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ABSTRACT

In Chapter 1 theoretical expressions are derived for the rela-
tions between gas absorptivities and emissivities for the limit of zero
optical depth and for various models of vibration-rotation bands. Some
of the band models for which useful results are obtained are bands with
constant average absorption coefficients and well-defined widths, bands
composed of non-overlapping spectral lines with dispersion or Doppler
contour, and bands composed of randomly distributed lines with dis-
persion contour, The theoretical formulae are shown to provide a good
, H

correlation for the available experimental data on CO O and CO .

2 2

Representative estimates for the radiant energy emission from
the combustion products formed by a burning ammonium perchlorate
propellant grain are made in Chapter 2. The listed compilations of
data may be used to estimate the radiant heat transfer to the burning
propellant surface, as well as the radiant energy loss from the com-
bustion products, since emission and absorption of radiation by the gases
in the reaction zone are shown to be negligibly small.

The study in Chapter 3 on radiant energy transfer from non-
isothermal molecular emitters with non-overlapping dispersion lines
compl‘ements earlier work done on overlapping lines and on randomly

distributed dispersion lines, In addition to the transparent gas



-iii-

approximation for gases of small optical depth, a ""square root' ap-
proximation is found to be valid for large optical depths, provided the
temperature gradient in the slab of gas nearest to the observer is not
too large. These approximations are used to derive explicit expressions
for the radiant energy flux from two adjacent isothermal regions at dif~
ferent temperatures.

In Chapter 4, the important equilibrium emission processes in
a hydrogen-piasma are investigated in the temperature range between
300°K and 10, 000°K for pressures up to several hundred atmospheres.
It is found that the pressure-induced spectrum of the Hf2 molecule makes
an important emissivity contribution at the lower temperatures (below
approximately 4500°K) whereas, at the higher temperatures, the bound-
free and free-free transitions of the H ion and the continuum and line
spectrum of the H atom are the most important contributors to the
emissivity. The problems of the very broad wings of the Lyman a line

and of the lowering of the ionization potentials by the fields of the plasma

ions are considered,
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CHAPTER 1

RELATIONS BETWEEN MOLECULAR GAS ABSORPTIVITIES AND
EMISSIVITIES

I, INTRODUCTION

Theoretical expressions between gas absorptivities and emissi-
vities for various representations of molecular vibration-rotation
bands are of fundamental interest and may also be useful for extending
available gas emissivity compilations to different conditions of
temperatu‘re and pressure because it is often easier to measure
absorptivities than emissivities. Representative results for selected
band models have been described in previous publications. (1‘_5) In
 this chapter - we present an exhaustive review and extension of this
earlier work in which the most important restriction is the following:
the temperatures used for making absorptivity and emissivity estimates
must be sufficiently close to justify the assumption that neither the
spectral line shape nor the band model are changed in character.

Theoretical relations for important band models are derived in
the following Section II. The correlation of available experimental data
for COZ’ HZO and CO, in terms éf appropriate theoretical expressions,
is described in Section III.
II. RELATIONS BETWEEN ABSORBTIVITIES AND EMISSIVITIES

. The total absorptivity “Cb of a gaseous absorber at the temperature

Tg for blackbody radiation emitted at the temperatufe Ts is defined by

the relation



oT
s

, fo'e}
o1 o . ,
ay = 7 f Rw, T {l-exp—(ng T X)] dw (1)
0 s g

where o is the Stefan-Boltzmann constant, RZ T is the spectral black«
H
s
body radiancy at TS in the wave number range between w and w + dw,

P . represents the spectral absorption coefficient (in cm—l—a‘tmos*l)
E

g
of the gas at Tg and w, and X denotes the optical depth. Since the

vibration?rotation bands of molecular emitters lie in well-defined

spectral regions, we may replace Eq. (1) by the approximate expression

1 ;O ;
a5 T Rm" T 1-exp( Pw, T X} dw (2)
cT : i’ 7s g
s Aw,
: i, T

g

where w, is the wave number at the center of the ith vibration-rotation

band which has an "effective' width Aw, T at the temperature Tg of
2
the gaseous absorbers and RZ T is the spectral blackbody radiancy
i’ s
evaluated at w; and TS,

(2-5

A. Emission from a Blackbody and Absorption by Transparent Gases

For optically thin layers of absorbing gases, Eq. (2) becomes

1 o
a_4, o= E R X P dw
ab U’TS4 - Wi TS f w, Tg

A‘*’i, T
g

or |

1 o
“ab ™ 4 ZRw.,T a 7 X (3)

since



a, = P dw (4)

represents the integrated absorption {in cm_z-atmos_l) for the ith
vibration-rotation band of the gas at T. But
ai, T T

a,
i, T

whence Eq. (3) becomes

: T
5 ¢
LN ’-L'-rf‘g— E(Ts: X) (6)

since the emissivity of transparent gases at the temperature Ts and

optical depth X is defined by the expression

o'
1 o
(T ,X)= I1lim f R [l—exp(-P X)} dw
s X—0 vT_* w Ty @ Ty
0
o= lim Z R® ':1‘-exp(—P X):} dw
X—>0 D’TS4 - o Tg o T
Aw.’ T
s
or
1 o]
E(T_,X) = — Z RO 5 g g X. (7)
B‘Ts : i’ ”s s

Equation (5) depends essentially only on the validity of the ideal gas
law, i,e., on the assumption that the number of absorbers at constant
pressure in a fixed geometric length is inversely proportional to the
temperature if the Boltzmann population factor may be neglected.



It is apparent that Eq. (6) is independent of any band model and of
the spectral line shape and depends, in faclt, only on the temperature
dependence of the integrated intensity specified through Eq. (5).
Accordingly, we expect that all of the theoretical formulae derived in
subsequent sections for special band models and line shapes must
reduce to Eq. (6) if they apply in the limit of zero optical depth. In this
connection it is important to note that

lim &(T,BX) = BE(T, X). (8)
X—>0

B. Emission from a Blackbody and Absorption by Vibration-Rotation

(1-5)

‘Bands!Characterkized by Constant Average Absorption Coefficients"

When the ith vibration-rotation band is characterized by the

constant absorption coefficient ?i over the effective width Awi T ? then
2
g
Eg. (2) is replaced by the expression

1 o LB
a = —7 z Rw., T Awi’ T ‘:l-exp(—Pi, T X)} . (9)
G“Ts T i’ 7s g g

However, to the order of approximation that constant average absorption

coefficients may be used, it is easily shown(S) that

Aw. 1/2
Awl T Tg
g
whence

— 3/2
R A o
B, (a; 7 /6w 1) T
i, Tg g g

where use had been made of Eq. (5). From Egs. (9), (10) and (11) it

now follows that



A
ab

or 1/2> 3/2
T T
a_ o= (—T&) ElT , L,—;——-\ X (12)
| g

since

X|) dw

T
1 o s Ni
£ e E Rw., T Awi, T 9 l-exp —Pi, T { ) X

r (13)
] i' 7s s s g

for the assumed band model.

Equation (12) is a relation between the absorptivity “p for
molecular absorbers at the temperature Tg and optical depth X and the
emissivity of the same gas at the temperature TS and the optical depth

3/2
(T,/T,)

X. Within the limitations of the assumed band model, Eq. (12)
and other similar expressions suggest the possible determination of

(infrared) emissivities from lower temperature absorptivity measure-

menfs @



C., Emission from a Blackbody and Absorption by Vibration-Rotation

Bands Composed of Just-Overlapping Spectral Lines

For just-overlapping spectral lines it may be shown that

i
: %, ¥ 2
—expi- o~ — 8 ||1-expl-
J' l-exp( Pw,T X)| dw Awi,T jh YN [1 exp( 4 T X/Awi’ T )J
AL g g 1Ty g g
4, T
g
(14)
where

h(x) = Qn Cx-Ei(-x),

C is Euler'!s constant, and

, oo
-Ei(-x) = f -1-}- exp(-t)dt

X

is the exponential integral. Using Egs. (5) and (10}, it is apparent that

1 _ 3/2
T \2 o’i,TSX(Ts/Tg)
{1—exp(/—Pw o X)| do = T—g) Aw, B o
A , g s ’Ts i, T
w, s
i, T
g l
1
3/2412 1 3
%, T X('Ts/Tg) / T \2 T \2
s
X|l-exp- Ao fa¥ (-Tg-) Jl—exp _Pw,’I‘ X(T—) ydw.
i, T J 5 \ s g
s
Dew,
1’Ts

Hence Eq. (2) becomes

" Reference 5, Eq. (58-37); the validity of Eq. (15) is independent of the
approximation contained in Eq. (14), as may be verified readily by
using the exact integral representation for the just-overlapping line
model,



1 3
(T 2 1 o T2
Ry - Z R {l-exp |-P X(————) dw
ab = |\T] Jr 240 @ 1 w, T_ Tg !
s i 5 Ko
i, T
8
or
1 3
Tg 2 TS 2
O.ab __"_'-(—,I-.—s—) E TS’ T—g—) X ° (15)

Comparison of Egs, {12) and (15) shows that the constant absorption

‘ coe:fﬁcienf approximation and the just-overlapping line approximation
lead to the same relation between absorptivity and emissivity. This
result is not unexpected since the assumed physical models are
similar and since it is known t‘hat‘these two representations lead to

(3, 5)

practically identical emis sivity estimates for diatomic molecules.

D. Emission from a Blackbody and Absorption by Vibration-Rotation
(2,5)

Bands with Non-Overlapping Dispersion Lines

For non-overlapping spectral lines, Eq. (2) becomes

0 ‘ S. . X
P D VP L Sl
®ab™ 4 R, SO I S b (16)
5 i * 4 j=0 g 3Js g

where bi 5, T is the dispersion half-width of the jth line in the ith band
3 J2 ’

at Tg’ Si 5T is the corresponding integrated line intensity, and
1 J2
g B

flx) = x [exp‘—x)] [Jo(ix)—iJl(iX)}

with Jo and Jl representing Bessel functions of the first kind of order

zero and one, respectively. The relation between absorptivity and



emissivity may be determined for two cases depending on the form of

S, ..
1, ]

(1). Bands with Regular Spacing and Constant Collision Half- Width

We may now use the following approximation to Si . o for each
?J7 .

branch of a vibration-rotation band:

where

2
glx) = x exp(-x°) (18)
and Be is the usual rotational ‘spectroscopic constant for the ith band.

i
Hence Eq. (16) becomes, for bi,j, Tg = b,

y T 7
g

o) a X
-1 o N
%ab™ 4 Z Re, T 2 L 2wb; g f
oT p i* s T g
s i j=0
. . @ T a.
s 4ZRM1,TSZ [ 2mb, o [ fogt x| du
v S i 0 8 i

where the factor 2 preceding the sum over j accounts for the two branches

of the vibration-rotation band. Using Eq. (5) and the relation

1/2 ~
b. T
i, T —( g ) {19)

Reference 5, Eq. (58-35).



the preceding relation reduces to

. > KT glu)
o) s s
%ab 4ZRw.,T Zf 2mh; 1 sy ZTh,
: U‘TS 1 i"7s 3 s e, 1,,Ts
TS
. T—' X du
g
hcB ' hcB
i €i .

) . “i,Ts KT g8\ & 'T"'S"J T,
~——" ) R ZZZTrb f — X
B‘TS4 w., T : T Z7b T T,

or
TS
o= &[T, = X| . (20)
g

(2). Bands with Equally Intense Spectral Lines and Constant Collision
Half- Width

If all of the spectral lines of the ith band have the same integrated

intensity S. and the same half-width b, and there are N, lines
i, Tg i, Tg i, Tg
contributing, then Eq. (16) becomes
S. . X
1 ° 2 _jig_ 2
ab™ 2 /) R, Ni,7 2™ 7 il . 21
T - i’ 7s g g i, T
s i g
By definition,
Doy T,
N, I — (22)
i, Tg di, T
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if di T Tepresents the average line spacing in the ith band at Tg° If
3
g
we assume that .
di, Tg ‘ Ts
di T i ( T ) (23)
v tg g
and use Eq. (10), then
N T, T, T+(1/2)
N, - (T (24)
i, T s
s
and
Si,r (o ¢ /N ) T (t3/2)
g = ( g/N g) :( Ts . (25)
= a, .
Sl’ T i, TS i, TS g
s
From Egs. (21) to (25) it follows that
L T . S, T, T, 7+
% T (T_) Ry T N, 2™ 1 1 o0 (T ) X
O’Ts s i’ 7s s ] i, TS g
or
T, T T 7“1
5 g J

E. Emission from a Blackbody and Absorption by Randomly Distributed

Spectral Lines with Dispersion Contour(4)

For the statistical model of a vibration-rotation band, it may be

shown(z’ 5-7) that
AT
[l-exp(-PmX)] dw = Aw, . |1-exp- E—-——-%-— (27)
Aw g LT
i, T g
g

where
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A op o= f A; P8, /) a8, /s) (28)
g 0 :

is the'weightéd mean value of the line absorption AL with respect to

the nbrmalized intensity probability distribution function @’(gi/S).

For dispersion lines of half-width b, it is well-known® that

' SX 2
and
U | SX _2
AL o 2 SbX for Z—TFF_ >.‘;T— ° (30)

Thus, for the range of values in which Eq. (29) applies for the con-
tributing spectral lines, the relation between absorptivity‘and emissi-
vity is determined by the optically thin gas approximation given in Eq.

(6). On the other hand, for the square root region,
m .
A =2 \/ b, X f ?(_S—i/S) \/ S d(gi/S) = constant S.b,X . (31)
0

Hence, assuming that §i = ai/(Awi/di) and using the previously specified
temperature dependence for a, [see Eq. (S)J AN !:see Egq. @0)} and

di\ [see Eq. \(23)] , we obtain

) : r (2T 4102

AT [Si, T_Pi, T ( T | X}

g £ - constant 3 S g . (32)
i, T i, T

g S

Introduction of Eqs. (27) and (32) into Eq. (2) leads to the result
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Tg )11/2 Ts 2-7
C!.ab’_".f —T———é £ TS,X(—T‘*‘) ° (33)
8 g
It is important to observe that Eq. {33) does not reduce to Eq. (6) as X
goes to zero. This result is not surprising in view of the fact that Eq.
(33) has been derived specifically for the square root region, i.e., for
values of X which are sufficiently large to justify use of the line ab-

sorption formula givén in Eq. (30).

F. Emission from a Blackbody and Absorption by Non-Overlapping

Spectral Lines with Doppler Contour

For spectral lines with Doppler broadining, it is well knowna: that

2rkT 1/2 > 1 n
l-exp(-P X) dw =, . |——x - —— (-P! .X) (34)
) i,] 2 . i, ]
Ao, mc no]  Be \/ n

i, ]

where the integration interval over the jth line of the ith band Awi
2

has been extended from the band center w, .jto -00 and + 00, m represents
N

the mass of the radiator, and

S 1/2
P' — :J

LI e

Z)
mc

2nkT (35)

is the spectral absorption coefficient at the center of the jth line in the

ith band. In view of Egs. (34) and (35), Eq. (2) becomes

1 1
= 00 S, . X =
) 1 Ro ZTTkT 2 Z 1, J’Tg mCZ 2
“ap™ A w, T Z‘”l IRy o Zak T
s i J °
(36)

als

Reference 5, Eq. Q6—8),
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where we have used the wave number at the band center w, for all of
the w, i We proceed to consider two special cases which are analogous

to those treated for non-overlapping dispersion lines.

