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Abstract

The steady shapes, linear stability, and energetics of regions of uniform, con-
stant vorticity in an incompressible, inviscid fluid are investigated. The method of
Schwarz functions as introduced by Meiron, Saffman & Schatzman [1984] is used
in the mathematical formulation of these problems.

Numerical and analytical analyses are provided for several configurations.
For the single vortex in strained and rotating flow fields, we find new solutions
that bifurcate from the branch of steady elliptical solutions. These nonelliptical
éteady states are determined to be linearly unstable. We examine the corotating
vortex pair and numerically confirm the theoretical results of Saffman & Szeto
[1980], relating linear stability characteristics to energetics. The stability proper-
ties of the infinite single array of vortices are quantified. The pairing instability
1s found to be the most unstable subharmonic disturbance, and the existence of
an area-dependent superharmonic instability (Saffman & Szeto [1981]) is numer-
ically confirmed. These results are exhibited qualitatively by an elliptical vortex
model. Lastly, we study the effects of unequal area on the stability of the the
infinite staggered double array of vortices. We numerically verify the results of
the perturbation analysis of Jiménez [1986b] by showing that the characteristic
subharmonic stability “cross” persists for vortex streets of finite but unequal ar-

€as.
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Chapter 1

Theory and Numerical Methods for Calculation of Constant Vorticity Regions

1.1 Introduction

We consider the problem of describing the form and linear stability characteristics
of steady states of an unbounded two-dimensional, inviscid, incompressible fluid
that contains distinct, simply connected regions of uniform, constant vorticity.
This situation arises in the modeling of fluid systems in which relatively isolated
regions of vorticity are present, e.g., (1) the aerodynamic trailing-vortex problem
(Spreiter & Sacks [1951], Moore & Saffman [1971], Pierrehumbert [1980]), (2) the
two-dimensional shear layer (Pierrehumbert & Widnall [1981], Saffman & Szeto
[1981]), and (3) the Kédrmén vortex street (Saffman & Schatzman [1981], [1982],
Kida [1982], Meiron, Saffman & Schatzman [1984], Jiménez [1986a,b], MacKay
[1986]). Furthermore, knowledge of the interaction of vortex regions is of general
fluid mechanical interest.

The analysis of regions of uniform vorticity embedded in an otherwise ir-
rotational fluid has been undertaken using many methods, the most notable of
which are the point vortex method and the method of contour dynamics. The
simplest application of the point vortex method models vortex regions as single
point vortices, the dynamics of which is easily and elegantly formulated (Kirch-
hoff [1877]). Many results of this basic analysis are covered by Lamb [1945]. In
more complicated applications, vortex regions are modeled as large collections of
either point vortices or vortex blobs. Many researchers have used these methods

to study isolated regions of vorticity, as well as models of developed shear layers
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and wake flows. These efforts are reviewed by Saffman & Baker [1979], Leonard
[1980] and Aref [1983]. The stability analysis of large collections of point vortices
1s based upon solutions of the time-dependent evolution equations of the problem.
The contour dynamics or boundary-integral method consists of using the Green’s
function solution of the two-dimensional Laplace equation to obtain an integral
relation that determines the shapes of the constant vorticity regions. This was for-
mulated for time-dependent flows by Zabusky et al. [1979], and applied in various
forms by several authors, as reviewed by Leonard [1980]. This approach is easily
formulated, but suffers from the fact that solutions do not readily admit spectral
stability analysis.

Recently, Meiron, Saffman & Schatzman [1984] (hereinafter referred to as
MSS) employed the method of Schwarz functions to analyze a constant vortex re-
gion model of the Karman vortex street. We extend this technique, which is based
upon a complex variable representation similar to that used by Landau [1981] and
Burbea [1982], to consider a variety of vortex configurations. This method offers
an analytically appealing approach to analyzing general two-dimensional flows in
unbounded domains and provides a basis for direct linear stability and energy
analyses. In the sections of this chapter we provide an overview of the formulation
of the problems to be considered. A single vortex region is analyzed in Chapter 2,
and the vortex pair is examined in Chapter 3. The final two chapters contain
analyses of configurations with infinitely many vortices: the single infinite array
in Chapter 4, and the staggered double array in Chapter 5. We are able to con-
firm previous solutions, obtain new results for these vortex geometries, and verify

a relationship relating energetics and stability in certain cases.



1.2 Shape Calculations

We take the two-dimensional (z,y) plane as the physical plane of the inviscid,
incompressible flows considered. In all calculations, we normalize the constant
density to one. We describe the boundary and exterior of a simply connected region
of constant vorticity in the physical z = z + 1y plane as the exterior conformal
mapping of the boundary and exterior of the unit circle in the ¢ = £ + in plane
given by

z=ao((l+ar/C+ - F+an/{"+- ). (1.2.1)

We seek to describe the velocity field induced by the region of constant vor-
ticity wy and area A; in terms of the coefficients of this expansion. To do so, we
follow the development of MSS, who used the method of Schwarz functions. A
Schwarz function is defined as an analytic function of z that assumes the value z*
on a given contour; in the cases we consider, this contour is the vortex boundary.

The conjugate of z 1s expanded as
2" =(ag/Q)(1+aiC+ - +ap("+---), (1.2.2)

where |(| = 1 corresponds to the vortex boundary. We assume that the starred
coeflicients a, are independent of the actual corresponding complex conjugates.

We expand the Schwarz function as a Taylor-Laurent series in z on this contour:
2t =gofz+g1/2P++ fot+ fiz+ o2t (1.2.3)

where g, and f, are currently undetermined. The equation for the stream function

in the neighborhood of this vortex is

92 52 .
(0 + (0 _Jo f)ut.snde the vortex, and (1.2.4)
0z? = Oy? —w; inside the vortex.
As a consequence of the Cauchy-Riemann equations this implies that
u — v 1s analytic outside contour C, and
(1.2.5)

. iuu . e
u— 1+ ~—é——z* is analytic inside contour C.



The choice

W g0 | g1
U— v = w——Q—{?+~Z-'2—+} (1.2.6)

satisfies these conditions, since this expression is analytic outside the vortex and

7,(.«)1 ZLU1

u—w-}——z—z*: -"‘{f0+f12+f22 + - } (1.2.7)

is analytic inside the vortex. Similarly, the independent conjugate velocity is

obtained as
: W
= = s b s 1.2.8
U+ 2w > {z* + o) + } ( )
To obtain the induced velocity in terms of the mapping coeflients of Equation

(1.2.1), we relate the coeflicients g, to the coeflicients a,,. From Equation (1.2.3),

by Cauchy’s integral formula,

1 « ndz
gn =5 P27 dCdC’ (1.2.9)

where the contour C is the vortex boundary. Thus, we see that

L d
gn = the coefficient of (7! in 2*z dz (1.2.10)
For the conjugate coefficients we find
* : -1 * T dz*
gn = — the coefficient of (7" in z 2 i ; (1.2.11)

the minus sign comes from traversing the contour in the opposite direction. As
shown by MSS, similar representations can be obtained for the coefficients f,, f5.
An alternate and useful interpretation of the g, is as follows: from elementary

potential theory the velocity external to the vortex is

! !
u—iv == // Cimmdg, . (1.2.12)
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For |z'/z| < 1 we expand the integrand and equate this series with the expression

for the velocity (1.2.6) to obtain

1 n
gn == //z' dz' dy'; (1.2.13)

14

i.e., gn is the nth moment about the origin. Specifically, we see that

go = A1/,  and (1.2.14)

g1 = coordinate of the vortex centroid relative to the origin. (1.2.15)

Expressions such as (1.2.6) for the induced velocity field can be developed for
each of the vortices in a given configuration. In a coordinate frame in which the
coordinate z is taken with respect to the center of the lth vortex, we write the
general induced velocity at a point P external to each vortex for a configuration

of N, vortices as (see Figure 1.1):

(m)

Ny —iw oo g
(u e iv)z, ind = ( 5 m) Z - — (1.2.16)

etz —zm)

where
z = coordinate with respect to the center of the lth vortex region;
zm = coordinate of the center of the mth vortex region with respect
to an absolute origin O; and

g\™) = nth Schwarz coefficient for the mth vortex region.
(1.2.17)

Expressions for the [th induced conjugate velocity (u + v)i, jnq may be obtained
by substituting — for ¢, 2* for 2, 27, for z,,, and g;(m) for g,(lm) into (1.2.16). For
multiple vortex configurations, the denominator of the infinite sum in the velocity

representation is expanded in a series in a length scale of the problem; the details
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Figure 1.1 General vortex configuration.

of this process, which is equivalent to an expansion in a nondimensionalized area
parameter, will be described in later sections.

For the calculation of the steady vortex shapes we prescribe an external veloc-
ity that balances any self-induced motion and thereby brings the vortices to rest;
this velocity depends upon the geometric configuration of the vortices. This and
any other external velocity we denote collectively as (u — iv);, .+ With respect to
the [th vortex region; (u + 1v);, ¢4+ denotes the conjugate quantity.

Thus, we have the total velocity field in this coordinate frame as
(u—1v) = (U =), ing + (U = 10)1 gty (1.2.18)

with a similar expression for the conjugate velocity.
To obtain an equation that defines the region to which the vorticity is re-
stricted, we consider the boundary condition at the surface of the vortex. The

boundary condition for steady vortices is that the velocity normal to the surface
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of each vortex is zero. On the boundary of the vortex, |dz| = |ds]|, so without loss

of generality we parameterize the boundary of the vortex by
dz/ds = —e'?, 0 <o <2r. (1.2.19)

Here, ¢ is the clockwise external angle between the counterclockwise tangent and
the left-directed horizontal axis. The condition that the normal velocity is zero

then becomes
using —vcosp =0 <= (u—1w)dz/ds — (u+iv)dz*/ds = 0. (1.2.20)

On the vortex boundary, z is the image of |(| = 1 ; choosing the { plane parameter-
ization ( = expf implies d(/df = 1(, which allows evaluation of the derivatives

in (1.2.20) as

G didcdh _dedd  de_ddcds deds o
ds d(d8ds d(ds’ ds  d( dods " d¢ ds -~ o

The boundary condition (1.2.20) becomes
R(¢) = (u —v)(dz/d( — (u+1v) (dz"/d( = 0 (1.2.22)

on |(| =1, with u —1v, u + v, 2z, and z* as described above.

To compute the solutions for the shapes, we choose a positive integer N and
truncate the expressions for z and z* up to and including the terms ay and a}; .
Similarly, we truncate the expressions for u — v and u + v to include up to gy
and g3 . We treat the coeflicients and their conjugates as independent variables;
this choice allows one check of the calculations. We substitute these expressions
into the governing Equation (1.2.22) and obtain the following equation on the

boundary of the mth vortex:

Y Rin(k) ¢k =0; (1.2.23)
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this equation is consistent in each power of ( retained. For each vortex we equate
to zero each of the coefficients of (¥, —N < k < N. For N, vortices, this truncation
provides N, - (2N + 1) complex equations for the N, - (2N + 2) complex shape
coefficients.

We eliminate NV, of these unknowns by setting
ao = al (1.2.24)

for each vortex; this equation effectively specifies the the phase of (. The system,
however, remains underdetermined. We see that the coefficient of (% is perforce
zero by considering the equation of continuity, as shown in Appendix A. Depending
upon the configuration of the vortices, other equations prove to be dependent,
and further conditions must be derived to obtain a nonsingular system; these
considerations will be described in the sections with the details of the individual
cases.

There are two further conditions used in many of the calculations. First,
we require that the vortices have prescribed areas. From Equations (1.2.10) and

(1.2.14), we define the area of a given vortex as
A =rwagag(l —agal —---— (N — 1)ayay); (1.2.25)

this equation is exact in the limit of infinite N when the starred quantities are
the complex conjugates of their unstarred counterparts. Using this expression in
the area relation (1.2.14) provides a further equation for each vortex. Second, we
stipulate that the centroids of the vortex regions coincide with the local origins.

From (1.2.15) we require this by specifying

g1 =97 =0. (1.2.26)
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For each problem we have a system of M equations obtained from the bound-
ary condition (1.2.22) and auxiliary conditions, (1.2.24)-(1.2.26), for the M un-
knowns that determine the shape (i.e., the a, coefficients) and other properties of
the system (e.g., the external velocity). Here, M depends upon N and the specific

vortex system being described. We write this nonlinear system of equations as
F(x) =0, (1.2.27)

where F represents the M-vector of equations and x represents the M-vector of

unknowns, and obtain solutions using the Newton iteration scheme

v+1

x"T =x" — 6x”. (1.2.28)

Here,

8x” = {F'(x*)} " 'F(x"), (1.2.29)

where F'(x") denotes the derivative OF /0x evaluated at x = x”. An initial solution
to begin the Newton iteration is often taken as the circular vortex solution, which,

for a vortex with area A, is given by

ag =+ A/r, a,=a=0, n=-N,...,—-1,1,...,N. (1.2.30)

Subsequent solutions are obtained using previous solutions as initial data. The
convergence criterion of the Newton iteration is taken as requirement that the error
in the solution, given by || F(x”)||, plus the change in the residuals, given by || 6x* ||,
be less than a prescribed tolerance €; in computations, € was taken as 1072, The
nonsingularity of the Jacobian is taken as verification of the independence of the
equations involved. Furthermore, the Newton iteration formulation provides a
framework for the application of path-following techniques and indicates possible

bifurcation phenomena.



~10-

The steady-state solutions for the vortex shapes are taken as the basis for

linear stabilty analysis, which is described in the next section.

1.3 Stability Calculations

For a given computed steady shape vortex configuration, we study the linear spec-
tral stability of this solution to two-dimensional disturbances. In some cases to be
considered, analytical linear stability analyses have been carried out; however, for
the more complicated configurations, numerical linear stability analysis is required.
Following the procedure of MSS, we introduce infinitesimal time-dependent defor-
mations to the vortex boundaries, and assume that the vorticity of each region
remains constant. By linearizing the resulting governing equations and prescrib-
ing an exponential form for the perturbation quantities, we obtain a generalized
eigenvalue problem for the eigenmodes of the disturbance. From the solution of
this problem we infer the spectral stability properties of the given configuration.
In this section we offer an overview of the development of this analysis; details for
specific configurations are discussed in subsequent sections.

To begin, we note that the steady boundary condition yields the govern-
ing equation in the steady shape calculations; similarly, in the stability calcula-
tions the corresponding unsteady boundary condition governs the behavior. The

requirement that the vortex boundary move with the fluid is given by
(u—0x/0t)sinp — (v — Oy/Ot) cosp = 0, (1.3.1)

where the vortex boundary z = x 41y is no longer assumed steady; i.e., z = z(t),

y = y(t). In analogy with Equation (1.2.20), this condition is written

0z* 0z .0z 0z 9z* Oz*

o a5 T T g as Tt

= 0. (1.3.2)
In the unsteady case we write

2=7+ 2", u—iv="U—iV+u -, (1.3.3)
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where capitalized quantities are the known steady solution values and primed
quantities are time-dependent infinitesimal perturbations.

Introducing these relations into the boundary condition {1.3.2) implies the
following equation to leading order:

0z*

W -2 i)

= 0. (1.3.4)

This relation is the requirement that the steady solution values satisfy the steady-

state boundary condition. To first order in the perturbed quantities we obtain

9z 07 0z , . 02 0z'9Z* 9z 9z*
T —a—;—(U—zT/ )E~(u B v vy (U—HV) —{—(u +iv') EP = 0.
(1.3.5)
Exponential time dependence is assumed for all primed quantities; e.g.,
z' = 2'(s)e%, u' — ' = [u'(s) —iv'(s)]e’?, (1.3.6)
so that Equation (1.3.5) becomes
(U - zV)%i- + (u' — v )———— —(U + z'V)aaz —(u' + iv')a(,i
_ /*?_Z__ ,02* (1.3.7)
=097 o z' 5e (- 3.

Using relationship 0/0s = (96/0s) 0/06 on the vortex boundary and canceling

the common 06/0s factor, we obtain the equation governing linear stability:

07 0z 0z 0z*
(U-—ZV)a + (u' —w)ag (U +:V) 50 — (u +zv)89
w0Z 02"
=0 {z 50 % 9 } (1.3.8)

This boundary condition is to be satisfied on every vortex; symmetry assumptions
in the infinite array configurations imply that this equation needs to be satisfied

on only one vortex (for the single array) or on only one vortex in each row (for the
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double arrays). The eigensolution of this problem is the shape perturbation 2/,
which appears both explicitly and implicitly (in the velocity perturbation u' —iv’)
in this equation.

The shape perturbation z' is defined as follows. The boundary of a steady
solution vortex is described by the mapping of the unit circle in the ¢ plane given
by

Z:aoC(1+a1/C+"'+an/Cn+"'); (1.3.9)

a similar expression exists for Z*. Perturbing each of the coefficients of the ex-
pansion, i.e., letting a, — a, + a},, and linearizing yields the following expansion

for the shape perturbation:

' =apC(l+ar/C+- - +an/C"+- - )+ agl(al /C+--+al,/CP+ -+ ). (1.3.10)

Similarly, the perturbation z*' is given by
= (A /O +aiC+FanC™+- - )+ (ag /(@ +- ™+ ). (1.3.11)

Here we do not require the coefficient @), to equal the complex conjugate of a;
i.e., the perturbations to the coeflicients a,, and a? are taken to be independent,
since a, and a}, are treated as independent quantities. With the assumption that
agp is real (as used in the shape calculations) we do assume that a, = @ for each
vortex.

From the steady-state solution we have series expansions for Z and Z*, with
which we explicitly evaluate the tangential derivatives required in the right side
of Equation (1.3.9). On the vortex boundary, 8/96 = (9(/98) 8/9(; also, { =

exp 16, so ¢/00 = (. Differentiating the shape expansion thus implies

BZ/aﬁziaOC(l——(l—l)%-(2— 1)%- (=122 ) (1.3.12)
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a similar result is obtained for Z*/06 . Using these representations, the right
side of Equation (1.3.8) is expanded explicitly as a power series in ¢ for the per-

turbations to each of the shape coefficients of each vortex.

The evaluation of the left side of Equation (1.3.8) is less direct. The com-
plication lies in the evaluation of the perturbation velocity u’ — v’ as a power
series in ¢ in which the perturbed shape coeflicients are easily identified. The
implementations vary with the geometry of the configuration and the nature of
the stability problem, which differs between finite vortex systems and infinite vor-
tex arrays: in the former, the self-oscillations (i.e., shape modes) of the system
are studied, while in the latter, in addition to the shape modes, the cooperative
modes corresponding to a perturbation of a prescribed wavelength are analyzed.
In the subsequent discussion we outline the underlying concepts employed in the
evaluation of the left side of Equation (1.3.8); the details for the different config-
urations are explained in the following chapters. Let (u — iv); denote the velocity
induced by the [th vortex, and consider the contribution of the perturbation to the
nth shape coeflicient of the [th vortex. This perturbation implies the linearized

velocity perturbation given by

d(u - iv) (1)

(u' =) = w0 a,’. (1.3.13)

We approximate the derivative in (1.3.13) with central differences as follows. The
nth shape coeflicient, ag), of this vortex is incremented by a small quantity e,
and the expansion of the resulting perturbed boundary condition at each vortex is
obtained using the relationship (1.2.10) between the Schwarz velocity coefficients

and the shape coefficients. The tangential velocity at the boundary of each vortex

1s then evaluated as a power series in (. Schematically, we represent this effect on
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the boundary condition at the mth vortex as

U — IV Oz 0 2" o = . (D k
{{( )ae (U+ )89 }ag)_}—e} ]8V - Z Rm(k,an +€)C . (1314)

k=-—o00

We represent the analogous effect for the nth shape coefficient decremented by &

as

(=) 02— (i)
U — v 20 u + v En oS

The effect of the perturbation on the boundary condition at the mth vortex is

ZRm(ka’) e)¢k (1.3.15)

k=-—o0

approximated by the expansion

9 az 9z GYARRE
{(U—zV)—a-é- + (u' ——w) —(U + )39 — (' +w) }
OVim
= 3 5 [Ba(ka® +0) ~ Ru(kial® — )] ¢t (1.3.16)
k=—o0

The error in this approximation is O(¢?). Linearization of the velocity descrip-
tion given in (1.2.18) (with (1.2.16)) shows that perturbation of the nth shape
coefficient induces two contributions to the velocity perturbation u' — v’ : (1)
that given by the perturbed vortex shape in the steady velocity field (described
by the unperturbed Schwarz coeflicients), and (2) that caused by the induced per-
turbed velocity field (determined by the perturbed Schwarz coefficients) in which

the vortex retains its steady shape. We denote this by
u' — ' = (U = 0 )portes + (U — 10 ) vetocity- (1.3.17)

As a result of this decomposition, the evaluation of the coefficients R, in (1.3.16)
is divided into two terms; the details of these calculations depend on the vortex
configuration and are described in the following chapters. This evaluation proce-

dure is repeated for all shape coefficients of each vortex to obtain the left side of
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(1.3.8). Symmetry assumptions imply that this computation needs to be made on
only a single vortex for the single infinite array, and on only one vortex in each row
for the double array; however, the influence of the other vortices requires careful
analysis in these cases.

All terms in the governing stability Equation (1.3.8) can now be evaluated.
Equating the coefficients of like powers of ( in the power series expansions for each
side of Equation (1.3.8) yields infinitely many equations in the infinitely many
unknown shape perturbations. We write this system as the generalized eigenvalue

problem

Mv=0oNvwv. (1.3.18)

The matrix elements are functions of the steady shapes and other geometry-depen-
dent parameters (e.g., for the infinite arrays, the wavenumber of the perturbation),
and the components of the eigenvector v are the perturbed shape coefficients
{a', @} of all vortices on which the boundary condition (1.3.8) is imposed.

