]J/'n(n-/)?
7, od 2 2(n-5

_ L
[+ /)/v]s,;b(nﬁ)g—?//

niners)
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G. Aerodynamlc Derivatives

Let the total 1ift force be written in the form
L= ﬂzﬁ'e‘bt AL+l ) rB(L il ”/f-é’(z'-ﬁ-zzll) (106)
7 V4 'l 5" ‘g 7 c ‘

where the notatlon LA, LR, ete. 1s the obvious symbolism
first introduced in eqn. (76). Then after substituting
eqns. (94) and (105) into eqn. (88), it may be shown

that

,_ 7/ { 2] s s’ PR
é E — -'5 H —i:_ _.___.___,_ 2 10
/7 / 4” r7s 2
' =L/ e) . B8 L/ 8 1, 30 BR
and

¢ _/ . ” ;” :
£, = ;/fS),I{'f» :-..{./é’_h_,‘_f. +__/_¢' B AR

273 272 pRt2
27 ! AR
roi(5 2 -8, 22 (209)
Plots of these 1lift force derlvatlves versus aspect ratilo

for several Mach nunbers are presented in Figs. L through
4,

Similarly, writing the total moment about the mid-

chord in the form
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| e f 2 g y . ”
.”zy/ga-z‘svlelw[‘-:fﬂ(%f(%)fd(}f"s *‘%)
* (27, ‘» z?‘:@”_{] (110)

ahd substituting eqns. (94) and (105) into egn. (90)

results in

t g LR ]
= 95;; )] (113)
Plots of these moment derivatlves versus aspect ratio for

several Mach numbers are presented in Flgs. 15 through 25,

Finally, by writing the total hinge moment 1n the form
_ 2 ‘el f . V2 ’ ”
N =7wpld Sle :4/7(/1; e N ) r BN, + AL

P C(N 4 ") ] (114)
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and by substituting eqns. (93) and (105) into egn. (92)

 then it may be shown that

£ e
/ BAR
+?-¢:,+31é553 RBRE2
¥ B+ B, L)

Plots of these hinge moment derlvatlives versus aspect
ratio for several Mach numbers and hinge posltions are

presented in Figs, 26 through 42,

The hinge position functionSj?} are defined as

follows:
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ﬁ;:—;,—(-;:/n¢+f;,nz¢)
2= (8,-22)
g ;/:[7)" Qfﬁ/”” ¢)£’0$¢ f:/w¢ L (118)

+—.5m.z¢ -f——-.f/)z..?,@]
;;J[ (77 &) f—.f/n¢-——5/n3?17
[—+(7r DI e (- @) cos @
"(ﬂ’ B)sin @+ (7-P) 5in2QP
+z{7/—¢) S/»pr;cos @
_._1 cu.;,aa.._'_a,,,yj
ﬁ,;; 20 =@+ (7~ ¢)eas¢f3;m_§p]

77/[ (7 - ?7)*‘—5'/'&?-'——-5022¢
-é—:b;.?d

NN

"
N~
»




);7

'j/; [ (rr-@)-2(7- p)co:?—-—-snzﬁ ]

.,..5. .s‘/n.Zﬁ f:z/— .r/'n.-?ﬁ_]
/ .

¢/,;-= (_?,-3 "z;; .s‘/nQ)

Q;‘ ;r,-[# y--—-{n’ ¢jco:¢--—-—-:/n.¢
+;—.sw».z¢ +—- suz3¢_7

= s [‘:5‘—(”-9”)" TP g
_..._..(pf..¢) 5/n2¢.—..’.(ff—¢):/‘m3p
..-—co.rﬁ—-—-c'o.f.zﬁ ~L casJP +;3 cos f?] . (118)

/,9 7)’2[-_— +-(” @)% -(7 - p)E cos @
__(,y-¢)3aasz¢ —-—{7)'-¢).rm. 24
+-—(;9’ ¢j5/n3¢f—aa:¢ f—605—3¢

; cosdP -._/. cos 4¢]

ﬁ/;—,;-(?/-y- s,;,_yz)g’_
8.,° (857 +2,)

" (4,-2)

Simlilar expressions have been tabulated by Kussner

and Schwarz (24) and by Theodorsen and Garrick (25).

cont.

It 1s interesting to note where these results £it in

with respect to some of the other theorles proposed.
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Comparisons can be made in three limlting cases. Iirat
is that of zero frequency in which case the results of
this thesis reduce to preclsely the same as are obtained
by using Prandtl's lifting~lline theory. Second is a
comparlson with previous results for the two~dimensional
compressible case, to which an accurate solution has been
obtained by Dietze (6). Radok {26) has obtained an approxi-
mate solution to this problem in which he supposedly con-
sistently retained all terms of order less than frequenay
squared. Hils result 1ls Incorrect since, by erroneously
starting with a Laplace equation rather than the ﬁave
equation, he loses a term which 1s a function of Mach
number and first order 1n frequency. In the plots of
Fig. 43 Radok's notation has been retained for ease of
comparison. Shown in Fig. I3 are the real and imaginary
components of two-dimenslonal 1ift force due to trang«
lational displacement as a functlon of reduced frequency.
Also plotted are the exact results of Dlietze for Mach
numbers of 0, 0.5 and 0,7. Radok's and the results of
this thesls are exactly the same for the imaginary com=
ponent in this notatlon and agree very well with Dietze's
theory. A very definite discrepancy exlsts, however, in
the values of the real component and for all Mach numbers
the results of this thesis are in better agreement with
the exact theory than are those of Radok. It 1s also

Intereating to note where quasi~steady theory fits into
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this pleture. The real part in thils notatlon 1s taken to
- be zero for all frequencles and Mach numbers. For the
Imaginary part a straight line 1la assumed which is tangent

to the exact curve at zero frequency for each Mach number.

The third comparison which c¢an be made is between the
results of this thesis for zero Mach number and the three-

dimensional incompressible results of Reissner (20).

Plotted in Fig. U4 are the real and imaginary components
of § for the case of zero Mach number in comparison wlth
Reissner's more exact theory for aspect ratios of 1.5, 2,
3, 6 and infinity., Note that the agreement is very good
particularly for the finite aspect ratios.
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WING WASH EFFECTS IN THE

VICINITY OF THE HORIZONTAL TAIL

The taill behaves in a manner similar to the wing
except that, in addition to considering the actual motion
of the tail surfaée, it 1is necessary to recognize that 1t
is in an oscillating stream due to the wing wake. Cowley
and Glauert (27) made the first attempt to account fér
this unsteady flow condltion by approximating the down-
wash lag by the time required for the flow to travel from
the wing to the tail. This effect depends on the trans-
lational acceleration ““/o/# and therefore appears as
acceleration derivatives.ﬁfg; zuniizd; in the quasi-steady
theory. It 1s important to note, however, that they arise
from a different cause than that usually assoclated with
the acceleration derivatives obtained from unsteady flow

theory which are due solely to apparent mass effects.

Unfortunately, as noted by the author (18), the phase
lag of the downwash 1s the most lmportant unsteédy flow
effect in the dynamic stability analysis of conventional-
type aireraft. It would therefore be worthwhile to obtain
a better approximatlon than can be expected from the dlrect
time delay of Cowley and Glauvert. Moreover, their method
only takes account of the lag due to an angle-~of-attack
change of the wing, whereas any net change in 1i1ft such
as might be produced by a pure pltching motilon wlth & =0



must affect the downwash in the wing's wake.

In thils section an expresgslon for the downwash in the
wake of an osclllating wing wlll be derived which 1s compa~
rable to the theory for the airfoll.

With some small changes wlth respect to the integrals
to be considered as principal valued, an expression for
the downwash at any point In the plane of the wing has
already been derived in egn. (28). For present purposes

thlis may be written

Wi y0 2 f I K [ex-50:5 [ o5

o /f ;ffj 2 f)« £), (- 7),1]0/;/?

WNG

¢.ﬂ-§ a _
ff c[(x £,0r-y)# [454y (119)

WAKE

vhere A and ¢ are glven by eqns. (29) and (30),

regpectlively. The reasoning which makes the principal-~
value Interpretation of the pertinent integrations valid
1s the same as 1s used 1In the wing theory, and, hencé, no

additional compllcations may be expected.

In the wilng theory it was posslble to simplify
certaln of the double Integrations of eqn. (28) by re=-
sorting to a "lifting-strip"” theory. The assumptlon that
/%-7/ >/ Xx~¥/ over most of the wing scemed quite

Justifilable 1n that problem. In the present case, however,
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where the point of lInterest may lie several chord lengths
-downstream of the wing, this assumption is no longer valid.
Rather it willl be assumed that the tall length is large
with respect to the chord length of the wing and, hence,
the chordwise variation of the circulation around the

- wing has a negligible effect upon the downwash at the
horizontal tall. In efflect this assumes that the bound
vorticlty 1is concentrated along some line, say X = Xa»

.1n the wing.

With this assumption, and by using eqns. (18) and
(B-3), ean. (119) may be written

Wik p0) = f ggi_—ds W/X-Saf/g/fn)/—
m,c/x ¥ 0 x.- ;/)_Z[a,s

/

v L& / 72T (x-xa), (r-plif [op

j]f{, /7 e [ox-51,0r-piit ey (20

WARKE

The following approximation,consistent with the
assumptions discussed above, wlill be made to the first
term on the right hand side of eqn. (120):

2P(E ¥ 0) . /‘
o =
”’f( X-¥ >% g or/)( x.,) SE df
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So upon introducing eqns. (17) and (18), and by neglecting

frequency-squared terms, this expression may be wriltten

— - X
Ny PCE Y, - Fpe T
5‘—/ XE py L T ARK-XJ
. 5c3) -l L X Y
_ s e [i?’,z. ﬂ,,_;n/x—x,.] (121)
27 2

It 1s shown in Appendix H that the second term on
the right-hand side of egn. (120) may be written to firste

order terms in frequency as follows:
o0

mf/X-5/
-,;- f{;,ya)[ s a)(f/x—s/y / %3

i ﬂ"”(r)e SeRXx
27T
It is necessary now to approximate G[(x- g)J(r?)J-/ ]

to first order in frequency. This has been accomplished

(122)

previously. By introducing the results obtained in
Appendix C, it may be established that

- 2 . 2
[(X X.), (¥ 7){/ Vex-Xa)2 +CY-9) /

CX-Xe)(Y-y) "7y

- /Y"7/ _ é.”’f/Y'yl (123)
and that A Al 20
X-8)% 4 (Ve p)* y-

4[(-""5), 0,7)/,0 - YeX-$32 (VP R /Y-p/ (124)

(X-$XY-7) )’-g CY-pXx-¥)

Now substitute ean. (124) into the double integral
over the wake reglon of eqn. (120) and consider the
integration with respect tc ¥ .
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| f:-in! )FX".F)'W-(Y-WE; /__ /v-9/ (j-(a *
e (X~ E)(Y-y) Y‘} ()’-71)(-3-’) &0 )

T r X+E&
X—X
- / [ 7, /)'-f/
ao A(y-p) vy A(Y-y)

+/e-m.x ~cA VA"#-(V"?): / /y-y/
Z A(Y-p) Y-y /1()’-

v, 2/Y-9/ _/  Y-5)% (rp)*
Y-y /Y-yl Hx =) k(e y)? r-7

*X-Xr _ /y-y/* /Y-?/e,,hx
SRS B

where F (/Y- 7/ ) has been evaluated approximately
in Appendix D as

A2/ y-n7) (125)

Fl(a/y-y/) = /--—--,am,za'n /y-n/ (126)
Upon introducing eqns. (121), (122), (123), (125),
and (126) into eqn. (120), it may be shown that, to terms

of order 2 In 2 , eqn. (120) becomes

/'v('”(X) -J.Q.Xr _n_/-,(.?)(),) -c.‘lx/
4 (X'” o) = 270X -Xa) z

" }’J'I.(X-xr),)z/ = (._v)//y Vi }/X-Xa) +(Y-7)z

d7 OC-Xa )/ y—y/
A [ N X V/x-x.) Zatv-p®’
/}’-7/ X‘Xa (X-=Xa) 1 Y-9/

X Xr_ £ g —JoxXp)® g
/7—7/ X-Xa 2 r-p/

+A»(/)a7/f/(x-x,-)=,~ (y- 7)‘)/2 (127)
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For the evaluation of the downwash along the line
Y = 0, 1.e., in the plane of symmetry of the aireraft,

ean. (127) may be written:

- - ..ﬂ.x — . .
FtPpp) T ‘n/””’/o)e"ﬂx/—m’
2(X~Xa) 2

w7 /9/

+ B §LL(xX~X7) +>7] 47’f c?i ../?i/.