(1), Diatomic Molecules with Regular Spacing

The rotational line intensities are again given by Eq. (17). Hence,

proceeding as before,

’ . 1/2
27k Tg) 1/

1 o
A O i R 2w, |
ab o T 4 ;i w; TS i

mc

/2"
® X e 2 7
Z Z KT - glu) (Zu‘kT |
j=0 n=1 g
where
thus
a
)
< f du
T 2nkT (/% ® RT
gl 1 ZRO 20 ) s
—\T 4 w,, T hcB
s/ T ; mc e,

1]
[
[en)
-t



w14

o % T CBe. 1/2 T 2
) Z 1 ] i { mc x|_8 (u) ?du
HEE KT _ |2wkT T |8 :
=] myn i s s g
2
or - T T, |
ap = (——iTS £ Ts’ (Tg-— Xi. (37)

(2). Molecules with Equally Intense Spectral Lines

For equally intense spectral lines, we may introduce Egs. (24)

and (25) into Eq. (36). Hence

X . 2k T |12 2
%ap = 4ZRw.,T N1 “’i( —" ) }_‘
G‘TS : i’ 7s g mc =l
= n
S1, T X 1/2
o1 _ g mc
n"‘/n' w; 2nkT
Tg N+1 . . ZwkTs 1/2 oo
'””’(T 4ZRw.,T N; T ‘“1( z
s oT ; i’ 78 mc
s i n=1
= n
1 Sl, Ts ( mcz ) 1/2 ( TS )7 +2-]
- - P QY —— |
|
ni}/_r? w ZTI'kTS Tg B
or
T N+l Ts ’)f—i—Z
%ap™ ( TS ) € Ts’X (—TIE ° (38)
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G. Emission from a Blackbody and Absorption by Randomly Distributed

Spectral Lines with Doppler Contour

Equations (27) and (28) apply for the specified model with the line

absorption determined explicitly through Eqs. (34) and (35). Hence

Qo
A = f A; P(8,/s) 4(5,/8)
0 ~
. , n
) 1/2 o oo 2 1/2 :
_ 2wk T . 1 -SX | mc
- ‘”i( 2 ) [?(gi/s) d(5;/8) Z ) Ao | (ZwkT )
mc 5 D] nrUn i
n
C1/2 S M 2
B 2wk T 1 X [ mc n o=
""i( 2) Z’_.TF 'oT('z‘ErET_) fs P (S;/8) d(5;/8)
mc nl’\{n i
n=} 5
. 1/24"
= <21TkT ) 1/2 Z 1 _ 5; X ( mc ) c
iV e = nl'\/; w 2wkT n
where o S n —S—i -§i
Cn = j (’_S:—) @ S d( g ° (39)
0 7
If we assume again that
Si,r %, /WAy o fd ) g | THBI2)
g _ g/(A g/d g) = (TS
‘S‘i’ T %4, T, “i, T, T g

S

then
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1
P o= — n
T 20kT \2 2 ¢ S, T 2 AL
- _ - 8 Z __mn _ s x|_8
i, T T 7i mcz n,v’ﬂ" w 2k T T
g s n=1 ¢ g
and
_ 1 - 1 n
AT T (1/2)”1 27T _ 2 © { i, T 2 T 2
g_|_g Z s [ mc x|_S
i TS n .\/—'l_ w; ZTrkTS T °
H g ‘ n—_—l ° g
A (40

In view of Eq. (27), the absorptiyity is now given by the relation

‘ A,
Tg 1 o i, T
o, o =8 1 ZR l-exp -| ——B — (41)
ab Ts or 44 97 4, T
s i s g

where it is impossible to express Ai, T /di, p interms of Ai, T /di, Ts

with a suitably modified optical depth X(TS/Tg)a except in the unlikely

case that ’}Z: -1/2, In this special case

Tg Ts 3 1
Qab_"—’- TS TS, X (—,'f;—) ) ’7 = - "2" o (42)

Thus, in general, it is not feasible to obtain an explicit relation between
emissivity and absorptivity for randomly distributed spectral lines with

Doppler contour.
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H. Emission from a Blackbody and Absorption by Non-Overlapping

Spectral Lines with Combined Doppler and Collision Broadening
and with Constant Collision Half- Width

For combined Doppler and collision broadening the line absorption

depends on P'X, on the Doppler half-width bD’ and on the line-shape

b
parameter a 2= -E-——— \/ in2, viz.,

D
AL V An2

ZbD

= F(P'X;a) (43)

where b= bC is the collision half-width and the function F is the

ordinate of the curves of growth. (5) Hence

z D i, T Si,j, Tg ( mcz )

e, R Z F X; a. . .

ab U‘T T4 v an w; ZwkTg i, j, T
(44)

(1). Bands with Regular Spacing

For molecules with regular spacing, Eq. (17) applies and Eq. (44)

becomes

Q
oyl
[¢]
tU
D} s

D1,

Z
o R° Z Er g (u)( ) X;a.
%ab - 4 Z W, T m“ w, g Z‘n'kTg i, T

g

where g(x) is again defined by Eq. (18) and u = 7/ the /kTg e Since(B)
. i
1/2
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and

a4, T T
g
e tll

i, T
’ s
the preceding expression becomes

T\, S D, i, T
o b‘”‘(?g‘) 4ZRw T f T
a oT ; i? 5 in2

mc2 Hz Ts :
¥ Znk 'T") X ( T ) ;
B g
kT
2 4du
hcB
e,
i
or
T Ts 2
a ——g—T &. TS,X(—T-—) s anm . (45)
8 g g

According to Eq. (45), the absorptivity at Tg depends on the emissivity
at T for an optical depth X(TS/Tg)Z with the line-shape parameter

ap

. = aTS(TS/Tg) evaluated at Tg.

(2). Bands with Equally Intense Spectral Lines

‘For equally intense spectral lines with constant collision half-width,

Eq. (44) becomes
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L . by i, T, 55, TgX ( 2172
a_, 0% ——— Z R N. F
ab B’TS4 - w; TS i, Tg inz w;

Using the previously specified temperature dependence for the various

terms occurring in the preceding relation, we find that

1
(Tg ™o . *p,i, T | S, 'I‘S( mCZ)Z T 2
o_, & | == ZR N, ¥ X(——) ;
ab TS_ O__TS4 - wi,TS 1’Ts In2 2 ZTrkTs Tg
T
a -5
i, T T
s g
or
Tg 77‘5'1 TS '}7‘!‘2
b {T" ) ETS’X( T sap |- (46)
s g g

I. Effect of Total Pressure on the Relation Between Absorptivities and

Emissivities

The preceding theoretical relations all involve the implicit
assumption that the absorptivity and emissivity data refer to the same
total pressure p. In practice it is, however, often advantageous to
measure absorptivities and emissivities at different total pressures P,
and Pys respectively., In this case all of the theoretical relations in-
volving collision broadening must be modified. Appropriate relations
can be derived without difficulty if the effective colli sion half-width

depends linearly on the pressure, i.e., the line broadening agent is
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assumed to be.the same for the absorption and for the emission

measurements, Thus

b

_j_,____;g:__l- - ._1_. 5 4

b T ¢ (47)
i, T pZ
1, s? pz, g

The use of Eq. (47) leads to the revised relations summarized below.

(1). Transparent Gases

The derivation of Eq. {6) does not involve the spectral line shape
and, therefore, Eq. (6) applies irrespective of the total pressures of the

absorbing and emitting gases.,

(2). Constant Average Absorption Coefficients and Just-Overlapping

Lines
As long as both P and p, are sufficiently large to justify the use of
one of the postulated models, Eq. (12) [and the same expression which

has been repeated in Eq,”(lS)] applies.

(3). Non-Overlapping Dispersion Lines with Regular Spacing and Constant
Collision Half- Width '

The use of Eq. (47) in place of Eq. {19) shows that the factor pl/p2
will occur outside the sum over bands and pz/pl will occur as a multi-

plicative factor to X, i.e., Eq. (20) becomes

1 - S 2
T—>T ,X,p1)-——— gT X A -——1 » Py |- (20a)

G'abE O“ab(
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(4). Non-Overlapping Dispersion Lines of Equal Intensity with
Constant Collision Half-Width

Proceeding as before, it is apparent that Eq. (26) should be

replaced by the expression

s

T

p [T RUVAL
g

b
5] e | e
P2 8

g P,

(5). Randomly Distributed Spectral Lines with Dispersion Contour

Equation (33) is now replaced by the expression

1
T )’Z 2‘7 P,
Tg (pz

T
aab(’TS . Tg: X: pl)"\‘:( T—g & TS’X(J) ) 2 pz (333')
) s

since the collision half-width multiplies X in Eq. (31).

(6). Non-Overlapping Spectral Lines with Doppler Contour

As long as the postulatea model remains applicable, the total
pressure cannot affect the results since it has no influence on the
Doppler half-width, Thus Egs. (37), (38) and{42) hold independently

of the values of P and Py

{7). Non-Overlapping Spectral Lines with Combined Doppler and

Collision Broadening, Constant Collision Half- Width, and

Regular Line Spacing

Examination of the relations preceding Eq. (45) shows that

T T |2 .
[a¥ __g 3 _S . .
aab(T?Tg’ X, Pl) o (TS) € TS,X ( Tg) > aTg’ p1> By (45a)
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i.e., the line-shape parameter must be evaluated at T_and p,. Here
b g 1

T Tar T :
&P, s,p, gllP2

(8). Non-Overlapping Spectral Lines with Combined Doppler and

Collision Broadening, Constant Collision Half- Width, and Lines of

Equal Intensity

It is easily seen that

T

741 T 142
T-g- S) (46a)
s

CLa]c;(Ts g’ X, py) = ( ; aTg’ p13 Py |-

III. DISCUSSION OF RESULTS AND CORRELATION OF EXPERI-
MENTAL DATA '

In accord with the general result obtained in Eq. (6), it is apparent
that the absorptivity at Tg and the emissivity at TS for p; = p, = p must

be related, in general, in such a way that

T
o = (Tg) & TS,X(T—S) s an (48)
5 g g

pxovided it has not been explicitly postulated that X cannot be arbitrarily
small [compare Eq. (33)] . The absolute values of B depend on the

as surﬁed band model énd are summarized in Table I for the cases con-
sidered in Section II. It should be noted that & depends on the line-shape
parameter a only in the special case of combined Doppler and collision
broadening. The following interesting summary statements mavy be

made:
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(1) For otherwise comparable assumptions, f=1lorl+% for
dispersion lines and § = 2 or 2 +7 for lines with Doppler broadening or
combined Doppler and collision broadening. *

{2) For overlapping lines § = 3/2.

We now proceed to consider briefly the correlation of available experi-

mental data by means of our theoretical formulae.

A. Carbon Dioxide

Hottel and Mangelsdorf(s) have obtained the empirical relation
( Tg )2/3 TS

a ) o2 | =R &T,X(—) . (49)
( ab,CO2 H-M Ts s Tg

b

It is apparent that Eq. (49) cannot apply in the limit of zero optical depth
since it does not reduce to Eq. (6). Hence it is reasonable to assume
that the important contributions to “b and & are made by dispersion
lines which are sufficiently strong so that the emissivity varies as the
square root of the optical depth. On this assumption, we may use the
relation obtained for randomly distributed dispersion lines in Eq. (33)

for the derivation of an effective value of 7 for COZ’ ViZa,

-7

1/2

e ol

The value of § for combined Doppler and collision broadening is not
directly comparable to B for the other cases because the absorptivity is
related to an emissivity at the temperature T_ but with a line-shape
parameter a evaluated at T,. This is not a pﬁysically realizable case,
and is therefore not directly useful. If we were able to refer the ab-
sorptivity to an emissivity at T_ with the line-shape parameter evalu-
ated at Ty then p would depend on the optical depth and the line-shape
parameter, and would equal 2 or 2+% only in the limiting case of
collision broadened lines.

m’—]l(ml-i

e |

%
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or
T T2
:

%ab ™ ('T‘
S

(@p co) . = T,

2 H-M

and
(’V)CO'Z ~ 4/3,

The fact that Eq. (33) with = 4/3 provides a good correlation of the
available experimental results is illustrated in Fig. 1. It is interesting
to observe that the choice 7 =1, which is the appropriate value for water
in the statistical model, leads to notably poorer correlation of data than
7 =4/3.

Al;chough Ui is independent of X, Eq. (33) with 7[: 4/3 should not
be used either for very large or for very small values of X since it was
derived by using the line absorption relation appropriate for the square

root region [compare Eq. (31)] .

B, Water(4)

A comparison of observed and calculated results is shown in Fig, 2
for water vapor., Reference to Fig. 2, and to data for larger values of
X which are not plotted, shows that Eq. (33) gives a fair representation
for X greater than about 0.1 or 0.2 ft-atmos; § = 3/2 holds for very small

values of X and also for X greater than about 0.5 ft-atmos; B = 77 +1=2
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applies for X less than about 0,2 ft-atmos. Equation {33) is seen to
apply when the absorption is dominated by dispersion lines in the square

root region irrespective of the extent of overlapping between lines.

C. Carbon Monoxide

Céreful absorptivity measurements for carbon monoxide have been
performed recently in our laboratory by U. P. Oppenheim. (10) The
experimental results obtained at very low pressures where B = 1, and
at elevated pressures Where B =3/2, are shown in Figs. 3 and 4,
respectiv.ely. Reference to the data plotted in Figs., 3 and 4 shows very
satisfactor‘y agreement with theoretical predictions., It is interesting
to observe:{see Fig. 4) that the overlapping line models fail to apply at
elevated temperatures for constant pressure and optical depth., This
conclusion is in accord with predictions since both the collision half-
width and the number of absorbers in the light path decrease for the
specified conditions, i.e., the requirements for use of an overlapping
line model must break down at sufficiently high temperatures., The
relative positions for broadening with He or A are in accord with the
known pressure dependence and absolute values of the collision half-

(1)

width fer these broadening agents, Finally, the observed lower
temperature deviations from an overlapping line model at smaller optical
depths serve to emphasize the fact that both the product of integrated in-

tensity with optical depth and the effective half-width are important in

" The estimate 7=1 for water vapor has been derived from correlation
of measured emissivity data by means of the statistical model. Z,
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determining the range of validity of an overlapping line model.

D. Use of the Total Pressure Dependence of the Relation for Non-

Overlapping Lines with Combined Doppler and Collision Broadening

Reference to Eqgs. (45a) and (46a) shows that the following re-
lations hold for non-overlapping lines with combined Doppler and

collision broadening and constant collision half-width:

T, T 2 -\
aab(TS—>Tg’ X; Pl):‘ T € TS’X ("T— 5 aT , P :pz P (453—)
. s L g g’ vl V!

for regular line spacing, and

N+2
;a ;P (46a)
Tg’ P 2

T\ T,
c"aJo(rI’S——_)Tg’ = pl)x T, ENTg X g
g

for lines of equal intensity. It is observed from Egs. (455) and (46a)
that the absorptivity is related to an emissivity at temperature Ts and
total pr‘essure 2 but with a line-shape parameter evaluated at Tg and
P - In order for this emissivity to be an actual emissivity for the gas,
the line-shape parameter must be equal to the value at TS and P,

It is evident from the relation

Ts pl

a —_— _
Ts’ P2 Tg P>

= a
TPy

that we must therefore consider the case
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o Tg
pZ Ts

Thus one can obtain a value for the emissivity of a gas at temperature
Ts and pressure P, by performing an absorption experiment for a gas

temperature T and pressure Py provided the lines are non-overlapping

for both gas conditions and provided p; = pZ(Tg/Ts)°
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CHAPTER 2

RADIANT ENERGY EMISSION FROM A BURNING AMMONIUM
PERCHLORATE PROPELLANT

I, INTRODUCTION

In connection with current experimental and theoretical studies on
burning mechanism and flammability limits of composite solid pro-
pellants, it is of interest to estimate radiation losses from the combus-
tion products and radiant heat transfer to the burning propellant surface.
We consider this problem in the present analysis for a rectangular
parallelepiped of NH4CQO4 burning in a rectangular enclosure with a
square base, as is shown in Fig. 5; the translation of our results to
other geometric configurations may be accomplished readily by using
listed compilations of mean beam lengths,

The reaction zone of height d is assumed to consist of NH3 and
HCQO4 at temperatures between 900 and lZOOOK, while the stable com-
bustion products (HZO’ HCY s NZ’ and Oz) occupy a region of height h
and are assumed to be at a temperature of 1433°K (see reference 12).

Iﬁ Section II we determine the mean beam length for a uniform gas
enclosed by a rectangular parallelepiped; the development of correspond-~

ing results for other geometric configurations may be accomplished

¥*

This research was supported by the United States Air Force through
the Air Force Office of Scientific Research of the Air Research and
Development Command under Contract AF49(638)-412,

The author enjoyed discussion with W, Nachbar on this problem.
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readily by using known prescriptions for the computation of mean beam
lengths, The analysis given in Section III shows that emission and
absorption of radiant energy in the reaction zone may be neglected., In
Sections IV and V we compute the emissivities of HC{ and HZO’
respectively, under the pressure and temperature conditions which are
of interest for the present study. The effect on the total emissivity of
overlapping between the emission spectra of HC{ and I—IZO is considered
in Sectioﬁ VI for appropriate mixture compositions. Representative
estimates of radiant ehergy loss from the combustion products and of
radiant he?t transfer to the burning propellant surface are obtained in

Section VII,

L

II. MEAN BEAM LENGTHS
We consider an enclosure in the form of a rectangular parallelepiped,
The radiant energy flux dR to an area dA from a gas volume contained

within a solid angle dw!' and bounded by radius vectors of lengths x and

X + dx is given by(B)

TT4

™

de

dR = dw! cos CPdAT:EE dx (1)

where cj? is the angle between x and the normal to dA, T is the (uniform)
temperature of the gas volume, o denotes the Stefan-Boltzmann constant,
and & is the hemispherical emissivity of the gas volume. Thus the
radiant energy flux from the isothermal volume to the portion of its

containing surface of area A is

4 *max :
oT de
R = p- f j [COS (ydb)' a—}z dx dA (2)
A C w!
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where we have integrated over the complete solid angle and over A.

The mean beam length L is defined through the expression

4 Fmax
4 =pn _ 0T . d&
vT A&L R = ~ jf fcoscfdw a——y:dx dA (3)
A 0 w!

where {-;L is the hemispherical emissivity for a gas of depth L, i.e.,
B’T4E,L is the radiant energy flux from a hemispherical gas volume of
radius L ét the temperature T to the center of its base, per unit area of
the base, When the optical depth ng (pg = partial pressure of the
emitting ga}s) becomes sufficiently small, self-absorption by the emitting
gas may bg neglected and, theréfore, E‘L becomes directly proportional
to ng, Le;t L° be the mean beam length evaluated for transparent gases,

i;e., in the limit for ng_*O. Then

. dge o

g = lim |[=—=||L (4)

O {X—’() dx)}
where lim {de&/dx) is a constant which may be taken outside of the

x—>0
integrals in Eq, (3). Therefore Eq. (3) leads to the result
X
o 1 max
L= A ff fcos ¢do' dx dA, (5)
A 0 w'

The computation of L° for radiation to the entire confining enclosure
is discussed, for example, in reference (13). In this special case we

may write the integrand in Eq. (5) as

(x%dw'dx) .(EO—S—‘%ﬁ) = dvan (6)

X
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where d{1 is the solid angle subtended by dA at the emitting volume dV.