To solve this problem numerically, we truncate all series to the order used in
obtaining the steady shapes. For a general configuration of N, (< co) vortices,
each vortex contributes 2N + 1 eigenvector elements, so the system is of order
N, - (2N + 1); by symmetry assumptions the matrices are of order 2N + 1 for
the single infinite array and of order 4N + 2 for the double infinite array. In the
actual solution of these problems, standard eigenvalue routines were used, with no
difficulties.

The stability data obtained contain different information depending upon the
configuration considered. The results, their differences, and their implications are

presented in the subsequent chapters.
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1.4 Energy Calculations

To better understand the dynamics of a vortex configuration, we study the ener-
getics of the system. Specifically, we analyze the angular momentum and kinetic
energy of vortices so that we can compare our findings with those of other re-
searchers as well as further develop the theory for vortex systems for which there
are conflicting results. In addition, energy analyses provide a means to check our
results for the simple cases that permit explicit analytic analyses. Our analyses of
vortex energetics extend only to systems of finitely many vortices.

The angular momentum of a vortex system is defined with respect to an

absolute origin as

1
H = —5//wr2 dz dy, (1.4.1)
IR2

where r 1s the distance from the origin to the point of integration. We choose the
origin as the location of the centroid of the system. Furthermore, by choosing the
centroid of each region of constant vorticity to coincide with its origin, we have

for a system of N, (< co) vortices

1

H = -3 wm(h2 A + //rfn dz dy), (1.4.2)
m=1 Vin
where h,, is the distance of the vortex centroid from the absolute origin and

rm 1s the distance measured relative to the origin of the mth vortex V,,. We

nondimensionalize the angular momentum as

Ny
J=—H/ (Z FmAm> , (1.4.3)

for configurations in which the denominator in this expression is nonzero. We

evaluate the integral in (1.4.2) in terms of the shape expansion (1.2.1) as

27 R (¢) ) 1 27 1 27
// r? drdy = / qu/ rirdr = ——/ R} do = ——/ |z|*dé. (1.4.4)
0 0 4 Jo 4 Jo

Vim
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We thus reduce the area integral to an integral around a contour on which we have

the required information: z describes the boundary of the mth vortex region; i.e.,

z=ao(l+ai/C+ - +an/¢"+ )= Rpne'?, (1.4.5)
so that
d . .
dz = z;? d¢ = e dRp, + i Rne'® do. (1.4.6)
Using a similar representation for dz*, we obtain the expression
1 /dz dz*
dp = — | — — . 4.
¢ 21 ( z z* ) (1.4.7)

On the vortex boundary, ¢ = exp16, so that d( = i( d6; thus, the differential d¢

can be written

1 1dz 1 dz*
qu:—Q—C(;—JE—;—; dC)dﬁ. (1.4.8)

1 [ 1dz 1 dz*
//rfndxdyz-é/o ‘Z'4<<Z?.ZZ'2? dc)d@. (1.4.9)
V,

m

Hence,

This integral is numerically evaluated using the steady-state solutions and
Romberg integration.
The analysis of the energy of a system of vortices is more complicated. We

consider the total kinetic energy of a system of vortices as
1
E = 3 //V¢ -V dz dy. (1.4.10)
RZ

Using Green’s Theorem, we write this as

E=- Rlim zp-@éds-/ Vi) dedy . (1.4.11)
— ) ieA
r=R R?
Thus,
1 o 1
E = 5 Rh—»\oo P o ds + 5 //wz/)dx dy. (1.4.12)
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For a system of finitely many vortices, we now require the far-field behavior

(Saffman [1984]):

, r Ixx- z 1 :
z/)~~§-7}—logR+~——;———+O(-]§>, as R — oo, (1.4.13)
where x 1s the fleld point, I" is the total circulation of the system, and I is the

hydrodynamic impulse, defined for two-dimensional flows as

I= //xxwdxdy. (1.4.14)
R?

In this frame of reference the vortices need not be stationary. We prescribe this
far-field stream function behavior to compare different vortex configurations in
equivalent settings. The first integral in (1.4.12) is the “infinite part” of the kinetic
energy; its presence for two-dimensional flows is well known (Saffman [1984]).

Thus, we define the excess kinetic energy as the second integral in (1.4.12), viz.,

T= %— //wt/) dz dy. (1.4.15)
]R2

For systems with nonzero total circulation we nondimensionalize this quantity as
T=T/T% (1.4.16)

By the choice (1.4.13) of the far-field stream function, this nondimensionaliza-
tion of kinetic energy 1s not independent of the length scales of the problem. For
example, the closed-form expression of this quantity for a circle of radius a centered

at the origin is derived in Appendix C as

Teirete = —-1-—-(1 —4loga). (1.4.17)
167

To eliminate this scale dependence, we define the reduced kinetic energy as the

nondimensional excess kinetic energy of the system less the nondimensional excess
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kinetic energy of an equivalent circular vortex, which is defined as a circular vortex,
centered at the origin, with total area A and total circulation T' equal to that of

the system of vortices. From (1.4.17), we have that

1; [1—2log(A/n)]. (1.4.18)

Tequivalent circle =

Thus, we write

-~ ~ ~

T=T- Tequivalent circle- (1419)

Several different nondimensionalizations of the kinetic energy are to be found in the
literature; we choose this nondimensionalization (including the prescribed stream
function behavior at infinity) as it provides a scale-invariant measure of the kinetic
energy of the system for circular and elliptical vortices.

To evaluate the integral (1.4.15), we note that the vorticity is a nonzero
constant in each of the vortex regions and zero elsewhere, so only the integral
of the stream function over the vortices need be considered. In Appendix B the
following expression for the integral of the stream function over a vortex V is

derived:
_1 _ L N L
//d)drdy—zfzb(wdy yd$)~4]{(w +y)<amd 3y )
14 oV oV
+ %/ (z* + y*)Vi dz dy. (1.4.20)
v

It i1s convenient to consider the contributions of the individual vortex regions to
the stream function; thus, we write (1.4.20) for the contribution of the stream

function induced by the /th vortex to the integral over the mth vortex as

O Q)
// W de dy = f ! l) (zdy —ydz) — )é r? (agx dy — agy dl’)
— —-w151 m //r dz dy, (1.4.21)
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where ¥ is the stream function at the mth vortex induced by the [th vortex,
Tm is the radial coordinate relative to the local origin of the mth vortex, and &;
1s the Kronecker delta. Hence, the total excess kinetic energy for a system of N,

vortices may be represented as
= wm U
- V;

where the integral is given in (1.4.21).

To express these integrals in terms of the shape representations (1.2.1) and
Schwarz velocity expansions (1.2.6), we first evaluate the stream function in terms
of the Schwarz coefficients. The external velocity induced by the mth vortex at a
point zy relative to the absolute origin is given by

W gﬁf")

(U — 10)m, induced = — —T (1.4.23)

n=0 (ZO - Zm)
where z,, is the position of the origin of the mth vortex relative to the absolute
origin. The corresponding complex potential w = ¢ + 3 is given by
oo (m)

Win , ;
Wm,induced = 2 g(()m) 1Og(20 - Zm) - Z ;;C;gl'z—)f{ -+ Cm) (14—24)
07 ~m

n=1
where C), is a constant. Thus, the total induced complex potential is

Ny
Winduced = § Wm, induced- (1425)

m==1

By the choice of asymptotic behavior of the stream function (1.4.13), we set
Com=0, m=1,... N, (1.4.26)

since with this choice, by (1.2.14),

. Ny
i m
W~ =3 Z wmgé )log(zo — zm) +o(1)

m=1

I
= W r~ ——;— log Zo -+ 0(1), as !ZO[ — 0O, (1427)
T
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where I' 1s the total circulation and z; is the coordinate relative to the absolute
origin. At a point z on the boundary of the mth vortex, the value of the stream

function mnduced by the Ith vortex is given by

' oo (0
ONRS BELTY KON o gn ”
P \s{ 5 { og(z + z z7) n§:l Y E— z,)"} } . (1.4.28)

The value of the velocity on the boundary of the mth vortex induced by the (th

vortex is
( ) o g 7 (1.4.29
U= 1V ) | = 5 CFom — o)1 4.29)
n=0

With these representations we now evaluate the integrals in (1.4.21). The inte-

grand of the first integral is simplified by writing

rdy —yde = -S{zdz"} = =S {z dz } = ——%{ dz } (1.4.30)

dc dc

since ( = exp:f on the vortex boundary. Hence, using (1.4.28), we express the

T}

(1.4.31)

first integral in (1.4.21) as

2w . oo (D
Cx _Zﬂ (1)1 _ n
R CIEEE S

The integrand of the second integral in (1.4.21) is simplified by noting that

d 0 .
Bzf dy — —(;—/}— dz = —(udz + vdy) = =R {(u — iv)dz}. (1.4.32)

On the vortex boundary we have that

e =icE g, (1.4.33)

dg ¢

Thus, with 22 + y* = |z|? on the boundary and the velocity given by (1.4.29), we
Yy g

write the second integral in (1.4.21) as

00 (l) d
_g}e{ / (Z G +Zm = n-H) Cdc d@} (1.4.34)

n=:0
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Lastly, we note that the third integral in (1.4.21) is the same as the integral (1.4.9)
obtained in the angular momentum calculations.
In the subsequent sections, we analyze the energetics of the vortex pair and

the single vortex in a uniformly rotating field, which we consider next.
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Chapter 2

The Single Vortex

2.1 Introduction

In this chapter we study a single simply connected region of uniform vorticity in a
two-dimensional, inviscid, incompressible fluid. The theory is developed by using
the method of Schwarz functions for the case of flow with external rotation v and
plane strain rate € . Two special cases are analyzed:

1. externally rotating flow without strain; i.e., ¢ = 0; and

2. straining flow without external rotation; i.e., v = 0.

The general formulation presented also permits the analysis of the case of simple
shearing flow, i.e., the case vy = +¢ .

The simplest of all finite area vortex flows is the circular region of constant
vorticity in a uniformly rotating fluid. This solution, the Rankine vortex, admits
complete analytic linear stability and energetics analyses (Lamb [1945]). Likewise,
the Kirchhoff elliptical vortex (Kirchoff [1877]) has been entirely described (Love
[1893], Lamb [1945], Kida [1981], Burbea & Landau [1982]). The steady states
that bifurcate from the circular vortex were first found and studied by Deem &
Zabﬁsky [1978], using the boundary-integral method; they applied the techniques
of contour dynamics in a limited study of the nonlinear stability of these con-
figurations. Subsequently, Landau [1981], Burbea & Landau [1982], and Burbea
[1982] contributed an exhaustive and rigorous study (including existence proofs) of
the shape and stability of these symmetric singly connected steady states. These

solutions are verified using the method of Schwarz functions, and further solutions
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that bifurcate from these branches are found. We study the relationship of angular
momentum and kinetic energy to the stability of these vortex states.
Introduction of plane strain into the flow approximates to first order the
effect of a relatively distant second vortex. This complication presents a signif-
icantly different problem, which was first solved explicitly by Moore & Saffman
[1971]. They obtained analytic solutions for a family of elliptical vortex solutions,
which were later verified by Kida [1981], Burbea [1982], and Neu [1984]. Moore &
Saffman analytically obtained the stability characteristics of the elliptical solution
branch, also given by Burbea, and thereby predicted nonelliptical bifurcated solu-
tions. We obtain these steady nonelliptical solutions numerically and study their

stability properties.

2.2 Formulation

The formulation of the single vortex shape problem closely follows the presenta-
tion of Chapter 1, simplified by the consideration of only one vortex region and
complicated by external rotation and straining fields. The boundary of the region
with uniform vorticity w, is determined by the conformal mapping of the unit

circle in the ¢ plane given by

z=ag((L+a) /(4 +a,/("+-). (2.2.1)

We take the origin of the physical plane to be the origin in this representation of

the vortex boundary. The external velocity induced by this region is given by

: w
(0= i0)imgucea = =2 {2+ L4 ] (2:2.2)
where
d
g, = the coefficient of (7! in z*z" sk (2.2.3)

¢’
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Following Moore & Saffman [1971], we write the velocity of the external flow
field with uniform rotation 7y and rate of strain ¢ with principal axes at 7 /4 to

the z-axis as

Uerternal = “(7 + 6)?/7 Verternal — (’Y - E) €, (224)

where v and € are real numbers. This is equivalent to

o
o
Ut

p—

(u - iv)external = 1€z — 2’72’* (’

The total velocity field is given by the sum of the induced and external ve-
locities; the conjugate velocity field has a similar representation in terms of the
conjugate coefficients, which are assumed to be independent. The governing equa-

tion for this problem is the boundary condition
R(Q) = (u —iv) (dz/d( — (u+1iv) (dz"/d( = 0. (2.2.6)

Substituting the series expressions for the terms in this equality, we obtain the

equation governing the shape of the vortex as

i‘ R(k)¢F=o0. (2.2.7)

k=-—o0

To solve this equation, we choose a positive integer N and truncate all ex-
pansions to include terms up to and including order N. To satisfy the boundary
conditions on the vortex, we equate each of the coefficients of (¥, —N < k < N, to
zero, and thereby obtain 2N + 1 complex equations for the 2N 4 2 complex shape
coeflicients.

We reduce by one the number of variables by requiring a, = aj, which fixes
the phase of (. The resultant system is underdetermined. Following the arguments

of Appendix A, the coefficient of (° is necessarily zero, so setting R(0) equal to
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zero is a dependent equation. To remedy this situation, we include the equation

specifying the area of the vortex. From (1.2.25), we write this relation as
Afr —agai(l —agay — - — (N — 1l)ayay) = 0. (2.2.8)

We thus obtain 2V + 1 complex equations, consisting of the above area equa-

tion and the 2N boundary condition equations,
R(k) =0, k=-N,...,-1,1,..., N, (2.2.9)

for the 2N +1 independent complex unknowns a4, a,,...,ay,af,...,a%. The sys-
tem obtained is nonsingular, and, indeed, a7, is found to be the complex conjugate
of a,,. The requirement that the centroid have zero displacement from the origin is
found to be automatically satisfied by all solutions obtained; i.e., it is found that
both ¢, and ¢} are always zero. Since the system obtained is nonsingular, these
equations are not explicitly imposed. Solutions of the resultant nonlinear system
of equations,

F(x;e,v) =0, (2.2.10)

are obtained using Newton’s method, with LINPACK routines employed in the
matrix manipulations.

The stability problem for single vortices describes the self-oscillations of the
perturbed steady vortex solution. The formulation of the linear stability problem
for the single vortex follows the procedure of §1.3. Linearization of the unsteady

boundary condition that the vortex move with the fluid yields the equation

02 , . n0Z 02" , 07"
(U—zV)-—a—-g-+(u—w)~a—9———(U+lV) 50 — (u +zv)ae
072 0z*
Y P 2.2.
a{z YRR } (2.2.11)

Here, we have assumed the expansions

z=7 +2'(8)e", u—iv="U —1V +[u'(8) — iv'(0)]e”", (2.2.12)
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where capitalized quantities are the known steady solution and primed quantities
denote perturbation values. We define the shape eigensolution by perturbing each
of the coefficients of the shape expansion as in (1.3.11) and (1.3.12), where the per-
turbations to the coefficients a,, and o}, viz., al, and a’ , are taken as independent.
To explicitly formulate the boundary condition (2.2.11) as an eigenvalue problem
according to the procedure of §1.3, we now consider the effect of the perturbation
to the shape coefficient a;.

The right side of (2.2.11) can be evaluated directly according to the discussion

of §1.3 : for the perturbation a']- the corresponding shape disturbance is

,:{a;,c(l+q1/<+---+an/<"+~->, 1=0 (2.2.13)

< 11— -
A i=1,2,....

Recall that the shape perturbation of the conjugate coefficient ay, given by a’, is
independent of the conjugate of the shape perturbation a', given by c.c.{a’}. The
f-derivatives of the steady boundary in (2.2.11) are evaluated explicitly (e.g., as
in (1.3.12)). The terms 0Z/06 and 0Z*/06 are calculated as products of power
series in (, so that the right side of (2.2.11) is evaluated as a power series in (.
An explicit perturbation expansion of the velocity field shows that we may
consider the velocity perturbation as consisting of two contributions: (1) that
induced by the boundary perturbation in the steady, i.e., unperturbed, velocity
field, and (2) that caused by perturbing the velocity field while keeping the given
vortex undisturbed. For the disturbance to a ; considered, the first contribution is

given by the perturbation to the induced velocity field; i.e.,

(u' — ') = %(u —1v) 2 4 8(u — iv)

=27

_ d 1wy > 9.
- dz 2 gntl

n=0

(2.2.14)

J,vortezx induced external

2i+i(ex — 2}, (2.2.15)

z=Z

where Z is the steady shape and z; the shape perturbation due to a;-, given in
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(2.2.13). The second contribution is given by

0
zwl gn
j,velocity — 9 Zu+1’
n=0

(u' — ')

(2.2.16)

where the primed Schwarz coefficients are the perturbations in these quantities due
to a’j. There are no external velocity contributions to this term, as the external

field is steady.

We compute these numerically as follows. First, we approximate the first two

terms 1n
6 l BZ aZ*’j az*
o _J - ! . — N . ! L . R »76) A
( ZV) +(U‘ Z’U )],vortex (39 (U—*—’LV) 89 (u +ZU )],vorte:z: 89 (“"’17)
as
N
E: [Ry(k;a;+¢) — Ry(k;a; — )] ¢F, (2.2.18)
ey 25

where Z/iv:mNRl(kJQj + £)¢* is the product of the truncated velocity expan-
sion, into which the perturbed shape is substituted, and the 8-derivative of the

perturbed boundary. This sum is given explicitly by

i, g 5
{—_2_l [2(a; ine)]”“ tilez(a; £ e) — 727 (q; ig)]} o6 [2(a; £)] .

n=0

In this formula z(a; + ¢) represents the shape due to the perturbation to a; :

o, de)= (aO:te)C(1+a1/C+---+an/c‘+...)’ j =0,
NGEIT V(A +ay /C+ -+ (ake) /4 a,/Ch ), j=12

The remaining terms in (2.2.17) are evaluated analogously. Central differencing
of these expressions as in (2.2.18) yields (2.2.17) plus terms that are O(e?).

The remaining contribution to the left side of governing Equation (2.2.11) is

Y ., 87

(u, - Z.U’)j,velocity—ég - (u, + >j,U€10Ciiy o0’
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the first addend of which is computed as

N

> 51‘5 [Ry(kya;+e) = Ry(ksay—e)] C*. (2.2.22)

k=—N

Here, }:kN:_N Ry(k;a;+e) ¢* is the product of the truncated velocity perturbation

and the boundary derivative of the steady shape; i.e.,

w, N gnla; )| o
Z Ry(kja; +e)¢* {--72—2 7 n-H} 5-é[Z(a].)}. (2.2.23)

k=—N

In this equation Z(a;) denotes the steady shape, and the first-order perturbation
to the Schwarz coeflicient is computed as the difference between the perturbed

and steady values of the Schwarz coefficient; i.e.,
gula; £e)=g,(a; £¢)—g,(a;). (2.2.24)

After adding a similar evaluation of the second term in this expression, we obtain
a first-order correct approximation to (2.2.21).

The sum of these terms gives the left side of the boundary condition for the
the disturbance to the jth shape coefficient. Repeating this calculation for each
shape coefficient and equating the coeflicients of the powers of { in this sum to
those of the like powers of ( in the right side of the boundary condition (2.2.11)
gives 2N + 1 equations in the 2N + 1 unknown complex shape perturbations. We

write this system as

Mv=0oN v, (2.2.25)

where the matrices M and IN are functions of the steady shape and the parameters

~ and €, and the eigenvector v has components

~ 1 ~f i i v
Uy = Ay Ung = Qg = @y, Ugygq = Gy (2.2.26)
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This generalized eigenvalue system is left-multiplied by the inverse of the non-
singular matrix N, and the resulting system is solved with standard EISPACK
routines.

A single zero eigenvalue is found for which the area variation of the corre-
sponding eigenmode is nonzero; as the perturbed vortex in this case is a steady
state, its conjugate is also, so z*' = c.c. {z'}, implying that & = c.c. {a’}. The re-
maining 2N eigenvalues occur in pairs, o, and o,, for each of the 1st through Nth
eigenmodes. If the mode is stable, i.e., R{o} = 0, the eigenvalues occur in pairs
with o, = o]. Absorbing the magnitude of the disturbance into the perturbation

z', for o, we have the shapes
Z + etz and Z* 4 etz (2.2.27)

. " N . .
where z] and z}' are determined by {a'l’n}:;() and {&] "}n=0’ respectively. Taking

complex conjugates, we obtain
Z* 4+ e%itcc{z!} and Z + et {2}, (2.2.28)
Requiring these states to be eigenmodes, with o, = o] we have that
zh = cc{z}'} and 23 =cefz]}. (2.2.29)
For suitably normalized eigenvectors, this condition implies that
ay , = c.c.{aj .} and ay , = c.c.{ay .}, (2.2.30)

which are found in the numerical results. Physically realized perturbations for
stable disturbances are obtained by taking combinations of both eigenvectors, i.e.,
ezl + e?2'z], so that the conjugate of the perturbed state is a perturbation of

the conjugate state. If the mode is unstable, we find that o is purely real with
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o, = —0; = oj. In this case we have the perturbations as given in (2.2.27) and
their conjugates as in (2.2.28). Since these conjugates must be eigenmodes, we
have that c.c. {z;} = z;' for j = 1, 2; normalizing the eigenvector such that a’j’o
1s real implies that

S (2.2.31)

as indicated in the computed results. Physically realized unstable modes are ob-
tained by taking the corresponding eigenvector only, so that the conjugate of the
growing/decaying perturbation is a growing/decaying state.

The energy analysis proceeds along the lines of the development of §1.4. The

nondimensional angular momentum of the single vortex is J = —H/T'A, where
1 w [ 1dz 1 dz*
H=-Z ‘dedy = —— = - = d6 2.2.32
2//” YT ]Z]C(zdc z*dC)  (2232)
IR2

which is evaluated in terms of the shape coefficients by Romberg integration.