) Vex-xa)% 4 Z‘ o 1nv |
XX (x-x) I/ R[ T2
W d (CRNLTTIINE. SUN €38 7l 2

(X=-Xa) 1Y/ 7/ /9l

X 7 \
.A.,___)ra b f2 ‘«4"-//7/*M’-Xr)‘+ 7* 27 /47 (128)

Upon introducing the evaluation of the integral with

wi(x,00) =

*

respect to 7 as given in Appendix I into eqn. (128),
and by retaining terms to first order in frequency, it

may be shown that
— 70)a) m.x,./" ) ) 77%%,) /
wix, 94) = 2-77('\’-/\1.) 2w(X-Xa) 27 X=X

]{X-X“) 452) E(CR) QL el

X /é(-—x,-) »(3s) z [ ] |
—— = A (R,)-2£(R)
| Xy XX+ Gas)*
a’“X‘)/.?s [“)/> (129)

where K (&) and E (£) are complete elliptic integrals
of the first and second kind respectively and where &
and,,&l are defined in Appendix I. Hence, with the substi-
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v d
tution of s = Py AR as before:

D fo) 2 /i;ﬂx‘}’*.xgjjz

17%4 ) =
Wik a0 =2 /64? /X-X)__ﬁ_ s
. il X
ety M-S
_ 2 ﬂ'/R
Nz ==y D
Xl KX-X"J%/&’ Y- ﬂ//9 | (130)
where (X—xt)_"";L.
( zon)
/

It has previously been assumed that the tall length
is large wlth respect to the chord length hence, hlso,
that Xp = X, is small with respect to X. It willl there~
fore be assumed that X, = X, which implies that as far
ag the effect upon the downwash in the vicinity of the
horizontal tall is concerned, the wake region may be
considered as starting at the position of the bound
vortex rather than at the traliling edge of the wing.

If, in addition, 1t 1s assumed that the frequency of
the wake 1is sufficlently low so that the wave length
of the stream is large with respect to the chord length



57

of the horizontal taill, then the effect of the chordwlse
variation of downwash on the tall may be neglected. Let
]‘1‘ be the distance from the forward quarter choard point
of the wing (assumed position of the bound vortex) to
the mid-chord point of the horlzontal tail in the plane
of symmetry 61" the aircraft. Then with X - X, = lT/l

end X, = Xp = ~ %

— L APeo) S 2 £ £a) P4
W&y, 40) =5 é’“ +Zr # Ry - —

4 2.
2oL, //}ae)
X-ani "R A |
2 ECR) ! -!-f- ZM{/) (131)
It has already been determined in eqn. (60) that
77
= 03) .
) = (60)
/%(ﬂ,ﬂf)f(VQcos 6,48
g
where by eqns. (54) and (13)
/
) e £ /+5 Y ]
/"’2):-:.&/—6—6‘ (2, M) P F(§) e ;a’.F (132)
Upon substituting ¥ = =~ cos & ; » and by introducing
eqns. (81) and (82), eqn. (132) may be written
/7 --277’;—-6 /.Q//‘f)(/g -,43) (133)

By substituting eqns. (53), (55), (62), (133), and
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>
8 = — R into eqn. (60), the following expression may
9.

‘be derived for /7 “Yg)to first order in frequency:

70%0) 2 e e (A-R)freiaf ﬂk*z

23R */ y- ‘
b L2 8 ,Zn.zr/a/R)] (134)
PR *+2 /3AR:£8
The Fourier coefficients of the downwash have been

evaluated to first~order frequency terms in eqn. (105)
so that for wniform translation and rotation of the wing

.. EMR0L (L2
A=~ = “fA/- > ):ﬁﬁ /+—;—-(/-—2/‘/‘/ ‘ (135)

By introducing eqns. (134) and (135) into egn. (131),
by letting

- L -iaminx
W(x,40) =,;—e ‘ & (x,0,0)

and by retalning terms only up to the first order in

frequency, an expression for the downwash is obtained

as follows: ,
— Zaddin £ :/4)
it = e ((et42) /;« £
2.4,
rerfitArB)f- 7 Wy +,o»R +I/":/‘U

_zﬁﬁyf__mﬁazzzr 4 En%/_444+/
AR
- ﬂ R O /2 ,6/'R+.a

Yy /34?#2 bn 2 ”75A?"(2 "7)A(j7

,;.cz[/:,{ﬂ)-—-— ~Z(s zm’z—///ﬂ ;f(")]) (136)
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If eqn. (136) is written in the form

wi,00) =Vs ""‘"f{//w;,’f cur} ) Bfor "'”‘;2/

then -
/. AR 2l 4 E/a‘)
”A —/@ﬂ'f.z /;A *jr *
402”-: @R oy, T _ 24 /
a  [GRrz 7”2 ame IR & - jpch)
M IR
—2ek) +2 L &, 2 L LA ﬁ
“ < 4y A?JZ fk, SOR+2
PR OR /% _
/3A?+2 lawvfz'thﬂzgyyﬂvaaxrl<; ¢Zé?Z
/7 / W
Wg = 44
o > (139)

Ys - “’ (06/) -? ECR)
+2 2 19’”*2 PR ‘? £

Plots of these downwash derivatives versus aspect ratio
for several Mach numbers and tail lengths are presented

in Figs. 45 through 56.

It is worthwhile to note that in the steady case
these expressions agree with results presented in Durand
(28) for the downwash in the vicinity of a horizontal
tail,

% (138)
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STABILITY DERIVATIVES

In estimating the aerodynamlic forces in the preceding
sections, 1t has been convenlent to use an axes system
which is parallel and perpendicular to the average motion
‘of the airfoil. Hence, the X axis is always horizontal
and the wing rotates about a point on thils axis through the
angle B or the point moves downward a distance Al from this
horizontal reference axis. This axis system shall be re-
ferred to as "flutter axes" and 1s the system used by
Theodorsen where Al and B of thls report correspond to

Theodorsen's /L and o regpectively.

In dynamic stability analyses, however, it 1s more con=-
venilent to use the stabllity or fixed wind axes which are
fixed wlth respect to the alrfoil with the origin at the
center of rotation and the X'-axls always directed along
the wing chord. In this system the velocltles «w~ and
q= 99/4¢t rather than the displacements are the dependent

variableg of the motion.

~—

/ e NEE N TTRE 71
gOYVI 74 76 wr il
/ 4 o S /M.smﬂfﬁ” - 70 ~4
/4 > e A PLESNTRE LLATTER X
== AXES
/ -] == e

/ T,
L ,9*;*—

\ 5" — X Fd

\
\ /
—~ ar




61

By referring to the above sketch the relations among
-the respective veloclities of the two systems are seen to

be

o
A =arces®- Vsiné
and | r (110)

U=z=Vees® » crs/nd

¢ , A , and & are precisely the ¢/ , Al and B used
in the preceding sections and V/ and «r- are velocities

along the stablility axes, &, 1s the ordlnary instan-

o
taneous angle of attack equal to w/l/ .

o
If & 1s small, w<< J/ and A << ¢ then eqn. (140)
may be approximated by

é°=' w - Ve .1
and | . (141)
v=V

J

To the same order of approximation the difference between
the 1ift force perpendicular to the average wind direction
and the 1ift force referred to the stabllity axes is negli-
gible. Also the moments are unaffected by the transfor-
mation and s0, to define the forces and moments in terms

of «r and & of the stabllity axes system, it is only
necessary to replace ¢@.€A4 , B and C by & -6 , 5
and 3—, respectively, in egns. (106), (110), and (114).
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For an airfoll which is undergoing uniform trans-

- lation and rotation about the point x = bl, the negative
11ft force may be obtained from eqn. (106) as

Z = mﬂz‘s/‘;{/A-ﬂé}AA fﬁé{/

=S —-Al. * 8L, - ‘2"544/

. b .
/gﬂ‘é'[ Vi +6(z -Z, - "‘Ze a)/ | (142)

If the wing characteristics are denoted by the subseript

( )w and if 1t 1s recalled that only undamped oscillations
&>
are being considered so that @ = cadcor and & = c'e> & ,

then eqn. (142) may be written

Z cs—oprs [La L e Z
where v v
Z = .zzxz ]

(144)

(

/\
:',\

\_S

/7/ /-“” dh J

Similarly the moment about the point of rotation
x = bl for an alrfoll undergoing uniform translation

and rotation may be obtained from egn. (110) in the form
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7 - LA ﬂ?ﬁ/;‘{/A -84)2¢, +aﬂ;,_/-— Zs0

=74 ﬂf/ﬁ/ffé'{' ~64, )+ é’[ﬁg -7,

"/‘a"éa)"‘j‘e‘/"{x; —é['A‘)// | (145)

Hence, for the wing, eqn. (145) may be written

_/ 2 e l
21, -fﬂ”"wé;v/y M(/ ”z [ ‘e/ (146)
Y. 2

where

(g —.z:r/ - é'é';w)

s
(7/'7 /”’[/‘" é/ // | p )

)

(é-e/-/ﬁ//”/ (2%) - o (52)
() - /// |

The same procedure 1s now appllied to the horizontal

tall forces and moments after introducing the proper area,

chard length, efficiency factor, and reduced frequencles,
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d corresponds to C and denotes the deflection of a
-full=gpan elevator. The tall characteristics are denoted

by the subseript ( )T'

If the tall length 1s great enough, it is reasonable
to assume that the.rotation of the horizontal taill can be
neglected and that rotation of the airplane as a whole about
1ts center of gravity causes a pure translatlional motion of

the tall for small disturbances.