Since we are considering radiation to the entire surface of the enclosure,

f] dvdll = 4xw [dV = 47V, (7)
Vo v

and we obtain the result

o _ 4V
L™=~ o (8)

For a rectangular parallelepiped of height h and square base with side
lengths r, Eq. (8) becomes

o 2

L= mm e )

Equation (9) is an expression for the mean beam length for radiation
to all faces of the parallelepiped in the limit of zero optical dépth.
Equation (9) may be used to compute the mean beam lengths for radiation
to individual faces of the parallelepiped for three particular cases. When
h >>r, L°~r; L° now represents the mean beam length for radiation to
the long rectangular sides with lengths h and r since, for h >>r,
practically all of the radiant energy transfer occurs to the side faces.
For h = r, 1.°= 2r/3, which is the mean beam length for any of the faces
singly since, in this case, the side faces, top face and base are all
squares with side lengths r. When h«<r, L 2h, which is the mean
beam length for radiation to the base or top face since practically all of
the radiation occurs to the base and top face for h <<'r.,

In addition to the special cases given above, the mean beam lengths

for radiation to the side faces and to the base of a rectangular parallele-



-34-

piped with h = 4r are listed in reference (13). The resulting values are
L° (to the side faces) = 0,90r
and

L° (to the base) = 0.86r

for h = 4r. For h>4r, we may use the preceding estimate of L° for
radiation to the base at h = 4r in Eq. (5) in order to compute the actual

mean beam length. Thus

h
Lo(to the base) = 0,86r +-K%— f f f dw! dA dx (10)
A 4r W!

t

since cos (f ~ 1 for x >4r. Furthermore, the solid angle subtended at
b
dA by the slab of gas between x and x + dx for x > 4r is, approximately,

I'Z/XZ and is practically independent of the position in the base at which

}r

1
= [0,94 -W:lr for h>4r, (11)

Useful results for the computation of mean beam lengths L° are summar-

the element dA is located., Therefore

h
L° (to the base) =~ 0.86r + —— x2 Adx =] 0.86 + 1
. Aw z - . -
4r

L
h

N S

X

ized in Table II on p. 52 and in Fig. 6.
The mean beam length L for finite values of ng may be obtained

by using Fig. 7 which has been reproduced from Hottel's work, (13) In

P
%

The exact value of the ratio L/L® must depend on the temperature.

Theoretical studies are currently in progress in order to determine the
o o

HZO’/L

ratio L HZO as a function of T and pHZOLHZO'
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. . o . . _
Fig. 7 the quantity LL/L"~ is plotted as a function pHZOL = pHZOLHZO°
The data shown in Fig. 7 should apply at the high pressures with which
we are concerned since the calculations given in Section V show that the
emis sw1ty of I—IZO is a.monotone function of pHZOLHZO for the mean
beam lengths of interest to us.

For HC! we have no detailed numerical results which permit

. o, . .

computation of L/L~ in terms of Pucy LHC,Q' However, since L differs
appreciably from L° only for large optical depths for which the emissi-
vity is a weak function of L, and since our emissivity estimates for Hcl
are usually small (see Section IV), it is reasonable to use 1.° for the
mean bearn‘ length of HC{ for most of the values of PHCRLHC,? con-
sidered in the present calculations, Furthermore, since the emissivity
contributioﬁs of HC{ are smaller than those of HZO’ an error in the
appropriate optical depths for HC{ will exert only a relatively small
influence on the calculated results.

III. EMISSION AND ABSORPTION OF RADIATION IN THE REACTION
ZONE

The decomposition of ammonium perchlorate involves the reaction
NH,clo,—=nNH, + HClO, . (12)

We shall assume that only the species NH3 and HC£O4 occur in the reaction
zone, For reasonable vélues of the pressure, the reaction zone thick-
ness is smaller than about 1()"4 cm, i.e., the corresponding mean beam
length is less than about 2 x 10-4 cm for radiation to the propellant grain,
We shall now show that the equilibrium emissivities and absorptivities of
NH3 ‘ére very much smaller than the corresponding values for HC! and

HZO‘ In the absence of quantitative data to the contrary, it is reasonable

to assume that the equilibrium emissivities and absorptivities of I—ICQO4
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are similarly small. Finally, we note that for reasonable values of the
pressure, the absolute emissivities and absorptivities of the chemical
species in the reaction zone must be negligibly small unless unpre-
dictabie and unknown non—equilibrium (chemiluminescent) radiation of
surprising intensity is present.

The general expression for the hemispherical emissivity of a gaseous

(5)

emitter is
w
— 1 o v
€L= & :-—-—-Zi-f R [1-exp(-—Pwng)] dw (13)
T 5

where w is the wave number, RZ is the spectral blackbody radiancy, Pw
represents the spectral absorption coefficient, pg denotes the partial
pressure of the emitter, and L identifies again the mean beam length.

For small values of ng, the exponential in Eq. (13) may be expanded to

give
1 o he |4 “13 %4
EzEZ-——R. mplﬁ:w(——— pﬁLEZ (14)
- U’T4 w, 1g kT g - [exp(‘hcwi/kT)] -1

where :
a. = f P dw
i w

ith band

is the integrated intensity of the ith band. The sum in Eq. (14) should
include all of the bands. In Eq. (14) we have expressed the blackbody
radiancy at the center of the ith band in terms of the wavenumber of the
band center w; 5 Planck's constant h, the velocity of light ¢, the Boltzmann
constant k, and the temperature T, In Table III we have listed the known

values for the integrated intensities of the fundamental vibration-rotation



-37-

bands of NH, at room temperature., These bands should account for

3

most of the emitted radiation from NH3 under the conditions existing

in the reaction zone. Therefore, from Eq. (14),

e6.3 x 10—6 P (for T = 900°K and L = 2 x 10—4cm)
and

e~2,72 x 10_6 P (for T = 1200°K and L = 2 x 10_4cm),

where we have used the fact that the integrated intensities of fundamental
bands vary, approximately, inversely with the temperature. The
temperatufe in the reaction zone has been as sumed(lz) to lie between
900 and 1200°K and, in accord with Eq. (12), the equilibrium relation

P -1 p+ has been used. Reference to Sections IV and V shows that
NH3 25T

the emissivities of NH3 in the reaction zone are negligibly small com-
pared with the emissivities of HCY and I—IZO, except when the height h
of the stable combustion products becomes smaller than about 10"2cm.
In the present analysis we are actually concerned withh > 0.1 cm.

If the emissivity of NH3 cannot be computed from the transparent

gas approximation given in Eq. (14), then the actual value is necessarily

(5)

smaller than the estimate derived from Eq. (14). Thus the preceding

numbers are, in any case, conservative upper limits.

The absorptivity a, of NH3 for radiation emitted by the combustion

b
products at T = 1433°K can be estimated from the formula (see Chapter 1)

1433 o -5
o, € (1433°K) £ 10" p....
ab TNH3 NH, T

Since we shall limit our considerations to pTé_ 300 atmos, the ammonia
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may be considered to be transparent with respect to radiation emitted
by the products of combustion.

Because NH3 has relatively intense bands near the blackbody peaks
at 900 and 12000K, we expect that the emissivities and absorptivities of
HC,QO4 are of the same order of magnitude or smaller than those for
NH.. Therefore, we may neglect the influence of the reaction zone in

3

radiant heat transfer calculations.

IV, EMISSIVITY CALCULATIONS FOR HCA
The chemical species in the reaction zone decompose ultimately

according to the relation

3
Z

: 1 5
I{ZC)+I£CQ t5 N, +70

792 ¢ (16)

NH3 + HCQO4—>

According to the geometric arrangement assumed in Fig. 5, these stable
products of combustion are confined within a parallelepiped of height h
and base R=r at a température of 1433°K. The homopolar species N2
and O2 cannot contribute measurably to the radiant heat transfer.

The emissivity of acl may be computed by summing the contri-
butions from the fundamental and first overtone bands. For the specified
range of total pressures (i.e., pPr& 300 atmos) and small values of Prcy
and mean beam lengths LHCQ , the spectral lines do not overlap and it is
permissible to use emissivity expressions derived for nonoverlapping
1ine§. (5) At very large values of Pucy and LHCQ , the spectral lines
are effectively "well overlapped! and we may use an average absorption

). (5)

coefficient for each band {"'box model"
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For nonoverlapping spectral lines, the emissivity of HCA is

given by the expression

lo's o
€= 8F * 8O - Z En—>n+l * Zen-»n+2 (17)
n=0 L n=0

where £ F is the emissivity of the fundamental bands, 80 is the
emissivity of the first overtone bands, and & s is the emissivity for
a transition between states with vibrational quantum numbers m and n.

For small values of LHCQ’ Em—en is a linear function of pHC,QLHC.Q or

of VNCQPTLHC,Q where pHCﬂ:?]HCﬂpT if VHCY is the mole fraction of

HCY ;at higher values of L & becomes proportional to

HC{’ m->n
P 3/ WHCYLHCQ and, for constant values of VHCI s & op 18 simply

proportional to Pr -\/ LHCQ « We may obtain an estimate for g /pT

m-—->n

by drawing a curve which always falls on or beneath the curves which

make E‘m-—>n/pT proportional to LHC,Q and to ‘\/ LHC,? (see Figs. 8 to

10). The values of & _ _  may then be summed to yield SF/P’I‘ and

8O/pT\(see Figs. 11 to 14), The explicit relations wused for the calculation

ing: (0)
of 6m—>n/pT are the following:

4
‘15(%) -51‘— [exp(—u)} {I—GXP(—U\)} ‘e Muct pTLHCﬁ

i

(&g, x.

1.438 x 107

Prlycy e

, a 1
(€ 0—>1)s. r.r. . 6345u5 [exp(—u)] (Xu)-3/4 Zol_" [Xb _HF; 7HC,QPTLHCQ:] :

_ -3
= 1.560x 1077 p \/Lyyog's

" The subscript {.r. identifies results appropriate for the linear region;
the subscript s.r.r. applies to the square-root region.,




_40-

(€ oig.r. = ) [expl-nw)] (€ g

n-—-n+l'f.r.

(€

) = (n+1)1/2 [exp - %—u):l (60—>1)s.ror, :

n->ntl's. r.r.

®© 2
Z (En—vnﬂ)ﬁl.r. - (EO—el)P,r. (-
n=0 "
and
J %o , -3
(Eg>2)g .78 [exp(-u)} g (Eo—»l)y,r.: 0.1564 % 10 prlucy
1 1/2
-1/21a
QEO-—»Z)swr!.r.: 8 [exp(-u)] [l—exp(—u)] E%) (€ 0—->l)s.r.r,

_ -3
= 0.115x 1077 pr \/Lgog »

(‘En—>n+2)9f.r° - [_(P_";Z__)%Iiﬂl_} [exp(—nu)} (€ 0—>2)9.ra !

and
1/2
| (En—an+2)sgr,r°:[(n+2)gn+l)} [exp(— %Ul)] (& O—>2)s°r.ra° (18)

Here O and ag are inversely proportional to the temperature and
represent, respectively, the integrated intensity of the fundamental band
and {1-exp('-u] [Hexp(—u)] -1 times the integrated intensity of the first
overtone band; w* (= 2886 cm—l) is the wave numbervat the band center
of the fundamental band; u = hcw*/kT and Y= Be/we is a known

spectroscopic constant; the mole fraction of HC{ is ,’ZHCJZ = 0.2353
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according to Eq. (16).  The {collision) half-width of the lines, b, was
assumed to be equal to 0.1 (300/1’)1/2pT for both the funda‘mental and
overtone bands. It should be noted that the emissivity in the linear
region is independent of b while, in the square root region, it is pro-
pobrtional to the square root of b, Furthermore, the emissivity is
independent of b for well-overlapped lines and, therefore, the uncertain-
ties in b will introduce appreciably smaller uncertainties into the

emissivity estimates.

For well-overlapped lines, the box model(s) leads to the following

relations:
o
L & “r =
(& plbox™ ORI L-exp(-PrlycpPrlycy)
= 0,251 [1—exp(—6.37 x 107 pT HCY :l
and
RO f (19)
wy
(€ olbox T A A“’[l'eXP(‘PoVHCQPT HC!}J
| -4
= 0,108 l-exp(—l. 75 x 10 pTLHCf)
where a
= _ F
PF T Aw
and
B = o) l+exp(-u)
O Aw | l-exp(-u)

Here Aw is the width of the bands; R, and RS are the blackbody
F O
radiancies at the centers of the fundamental and first overtone bands,
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respectively. The results of emissivity calculations are shqwn in Fig.
15 for well-overlapped lines, In Figs. 16 to 19 we have utilized the
emissivity calculations for nonoverlapped lines and for overlapped lines
to estimate the emissivities for the entire range of values of LHCQ which
is of interest in the present analysis. We note the well-known result
that, for very small values of LHCQ » both methods of calculation give
the same values for the emissivities, For somewhat larger values of
LHCQ » we find that the box }model yvields relatively larger emissivity
estimates. Finally, for very large beam lengths, the ngnoverlapping
line model 'must become inapplicable and the corresponding emissivities,
which exceed gbox’ are too large,

The regions in which the spectral lines overlap may be ascertained
by calculating the absorption coefficient at the centers of the lines and at
points midway between adjacent spectral lines. The absorption co-
efficient of an individual line for the temperature and pressure range of

interest is described by the dispersion formula

s PPucy My
m

’ (20)
(w—wo)z + b2

Pw pHCQ LHCQ
where W, is the wave number at the line center, b is the line half-width,
and S is the integrated intensity of the line. Calculations of this sort
have been carried out before for CO. (5) On the basis of known absorption

5)

measurements and emissivity calculations, ( we infer that the true
emissivities (for specified half-widths) must be below the emissivities
calculated by using either the non-overlapping line model or the box model.

This result has been used in Figs, 16 to 19 in order to derive the dotted
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curves, which must be considered to be uncertain by perhaps 10 to 20%.

V. EMISSIVITY CALCULATIONS FOR HZO
Emissivity measurements for HZO have been made at pressures

(

near 1 atmosphere. 13) To obtain emissivity estimates at higher

pressures, a semi-empirical extrapolation of the experimental data will
be used., We shall employ an extrapolation described in reference (5) in
which the spectral lines of HZO are assumed to be randomly distributed.

The emissivity is given as a sum of emissivities for six spectral regions,

VizZ.,

R®
1 W,
= Aw Y — glx.,b/5%),
| ; W‘T4 i
g(;(—l: b/é*) = l‘eXP ["(an/g*) f(’)_il)] EH (2'1)
where

£(%,) = %, [exp»(—gi)] [JO(iEi)—iJl(iEi)]

1

with JO and Jl representing Bessel functions of order 0 and 1, respective-

ly. Also
a, §%p L
_ 577PH,0 TH,0
%7 27b A

where a, is the integrated intensity of the ith band, b is again the half
width of the spectral lines (which is assumed to bé the same for all of the
lines), &% denotes the mean spacing between lines, and Aw is the width
of a band (which is also taken to be uniform for all of the bands).
Numerical values for the required parameters at 1433°K are

summarized in Table IV, In Fig. 20 we have plotted the emissivities of
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HZO as a function of optical depth. In the present analysi’s LHZO is so
small that f(EZi) does not differ from ;;i by more than abéuﬁ 7% for the
strongest band and by less for the other bands. Thus {2nb/8>1<)f(§i) is
nearly equal to qipHZOLHZO/Am for all of the values of LHZO which are
of interest to us. In other words, E‘HZO should be practically a function
only of pTLHZO’ a conclusion which is in agreement with the data plotted
in Fig. 20, This result has be’en employed previously in the suggested
applicatioﬁ of Fig, 7.

It is apparent that the large extrapolation of available data to very
high pressures implicit in)the present calculations constitutes the
principal uncertainty in our estimates of radiant energy emission. How-

4
ever, in view of the fact that two completely different band models have

(5)

been shown previously to lead to practically identical emissivity
estimates at elevated pressures, we consider it unlikely that the calcu-

lated water emissivities are in error by more than 10 to 20%.