With the excess kinetic energy of the single vortex given by

1
T = 3 //wv,b dx dy, (2.2.33)
m?

we consider the nondimensionalized energy T and the reduced energy T defined

by

T =T/T?, T=T-T (2.2.34)

equivalent circle’

As mentioned in §1.4, we evaluate the energy in the frame in which there is no
externally imposed rotation (see (1.4.13)). To evaluate the integral of the stream
function in the energy expressions, we use the form derived in Appendix B; the
integrands are evaluated in terms of the steady states as shown in §1.4, and the

integrals are evaluated using Romberg integration.
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Figure 2.1 The single vortex in rotating, unstrained fluid.

2.3 The Single Vortex in Unstrained Fluid

In this section we consider a single vortex in an externally rotating fluid, as de-
picted in Figure 2.1. In the subsequent discussion, the area of all vortices is nor-
malized to 7, and the circulation of the vortex region is set to one. The external

flow field is taken to have the following behavior:

(u — ) —1yz*, (2.3.1)

external ™

so that the total circulation in the vortex is wy, — 27y in the frame in which the

vortex boundary is fixed. We denote the nondimensionalized rotation rate by

PN
Lo
2
[R]

’Y, 57/‘%-

For any ~', the simplest solution of this problem is given by the circular
vortex, which was first studied by Thomson [1880]. This solution exists and is
neutrally stable for any value of v'. Analytic stability results (Lamb [1945]) yield

the discrete eigenvalue spectrum

= %(m ~1)(1 - 29'). (2.3.3)
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The angular momentum and kinetic energy of the circular vortex region, computed
with the far flow-fleld assumption (1.4.13), are derived in Appendix C. They are

given in nondimensional form as, respectively,

J=—, 7T 1—%[1—21%@/#)]. (2.3.4)

By definition (1.4.20), the reduced kinetic energy T is identically zero for a circular
vortex.

Bifurcating from the circular solution are several families of symmetric vortex
regions. Deem & Zabusky [1978] first found these solutions, which they named
“V states,” using a contour dynamics algorithm. Zabusky et al. [1979], Overman
& Zabusky [1982a,b], and Zabusky & Overman [1983] study the time evolution of
the Euler equations, using these steady shapes as initial configurations. Su [1979]
obtains these solution shapes analytically by expanding the radial boundary coor-
dinate as a perturbation series in a small parameter on the order of the distortion
of the boundary from being circular. Burbea [1982] proves the existence of the
“V states,” which he obtained by using a numerical conformal mapping method.
Burbea & Landau [1982] conduct a linear stability analysis by numerically solving
the eigenvalue problem obtained from solution operators of the evolution equations
of the system.

The solution space for this problem is shown in Figure 2.2, where v, a
nondimensional measure of the solution, is plotted against 4', the external rotation.

For the mth solution branch, v, is defined as

l—a,,
™" 1+a,

14

(2.3.5)

Here, a,, is the mth coefficient of the conformal mapping (2.2.1) describing the vor-
tex boundary. The index m denotes the dominant mode of the surface disturbance

to the circular vortex along the mth branch: for the circular vortex m = 1, so that
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Figure 2.2 Solution paths for the single rotating vortex; v, is a family-dependent
aspect ratio, and v’ is the nondimensionalized rotation rate. The insets show
closeups of the bifurcation point regions. The dotted line indicates the analytical
solution of Burbea & Landau [1982] where a converged numerical solution was not
obtained.

v, = 1, while for the elliptical vortices m = 2, whence v, = (1—a,)/(1+a,), which
equals the inverse axis ratio (a/b)™' € (0,1] for the ellipses (z/a)? + (y/b)? = 1.

The first three paths bifurcating from the path of circular vortices were followed
until the convergence criteria could not be met.

Following the path of circular solutions from «' = 0, the first bifurcation
point is found at 4’ = —0.250. The solutions that branch off here are the Kirchhoff
elliptical vortices (Kirchhoff [1877], Lamb [1945]). Encountered along this solution

branch are bifurcation points; the existence of these bifurcated solutions is implicit
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in the work of Moore & Saffman [1971], in which the points of change of stability,
i.e., the zeros of the eigenvalues, correspond to bifurcation points on the path of
elliptical solutions. The first such point is at (y',v,) = (—0.1875,0.3333), where
the £ = 3 mode goes unstable; this corresponds to an ellipse with axis ratio of
3:1, as first derived by Love [1893]. The numerically obtained locations of the first
three bifurcation points, accurate to five figures, are catalogued in Table 2.1, and
bifurcated solutions are shown in Figure 2.3. Along this branch the eigenvalue
pair 0 = £y is associated with the ¥ = 1 translational mode, the elliptical
k = 2 modes have zero eigenvalues, and the higher modes have in general nonzero
eigenvalues. The stability properties shown in Figure 2.3 near point B, indicate
the stability of the kth eigenmode, which remains unstable as the magnitude of

the rotation rate is further decreased.

Single Rotating Elliptical Vortex Bifurcation Points
Origin B, B, B,
v -0.25000 -0.18750 -0.14645 -0.11964
Vo 1.0 0.33333 0.21685 0.16136

Table 2.1 Locations of the first three bifurcation points along the m = 2 branch.

The m = 3 branch of solutions forks off the circular solution at ' = —0.3333
(see Figure 2.2); similarly, the m = 4 solution path branches from the circular
solution at v' = —0.3750. Along the mth branch, the eigenvalues ¢ = +iv are
associated with the translational mode, and the m-fold ¥ = m modes have zero
eigenvalue. The locations of the bifurcation points along this path, indicated by
the stability data of Burbea; & Landau, were obtained only qualitatively; conver-
gence to the analytical bifurcation points values was not obtained and bifurcated
branches were not sought. The general Schwarz method was found to require a
prohibitively large number of modes along these branches. Whereas only a, and

a, are nonzero along the elliptical branch of solutions, for the basic m = 3 branch,
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Figure 2.3 Bifurcations from the m = 2 (elliptical) branch of solutions: the
diagrams to the right show the vortices at the correspondingly numbered circled
points of the bifurcation diagrams. S implies stability and U instability to the kth
eigenmode near point B,.

for example, the shape coeflicients a,, as, ag, ... are nonzero; this symmetry cri-
terion is implicit in the work of Burbea & Landau. Wu et al. [1984] and Overman
[1986] obtain limiting solutions along these branches of symmetric shapes.
Formulae for the angular momentum and kinetic energy of an elliptical vortex
are derived in Appendix C for the far field assumption (1.4.13). For an elliptical
vortex of axes ratio p = a/b > 1, where a and b are the lengths of the semimajor

and semiminor axes, respectively, the nondimensional angular momentum and the
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reduced kinetic energy are given, respectively, as

1 p?+1 .1 2/p
J == T=-—1 —tl 2.3.
8r p 47 Og(1+p (2.3.6)

The angular momentum and energy computed for the Schwarz elliptical solutions
obtained match the analytic data to at least four significant figures for the solutions
obtained, i.e., up to the third bifurcation point. The energy data computed for
the m = 2 bifurcated solutions computed with N = 16 modes are compiled in
Table 2.2; the energy data for all m = 2 solutions are plotted in Figure 2.4. As the
vortices are further distorted, i.e., for decreasing |v'|, the energy decreases while
the angular momentum increases.

We now consider the stability of single vortex regions in terms of an en-
ergy extremum argument employed by Saffman & Szeto [1980] for the vortex pair
and the infinite vortex array. Thomson [1887] states, Arnold [1978] proves, and
Dritschel [1985] explains this principle, which can be stated as follows: For invis-
cid, incompressible uniform vorticity configurations, a steady state is a conditional
extremum, i.e., a stationary point, of the kinetic energy functional with respect
to all area-preserving isovortical solutions, i.e., all infinitesimal perturbations con-
sistent with the Helmholz laws. Given certain regularity conditions, a sufficient
condition for the nonlinear stability of such a solution is that it (locally) maxi-
mize or minimize the kinetic energy with respect to all isovortical variations. This
criterion is analogous to the stability criterion proved by Putterman & Uhlenbeck
[1969] for point vortices.

Surprisingly, we find that the angular momentum and energy for the vortices
that bifurcate from the elliptical solution path fall along the energy curve of the
elliptical solutions, to within four significant figures. Specifically, for a given bi-
furcated solution, the value of J is less than that of the elliptical solution at the

same rotation rate, while the value of T' is greater than that of the corresponding
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m=2 First Bifurcated Branch

v 4w J 4rT 4nJ,, 4rT,, Y o
-0.1875 1.6667 -0.1438 1.6667 -0.1438 -0.1875
-0.1880 1.6570 -0.1420 1.6592 -0.1424 -0.1882
-0.1885 1.6485 -0.1404 1.6526 -0.1412 -0.1888
-0.1891 1.6374 -0.1383 1.6438 -0.1395 -0.1896
-0.1898 1.6265 -0.1363 1.6350 -0.1379 -0.1904
-0.1904 1.6159 -0.1343 1.6263 -0.1362 -0.1911
-0.1910 1.6059 -0.1323 1.6177 -0.1348 -0.1919
-0.1916 1.5956 -0.1304 1.6091 -0.1329 -0.1926
-0.1923 1.5858 -0.1285 1.6006 -0.1313 -0.1934

m=2 Second Bifurcated Branch

v 4 J 4rn'T anlJ 4nT,, Y o
-0.1367 2.6496 -0.3007 2.6587 -0.3020 -0.1370
-0.1398 2.5728 -0.2901 2.5765 -0.2906 -0.1399
-0.1429 2.4970 -0.2794 2.4979 -0.2795 -0.1430
-0.1461 2.4227 -0.2686 2.4227 -0.2686 -0.1461
-0.1464 2.4142 -0.2674 2.4142 -0.2674 -0.1464
-0.1492 2.3502 -0.2579 2.3507 -0.2580 -0.1492
-0.1542 2.2798 -0.2473 2.2816 -0.2476 -0.1525
-0.1539 2.2454 -0.2421 2.2481 -0.2425 -0.1541

m=2 Third Bifurcated Branch

' ar J 4rT 4rJ, 4T, v ou
-0.1196 3.1794 -0.3685 3.1794 -0.3685 -0.1196
-0.1197 3.1772 -0.3682 3.1784 -0.3684 -0.1197
-0.1199 3.1716 -0.3674 3.1718 -0.3676 -0.1199
-0.1200 3.1660 -0.3669 3.1664 -0.3669 -0.1200

Table 2.2 Energy data for the m = 2 bifurcated branches. The J,;; and Te”
data are for the elliptical vortex of the same rotation rate. The value v',;; is the
rotation rate of the ellipse with angular momentum and energy equal to that of
the bifurcated solution.

ellipse; however, for a more negative rotation rate there exists an elliptical vor-
tex solution whose angular momentum and energy equal those of the nonelliptical
vortex. Hence, in the single vortex case it is apparently not possible to infer sta-
bility characteristics of the steady solutions by energy data alone. These concepts,

however, will come into play in the analysis of the corotating vortex pair in the
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Figure 2.4 Energy versus angular momentum for the single rotating vortex so-
lutions. Solid lines indicate numerically computed values; dashed lines are ana-
lytically computed values. Stars indicate bifurcation points; circled points in the
insets are values for bifurcated solutions.

following chapter.
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Figure 2.5 The single vortex in strained fluid.

2.4 The Single Vortex in Strained Fluid

We now consider a single vortex in an externally strained fluid, as shown in Fig-
ure 2.5. We again normalize the area of the vortex to 7 and set the circulation

equal to one. The external flow field is taken as

(u - 7:/U)e:vt‘ernal = ’iGZ, (241)

where ¢ is the magnitude of the rate of strain with principal axes at +45° to
the z-axis. This configuration is shown by Moore & Saffman [1971] to be a first
approximation to the flow field induced by a relatively distant vortex.

This problem was first solved by Moore & Saffman, who obtained the family
of elliptical vortices along the solution path given by

€ __plp=1)
wog  (PEH+1)(p+1)

!

€ =

(2.4.2)

where the ratio of semimajor to semiminor axes is given by p = a/b > 1. These
results were obtained by direct solution of the Poisson equation in elliptical coor-

dinates; an analytic linear stability analysis for the family of elliptic solutions was
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also derived. Subsequently, elliptical solutions in a straining field were obtained
analytically Kida [1981], who generalizes the Moore & Saffman result to the case
of elliptical solutions whose orientation and axes lengths depend upon time. Neu
[1984] expands upon Kida’s findings by analytically solving the problem of a time-
dependent elliptic cylinder subjected to a general irrotational three-dimensional
strain. Burbea [1982] derives steady two-dimensional shape solutions for m-fold
symmetric hypotrochoid regions of constant uniform vorticity in the presence of
straining fields of order m, i.e., those whose stream functions are proportional to
R{z"}.

The method of Schwarz functions yields the branch of steady elliptical solu-
tions, confirming the results of these authors. The solution space is depicted in
Figure 2.6, where the inverse axis ratio v = 1/p is plotted against the nondimen-
sionalized strain €. There are two steady elliptical solutions for 0 < € < ¢

mazx?

where (e . ,v) = (0.1501,0.3460) is a fold point of the problem. The first three

mac’
bifurcation points, denoted B,, B,, and By, are indicated, as well as the paths of
nonelliptical solutions found. For the nonelliptical solutions we define the param-

eter v as
_ 1—a,
h 1+a,’

(2.4.3)

which reduces to the inverse axis ratio for elliptical vortices. Path-following tech-
niques as suggested by Keller [1977] were employed in obtaining the solution paths,
which were followed until the specified convergence criterion could not be fulfilled.

Moore & Saffman obtain the following expression for the mth eigenvalue of

the linear stability problem for elliptical solutions:

2 2 . 2m
ol P = (f—@> _ 1 ( 2mp ) - (fi——l> . (2.4.4)
Wy 4 [\ p?+1 p+1

Possible bifurcation points along the solution path are the points of change of sta-

bility, i.e., solutions for which ¢/, vanishes. Locations of the first three bifurcation
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Figure 2.6 Solution paths for the single strained vortex; v is the inverse aspect
ratio, and €' is the nondimensionalized strain rate. The insets show close-ups of
the bifurcation point regions. The dotted line indicates the analytical solution
(2.4.2), where a converged numerical solution was not obtained.

points are given in Table 2.3; these data match the analytically predicted values

to five significant figures.

Single Strained Elliptical Vortex Bifurcation Points

Fold Point B, B, B,
e 0.15014 0.13425 0.11419 0.098083
v 0.34601 0.22033 0.16280 0.12936

Table 2.3 Locations of the first three bifurcation points along the elliptical branch.

The index k of the path intersecting the elliptical solutions at point B, cor-

responds to the eigenmode disturbance that changes stability at that point; this
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Figure 2.7 Solution paths and vortices for the first, second, and third bifurcated
branches. The path-dependent shape parameter v, is defined in (2.3.5). The
diagrams to the right show the vortices at the correspondingly numbered circled
points of the bifurcation diagrams. S implies stability and U instability to the kth
eigenmode near point B,.

mode remains unstable as the strain rate is further decreased. Specific bifurcated
vortex solutions are given in Figure 2.7 for k = 3, 4, and 5. The solution shapes
along branch k are seen to have a k-fold disturbance imposed upon a basically
elliptical shape. Whereas nearly circular vortices can be accurately described by
relatively few Schwarz coeflicients, the distorted nonelliptical shapes were calcu-
lated with N = 16 coeflicients.

We find, in accordance with Moore & Saffman, that the less eccentric ellipti-
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cal vortices, i.e., those on the upper solution branch in Figure 2.6, are neutrally
stable, and the elliptical solutions of greater eccentricity along the lower branch
are linearly unstable. The lower branch solutions and all bifurcated solutions are
linearly unstable to the & = 2 disturbance mode; the stability properties shown
in Figure 2.7 indicate the stability of the system to the subsequent modes; e.g.,
the stability of the ¥ = 3 mode is indicated in the neighborhood of the third
bifurcation point By, etc.

The possibility remains to associate these bifurcated solutions with those
corresponding with the Kirchhoff elliptical vortex of the last section. Continuation
in the parameters v and e together (i.e., vortices in externally strained and rotating
fluid) should show a connection between these families of solutions and possibly
indicate nonelliptical strained vortex solutions corresponding to the higher rotating

V-states.
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Chapter 3

The Vortex Pair

3.1 Introduction

A fundamental unit in many two-dimensional models of more complex flows is the
vortex pair. Simple models for the behavior of the trailing vortices behind wings
have been calculated using a vortex pair (Spreiter & Sacks [1951], Rossow [1977],
Pierrehumbert [1980]). The vortex pair has also been studied as a model for the
pairing interaction of coherent structures in shear layers (Saffman & Szeto [1980],
Overman & Zabusky [1982a)).

In this chapter, we obtain solutions for the corotating vortex pair, i.e., w; =
ws, and discuss the formulation for the translating vortex pair, i.e., w; = —w,.
Unlike previous work, less restrictive symmetry requirements are imposed on the
allowable vortex shapes. Analysis of the energetics of the corotating vortex pair is
based upon a study of suitably nondimensionalized angular momentum and kinetic
energy. The interdependence of these quantities is related to the directly computed
linear stability results of the system using a general argument put forth by Kelvin
[1887] and first interpreted for the vortex pair by Saffman & Szeto [1980]. Our
results on the stability of the corotating pair disagree with the findings of Dritschel
[1985].
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3.2 Formulation

The vortex pair is the simplest multiple-vortex configuration which we consider,
vet the proper formulation of this problem reveals characteristics significantly more
subtle than those of the single vortex case. We consider two general vortex regions
of fixed, prescribed areas A4; and A,, and circulations I} and I',, where positive

circulation is taken counterclockwise. Let the boundary of vortex 1 be given by

z=a)((1+ai/C+ - +an/C"+--), (3.2.1)

and that of vortex 2 be described by the independent mapping

z2=0boC(14+b1/C+ -+ b /(" +--), (3.2.2)

for |¢| = 1, where z is the coordinate relative to the local origin of each vortex.
With the distance between the centroids of these regions denoted by the positive

real number [, the nondimensional area parameter is taken as

(A + Ay) /1% (3.2.3)

o =

[N R

We distinguish between the case of corotating vortices (It + Iy # 0) and that
of translating vortices (I'1 = —I3) in choosing the position of the vortex origins,
which are chosen to coincide with their centroids. In the former case, depicted in

Figure 3.1, requiring the system centroid to be at the origin implies

Flll + FQZQ = 0, (324)

where [} and [, are the directed distances from the absolute origin to the origins

of vortex 1 and vortex 2, respectively, so that

L—1ly=1. (3.2.5)
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Figure 3.1 The corotating vortex pair.

Thus we have that
Iyl Iy

= —2 = .
T+ : N+

(3.2.6)

For the translating pair, shown in Figure 3.2, the system centroid is at infinity, so
we fix the distance of the vortex origins from the system origin by weighting these

distances by the vortex areas. We take

Alll + Aglz = O, (32 7)
which, together with the definition (3.2.5), implies the center locations
All Aql
h=—2%  ,=-—"1_ (3.2.8)
A+ Ay Ay + Ay ‘

Consider first the corotating vortex pair. The vortex-induced velocity at a

point z external and relative to the first vortex consists of two contributions: that
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Figure 3.2 The counterrotating vortex pair.

from the vortex itself,

g . iw1 Jn
(u—w)lyl —~——~—2~‘ Z"+1’
n=0
and that due to the second vortex,
Wy — hn

(‘u — Z'”U)Lz = o

2 = (Z + l)ﬂ-&ﬂ .

(3.2.9)

(3.2.10)

Here, ¢, and h,, are the nth Schwarz coefficients for the first and second vortices,

respectively, and are related to the shape expansions for these regions by (1.2.10).

To bring the vortex pair to rest, we impose an external rotation of unknown real

angular velocity €2 relative to the absolute origin. The stream function for this

rotation is

1 A
d’ezi = '—§Q(l'2 + yZ)’

(3.2.11)
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so that

(U = 10)egr = —1822™. (3.2.12)
With respect to the first vortex this is represented as
(u — ?j?))l7 ext — “'ZQ(Z e Zl)* ’ (3213)

Thus, the total velocity external to the first vortex measured relative to that vortex

1s given by

. Z.Wl = 9n in = hn - *
U — 1) = —— —— e 3z 1) 3.2.14
( )1 2 n=0 an 2 n=0 (.Z + l)n+1 ( 1) ( )
Similarly, for the second vortex we have
. iw2 = hn iw1 = n . * \
(U - 2’0)2 = --—-—2— it — ——é-— W - ZQ(Z - 12) y (3215)
n=0 n=0 \%

where z is measured relative to the origin of the second vortex. We obtain like
representations for the conjugate velocities in terms of the conjugate coefficients.