Hence

2, =y s (- 22 ) s, *ﬂ] (148)

where £ 1s the downwash angle which may be obtained
from eqn. (137) in the form

- Py

wry + 8 lay ~er; ) (149)

1}
g

Substitution of eqn. (149) into eqn. (148) results in

w 4,0
53 =7 ‘dedf 6%7:~-53--27-¢a‘vté940'-<94V',14 f¢£4.~}7

which may be written as

54
IZ — Z
Ty T ’(Jf/] (150)
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where
S, ]
Z_ —2#——4 (ﬁ- )Z-
&)
.zzv 23 /7_.“r )
( #*
—Tffi '247_47%5'

> (151)

”

.—..‘fZ‘g" 7 -3-‘27' g ﬁ';,_
(%) s> 5, L‘rﬁa ¢ 2 =n /?’
v

Z =
(0, Sy

Zrc = 27 ‘;'7"67'/ 4"7‘ ?
SR 2 7
(7)) #* B

Similarly the moment about the point of rotation due to

-

the horizontal tall is
- e <l or -era
g5 20 5, | ‘ﬁ/” *'—"4

24y
# J/Yr > J““r c’_] . (152)

which, upon substituting eqn. (149), may be written

50
---/aﬂ’,c S, =2
v r.e: SN
7 (75

5e
7‘-——-” 7> I r —— LY (153)
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where e ,
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7%:!) P* S, en] ew /Z-Q / c
w, ’ 24,
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1y # s, Aw/ 7 ra ) r(154)
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Finally the total hinge moment for a full-span ele-

vator may be obtained from eqn. (114) in the form

W= 7-—-/3# 5[{(,4 +-—3),1/ ,r-cW]
or as in the preceding equations
4,
_Z_-;-/ayz [/w,‘_’;_y/y,;m] (155)

Eqn. (155) may be written in the more convenilent form

2 -t
/V"_/ﬂ ww[ (w' ”z”a?.e

——

o2

2 /"7 )+a (.;.e/‘/ (156)
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='3” “5'7'“‘7'/ 2 £y ‘0'4” ”‘;//V/ - > (157)

~d

The primary advantage to setting up the forces and
moments in this manner is that the resultant stability
derivatives as defined in eqns. (144), (147), (151),
(154), and (157) are independent of frequency. The
problem of solving the longitudinal equatlons of motlon
of the airplane including the first order in frequency
unsteady flow effects is, therefore, precisely the same

ags 1s encountered iIn the quasi-steady approximation.

For estimating the effects of the fuselage, 1t
is convenient to use the unsteady~slender~body~theory

results as discussed by Schalin (29) from which the
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- following expressions may be obtailned.

/ ar wrd oL
Z=pt0S8,[—2 +—2 ,+r—=g
‘s 2/ w [ g ZF£ PR X ‘“ . (158)
& 2 (%) ¢ (42
where
=
S
Z  =-2 i
7B
2 = -2 Vocum & }(1
s . 59)
,%rig) S, €
Z PR Aol
A, .
-4
(59 Sw J
and ]‘B 1s the distance aft from the center of gravity
to the base and S]_3 1s the base area.
Also the moment about the center of gravity 1is
M""‘L/Gﬂzﬁr& g” ,c...:._” .,...._.ﬁﬁ (160)
£ o qle wow g T v* ol ¢ 160
/ ”/ / u/ / g_-g
where E
_ vacorse —~Sg 4y
Ly T 5, /
H
XMy / s > (161)
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and 1N is the distance from the center of gravity to

. the nose.
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LONGITUDINAL EQUATIONS OF MOTION

In developing the equations of motlion in a form
amenable to including the unsteady flow effects, the
following assumptions will be made:

(1) The effect of variations in the forward
speed on the longitudinal motlon wlll be neglected.

(11) No elastic deformations will be considered,
i.e., the aircraft 1s assumed Infinltely rigild.

(111) The aerodynamic forces derived for harmonic
oscillations willl be assumed applicable to damped

motlons,.

(iv) The control system is assumed to have no

internal damping or stiffness.

(v) The inertia forces and moments due to angular
acceleration of the control surface willl be neglected
in the equatlons expressing the dynamlc balance of

normal forces and pitching moments.

(vi) Small deviations from a steady flight path

wlll be assumed.

With the above approximations the summation of
forces asting on the alrplane in the Z-dlirection may
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be wrltten as

>-08) = Z == 5 073, - £
(& = /y (“j 7% e

éieiz »JZ
ér_ {%}_ M AV (Qi}

where J’22 1s the alrplane mass.

”—

- If the following symbols are Introduced:

[ =g

L J
A= e

_ *r
A /%

then eqn. (162) becomes, after some rearranging of

terms:

T2 o P[] 5
*[2e " Afs =0

Similarly the summation of pltching moments about

the center of gravity may be written

00— ‘—_ﬁ. 2
@é—ﬁ-*ﬁﬂ/cwﬁ[ (“7 ”zM”l

Ty e Ty

- (162)

(163)

(164)

(165)

(166)

(167)
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A, M0, L[S = O (168)
o 749’ .
where

) -41}

l = — . 16
A oz - (169)

'and I.Y 1s the moment of inertia of the airplane about
an axis along the wing span through the center of gravity.

Flnally the elevator hinge moment balance equation

may be written

Z S vyt (i -UB) +(Z, »ly Orm, L) S =N

=-/-/gﬂz,c S [=Zy 22,

# WY ) v (24
&z ¢
pee N o A N o (170)
or J /%1/ o) v (%g/
N, -4 [A{ X Y4 » A4
/&7“[(—4’/ e]/,, [t
) ian 4@4),1]%{

Y
+ /l@fx?g‘!yl-/(/ae/l];—o (171)
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where Ie 1s the moment of inertia of the control system

about the hinge line, 72, 1s the mass of the elevator,

e
dl 1is the distance of the center of gravity of the ele~
vator aft of the hinge line, 1el is the distance of the

hinge line aft of the center of gravity of the airplane,

and
. *Z,
(e = "’”‘;""c‘;;" (172)
Emod
b, = ¢ \ (173)
o Su Coy
The characteristic determinant 1s therefore
=z f'13‘5 “u A = *» Z, _*+E 2 R
7 Ty @y
oy w0t | ow
N, Mo A A Mgy VA AW LYYW o
%’/[/%’/ e 62K @ (B e
-/‘,‘é”ée‘%))“

and the corresponding frequency equation is a quartic

A7+ A+ 2t r A 2, =0 (175)

where
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APPLICATION TO AN F~80A
AIRPLANE

In order to be able to focus attentlion on the effects
of unsteady flow consideratlions as precisely as possible,
1t is advisable to adjust the theoretically determined-
stabllity derivatives go that at zero frequency of osclil-
lation they conform with the corresponding experiﬁenﬁally
determined statlc stabllity derlvatives. This adjustment
is particularly lmportant when aerodynamic theory is to
be used on control surfaces since leading-~ and trailing-
edge shapes, aerodynamlc balance, gaps, and boundary=-
layer characteristles have such predominant effects upon
the hinge-~moment derlvatlves that large differences exist
between theoretlical and experimental results even in the
steady case. In the following application, therefore,
certain of the calculated derlivatives will be replaced
by their measured counterparts in a way such that the
theoretical varilatlions of the alrloads with frequency
are unaffected but the correct static alrloads are pro~

duced at zero frequency.

Furthermore the relatively small contribution of
the fuselage wlll be taken Into account approximately
by lumping it with the wing contribution. The resultant
derivatives wlll be referred to as "tall-off" derilvatives

and will be designated by the subscript ( ) As

T.0,°
before, the contributions of the horlzontal tall will
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be designated by the subseript ( )T‘

Jet-damping wlill be neglected on the basls of the

results of the previous study by the author (18).

Below 1is a tabulation of the theoretical stability

derivatives, the experimental values by which they are

to be replaced, and the numbers of the corresponding .

figures which show their comparilsons.

THEORETICAL - replaced ~ EXPERIMENTAL | FIGURE
DERIVATIVE by DERIVATIVE NO.
Y 4 Sa
-~ ‘z—-—_
g f[w+ S (c‘ot)r:o. 57
oy Ve=5,4,
zv'//!f‘w ézAw)f-,z/?E__) (d""a)r.o. 58
..‘z Z -
7Ly (<, y )T 59
] 3,
27 A"r ?7_ c, 5 60
W
> ¢t 24,
2, R /—4 ) [c%)r 61
zryfﬁzf f-'ZIG;g /) Sr e 6}15. 62
/7
»u, ( < )7 63
>N, (2;9 6l
3r
/s
4{; 6Iq: 65
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The F~80A airplane to be uzsed in this example is a
low~wing, fighter type, powered by a turbo~jet engine
exhausting through the extreme aft end of the fuselage.
The gross welght is 10,000 lbs., the center of gravity
location is at 27% of the mean aerodynamlic wing chord
and it is Operating at an altitude of 20,000 feet. The

addltional required data are as follows:

S ~ wing area = 237 ft.2
S'I' - horizontal tall area = 43,5 ft.2
cy ~ mean aerodynamic chord of the wing = 6.72 ft.

Crp - mean aerodynamic chord of the horizontal
tail = 3.12 ft.

Ry - aspect ratlo of the wing = 6.38
ARq - aspect ratio of the horlzontal tail = 5.56

I = moment of inertia of airplane about
y axis = 13,780 slugs £t.2

bl -~ distance from midchord of the wing to airplane
Cee (negative for c.g. forvard of mid-~
chord) = =1,55 ft.

1’1‘ -~ distance from alrplane c.g. to midchord
of horizontal tall = 15,14 ft.

Se - elevator area (total) = 8,70 ft.
mg - mass of elevator = 1.07 slugs

I - moment of Iinertla of elevator about hinge
line = 0.11 slugs £t.2

dl -~ distance from hinge line to c.g., of
elevator = 0 ft.

1.1 - distance from alrplane c.g. to hinge
line = 16.33 ft.



79

- ] - elevator chord = 0.75
horizontal tall chord °

« distance from airplane c¢.g. to base of
fuselage = 1T7.25 ft.