VI. CORRECTIONS FOR PARTIAL OVERLAPPING BETWEEN LINES
AND BANDS BELONGING TO HZO AND TO HC/

For gas mixtures it is inadmissible to add either spectral or total
emissivities. However, the products of spectral absorption coefficients
and optical depths can be shown to be strictly additive. (5) Using the
general expression given in Eq. (13), we may write the following explicit
emissivity relation for a mixture of HZO and HC{ :

(0.9]

_ 1 o
$n,04HCI T 2 f ngl'eXP [_(Pw, H,0PH

ol o' Fo, HCQPHC,QLHCQNdw
o ¢ 2

2
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Q0
-1 R |1-exp(-P L )| dw
7 w PA=+ o, H,0PH_ O™H,0
3 2 2 2

w -
1 o)
t—7 f R, [GXP(‘P w, HZOPHZOLHZ(J [LeXP(‘P w0 HCQPHCQLHCP)] de
J |

(0 8]
B 1 0
=ty of =3 f R’ [e,xp(-Pw, HZoPHZOLHZO)Ml'eXP('P w, HCIPHCY LHCJI):’d""‘
| 0
(22)

The preceding expression shows that the emissivity of a mixture of HZO
and HC! i; equal to the emissivity of HZO plus the integral of the spectral
emissivity!of HC! modified by the spectral transmissivity of HZOG From
the known positions of the HZO and HC! bands and our previous estimates
for the HZO band-widths, we conclude that the 2. 7}L band of HZO over-
laps the HC! fundamental at wave numbers greater than 3125 cm_1 and

the 1. 874 band of HZO overlaps the overtone at wave numbers smaller

than 5963 cm_lo Using the average absorption coefficients

_ a,
P =%

for the 2.7 and 1.,87/u, bands of HZO’ we obtain

3125

_ 1 e!
n,0+HC) 7 EH,0 * T3 Ry [LeXP('P w, HCA PHC) MHCL )} de

o

S

. = (s
+[6XP(‘P2.7/A,H oPu,olu o)] f R, [1-exp(-P HCQPHCQLHCQ)]dw
27 27 2l 3qps

/
HC{ funda-
mental
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5963

1 5 o
- 4"{6"1’(‘131. 874, HZOPHZOLHZO)]f Rw[l'eXP(‘Pw, HC&PHCJLHCJI)] de
0

\

jo o]

+ J RZ [1—exp(—Pw’ HCQPHCQLHC})] dw . (23)
5963

’HCQ first overtone

It is now convenient to introduce the definitions

Ro 3125 ¢

f=2—2F | % 4o (24a)

‘ vT 5886 F, HC}
and !
RO 5963 e
=2_90 P 4w (24b)

g 1 €

A 0, HCY

where R® g and Rc; are evaluated at 2886 cm™} and 5720 cm_l,

W, , O

respectively, i.e., at the wave numbers of the centers of the fundamental

(F) and overtone bands {(O). Equation (23) becomes, approximately,

£ =& + | (1+£) + [exp(—? P L )} (1-£) EE_:E_E?_
H,0+HC) ~ "H,0 2.7, H,0PH,07H,0 2
+ (-B L. )| (+g) + (1-g) Zo0, HC] (25)
eXpi- 1,87/4,HZOPHZO H,0'| g "8 T2

if we assume that the emissivity contributions of the P- and R-branches

of HCY are equivalent.
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We may obtain estimates for the parameters f and g as functions of
LHC,Q and P by computing f and g for three ranges of values of LHC,?
and Py and then performing appropriate interpolations. Thus it is a
simple matter to compute f and g for the linear and square root regions
for nonoverlapping lines and also for the box model (which is applicable

to well overlapped lines). For well overlapped lines,

R°
F, HCY Q'T4 w F, HC{
and ‘ ( (26)
fo)
g - Rw, O T Aw
0, HC o T2 w Y0, HCS
H
whence
“F, HCA
and
g =22 (5963~ 5720) _ ¢ 454,

1147

For nonoverlapped lines in the linear region, the emissivity of a
single line is directly proportional to the integrated intensity of the line.
Therefore, for the purposes of the present calculation, we may consider
the spectral emissivity of HCQ to be proportional to the integrated in-
tensity of the nearest spectral line. The intensity of a line in a vibration-
rotation band varies with rotational quantum number j according to the

(5)

relation

5, ~ (2j+1) exp [-oj(541)] = 2l explorsa) M [\/?m %)} exp- { T %)}
D—l

2

(27)
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where U'!'= the/kT with Be representing a spectroscopic constant. The
spacing (w—wo) between the band center and the jth line is
w-w_ = 2B j
o e

whence it follows that

&wrvS(m) ~ 7gexp(— EZ)

where

w-w
o]
B

+1

g=ls

e
For the fundamental band at w = w, = 2886 Cm_l, §= . 0515; for w = 3125

cm™, ¥=1.215, Therefore,

] . 215
g[exp(-gz)} 4t

f=20915 = 0.771.

g foce-(6%] o

. 0515

Similarly, for the first overtone,

et

.234
| g[exp%gz)} ag

15 = 0.782
O

§[6XP(-EZ)} d§

uo
g:

Ot

B
515

()

in the linear region.
In the square-root region, the emissivity of a line is proportional

to the square root of the integrated intensity of the line. Using the same

analysis as before, we find that
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The incomplete gamma function I{u,’p) is defined by(14)

u/ptl

I{u, p) = ! e” VvP av
+®) = gy
0

. so that
£ = 1(.853, - %) - 0.647.
Similarly,
g = 1(.879, - 5) = 0.655

in the square-root region,
To find f and g as a function of the mean beam length of HC/ , LHCQ ,
for various values of the total pressure p,, we must examine the

detailed emissivity calculations in order to determine at what values of

LHCQ and Pr the spectral lines fall effectively into the linear or square-
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root regions or under what conditions the box model becomes applicable.
We may then i'nte'rpolate to obtain f and g for intermediate cases. The
result of this analysis fgr one case is shown in Fig. 21,

Once f and g have been determined, it is a simple matter to compute

SHZO+HC9 from Eq. (25) by using the following expressions for the

average absorption coefficients:

— _29,2 2 -1 -1
‘ PZ,?},L_l—ZET = 2,31 x10 cm atmos
and
= _ 2,34 _ -3 -1 -1
P1,87/LL = m = ].o 85 x 10 cm ~atmos °

Using Figs. 6 and 7 to compute the mean beam lengths, it is now
possible to compute the radiation to a face of the parallelepiped. This

problem will be examined in the following Section VII.

VII. REPRESENTATIVE ESTIMATES OF RADIANT ENERGY LOSS
FROM THE COMBUSTION PRODUCTS AND OF RADIANT HEAT
TRANSFER TO THE BURNING PROPELLANT SURFACE

The total radiant energy emission from the combustion products
and to the propellant surface may be calculated easily by utilizing the
tabulated and plotted results. Representative calculations have been
carried out for h/r = 5 with r = 0.2, 2, and 20 ¢cm for Pp = 25 and 300
atmos.

‘Figurés 6 and 7 were used to obtain the mean beam lengths LH o
and LHCQ . The quantities EHZO and eHCQ were then obtained byz

utilizing Figs. 15 to 20. At Pr = 25 atmos, Fig. 21 was used to obtain f

whereas g was set equal to 0.782 since reference to Figs. 10 and 17 shows



-51-

that the first overtone consists of non-overlapping lines in the linear
region for the mean beam lengths applicable to the present calculations.
At 300 atmos, the spectral lines are well overlapped and, therefore,
f=0,417 and g = 0.424 {compare Section VI), Equation (25) may then
be used in order to obtain the emissivities. The results of the calcu-
lations are summarized in Table V,

In order to obtain the radiant energy flux to the propellant surface
from the combustion products, we utilize the defining relation for
emissivity to obtain the total heat transfer to the propellant surface:

4

Q.= ¢ vT;

! .8 7 “to base Aba.se

also, the total heat loss from the combustion products is

4

QT:(48 yoT

to faceAfa_ce+ Zeto baseAbase

where A denotes the area and U is the Stefan-Boltzmann constant

(o= 0.1713 x 10_8btu/(ft)2—(hr)-(deg R)4), The results are given in Table
VI. Reference to the data listed in Table VI shows that the heat transfer
to the propellant surface does not exceed 27,800/400 = 69,5 b’cu/hr—cm2
even for the largest rectangular parallelepiped considered at Pp = 300
atmos. The total radiant energy loss to the outside for this extreme case
amounts to 612, 000 - 27,800 = 584, 200 btu/hr.

Evaluation of the significance of the results derived in the present

study, in so far as flammability limits for pure ammonium perchlorate

are concerned, requires independent study.
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Table II, The mean beam length L° for ng‘—>0 for various values of

h/r,
h for radiation to |for radiation to
T the base or top |a side face.
face.
—>0 2h -
1 2/3r 2/3r
4 0,861 0.90r
—>00 0,94r r

Table III. Integrated intensities of the fundamental vibration-rotation
bands of NH, at T = 300°K. (5)

3
Band center | Integrated intensity
-1 . =2 -1
(cm™7) (cm “-atmos )
950 600
1627 110
3337 20
3448 13

Table IV. Parameters required for emissivity calculations on HZO
at 1433°K, %)

Band center | - a, 2mb
-1 i Aw TFp
(em ) (cm—z—atmos_l) (cm'l) T
500 13,55 1262 . 685
1595 40,6
3756 29.2
5332 2.34
7251 1.93

8807 . 0742
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Table V., Emissivities for radiation to a side face and for radiation to

the base or top face of a rectangular parallelepiped with

h/r =5at T = 1433°K.

r {cm) 0.2 2 20
Emissivity for radiation to the side . 0273 .217 . 652
faces:
Py = 25 atmos
Emissivity for radiation to the base . 0259 .203 . 645
or top face:
Emissivity for radiation to the side .251 .681 . 850
Pr = 300 atmos faces:
Emissivity for radiation to the base - .240 674 . 849
or top face:

b

Table VI. Radiant energy flux (btu/hr) to the propellant and from the

combustion products in all directions (including the heat
5 at 1433°K.

transfer to the propellant surface) for h/r

bustion products in all directions

{btu/hr):

r {(cm) 0.2 2 20

Radiant energy flux to the propellant . 0848 66,4 21, 000
o= 25 T surface (btu/hr):

Radiant energy flux from the com- 1.96 1550 469, 0600
bustion products in all directions

(btu/hr):

Radiant energy flux to propellant . 185 221 27,800
o 300 2tmos surface (btu/hr):

Radiant energy flux from the com- 18.0 4910 612, 000
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CHAPTER 3

RADIANT ENERGY TRANSFER FROM NONISOTHERMAIL MOLECULAR
EMITTERS WITH NON-OVERLAPPING DISPERSION LINES
I. INTRODUCTION

The total radiant energy flux received by the center of the base of a

hemisphere of radiators is

o0 - X
W = f f Rc;(X)Pw(X) exp | - j P (y)dy |dwdX (1)
0 0

where w denotes wave number (in cm—l), X denotes optical depth (in cm-

1

atmos), P  is the spectral absorption coefficient {in cm_l-atmos~1), and
RZ is the!Planck radiation function (in erg—cm—l—sec-l). The hemis-
phere is of radius Y, and is made up of radiators whose density varies
only radially, For geometric arrangements other than a hemisphere, it
is convenient to replace Y by an appropriate effective beam length. This
geometrical problem will not be considered further.

(5,15)

Studies have been made on overlapped spectral lines and on
randomly distributed 1ines.(16) However, we shall specialize to the case
of molecular emitters with non-overlapping lines of Lorentz (dispersion)

contour, for which

Qo

Y . X
f f Sj(X) b(X) f 550 b(y)a dwdX.
11-ne g s (w—wj)2+b2(X) / +b2(y)

{w- w
(2)

where Sj is the integrated intensity of the line (in cm—z—atmos-l) and b
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is the line half-width (in cmfl)° The integrals in Eq. (2) cannot be
evaluated until S and b are given as functions of the optical depth, i.e.,
for a gas the temperature and pressure must be given explicitly as a
function of optical depth before the integrals can be evaluated for
arbitrary Y. We may, however, obtain explicit results for two limiting

cases.

II. THE TRANSPARENT GAS APPROXIMATION
The transparent gas approximation corresponds to optical depths

which are sufficiently small so that the exponential in Eq. (2) has very

nearly thé value unity. For this approximation, Wline becomes
b Y "
' _ o
Wline -f ij(X)Sj(X)dX . (3)
0

To obtain the radiant energy flux for a band we must sum over the indivi-
dual lines which correspond to the transitions j-1=>j and j—>j-1. There-

fore

Y Y o
Wiand = Z f RS, (X)S;(X)aX = f R (X) Z 5,(X)axX (4)
i 0 J 0 J

where RZ(X) is the Planck radiation function evaluated at the band center,
and Z represents the summation over the lines of the band. Now con-

J
sidering the vibration-rotation bands of a diatomic molecule,

), S| = ap(T = ap(T) ==, (5)
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IR e I e
JZSJ.(X) Jot™ e B “olTo) T rmens | B[ (6)

for the fundamental and first overtone bands respectively. Here w* is
the wave number at which the fundamental band center occurs. The
values of the Planck radiation function at the centers of the fundamental

and first overtone bands, respectively, are

S 2whc? o -
@ - o (hcw*\ 1
P KT

and

— 2 3

E R ~ 167he " w _ , (8)
wg exp ( thwﬂ‘) 1

' kT

where h is Planck's constant, c is the velocity of light, and k is the
Boltzmann constant. Thus the radiant energy flux contribution of the

fundamental band is

Y
— 2 :’:3 ) dx
WF = 2whc w aF(TO)TO f 2 ook 760
0 [XP(kTEO)']

T(Y)
_ 2 .3 ‘ XHYT)dT
= 2rhc” w aF(TO)TO j - TooR e (9)
T(0) [XP(kT | 1]
while, for the first overtone,
: Y
- 2 .3 dX
WO = 16rhc " w aO(To)To ’[ -

hcw¥* ) ‘_1} ZT(X)

5 [exp (I—{-T(——y



T(Y)
_ 2 . X!(T)dT
= 16whc” w# G.O(TO)TO (hcw*) . ZT (10)
T(0) [eXP T ']

where X'(T) = dX/dT. These expressions are also valid when the lines

overlap.

III. THE "SQUARE ROOT" APPROXIMATION

For an isothermal gas Eg. (2) becomes

Joe)
- _ o | S bY ‘
Wline™ R, f L-exp |- T ——5——| |dlo-vy), (11)
J (w-w.)"+b
-00 J
which may be approximated by(S)
~ Rpo SY
& Wline— ij SY for 5T ® 0.3 (12)
and
W.. o~ 2R® 1/SbY for Si_ 2 (13)
line wj 2wb ™7 7 ‘

The first of these approximations corresponds to the transparent gas
approximation. The second (square root) approximation arises from the
fact that for an isofhermal gas at sufficiently large optical depths, the
exponential in Eq. (11) is very nearly zero for small values of (m-wj).

We obtain Eq. (13) formally from Eq. (11) by replacing the Lorentz contour

P = S5_b by the simpler contour Pw -5 ———E——-—Z— , which is

© . m (w-m.)2+b2 T {w-w,)
J J
a good approximation for large values of (w—wj)o

" The square root approximation, i.e., replacing the Lorentz ex-

pression for the spectral absorption coefficient by % —i—-z— s, may be

(w“wj)
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\
used also for a nenisothermal gas provided the temperature is nearly

constant in the region X = 0 to X = Yl’ where Y1 is sufficiently large.

'~ This result may be derived by considering the temperature profile

:Tl for 0<X4Y1

and
T arbitrary for Y14 X<Y,

Equation (2) becomes now

N oo i=1
W o~ ZRO ool z 5i x Pul¥e Yy )
line W, i *P T low) 2 4 b 2
i=z1 % k=1 =0 k
S;,1 Pil¥i-¥; )
| l-exp | - w, > d{w-w,)
(w-w,) +Db, J
j i
N 00 i
_ o Si 1 Prl¥i-Yyy)
= R~ . l-exp |- d{w-w,)
wj,l T (- )2+b 2 J
i=1 -% k=1 57 TPk
\
© g b (Y, -, )
- f l-exp | - Z Ja 1 - dlw-w.) ) (14)
T 2 2 DS M
2 =1 (w-—c.oj) +by,

where we have assumed the half-widths in a given vibration-rotation band

to be equal and have approximated the actual temperature profile by a

"step' profile, which may be made as close to the actual profile as de-

sired by making the number of steps N sufficiently large. The gas in the

region ('Yk-Yk_l) is at the temperature Tk’ with the quantities Sj x

and b

k
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evaluated at Tk; similarly, the gas in the region Yi—Yi-—l is at the

temperature Ti etc.; R® . is evaluated at the temperature Ti’ and YO

j)

is identically equal to zero. Now comparison with Eq. (l11) shows that

2 27.
fqr Sj, 1Y1/27rb1,>, 2, we can replace ijl/fr [bl/(w—wj) -i-bl ] in Eq. (14) by

. 2 2., 2 . .
either Sj,l/n [bll(w—wj) ] or Sj,l/ﬂ [bll(w—wj) +b2 ] provided b2 is not
much greater than bl{b2>> blfwhen T1 >> Tz; this case is not of interest
in most practical applications). But
Sj, 1P Yt Sj, 5

' 2 2
(w—wj) + b,

1 b,y (Y,-Y,)

™

may be replaced by

S.’ b Y1 + Sj, 2bZ(YZ-Yl)

' 175,171
T (‘w—w.)z
J
or by
1 Sj, 1blY1 + Sj, zbZ(YZ—Y)
™ 2 2
(w-—wj) +b3
if
S Sj, 1blY1 + Sj, 2bZ(YZ-Yl)
js 2 Sj, >b, i sj’ Y ( T, +Sj, ,(Y,-Y)) .
.?.'rrb2 2.1\'b1 T1 Z’rrb2 A
(15)

and if T2 is not much greater than T3. In Eq. (15) we have used the

relation
b = constant X —2— (16)

T

where p represents the total pressure of the gas., Therefore, by induction,
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S. .Y T
05,101 1
lf——-——-———/%Z(T

5 s where Tmin is minimum temperature of the
1 min
gas, the following approximation is valid:
n n
Z S e e U Z -y )
&= ™ (w_wj)2+bk2 (w o, & k k "k-1"°

Thus the following expression which is similar to Eq. (2) except that b2

has been neglected relative to (m—w.)z, is obtained:

Fo (™ 8,(b(x) . X
Wlinez] R(.o (X) f S eXp| - —— Sj(y)b(y)dy d{w-w,)dX
0 j P m{w-w,) 'n'(w—wj) 5 J
b
Y
4 5 Sj(X)b(X) x . )
n — . - =
ff Rw'(X) - 2 exp Trf Sj(y)b(y)dy z  |d zdX
0 0 0
-1/2
X
S, (Y)b(y)
,f RS (X S(X)b(X s S @] 9% £17)
0
when
S. .Y T
j,171 s 2 1
Z‘iﬂ)1 i . °
min