To determine the shapes, we substitute these expansions into the boundary
condition Equation (1.2.22), to be satisfied on each vortex. To solve this equation,
we expand the solution as a power series in 1/[, the reciprocal of the intercentroid
length; this is in effect an expansion in the nondimensionalized vortex area o
since the vortex areas are fixed. We proceed as follows: The shape expansions are
truncated to order N in (, and then expanded in 1/ as required. Consider the
representation of the velocity with respect to the first vortex. As0 < |z /1| < 1,

we expand the denominator in the second term as

o0

1 _ (n + p)!
— = —1yppndet) L T2 e 3.2.16
(z 4 ntt pz::()( ) n! p! ‘ ( )
We truncate the series to retain terms of order [~F and obtain
iy g
. 1 n
(v —iv); = T o+l
n==0
. N L—n-1
{
-3‘—;-2- 3 hn(—l)”l“(“”“)%izp iz + 1) (3.2.17)

n=0 p=0
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Similar representations are obtained for the velocity with respect to the second
vortex and for the conjugate velocities. Substituting these expansions into the
boundary condition we obtain the truncated equations
N N
> Ri(k)¢t =0, > Ry(k)¢k =0 (3.2.18)
k=—N k=—N
Equating the coefficients of (¥ to zero provides 2 - (2N + 1) = 4N + 2 equations.
As unknowns there are the 2 - (2N + 2) = 4N + 4 shape coefficients, the rotation
rate {2, and its conjugate Q*, for a total of 4N + 6 quantities. We require = Q*
for a pure rotation, thereby eliminating one unknown. We fix the phase of ¢ and
reduce by two the number of unknowns by setting ap = af and by = b%. As in the
previous analysis, the equations for R,(0) and R5(0) are automatically satisfied,
thereby reducing the number of equations to 4N. We prescribe the areas of the

vortices by adding the two equations:
Ay/m—apag(l — azay — - — (N — l)ayay) = 0; (3.2.19)

Ag/m — bobl(1 = byb] — - — (N — 1)byb%) = 0. (3.2.20)

In addition, we require the centroids of the vortices to coincide with the local

vortex origins and add the four equations
91 =97 = h1 = h] =0. (3.2.21)

We now have 4N + 6 equations for the 4N + 3 unknowns. We must examine
other equations of motion to reveal the dependencies of these equations; a similar
situation was found by MSS for the vortex street formulation. Since the centroid

of the system is at rest, the following relation holds (Saffman [1984]):

//u X wdrdy =0. (3.2.22)
RZ
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As shown in Appendix A, for the vortex pair this implies that the coefficients of
¢ and (7! are automatically zero for the second vortex if we explicitly set these

coefficients to zero for the first vortex. Hence, the equations

are redundant and therefore not explicitly imposed. This implies 4N +4 equations
for the 4N + 3 unknowns.

The final dependent equation can be found by considering the integral

//w(x -u) dz dy. (3.2.24)
o

As shown by Dritschel [1985], this integral vanishes under the assumption that
p ~ —(I'/27)log R + o(1) as R — oo; in Appendix A the following relation is

obtained:

// (x-u)dzdy = éfrz(u ) ds. (3.2.25)

1% oV
With these results, it is shown that the relation

is automatically satisfied for the second vortex, assuming it is symmetric about

the z-axis. Since the pair of equations

1s equivalent to the pair of equations

we explicitly include the latter of the last two equations, and drop the former, as

it is dependent. We thus obtain 4N + 3 equations for the 4N + 3 unknowns; the



nonsingularity of the Jacobian of this system verifies the independence of these
equations.

Alternatively, we can consider the external rotation §2 and the conjugate quan-
tity 2% as independent complex unknowns, and seek solutions for which  and Q*
assume the same real values. In this case, we obtain a nonsingular system of
4N + 4 complex equations for 4N + 4 complex unknowns; the integral constraint
of the preceding paragraph need not be imposed. We conjecture but cannot prove
that this is related to the fact that the integral in (3.2.24) does not vanish for
general velocity fields (e.g., those for which v — 7v and u + v, and Q and Q* are
not complex conjugates). This formulation yields the same solutions as that for
which §2 is assumed to equal Q*.

We now consider the translating vortex pair. The formulation of the shape
problem for this configuration closely follows that of the corotating vortex pair,
with one key difference: Since the pair is translating, we impose a constant external

translational velocity to bring the system to rest; i.e.,
(4 — 1)zt = Q. (3.2.29)

This complex quantity and its conjugate are treated as independent variables.

Thus, in analogy to (3.2.14), the velocity relative to the first vortex is given by

v — Effi - In E_("i?. S _h__".___ 9
(u—1w) = — 5 g 2 (z+l)n+l + Q. (3.2.30)

n==0

There are similar expansions for the velocity relative to the second vortex and for
the conjugates of these quantities. We expand the terms in the reciprocal of the
intercentroid length 1, truncate the series, and substitute these expressions into
the boundary condition (1.2.22). Equating the coefficients of (¥ in the resultant
series ylelds 4N + 2 equations for the 4N + 4 unknowns given by the 4N+2 shape

coeflicients, the external velocity ), and the external conjugate velocity Q*. We
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eliminate the 2 equations corresponding to equating the coefficient of (° to zero,
and add the 2 area equations, (3.2.19) and (3.2.20), and the 4 centroid equations
(3.2.21) to obtain 4N + 6 equations. By requiring the centroid of the steady
system to be stationary, we have the condition (3.2.22), and thus do not impose
equations (3.2.23). We thereby obtain 4N + 4 equations in as many unknowns;
our code indicates the nonsingularity of the Jacobian, which verifies their linear
independence.

In analogy with the corotating pair formulation, we can eliminate one un-
known by assuming, e.g., for the configuration depicted in Figure 3.2, that the
external velocity @ is purely imaginary, so that Q* = —@Q. Substituting —Q for
each occurence of Q™ in the velocity representations, we obtain a nonsingular sys-
tem of order 4N + 3 by eliminating the first of the two equations in (3.2.28).
We cannot justify this theoretically, yet we obtain identical solutions for both
formulations.

Although our shape code performs correctly for the translating pair, we do
not have confidence in the corresponding stability calculations and hence do not
include our results for that configuration.

We study the linear stability of the vortex pair according to the framework of
§1.3. The formulation of this problem is conceptually independent of whether the
corotating or translating vortex pair is considered. The equation governing linear

stability is given in (1.3.8); i.e.,

.02 , . .07 0z ;. 027
(U—-ZV)—G?—{—(U —zv)ae-—(U—}-zV) 50 —(u +zv)69
0z 0z*
= M= 2.
O’{Z 5% ° 50 }7 (3.2.31)

which 1s to be satisfied on the boundary of each vortex. Here, 8 is the coordinate

describing the unit circle in the ¢ plane, and we have written

z=7+2'(0)e", u—iv=U—iV + [u'(8) —iv'(8)] e’ (3.2.32)



-54—

We now describe the evaluation of this equation for a perturbation to the shape
coefficient «; of the first vortex. The evaluation procedure for perturbations to
the other shape coefficients (i.e., a}, bj;, and b}) is similar.

The right side of (3.2.32) is evaluated as a power series in ( according to the
discussions of §§1.3 and 2.3 : the shape perturbation is given in (2.2.13), and the
f-derivatives of the steady boundary are evaluated explicitly.

The first contribution to the velocity perturbation, i.e., that induced by the

perturbed vortex in the steady velocity field, is given by

d
(u' = i0")j wortes = 7 —(u — 210)ind z; + 6(u — 1) ept (3.2.33)
=7
d iwl > Jn iwz i hn } ’
= e —— —— e z
0 - M
dz [ 2 n=0 antd 2 n=0 (0 + l\)"+1 =2
+8(2 = 10)ents (3.2.34)

where the variation of the external velocity is given by

(3.2.35)

§(u — iv) —1§2z}',  for corotating vortices,
=t o, for translating vortices .

Here, Z is the steady shape, and z’; the shape perturbation due to a/. The second
contribution to u’ —tv’, that caused by perturbing the velocity field while keeping

the given vortex undisturbed, is given by

iw1 Ty

n=0

(Ul - iv,)j,velocity = -

where the primed Schwarz coefficients are the perturbations due to a}. There is
no external velocity contribution to this term.
We compute these numerically as follows. First, we approximate the first two

terms 1n

0z} YA oz*" o7*
- —a - ? AN i [5)
(U—1V) 50 +(u 2w )]]Uoﬁez 50 —(U+:V) Y] —(u'+20"); vortex 20 (3.2.37)
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as the central difference, as in {2.2.18), of the sum that is the product of the
truncated velocity expansion (e.g., (3.2.17)), into which the perturbed shape is
substituted, and the 6-derivative of the perturbed boundary. For the case consid-

ered, this sum is given by

N o ' al g
.. - . k""' —— y —.Z_(t’i -
> Ri(kia;£e)¢ = 3 [z(a]:ts)]{ 5 ;[z(ajig)]nﬂ

k=—N

iwy N L-n-—1 v (n+p+1)(n+p) » _
Z Z I~ ——[z(a; £ &))" + (v — 10)ea o .
n=0 n=N n:p: z=z(aj+e)

(3.2.38)

In this equation, z(a; & ¢) represents the shapevdue to the perturbation to a;
as in (2.2.20). We evaluate the remaining terms in (3.2.37) analogously. Central
differencing of these expressions yields the quantity (3.2.37) correct to O(g?).

The second addend to the left side of governing Equation (3.2.31) is

: 07z . oz
(u' — w')j,vezocizy—é‘é“ —(u' + “)I)j,velocity—a'é”- (3.2.39)

The first term is computed by central differencing the sum that is the product
of the truncated velocity perturbation and the boundary derivative of the steady
shape; 1.e.,
S Ra(kia; + ’“—{ i1 §~ ga(a; £ ) z 3.2.40
3 Ralkias£e)¢t —-——Z—g[z ,m} 2. (3:240)
The steady shape is denoted by Z(a;) in this equation, and the perturbation
to the Schwarz coefficient is given by the difference between the perturbed and
steady values as in (2.2.24). This yields a first-order correct approximation to
the first term in (3.2.40); the second term is evaluated similarly. For the case
we are considering, i.e., a perturbation to a coefficient of the first vortex, there is
no change in the velocity induced by the independent second vortex; i.e., hl, = 0;

analogously, g/, = 0 when shape perturbations to the second vortex are considered.
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Repeating these calculations for each shape coefficient of each vortex and
equating the coefficients of the powers of ¢ in this sum to those of the like powers
of ¢ 1n the right side of the boundary condition (3.2.31) give 4N + 2 equations in

the 4N 4 2 unknown complex shape perturbations. We write this system as
Mv =0oNv, (3.2.41)
where v is the complex array of perturbation coefficients with elements

~ 1 ~ ! !
Vi =apn,.+ ., UN41 = Qg = dg, ..., U2N41 = Qp,

VoN+42 = E/N, o3 UaN42 — 56 = b:), oy U N2 = bIN (3242)

The matrices M and IN depend on the steady shape expansion coefficients and the
external velocity. The eigenvalue equation is left-multiplied by the inverse of the
nonsingular matrix N, and then solved with standard EISPACK routines.

One pair of zero eigenvalues is obtained whose eigenmodes correspond to
vortices with nonzero linearized area variation relative to the steady state. The
remaining 4N eigenvalues occur in quartets, oy, 03, o3, and o4, with pairs of
eigenvalues related to the symmetric and antisymmetric modes of the 1st through
Nth boundary harmonics. We consider only equal area vortices with circulations
of equal magnitude in the following discussion. For the corotating pair there is
one more pair of zero eigenvalues with a single linearly independent eigenvector;
the magnitudes of these eigenvalues were found to be strongly dependent on the
order of the truncation of the expansion and so were used to monitor the error of
the numerical solution. The corresponding eigenmode is an antisymmetric shift
of the vortices which, due to the degeneracy of the eigenvalue, grows linearly in
time. A further neutral mode is obtained, which corresponds to a symmetric shift,
l.e., a translation, of the vortices. This mode has purely imaginary eigenvalues

with magnitude equal to the rotation rate and linearly lindependent eigenvectors.



57—

If a given mode is stable, i.e., ®{c} = 0, the eigenvalues occur in pairs with, say,

o9 = of. An analysis similar to that presented in §2.2 shows that

ay , = c.c{d) .} and ay , = c.c.{aj ,}, (3.2.43)

by = cc{i)'ln} and N'Q,n = c.c.{b} ,}. (3.2.44)

Physically realized perturbations are obtained by taking combinations of both of
these eigenstates, so that the conjugate of the perturbation is a perturbation of
the conjugate state. If the mode is unstable, we find that o is purely real so that

0y = —0y, with c.c.{z}} = z;", J =1, 2, implying that
ce.{aj }=a}, and  cec{b,}=0,. (3.2.45)

Physically realized perturbations are obtained by taking the contribution of the
unstable eigenvector only, since the conjugate of the growing/decaying mode is a
growing/decaying state.

We now consider the energetics of the vortex pair and assume Iy + Iy # 0.
With the centroid of each region at its origin, the angular momentum of the

corotating vortex pair is written as

2
L 2 2 9 A¢
H= -3 lem(hmAm + // r.. dz dy), (3.2.46)
m= Vi,

where h,, is the distance of the vortex centroid from the absolute origin, and r,,
is the distance measured relative to the origin of the mth vortex. The nondimen-

sionalized angular momentum is taken as

H

J =
A, + 14,

(3.2.47)

Using Romberg integration we evaluate the integrals in (3.2.43) according to the

form (1.4.9) derived in §1.4.
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The excess kinetic energy of the vortex pair is given by

2

1
T=3 lem //wdx dy, (3.2.48)
me= Vi,

and is nondimensionalized as

T

oL
(I +Ty)

(3.2.49)

The reduced kinetic energy is this quantity less the nondimensionalized kinetic

energy of a circular vortex of the same total area and circulation, so that
\ 1
T=T- Té—;{l —2log [(A1 + A2)/7]} - (3.2.50)

We evaluate the integral in (3.2.45) according to the derivation of §1.4, in which
the integral of the stream function is expressed in terms of integrals of the steady
shape expansions.

In Appendix D, we describe an alternate method derived by Saffman [1985a]
for the corotating vortex pair. In the next section, the results of the Schwarz

function analysis of the corotating vortex pairs are discussed.

3.3 The Corotating Vortex Pair

The corotating vortex pair consists of two vortex regions of given areas A; and
As, and circulations Iy and I, such that I + I # 0. These vortices rotate about
the centroid of the system with constant angular velocity 2, in accordance with
the elementary laws of vortex dynamics.

Several authors have considered this configuration. Saffman & Szeto [1980)]
were the first to solve for solution shapes and energies of the symmetric coro-
tating uniform pair. They solve the shape problem numerically by using New-

ton’s method on an integro-differential equation that defines the vortex boundary.
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Figure 3.3 Corotating vortex pair solution shapes, scaled to the same inter-
centroid distance. Solutions are shown for & = 0.10, 0.20, 0.30, 0.3120 (lower
branch), 0.3125 (upper branch).

Overman & Zabusky [1982a] obtain vortex pair shape solutions using a similar
boundary integral method; they use perturbed and unperturbed steady states as
initial conditions in a time-dependent contour dynamics code to study the merger
of these regions. Dhanak [1985] and Dritschel [1985] consider polygonal arrays
of symmetric uniform vortices, of which the pair is a special case. The former
author derives perturbation series solutions, valid for small nondimensional areas,
for both shapes and linear stability properties. The latter author obtains shape
solutions by using a discretized boundary integral method to obtain a system of
nonlinear equations, which he solves using an iterative technique of Pierrehum-
bert [1980]. Dritschel also studies numerically the energetics and linear stability
characteristics of the pair and discusses the relationship of these properties.

Our shape results for the corotating vortex pair are summarized in Figures 3.3
and 3.4. Both areas are taken to be n, and the circulation of each region is set
to one. For small nondimensional area « as defined in (3.2.3), the vortices are far
apart and almost circular; in this case the rotation rate nearly equals that required
to bring to rest point vortices of equivalent circulation, Q,, = —(I7 + I3)/(271?%).
As « increases, the effects of finite area become pronounced as the regions deform
and the relative rotation rate increases, as shown in Figure 3.4. Steady solutions

are found for values of « up to the limiting value amaz, where 0.3125 < mas <
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Figure 3.4 Corotating vortex pair rotation rate, nondimensionalized by that of
point vortices with equivalent circulation located at the vortex centroids, versus
nondimensional area, .

0.3126; we obtain two possible steady solutions for 0.3122 < a < a4,. The
determinant of the Jacobian of the system remains one-signed and nonzero along

the solution path on either side of the a-fold.

We did not seek to obtain solutions on the upper branch for o < 0.3122; prior
studies have documented upper branch solutions down to a = 0.309. The rotation
rate of our solutions is found to agree with those of the previously mentioned
authors to four significant figures. In the Schwarz function computations, N = 8
terms in the shape series are sufficient to obtain the small « solutions. For more
deformed vortices, N = 16 terms were used, while N = 32 and N = 48 terms

were taken to resolve solutions in the neighborhood of the maximum «. The
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Figure 3.5 Area, a, versus angular momentum, J. The minimum of J occurs at
a value of « less than ayme,. The dashed line represents the values for the circular
vortex approximation given in (3.3.1).

solutions obtained with the stream function formulation of Appendix D were found
to agree to five figures with the Schwarz solutions up to o = 0.250, beyond which
convergence required a very accurate initial guess and thus was not obtained due

to finite computing resources.

" The stability of this configuration has been a source of disagreement for some
time. Saffman & Szeto discuss the stability of the corotating vortex pair in terms
of the Kelvin energy argument mentioned in §2.3. This says that a steady state
is a stationary point of the energy functional with respect to all area-preserving
variations with the same circulation and angular momentum, i.e., all isovortical

perturbations. This state is stable if it extremizes the kinetic energy functional
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with respect to all other solutions with the same angular momentum. Considering
T as a function of J, Saffman & Szeto obtain the energy data and infer the
(neutral) stability of the lower branch of solutions (as depicted in Figure 3.4)
up to the fold point in «, which, according to their calculations, corresponds to
the minimum of angular momentum. Saffman & Szeto make this inference by
claiming that these solutions are a local maxima (in our nondimensionalization)
of the energy, as all other isovortical solutions have lower energy. The instability
of the upper branch solutions is a consequence of this argument. Dritschel also
obtains energy data for the vortex pair and in addition solves numerically for the
linear stability characteristics of symmetric solution shapes. He finds an explicit
change of stability at a value of @ = 0.3096 on the lower solution branch, before
the limiting values of either « or J (which, Dritschel finds, are not coincident);
solutions for larger «, i.e., smaller J, and on the upper branch in « (or J) are
found to be unstable. Moreover, the explicit change of stability Dritschel finds
occurs before the fold in angular momentum, which Dritschel calculates to be at
a = 0.3120. Dritschel reconciles the discrepancy between his findings and those
of Saffman & Szeto by hypothesizing a bifurcation into a nonsymmetric solution
(which his method of solution does not admit) at the point of stability change; to
be consistent with the variational argument, the solutions along this hypothesized
branch must be local maxima of the kinetic energy, so that the vortices on the
lower branch for 0.3096 < o < 0.3120 do not extremize the energy functional and
thus cannot be stable steady states. In a subsequent work, Dritschel [1986] argues
the possibility of transition from a stable vortex pair solution to a stable single

elliptical vortex solution near a = 0.3096.

We find, in agreement with Dritschel, that the symmetric elliptical mode

is indeed the disturbance that undergoes a change of stability, while all other
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Figure 3.6 Energy, T, versus angular momentum, J. The dashed line represents
the values for the circular vortex approximation given in (3.3.1). The high energy
branch corresponds to the stable solutions; the low energy branch consists of
unstable solutions.

modes remain stable, as shown in Figure 3.7. Also, in near agreement with the
numerical calculations of Dritschel but differing from those of Saffman & Szeto, we
find that the angular momentum is minimized at o = 0.3121. However, differing
from Dritschel both numerically and conceptually but agreeing with Saffman &
Szeto theoretically, we compute the explicit change of stability to occur for the
configuration that minimizes angular momentum and maximizes kinetic energy,
as indicated in Figure 3.6.

As one check of the energy data for small «, we have the following analytic
formulae, derived in Appendix C, for the kinetic energy and angular momentum of

a pair of circular vortices, each of area A and circulation I', with centers separated
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Figure 3.7 Eigenvalue, 0’ = ¢ /w;, versus angular momentum, J. The explicit
change of stability occurs at the minimum of angular momentum. Purely imag-
inary quantities, denoted by solid lines, scale to the right vertical axis, as does
the (imaginary) rotation rate eigenvalue, plotted as the coarsely dashed line. Real
values, indicated by the finely dashed line, scale to the left vertical axis.

by a distance [, where o = A/1%:

T = --é%—;[l—ﬂog(lla/ﬂ)], J = gl;(.?’{—ﬂ’/a). (3.3.1)

For large angular momentum (i.e., small «) these imply the following asymptotic

relation:

. 1 11 1
~ R . 3.2
T~ gy e+ 5~ 7 +0 ((4#])2>] (3.3.2)

These approximate results are depicted as dashed lines in Figures 3.5 and 3.6 and
agree with the exact solution for a range of o values.

We find, as did previous investigators, that the calculations in the region of
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Corotating Vortex Pair Energy Data
e Q' =0/Q,, J T

0.0 1.000 00 —00
0.001 1.000 125.08 -0.1426
0.005 1.000 25.08 -0.1105
0.010 1.000 12.58 -0.09676
0.050 1.001 2.580 -0.06473
0.100 1.002 1.330 -0.05093
0.150 1.006 0.9135 -0.04284
0.200 1.012 0.7059 -0.03709
0.250 1.024 0.5824 -0.03263
0.300 1.049 0.5034 -0.02908
0.310 1.063 0.4928 -0.02854
0.3120 1.070 0.4916 -0.02847
0.3121 1.071 0.4916 -0.02847
0.3122 1.071 0.4916 -0.02847
0.3123 1.072 0.4916 -0.02848
0.3124 1.073 0.4917 -0.02848
0.3125 1.074 0.4918 -0.02849
0.3125 1.078 0.4928 -0.02854
0.3124 1.079 0.4932 -0.02856
0.3123 1.080 0.4935 -0.02857
0.3122 1.081 0.4938 -0.02859

Table 3.1 Rotation rate and energy data for the corotating vortex pair.

interest are quite sensitive. The energy and angular momentum values change less
than 0.1% between the solutions with N = 16 and N = 32 modes; these data
match values interpolated from Dritschel’s data to three significant figures. As
stated in §3.2, the value of the neutral eigenvalue corresponding to the symmetric
shift eigenmode was monitored for all solutions; for the N = 48 calculations, this
quantity remained below 107* for the lower branch solutions with 0.3120 < o <
0.3123. Also, in his stability analysis Dritschel imposes the constancy of angular
momentum for all perturbations; we do not require this constraint explicitly. Our
computations indicate that the linearized angular momentum variation is indeed

nonzero for the perturbed vortex states. The imposition of this constraint on
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the Schwarz formulation and the subsequent effect on the perturbation remain
unstudied problems.