2

”

SB ~ bage area of fuselage = 1,77 ft.2

1p

Vg -~ volume of fuselage & 350 rt.3 |

?T - effieiency factor for the horilzontal tall = 0,90
% m

—_— 616.48
7% Sw Cw

X

+Z
———L—-— - 3'93

»z £.F

“.
]

7o

3.13 x 10~%
m s

N
L
"

4me¢/

= 0

&~
]

% Sy P
The required stabllity derivatives are evaluated
according to the following formulas:

- (<,

Zﬁo w
&

"
Z - (< d “a
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=,
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The total airplane stability derivatlves are given by

=z, . = =z o *> j?;
Ay (&)

Z2 . =Z , *Z
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These are then used to evaluate the coefficients of

the characteristic equation according to the following

formulas:
G =iy, 2
C =yl ¢ 2 P TR+, e, 22 *e 2.9 * T
A4 e (%) > %9 4 g (%19
%=Z/g*I+I*Z+ﬁg,. K.ﬂ'*”gy/k.ﬂ'
. va
sl N 0B, *IE P
"8 5y
C =2 XY+ 7 > x A0, * 22X
"y T TN ¢ 2 T Ay
AN XX *r X X
%)
& 2, P, *ZXrAN, X
NG 5 %

where

Z = -4, ~ 4 N o R,
MKC /AR %
L= gt S —FE,
%
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A —7}?&,

.Z?’::,a?%éy 125%7 = 4ty 5 2577‘/f343é7

Z’-)"Z- "5”0 - 2
iy " ey T

7/ ':5./.'?5;!) -”(5‘9%—%-9 1"/“,6:‘ Z(J)
=y, 1y 70

X = TZ/;)-S/’Zj

xX .5/‘2'(; ~/7(¥/ Z(;)

2 =//g,q; :~4;.£;

S = Z(%!/ * X,

7= N >4
(3~

It now remains to solve the quartic equatlon

Given the roots in the form

A = ce/-'-?z'/,

%, £,

)
)
2
"
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then the pertinent interesting quantities which may be
- evalwated for the two modes are the natural frequencles

_ 20
@y, —cwﬁ/

g
i

20
2, L /3
and the times to % amplitude

v(-2a,)

T(%)l =

— 0.693 .ew
2(3); = vi-2a,)

The period and number of cycles to 3 amplitude of the motion

may be determined from
X 4
P = ———

Dy,

and

o(3) = I{z)

After applylng Laplace Transform technlques to the
equations of motlion, the response of the alrplane and its
control surface due to a suddenly released constant ele~
vator deflection may be obtalned from the solution of the
following matrix equation:
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where 5; is the 1initlal elevator deflection and
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The solutions for both the angle of attack and the

control deflection may be wrltten in the form

I 2
A3s"+ A, 5"+ A s + 4,

Z?s f-ot)"fys‘:][_/.s ro)% - 7"]

for which the inverse Laplace Transform l1s

4

7 b7 re*lz]* -at, .
[-a)*n 7222 24 (- ) ® e sin(ptr )

[3] %+ 72277 i
/[ﬂ"d)‘*ﬂz‘-?’ﬂ‘z*f(r_x)z -’Inmf#J)

where
-f /e[‘z] -/ 2/""‘“)
}ﬁ = Zan -Zan
/ /] (a._a)z,.,y_ﬂz
V; = Zan~’ 7L - zan~’ 2(a-7)
13/ (r-a’)"#-ﬂz-—?’z
(7 = A,~Aa rA (a*~p2)r Aal(3e?-a?)
[2] = A -2Ax* A (P ? -/a’-)

(3] = A~ A+ A (r2-7V» 4,5(37%-52)

LU

[#4] = A - 24,0 +4, (30 %-2»2)
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It is desirable to obtain some indication of the
importance of considering nonsteady aerodynamics in the
caleculation of longitudinal, stick-free stabllity charac-
teristics of a conventional fighter type airplane such as
the F~80. For this purpose, the results of the preceding
analysis wlll be compared with those obtained by the
currently used procedure employlng quasi-steady aero~

dynamlc derivatives.

As was discussed previously in Section IIX, the effect
of the downwash lag is accounted for in the quasl-steady
theory through a moment due to rate of change of angle of
attack. This term will be denoted by &~ *_ég and 1s estil-
mated from the theory of Cowley and Glauézz (27) as

follows:

S, 2%
recr 77_£“
“7r S. ol

Hence, 1f, in the equations of motion derived for the
nonsteady aerodynamic theory, /7 o8 1s replaced by]t[:',l
and the zero frequency values areaased for all the othegzr
derivatives, then the equations of motlon according te

quasi-steady theory are obtalned.
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The roots of the resultant characteristic equatlion
are compared to those obtained from nonsteady flow f.heory
in Figs. 66 and 67 in terms of <, , T(%), P and c(3)
versus Mach number. The translent responses due to a
suddenly released constant elevator deflectlon according
to the two theories are shown for a Mach number of 0.70

in Figs. 68 and 69.
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DISCUSSION AND CONCLUSIONS

Formulas and procedures have been derived which permit
the design engineer to estimate the iInfluence of unsteady
aerodynamics on the subsonie, dynamic, longitudinal sta-»
billity characterisiies of a rigid conventlonal airplane.

As dlscussed in Section IID, three~dimensionallty actually
permits a simplified, approximate analysis of nonsteady
‘aerodynamics which cannot be rigorously Justified.fof the

two~dimensional problem.

In addition to the requirements discussed in the text
that the aspect ratlo should be nelther too large nor too
small and that the reduced frequency should be small with
respect to unity, the theory of thils thesis must be limited
to Mach numbers below the dlvergence Mach number at which,
in steady flow, the slope of the 1ift curve falls abruptly.
Since this dilvergence Mach number cannot be predicted theo=
retically, the upper limit of accuracy on the theory can-
not be fixed 1n general. Furthermore, airfoll thickness
and/or transverse dilsplacement effects become very impore

tant in thils transonlc regime.

In the development of the theory of this thesls, alre
foll thickness has been completely neglected. This as-
sumption‘is conslistent with the approximation of linearized
theory and any attempt to take account of thilckness effects
would not be compatible wlth the linearlization., Furthere
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more, for modern alirfoll shapes, a theory which allows
for thickness without taking account of the effects of
viscosity may actually result in poorer agreement with

experimental values than a simple flat plate theory.

It 1s dangerous to attempt to draw any definite con=
clusions regarding the importance of aerodynamic lags on
the basis of a single numerical example. So large a num~
ber of alrplane parameters become intricately involved
in the stability mechanism that thelr relative influences
are practlcally inseparable. It would not be wise, there-
fore, to apply the results of this thesis indiscriminately
to drastically different configurations such as highly
swept wing or tallless alrcraft. The F-80A i1s sufficilently
typical of conventlonal, highespeed, straight-wing, fighter
aircraft, however, to warrant consideration of the results

of the preceding analysise.

In the example consldered, the long-period, stick~free

modes have reduced frequenciles of the order of 0,01 ~ 0,02
which are comparable to the reduced frequencles of the

short~perlod, stlck~fixed modes. The dynamic similarity

of these two cases 1s due to the fact that the elevator
characteristics have very little influence Iin the former
and do not enter at all In the latter., Although nonsteady
flow conslideratlons have consliderable influence on the

damping of the short-period, stick~free modes (reduced
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frequencies of the order of 0.13) as indicated by Figs.

66 and 68, it is apparent from Figs. 67 and 69 that they
have relatively little effect on the long~period, stick~
free modes. Furthermore, even though the dynamic charac-
teristics of the control surface are quite different, as
shown by the elevator motions in Fig, 68, the "low~pass"
filter effect of the alrplane 1tself prevents these dlffer~
ences from exerting any appreciable influence on the air
plane motions as demonstrated 1n the angle-of-attack re~

sponses of Fig. 69.

It is important to point out again that, in the numer-
ical example of this thesls, no damping due to structure
or friction has been included in the control surface
degree~of~freedom. Consequently, damping of this motion
1s primarily dependent upon the value of,ﬁ}é, which 1s
fundamentally a nonsteady aerodynamic derivg;ive. This
fact accounts for the tremendous differences between the
results of the two theorles as exhibited in Figs. 66 and
68. In terms of the change in damping ratlo, the effect
would have been much less pronounced if some structural
damping had been consldered in the analysls. Neverthe-
less, due to the relatively high frequencles lnvolved,

a precilse aerodynamic treatment of the problem of esti~
mating the response characteristics of the control surface
should include unsteady flow effects. The deslgn englneer
must accept these results, however, wlth the same confl-

dence as he does any theoretlcal control surface deri-
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vative =~ whether 1t be static or dynamic. The results of
a nonstationary flow theory would be used most practically
as frequency corrections on emperlical zero=~frequency data

whenever possible,

In summary, the indications are, therefore, that at
least for the longitudinal motion of an F-80A type air-

plane;

(a) Nonsteady flow considerations, while showing
considerable influence upon the control surface
motlon, have a negligibly small effect upon the
airplane motion Just as was previously concluded
for the longitudinal stick=-fixed problem discussed
by the author in reference 18,

(b) In both the long~-period and short-perlod longi-
tudinal stick-free modes, aerodynamlc lag effects
manifest themselves particularly in the.dampings
and very little in the natural frequencies of the
motions.

(¢) For both modes, nonsteady aerodynamic theory pre-
dicts a higher value of damping than does quasi-
steady theory.

(d) Nonsteady aerodynamics should be consldered by
the autopilot design engineer In his estimations

of control surface dynamlics but may be neglected
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when evaluating handling characteristics and

maneuverabllity of the airplane.



1.

Te

9.

95

REFERENCES

WAGNER, H, "Uber die Entstehung des Dynamischen
Auftrelbes von Tragfugeln" ZAMM, Bd. 5,
Heft 1 pp. 17-35 (February 1925).

7/
VON KARMAN, T. and SEARS, W.R. "Airfoll Theory
for Non~Uniform Motion" J.Ae.Sci., Vol. 5,

No. 10 pp. 379~390 (August 1938).

THEODORSEN, T. "General Theory of Aerodynamic
Instability and the Mechanism of Flutter"
NACA TR~496 (1935).

LUKE, YUDELL L, and DENGLER, MAX A. "Tables of
the Theodorsen Circulation Function for Gener-
alized Motion" AFTR~5999 (September 1950).

POSSIO, CAMILLO "LtAzione Aerodinamica sul
Profilo Ogeillante in un Fluildo Compressible
a Velocita Iposonora" L'Aerotecnica, Vol.
XVIII, Fasc., 4 ppe. 441458 (April
1938) (Available as British Air Ministry
Translation No. 830).

DIETZE, F. "Die Luftkrafte des Harmonisch
Schwingenden Flugels im Kompressiblen Medilum
bel Unterschallgeschwindigkeit" ZWB FB 1733
and 1733/2 19431944 Translation:
Paﬁg)l-- AAP Transl. F-~TS~506~RE (November
19 '

Part II: AAF Transl. F-TS-948-RE (March
1947).

EICHLER, M. "Auflﬁsung des Integralglelchung
von Posgsio fur Harmonisch Schwingenden Trag-
flugel im Kompressiblen Medium durch Zuruck=
fuhrung auf einen Linearen Glelchungssystem"

ZWB FB 1681 (1942) Translation: Navy
Dept., BuAer CGD 616 (on microfilm)
(October 1942),

FETTIS, HENRY E. "An Approximate Method for
the Calculation of Nonstationary Air Forces at
Subsonilc Speeds" WADC AFTR~-52-56

(March 1952).

FRAZER, R.A, "Posslo's Subsonic Derivative
Theory and 1ts Applicatlion to Flexural~Torsional
Wing Flutter. Part I - Posslo's Derivative
Theory for an Infinite Aerofoll Moving at
Subsonic Speeds".



10.

11.

12,

13.

1k,

15.

16.

17.

18.

96

FRAZER, R.A, and SKAN, SYLVIA W. "Part II =~
Influence of Compressibility on the Flexural-
Torsional Flutter of a Tapered Cantilever Wing
Moving at Subsonic Speed" Br. ARC R&M 2553
(June 1952).

SCHADE, T. "Numerische Losung des Possloschen
Integralglelchung der Schwingenden Tragflache
in ebener Unterschallstromung" ZWB UM 3209,
3210 and 3211 (1944) Also Br. ARC
Report 9506 and 10.108 (1946).

HASKIND, M.D. "Oscillation of a Wing in Sub-
sonic Gas Flow" Aﬁpl' Math. and Mech.
Vol. 11 pp. 128147 (1947).

REISSNER, E. "On the Application of Mathleu
Functions in the Theory of Subsonic Compressible
?low ?ast Oscillating Airfolls" NACA TN=-2363

1951).