For diatomic molecules at low and moderate temperatures (e—u << 1),
the integrated intensity Sj for the transition j—j-1 or j-1->] may be
approximated by

: 2 '
S, = ayuj exp(-uyj), , (18)

where u = hcw*/kT, a is the band integrated intensity, and Y= Be/we

1,
()

where Be and w, are tabulated spectroscopic constants and mec‘- Wk,
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Also

| dy = 7 ply)df (19)
where p is the total pressure, ) is the geometric length, and '}7 is the
mole fraction of the absorbing gas. Thus, if we approximate Ri)' by
R?» at the band center and assume that the half-widths of the rotational
lines are equal, we obtain the following expression for the radiant

energy flux of the fundamental vibration-rotation band:

' 5/2 /2
T
w ’—"—41‘rhczw’1‘3’7 {’XGF(TO)H(\T b(T s P )(——)

F o' P,
% f(Y) [E(T?jyz 5 31/2
S e Pelae T "

hcB J £) 5/2
eXP( ) f’?“ﬂ% T

T(0)
CheB_i% [, -1/2
exp | - —o— ?- = |1 {r(t)at My (20)
_dl . . .
where {!(t) = I A more accurate relation may be obtained by using
more accurate expressions for R® 5 Sj—>j 1 and SJ 1—>5°

.
J
If instead of the actual temperature profile we use an approximating

step function in Eq. (16) the following result is obtained:
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N i ' i-1 '
Wiine Z Zsj, 1PV Yy ) - Z S; 1Pr(Ye-Yyep) |-
i=1 k=1 k=1
(21)
On the other hand for a transparent gas the radiant energy flux is
11neNZ ,1 J, (Y Y 1)" (22)
(Yk_Yk-l)
Therefore, if the first p-1 regions are transparentk 55 <
k
(Y_-Y__)
0.3), and if %i.p' 'p Tp- > 2, then
Z7b e
p-1
11ne z R ,1 J, (Y Y
N i ! i- 0
o
+ ZZRw.,i Zsj,kbk(Yk_Yk-l) . Z i kP (Ve Yy p) |-
i:P J k=1 =1
(23)

IV. RADIANT ENERGY EMISSION FROM TWO (ADJACENT) ISO-
THERMAL REGIONS AT DIFFERENT TEMPERATURES

The preceding results will be applied to the following simple

temperature profile:

T=TT for 0<X<Y1
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where ng 2T1, For the case p ='p1, N :771 for 0« X« Y1 and p = Pps
'77 :772 for Y1< X< YZ’ appropriate formulas will now be derived, where
it is understood that by= b(Ty, )y b,= b(T,, p,), Y= Wlplﬂl, and (Y,-Y,)=
72po -4y

If Sj, 1Y1/Z?Tb1 4 0.3 for each line, the transparent gas approximation
may be used; the following relation for the total radiant energy flux is
obtained:

_ 4 4 ‘
W= 0UT;" & [Tl’ Yl} + 0T, E[TZ’YZ‘YJ . (24)

Here 0 is the Stefan-Boltzmann constant, 6[’1‘, Y:l is the emissivity of
a gas at temperature T and optical depth Y, and the subscript {.r.
shows that the gas is in the ''linear region', e.g., the gas in the spacial
region 0 <X <Y, is transparent (see reference (5) for explicit relations
of emissivities for isothermal gases with non-overlapping dispersion
lines).

If Sj 1Y1/2-rrb1,>\, 2 and T, > T, Eq. (21) may be used to give
b

ot o o - \_ 7
Wiine Zij,l VS5, 1PVt Zij,z S;,1P1 Y1485, 2P (Y- Y )-8y (b)Y, .

(25)

Let W denote the total radiant energy flux for all lines of a diatomic

0—1

molecule having the vibrational transition 0—1 when T2 22'1’1 and
Sj 1Y1/21rb1 % 2 for most of the important lines. Expressions for S(j) and
’ N

(5)

Rczo(j) to the first order in —yj are

—u2 -u’x'z u -1
Sj__>j_1’_‘:o,F(yu)(1-e ) {1—h(u)} je J gl-t-'yj [6-u-2(e -1) B (26)
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_ 8\ , -1 | 2
where Y= B_/w_, h(u)=y(%+—d} + 5(e"-1)"" + eru(eu—l) , § and X,

are tabulated spectroscopic constants, and

1 u 4 1 ,u -1 -u,-1
—-——4' Ro 215 ‘—) — (e —1) 1+ _Xj 211(1—6 ) -6 o (27)
, W, . T w¥
oT j—=>j-1
The expressions for Sj-l——>j and —lz R® are the same as those

TT S “j-1—j
given above except that j is replaced by -j. Thus

_ R.c;)*’ 2 (D, o \f -—U_l 2 i -ul-b/jz
WO—->1- 1- }_'{5“ Z4Rw*’ 1 Op 1('3’111)(1‘9 ) [l—h(ul)i] je b, Y
=1

171
w*, 1/ ]
i . \/ e 2)° -ugvit
+ 4Rw*’2 O'F,Z(—(Tuz)(l-e ) [1-h(u2)] je bZ(YZ—Yl)
=
2|1/2
-(U. “ul)YJ /
1+ 776
o
Rm,< 2 4 0—1 4£-:O—'>l
N2 w2 & -
s RO 0’1'1’1 ES, r, T, Tl’ Y1 * 0_TZ sar.r.[TZ’YZ Yl:l
w¥, 1
(28)
to the first order in ¥j, where
50 2
7= Y, T,\2[,. . 1-h(u,) ) 29)
- 2
Yz—Yl T -u, 1-h u,
l-e s
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-5 7] -{u;-u,)7]
[ 1/2 "2 1o 172 8
g=2 : (30)
u
® . 2
1/2 2
[ J dj
0
0—1
and 85 . r{T’ ] is the emissivity for the 0—1 transition for a gas in

(5)

the ""'square root region'' at temperature T and optical depth X, namely,

01 [ ] 0.6345 | ®FP 1z 9/2 -u  1/2
E T,X| == u e X7, (31)
S.T. T, (‘X)1/4w*(u3/2 )
Now \
>® 2 3/4
[ jl/z e gj= % T {3/4) (é) (32)
0

.2
-(ul'uz)XJ
where T' is the gamma function. Since TZZZTI, the term 7e

decreases rapidly with j over the interval in which the integral in the
numerator of the relation for g has an appreciable contribution.

Therefore £ may be approximated by

gl M2 ol Tzog2

L Sp— ¢ jjz e 7 g +f ife &0 g (33)

(:71) .__2..__3'4 0 1

4"\ yu J
where j! is given by 2

"(ul'uz) j‘
’)(e =1
or 1
2

ol 1
: _[7(“1“125 de .
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for m>1;if M <1, ¥ x1. Now.

w1 Y22 3 oop1 Y2_2
> -7 ¥ 4 > -7 ¥l
2 2 1_(3 2 .2 2 .
j e dj = 71"(:;} (Yu ) - | e dj (35)
/y 2
] 0
and
ooty P
2 e g5 = ..2_ f eV v /% 4y, (36)
, 0 ’
. . . (14)
But the function I{u, p) is defined by
p+l
1 e VvP
{u,p)= W‘*“—l— vidv, (37)

so that

1 3
~ , _2_(T1)4 Qn 1 Qn
g1+ (1+7) T, | —2—, - 2|1 —F—

1
) 1 T, ’ "7 (38)
VA1 2] Vil |
2 1
for N > 1L. Graphs of I{u, - ——) as a function of u are given in Figures
22 and 23, Since
w2 e la
- (39)
w¥, 1 e -1
Egs. (28) and Eq. (31) lead to
< ~ 4 ,0—1 4 . 0—>1
Wo 1= 0T & or. [Tz' Yp-¥ ]7 M TR [Tl’ Yl] (40)

where
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-1

l-e

7= g -| 1S
2 1 2 71

l-e

1 1
1 T 2 Y 2

(41)

Equations (40) and (41) may be used conveniently for heat transfer
calculations for two adjacent isothermal regions. The result is seen
to be given explicitly in terms of tabulated engineering emissivities

and the parameter T defined by Eq. (41) with g given through Eq. (38).
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CHAPTER 4
EMISSIVITY CALCULATIONS FOR A HYDROGEN PLASMA

AT TEMPERATURES BELOW 10,000°K

I. INTRODUC TION

Radiant-heat transfer from a hydrogen plasma is of consider-
able interest in a humber of engineering applications, e.g., power
plants utilizing hydrogen as a driving fluid, For these applications
it is necessary to consider pressures up to several hundred atmospheres
and temperatures from several hundred °K to many thousands of °K .
Accordingly, the emission for temperatures between 300°K and 10,000°K
a:t high as well as low pressures is considered here (see reference (17)
for a calculation of the ;:ontinuous emission above 10,000°K). Above
10, 000°K the emissivity will be essentially unity for high pressures
and moderate or large mean beam lengths, [cf. Fig, 4l and reference
{17)].

Only equilibrium radiation from a pure hydrogen plasma is con-
sidered. However, this work may be adapted easily to the case where

other constituents are present.

II., EQUILIBRIUM COMPOSITION
For the calculation of the equilibrium composition it is sufficient
- +
to consider the species HZ’ H, H+, e, H , and H2 « The defining re~

lations for the equilibrium constants are



-69.

PH
K, = 1 , (1)
o 2
L
Pt P :
KZ = --—--—————-H < s (Z)
Py
1
Py P :
H
K3 = - —e 2 (3)
Pry
1
2
+ .
PH2 Pe
K, = - ; (4)
5 2
the definition of total pressure is
P = Py tp,tP ,+tp tP _*p (5)
T HZ H H+ e o o +

and the conservation of charge may be expressed through the relation

Pt Py = Pyt T PH2+ . (6)

Equations (1) to (6) constitute 6 equations for the 6 partial pressures.

For example, these equations may be combined to yield

P 2 K-z P
, H 4 2 2 H

= — —_— —_—

Pp=pPyt —3 t2 > Py tE,; pH)( L+ z)
K Ky Ky

(7)

which may be solved for Py by a trial-and-error procedure for a given
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total pressure P provided the equilibrium constants are known., The

remaining partial pressures may then be obtained by employing equations

(1) to (4) and (6) to give

o 2
H
Py = T ’ (8)
2 K
1
_ 1
K 2 2
2 s 4 K
w2 Py Pry
1
p. = (9)
e PH
1+ —
K
B 3
Py, P
H " e
Pys- = —5— ) (10)
H Iy
3
p
2 Py
P = K —_ , (11)
+
H Z2 P,
P
o - K 2 HZ (12)
+ -~ . o
I—I2 4 pe

For low ion densities, the equilibrium constants may be determined by

application of the dissociation and ionization (Saha) equations but for

high ion densities the effective lowering of the ionization potentials by

the ions and electrons must be investigated.
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A. Equilibrium Composition for Low Ion Densities

Application of the dissociation equation yields Kl directly,

_ , 41
T 32 5/2 2
4] e
P 2 (kT) -D/kT
H h
K = = e (13)
1 1 Q
= H
2 2
(PH ) L _
2
L : L (18)
where the partition function QH is given by
2
' 1 8Y 2 ) 2xu
QH = —"'"—":“':a' 1+ % + + " + - > jl .,\(1 4:)
2, 20 (l-e ) 7 e -1 (e -1)
In equation (13) , D=dissociation energy, m, = mass of the hydrogen

H

atom, h = Planck's constant, k = Boltzmann's constant, and T = tem-

perature. The terms in equation (14) are given by

thO the ) a
. : e
o= % T -3 ® 6-Be ’
and
o o B _Be o _ e,
T kT T kT ‘e W Y T @, ’ = Xe

where Be’ ae, we, and Xe are tabulated spectroscopic constants
[ see, for example, reference 19] and c is the velocity of light. The
values of Kl calculated from equation (13) agree within better than one

percent with the values tabulated in reference 20 for temperatures below

5000°K.
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For low ion densities, application of the ionization equation

yields
- 1
3/2 5/2 1 2
(Z?Tme) (kT) 2/kT
K, = e , (15)
2 3
h 3
- 7L
-1 2
3/2 5/2 3/kT
4(2rm ) (kT) e s (16)
e
K3 =
. h3 -
and
q 3/2 5/2 . 11
‘ H,+  (27m))  (kT) 4/kT | @
K, =2 N 3 e , (17)
H h
2
where me is the mass of the electiron, IZ, 13, and 14 are the ioniza~

tion potentials for the respective reactions, and QH + 1is the partition
2

+ :
function for I—I2 , which is given by equation (14) if the spectroscopic

+
constants for HZ are used,
Using the equilibrium constants calculated by use of equations

(13) to (17), the equilibrium compositions given in Figures 24 to 26

were calculated for total pressures of 1, 10, and 100 atmos.

B. waering of the Ionization Potential at High Ion Densities

In the above relations for low ion densities it was assumed that

a bound electron moves in a potential determined only by the core of
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the given particle (atom, ion, or molecule), which is true only for
an isolated particle. As the ion density is increased, some of the
bound electrons become free to pass over to nearby ions because the
potential barrier is lowered by the fields of the ions (cf. Fig. 27).
Therefore, in addition to the electrons which would be free in a dilute
plasma, there exist electrons with a degreee of "freedom' that depends
on their energy and the surrounding ion density. These electrons
wander around in the potential troughs between close ions.,

In order to retain the concept of regarding any electron as being
either bound or free, various simple models have been proposed for
the plaémq from which a lowering of the ionization potential due to the
ion and eleictron densities may be calculated. Unsﬁld(zn considers the
model of an electron passing from the particle to a single perturbing ion,
situated at a distance equal to the mean distance between the particle and

the perturbing ions. For this model, the lowering of the hydrogen atom

ionization potential is

1
Al=7x 10‘7(Ni)§ ev (18)

where Ni is the number of ions per cmso In the treatments by Ecker

(23)

and Weizel(zz) and by Margenau and Lewis the electron is considered
to be moving in a Debye field with the lowering of the ionization potential
obtained by solving the Schrddinger equation.

In addition to the change in equilibrium composition, emissivity

calculations will be directly affected by the ion density since the transition
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probabilities depend on the potential curves for an electron, This direct
effect is proportional to the change in the square of the matrix element,
which should not be much larger than the change in equilibrium compo-
sition since the electron and ion densities depend exponentially on the
ionization potentials. The simple formula of Unsbld may therefore be
used to determine under what conditions the effects of ion fields become
important.

Since the electron density is determined primarily by the ioniza-
tion of the hydrogen atom and because the lower effective core charge of
the H ion ‘produces a smaller change in ionization potential, the change
in the ioniza;:ion potential of H  may be neglected (cf. Ref. 17). The
change in ionization potential of HZ is taken to be the same as that of
H . In the temperature range of interest, viz., 5000°K to 10,000°K,

P> Pyt » Py o and pHZ+ are all much smaller than P and

P, = Pyt - Therefore,

Pry +
EE ~ _._.___pH+ = —-——-pH‘ ~ HZ = exp ( al ) (19)
(p)y  (pgtlg (prg-)o (pH2+)O 2kT

where the subscript zero denotes the partial pressure for no lowering

of the ionization potential. Using equation (18) for AI, the calculated
: . AT . . . .

values of exp(ﬁé—k—,f-) are given in Table VII and the resulting partial

pressures are given by the dashed curves in Figures 24 to 26. Refer-

ence to Table VII shows that the ion densities increase by less than 15%
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Table VII. The quantity exp (-2%—(%‘) for various total pressures and
temperatures.
T, °K Pr= ! atmos pT:lO afmos pT:100 atmos
5000 1.01 1.02 1.03
6000 1.03 1.04 1.06
7000 1,05 1.07 1. 10
8000 i1.07 1. 10 1.15
9000 ‘1.09 1.13 1.21
10,000 1. 11 1.16 1. 27

L

except near the highest temperatures and pressures considered. How-
ever, for mean beam lengths of several centimeters or larger, the
emissivity is near imity at these high pressures and temperatures

(cf. Fig. 41) and therefore, the emission is not strongly dependent on
the partial pressures. Hence serious errors in the emissivity estimates
will be introduced only for very small mean beam lengths and at the

highest temperatures and pressures considered.

III. EMISSIVITY CONTRIBUTIONS FROM THE HYDROGEN MOLECULE

For a gas at constant temperature and pressure, the total

(5)

emissivity is given by
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QG

£= = [R(j; [1 - exp(-k_t)do (20)

T
o

where ¢ is the Stefan-Boltzmann constant, RZ is the spectral black-
body radiancy at the wavenumber w, £ is the mean beam length, and
kw is the spectral absorption coefficient (in cm-1 for £ in cm).

For low temperatures, the blackbody radiancy is large only at
small wavenumbers where the vibration-rotation bands and rotatiénal
lines cccur. The HZ molecule is homonuclear, however, so that
ordinary vibrational and rotational transitions are forbidden. Investiga-
tion of other‘emission processes shows that the so-called '"pressure-

L .
induced" spectrum will give the dominant contribution to the emissivity

at low temperatures.