The behavior of the numerically computed eigenvectors near the state with
minimum angular momentum suggests the phenomenon described by Saffman
[1985b] for finite amplitude water waves, namely, that the area-preserving zero
eigenvalue has algebraic multiplicity four and geometric multiplicity one at the
point of stability change. Consistent with this property is the lack of indication of
a bifurcated solution branch. Also in keeping with this theory, there is no change
of stability at a = au,4,, Where there should be two linearly independent eigen-
vectors corresponding to the area-preserving zero eigenvalue; we have not resolved
the exact location of the fold point to verify this conjecture. We cannot offer
analytic proof of these results, but believe the advances in the application of the
Hamiltonian formulation of inviscid vortex dynamics (e.g., Hebert [1983], Jiménez

[1986a], MacKay [1986]) may provide the necessary tools for such justification.
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Chapter 4

The Single Infinite Row

4.1 Introduction

The configurations we have considered up to this point have consisted of finitely
many vortices. We now apply the method of Schwarz functions to a straight
row of infinitely many, regularly spaced, equivalent regions of uniform, constant
vorticity. This configuration can be taken as a model of a developed shear layer
(Christiansen & Zabusky [1973], Moore & Saffman [1975], Saffman [1981], Saffman
& Szeto [1981], Pierrehumbert & Widnall [1981]), for which the stability properties
are of considerable interest.

This geometry has been previously studied by using point vortices, ana-
lytically in the simplest case by Lamb [1945], and numerically with large-scale
point vortex simulations by several authors, as reviewed by Aref [1983]. Moore &
Saffman [1975] and Saffman & Szeto [1981] use elliptical regions of constant vor-
ticity in their shear layer models. Saffman & Szeto [1981] and Pierrehumbert &
Widnall [1981] numerically obtain solutions of the Euler equations for the infinite
array of regions of constant vorticity. The former authors formulate the prob-
lem using a discretized boundary integral method and thereby obtain a system of
nonlinear equations, which they solve by Newton’s method. The latter authors
formulate the problem in a similar fashion, but solve the resulting equations via
an iterative technique developed by Pierrehumbert [1980].

In applying the method of Schwarz functions to this problem, we utilize the

techniques developed by MSS in their model of the infinite Karman vortex street.
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They describe the considerations necessary to make tractable the analysis of the
infinite number of vortices present, a situation which complicates the stability
analysis of the problem.

To check the Schwarz function results, we develop an analytical model for the
single array using elliptically desingularized vortices. Based on the theory devel-
oped by Melander, Styczek & Zabusky [1984] and Melander, Zabusky & Styczek
[1986], this approximation is valid for elliptical vortices of small nondimensional-
1zed area.

The shape solutions we calculate match those previously obtained, and the
stability data we obtain numerically verify the results of the qualitative energy
arguments of Saffman & Szeto. We find that the subharmonic disturbance of twice
the period of the array spacing is indeed the linearly most unstable disturbance

for this configuration.

4.2 Formulation

The Schwarz function formulations of the double infinite row vortex shape and
stability problems were given by MSS; we modify that presentation for solution of
the single infinite array.

We assume all vortices have the same shape, so that each vortex boundary is

given by the same expansion
z=ag((1+ar/C+ -+ an/C"+ ), (4.2.1)

where ( i1s taken as the unit circle. The regions are assumed to have the same
uniform vorticity wo = I'/A, where I" is the circulation of each region and A its
area. The centroids of the vortices are separated by distance [, which may be
complex: the phase of [ specifies the angle between the z-axis and the direction

parallel to the row. The configuration for real [ is depicted in Figure 4.1. The
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Figure 4.1 The single infinite vortex array.

origins of the vortices are taken to be at ml, m € Z. Thus, the total fluid velocity

at a point z relative to one of the vortices is expressed as

ZCUO f
U —w = «-«mz Z ml)n+1 + Q, (4.2.2)

n=0 m*‘—oo

where g, is the nth Schwarz coeflicient, given by (1.2.10), and constant external

velocity @ = U — ¢V is assumed. The velocity field for large values of |2/ is

U — v ~ —-—%Fl—cot (Trl >+Q+o( ), |2/1] = oo. (4.2.3)

The velocity far from the array is obtained by considering the limit ‘i‘s {z/1} l — 00,
which implies

Uoo—iVOON——%sgn(i‘f{z/l})—f—Q—}—O(l). (4.2.4)

For a steady vortex array, the first term in (4.2.4) corresponds to the induced
far-field velocity; that the external velocity @ is found to be zero is one check of
the numerical computations. The conjugate velocity has a representation similar
o (4.2.2) with ¢ replaced by —i, | by [*, and the other coefficients by starred
quantities, which are assumed independent of the actual complex conjugates.

To obtain steady shapes, we begin by substituting these expressions into the

governing boundary condition (1.2.22). Since all vortex regions are assumed to
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be equivalent, the boundary condition need only be satisfied on one vortex. As in
the solution for the vortex pair, we effectively obtain an expansion of the solution
as a power series in « by expanding the solution as a power series in 1/I. The
shape expansions are first truncated to order NV in ¢, the velocity expansions are
truncated at order N + 1 in 2, and the resulting series is expanded in 1/[. In

analogy with Equation (3.2.16) we obtain, for m # 0,

E( ptren bR L2 (125

nlpl  minte+l) -

(z _ ml n+1

Substituting this expression into the velocity expansion (4.2.2), truncating the

series to retain terms of order /=% and re-arranging terms we obtain

N L—n-1
_ o (n+ +1)(”+p) 1
ik 1 OE RO SO IS o W)

n=0 n=0 p=0 m:—oo

(4.2.6)
where the primed summation denotes exclusion of the m = 0 term. A similar
expression 1s obtained for the conjugate velocity. As shown by MSS and derived
in Appendix E, the m-sum term can be evaluated directly.

Substituting the truncated expansions into the boundary condition and equat-
ing the coefficients of (¥ to zero, we obtain 2N + 1 equations for the 2N + 4 un-
knowns given by the shape coefficients and the velocities @ and Q*. We eliminate
one unknown by setting ay = af. By the arguments presented in Appendix A,
the equation obtained by equating the coefficient of (° to zero is not independent,
and is thus excluded. An equation specifying the vortex area, as in (2.2.8), and
the two centroid equations ¢; = g7 = 0 are included to give a total of 2N + 3
equations. The system is found to be nonsingular, and solutions were obtained for
a range of « values.

The stability problem for the infinite arrays is more complex than that of

the configurations with finitely many vortices, as we seek to study the response
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of the system to a perturbation of prescribed wavelength, in addition to the self-
oscillations of the vortices. For the infinite array of vortices with periodic spacing
[ we denote by p the wavenumber of the infinitesimal disturbance to the steady
solution. Without loss of generality, p is restricted to the range 0 < p < 1, since
incrementing p by an integer is equivalent to relabeling a perturbation eigenvec-
tor, as shown by MSS. Two cases are distinguished: (1) p = 0 (superharmonic
disturbance) implies the perturbation has the same spatial period as the steady
state, and (2) p # 0 (subharmonic disturbances) implies the perturbation has
wavelength [/p or (1 —[)/p, i.e., greater that [. The governing equation is the

linearized time-dependent boundary condition given by (1.3.8):

02 N4 oy 02 ;. 02"
(U—ZV)EQ——{—(U—W)EE—(U—}—ZV) 50 —(u +w)89
0 {z*’%‘g--z'aa‘i } (4.2.7)

In principle this must be satisfied on the boundary of each of the vortices, as the
oscillations of each vortex may be different. The answer to this problem, which
also occurs in the stability analysis of the double infinte rows, is given by MSS
and is now reviewed and applied to the single array.

With (u — 1v),, denoting the velocity induced by the vortex centered at ml.

the linearized perturbation to this velocity caused by the perturbation to the jth

shape coeflicient of the mth vortex, a'gm), 1s given in (1.3.13); i.e.,
d(u —1 m
(v — ')y, = Ma'g ), (4.2.8)
dagm)

Given the assumption that all of the vortices in the array have the same shape

expansion, i.e., ag-m) = a; for all m, the derivative in (4.2.8) is the same function

of the argument z — ml for each vortex, i.e., for each value of the index m. We

consider perturbations with wavelength [/p, so the shape perturbation of the mth



79
vortex is related to that of the zeroth vortex by

m . ~ (m)
/g ) — a}ezmk’ al

'™ where = 27mp. (4.2.9)
We are thus able to restrict the evaluation of the boundary condition governing
stability to a single vortex.

We now address the evaluation of the governing equation for a perturbation
to the jth shape coefficient. According to the procedures of §§1.3 and 3.2, each
term in the right side of equation (4.2.7) is evaluated explicitly as a power series in
(; thus, the entire right side is given as a power series in (. The two contributions
to the velocity disturbance u’ —2v' on the left side of the stability equation are: (1)
that induced by the perturbed vortex shape in the steady velocity field, and (2)
that computed with the steady vortex boundary in the correspondingly perturbed
velocity field. The first of these, (u' —1v'); yorter, is given by taking the variation

of the velocity field given in (4.2.2):

. d
(u' = iv")j vorter = - —(u — 1) z; (4.2.10)
=27
zwo
- { Z nﬂ} 2, (4.2.11)
—Om'--oo =27

where Z is the steady shape solution and z; is the perturbation to the shape due
to a. As the external velocity Q is constant, its contribution to this term is zero.

The second contribution, (u’ —1v'); yerocity, 15 calculated using relation (4.2.9) as
b y g

oS} o0 mA
UJ gn ]
(v = 10")j velocity = — g_ :E (Z = miynet’ (4.2.12)

where ¢, ; denotes the perturbation to the Schwarz coefficients due to the shape
perturbation a’;. The exponential attenuation to the perturbed Schwarz coefficient
is a consequence of (4.2.9) and reflects the assumed periodicity (with wavenumber

p) of the induced velocity variation at the mth vortex.
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These contributions are incorporated into the left side of Equation (4.2.7),

which 1s computed numerically in two parts. The first two terms of the addend

NG . 8z Oz o 0z~
(U~7,V)-(—3—9]-+(u —10" ) jvorter = — (U +1V) E’GJ —(u fzv')j,vortex——a—é]—, (4.2.13)

oL

are calculated as the central difference approximation given by

N
> %{Rl(k;aﬁd-—&(k;aj—e)]c’“. (4.2.14)

k=~ N
The term ZQ[:__N Ry(k;aj+te) ¢* is given by the product of the truncated velocity
expansion (4.2.6), into which the perturbed shape is substituted, and the boundary

derivative of the perturbed shape, i.e.,

k=—N

N . N

. k — _ZWO In
Z Rl(k,CI,J :t 5)< 2 {; [Z(Cl]‘ Zi: 5)]n+1
N L—n—1

+ Z Z gn(”l)“(n+p+l)(—7%€')'!["z(aj + ¢)]? Zl WJlr_I’_JF_l+Q} g%[z(aj:i:e)].

n=0 p=0 m==—o0

Direct expansion of the central difference of this expression, as in (4.2.14), yields
the first two terms in (4.2.13) plus quantities that are O(¢?). The remaining terms

in (4.2.13) are evaluated similarly.

The second addend to the left side of the governing equation is

. o7z . oz*
(u/ - Zvl)j,velocity'é—é - (u, + Zvl)j,velocity'ga”- (4216)

The first term here is approximated as

N

1 .
> 5o Rk aj +€) = Ry(ka; — &) C*, (4.2.17)
k=—N
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where Zg:_N Ry(k;aj+e) ¢k is the product of the truncated array-induced per-

turbation velocity expansion and the §-derivative of the steady shape. Thus,

N n ) gimA
£33 dhlay 2y e D $ W}%{Zw,

(4.2.18)

where g, (a;+¢) is the difference of the perturbed and steady Schwarz coefficients,
as in (2.2.24). Using this expansion and a similar one for the conjugate term,
we obtain a second-order valid approximation to (4.2.16). The explicit evalua-
tion of the m-sum terms in these expressions is described in MSS and derived in
Appendix E.

The left side of the boundary condition (4.2.7) for the perturbation to the
Jth shape coeflicient is taken as the sum of these contributions. Repeating this
calculation for each of the shape coefficients and equating the coefficients of like
powers of ( on each side of the governing equation yields 2N + 1 equations in

2N + 1 unknowns. We write the resulting matrix system as
Mv=0Nyv, (4.2.19)

where M depends on the steady shapes and the wavenumber p, N depends on

the steady shapes, and v is the complex array of perturbation coefficients with

elements

’ ~ 1 ! !
Vi =0pn, -y UN41 = Qg = Qg .. ., U2N41 = Qp. (4220)

This system was solved using EISPACK routines.
For a given wavenumber p, a single zero eigenvalue is found whose eigenmode

does not conserve area and corresponds to an array of vortices whose linearized
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shape variations differ from those of the steady state by O(1). The remaining
2N eigenvalues occur in pairs, 01 and g, corresponding to the 1st through Nth
eigenmodes. For superharmonic disturbances, the k = 1 cooperative eigenmode
has a pair of zero eigenvalues with two linearly independent eigenvectors, which
correspond to a uniform translation of the array without change of shape; the
eigenvalues of the remaining modes are found to be nonzero. For subharmonic
disturbances, we obtain the nonzero cooperative eigenvalue pair in addition to
the eigenvalues of the 2nd through Nth shape modes. If a mode is stable, i.e.,
R{c} = 0, then 0y = of. In this case, analysis of the eigenmodes follows the
discussion for the single vortex in §2.2 and indicates property (2.2.30) for the
corresponding eigenvectors. The unstable modes have purely real eigenvalues, so
that o9 = —0y. As for the single vortex, we find relation (2.2.31) is valid for the
assoclated eigenvectors in this case. As indicated in MSS, to construct physically
realized perturbations for single array vortices, one must combine eigenstates for
disturbances of wavenumber p with those of wavenumber 1 — p to insure that the

conjugate of the perturbation is the perturbation of a conjugate state.

4.3 Elliptically Desingularized Model

To check the results of the Schwarz function infinite array calculations described
in the preceding section, we now consider a model of the infinite array using
elliptically desingularized regions of uniform vorticity as suggested by Melander
et al. [1984, 1986]. This approach provides Hamiltonian evolution equations for
the position, orientation, and aspect ratio of uniform vortices of elliptical shape.
These equations are obtained using a moment representation for each vortex and
performing a perturbation expansion in the small parameter given by the ratio
of the maximum vortex dimension to the minimum vortex intercentroid distance;

truncating all moments of order greater than two yields the elliptical approxima-
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tion. For details of this derivation, see Melander et al. [1986], wherein elliptically
desingularized approximations of the corotating vortex pair and the translating
vortex pair are studied. In this section, we apply this method to the single infinite
array of vortices to obtain analytical expressions for the aspect ratio of the steady
states as well as the growth rates of the linearized stability problem.

Assume the kth elliptical vortex has area A4y, circulation Ik, semimajor axis
ay, and semiminor axis by. Following Melander et al. [1986], we denote the position
of the centroid of the kth vortex, equivalent to the center of the kth ellipse, by
(zk,yx), the aspect ratio by A\p = ax/br, and the angle of orientation of the
major axis with respect to the z-axis by ¢x. It proves convenient to introduce the

independent variables 0k, vk, and the quantity Uy, defined as

A \ /2
Y= <87T/\k> (Ak — 1) cos2¢y, (4.3.1)
Ay 1/2 . |

= — 2
0= <87r/\k> (Ak — 1) sin 24, (4.3.2)
A\ ? |

Uy = (62 + %4 §;> : (4.3.3)

The kinetic energy and equations of motion for each vortex are obtained by sum-
ming the effects of each of the other vortices. For a collection of finitely many
elliptically desingularized vortices, it can be shown that the Hamiltonian, equal to

the excess energy, is given by the expression

N N
1 1 27 r? ! R
H = ~§//W1/) dz dy == —é;Z{F}? log {1 -+ 74"; ((5z +7z>} - “zi +Z I‘kl’j logff,z.]
R2 k=1 7=1
YTy [ cos 26 n 26
klj | COS &bk, sin 20y ; .
'_QZ Ri] Ri‘ J((SkUk'f”éjUj)’*‘ Ri‘ ](’YkUk+’YjUj) }, (4.3.4)
7=1 J J 7
where the primed summation denotes exclusion of the j = k terms, and Ry,

denotes the intercentroid distance given by
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The equations of motion can be shown to assume the Hamiltonian form:

0H . OH
Tpij = — 2 §p = 22
kT k E Dby e (4.3.6)
0H OH
Ty = —— T = ——. 4.3.7
WE= 5 = g (4.3.7)

For the single infinite array of uniform elliptically desingularized vortices, the
equations describing the interaction of each pair of vortices are equivalent to those
in the case of finitely many vortices. Hence, the kinetic energy for an array of

vortices with equal area A and equal circulation I' is given by

-9 Z'

j=—o00

PO LGP S SR e
——é—; Z og 1+74"(k+”)’k) —‘2‘+-—z: Ongj

cos 2€k]

M (5,U + 8,U;) +
Rij

"““'”;(7kcﬂ:+-7jLU)

}. (4.3.8)

As for infinitely many point vortices, the excess energy is infinite; however, it is
not the energy per se that governs the motion, but its derivatives that determine
configurations and their stability.

We consider the configuration of equivalent vortices uniformly spaced a dis-
tance [ apart along the z-axis, and thus restrict our analysis to the zeroth vortex,
which we assume is centered at the origin. By taking the derivatives of the Hamil-
tonian in accordance with (4.3.6)—(4.3.7), we obtain the equations of motion for
the position and orientation of the zeroth vortex. Since we seek solutions in which

all vortices are equivalent, we write
6= 50 = 6k, Y = Yo = Yk, U= UO Uk (4:39)
Furthermore, introducing the notation

A:L‘kj =Tk — Iy, Aykj =Yk — Yj, (4.3.10)
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we express the trigonometric functions in these expressions in terms of the coor-

dinates of the vortex centers via the relationships

(Azg;)? — (Aygj)? 20z kj Ay
(Azrj)? + (Aygj)? (Azg;)? + (Ayrj)?

The equations of motion of the zeroth vortex are obtained as

Cl:l?() F x Ay()] 3(A$0'>2Ay0‘ - (Ayo‘)s
el 2 J J J
at zn-{j_z RZ, ]20 RE,

cos 20y, = sin 20y; = (4.3.11)

oU

, N2 _ )3
4T 3A$°J(Ay01)6 (Bzo,) 7| (4.3.12)
dyo T ' A:z:()] 3A:EOJ Ayoj)? — (Azg;)?
dt 2%{ Z 2 Z RS,
j=—o00 j=-—o0 7
N2
— yu 38z0,) A0, = (Ayo;)” | | (4.3.13)
dé I ~ 22
b I (1 -z 5U> (4.3.14)
dvy r ) 272 §2 4 U?
dr_ ”‘“(EE"EE? o > (4.3.15)

We equate the above time derivatives to zero to obtain the steady states of
this system. Clearly, the center coordinates (z, yx) = (kl,0) imply that the time
derivatives of zo and yo vanish. Substituting these positions into the evolution
equations for ¢ and ~, simplifying, and expressing é and v in terms of the aspect

ratio A and angle of orientation ¢, we obtain the coupled system of equations

A—1 ma N —1
_ = 26| = 3.
o1 sin 2¢ {1 5y cos ¢] 0, (4.3.16)
A—1 ma (A4 1)° A-1\?
20 — At | ] —— 20| = 0. 4.3.17
1T TAXFT) oo 2| =0 (4317

The correct solution to these equations is found by requiring sin2¢ = 0;i.e., ¢ = 0
or ¢ = w/2. This satisfies (4.3.16) and, from (4.3.17), yields the following cubic

equation for the aspect ratio:

6
/\3+<1i;1—> A2+<1:;:;%>,\+1:o, (4.3.18)
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where the {—,+} combination corresponds to ¢ = 0, and {+,—} to ¢ = «/2.
Clearly, if A is a solution for one choice of angle (i.e., ¢ = 0 or ¢ = 7/2), then 1/
1s a solution of the the equation corresponding to the other angle (i.e., ¢ = /2 or
¢ = 0). We expect A to be near 1 for small o and to increase as « does; a root of

Equation (4.3.18) for ¢ = 0 is found that satisfies this behavior:

o 2
A~1+—?Zr-a+—g——-a +0(a®) as a— 0. (4.3.19)

The steady states of this system provide the basis upon which we make a
linear stability analysis; the Hamiltonian formulation is particularly well suited to
this undertaking. We perturb each of the canonical variables in the Hamiltonian
and linearize to obtain the perturbed Hamiltonian. Likewise, linearization of the
Hamiltonian equations of motion provides the stability equations for the perturbed

quantities. After some algebra, we find the first-order Hamiltonian given by

HIZEQ_ i 5L5k+7§c7k+ f’ Az Az + Ay Ayk;
47 U% sz

k=—~oc0

j=—oc0

20 Az [3(Ayk;)? — (Azgj)?
9 Z il égj i)

[Azl; (6xUx + 6;U;5) — Ayp; (veUk +7;U;)]

j——oo

1 Ayg; (Ayk )2 — 3(Azg;)?
-2 Z : ]R% )] [Ayk; (0xUk + 8;U5) = Az’ (16U +v;U5)]
j

]—-"OO

B Z' c0829k] [ k(6108 + Yivk) n 53‘(5951‘“{"73%‘) +52Uk+5;Uj:i

Uk Uj
j=—00
! sin 29kJ Ye(6.0k + Y vE) (856, + V57%5) / '
_J—Zoo [ Uk - Uj RGeS

(4.3.20)

Linearization of the governing Equations (4.3.6)—(4.3.7) yields the Hamiltonian

system governing first-order stability:

OH' . OH'
F Pt TD e e P ! T e e y
kT Bur’ KOk Ove (4.3.21)
nop— 2L pa- (43.22)

e T
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The linear stability of the steady states to subharmonic disturbances is stud-
led by substituting the steady-state values into the derivatives of the perturbed
Hamiltonian and assuming normal mode perturbations for all primed variables
of the form z = €™z The above equations for the perturbations yield the

matrix equation

0 a 0 b
dv ' a 0 ¢ 0
e 2)
- 7Zlo b0 a]V (4.3.23)
—c 0 e 0
where
v = [20,90,60,70) " (4.3.24)
=p(1 RELL T 4.3.2
a=p(1l-p)+dr’—p (1 -p) (4.3.25)
2nU
bzz—?’ﬁ-—l—p(l ~p)(1—2p), (4.3.26)
2r 6t 4 U
= - - - 2
1 2 16
d = yck it d (4.3.28)
1 2 62 16 62
= (12 ) +22 (3=, 3.
e ok < 2U2>+6U<3 U2> (4.3.29)
The squares of the eigenvalues of this matrix can be expressed explicitly as
2 2 2 2 2,2
o a®—2bc+de a*de + ab’e + ac?d + b4c
= ——re | ] 1-4 - . 4.3.3
= 2 + (a? — 2bc + de)? (4.3.30)

Substituting into this result the quantities a, b, ¢, d, and e written in terms of p,
A, and « and expanding yields the distinct eigenvalue families py and p—; further
simplifying these using the relationship (4.3.19) between A and «, we obtain the

asymptotic growth rates of the perturbation for small «:

r 272
0"+:i%Pﬂ‘“P){l%——g—p(l——-p)az_;....}, (4.3.31)
_ g (2ra)*  (27a)® , , , .
T 212a{1’“ g~ g PA-p(1-2p)" 40 (4332)
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The latter eigenvalues correspond to single vortex, high-frequency boundary os-
cillations, which grow without bound as the vortex area diminishes; the former
eigenvalues are the growth rates of the cooperative disturbances, which exhibit the
dominant point vortex array behavior as vortex area vanishes (Lamb [1945]). In
the superharmonic limit, the zero eigenvalue pair o has two linearly independent
eigenvectors corresponding to translational modes, while the eigenmodes of the
nonzero pair ¢_ are boundary oscillations. In the next section we compare the

behavior of this elliptical model with the results of the Schwarz function analysis.