TIMMAN, R. and VANdeVOOREN, A.I, "Theory of the
Oscillating Wing with Aerodynamically Balanced
Control Surface in a Two~Dimensional, Subsonie,

Compressible Flow" N.L.L. Rep. F.54
(1949).
VANdeVOOREN, A.I, "Generalizatlion of the Theo-

dorsen Function to Stable Osclllations"
Reader's Forum, J.Ae.Scl., Vol. 19, No. 3
(March 1952). '

LAITONE, E.V. "Theodorsen's Circulation Functilon
for Generalized Motion" Reader's Forum,
J.Ae.Scl,, Vol. 19, No. 3 (March 1952).

GREIDANUS, J.H. and VanHEEMERT, A. "Theory of
the Osclllatlng Aerofoll in Two-Dlmensional
Incompressible Flow -~ Part I N.L.L. Rep.
F.41 (1948).

DENGLER, M.A., GOLAND, M. and LUKE, Y.L. "Notes
on the Calculatlon of the Response of Stable
Aerodynamic Systems" Reader's Forum, J.Ae.Sci,.
Vol. 19, No. 3 (March 1952).

STATLER, I.C. "Derivation of Dynamlic Longltudinal
Stabllity Derivatives for Subsonic Compressible
Flow from Non~Statlonary Flow Theory and Appli-
cation to an F-80A Airplane" WADC APTR-5T776
(1949).



19,

20,

21.

22,

23.

24,

25,

26,

27 .

26,

97

GOLAND, M, "The Quasi~Steady Ailr Forces for
Use in Low Frequency Stability Calculations"
J.Ae.Sci., Vol. 17, No. 10 (October 1950).

REISSNER, E. "Effect of Finite Span on the Alr=-
load Distributions for Osclllating Wings ~
Part I: Aerodynamic Theory of Oscilllating Wings
of Finite Span" NACA TN~-1194 (March 1 ET).
REISSNER, E. and STEVENS, J.E. "Part IX: :
Methods of Calculation and Examples of Application”
NACA TN~1195. (October 1947).

REISSNER, E. "On the General Theory of Thin
Airfoils Tor Non~uniform Motion" NACA TN-9L46
(August 1944), :

SbHNGEN, H. "Die LOsungen der Integralgleichung
a

g(x ) :2; xf —(yg) J¥ und deren Anwendung 1in

-&
der Tragflugeltheorle" Math. Z., Vol. 45
pp. 2U45-264 (1939),

PRANDI'L, L. "Recent Work on Airfoll Theory"
NACA TM~-962 (1940).

KUSSNER, H.G. and SCHWARZ, L, "Der Schwingende
Flugel mlt Aerodynamish Ausgeglichenem Ruder"
Luftfahrt-Forschung, Vole. 17 - pp. 337~354
(December 1940) (Also avallable as NACA
TM-091, 1941).

THEODORSEN, T. and GARRICK, I.E, "Nonstationary
Flow About a Wing~Alleron~Tab Combination In-
cluding Aerodynamic Balance" NACA TR-736
(1942).

RADOK, J.R.M. "An Approximate Theory of the
Oscillating Wing 1n a Compressible Subsonlc
Flow for Low I'requencies" N,L.L., Rep. F.97
(September 1951).

cowrey, w.L., and GLAUERT, H. "The Effect of
Lag of the Downwash on the Longltudinal Sta-
bility of an Alrplane" Br. ARC R&M 718
(February 1921).

DURAND, W.F. ~"Aerodynamic Theory" Vol. II,
Dilvision E VI 6, Vol. IV, Division J IXC 11
Durand Reprintling Coumlttee Calirfornia
Institute of Technology (1943).



98

29, SCHALIN, P. "A Slender Body Aeroelastle Transfer
Function Including the Effects of Structural
Flexibility and Non-Statilonary Aerodynamics”

A.E. Thesis, California Institute of Technology

(June 1955).

30. CICALA, P. "Comparison of Theory With Experiment
in the Phenomenon of Wing Flutter" NACA TM-887
(1932). (From L'Aerotecnica, Vol. 18, No. 4
pp. 412-433, 1938).

31,  BYRD, P.F. and FRIEDMAN, M.D. "Handbook of

Elliptic Integrals for Engineers and Physlelsts"
Lange, Maxwell and Springer ILtd., New York

(1954).



99

APPENDIX A
AN EXPRESSION FQR'a%;éiS

Given the requlred solution of the wave equation

as in eqn. (26):

ax z#// MVEJ? = aaz (e-:f’) < Edy | (26)

where r¢ = (X = E )2 # (v -? )2 » 22 then differ=-

entiation of this equation with respect to Z results in
the following:

azax - // 2F(¥, » 0) Chi ( 7 )4547 (A-1)

But e~ifr/r 15 a solution of eqn. (21) and, therefore,

eqn. (A=-1) may be written:

a*g  __ o4 (5,2.9/ 3

OXOE z”’// oxt 7" f//
azﬁ 2I(F,%,0)/ 3% 2y e fr
IX3Z% .arr// [3)(«z *f/[

/a'yf (a-2)

r'f)a/;a/f
/ /a;f/f,po) ad/f, 07/
“z7 oX*
+;C2)(e:fr)a’§¢/?
- // 28(%,). o) . i:‘ ( e:' 70/_5,/? (A-3)
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After integrating the last term by parts and noting that
é;/ z__.%;/ 2
/Y= °/37* then 1t may be shown that

S )
/;13'(5 ,7.9) af/r ,Va-)/
-
) i )JfJ?

w/] ;ff;?'”) ai/e;" r/a';c/z | (A-4)

The first double integral on the right~hand side of egn.

(A-4) may be integrated with respect to 7 using the
definition of the Hankel function

o

—iF Ytx=5)2 ¢+ (r-prr B
e

/ ffz
) oo VOX-B)2 2 (v-p)* 225~

. ), [ -
= - Al Vex-g2r22 ) (A5)
In the second double integral on the right-hand side of

eqn. (A=4), it may be shown that

f ap’/wo) 38/E % 0) /e"' "),
SF r 4
oo /rp ,’ 2,e2, 02
____/ *8(%,7,2) /y-;// FrOC-E) 52 .y
L ?F3y )’7 S Vx-5)*+32pg2’ ?(A-S)
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The introduction of eqns. (A-5) and (A-~6) into eqn. (A-H)
results in

22F _ [o8(% %0, 52 (z) ,
XD —;/ >F /axz +;C7/';zﬁ‘lf7-r)‘,«z*)df

, //‘ 2%8(%,7.,0) /)'-?// 52
b}/ / -3 3 a? y-7 X2
2 ;/-ff .fx'f)‘f.f“ +rZ24°

f'f/ - s
Yex-grezrz?

_cfr .
+a; / er Z/ ¥y (A-T)

Now by integrating egn. (A-T) with respect to X from — &

to X and by using the condition of undisturbed flow far
o
upstream of the airfoll, an expression for %z is

derived as

oF af(f o) 2
P /a/ (7 VT ”f//

*f/””/ff/—f)‘v‘z&)a’x o5

-/Y-p/
z;/f»;,a /V-y/; -c;f 7] Jz'z:/y

.f

47” 252y 4 BX Wx-;}‘erlfzz

—/y..

/)’—7/ —4f VxZg )2 s 2+ 2%
— IS’
R CES AT

X -af\/(x' PIE+(r-p)tr 2 *
+/ 2 ax’ o’_&? (2-8)
Loo UL VOX=B)% wlry)* + B7
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APPENDIX B

APPROXIMATE EVALUATION OF ¢ —— Ka/f

Consider the first integral on the right-~hand side
of ean. (28) and integrate by parts using the condition
that & 1s zero ahead of the wing leading edge. Then

ffmaf/f,y,o) & [rx-3); F ]a/f
>F 7
" ___f( af(fy,o)[ inE [0S ) )
% CF #l- 8/ @ e
+—;—/ 4 //://a/r]o/g

- 5081, o)[ s y//"’/f/r-f/)
f/x,,s/ nrf /x- 5/ 2)
/f-’ //3'//:/3’ i/s, Nl 5" (lx
- y/)] ,r—————f/(’”/f/ !/)/‘/f

. ,‘/f&) -
-t f/;,xa)/ 24 (A5
X,

aF%
yA
pp - L 2ADGHE) 4TCHH] [
d oF Flx-2)
. * D (e /x-§/
"“'zn:f F15,1,0) 2H, ™ (r/x-¥1)

EY
X
, ;[: , dHNFIX-Bl)  mPr/x-5/)

¥ SF Flx-¥)

o0
"”f /Z(-Z)(’c/x_ yl)
= —lX Yo
2 £(5,%2) X-¥

XL

a5 (B-1)
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However, consider the following:

) -
2 [ &-1x-51- 5 10 5=/)] ﬁ/; g 2% /f/x d

/X-%/ e3) 2) °F
"% 7 (5 1x-SQ)f= -] K OF /X 81) 5
Therefore
/. () ]
x/""’/ 5[9‘ x-5/-4 “(F Ix-¥]) |/ ¥

A ’(f/x- ),
c2)
£ [}3’/ 4 /x-%)) [ 45 f & /¥

) _
_9;//:)/{/*‘;/)/ ]{@- #, x/f;x 5/) JF

VALV o ;/)
= - 55/5, y o) L0
X, X-¥
which 18 recognized as the Integral occurring in eqn.

(B~2)

(B-l), and so oo

f—é-%/—‘e’—@K (x-E) f]d} ‘”’}[/;3,/ agﬁ/x 4 /,r/x-x/)]df

% e
/ aé/s&xo)
= s) 1/
f x-5/ 5% /x E/ o8 Zé; [, 4 )[

X
. L omf Ix- 57 AkAV ?A)

Z

@0

_f/x—/;/ aif: "’5 j[/.r—El a.?/g/f 7")[)
77 (2), -
, ‘mﬁ/x f/#m@/x—f/y A__* /7 ’(J’J/?-x ap/ “19[;

m’f/x f/ a2) /7 y) -4125
T2 AN '587/ / F-X 55 [

/X~ 5/
*tﬂ‘i @(2)/ /X"f/Z]/"/-; (B"3)
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since @ (X, ¥, 0) = Fy) o~ X 1n the wake region

by ean. (16).