A. The Pressure-Induced Spectrum

The pressure-induced spectrum consists of vibration-rotation
bands and rotational lines resulting from transitions which occur during
collisions when dipole moments are induced in the colliding molecules.
Since the integrated intensities of the overtone bands are much smaller

(24) .
than those of the fundamental , and because the blackbody radiancy
at the fundamental band is not appreciably less than any of the values
at the overtone bands for the temperatures of interest, only the funda-

mental vibration-rotation band and the pure rotational lines need to be

considered for emissivity calculations.
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(1). Fundamental Vibration-Rotation Band

Considerable experimental work has been done on the absorption
of the fundamental band at temperatures near 300°K and at lower tem-
peratures(25‘27). The theoretical equations of Van Kranendonk(28_3o)
may be used to extend the experimental results to higher temperatures.

For his theoretical model, Van Kranendonk considers the induced
dipole moment to be made up of two parts: a short-range part produced
by the overlapping charge clouds of the molecules producing exchange
and deforma;tion dipole moments and a long-range part produced by

t

quadrupclar induction. The short-range overlap moment is angle-
independent, | decreasing exponentially with the intermolecular separation
R , and may be determined by two parameters § (or A) and p which
measure, respectively, the magnitude and the range of the moment.

The values of the parameters § (or A) and p can be obtained from
measurements of the total absorption coefficient and its temperature
dependence. The long-range moment is proportional to R“l}t with an
angular dependence characteristic for quadrupolar induction. The mag-
nitude of the long-range induced moment is determined from the known
values of the quadrupole moment and average polarizability of the H2
molecule and their derivatives with respect to internuclear distance in
the molecule.

Using the Lennard-Jones 6-12 intermolecular potential, Van

Kranendonk obtains
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k

~ C __O)— - 2 s 2 2 ﬁ-” .
0.1_ > fw dw = A,Iy+(p,1.+p,2)J‘¥ (21)
P fund.
band

where p is the density and, for the hydrogen molecule,

A= 9.04%x10°

2 2

b TR, F 7.55 x10°°

‘¥ =5.80x 10..32 secnlcm6

The functions I and J -are given by the integrals

~2(x-1) T

I = 4r f e Pgo(x) dx (22)
' o
and
oo
- 2
J = 127 f x Sgo(x) x dx (23)
o
R . . . .
where x = s . with o being the molecular diameter in the Lennard-

Jones 6-12 intermolecular potential:

o,12 7,6
v s | (P2 (24
For hydrogen, o = 2.928 A and p = 0.1450¢ . At high temperatures,

the quantum effects in the translational motion of the molecules may be

neglected and the distribution function go(X) is then given by

kT

g (x) = exp [ - X@-J (25)
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with V(x) obtained from equation (24) . Equation (25) may be used to
(28) . :
extend the tabulated classical values of the integrals 1 and J,
denoted by I P and J ' to temperatures of several thousand °K
c c

(see Fig. 28) . At temperatures above 600°K, I and Jcl are es-

cl

sentially equal to I and J.

Since the mean wave number  , defined by

Elah—*

k,
~ . cC w . c
a = j " dw = 3 j kco do (26)

p p

is nearly constant for the temperatures considered, the following re-

lation is obtained for the integrated intensity of the fundamental band:

P 2
HZ -1

aszwdw = (37.21+ 3.4317J) — cm - (27)

L

for Py in atmos and T in °K . In equation {(27) the perfect gas
relatiori which is good to a few percent for pressures up to 100 atmos,
has been used , (Compare Ref. 31),

From Figure 29 it is evident that the fundamental band may be

(5)

approximated by the box model, i.e., by an average absorption co-
efficient acting over an effective band width Aw which is proportional

to the square root of the temperature. Using this model, the emissivity

of the fundamental band may be calculated from the relation

E = jRde[l—exp(—Z%;]. (%8\)

Aw
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In the temperature region in which the fundamental band is important,
viz., 1000°K § T £ 4500°K , the gas is essentially transparent for

6 2
values of Py £ less than about 10 c¢cm atmos . For the case of a

2
transparent gas, equation (28) constitutes an approximation only in

the averaging of the blackbody function over the band.

(2). Pure Rotation Spectrum

Several papers on the pressure-induced rotational spectrum have

2-
been published recent1y€3 35). In addition to the rotational spectrum,
one should also consider the collision-induced translational spectrum

corresponding to transitions with no change in the internal quantum
numbers. Hgowever, the integrated intensity of the translational spectrum
amounts to only about 15% of that for the rotational spectrum and occurs
primarily at smaller Wavenumbers(SS), corresponding to smaller
blackbody radiances for T = 300°K; thus the emissivity contribution
of the translational spectrum is small. Accordingly, a pure rotational
model is used for extrapolation of the experimental integrated intensity
to higher temperatures and for determination of thé spectral dependence
of the absorption coefficient.

In an analysis similar to that used for the fundamental band,
Van Kranendonk and Kiss show that the integrated intensity of the ro-

(34)

tational line for the j->j + 2 transition may be approximated by
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) 2 -2
L(J)[(xo +2x) 14" 7
j=jt2 11ne (29)

£
W
Nk
R\
g
1)

+ p{x - z A}K] Y'+L(j)L'H’ZJ\Y{"
o) 3 1

where I and J are again defined by equations (22) and (23); now

p =0.126¢ and K is defined by the relation

K = 2T _4 -(X Dolp g (x)x dx ; (30)

L(j) and L' are given by

L) = U () - pea) ] (31
and
R o2
j=0

respectively, where p(j) is the normalized Boltzmann factor for the
rotational state j . The quantities A and p are constants describing
the overlap and quadrupolar induced moments, respectively, while
(47{2e2 0'5/3‘1’1 ).
In equation (29) the first term on the right-hand side is the in-
tensity due to the overlap moment alone, the second and fourth terms

are produced by the quadrupolar induction effect, while the third term
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represents the interference effect between quadrupolar and overlap
moments. For pure hydrogen the second term contributes about 90%

of the total intensity; hence the approximation

k
a,(5) = ;E f 2 d@w = g L) (33)

j-j+2 line

may be used,

Kiss and Welsh have shown in reference (35) that the absorption

1 ,
— k for a rotational line may be represented by a

(3] w

i

coefficient k
[

dispersion contour modified on the low-frequency side by a Boltzmann

factor and with a half-width proportional to the square root of the tem-

perature. For the temperatures considered here, T >300°K, the

Boltzmann factor in the line contour is nearly unity over most of the

line and the absorption coefficient may, therefore, be represented by

al(‘]) 6w 2

2 .
@ ] g (w—wj)z + 6 HZ

Z o,(3) 5w 273 2

P (34)
T (w_wj)z + 62 T H.2

J
with w, denoting the wavenumber at the center of the jth line and & the
‘ , -1 -
half-width. For al(j) in cm amagat 2 » Py should be expressed in
> ‘

-1 :
atmos to give kw incm = . Equation (34) was used to calculate the

points shown in Figure 30 which are compared with the experimental
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(33)

absorption coefficients of Kiss et al. Figures 31 and 32 show the

computed absorption coefficients using equation (34) at 600°K and
1000°K, respectively. These absorption coefficients may be used directly
in equation (20) in order to estimate the emissivity contribution of the
rotational spectrum.

In the above analysis, the plasma was assumed to be pure HZ.
This assumption will not introduce a serious error because emission
processes involving only atoms and ions (Sections IV to VI) make the
dominant contributions to the total emissivity at temperatures high
enough for an appreciable fraction of HZ to be dissociated. It should
be noted in this connection that collisions of an HZ molecule with
molecules of other gases, including monatomic gases, produce absorption
coefficients that are of the same order of magnitude as the absorption
coefficients resulting from collisions with other H2 molecules(25—27’ 33).
Therefore HZ— H2 collisions will contribute most of the pressure-induced

emission up to temperatures where atomic and ionic emission processes

take over as the dominant contributions to the total emissivity.

B. Electronic Transitions

In this section it is shown that the band and continuum spectra
resulting from electronic transitions in the hydrogen molecule for
1 s : .
Pr > -l—(—)—atmos make a much smaller contribution to the total emissivity

than the pressure-induced spectrum in the low-temperature range where
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the molecular emissivity contributions are important. Reference to the
energy level diagram for HZ in Figure 10 and consideration of selec-
tion rules show that there will be one strong transition to the low-lying
continuum state, viz., the transition Zsch z ;—>— 2pcr3z :: , and
two strong transitions to the ground state, viz., the Liyman and Werner

1 + 1 +
band systems corresponding to the transitions Zpo Z Mg lso Z

1 1 +
and Zpw Hu——>- lse Z ’E respectively. Accordingly, these transitions

are considered in detail and the emissivity contribution from all other

electronic transitions is shown to be less than that from the Lyman bands.

+ ,
(1). The Continuum Transition ng" Z o — 2.pcr3 z ¥
3

Using the known potential curves and electronic wave functions,

(36)

James and Coolidge calculated dipole moments from which they ob-
tained values for the mean lifetimes for transitions from the first four
vibrational levels of the upper electronic state. They also present curves

of the spectral intensities I, , normalized to equal integrated intensities

A
from the different vibrational levels.
Considering equation (20) for the case of a transparent gas,

which gives an upper limit for the emissivity,

© po

w
< = — k d
£< & f 5 Kk, dol (35)
: T :

o

i

where the subscript L stands for the 'linear region,''i.e., the linear

dependence of € on { for a transparent gas. The blackbody function
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R:/(TT4 is given by

o hew 4 1
R |15 (T 3 (36)
0"T4 7r4 o hecw 1
kT
and k by(5)
w
1 hecw ~hcw

k = N A 1 - Y

@ 87 co® Z ( v'! © kT ) w( © kT ) (37)

v !

In equation (37), Nv' is the number of molecules per unit volume in
the vibrational state with quantum number v' of the upper electronic

T

level; the sum extends over all of the vibrational states in the upper

electronic level; A is the transition probability per unit wavenumber,
w

which may be obtained from the calculation of James and Coolidge of the

mean lifetimes ’ZV‘ and the relative spectral intensity I>L by use of

the following relations:

= = (38)

and

_ (39)

‘ Py
Since (N_) SR equations (35) to (37) yield
' T'H, kT



where
1
hc:cae 1
~hcT - (1 - % )
Nv' kT o _e-u) e 2kT 2 e e—u'{v‘-x'v'(v‘-l}]
N. ° gt hcw
T _ ew (] .‘_]; - )
o 2kT 27
2
t 'Y i
[1 + g—— P }
o
. . (41)
2 2x u
Y
[ 1a—-§ P 8 116 + = 2}
7 e -1 (eu—l)

In equation (41) , quantities for the upper state are primed whereas
those for the lower state are unprimed; Te is the energy
of the upper electronic state which is listed in reference (19); the quanti-

ties u, o, we, Xe, Y, and & are the same as those given in Section II-A.

Calculations of . were carried out using equations (40) and

L

(41) with (Aw)v' for the first four vibrational levels determined from
equations (38) and (39) on the basis of the calculations made by James
.. (36) : . .

and Coolidge for 'Z’V, and (IK)V‘ . For the higher vibrational

0
states, the values of ( / w Aw do.)) were obtained by extrapolation;
o

V!
these contributed very little to the emissivity at temperatures below about

E
5000°K, These calculated values of L

are given in Table VIII.
P, L
HZ
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2
Table VIII. The emissivity term 5 L for the continuum transition
HZ
3 * 3 *
2s0 Z —> 2po L for the temperature range between
g u
1000°K and 6000°K .
T,°K 1000 2000 3000 4000 5000
8L -51 : -24 -15 -11 -
— 1.3x10 2.6x10 3.1x10 4. 2x10 2.7x10
Py 4
2

(2). The Lyman and Werner Bands

Several calculations of the electronic f-numbers for the Lyman and
Werner bands have been made. For the emissivity calculation, the dis-

crepancies between the calculated f-numbers are unimportant. The

it

values(37) f =z f= 0,18 and f f' = 0,42 have been

Lyman Werner

chosen. Since the lower electronic state involved in the Liyman and
Werner transitions is the ground state, the sums of the integrated inten-
sities of all the lines belonging to the Lyman and Werner band systems,

(5)

a and o' respectivel are
2

2 :
Te
a = Z (| k do)= —— (N_) f (42)
all Lyman @ meC T HZ
lines
_ 6.50){109 ¢ _l.l"]xlO9 ( —1)
T P, 7T PE, T

and
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1
SR, ! i
T ) prz T sz (cm 7) (43)

where e denotes the electronic charge. In equations (42) and (43) the

number of molecules in the ground state was set equal to tﬁgm’cotal num-

ber of molecules and the induced emission factor (1 - e kT) was set
equal to unity since both of these approximations are valid for the tem-
perature range of interest.

To obtain an upper limit for the emissivity, the form for a trans-

parent gas is used, viz.,

(e 0] RO
[

; EL &~ f ———kadmf. (44)
S oT

To obtain an approximate expression for kw , the simple treatment in
reference (38) is followed. In this treatment, all of the upper vibrational
levels are approximated by the lowest vibrational level of the upper
electronic state. The absorption coefficient is then roughly proportional

to the number of molecules in the lower vibrational state, i.e.,

Be (4 )
hey, ~ kT “1
k = — 4
L, = olig)e (45)
hc
; o7 (070
since e <<1 for the specified temperature range; w, and

1

w, are the maximum and minimum wavenumbers for the band system

(gf_ Fig. 34) . Introduction of equations (36) and (45) into equation (44)

yields for the Lyman and Werner bands



1
1 -1 1
15 hc uy .3
~ P + H { 1
5L /(W4:)(kT [aﬂ f u duta'fe [ u du}
u u'
2 2
(46)
- -t
1,15 hc 1, 4 4 1, 4 4
- o { s — - + i t - .11
4(74)(1(,1,)2[0.6 (ul uz) a'e (u1 ) )}
hcw hcw
since e kT -1 e kT ;ou = -}-l-goi ; the quantities for the Lyman band

kT

system are again unprimed while those for the Werner system are primed,
The preceding aﬁalysis tends to give excessively large values for

the emissivity contribution of the Liyman and Werner bands because the

transparent gas relation was used and because replacing the upper levels

by the lowest vibrational level in the upper electronic state means that

the actual emission occurs at larger wavenumbers than calculated, __1__e ,

the blackbody radiancy has been overestimated.

&1

The emissivity term calculated from equation (46) is

P
HZ

given in Table IX. Comparison of Table IX with Table VIII and Figure

37 shows that, although the emissivity contribution of the Liyman and
Werner bands is greater than that of the HZ continuum considered in
the previous section, it will generally be small compared to the emissiv-
ity contribution of the pressure-induced spectrum for the temperature
and pr‘essure range in which H2 emission is important. For example,

the emissivity contribution of the Lyman and Werner bands is small

compared to that of the pressure-induced spectrum for Py 2z 10 atmos
2
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: E
L
Table IX. The emissivity term 5 7 for the Lyman and Werner
H
2
bands.
T,°K 2000 3000 4000 5000
EL -20 -12 -8 -6
1. 6x10 3.6x10 3.5x10 6.9x10
P )
HZ

and T < 3500°K; p,. >1atmos, T <3700°K; p,, =210 atmos,
” H, - H,
T < 4000°K; and py 2 100 atmos, T < 4300°K .
2

1

(3). The Other Electronic Transitions

%

In order to obtain an upper limit for the intensity of all the

3 + .
Z u continuum and the

transitions other than the Zsoa'z ;———> 2po
Lyman and Werner bands, the intensities of various transitions may be
compared with that of the Lyman bands. Since the transparent gas ap-
proximation was used in the preceding section, the intensity of the Liyman
bands may be represented by the simple relation

I
Lyman Lyman

_71'__@__13__) Nu (:)3 f {47)

: : 1o +
where Nu is the total number of molecules in the upper (2po Z )
u
state and ¢ is a mean wavenumber for the transition. Considering the

intensity 1 of the transition k'-= k,

kk'
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- 3
Moo Ny “kk! e (48)
( % f
ILyman Nu)Lyman wLyman Lyman
and inserting f =0.18 and >w , = 54,000 cm_1 ;
Lyman Lyman min
the following inequality is obtained:
hc Awk, (49)
I m— -3 . 49
f \ .
Ikk <10e kT Wkt c
kk' .
Lyman , 54, 000

-~ +
Here hcAwk| is the energy difference between the Zpo“lz state
u

and the upper state of the k'—» k transition.

All transitions to the ground state, other than the Lyman and

i
Werner transitions, will be considered for temperatures less than

-1
, > 22,198 cm and wk< 124,429

5000°K . For these transitions, ook
so that
I
- <o0.2lx . £ - (50)
Lyman k! ~
But the sum rule for f requires that Z f 0.4.

=1~ - f =
kk' kk' L fLyman Werner

k‘

Therefore these transitions contribute less than one tenth of the intensity
of the Lyman bands for T < 5000°K .

This procedure may be applied to the other transitions since the

(19)

sum rule

Yof =1 (51)

all k! Kk’
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exists for a single emission electron.

In equation(51) the f-numbers for transitions from the state k
to lower states k' are included as negative quantities so that the sum
of f-numbers from states higher than k may be somewhat greater than
unity.

The continuum transitions may be included in this analysis if the

mean f-number, f, and mean wavenumber, & , are defined by

df
3 k!, w - =3 7z
f“’ | % T ege e (52)

AN

for a transition from the bound upper state k'. Applying this relation

b

' 3 +
to all transitions in the continuum state 2po Z 0’ other than the

ng"z T~ ch3 Z Z transition considered in Section IIIB-(1) , the
g

following inequality is obtained:

3
I . - - f .
E, ck' >1;' [(Nu)k' Cek! ck'] (53)
< < ,04.
ILyman (Nu)Lymar:;( (5400) 3 x 0,18

Direct application of equation (49) to the individual transitions
for which n = 2 in both the upper and lower states shows that these
may also be neglected.