4.4 Results

The Schwarz function analysis was applied to vortex arrays in which each vortex
has area equal to 7 and circulation equal to one. The solution path is shown
in Figure 4.2., where the ratio of maximum length to maximum width of the
vortex is plotted against nondimensionalized area. Solutions are obtained up to
the fold point at o = 0.2377, and an upper branch of solutions is computed for
0.2330 < a < 0.2377. The accuracy was tested by checking that the obtained value
of the external stream velocity () was indeed zero, and by verifying an increase in
significant figures of the solution with an increase in the order N of the truncation.
For small «, N = 8 and N = 16 modes were used, while for larger o data were
collected with N = 16 and N = 32 modes, with less than .5% discrepancy in aspect
ratio for the more distorted solutions. Our results are found to agree with those of
Saffman & Szeto [1981] and Pierrehumbert & Widnall [1981] to three significant
figures. The use of Newton’s method in the solution allowed monitoring of the
determinant as a test for possible solutions bifurcating from the main symmetric
solution path; no such solutions were indicated. The finely dashed line in Figure 4.2
denotes the aspect ratio of elliptically desingularized vortex arrays, as given by the

numerical solution of (4.3.18), which satisfies the asymptotic behavior indicated in



Figure 4.2 The single vortex array solution path: aspect ratio a/b versus nondi-
mensionalized area . The solid line indicates numerical solutions; the dashed line
denotes the elliptically desingularized solutions. Solution vortices are shown for
various values of «, with intercentroid distance [ normalized to one.

(4.3.19). The elliptical model is seen to approximate accurately the actual solution
away from the fold point, as well as provide qualitatively the correct fold point

behavior for larger «.

The main objective of this investigation is to quantify the stability properties
of this configuration. Saffman & Szeto consider the stability of the array of sym-
metric vortices to two-dimensional disturbances in terms of the energy argument
based on Kelvin’s variational principle, described in §§2.3 and 3.4. They argue

that the lower branch of solutions (in Figure 4.2) must be stable to superharmonic



Figure 4.3 Superharmonic eigenvalues of the single vortex array, normalized by
the vorticity. Imaginary quantities are denoted by solid lines (Schwarz solutions)
and the coarsely dashed line (elliptical solutions) and are scaled on the left vertical
axis. Real quantities are indicated by finely dashed lines and are scaled to the right
vertical axis.

disturbances, while the upper branch is unstable. This is indeed the result we
find numerically. The behavior of the three leading superharmonic eigenvalues,
normalized by the vorticity, is shown in Figure 4.3 as a function of «. Solid lines,
scaled to the left vertical axis, denote imaginary values of the Schwarz eigenvalues;
the coarsely dashed line indicates the imaginary superharmonic frequency of the
oscillations of elliptically desingularized vortices; finely dashed lines, scaled to the

right vertical axis, indicate real values. These results show that the less deformed

solutions on the lower branch are linearly (neutrally) stable to shape deformations.
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Figure 4.4 Leading subharmonic growth rates of the single vortex array, nor-
malized by I'r/I?. Curves are plotted for a = 0.05, 0.10, 0.20, 0.23, 0.235 (top
branch), bottom to top. Solid lines denote results of the Schwarz function analysis;
dashed lines indicate values for elliptically desingularized vortices.

It is also seen that the elliptical desingularization exhibits qualitatively the fold

point behavior, with change of stability, of the actual solution.

The infinite array is found to be linearly unstable to all subharmonic dis-
turbances. This result is also in agreement with the variational arguments of
Saffman & Szeto. Cooperative mode growth rates, normalized by the quantity
I'w /12, are depicted for various a values in Figure 4.4, in which solid lines denote
the Schwarz results and dashed lines the elliptically desingularized data given by

the +-subscripted growth rate determined by (4.3.30). It is seen that the leading
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subharmonic eigenvalue is symmetric about p = %, being strictly increasing for
0<p< % and strictly decreasing for % < p < 1. The pairing instability (p = %)
is the most unstable disturbance, in analogy with the numerical results for single
infinite arrays of point vortices (Lamb [1945]), hollow vortices (Baker, Saffman &
Sheffield [1976]), and Stuart vortices (Pierrehumbert & Widnall [1982]), as well as
experimental results for mixing layers (Winant & Browand [1974]).

Although these results clearly indicate the relative destabilizing effect of fi-
nite regions of vorticity, it must be noted that the corresponding point vortex
configuration is also linearly unstable to subharmonic disturbances. Perhaps the
most significant result is that the area-enhanced pairing instability is dominant,
and there is no unusual (e.g., nonmonotonic) behavior in the growth rate for other
wavelengths, e.g., near p = %—, which might correspond to experimentally observed

vortex-tripling events (Ho & Huang [1982]).
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Chapter 5

The Double Infinite Row

5.1 Introduction

In this chapter we consider an extension of the work of Meiron, Saffman & Schatz-
man [1984] on the Kdrmén vortex street. MSS used the method of Schwarz
functions to obtain solutions of the Euler equations for arbitrary regions of con-
stant vorticity in an unbounded domain. Although the actual Karman vortex
street is readily obtained experimentally, the theoretical explanation of the sta-
bility properties of its idealized counterpart poses formidable difficulties. Kdrman
[1912] modeled the vortex structure occurring behind a cylinder for Reynolds
number between approximately 90 and 160 by a regular pattern of point vortices
in inviscid flow. Linear stability analysis (Lamb [1945]) shows this configuration
to be unstable to two-dimensional disturbances except for a vortex spacing aspect
ratio of k. = (sinh ™' 1)/7 . Kochin [1939] and Domm [1956] later showed the
point vortex configuration to be unstable at higher order.

The question of whether constant vorticity structures of finite extent sta-
bilized the street was first addressed in a mathematically consistent manner by
Saffman & Schatzman [1981], who concluded that two staggered infinite rows of
finite regions of uniform vorticity were indeed stable for a range of aspect ratios.
Kida [1982] qualitatively confirmed this assertion and corrected the erroneous as-
sumption of Saffman & Schatzman that subharmonic disturbances are symmetric
about p = -;— The results presented in MSS confirm that subharmonic distur-

bances are not symmetric, but dispute the contention that finite area stabilizes
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the street for vortices of equal areas. Jiménez [1986a] and MacKay [1986] show
that the singular stability properties of the ideal vortex street are a consequence
of 1ts Hamiltonian structure; in a subsequent work, Jiménez [1986b) considers a
perturbation expansion for rows of vortices of unequal areas and obtains the same
qualitative behavior.

Our interest in considering this geometry is the effect of unequal areas on
the stability properties of the street. The main result of the investigations of
MSS was that the modeling of the street by regions of constant vorticity did not
fundamentally alter the stability results of the Kdrman point vortex model. We
find that the modification to unequal areas also does not change the basic stability
properties of this configuration, providing numerical confirmation of the work of

Jiménez.

5.2 Formulation

In this section we review the development of the shape and stability problem for
double infinite row as studied by MSS. All vortices in a given row are assumed to
have the same shape with equal areas and vorticities; the boundary of each vortex

in the first row is given by

z=ap((1+ai/C+-+an/("+--), (5.2.1

(8
o

and each vortex in the second row is described by

2=boC(1+b/C+ -+ b /(" +1), (5.2.°

v}

where ( traverses the unit circle. The centroids of the vortices in the first row
are taken to be at ml, and those of the vortices in the second row are located at
ml — I(d + ix), where [ € C is the intercentroid distance, d € R is the relative

stagger of the vortices, x € IR 1s the aspect ratio, and m € Z is an index. The
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Figure 5.1 The double infinite vortex array.

configuration for real [ is depicted in Figure 5.1. To model the wake it is assumed
that the circulations of the vortices in the rows are given by I} = —I, = I, with
the vorticities and areas of the regions related by wy = I'/4; and wy, = —I'/A,.
Also, we set the relative stagger between the rows to one-half. We define the

average area A, the nondimensional area «, and the area difference A as

(A; + Ay), a= Al A=

HI

DN |

(A; — Ay)/A, (5.2.3)

N

so that

Ar=(1+A)4A  and Ay =(1-A)A (5.2.4)

In analogy with the development of the previous sections, the total velocity

at a point z relative to a vortex in the first row is expressed as

zwl
U~ = _—Z Z n+1

nOm—oo

Sy Z

nOm‘—oo

—ml +z d+ k)] e (5:25)

where g, and hj, are the nth Schwarz coefficients, given by (1.2.9), of the first and

second row vorticies, and ) = U — iV is the constant external velocity, required



_80-
to negate the self-induced translation of the array. The conjugate velocity has
a representation similar to (5.2.5) with ¢ replaced by —i, [ by [*, and the other
coefficients by starred quantities.

We substitute these expressions into the governing bAoundary condition Equa-
tion (1.2.22) to obtain the steady shapes. The boundary condition is to be satisfied
on one vortex in each row by the assumption of equivalent vortex shapes within
each row. The solution is found as a power series in « by expanding the solution as
a power series in 1/[, as in the single infinite row problem. The shape expansions
are truncated at order N in (, the velocity expansions are truncated at order N +1
in 2z, and the resulting series is expanded in 1/I. Substitution of these expansions
into the velocity expression (5.2.5) and rearrangement of the terms of the trun-
cated series yield the following expression for the velocity relative to a vortex in
the first row:

N L—n-—1
— gy — _.Z_Lil_ —(n+p+1) V0 T £ (n +p)! )P

nz=0 : T =22 e OO

(o o]

in N n— . 1 (n+p) 1
{Z ;h U= nl pl E et Z)pz\: (mmd_z‘,{)p+n+l}+@'

n=0 m == -

(5.2.6)

Similar expressions are obtained for the velocity relative to the second row and
for the conjugate velocities. The sums involving m can be evaluated explicitly, as
shown by MSS and derived in Appendix E.

Substituting the truncated expansions into the boundary condition on each
vortex and equating the coefficients of (¥ to zero for —N < k < N imply 4N + 2
equations for the 4 N +6 unknowns given by the shape coefficients and the velocities
@ and Q*. Without loss of generality, we set ay = af and by = b}, thereby
eliminating two of the unknowns. The equations implied by equating the coefficient

of ¢° to zero are dependent and thus excluded, yielding 4N equations. We specify
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the area of the vortices by adding the two Equations (3.2.19) and (3.2.20); also,
the centroids are chosen to coincide with the vortex origins according to the four
equations given in (3.2.21). For the configuration considered, the vorticity centroid

1s at rest, so the following relation holds:

//u X wdzdy =0. (5.2.7)

R2
As shown in Appendix A, this implies that the coefficients of  and (™! are perforce
zero for the second row vortex if we explicitly include these equations for the first
row vortex. This eliminates two equations, thereby providing 4N + 4 equations
for as many unknowns; the resulting system is found to be nonsingular.

We now consider the stability problem for the double row. Asin §4.2, let p de-
note the wavenumber of the infinitesimal disturbance to the steady solution, where
p 1s restricted to the range 0 < p < 1 without loss of generality. Superharmonic
disturbances are those for p = 0 or p = 1, and subharmonic disturbances are given
for 0 < p < 1. The equation governing stability is the linearized time-dependent

boundary condition

0z , . .07 Oz , . 0Z*
(U«—zV)%——}—(u«w)ae——(UszV) 50 —(u -1—w)69
02 0z*
R 2.
a{z 56 ° 50 } (5.2.8)

Symmetry considerations presented by MSS and analogous to those explained in
§4.2 imply that this equation need be satisfied on only one vortex in each row,
provided we relate the shape perturbations of the mth vortex to those of the base

vortex in each row by

m : ~ {m) ~ ;
oM =ae™, @ =al e (5.2.9)

b/(m) — bi ei"“\, b,
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where the wavelength A is 27 times the subharmonic wavenumber p.

The procedures of §§2.2 and 3.2 describe the method of evaluation of the
right side of the stability equation, while the numerical evaluation of the left side is
complicated by the presence of the second row of vortices. Consider a perturbation
of the jth shape coefficient of the first row vortex and follow the notation of §4.2.
The evaluation of the left side of the stability equation is separated into two
components. The first two terms of (4.2.13) are approximated as (4.2.14), where

Z,{L_N Ri(kjaj £ )¢ is evaluated as

n=0
N L—n-—1
~(n (n+p) .
+n};o ;-_«:0 gn(=0)~(nFr+D) nn!p' [ Z(ajig)]pm;mﬁ}
. N L—n—1 .
= ~(n (n+p)! .
_72[; I;O hn(=1) +p+1)m[—2(aji€)]pm;oo(m_d_m)p:l +Q}.

(5.2.11)

This yields an approximation accurate to O(g?). The first term in the sec-
ond addend, (4.2.16), is computed as (4.2.17), correct to O(&?), where the sum
Z,]:]:_N Ry(k;aj +¢)¢* is given by

N RS ACED
39[ (a;)] o ;[Z(ai)}nﬂ
N L-n—1 n ! 0, oimA
300 ey Eao gy 3 m}
. N L—n-1 0 L
[ ! P —(n (TL +p)' 6””)‘
— L;) p;) Bl (a; £ e)(=1)7 +p+1)_ﬂﬂr[—2(aj)]in;m(rn”“d“i"&)pJ}'
(5.2.12)

These evaluations are repeated for each shape coefficient of each vortex. Coef-

ficients of like powers of ( are equated to obtain 4N + 2 equations for 4N + 2



unknowns, written as

Mv=oNwv, (5.2.13)

where M is a function of the steady shape and perturbation wavenumber, N
depends only on the steady solution, and v is the vector of shape perturbations

given by

; .~ I A | !
Vi =AapN,- s UN+1 = Qg = Qg, - -, UaN41 = Oy,

11 11 ' !
VaN42 = bN? ooy U3 N2 = 1)0 = bO?‘ oy U4ANA42 = bN' (5214)

This equation is left-multiplied by the inverse of the nonsingular matrix N and
solved with standard EISPACK routines.

We consider only subharmonic disturbances and obtain one pair of zero eigen-
values corresponding to eigenmodes for which area is not conserved. The remain-
ing 4N eigenvalues occur in quartets corresponding to the cooperative mode, upon
which we shall focus our analysis, and V —1 (stable) oscillatory shape modes. Ac-
cording to the symmetry conditions discussed in MSS, the quartet of cooperative
eigenvalues for fixed area and aspect ratio occurs in pairs such that, say, ${o;} <0,
S{o2} < 0 and S{o3} > 0, I{o4} > 0. At wavenumbers for which this mode is
stable, R{o1} = R{o2} = R{o3} = R{o4} = 0, whereas at wavenumbers for which
the mode is unstable, R{o1} = —R{o2} # 0 or R{o3} = —R{04} # 0. For a given
pair, say {o1,02}, we compute the point of change of stability by finding the zeros
of

H(p;a, k) = (0, — 09)?, (5.2.15)

which 1s considered as a function of wavenumber for fixed area and aspect ratio.
This function is real-valued such that when the mode is stable H is negative,
whereas when the mode is unstable H is positive. We find the wavenumbers at

which there is a change of stability by computing the zeros of this function.
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Figure 5.2 Neighborhood of the stability boundary for the o = 0.05 vortex street
with area differences A = 0.0 (solid line), 0.05 (finely dashed line), and 0.10
(coarsely dashed line). S and U denote (neutrally) stable and unstable regimes,
respectively.

5.3 Results

The method of Schwarz functions was applied to study vortex arrays in which the
circulations of the vortices were It = —I'; = 1. The goal of this investigation was
to assess the effect of unequal area on the stability properties of the street. The
average of the areas of the first and second row vortices was set equal to 7, with

the areas of the vortices in each row set according to (5.2.4)

Solutions were obtained for the cases o = 0.005, 0.05, and 0.10 with relative

area differences A = 0.0, 0.025, 0.05, and 0.10, representing area differences be-
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tween the vortices of 0.0%, 5.13%, 10.5%, and 22.2%, respectively. Calculations
for a = 0.005 were done with N = 8, L = 9 and with N = 16, L = 17: the
resulting difference in location of the stability boundary were negligible. For the
larger area calculations N = 16, L = 17 were used. The stability boundary for
the a = 0.05 case is shown in Figure 5.2, where the aspect ratio x = h/[ of the
street is plotted along the horizontal axis and the subharmonic wave number p is
graphed along the vertical axis. As the stability diagram is symmetric about the
line p = %—, only the region near the stability point with p > —;— 1s depicted. The
locations of the points of neutral stability are compiled in Table 5.1 and shown in
Figure 5.3. The characteristic cross of the point vortex and MSS results is retained
with the variations of area between the rows. The neutrally stable aspect ratio

and wavenumber are both increasing functions of area and area difference.

These findings imply that unequal area does not qualitatively affect the stabil-
ity properties of the inviscid street of finite vortices. This conclusion is consistent
with the theoretical results of Jiménez [1986a] and MacKay [1986], wherein the
stability of the inviscid, fore-to-aft symmetric street of finite, uniform vortices
is studied as a special case of more general Hamiltonian systems with specific
symmetries. These works show the existence of an isolated linearly stable state
corresponding to the neutral stability point, which MSS and we have numerically

computed.

"Our numerical results confirm qualitatively the perturbation analysis of
Jiménez [1986b], whose results are shown as the dashed lines in Figure 5.3. From
these diagrams it is apparent that our values do not match those of Jiménez for
even the equal area (A = () case. However, the differences between the results
decrease with decreasing « for all A. This discrepancy can be attributed to the

fact that we are numerically solving the linear stabilty problem, whereas Jiménez
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a = 0.005 Stability Cross Location
A =00 A =0.025 A = 0.050 A =0.10
K 1.373(-5) 1.374(-5) 1.377(-5) 1.387(-5)
P 1.162(—4) 1.163(—4) 1.165(—4) 1.174(—4)
o = 0.05  Stability Cross Location
A =0.0 A = 0.025 A = 0.050 A =0.10
K 1.190(-3) 1.190 (—3) 1.192(-3) 1.199 (-3)
P 1.196 (—2) 1.197(—2) 1.120(—2) 1.210(—2)
a =0.10  Stability Cross Location
A =0.0 A = 0.0250 A = 0.050 A =0.10
Kl 3.716 (—3) 3.717(-3) 3.722(-3) 3.740 (—3)
P 4.825(—2) 4.829 (—2) 4.842(-2) 4.894 (—2)

Table 5.1 Locations of the point of neutral stability for vortex streets of various
areas and area differences. Here, k' = kyx — k. and p), = px — p. where the point
vortex values are given by (., p.) = (0.28055,0.5).

obtains only the leading behavior from an asymptotic expansion for small areas.
Kida [1982] predicts a stabilizing effect of finite area, but according to Jiménez
there are errors in Kida’s work which, when corrected, yield the stability cross:
however, its location does not exactly agree with that predicted by Jiménez. In
Appendix F we discuss a model of the street based on elliptically desingularized
vortices as suggested by Melander et al. [1984, 1986]. However, we were unable
to complete that analysis, which should reproduce the Jiménez results to leading

order.

To quantify the relationship between Jiménez’s results and ours, we note that
from the MSS analysis, k), = kx — k. and p)y = px — p. are proportional to «*:
Jiménez shows that the variation of these quantities with respect to A occurs to

leading order as A%a®. Assuming the quadratic expansion
&l = B(1+~vAH)a? and

P = M1 4 pAH)a?, (5.3.1)
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Figure 5.3 Locations of neutral stability point as functions of area difference for
the a = 0.005, 0.05, and 0.10 vortex streets. Circled points are computed values
and dashed lines are results of Jiménez [1986b].

we have from the results for & = 0.005, A = 0.0, and A = 0.025 that

8 =0.0549, y=114, A =465 u=0.956. (5.3.2)
These compare favorably with Jiménez’s analytically obtained values of

B =0.0555, v =1.00, X=4.63, u=1.00. (5.3.3)

As expected, this close correspondence between asymptotic theory and numerical

experiment deteriorates for larger a and larger A.
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There are still several unanswered questions about the vortex street. The
nonlinear stability of the inviscid street of uniform vortices of finite area remains
an unresolved problem, although we are inclined to draw analogies with the point
vortex case and hypothesize that it is unstable. The mechanism for the observed
stability of the street is still unknown; viscosity (i.e., dissipation) is a prime can-
didate, but to our knowledge no consistent mathematical stability analyses that
include this term have been completed. The effects of a sinusoidal upstream dis-
turbance (Eckelmann [1986]) or an oscillating body (Williamson [1987]) on the
form and stability of the street are striking, yet they remain largely unexplained

phenomena.