L
2

The integrand of the second and third integrals on
the right~hand side of eqn. (B~-3) may be expanded as

follows:
crFIX-F1 | t2) _, &mf/X-F | £/x-¥/
w4 (FIX-F/) =/ >
2c CFIX-5/  f/xn-8/  yf/le-¥/
# + - V2
fJ-5/ 2z 7 2
+ O(¥3)
o iMFi-8)® FROCE)E FUe-8,  rf)e-§
B ¢ # 2 2 (B~4)

By putting 2 = £2(¥-x) in the fourth integral on the
right-hand side of eqn. (B-3), it may be written

o0
@ A%y)e™ ™ [ 1 3 Z; LYy ) ] -c2f
- 2 AF T 2 (#72) =
(z) -anx
. oz /
£vo

. -z 'yav
S ur/'/e [z#(z)/ ) (2)//72 o 2 aa, Wz:)]/‘/z
=

z a /,a) ~dLLX
=- ~¢e

M (
7‘ufr 2e ['“y(.z) ”//(.a) S

= - bm _‘7_/7(3) *‘ﬂxj/ ce"z
a—»a

T2 [iry Sy, /]-__ﬂz/,; ma)e Bldm  (B5)

2o




105

consider each of the Integrals Iinvolved in egn. (B-5)=

"oe—éi! .
[ = da = - in ye -——» o <) (B=-6)
£

7’ . “ .
—z-[;-‘a/"f,a)//‘fzj ='§Z‘e-‘£ﬁ,§a)(//‘7£j o (B-T)

'3
-"-'--—q—t'.&p FrMeE
2 2

; ”(z) 3 /
’["z’ Mz)e ‘ide = - g L o (8-8)
o @ M

Therefore, by substituting eqns. (B-6), (B-~T), and (B-8)

into eqn. (B-5) and by taking the limit as £ —+»o© , the
result 1s obtained that

.4 .
n.ﬁ(”(rj e"'n'x /, I 3 [ cmM/e ,  (a) -
- —_— 2 d /s Ay ] d2
2 o & O 2 / / ) €

~cLaX

ca 7y e

= 3 7 (B-9)

where

2. 2 _ vad
7y =sbn > /8 £n. y, (B-10)

Now, if only terms of order less than frequency squared

are consldered and 1f the appropriate results of egnsa.
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(B-~4t) and (B-9) are substituted into eqn. (B~3), then it
, may be shown that

F LD st s

%

© .
. R FOYy)e™ X

X, -3 X-¥ 2

By splitting up the interval of integration in the first
~ term on the right hand side of eqn. (B=1l) and by using
eqn. (23), this equation becomes:

o0 xr
f—igﬁa/?é oF 4%

~73) -
_dars (/‘ 4.0.543 e -lnX (B-12)
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APPENDIX C
APPROXIMATE EVALUATION OF G

Let the function defined in eqn. (30) be written:
/y- »/

G = Y (£, *Z )+ 7 (c=-1)
where
-/)’—7/
-¢f fx-f)‘z"‘:z
- = 2 4 I (c-2)
X Vir-5)2r52
-0
X '/)'—
-chrx ey’
Z = f‘ IS’ (c=3)
J  Vx'-§)res2’
X - <F Jox = B)Ee (r-)¥
4 / > dx’ (e=4)
4 Yix’-5)% (}’—?}" |

Each of these wlll now be evaluated to terms of first

order in frequency.
~/Y-y/

//- / y/ -"f)//X'.F)a"'"
) (X—f)j*!z
L2 _‘”" c2) _ /Y- -
S e ﬁ————//

. Emwf /X-F/ a) -2/ +Y Cx~§) %+ (-p)*

=2 X'E /f/x'f/)v‘ax/ﬂn/ 2z )7 %7
’x-5/

# c'f/y-yffz

. ErF IX-F/ / 2¢ r-2/
= i >
2 x-¥ ] wrf£/X-5/ ox-§) Yex- §)‘+(Y-?)37

_z'/';_‘- _ 7/ > /Y=-y/

X5 tu-5) Yex-g)+r-70%

(c~5)
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_/)’-?/ o X-¥ —l.f }/(7?”)2'1‘ xz ?

A (] ) s
_fz /V"/Z' (z)( /57) J.‘.S’-ff/ //

=/y-y/ ~F YeX DR ex?
&

* — YN
¢ /s‘f('\’/")jL " X
. E '7

—/Y- T
X- e~ Yx f!*-
+f/ / 4 XJ - AL 7 o
fxlaz_fgz |
£(X-¥) ‘
9/

-f/)'—y/
= ““"/] ARI7Z VI 2/ 1‘//5")//,[/)‘/,{ +O (¥
o

zz -t (c-6)
2 2
and
) a S (R
2y = o2
? YAz f-(r—p)’«z
=2 o AR+ ™ >
—5—/ A.*—,efr-y)" [ [//lz*()’-g)l f]
()’-7):/).
. a cz)
= /Y- /]
£ ”’"7/ /z)
= - y-y/ Y-%)
2 )/_7 // ?) / ?/;y ?Jzi//‘z f/),?)zf
- _ l'”‘ﬂc /Y"{/ z‘ X—E
2y / £/ Y-p/ */ - (-y) f/X-ZF)i*(Y—sz'
23—~ = (c-7)

7‘ L4
s y-y Cr-p) Yix -8)% + (r-p)?
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APPENDIX D

REDUCTION OF f [ ——(n"’)} -a% o /5y

WAKE

TO AN APPROXIMATING SINGLE INTEGRAL

Consider the double integration over the wake region

in eqn. (28):

| j]dz (7 e_;nfé,a,fa/? ,/'/[T.J;_f:f. ¥ fdy (D-1)
X x

WAKE
The first integral on the right~hand side of eqn. (D~-1)

may be written

[ ([ e
/d (ﬁr:}/] ~é0.(xs) G(-7; V-y;f)do oy

- e-c-”-"f;% (7<) &, (vp) dy | (p-2)

/;7 =/ -1'.0.0'6‘(__rj )’—?J‘ f) of o~

//‘..‘,n_o-/_/r- -FVrirs
citre2 Y zf.rz'*‘f)a,r
""f""?’e-mrm

+ £
50 Zoo V?lnz *SZ

/ 7 sy 7/ o~ V72 r Or-pl® ) [
=< o
Lrtrep)® 7“+ ‘r- p) ) (D-3)

LT A
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This function is evaluated approximately in Appendix E.

The second integral on the right~hand side of eqn.,
(D~1) is comparable to the integration over the wing region
discussed in Appendlx C, and so

X
a%//’"”))(x/e—‘n EG-‘/#J? _—‘_-f;%[ﬁay /;:;///r—p/
- ‘:f)/xt'ms /Ey

. -fnx -faX
- "f;!‘//"'”)) /r-y/ /7 47)7 gttt gt ’ ,/g (D-4)
7 e S A ¢

Therefore, upon introducing eqns. (D-2) and (D-4) into
ean. (D~1), it 1s found that

J[ 207 e Y e,

wAKE
- 2X

e Q—Z‘/f""”/ £y (r-7)dy

e"‘u"xr ~‘0X ”J
P R )

s

(D=5)
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APPENDIX E

APPROXTMATE EVALUATION OF THE FUNCTION Fu

The function Fy which arises in Appendix D may be

written

/27 dor ~érp o 2P 52 /

F - oe

= ‘M)dS
Fy(z) / /7 g (o_ 7 +</d ‘

/Z/
AN~ ry 4
+ M2 €

77Ery2

FAY- N
o /2/

0

i Firz? |
Je/e crr |7
+/ ‘ 'F_‘_"""z =+ ()7 [do (E-1)
7tax2 T rE

pl
where z = £L (Y - ‘? )o This function will now be

evaluated approximately such that terms of the order
of z will be neglected,

Let Fy(z) be written as follows:

Pelz) = 2l p (1z1)+ a Fylz) (E-2)
where

-cl V 2 ‘Az
P (121) = [ G+ 2/; (E-3)

is the corresponding funetlion which occurs in the in-
compressible problem and 1s often referred to as the

Cicala function (30).



112

/z/

o0
-t‘ ‘/EZ ).-?- ' - o r3
Fﬂi‘)=/e 6—1—-————-—-"/;//,1 f/e ﬁ; 1= *A)a’,l
o /= =/ “ /2[R
o0 _
e".’l 7= 9-1'/1
# | ——d */ —*-———_a’}
A /z/
/2/ o
=/ .
e"." f ()n (2nl! ’17%*/)‘
-_— _/ d
/ A nco 22)2'()2 ./}zfzm.,z) /zz
P
oo 0 e /
¢ (2r)! "t
_/ e Z (_/)n 27 "
12/ nzo 2%l ¥anra) A2
/Z/
e Vi)
e-c’) / o)
+ di 4 -—-—-—-‘-9—-——-4,2
A VE-Y
/Z/ o
rzn)?! /=l
s L)% <%/ L Znel
AN N
rzé; (/) 'Zznﬁz.’)z(z;u-z) /;,z/-anz/
o
= VYAT-Vadcidd -
- Z () e €
n=0 2% el)*(2anr2) Arnr2
/Z/
® =/

oA

PG */——-——-e"’i 22
/=/ [ /=



113

zn) /!
23 Mm)* (2n r2)*
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The region of integration for I,, is shown in the sketch

below:

o
l »

-4 t

By referring to this sketch, the order of integration may
be changed so that
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which will be used in this form later.
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Hence
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which wlll be used 1n thils form later.
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The reglon of integration for 2Z:/3/s/ 1s shown in the

aketeh below.
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Let 77 =/#/ A in the first Integral.
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= -4/‘7 / a’/& "Z”z/‘{(z)//‘f/ //
Vaz s’

/‘7/ oS4 +r1YaZxs7") 00 '

- dAdS » 7 K ms)ds
/ Vazes' / )
V74 o 72/
e ‘e (A +MVA%47")
=7 / / AdS
Ter Yazes
z/ . =
)
“‘ #, (A)dA — m* /7:(‘3 (M) dS
o
= is(a f”/lzf/’) e
= — Ad —_—
l” // /1'-.6/ Jd 3* P

12/ 9 .
» ZermS whiok >0 as 2 —»0

2 __”/ / [-43‘(/1 mm*]' d R s *_7{1/_
dr YAZ41"+ M2 2

- /[ -¢M)‘/~¢K{Aﬂ1m"+/) A+rMrVa ‘+/’ dx A
A%+ ﬂ,{%/ vt S

/z/

*‘z; _
- 2 e-cM‘S
I =M ———————--—-—-a/5’

/‘E//[ A+ VA2 ]/":-z'y(,;f-ﬂhzﬂa”) P _7_’_"_{
Ya

Z,, (JArer +M2)2 2
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Combine this result wilth Ilb’

. z/‘ -cMS
I =/7 ALY
/[A‘H)%(/ 2577+ 274)

/

*
A+ )Ar ¢t 112 )%
p QrmVaEeT) iSO rraTr)
/ a3 +

YA2+s ’(/Azﬁ’ + MR )2

2 -e./‘fs’
=M [———F # /‘7/ [
At»/
/2/

/

*
a2 )Y (V2F+07+ MR )

00

»M

-p72 -et
i / [ e dtA) + e
(A" )3T+ 1" + MA)*
/28/ (A +1r73347)

The region of integration for the double Integral 1s

shown in the sketch below:

1 A
¥ =/2/ (A #p7 VAT +7 )’
or
A= t~r7 YeZraE - m2) =Z 5
(/- m=2) &/
i
prd
/
-

> ¢
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By referring to this sketch, the order of integration

may be changed so that

@ _imS

| = < e
L, 7L, = 4 / s 5
o Azy
-ct / '
- M/ / TAzer T (AR (fiFeT w MA)
/V/z/
7-M2
* ¢ 4 7 | AL+ sad
CAR+1)(VA %7 +MA) Z
. Y'Y z z2 22//..”2)
Z*Z, ::-/'//2// e Vet s jdz" ,c._":/_y_
<

2 2 2 X/ el
ey (t2p2) V2 palr-m2)’

Integrate by parts using

z 22r22fr-M2) -
ahiall ‘ and Jdv =e ‘to’l‘o

,“-‘-’

(e2ez2) Vet r22(7-17%)’

Then the following result ls obtalned:

. -t [+ y?z "'zz/’“ﬂz?]‘ .
Z*2, = ~r7/2/1 ce _ -/
(t2 +Z3) y;zfi‘z//‘”z) MmIz/
‘”/ it -zt Feallz2t2)(1-M%) Jr
(e r23) 22 r22lr-r13)] Y2