Thus all possible transitions between singly excited levels for
which the lower state is below E(cm—l) = 107,770 crn'Tl have been con-

sidered (Ef_ Fig. 33) . Application of equations (49) and (51) shows that
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I
%' Kle! -3 -1
< 2x10 for any lower state with E >107,770 cm =~ .
Lyman :

Since there are fewer than about 50 states with 107,770 crn_1 < E <
120,000 cm“1 , it may be concluded that the emission for which these
states are the lower state may be neglected. Finally, all lower states
with energies between 120, 000 cm“1 and the ionization energy
(124,429 cm-l) will be considered. For any of these states,

Z L., /‘I < 10“6 . But there will be fewer than 105 states in
K kk Liyman

this region whence these transitions may also be neglected.

Since it may be shown that the emission involving doubly excited
levels is very weak , it is concluded that the emissivities for the Lyman
and Werner bands computed in the preceding section constitute approxi=-
mate upper limits for all electronic transitions at temperatures below

5000°K .

C. Quadrupole and HD Radiation

In addition to the pressure-induced vibration-rotation spectrum,
there will be a quadrupole vibration-rotation spectrum for H2 and an
ordinary dipole vibration-rotation spectrum of the isotopic species HD

where D is the deuterium atom.

(1). Quadrupole Spectrum
(39-40)

Calculations show that the integrated intensity of the

fundamental quadrupole vibration-rotation band is about 8 x 10—9 times

H
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that of the ordinary fundamental of HCl . The first and second overtone

quadrupole bands are about 0.9 and 0.2 times as strong as the funda-

£ quadrupole

7 will have a value of about

mental. Accordingly,
PH
-11 -1 -1 I%
5x10 cm atm = atl000°K . Since the temperature dependence of
the emissivity will be roughly the same as that for the pressure-induced
spectrum, it may be concluded that the emissivity contribution of the

quadrupole spectrum will be small compared to that of the pressure-

induced spectrum for pressures greater than about 1/100 atmos.

(2). HD Vibration-Rotation Spectrum

(39, 41) for the

The calculated ratio of the integrated intensities
5
fundamental bands of HD and HCl is about 1:7 x10 . Using an abundance
-4
ratio of 3.1 x 10 :1, the integrated intensity of the HD fundamental in

natural hydrogen is about 4 x 10-10 times that of the HCl fundamental.

Therefore the HD emissivity contribution may be neglected.

IV. EMISSIVITY CONTRIBUTIONS FROM THE H ION
Considerable work has been done on the calculation of the ab-
. .. - ) ) .. 242-45)
sorption coefficient for the H ion for use in astrophysical application’’,

The two processes contributing to the absorption coefficient are the

bound-free (photodetachment) transitions represented by the reaction
H +hv —H+e

and the free-free transitions represented by
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H+ e + hy —H+e |,

where e represents an electron and hv is the absorbed photon.

A. Bound-Free Transitions

(42-44)

Chandrasekhar has evaluated the absorption coefficient

for bound-free transitions directly by evaluating the matrix element.

(43, 44)

In the latest calculations , the 20-parameter wave function of

46)
Hart and Herzberg( ) was used for the bound state. The wave function
for the continuous state was first approximated by a plane wave repre-
sentation of the outgoing electron, then more accurately by the wave
function of an electron moving in the static field of a hydrogen atom
(Hartree approximation). The accuracy of the calculation was improved

. . . (44)
by use of the dipole-velocity form of the matrix element .
Direct measur ements of the bound-free cross section by

(47)

Branscomb and Fite agree reasonably well with Chandrasekhar's

calculations. In a note added to reference 42, Chandrasekhar uses the
, (48) : .
calculations of Bransden et al. for p-waves in the field of a neutral
hydrogen atom, which allow for exchange and polarization. This sample

calculation indicates that his earlier estimates of the bound-free ab-

sorption coefficients should be decreased by about 20%.

B. Free-Free Transitions

In the earliest evaluations of the free-free absorption coefficient

the Born approximation was used to describe the motion of an electron
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(45)

in the field of a hydrogen atom. However, Chandrasekhar showed

that the electron velocities in the temperature range considered are too
low for a valid application of the Born approximation. For this reason,

he calculated the free-free absorption coefficients using the Hartree

(45)

approximation described above

A calculation of the free-free absorption coefficient using the

(48) (49)

computations of Bransden et al. is being performed by T. Ohmura .

Preliminary estimates for the absorption coefficient are 40 to 50%
(45)
smaller than those of Chandrasekhar and Breen .
The values of the absorption coefficient calculated by Chandra-
sekhar et al. are used in the present emissivity calculation. Since the
bound-free contribution to the total emissivity is appreciably greater

than that of the free-free transitions, the results should be accurate to

better than about 25%.

V. EMISSIVITY CONTRIBUTIONS FROM THE HZ+ ION
+
The absorption coefficient of H2 arises from the bound-free

transition

H;'+ hy - H + HT

and from the free-free transition

H+H++hv—>H+H+o
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. . . 50
By first evaluating the exact two-center wave functlons( ) and the

(51) (52)

s ,
dipole moments , Bates calculated the H‘2 absorption coefficient
Using the absorption coefficients given by Bates, it is found that

+
the HZ contribution to the total emissivity is less than about 5% of the

H~ contribution for temperatures less than 10, 000°K.

VI. EMISSIVITY CONTRIBUTIONS FROM THE HYDROGEN ATOM
In addition to the line spectrum of the hydrogen atom, there exists

a continuum spectrum consisting of the bound-free transitions

H+hv—>H++e

and the freetfree transitions (Bremsstrahlung)

+ - +
H 4+ e + hv = H + e .

A. The Continuum Spectrum

An expression for the free-free absorption coefficient was first

(53) by utilizing the correspondence principle.

(54-56)

derived by Kramers
Subsequent derivations have shown that the quantﬁm-—mechanical

expression may be written as Kramer's expression times the quantity

gff , called the Gaunt factor, which is of the order of unity, viz.,
ff - hecw
Py 3V 3 rng3c3kT 0> % ' t
hcR
where Ry is the Rydberg constant and x = kTy . Extrapolation of
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the results given in reference (57) for T >11,605°K shows that,
for the temperatures of interest in our calculation, gff(co) may be re-
placed by the mean value éff: 1.24 .

The bound-free absorption coefficient may similarly be written

in terms of a simple expression, obtainable from the equation derived

from the correspondence principle but multiplied by the Gaunt factor

(58) .
8pt, n , viz.,
- h
K>t - 2e°R . *1 o eXn - —--—l:,;’
€3]
P T 3 3 L TF Epp ) (e ) (55)
Py 33 m_hc kT w <o n :
H n
" hcR R 2
where x = Y and w = " y/n”. The Gaunt factors g (w)
n anZ n bf,n

(7)

vary from about 0.90 to 1.10" ’; hence the approximation 8¢ 1q(o.)) ~ 1.00

may be used.
Using the mean values for the Gaunt factors, the total continuum

absorption coefficient for the hydrogen atom becomes

eréR —x1 x hew

(e 8] [
, 32 0.
Py 3V3 m h7ckT o © <

w n 1

Equation (56) was used directly for the calculation of the continuum ab-

sorption coefficient, since the temperatures considered here are not high

(59)

enough to validate the use of UnsBld's approximation
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B. The Line Spectrum

The f-number for an atomic line corresponding to a transition

between states with principal quantum numbers n and n' is(éo)
64 1 . 1 1
£ = g - (57)
nont a5 el [ ) Ry’
\ nZ n‘z

Except for t}le Gaunt g-factor, equation (57) may be obtained from the
correspondeﬁnce principle. The f-number values are tabulated in refer-
ence (59). For a transparent gas it is sufficient to know only the
f-numbers in order to calculate the emissivity contributions of the atomic
lines. On the other hapd, if there is appreciable self-absorption, itis
necessary to know the line contours in order to calculate the line emis-
sivities. Accordingly, except for the transparent gas case, itis nec-

essary to consider collision-broadened and Stark-broadened line contours,

(1). Transpareni Gases

For a transparent gas, the total emissivity of a single line is

R.O

“o
E. = —— S p
L 4
oT H

1 (58)

where RO? is the blackbody radiancy at the line center and
o
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1
S = — J’ ko.) dw is the line integrated intensity. Here 5 may be

P
0 (5)
evaluated from the relation

hewpnt

'ire2 2 NH -(Xl-X ) TTET

S . F — f ... ® (—) e (1-e )
' m ¢ o Py

n

(59)

where NH is the number of hydrogen atoms per unit volume.

(2). Collision-Broadened Lines

For the temperatures considered here, practically all of the
hydrogen atoms are in the ground (ls) state. Between these 1ls atoms

s- * . - -
and an atom in an np state there will exist a resonance interaction

(61)

energy which may be approximated by

2 f
he np,ls 1
+ ———
(AE)np, 1s -

(60)

w

o
87 m c 1,n T
e

where r is the distance between the two atoms. This resonance inter-~
action will account for the collision broadening since the van der Waals

. . . -6
interaction energies are much lower, being proportional to r . Using

(61)

the statistical theory of line broadening, Margenau and Watson show

that, in the wings of the spectral line for a 1ls-2p transition, equation

(60) 1éads to
=~ —_ (61)

kO.)
Py ( Aw)

H

} |
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where the half-width bc is

N e2 pr ls
b = T 7 —— (62)
c IZmec @ 5
and Aw = (w-wo) with w Dbeing the wavenumber at the line center.
o

This result agrees well with

_ £
b = , 2p,ls (63)

“1,2

obtained by Weisskopf(éz) using a modification of the Lorentz formula.
In reference (63), equation (63) was incorrectly used for the

Balmer and l;aschen lines. Recalling that the resonance interaction

occurs only when the emitting atom is in an np state, it is possible to

add the transitions contributing to a single line and to obtain for the

Balmer line (n-—>2)

Ne f f
b = 42—%[1' . _np,ls +3 (£ , +fd2 ) Zp,ls}fl
¢ lizmec nps “I,n e R B n, 2
(64)
where
£ =l[f +3 (f +f )] (65)
- n,2 4 np, 2s ns,2p nd,Zp

In equation (64) the broadening for a given transition is multiplied by the

fraction of the total line intensity contributed by the transition. Similarly,
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for the Paschen line (n—vS) ,

Ne‘2

1 fnp ls
b =|—] = {(f + 5f ) | —
c 12mec2 9 np, 38 np, 3d wl,n
f3p ls 1
+ 3(f + £ : } (66)
2 d’
ns,3p nd,3p wl, 3 fn, 3
where
f = ff +3(£ +E )
n,3 9 L np, 3s ns, 3p nd, 3p
(67)
* 5(fnp, 3d * fnf, 3d) ] )
For the Lyman lines we find
Nez np,ls
b_ = > = (68)
12m ¢ wl,n
e

However, as will be discussed in Section 4, only the very distant parts
of the low wavenumber wings of the Lyman lines are of interest here.

(Equation (60) is not applicable in this region.)
12m c?
The values of bc . _.._%_ , using equation (62), for the
Ne
Balmer and Paschen lines are given in Table X.

Insertion of the absorption coefficient given by equation (61) into

the general expression for the total emissivity, equation (20), yields

RO

wo ‘.
E = 7 z./SbCpHJz . (69)

oT
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12m c¢
Table X. The half-width factor b_° -———5’———— for the Balmer and
Ne

Paschen lines computed from equations (62) and (64) to (67).

n Balmer Paschen
lines lines

3 4.36 x1078

4 4.05x10°° 1.74fx10'6
5 ' 3.89x10'6 3.73x 107"
6 , 4.05x10_6 1.48 x 107"
7 3.85‘».«&10'6 7.45 x10°°
8 3.89 x107° 4.44 %1070

Since equation (61) describes only the wings of the spectral line, equation

(69) applies only when pHi is large enough to lead to blackened line

(5) Spyt 2
centers. Specifically , equation (58) applies for 5 < - and
SpHE c
equation (69) for 575 2 el with the actual emissivity never exceed-
c

ing either expression.

(3). Stark-Broadened Lines

The absorption coefficient in the wings of a line broadened by the

(5)

Stark effect is

k 321 c,w > R hc (
w {1 o 2 y 1 . 1
= T2 " eXP[' e U =) 5/2 (70)
PyPe kT n (m-wo)

where w is the wavenumber at the line center, n is the principal
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quantum number of the lower state, and ¢y is a constant, which is

tabulated in references (5) and (60) .

Using equation (70) to evaluate the total emissivity for the line,

one obtains

5 2
R 321 ¢, ) R hc . 5
E= ———-04 21 (3/5)| ——— > 2 n (exp[— IZT (l-——z—)]) pHpe,Q
oT kT n
R° % (71)
= —2 A (pyp 1)
ol
where I' denotes the Gamma function. For pure Stark broadening, .
P A 5/3
equation (70) is applicable for 373 > ( -é-) while the transparent
(p)
Pyrt A\5/3
gas relation, equation (58), is applicable for (= , with

2/3 ~ ‘g
(p)
the actual emissivity never exceeding either expression.
If desired, the more elaborate Stark broadening theories may be

used, rather than the simple Holtsmark formula given in equation (70},

(4). The Lyman a Line

If the simple collision and Stark broadening theories discussed
above are used to compute the profile of the Lyman a line, the absorp-
tion coefficient far out in the wings will be appreciable because of the
large intensity of the Lyman a line., Even though the center of the
Lyman a lineis at 82,258 cmnl, the absorption coefficient of the low

wavenumber wing computed from the simple broadening theories, is
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large enough at low wavenumbers, where the blackbody radiancy is
large, to account for the major portion of the total emitted intensity of
the hydrogen plasma from approximately 4000°K to 8000°K. This is
not actually the case, however, because the simple relations for collision
and Stark broadening are not applicable very far from the line centers.,
First of all, the above Stark broadening theory is not applicable
because large displacements require such large electric fields at the
atom that the atom is quickly ionized. Therefore, the line wings become
quenched. This quenching has been observed and calculated for some
of the Balmér 1ines(64’ 65). For the Lyman a line, one would not expect
much intens{ty farther than about 15,000 cm_1 from the line center,
Accordingly, the wings of the Stark-broadened Lyman lines will not give
an important contribution to the emissivity.
The statistical theory of line broadening, which is applicable

(23)

far out in the line wings , may be used to estimate the collision-
broadened profile of the Lyman a line. The r_3 resonance interaction
considered in Section 2 above is valid only for interatomic distances
greater than about 6A , corresponding to absorption less than about
2000 cm.—1 from the line center. Therefore, the appropriate potentials
for the small interatomic distances must be used. Reference to Figure

30 + .
35 shows that two normal atoms approaching along the Zpc Z u potential

. 3¢ + .
curve may undergo a transition to the 2sco Z g curve by the absorption
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of a low energy photon, resulting in an absorption coefficient at low
wavenumbers. As is illustrated in Figure 35, the absorbed photon has
an energy equal to the energy difference between the potential curves
(this is the physical principle involved in the statistical theory).

To obtain an approximate upper limit for the absorption coefficient,
we use for the f-number the value calculated for an isolated atom and

Ny 3+ 3¢ +
we assume that the transitions between the 2so Z g and Zpo Z °
states account for half of the total integrated intensity., Therefore, use
of the statistical theory yields
h
cw,
‘ 2 o pdry
£ o NP5 (E)e T (72)
P ; dw

where the exponential term arises from the contribution of the repulsive
potential to the probability that the two atoms are a distance r apart;
W, (r) is the energy of the repulsive potential (S.f_ Fig. 35). The energy
difference hcw between the potential curves is determined as a function
of r from Figure 35.
k

In Table XI, the absorption coefficients 522 for the Lyman a
line, calculated from equation (72), is given at 40?0°K and 8000°K.
Comparison of these values with absorption coefficients for the H ion

indicates that the outer part of the low wavenumber wing of the Lyman o

line will not make an important contribution to the emissivity.
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‘ k
Table XI. The absorption coefficient —(9-2 for the Lyman a line
Py

calculated from equation (72).

( km/p Z, cm a’l:nrln2

-1 H

w(lem )

T = 4000°K T = 8000°K
12, 840 2.9 % 103 1.1x 1077
19, 090 2.7 % 1011 1.1x10’8

-10 -8
25,760 8.5 x 10 7.3 x 10
31,280 8.9 x 10'9 2.6 x 10'7
35, 240 4,0 x 1078 5.9 x 1077
38,730 1.4 x 107" 1.2 x 10‘6
44,490 1.2 x 10"6 4,2 x 10'6
49,580 4,6 x 10’6 9.5 x 10‘6
53,970 1.5 % 107> 1.9 x 10°°
- -5

57,920 3.9 x 10 > 3.6 x 10
61,560 9.0 x 10"5 6.1 x 10'5
64,710 1.7 x 10’4 9.3 x 10'5
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. de, RSk
The quantity 5 3 = w4 wz , which is proportional
4 @ oT

Py
to the emitted intensity of a transparent gas, is given in Figure 36 for

T = 8000°K. Curve (a) of Figure 36 was computed by using equation (72),
curve (b) by using equation (72) with the repulsive (exponential) term
omitted, énd curve (c) by using equations (61) and (62), which do not
include the repulsive term. Itis evident from Figure 36 that it is the
repulsive term which re.duces the absorption coefficient in the outer part
of the low wavenumber wing to such an extent that it becomes unimportant
in our emissivity calculations.