—-98~

Appendix A
Kinematic Constraints for Vortices

In this appendix we discuss the constraints used in the formulation of the
equations used to determine vortex shapes. We derive conditions for the single
vortex, the vortex pair, and the infinite vortex rows.

Consider first the constraint that the velocity field must satisfy the continuity

equation. Integrating this equation and applying Green’s Theorem we obtain

/ V'uda:dy:fudy—vd:vzjl{unds=O. (A1)

\% av oV
This condition holds for each vortex region V in the flow. The boundary condition
used in the formulation of these problems is the vanishing of the normal velocity,

which is expanded at the boundary of each vortex as
df &
un=i— Y  R(k)C (A2)
Using this expression, we rewrite the boundary integral (A1) as

27 dS o0 .
/0 tn o df = > R(k) f Ckldc. (A3)

e k=
Thus, we find for each vortex
?{unds =0= 27R(0) =0, (A4)
oV
where we have used the fact that
}{ C* 1A = 2mi 0. (A5)

I¢l=1



—90-
Hence, for a valid solution shape, the velocity field automatically satisfies the
equation R(0) = 0 for each vortex; to impose this condition explicitly would be
adding a dependent equation.

Consider now the vortex pair and the infinite double arrays. In either case
an external flow is imposed to bring the vortices to rest. In this frame the vor-

ticity centroid of the system has zero velocity. Thus, for two-dimensional uniform

vorticity regions

//uxwdwdy:~i x//wudmdy:(). (A6)

R? R?

//ud:c dy = }{xun ds, (AT)

v ov

By Green’s Theorem,

so that (A6) implies

W %xun ds + wq %xun ds = 0, (A8)
avy aVy

where for the vortex pair V; and V;, are the first and second vortices, while for
the double rows V; and V, are vortices in the first and second rows, respectively.

From this expression, we obtain the following equivalent equation

w1 %(ziz*)un ds + wy %(z:{:z*)unds = 0. (A9)
% A

The governing boundary condition is the vanishing of the normal velocity u, on
each vortex; assume this equation to be satisfied on the vortex 1. With this

premise, (A9) is equivalent to the condition that

f(z + 2"u,ds = 0. (A10)
oV,
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The boundary of this vortex is given by

2= boC(1+b1/C+b2/CP 4+, (A11)

From this expansion we express the sum of z and its conjugate as

o0

z2"=b »_  Bu(k)C, (A12)

k=-—c0
where
bo(k-1), k<=2
bg + 1, k= —-17
Bi(k)=<{ by b}, k=0 (A13)
1453, k=1,
:i:b’,‘;+17 k> 2.

Substituting this expression into the integral and using (A2), we find (A10) equiv-

alent to the following condition:

Rao(~1)+ Ry(1) + i [bxRa(k — 1) £ bERy(1 — k)] = 0. (A14)
k=2

To leading order we have that
Ry(—1)+ Ry(1) =0 and Ry(—1)— Ry(1) =0, (A15)
which is equivalent to
Ry(—1)=0 and Ry(1)=0. (A16)

Thus, given condition (A6) and a valid solution for the first vortex, the velocity
field satisfies the equations given in (A16); explicitly requiring these constraints
does not add independent equations.

We obtain the equivalent condition used in the stream function implementa-
tion discussed in Appendix D as follows. The normal velocity equals the tangential

derivative of the stream function on the vortex boundary. We assume that the
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stream function assumes a constant value on the first vortex, so that the vanish-
ing of the integral on the second vortex in condition (A8) is not an independent

condition. We write this condition, equivalent to (A10), as

‘%zdw::O. (A17)
aVvy

Integrating this expression by parts and evaluating the integral over the unit circle

in the (-plane, we obtain
2m dz _C_ZE

e E=0 (A18)

We substitute in series representations of the derivatives and obtain

27 o0
et {1~—§:(k-dnbké”kﬂ df = 0. (A19)
0 k=1
To leading order this expression yields the dependent conditions for the second
vortex
2m 2T
Y cos@df =0, Y sinfdf = 0. (A20)
0 0

For the vortex pair, we further consider the quantity

//w(x- u)dz dy. (A21)
m2

As shown in Dritschel (1985), this quantity vanishes for general two-dimensional

incompressible flows. Thus, we have

w1//x-ud:cdy+w2//x-uda:dy:0. (A22)
Vi

Va

Using the continuity equation and Green’s Theorem, we write the integrals in this

//x -udrdy = %— % r2u, ds. (A23)
Vim B

Vim

expression as
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The condition on the vortex pair then becomes

w1 erUnds + wo frzunds = 0. (A24)

oV, BV,

We again assume that the governing zero normal boundary velocity condition is
satisfied on the first vortex; hence, the vanishing of the integral on the second
vortex is not an independent condition. With r? = z2* and z given by expansion

(A11) on the boundary, we expand r? as

r? = b2 f: C(k)CF, (A25)

k=—0o0

where C(k) is defined as

b*+Zbk+J i ifk>0
Clk)y={ 1+ ijb;, if k = 0; (A26)
j=1
bk + > beg;bl. if k<0,
j=1

We use the expansion of the normal velocity on the boundary given by (A2) and
substitute into the integral over the second vortex in (A24) to obtain a power
series in (. Using relationship (A5), we find, after some algebra, that to satisfy
the vanishing of the integral in (A24) over the second vortex, the following is

required:

i [Ro(k ) + Ro(—k)C (k)] = 0, (A27)
k=2

where we have assumed R3(0), R2(1), and Ry(—1) are all zero, in accordance with

the previous derivations. To leading order in shape coefficients, this implies

Ra(2)by + Ry(—2)b2 = 0. (A28)
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Thus, solutions for which by = b}, i.e., shapes symmetric about the z-axis, auto-

matically satisfy the following equation:
R2(2) + Ry (—2) = 0. (A29)

We also consider (A24) for the stream function formulation of Appendix D.
The vanishing of the integral on the second vortex is not an independent condition,
as the stream function is explicitly required to be constant on the first vortex.

Integrating this integral by parts yields the (dependent) condition

od(r?) de o
v m® =0 (A30)

Upon substituting in the expression (A25) for r2, this equation becomes
0 2w 2
b? E:k:Pﬂﬁ) ckdo — C(—k) ¢§“kd9]::0, (A31)
k=2 0 0

where the coefficients C(k) are given in (A26), and we have assumed the results
given in (A20). To leading order in the shape coefficients we obtain the following
dependent condition:

27 2m

(by — b3) Y cos260df — (b + b}) Y sin20df = 0. (A32)
0 0

For solutions in which b = b}, the real part of this equation vanishes identically,
so only the second integral is not independent. Thus, the imaginary part of this
equation yields the dependent condition

2

¥ sin20df = 0. (A33)
0
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Appendix B
An Energy Integral for Vortices

In this appendix we derive an expression for the integral of the stream function

over a vortex V. From the two-dimensional Green’s Theorem

//’I,bdxdy::j{m/)dy—//x%édxdy (B1)
1% vV 1%

/ z/)dxdy:—vfyzbda:——//y%%dazdy. (B2)
1% v 14

Repeating the application of Green’s Theorem to the second integrals in these

and

expressions, we find

wwdd.n- d~— me@ (B3)
/3 Fk

and
81/) sz
—drdy = —— —dz — = dz d B
”/. dr dy = ay v/' Yz 4oy (B4)
1%
Also by Green’s Theorem we have that
% 2, 0%¢
y28 —/ azdmdy:() and :c—— / d:cdy:()

B\% %
(B5)

Combining these results and simplifying, we obtain

/V/¢dxdy fszdy ydac)——f(a: -{-—y)( - fg@: )

‘[/ z? + y*) Vi dz dy. (B6)
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Appendix C

Analytic Formulae for Vortex Configurations.

In this appendix we derive formulae for the stream function, angular momen-

tum, and kinetic energy of the single circular and elliptical regions of uniform

vorticity. Also, explicit angular momentum and energy formulae are derived for

a pair of circular uniform vorticity regions. We assume two-dimensional invis-

cid, incompressible flow, with density normalized to unity. We require the stream

function to have the asymptotic behavior
r
’¢~—§——logR+o(l), as R — oo.
7

The angular momentum is defined as

H:——%//wrzd:cdy,
IRz

and nondimensionalized as

J=—H/ (Z rmAm> .

The excess kinetic energy is defined as

T = %//w;/zdwdy,
IR2

which is nondimensionalized for flows with nonzero total circulation I' as
T =T/T?

and further reduced as the scale-invariant quantity

T=T-— Tequivalent circle,

(C1)

(C3)

(C5)

(C6)
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where Tequivalem circle 18 the nondimensional excess kinetic energy of a circular
vortex of the same total area and circulation as the configuration under consider-
ation.

Consider first the circular region of constant vorticity wy with radius r = «

2

centered at the origin, such that I' = wgma®. For this geometry the Poisson

equation is independent of 8 and has the solution
W= Agr® + Ay logr + A,. (C7)

We solve for the solution stream function by imposing the asymptotic condition
(C1) and requiring the continuity of ¢ and v /dr at the boundary of the vortex.
We find that

(r/a) (1-2loga) 0<r<a;
—%—;Flogr, r>a.

The angular momentum expression can be integrated immediately:

1 r 1 1
H = ~—§ //wr2 dz dy = -woﬂ'/rs dr = ‘ZWOWG4 = J = Zl— (CQ)
r2 0

s

For the kinetic energy, the integral of the stream function is obtained as

a

r r h Ta?
= 92 — .3 B — — _.—..-—-— e
/ Y de dy = 27 p /7 dr+47r(1 2loga)/rdr (1 —4loga).
0

0

(C10)
Hence, the excess kinetic energy is given by
2 2
= 15 — (1 —4loga) = —6~—~[1~‘710g(A/7r)] (C11)
Note that, by definition, 7' = 0 for a circular vortex.
For the region of uniform vorticity wy bounded by the ellipse with semimajor

axis a and semiminor axis b, we use the Schwarz function representation of the
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velocity field to obtain the stream function. The exterior conformal mapping of

the unit circle in the (-plane to the ellipse is given by
1 1
z=al+ B/C, where o= —2—(a+b), g = §(a—b)EIR. (C12)
The area of this region is given by
A =rmab = n(a® - B?). (C13)

On the boundary of the vortex, we have the Schwarz expansion (1.2.3); from (C12)

we have the expansion

2 =afC+ B =

> —p*1 B
o Z+;Z (C14)

Outside the vortex, the induced velocity is expanded in inverse powers of z, so we
infer that
: I 1
u—1v = "l (C15)
We solve for the complex potential by integrating this expression with respect to
z and choosing the constant of integration such that w ~ —(iT'/27)log z + o(1) as
|2| — oo; we find that

__T s 1
W= = <log al + 5 C2> . (C16)

The. integral in expression (C2) for the angular momentum can be integrated

immediately, using the definition of the elliptical boundary, to obtain
2 wab, 5 o
rédrdy = —4—(& +b%). (C17)
v

Thus, the angular momentum is given by

1 1 p?
H = —=womab(a® + b?) = J = s 1, (C18)
8 8 p




~108-

where p = a/b is the axis ratio. To obtain the excess kinetic energy for the ellip-
tical vortex, we consider the integral of the stream function; recall from Equation

(1.4.21) we may write this as

_ 1 _ Lf.2(% 0_¢ “0 2 gr d
//¢dmdy—— wa@sdy ydx)—4fr (ax ~ 3y 3c>-—4—//7' dz dy.
14 av

av 1%
(C19)
Explicit evaluation of these integrals yields
I? a+b

— e e 2

fotedy—yde) = ———1og (252), (C20)
1%
oy 81/) r

2 == . — = — — = ——(ag? 2 2

fr (aac Yy 3y ) R f]z] (u — ) 4(& +0%).  (C21)

av

The third integral in (C19) is just the angular momentum integral evaluated in

(C17). Combining these results, we find the excess kinetic energy of the ellipse as

2 a+b
- 22
T = Tom [1 41o ( 5 )} . (C22)

Using the result (C11) for the energy of the circle of area A, we obtain the reduced

energy of the ellipse as

2
T=T- ~é——[1—2logab] —log(l\_:—> (C23)

We obtain a relation between 7' and J valid for large J (i.e., large aspect ratio

ellipses) by expanding 1/p as an asymptotic series in J valid for large J,

1 1 1
p~=—— |1+ —5+0 -1 C24)
/P~ 5= { + Gt ((&ﬂfﬂ (C24)

substituting into expression (C23), and simplifying to yield

SV
(34

1 1 1
TN—--—— 2 ——— S.— ¢
o log (27 J) Tor 27TJ+O((27rJ)2) (C
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We now consider two circular regions of uniform vorticity separated by a
distance [ along the z-axis; this configuration is not a steady solution of the Euler
equations. Let the circulations be I and I'; and the centers of the circles, with
radii ry and 7o, be at z =1; > 0 and x = [, < 0, such that [ =1; — I, > 0. From

the definition of angular momentum (C2), we have that

2 2w T
1 k
H = -3 g Wi {ZiAk -}~/ d@/ rir dr}. (C26)
k=1 0 0

Evaluation of this expression yields the result that

H=-= [rl <12 22>+1‘2 <l§+%%->} (C27)

This relation is nondimensionalized according to (3.2.47) to obtain

1 /1 0113+ Ty02
J== —4 —— 2
2 (271" PIAI +P2A2 <C 8)
For the case of equal corotating vortices, ie., A; = Ay = A, I}, =Ty, = T,
[y = =1, = 1/2, etc., we have that
r 1 i
H=—=(I*+2r? J=—=—12+—]. C29
4 ( e )’ 8 { + a} ( )

To evaluate the kinetic energy of this configuration, we use expression (1.4.21) for
the integral of the stream function. To obtain an explicit expression for the stream

function, we consider the velocity external to the vortices written as

. oIy 1 iy 1 ,
- external — LT T T T, C30
(U= t)esternat 2m 21 2T zg ( )

where z; 1s the coordinate measured from the center of the kth vortex. The

corresponding stream function is given by

¢:§{~3§7~;—1ogzl ;I;: 1og22}. (C31)
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With coordinate z relative to the center of the first vortex we write
T T
O =00 402 g0 e b d B2 1002 4 ) Y (C32)
2 27
with a similar expression for the stream function relative to the second vortex.

The evaluation of the integrals in (1.4.21) is straightforward, using the methods
derived in that §1.4, and we find that

A I
/ » dz dy = ;3 ! [1-—210gA7~~4F1 logl} (C33)

with a similar result for the second vortex. Combining these values and simplifying,

we obtaln
T= 122 {1~—21og—4—~—4—r—1—10 l} 1%2 1—210g-4—2—~4%10glJ (C34)
The reduced kinetic energy for the pair of corotating circular vortices is given by
T = o :PZ)Q {;i [1 —~ 21ogA— -4%1%;1 + —1-1—; [1 - 210gﬁ1— _4§2 logl] }
- L [1—Qlog (-—-—Alj;Azﬂ. (C35)

In the corotating equal vortex case used in computations, i.e., Ay = Ay = 4 = 7,

I =I, =T =1, etc., we find

T = —3—;—7;[1+410g(l/2)] = ~£—7;[1—21og(4a/7r)], (C36)

where a = A/I?. From Equations (C29) and (C34) we obtain the asymptotic rela-

tionship for equal corotating vortices between the energy and angular momentum

valid for large J as

r? 8J 1 1 1 ‘
~ -1 = .
T - { og(7r ) +2 21ogA+4 7 +O((47r(])2>} (C37)

This result agrees with the analytic result of Saffman & Szeto [1980], who used a

different angular momentum normalization. Similarly, from (C29) and (C36) we

obtain the asymptotic result for the reduced energy as

- 1 1 1 1 ,
Tf'v—-l—G—7r {10g(2w])+§wﬁ+0 ((47“])2)} : (C38)
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Appendix D
Stream Function Formulation for Corotating Vortices

In this appendix we consider a formulation, proposed and implemented by
Saffman [1985a], of the corotating vortex pair problem that is based on the con-
stancy of the stream function on the boundary of the vortex regions. We again
assume the general expansions of the vortex regions as given in (3.2.1) and (3.2.2)
for arbitrary areas and circulations.

From (3.2.14), we have the velocity with respect to the first vortex expanded
as a series in z, the coordinate relative to that vortex, using the Schwarz coefficients
of each of the vortex regions. In analogy with the development of §1.4, we integrate

this expression to obtain the stream function relative to the first vortex as

) > gn
oo e~ £ 25}

g w2, N ke
"’“‘{ > {Ok’g(z”) ) Bferprine

n=1

}+%{~i9|z+l1l2}. (D1)

Using the relationship (1.2.14) between the vortex area and the zeroth Schwarz

coeflicient, the stream function at a point z; relative to the first vortex is written

wi A w > gn wo A
Y1k = — - 110glzk|+'§l%{ g‘ }— 27r210g§zk+li

2m e nzy 2
—% —_—_— - — {15 D2y
T3 {;n(szrl)”} 5 e 0l (D=)

we find a similar representation for the stream function relative to the second
vortex.
Instead of the boundary condition (1.2.22), we take as the governing equation

the equivalent requirement that the stream function on the steady vortex bound-
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aries be constant. The unknowns in this formulation are the coefficients of the
vortex shape expansions, the real rotation rate {2, and the value of the stream
function on the boundary of one of the vortices. Unlike the Schwarz formula-
tion, we do not treat complex conjugate quantities as independent. Truncating
the shape expansions at the Nth coeflicient yields 4N + 2 real unknowns given
by the real and imaginary parts of the shape coefficients, where, without loss of
generality, we choose the expansion coefficients ay and by to be real. The rotation
rate and the stream function on the boundary of the first vortex provide a total
of 4N + 4 real unknowns. The above series for the stream function are truncated
to include up to the Nth Schwarz coefficient.

We obtain equations for the stream function by evaluating it at collocation
points on the boundary of the first vortex. We choose the 2N +1 z-plane locations
that are images under the shape mapping of points equally spaced on the unit circle

in the (-plane, i.e., the values

i9k) 2k

zk:z(C:e , k=20,...,2N, where 9k:2N+1' (D3)

Requiring the stream function on the first vortex (as given by (D2) truncated to
include N terms) to have the constant value ¥ at these 2N + 1 points provides
2N + 1 real equations.

As in §3.2, we add equations prescribing the geometry of the configuration.

We fix the vortex areas according to (1.2.14) by the two real equations

Ay

A
- - §R{QO} =0, —
7T

= — R{ho} = 0. (D4)

Also, from (1.2.15), we require the centroids to be at the vortex origins by adding

the four real equations

R{g1} = g1} =R{h1} = S{h:} = 0. (D3)
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From the dependencies found in the Schwarz formulation of this problem, we
infer that the value of the stream function at 2N + 1 points on the second vortex
1s not independent. Assuming the independence of the stream function on the
boundary of the first vortex, the stream function on the second vortex boundary

satisfies the following three relations:

27
[y singds =0, (D6)
27
i Y cosBdf =0, (D7)
2m
Y sin20d6 = 0. (D8)

0
These relations are derived in Appendix A. The first two relationships follow from
the vanishing of the integral of the cross product of the velocity with the vorticity,
i.e., (3.2.22), while the last condition is implied by the vanishing of the integral
given in (3.2.24). These orthogonality relationships suggest Fourier decomposition
of the stream function; the dependent conditions (D6)—(D8) can then be easily
eliminated. We apply the following condition to the stream function on the second
vortex: a (sufficiently smooth) function is constant if and only if all but the zeroth
coefficient of its Fourier decomposition vanish. We define the Fourier expansion
pair
N
Yok = Y Tyne (DY)

n=-—N
2N

1 _
T, , = bk D10
2, 2N+1;¢2,k6 ( )

The truncated approximations to the trigonometric integrals are given by

27
/ P cosnfdf o< R{¥s,+ Ty _,}, (D11)
0

2
/ Y sinnfdf o< S{W¥y, — Ty _,}. (D12)
0
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We require the stream function to be constant on the second vortex by imposing

the following 2N — 3 equations:

R{Vsn,+ T2 _,,} =0, n=2...,N, (D13)
S{Uypn—¥o_,} =0, n=3,...,N. (D14)
The equations eliminated for n = 1,2 correspond to the dependent conditions

(D6)—(D8). Furthermore, the value of the stream function on the second vortex
is proportional to (D11) evaluated for n = 0; this value is not an independent
quantity if the value of the stream function on the first vortex is fixed.

We thereby obtain a system of 4N +4 real equations for the 4 N +4 unknowns
that describe the corotating vortex pair. This system is found to be nonsingular
and is solved using Newton iteration.