M/IE/

. Vs d
+2¢ ———-———-—-—-—-—-—-a’t g —
/ (t2r23)* <

rMIz/

which'will be used In this form later.
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o0 oo
_ i [ [o-¢M )72 22’ /7
Z; -—/z//e /[ % 3
J S L (r2p2VW ()%

. - imFETFET
» e IV
72 pz2

The region of integration for I3 is shown in the sketch

below:
V4
4
T ? /-
’/‘/ -
4 [/
P
/7
yd
yd
//
4 > 7

By referring to this sketch, the order of integration may
be changed so that
‘7;-[” rir22 /I m —zz‘ﬂ?"fzz’ o
z =/2 =/, " dT
/ [ i) ?'4 rZ2 o
,‘,,_my;'i;;z' e ¢?‘—1MW
= /2// ‘
(7’2*31)’/; _7"’4 rZ2
-t 7 e iV 3 r2?
(riv-z“} V2 (72r22)3/2
. -7 2?
_Me <7 el - / e
72 422 (r2rai) Ve

Let this be written

IR RS FPR LS

J Ja o *'Z.-ae 3F
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e
dA
/23 (A%2+/7) L

X szl (AP VATPT)
ii!i/r

Ja
o

Let ¢ =/2//,1+Mm¢+/’) then

i e-c’t‘

Z, = [1~-MmY% 2/ / '
Ja. / (mt-)Yed fzi’-(,-”z)')a{z"zf?z//—ﬂv <2

Miz/

o it Zoo2i-MmMBY %
::L./Z// e [Mr*),t i 7 ot

(t2r22)2 Y2 pZ2lr-p2)
MIZ]

By combining I.3a with 12 + Ilb obtained previously, the

following expression results:

. -eMIE
Z +Z +7Z, = (7
/6 2 Ja. 72/
: 2) ” -’ dt + T
+ (/Z///"‘” fur /27 [tz,gzl//-”Z)jjz-z 2

The integral occurring in this expression will be

evaluated approximately for two cases. Consider first

the case when Y/- 72 = .
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-az‘
2 /z/ (r- %) e
= iz L%° *Z‘//’”‘/J%
Yr-r I/a‘e/ o ”
= z/z/(/_”z)/ o
' 3/~ Yz [ eX____ 7
M/z/ 1213 ¢s-r%) [ Z2(1-M2) +/] /z
* e-et‘ S
+</2/(-mY 737, zz//-”zy% 42
Y/-m% —_—
oo / ,M :2/ /) , ’,_”3’/3/
. n 2t/ - -
= Z:;[_/) Zln(”'/jlizznrz//‘”g)nv-i’- ¢ zc-zndt
2=t
Z":" V: )n (2nv)! [z 2t /,_”z)ﬂfl ot »
i ’ 2% (/)2 z2Zn+3

24n ()z{)z 2Zn+l) /&/ Zn v/

. hd n /‘Z"f'/)! / CVr-r12
- £ () ( _<
ns

Zn/ . n+
%4 M2 ‘

- *
(- (2nr) 2] (- E (2041)

szn*z ;

- ,
(1-m2) R E (2nesX2nr2) (2nr2) /Z/

ys-
(Zn +2)

. ¢ M 2
= — - -m7% +/
/z/ /Z/

j-}- ZermS whrich >0 as z —» 0O
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For the case when o= ), - 2

o0 e-c'z"
i/l r-r72) / 35— ¢
| [22r&*fr-pm?) ] V2
r/z/
@ e_iz‘
= (/E/(1-MZ 44
C/x/( )/ T T
”/2/ tz
Anw ne/ -od -
_ Z°'° /'dn 2nver)/ /2% ’//-M“) e o
=4 = n /)2 t&n*’
n=o 2% ()
/=]
P T S aiis iy e,
=¢ -
n=0 2 (nt)?* M2 lrr2)/z/
J-pp\ R M _ JppR )Rt .4
/ r73 (An+t2) 772 (Rnrr2 N2nrs)

+ Zerms which —»0 as Z —>»O

. ir
O —— —_M2 Ay
Ve 74 /Z/

But thils is preclisely the result which was obtained for
the case when V/-#%" = A7 , hence for all 7 </

. 7Y +/+‘.
<, +€ f'z.;a.— 2 /2
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X i1zl ArmYAEET )
Z. =-—/?y/‘ € dA
34 A2y
[«]

Let z =/ &) (A +,7 VA*»/ ) then

oo .

e~ “E(r-rmd) /=/ »

Z,6 = v — Tt
- 2 2/l py2 -mp2)’

”y [Mz" 23722277 »77_7}’:‘ »22 (/- p72)

w *
o e[ e 1 VEZEE 2] e
- 7=/ (22r22) Yr2 pz2 fr-p72)’
/78

By combining I3b with I,.m obtained previously; it may
be shown that

e~ T (1-p2)

o
*Z., = /2 e of 7
'z'/a./// Jé /_/ = Vr.z r2l //..MJJ 7

/L4

If this integral is evaluated by the same procedure as

was Just used for the integral occurring in Ilb+ 12 + ISa’
i.e., by considering the two cases when }’7—7772 A7  and
when = Ys=~2' , it is found that, to the required
order of approximation, the results are again the same for
both cases, Therefore, it may be shown that, for all

M</

. JoF Yr=ATZ
.2;4”, * T = Yr-m2 s
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'/ T et
= -¢ /&
/'o/ (tz-fzz)%

/=/

‘ ‘/"'// o=t y i

==¢ oSt - ¢

(22p2%) ¥z //(tz,g}z)’/z. £
° VEY |

/2/

‘./‘ e-:‘t‘ __‘f ,
= - oSt — f=/ 7
z‘a /é':; +1] % / 27/)4 //

712/

2/

o0 ] .
S /_/)n (2n+/)! /e"tzflna/z"

) 2% /)2 fa/2nt2

o

oo ” /2/1311‘/ ! —"t
“4‘2/"/} (an/) Q@ JE

»=0 ,zln/)z./}z z2nt3
/Z/
o0
. n (rr/)/ / .
= i) o
n=o R /)R [ tznrr)/zl 2nt

/ ¢
+ -—
(2n+2)/2/ 2r+2

/+ Lerms chich —» 0 as 2-»0
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| ;[ -ima/AEFTT
z, =—— = o2
3 sz/ (a2 wy) Ve

Let ¢ = rr/zs YAT+;  then

d 'z
. 2 e.-‘
5’-}4 = -7 /2 py M‘Lz&j 2T
/2 //“
oo o
_._42 (zn}/Manz/z/zn#// e-l e
=0 22,‘ / 2 2Ine+d
(»?) Miz/

[- -4
s (2nl)f / _ ‘M
nzo 22 M)* [ t2nvr2)/z/ (2nr+2)

&M
- ¢ y
(anz)(«?)zfl)/* s arhiok 2o 41 E 2O

= ___f_'_____ et (2n)/ 7

3d /2 nzo 2%(nl)2/f2nrv/)
oo _ r3
___._”/‘ © EMIZL A H’a’).
A% +y

Let ¢ =p7/2/ JA*»/" then

=§ pANTE 0 2Rt (0, ) v ”
. p Mz

_ 2n)l M

=2/

s Terms which —
meo 231 (nl)2(2nvl) ‘
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- 3 dr
3f = /Z / 4
<
/ > (A% +1) 72

From the preceding definitions, A4/~ /=) may be

written as

/Z/
A/,; (&) =—;— ..Z}@v'-.Z}b "J:rz f-_z:?e_ *Z,,

rZ, rZy,tZ, T, )

and by introducing the approximations derived above, the
following result is obtained:

/=/ /-
)= [0 2 Ty )
Z 77

* Lerms which >0 as = > O

or

. 2/ , pr A
ar, (2)E — (/2 f)yj (E-6)

where 777 has previously been defined as

7 -t Ll L



130

APPENDIX F

EVALUATION OF _;{ X’

ax’

In order to obtain an expression for & 1t 1s con-
venient to write eqn. (47) in the following form by using

eqn. (48)

X V. p— -2
A oBrX Y, 0) 3) )
[ ff , Vad ()’je /7)‘ . s 't\’)

27
2 — f[)/”‘; Z psin” ’X)fA]W/_F yJa%
/-5
_ .ﬂ./"(i)()’j/[//l»‘/! . s {\7"4] -4[!./1- »
A=/
f__[_ ,,w - mﬂmf;&] [/’7:? ”

# S/n X)"A]e_‘a.?a/f 2 ¥ z ‘
/—

— N /7”’()’)
+sx‘a",\)W(§,)’)dEf oz /[l/’z’;’
77 . - ‘//'r(.?)
_<][2—+S/n /] ,&, - f QJ?
>{3)
_ /7 /Y) ‘]f]//v‘}'( ssin X )e -c.a.F JE

—-—-fAW(SY)a’E ol 3)”9/[,4

1~£Ff Jim‘,sz “za«dﬁ *Zr_jfﬂ‘d/7

~C3)
_em {” )?]fA "’”‘fds o (Pe1)

_7r
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Integration by parts of the integral of the second term
" on the right~hand side of eqn. (F~1) gives

o0
. ". )'
/{Az +—7’:+ .f.m'/\’) e < dA
Z
/

. ) . . u‘.nl oo o0 _‘:a_l

le A,
= o s S -

/A} PR X) = / s >A JA

e"‘.’a' » ”r . -/ / ~ ‘A A
= (-—- *sm X)+—-——_ [e"‘ 2 42
L
A .

cLL \ 2 IA
since

A (x,27) =05 A, (X, /) =0

and

Az(”(/ 00) = - (“; # .r/')z"/\’)

If the last integral of egqn. (F~l) is also integrated
by parts then

/ . /s .
j'(A A% g 4‘e"“5/+f o i >4, .
‘/ [ / £ 5 J, ‘..rz. 2§

/

oL [orirE 24,
<2 - oF F
-/
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Therefore, by introduclng these results into eqgn. (F-l),

1t may be written as
X

x'v¥o )yt
][ ‘255(_, 2 ')cnx’— e (/zyf-:vhffﬁ)
2x’ 27 z

-/

)[AW/,FY/JE il ”je (”’fs ,r)

D ot [y
E/f<}

Or

X . /
/ Bf/xz)ja) C/X/ = _':_ A, W/-E; Y§0’5
ox’ 7

=/
* o0
/‘F”J/V) o -iak 24,
D

Y2
d *
zz&ﬁll{iv ¢¥ < ?7
=03) ’~- QA
-2 M’? /e ey, C (F-2)
27 /, 2F |

—

F28
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APPENDIX G
APPLICATION OF PARSEVAL'S FORMULA

The first integral in eqn. (79) is the product of

two functilons

‘M30 cos 6, __ ] - -9,)
Pt '@ (8,)s/im6 and m(’ cos (o2
t-cos(e® r8)
both of which are quadratically integrable,
The function

/-cosl®-8,)