For the stability problem, we begin with the unsteady boundary condition
(1.3.1) that the vortex boundary move with the fluid. The condition that the
normal velocity of the vortex, which equals the tangential derivative of the stream

function, equal the normal velocity of the fluid at the vortex boundary is given by

Oy Ox 0y Oy Oz
ds Ot 0s Ot Os (D13)

With 0/0s = (08/0s) 0/08, this condition becomes the governing equation

= = —— . D1
08 Ot 08 Ot 06 (D16)
For the unsteady configuration we write
r=X+z', y=Y+y, =0+ (D17)

where primed quantities are perturbation values. Substituting these relations into

the exact boundary condition yields, to leading order,

ov
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L.e., the stream function is constant on the steady vortex boundaries, which is the
governing equation for the steady shape problem. To first order in the primed

quantities we obtain

99~ ot 98 ot 08 (D19)
We assume exponential time dependence for all primed quantities,
¢I — ¢l(9)eat, 33' — xl(@)eat’ y/ —_ y/(g)eat7 (DZO)

and substitute these into (3.2.19) to obtain the linear stability equation to be

satisfied on each vortex:

(D21)

o6 1" 90 Y 58

o { 0¥ 90X }
From this equality, we see that if o is an eigenvalue, then o* is an eigenvalue
(since this is a real equation), —o is an eigenvalue (since the equation is invariant
under the transformation (¢,8) — (—t,—6)), and —o* is an eigenvalue (since the
transformed equation is also real).

For a perturbation to each of the N shape coefficients of each vortex, we
evaluate this equation at the 2N + 1 collocation points on each boundary. Thus,

at each point we obtain a relationship between the following 4N + 2 unknown real

shape perturbations:

ag, R{ai}, ${ai}, ..., R{dy}, S{ai},

by, R}, S8}, -, R{B Y, SO ). (D22)

We now describe the evaluation procedure for the perturbation to the [th
shape coefficient on the first vortex; the method is similar for the second vortex.

The perturbed stream function on the left side of (D21) is approximated by

I

= _(9_621‘ +O(€2), (D23)

i(l) — _215_ [¢1(a1 + 6) - 7/}1<al ’“ 5)]
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where the evaluation of ¢; is given by (D1). The 6-derivative of this quantity
is evaluated via Fourier methods. In analogy with (D9), we have the Fourier

expansion

N
W= 3 wDeint (D24)
n=—N

where the Fourier coefficients are evaluated as
0 1 &
n(y () —ing
o) = QNH;me ‘ (D25)

From (D24) we differentiate ¥| with respect to # and evaluate this at the kth

collocation point as
N
a (D) ing, 5
36 Y1k = Z in Wy et (D26)
n=-—N

The evaluation of the right side of equation (D21) is a bit more involved. The

derivative of the boundary position is given by (1.3.12) as

—5§:ia0((-(1—-1)a1—(2—1)-C—2—~--—(N-1)C—N]Z—1>. (D27)

From this relation we obtain the tangent to the vortex boundary at the kth collo-
cation point as

0X dZ Y dzZ
e e —_— — = & — 2
< 09 > k §}e{ dg 9:9;¢}7 (69> k \y{ do GZGk} ' <D 8)

Also, from the expansion for the perturbed shape given by (1.3.10), the real and

imaginary parts of the induced perturbation to the vortex boundary at the kth

collocation point are given by

o (X ) I=0,
Il(lk) = {ao ( k/:a()) i(1—n) 8 LAl Cef oi(1=n)0 (D29)
' Qo [‘SR{al} §R{6 }“\S{a’l}\y{e ) k}]v :17~"7N7
!
(1) ag (Yi/ao), I =0,
= _ . D30
Y1k { ag [é}%{a;} S{et—mbe} S{ar} ?R{e'(l‘”)"k}] , I=1,...,N. ( )
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Using these expressions, the right side of the stability equation is evaluated at each
of the collocation points for perturbations to each of the shape coefficients given
in (D22).

Collecting the coeflicients of each of these eigenmode elements, we obtain
4N + 2 equations corresponding to each of the 2N + 1 collocation points on each

vortex. Thus, equation (D21) is solved as the system

Aw=0Bw, (D31)

where w is the array with 4N + 2 elements given in (D22). We left-multiply
this equation by the inverse of the nonsingular matrix B and solve the resulting
standard eigenvalue problem with EISPACK routines.

The stream function formulation presented here can be generalized to all
vortex configurations we are considering; however, due to the sensitivity of the
corotating vortex pair calculations, it was applied to that system only. It was
found to reproduce the Schwarz function shape and stability results for o up to
approximately 0.25. Beyond that point, the code exhibited difficulties in obtaining
convergence, requiring extremely accurate initial guesses. Due to finite computing
resources, this method was not employed in the parameter region of most interest
for the corotating pair. It remains, however, a valid formulation in obtaining

solutions of problems of uniform vorticity.
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Appendix E
Sum Formulae for Infinite Vortex Arrays

In this appendix we derive expressions for the infinite sums used in the ex-

pansion of the velocity field for infinite arrays of vortices. We consider the sum

2 ror BV

for general complex s, real A € [0, 27|, and positive integers n.

First, consider the case s = 0. We set A = nt and write

Fo(t) = zjemn, (E2)

where the prime denotes exclusion of the m = 0 addend. When n = 1, it can be

shown by Fourier series expansion that

=t —-1), 0<t <2,
ﬂ“*’{m t=0 or t=2, (E3)

with period 2 in t. Repeated integration of expression (E2) with respect to ¢ yields

the relation
¢
F.(t) =17 / Fo_i(m)dr + Fr(0), n=23..., (E4)
0
so from (E3) we obtain the polynomial representation

“D,_;t’ ‘
fuﬂ:4mwz}—ﬁi. (E5)
=0 7

The constants of integration Dy are chosen so that F), assumes the correct value

at t = 0, as follows. From the definition (E2),

Fo)= Y — (E6)
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which implies that

0 if n 1s odd, and

Fo(0) = —(im)"Dyy = {2’((71)7 (E7)

if n is even.
Using the relationship between the Riemann zeta function and the Bernoulli num-

bers (Gradshteyn & Ryzhik [1965]), we have that
ok
Dy = il By, ke, (E8)

where B denotes the kth Bernoulli number. From the following recurrence rela-

tion for Bernoulli numbers (Erdélyi et al. [1953]),

k
EZ(kfl)Bj:o, (E9)

i=o 7

we obtain the following recursive formula for the constants of integration:

DO = 17
Di=-% ———Dy_;, keXZ". E10
For nonzero s, let A = 27p and define
21rzmp
Fo(p; s : E11;
It can be shown directly that
. 827ri.9(1-p)
Fi(p;s) = 2m o 0<p<l (E12)
wcot 7s, p=0 or p=1,

where the nonendpoint result is obtained by Fourier series decomposition and the
equality for p = 0 or p = 1 is shown by summation of the residues of F;. Repeated
differentiation of this quantity with respect to s yields the following relation for

positive integers n :

Fu(p;s) = (...1)n(1n mEN <—d—>n—l Fi(p; s)

“mremm (@) (@) e
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The first differentiated quantity in this expression can be evaluated directly as

dN\* 1, . 4
(@) {6211"23(1—-1))} _ (Q’R'Z)k<1 N p)ke%rzs(l—p). (E14)

The second differentiated quantity in (E13) can be written
d ¢ 2mes ~1 Nk
7 [(e =17 = @27 fils), (E15)

where the function fi(s) can be shown by induction to obey the recursion relation

1
f0(8> = 627ri3 1 ?
1 Ny
Fil(s) = = > ( ,)fk_j(s), keZ™. (E16)

The function F,,(p; s) is discontinuous at the endpoints only for n = 1.

Both of these summations were numerically implemented by MSS.
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Appendix F

Elliptically Desingularized Double Infinite Array

In analogy with the study of the single array of elliptically desingularized
vortices described in §4.3, in this appendix we consider this model for the double
array. Specifically, we seek to analytically obtain information about the stability
of the street of small vortices of unequal areas; however, the analysis presented

herein is incomplete.

As in Chapter 5, we assume that the top row vortices have area A; and
circulation Iy = I', and the bottom row vortices have area A, and circulation
I = —I'. We denote the position of the centroid of the kth first row elliptical
vortex by (zx1,yk1), the ratio of its semimajor to semiminor axes by A\x; = az;/br1,
and the angle of orientation of its major axis with respect to the z-axis by ¢;.

We mntroduce the quantities 6x1, Yk1, and Uy, defined as

A, \!/2
Sr1 = (870\“) (Ak1 — 1) cos 2¢41, (F1)
4, \/? .
Yk1 = (871‘/\k1> (/\kl - 1)8111 2¢k17 (F2>
AN\ 12
va=(habir52) (F3)

Analogous quantities for the second row vortices are indicated with subscript 2.
For infinite collections of uniform elliptically desingularized vortices, the equa-

tions describing the interaction of each pair of vortices are equivalent to those in

the case of finitely many vortices. Thus, we infer that the kinetic energy for this

system is given by expression (4.3.4), summing instead over all vortices in both



rows; 1.e.,
PR o S B 5 L S g (RD)’
=3 k;@@ og +A (k1+7k1 "2+j:z—:oo og( kj)
1 | cos ‘79,3 sin 9911
—2 Z (511U11+6k1Uk1) 2(%1U]1 +7k1Uk1)
j=—00 (R”) (R”)
kj kj

2 = 1 g 2
+8—jr- Z {1og {1+A (5k2+722)} —“2'+ Z 1og(Rz§)

k=-—oc0

j=—o0
2 | cos 29,%3 sin 2923
- ”—‘“*(5]2U32+5k2Uk2)+ ———(7]2U 2 + Y2 Uk2)
=Ly )
kjy kjy

o0

I‘1P2 Z Z 1og R
k=—oc0 j=—0c0

k=-—c0 j=—0c0

coS 29,3 sin 2912
‘—‘(532(];2 + 051 Uk1) +

(re2) (re2)

(732U12 -+ ’)’klUkl)J
(F4)

In the above equality, R} denotes the distance and 6] the angle, relative to the
z-axis, between the centers of the kth vortex in the nth row and jth vortex in the
mth row.

As in the analysis of §5.2, we consider the vortices uniformly spaced a distance
[ apart along the z-axis, the rows separated by a distance h, and the centers of
the second row vortices horizontally offset a distance [/2 from the centers of the
first row vortices. Since we seek solutions in which all vortices in a given row are
equivalent, we restrict our analysis to the zeroth vortex of each row and use the

notation

Tn = Ton, Yn = Yon, =12 and

80 = 6kny Yo =TVkn» Un=Utn, n=12,k=... —1,0,1,.... (F5)

We evaluate the derivatives of the Hamiltonian at the assumed = and y centroid
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positions to obtain the following equations of motion:

dz; 1“2{ i 2k 61U1 + 6205 <= 3(2j +1)% — (2@2}
—_— e - , + 16k Z ,
2 ¢ 2 2 03 (
dt wl P (27 +1)% 4+ (2x) l j:_m[@] +1)2 4 (26)2]
(F6)
d U Uy = 3(25 +1)% —(2x)2
dyi _ { 1 1+’72 22 (']+ ) (fi)g} (FT)
dt S 127 + D)2 4 (2607
déy 10 171 Sivi [72 Ty
T {4 G 5T AR (F8)
d’yl . 1 P1 Z61 62 + Ul 1
dt x {4I\2U2~ IZ 6F2+A(’i) > (FQ)
where
0 24 1)2 — (926)2 2
Amy=2 Y @ +D ZC0)° T pann?re). (Fl0)
e (27 +1)2+ (26027 2

Similar equations are found for the variables of the second row vortices.
The equation for the velocity in the z-direction can be simplified to obtain

the uniform translation velocity

V= E—tanhme <1 + 272 (F11)

01Uy + 62U> 2
37 —_—— " sech’mx }.

12
As the area of the vortices tends to zero, this velocity approaches the translational
velocity of the Karmén point vortex street. Since the street should have no steady
velocity component in the y-direction, the time derivatives of y; and y2 should
vanish, so from (F7) we expect to find that v; = 0 and v, = 0.

Keeping this fact in mind, we now consider the steady-state conditions for &,
and 7v,. The steady-state equations for these quantities are valid for either row.
Expressing these variables in terms of the aspect ratio A,,, angle of orientation ¢,
and rescaled nondimensionalized area 8, = o, /(27) = A,/(27(?), for the nth row

we obtaln the coupled system of equations:

Ap — 1 BnB(k) A2 —1
° = F12
W sin 2¢, [1 + 2 . cos 2¢n} 0, (F12)

Ap — BnaB(K) (Ap +1)? Ap — 1)
N1 cos2¢, + 7 N + N1 cos® 2¢,, 0, ( )
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where

22 2 2
B(x)=4A(k) — —g—— = —;r——' (2 — 3tanh® 7). (F14)

The valid solution to these equations is found by setting sin2¢, = 0; i.e., ¢, = 0
or ¢, = /2. From (F13) we obtain the following cubic equation for the aspect

ratio:

where the {4+, —} combination corresponds to ¢, = 0, and {—,+} to ¢, = 7/2.
As the distance between the rows tends to infinity, this equation reduces to that
for the single row aspect ratio given in (4.3.15). Note that if A, is a solution for one
choice of these angles, then 1/, is a solution for the the equation corresponding
to the other angle. We find a root of the equation for ¢, = 0 (so that v, = 0)
which, as expected, is near 1 for small «,, and which increases as a, does.

To study the linear stability of the double array, we perturb each of the canon-

ical variables and linearize both the Hamiltonian and the equations of motion.

With the notation

dzi® = Tkn = Tjm,  dYg, = Ykn ~ Yjm, (F16)

we find that the first-order Hamiltonian is given by

/11 /11

IY o 6k + viam —dz kjdx}c} +dy kjdyllc;
T an U? t 2 2
. & == (&)
=, e}l |3(dy})? - (do}h)?] :
' kj kj kj - i
-2 Z 5 {dIl}c;‘(élejl+5k1Uk1)“dyl}c}(7lejl“*’A/kll’kl )i
()

<, dyit|(dy}})?— 3(dz}})?]

HI

=0

d

—2 5 {dy’}c;(éjl[]jl+5k1Uk1>—d$li;<7j1Uj1+7k1Uk1)Ji
j= oo (R1)
0 cos 20811 6:1(8%, 81 + Vi 8k1(8%,6 !
_ZZ k;{ 11( 71 J[; “/11711) n kl( k1 k[}:%ﬂm) +6;-1Uj1 +5'mUm
J

j=—oo<Ri})
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>/ sin 26 8% 651+ ¥y 1 (0410 ;
B Z kj[fyﬂ( 4051+ Yj1751) n Yr1 (851061 + Vi1 Vh1) +751Usn +’7;€1Uk1}

J*‘OO<R11)2 o "
J
Ooldx'mdxii + dy’ndy

02 S 6ybie + Yeaie
_*____g - +E
4”k~_m{ Uk =0 (R?)
J

o, dah [y - (as73)’]

e (m)
o, dys (v’ = 3(a)?

=)

{ l22(6J2U,]2+6k2Uk2> dy’ kj(%zUnJr“/szkz)}

{dylzz(csszjz +5k2Uk2)“dxli§(7ﬂU12+7k2U’°2)}

6
flt (r22)
10820221 8:0(8" 080 4+ Vhoys Sxa(60,6 :
5 1 k; ]2( 32 J[j- 7]27]2) + k2( k2 ’;+7k27k2) +6;2U]2+5;62Uk2]
j:—oo<R22.> L 72 k2
kj
> sin 20227 vi2( 850650 + ¥h0vi2) 84 o 6ka +
“QZ ké 12( 72 Z 527132 ’7k2( k92 Ig “/kz"/kz) 7]2U]2+“/k2Uk2}
= ool R22 L Jj2 k2
==(R5)

oo o0 12 112
I dz'y da: +dy dy
+ 2% Z{z 12\
k=—ootj=—o0 (Rk:‘)
o dzi? 3(dyk2)2 (dzi3)*®
_..QZ
flatl (r2)’
R
- 6
flaatl (R33)
X cos20L216:9(8".685 %7 6k1(0) j
s k][ 52(852 3[;:’7]2%2) + k1 k18;;:’7k1’7k13 +5}2U]-2+521Uk1}
J

Lda' (852U 2465 Ukt) —dy' ki (12U 2+ 711 Uga)
7

- Ay'12(5j2U12 +5k1Uk1)*A$’/1c2'(’Yj2UJ'2+7k1U“>
j

- 12\’
jI“OO(Rkj)

>, sin 2012 [ v52(8), 852 + vy Slabu +
kj{ 72(052052 + ¥j2Ys2) +7k1( k101 + i i) +7]2U]2 +7k1Uk1l .
Ujs Uk1

Lo

~=(r)

(F17)

Linearization of the governing Equations (F6)—(F9) yields the Hamiltonian system
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for first-order stability:

OH' OH'

| T —— : TL6,, = — ,
g OYkn * Okn (F18)
OH' OH'
Todh, = Todh, = ‘ (F19)
T G T B |

To study the linear stability of the street of vortices of small unequal area,

we write the nondimensional area of the vortices in the nth row as
an=(1+gy,)me?, n=12, (F20)

where 0 < ¢ « 1 and ¢ = —¢2 = q € (—1,1), a constant. Using these assump-
tions, we expand the aspect ratio of the nth row, given by the solution of (F15),

as
An =1+ (3 tanh® 7k — 2) (1+ qn)7r262

+

OO Wi

(3tanh? i — 2)" (1 + g,) 21t + O(e®), (F21)

with which we expand 6y, and Uy, as

8, V2

= ——-—6—(3 tanh® & — 2)(1 4 ¢2)*/%e® + 0(e%), and (F22)
1
%ﬂ; 51+ 0%+ 0(). (F23)

Thus, the translation velocity of the street (F11) is given by

V= TZIlltanh 7k [1— 7% (a? + a3) (sech’7x — 1) sech’ mx] + O(a?, o), (F24)

which agrees with the results of Kida [1982] and Jiménez [1986b] to O(a?), i.e., to
O(e*).
Since the variables 8, and i, are of order €3 relative to zx, and yi,, we

use the following normal mode expansions of the perturbed quantities:

zh, = P I itz (F25)
Yy = ke Yy = ei2it DTG, (F26)
(%1 — 53ei2k1rpgl’ 5;2 — 63€i(2j+1)7rp52’ (FQT)
Vi = 2Py, = el Ty, (F28)
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The equations governing the linear stability of the elliptical steady states can be

dv r A B
& 27l (c: 1)) vy (F29)

where the vector of perturbed quantities v is given by

written in the form

V= {z:" where x = [:1~317§17'%25gZ]’I1 and d = [51,’?1,52,’?2171. (FBO)

The submatrices are found to have the following structure:

A=Ag+ A+, B =By*+- -, (F31)
D_,

1€2+...’ D:

(F32)

Attempts to obtain the eigenvalues of this system directly proved unsuccessful,
even using symbolic manipulation programs, so we resort to the perturbation
method employed by Jiménez [1986b].

Since we are considering the case of small vortices, we restrict our analysis
to the neighborhood of the point vortex stability “cross,” located at p = %, K =
ke = (sinh™'1)/m. We take this into account in the perturbation scheme by
expanding the matrices in (F31) and (F32) as functions of p and x about the
point (p, k) = (3, k¢); as the finite area effects are O(¢?) to leading order, in this

expansion we assume that p — %— and k — k. scale as ¢*. We obtain the expanded

matrices ) .
A=Ag+ A+ B = Bye" +---, (F33)
C_, D_,
= =2 _}_..., D= 2 +e (F34)
where
Ag=Ayx, By;=Byx, C_,=C_;,, D_ =D_y x, (F35)
~ aAO 1 6A0
A, = A S ) F'36
2= Auxt S| (-3 5 (ko) (F36)
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where the subscript x denotes evaluation at the location of the point vortex sta-
bility cross, (p,x) = (-ﬁ-, Ke). We expand the eigenvalues and eigenvectors in the

governing equation as follows:

2 2
<‘é g) {X0+6X1+ }:(7_;1.%—00+0162+---> [X0+6x1+ }

do +e*dy +--- € do +e?dy + -+
(F37)
To O(1/e?%), we find the system
0_1Xg = 0 and é_]XO -+ Ij—ldO = U._ld(). (Fgg)

As pointed out by Jiménez, with xo = Othis is the the standard eigenvalue prob-
lem for D_;, whose eigenvalues correspond to the fast boundary oscillations of the
vortex patches.

For the question of the stability of the cooperative modes of the street, we

consider the case where o_; = 0, i.e., the problems:

(Ag —ooI)xo = O, (F39)
(Ao - U()I)Xl = 01Xp, (F40)
(A() — O’OI) Xo = 01X1 — (Az - 021) Xg — Bgdo. (F41)

Equation (F39) is the point vortex street problem, which can be solved explicitly.

The matrix Ay is diagonalizable, so that it has a linearly independent set of left-

]

eigenvectors yo; left-multiplying (F40) by the adjoint y}; implies that o7 = 0.

Thus, we are led to consider (F41), which can be written
—(Ao - U()I) Xq = (M - 021) X, (F42)
where, using (F38), the matrix M is given by

M=A,-B,D{C_,;. (F43)
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Since Ay is diagonalizable, we form the matrix X, whose columns are the linearly
independent eigenvectors of As. Defining the vectors & = X1 xy, k = 0,2, such

that {&o, 00} are eigensolutions of the diagonal matrix 3, Equation (F42) becomes
—(E - GQI) 62 == (N - 0'21) gg, <F4:4)

where N = X "!MX, and the matrix ¥ has the form

-1 0 0 0
imf 0 -1 0 0 -
=510 0o 10 (F45)
0 0 0 1
For the eigenvalue og = —im /2, the elements of the matrix ¥ — o¢I vanish

except for the diagonals of the bottom right 2 x 2 block. Thus, any vector &,
whose last two components are zero is an eigensolution of (F44). Denoting the
first two components of this vector by w, the right-hand side of (F44) reduces to

the 2 x 2 eigenvalue problem

N1t Ny
W =09 W. F46)
<N21 Nas |
Here, w is arbitrary, since the eigenvectors corresponding to oy = —in/2 are

(()1) =1[1,0,0,0]7, and 6(()2) =10,1,0,0]T. Thus, we have reduced the problem to
that of finding the eigenvectors of (F46). Extensive algebraic manipulations are
required to evaluate this matrix and express the condition of linear independence
of the eigenvectors. We have been unable, confidently, to evaluate this expression.
which nonetheless should provide relationships that determine to leading order the

location of the stability cross as a function of the area difference g.
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