L

/= cos(o+&)

is odd, and, therefore, 1its Fourler expansion contains

only sine terms,
>
-Ccos (-8 .
[.ﬁ'v s-cos(e-8) Sn )25/0’9,
/s ~Cos(8+8,)
o

27 .
S s 8
72

/- Cos(8~6,)
/~cos(@+8,)

and s0 the Fourler coefficlients of &

are
A, =-2 5 &

n
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| N |
Similarly the Fourler coefficlents of @ " 2"z g)sm 6,

are
»
Y, 2 [ = . . cMmi2co0s 6,
A == |@&@)sméEsmnnrnge o8
(N

o

4 ‘
= -7-;—-/ (8, )[cos(n-)é - eas/;zfz)e,]e
[

emiL2eos
9,

=”/",’,,,"'7z+,/ G r=423,

So that by Parseval's formula

”
‘2 & . s~ cos (8-8)
e‘™ QCOSE 77(8) s/n 8, bn (¢-4 s,
/-cos(e*+8,)
4
7S A A,
=2 An‘’n
< Wzt
”“ s né
- - 4 -
==27 5 /,;2—/ /)’zsﬁ/) 7 | (¢-1)

Now conslder the second integral of eqn. (79) in the

game manner. The Fourler coefflclents of

3'1.)1,'35/

sin @ (cos & - cos8)

are glven by
>
5)2' =2 sm8, cos r &,
Wﬂ S/ & Cos5 6 - Cos 8,

”/

/ /~ cos &
= = L cos & 4
s O cos &~ o5 8,
o

a6, J =23,
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”r L4

/ cos n &, 94 / cosn8,c0528 >
siné cos &— Co058, mwsnd | eos@-co58,

o

~

o
”
sinné / cos(n+2)é, v
Sin 28 LY sin o ft‘as &-cosé, ’
: o

» .
' ~-2)é
" cos(n-2)8, 8,
0059-—6‘056/
o

/ SIRE  , sin(nrd)® , sm(n-2)8

—-— e f.—- ——

s/ino Sin 8 < Sin @ < s &

Sin SnRS [/— caszéy
Sintd

ﬁ);:--.z.snpné J )z=2)3)

Ll

For » = O

’ / /- cos 28,
4 = —
Vs O A Co5O -~ o568,

g’ = / cos8,d8,
/ 77.:‘/}@6 cos& -cos 8,
cos 38, Y o5 -6
f 8 =L
z»".sm,é cos & - cosé, [, cos &~ co56

y ) S 368 _
Sz & 2 s/ 8 2

cos 26O

S/ &

t
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- cME cos 6,
Similarly the Fourier coefficients of &r(d)e
are
_ ”
AM2LL cos )
Y4 =2 /e _ 'Zr"/ag)ca: né o8 =20~
n [ 7° 7 2

o

so that by again applying Parseval's formula, it may be
shown that ‘
4

A2 s, __ . 8,
! Pl ’ar/i/)-f/nza, 9%
S/n & CosE —Cos s,

/88 & y
=--(——-+ = A;La,,)

2 2 »nz=/

(]

y-] o0 ' .
= 7Y L eol B AEE'S 3¢ /;& s/ & (c=2)
sné& n=/ e
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APPENDIX H

. -
> Sme/X-5/ ¥
APPROXIMATE EVALUATION OF ¢ =— T L e e —
T faf{ﬁ;* = A FIx .F/)] ¥

The second term on the right-hand side of eqn. (120)

may be written:

7 errf/ -5/ (z) g ]
n‘)f;x}' >¥ sz[ e 5/)/4;

(Ff/XX/ / / affr rd)
”(X"Xa.) [ (F7%% /Z]

] “f

EXE/X- .F/ 2) Vit -caf [
* /f/x-s/j_ya’5+ %= ; az/

X+E

A
EFl-5/ )
- — (3 f/x-f//_Z/d>

| / M‘f/X Xd a) a f./;, xo)
7r(x-x¢ * s X‘/{]f

-&m. /%% :.n.x/ _I__f_/cz[
o
n(X"Xr)
47/‘/,5 (J) -cax
/2)/”5?{//42 _ a7 / /—ti‘[
2 oz

47)'/‘12 //.z) zi/g,; | (};-1)

N'
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Conslder first the integral

Mz)e 2 L dz | (1-2)
Evaluate each term of eqn. (H~2) to the order of w2 In L1

as follows:

f[e
ie® . £ . .
= JdE = ¢ .&-.X__X +e2E -4.:1()(-&)*0{-0-2) (
-Q-(X°Xr) 7 H‘.a)
fne
» 2 2 @)
= A A ad=
p 52 Y (M=)
2(X-X )

. | z¢ M2E 20¢
=—f—— L * CLE # A qp e
2 v 2 > 2
2L IMLLIX-X7) .
— .Zn- - L2 (X~
* P (x-x,)

2.2 (x-Xy) FA7ee (X-Xr) 2
- 28Gonly, ML, o )] (1)
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. ne
ey X"X}')
_ 2 F7Re 2
-_7,0 [a.e——?;-.a.e%p s 7 &
; M2 (X=X
- a(X"Xr)* ';:'-Q /X"Xr) b A P r)
-—;ﬁ Q. (x-X,) + O /ﬂ‘)] (1=5)

By combining the results of eqns. (H-3), (H-4), and (H=5)
according to egn. (H~2), then it 1s found that

L16

:,-:_r- tl)“/‘fi (
/ = az [ Mz)] dz

A (x-Xp)

e
= M2 - +l00-X,) * —& -

”{X‘Xr)

MaE ML (X-Xr)
el SE2E )t T +o/a?] (=6)
The last integral of eqn. (H-1) may be evaluated

by considering the results presented in eqns. (B=5), (B=6),
(B-7), and (B~8) so that

o0
/2 e Vo el 2) . .
—;;/3 z/;*_ —— 4 //‘75)./} gz = -—t)? (H-7)

where‘%7 has been defined by eqn. (B-10).

Furthermore, in the first term on the right~hand
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side of eqn, (H-1)

CorfIX-Kal |
12 TEZZE 0 e frenyg) = 0 (2 e 2)

Therefore, finally

o0
/ /2 [ Erf iX-Xal | o2 /
= = { g+ # -
”j(X-E ¥ g, 2 /U FIXF) f
X
‘o /—;(J)e-c..ﬂ.x

= 7

2%

(H-—B)
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APPENDIX I

EVALUATION OF THE INTEGRATION OVER THE WING SPAN
CCCURRING IN THE DOWNWASH PROBLEM

The integrand of the integral over the span in eqn.
(128) is an even function of ? and, therefore, the
1ntegra1 may be wriltten

Ll ] L ,« 1 fexeXa)E ey ®
M X ALY
Wy ;rr* ” T otmya T YOX-Xa)Zry
< X‘XG. (X"Xa) ?

)’fX"Xr)z':‘y —x )%z -
- .&m/)zf- )/(XX J 4 }‘///Jf (1-1)

Integrate this expression by parts and approximate
Vad (3) by the elliptic spanwise distribution as. glven by
eqn. (58). Then, since /—';(3)//5')-’-'0 , ean. (I~1l) becomes

Lom //-y(.?)/o)[ / )f(x-,-xe)z_,.e‘z' *.7)‘.17.
X-X, z

(X"‘Xd_)e :
ur/v.cz QX X=X )3 psd’
2 - L Nt in # (02X, )’» a) +¢

x-—xa_ (X-X)E

ox : X, )2 &2’ T
" P4 " o} )IA;.XT) * & _ c.ﬂ'&b(d'* V[X_Xr)z*é.zy

3
X"Xa_

/7(3){0) T3
- / )//«f) ? [?z 7 )’(X X)"‘

_ tILXr(X’Xa. | cax {(x-x,-)z-r?% g (1-2)
71 Y(x_,xa)z*?zj 71 7
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" s
[ﬂ '(ps)"-? oIy = -.______.....I('a‘) '?3_;;»,"/.2_
) 72 7 7 As
7 Yoas)*-€£2 -/-:/k"—i-

Z -y
2 E As

Evaluate the integrals in the followling way:
] )
&

The remaining integrals are of elllptilc typee. Formula
numbers correspond to those used by Byrd and Frledman (31)

Bs AL
m;)z_ 2 . l
[ - s [ s (213.10)
'3 7‘& V{}-x“')z*?z (]
where

/
é - V/:’-XQ)Z’ +¢95)31

= eos™’ (;‘-E—-)

am.a./ =

,cna, = CcoS L R—
As

'al

[tn =~ [ tn - £u) | (316.02)

.él
'#,, dnu, tr k&, £/xzf/

'éz - (ﬁf)z
/X’Xg)z *//5’)2’

Ly T (x-x,)%
(X=X )"+¢r:)z

/(X"‘ xa.)z' £t
(X=X )2 +(/~_¢s)" ( X—Xa)’vyys)"

z
dnu, = AT+ k2 eniu

tn w, = sny v/- (’f/ﬁ-")z
/ -
,cn,a., f/ﬂs
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80
As

| /’ Y(Bs)% -2
> 97
e 23 Yex-x )%+ 52
-/(X"X‘,)zf- /ﬁ")z' %X"Xa)zfez' )6/33)2_.;& —E“/
_JreXa e qent-e2 Jorxa)ep
(X-Xal2 & (X=Xo )%

as &£+ 0

s 2 |
\/@:) ~»2 &3s) /,a, | (213.03)

2ud
fx—x }z*{z ? Y“’Xr) f/ﬂ:)z snfudun

- 2 l )z
[:n wda = XX e [,e/-f/,a,-)/ (310.02)
(as) %
o
(xX-x,) %+ (8s)*
= F/ﬁ/-é,)"f/'“/')/
(ps)* |
-X.) 2+ (35)
=(XX7) *l/fa [K“) EM)] 2s £—> O
(as)*

80

[z

/}X’X’)z 7"72

dy = Vix-x,)*+ //s)‘f /z’? /.4,/ - £, /l,_)/

where

(3s)*
4 - %

/
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Bs ,
» ] Vips)®- 7‘ l/x—x e

£ 'a’f" ’
= (x- x,_)z/ W/"’z"?" J. f L iy
,zz (X‘Xr)szz 7 )FX"Xr)z *?z’ 7
- 3 Py v
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With these results eqn. (I-2) becomes finally
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: v X X N
» L2 7~ . - z - FL2 (X'Xr)
2 Zﬁs 2 X'X¢

(MR [ ph) - 2k )
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(X -Xq_)ﬁs
where K(#4 ) and E(£) are complete elliptic integrals

of' the first and second kind respectively and where
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FIGURES 4 THROUGH 14

LIFT FORCE DERIVATIVES vs ASPECT RATIO FOR
MACH NUMBERS OF 0, 0.5, 0.7 AND 0.8 '
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FIGURES 15 THROUGH 25

PITCHING MOMENT DERIVATIVES vs ASPECT RATIO
MACH NUMBERS OF O, 0.5, 0.7 AND 0.8
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FIGURES 26 THROUGH 42

HINGE MOMENT DERIVATIVES vs ASPECT RATIO FOR
MACH NUMBERS OF 0, 0.5, 0.7 and 0.8 AND FOR
HINGE POSITIONS OF @ = 0,507, 0.66TT, 0.757, 0.907
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FIGURES 45 THROUGH 56

DOWNWASH DERIVATIVES vs ASPECT RATIO FOR MACH
NUMBERS OF 0, 0.5, 0.7 AND 0,8 AND FOR
TAIL LENGTHS OF 1lp/1 = 4, 6, 8, 10
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FIGURES 57 THROUGH 65

COMPARISONS OF EXPERIMENTAL AND THEORETICAL
AERODYNAMIC DERIVATIVES FOR AN F-80A AIRPLANE
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