The above is only a preliminary analysis, but the conclusions
should be correct. A similar analysis(67) for the Na doublet shows
that the calculated decrease in wing intensity, due to the repulsive term

is in good agreement with the measured contour.

VIiI. CALCULATION OF THE TOTAL EMISSIVITY
The results of the preceding sections will now be used to cal-~

culate the total emissivity of a hydrogen plasma.

A. Summation of the Emissivity Contributions

To sum emissivity contributions one must add the absorption
coefficients for the various processes and use this sum as the total
absorption coefficient k = in equation (20). For a transparent gas this
will be equivalent to adding directly the emissivities of the various

emission processes,
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At high temperatures, when both continuum and line radiation
may be important, it is convenient to utilize the total line emissivities
directly since these can be easily calculated from equations (58), (69),
and (71). For this purpose, equation (20) can be written in the form

O

R .
£ = f'"%i (1 - exp [-(kz + Zk(ljnel) z]) dw
o T i
RC |
:[—:7} (1—eXp[- k;i] ) dw (73)
o
R° .
e[ (e[ T )
oT i

c
where km is the spectral absorption coefficient for the continuum

line i

lv s?ec‘trum while k is that for the it® line . Since the continuum

w

absorption coefficient is essentially constant over a line width, and since
the important lines do not overlap, equation (73) may be written as

exp[— kz' z]) g line i (74)

£ = £C+§

. .th .
where w; is the wavenumber at the center of the i line. Thus the
total emissivity is equal to the continuum emissivity Ec plus the line
line i

emissivities £ decreased by the transmissivity for continuum

absorption at the line centers.
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B. Representative Calculations

First the component emissivities for a transparent gas, applicable
over large ranges of T, Prpe and { , will be considered. The emissivity

for Py = 100 atmos and £ = 30 cm has also been calculated.

(1). Transparent Gases

For a transparent gas, the emissivity of a component is given
simply by a temperature dependent function times the mean beam length

and the particular partial pr essure(s) representative of the transitions

involved. (EH )
‘ 2
The transparent gas emissivity term > for the HZ
; pX 1
H 2

molecule is given in Figure 37. This figure supplies the actual H2
2
emissivity for values of Pr £ for which there is little self-absorption.
2

Since the absorption coefficient for HZ varies rather gradually and

covers a large portion of the blackbody curve, there will be little self-

absorption for (5H ) < 10_2. Thus Figure 37 gives the actual HZ
2 L
2 4 2
emissivity down to 300°K for Py £ <10 cm atmos , down to 1000°K

2

2 5 2
for Pry I <10 cm atmos , etc.
2

- +
Similarly, for the H and HZ ions, Figure 38 presents the-
(gH_ + & +)

emissivity term L in the temperature range 3000°K to

PePh .
10,000°K. In this temperature range (EH—)L is more than ten times

greater than (fH +) Since the sum of the absorption coefficients

2 L
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- +
for H and HZ varies gradually over a large wavenumber range, the
and H2+ is

criterion for the gas to be transparent to a mixture of H
-2
(75)

- <
+ 5H+)L~10

(€
H 2

For example, it may be observed from Figure 38 that the sum of the

+
H and H contributions to the emissivity at 5000°K is 0.144 pepHﬂ

if pepH,@ < 0.1.
Using equation (56) for the continuum absorption coefficient of

the expression for the emissivity of a transparent gas,

the H atom,
equation (35), may be integrated directly to yield

(€ ), 2 6
TH,c L 160 T e Ry e-xl o 1 0.62 (76)
Pyt V3 myy (x1)* o=l n° X '
and
1
(E¢r ) 2 6
H, e’y 160 TRy 2 0.62 .
—_— = 7 ) e -3 + ” . (77)
Py 3 m(KT) nz2 n 1

where the prime denotes the emissivity exclusive of the Lyman continuum.

0o
The value of the sum Z —1-3— is 1,20206. These emissivity terms

ncl n
are given in Figure 39 along with the maximum absorption coefficient
k -2
B,w . . 10 .
in the Balmer continuum. When le < = equation (77)
B: w/pH

Py
may be used to give the actual emissivity of the H atom continuum,
exclusive of the Lyman continuum. For the conditions of interest, the

Lyman continuum region is generally far from transparent. In this
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connection the maximum emissivity contribution possible from the

Lyman continuum, viz.,

o
1
ghyman 1 IRO dw , (78)
max {)‘T4 w 1

y= 109,678 cm

is also given in Figure 39. Considering T = 6000°K, for example, it
is eviden”g from Figure 39 that equation (77) will give the actual emissivity
of the H atom continuum for 10 < le < 106 cm atmos.

Figure 40 gives the transparent gas emissivity terms for the
Balmer and Paschen lines computed from equations (58) and (59). A
given line will be approximately transparent if the emissivity computed
from equation (58) is less than one or both of the values computed from
equations (69) and (71), _1_.____e_ , when one or both of the inequalities

5 pHﬂ A 5/3
< = and —— < (=) hold. The lines will be primarily

collision-broadened ©at the higher pressures and Stark-broadened at

{

SpH

27h
c

the lower pressures. The Lyman a line will be far from tramsparent
at most optical depths of interest. The emissivity contribution of the
Lyman a line can be estimated from the analysis of Section VI-B-(4),
and proves to be negligibly small except for very small optical depths
and high temperatures. The emissivity contributions of the Brackett

series, Pfund series, etc., are negligibly small.
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(2). Calculation for a Total Pressure of 100 atmos and a Mean Beam

Length of 30 cm

In Figure 41 the results are shown of an emissivity calculation
for pT = 100 atmos and £ = 30 cm for T = 300°K to 10,000°K.
At temperatures below about 1200°K, the pressure-induced rotational
spectrum of H2 provides the dominant emissivity contribution. The
spectral radiancies at 300°K and 600°K are compared with the black-
body radiancies in Figures 42 and 43. The dominate emissivity contri-
bution is provided by the pressure-induced fundamental vibration-rotation
band between 1200°K and 4400°K, and by the continuum radiation from
4400°K up to 10,000°K. The continuum radiation is primarily from the
H  bound-free and free-free transitions with the bound-free transitions
of the H atom starting to become important at the higher temperatures.
In Figures 44 to 48 we show the spectral radiancy of the continuum
spectrum. In Figures 44 to 46 the division of the H continuum radiation
as the sum of a contribution from free-free transitions and from bound-~
free transitions is evident. In Figures 46 to 48 the Balmer bound-free
continuum is observable. The emissivities of the atomic lines, decreased
by the transmissivity of the continuum [cf. Eq. (74)] , amounted to
less than a few percent of the continuum emissivity. At pT= 100 atmos
and T <10,000°K, collision broadening is more important than Stark

broadening.
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Since the absorption coefficient for the H ™ ion is proportional
to and that for the H atom is proportional to , the H atom
P Py p Py

spectrum will become more important at lower total pressures.
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Fig. 1. The ratios of calculated to observed absorptivities for C.C)2
as a function of optical depnth [calc:ulated using Ea. (49): O;
calculated using Eq. (33) with 7=4/3: O ; calculated using
Eq. {33) with 7 =1 &} .
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Fig; 3. The total emissivity of CO as a function of temperature for

various optical depths and a total pressure of 1 atmmos. The solid
curve is the emissivity calculated from basic principles using a
non-overlapping line t%‘aeory,(m while the circles indicate points
calculated using E%D(BO) and absorption measurements (from

U. P. Oppenheim(10)),
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Fig. 4. The total emissivity of CO as a function of temyperature for various
 optical depths. The solid curve is the emissivity calculated from
basgic principles using an overlapping line theory\?/calculated
from Eq. (12) and using absorption measurements of CO-A mix-
tures at a total pressure of 35 atmos: O; calculated from Eq.(12)
and using absorption measurements of CO-He mixtures at a total
pressure of 18 atmos: & (from U. P. Oppenheirn(10))]
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| _—Stable products (HZO' HCL , NZ’ 02)

T —"
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Fig. 5. Schematic diagram of the assumed geometry of the propellant
grain and combustion products.



3, X -
"X [ IO UQLIDUD] B BB QT d 20} I 03 o1 gifdue] weaq uesw jo oiyer Byy ‘9 *Hig

~125-

M\.ﬂm

[

Y

{z x 1) do3 20 98®Y 92U} O} UCHIRIPERY

(£ ¥ ©) sade] 9PIS SY} O} UONIVIPERY

1
T

6°0

T



4 2
,AA miﬂwﬁom 1337%) o m..mO Hy Jo uowduny € s® /7T OBBI BYL L Fg

Z N
{souiye-w1d) o m..HO Hy
T % 0F 01 50 1o |
- | ! ! _ 0.°0
: —108°0
5 e Vs
&l
i
) —06°0
| _ _ _ 00°1




*(soury Zurdderxsso-uou) ¢Ge7'p IOH 203 _EE€FI 1 uUmA JO WOTIOUN} B 88 Ahm\Tlcwv .mo.ﬁ oryexr ayy ‘g "Sig
(wo) IOH

0°2 8°1 9°1 V1 1 0°1 80 3°0 ¥°0 2°0 0
_ [ ~ “ | I « _ M 0

—9°0

, sauI]
- Surdde(isA0-uou I0] SSIJTATIESTUISD

= O Zw = SUOIIEINO[ED [BnIDE
— Ul pesn ag 03 3axnd uwonefodiajul

-127-

—¥°1

I
~
(Lay1= 03 ¢O01




*(saur] Burddejasao-uou) mmmm.oqumw\ 10y M EEFT 1° aumd JO UOIIOUNJ B S¥ A.Hm\mslﬁ 3) (01 o1IBT @4y 6 81

(uo) IOHA

02 81 51 ¥ 21 o1 g 9 ¥ (4 0
I I T | ! I |

o

N
(ta/=15) Lot

-128-

1ol 203 O N3

uoifez jooa-sxenbg




-129-

durdderasaso-uou) gge7°0= JOH ), I0J M CEHT I® qumd D uUcIIdUNn} © Se AH&\NA!.Q&

"(soury

(o1 oner 891 o1 "By

001

(wo) qomd
06 08 0L 09 05 0% o€ 02 01 0
I I ! ] | ] | I I 0
=
\
— —§'0 =
\\\\ \nME
— o
4
—y
yoH 05 O'Ny AR
uorfox amoury ]
uotZax jo01-2a22nbg
-6 1
2




i - [
‘(souty Burddeizenc-uou) ggez 0=/ "F L x05 3 cep1 12 1OPT jo0 monoung e se (Tg/WOH M5) oropes eug 1 Fua
(uo) 198y

_ 81 21 bt et 0l 80 970 A 2’0 P
B T T 1 f ! I 1 _ I

120

-130-
] I
AN
| {
N ©
$
(Lay ¥OH 5@)501




-(sour Furddeireac-uon) g5ez 0= 1OH ) 107 Moeept 32 PH yo vonouny = se (LayIOH ;) (ot omes suL "7l ga X

{wo) 19
02 81 91 $1 21 01 8 9 ¥ 4 0
_ _ T I I ] I I I Y
—1
— 2
— €
~y
o <
{3
d1¢
- ™
!
— G oo
T O
x>
ll.h ~
T 3
| mand \
- — 0t
B — 11
- —z1
i €t
! l L | L | B1




(sour Burdderasao-uou) g567°0=/ VMY 207 soeept 3¢ 'OHT jo wonouny v sw (Td/ PH M5) gromes enr ver T

(wio) 19H

001 06 0g 0L 09 0% oy 0¢ X4 0
_ I ! [ I ! [ _ 0

-132-
(tay TH M5y o1




-133-

‘{saur] Sudde(reAc-u0u) £6€2 0 qum.;\ 103 Y EEVT 1B «UTVH JO UOIIDUn} ® S€ Ar.m;m\ 10H va 01 01381 8yl ¥l
(wo) ¥OH~

001

06

o

04

0¥

o0t

D¢

01

T

_

“

_

!

Z2°0

¥0

90

890

0°1

271

1

€2

814



-134-

-19pOouI HOQ L} I0]

mo.m «vwﬂmﬂm

¥OH~ Ly
T yo sHONIUNT FE Ngetyl 3¥ ¥yOH 103 05443 pue
) aomdm‘m

#01
I

g0T%s
[

Amﬁugudlﬂhu

05 ody sonamserms sy;

°¢1 °B1g




: ‘ . o L "gsgz70 = P,
0} SOUI}E mmnkm pue ¥ €€%1 38 [DH I0y [OH ,mw pue ¥0q°d5 O'N r.Hw £3131ATS S TWID 3Y,[

‘91 "1
{wio) aUmA
0¥ € o€ 52 oz st 0t S 0
] ] ) r I I I ! 0
g0 °
o1 0
[
[T}
[\a]
i
‘O°N* —51°0
- O°N ,mm
xeq .,mw pue "O°N ..mw UIDMIBY
uotjerocdiajur dyqeucseax e Funjewr Lq paure}qo 1OH .hw
— 02°0
*0q ,._Hw / -
L e = T - ..\ll.\.\.ll.\.\l\\\l\\\\!l
I [ { {




x
‘g5£2°0 = 0N

[ ° 3 § 2 €
103 sowje gz ="d pue M EEFT 3® YDH 107 1OH 05 _"O'N O5 pue *oq Ow gonsisstwaa 2uy L1 *Eig

{ux2) wumwm

001 06 0g 0L 09 . 0s 0¥ 0f (1Y 01 oe
T _ R T _ T _ T !
— 10°C
[
3
mm —20°0
1OH 'O, _"O'N owx |
T
. — — €070
\Awo@ mOm
\
L —1%0°0
m _ | _ _ _ _ _ €0°0



-137-

e . ¢ ° cz -P-H
IOy SOWIT QO ¢ =Lg PU® 3 €EP1I® YDOH 207 §OH 'd, _*°9°d, pue o 3

(xud) qumq
0 S€°0 €°0 6Z°0 Z°0 S1°0 1°0

‘gg2°0 = POHY,

SPTJTAISETWD 24T

S0°0

g1 *3g

" ! _ _., T _

p oq ¢
YOH I, _%0q°d

—€0°0

—190°0

—140°0

—460°0




-138-

aum?

- € wreves § o o by ¢ TEGE2 0 =
cop sowye 00f =1¢ pue M gept e oH 203 1O0 O3 090, pge O'N'O3 gsapratesiwe syy 61 514
(cxo) OH
0% g€ o 52 0z _ S S ) SO )
H I I _ T T T 1 0
L —20°0
|
|

80°0

B S R




-139-

0%H Tg La
] , “€6E7°0 = Lk 20y souwje gog = “d x0 sowje g7 = i pue
A €ev1 17 widep [=ondo jo uompouny ® se ([spows [esysiele ® Puien) Jodea J93BM JO SSTTAISSTWS oyl ‘07 ‘514

Z
(sowje-wid) o m..H.H&
01 01 Noﬁ 01
w T T 0

ek

. ~2°0
2
O mw
%0
-0
sowse gog = Ld O
sOowIle §7 = Ly O

[ 1 I g0




pue vmammwﬁuﬁ «Umd gi1dus] wueeq 2y} JO UOIIDUNJ € 8% {2%7)

. JOH
00T o1 b T

—

csowe g7 = ~d
Ul pOUTIep J I9jewmivied ay[ 8

12 "Rt

-140-

o
0

—10s°0

—0L°0

0670



;.?:

UOSIESJ WIOIJ) I JO UOIIOUN] B S® Awnu ‘n)1 Aiyrguend oy g
q )

72 "84
§°0 L°0 G0 $°0 ¥°0 £°0 2°0 1'0 0
_ | I _ _ 1 _ 0
- —1°0
— , —z°0
]
Land
= - —£°0
]
- —%°0
— —5°0
[ I | i ] |




.A?GGOm&mmnm WOII) N JO UOYIDUNJ € SE' AW - ‘n)1 L3muendk eyy g7 314

§°0 0
T 0

T
)
e
)
~N
~
0
—~
o s

-142 ~

(-1

| | : | | ] | 0°3



10

-143-

@
O P
4 1077 B
o5
w
3]
St
0,
E:
g,: {"62 P}q ‘?L_“ o
m ‘_5@ Y
By 1575 N
B
1077 .
-6
10 | z 1
9 2000 4000 4000 8000 10, 000
T, °K

Fig, 24.

Eguilibrivrm composition as a function of temperature for

v = 1 atmos, The difference between Pe and p is too

IS
T H
small to be shown., The dashed curves include the cor-

rection for the lowering of the ionization potential,
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Eguilibrinm composition as a function of temperature for

= 100 atmos., The difference between Fo and :

Py ;;;H-w is
too small to be shown., The dashed curves inciude the cor-

rection for the lowering of the ionization potertial.
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Combined Potential V(r)

Core Perturbing
Ion
Fiz. 27. Poteniial energy curves for an electron in the field
& 5y

of a pariicle (atom, ion, or molecule) core and an

ion.
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Fig. 34. Energy level diagram illustrating the model used for
estimating the emisgivity contributions of the Lyman

and Werner bands,
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iz iilustrated.



10 -

atmos
)
-
o

10 -

crn

- ‘ m

10 | | | {

0 20,000 40, 000 0,000 20,000 100,000
Gy €3N

as ko
! L O _E. a4 £000°K.
Z clw & 2
Py, £ i

YH Py
Curve (a) was computed by usizg Eq. (72), curve (b) by

i

Fig. 36. The guantity

using Eg. (72) with the repulsive term cnitted, and curve

(¢) by using Egs. (61) and (62).



-156-

107" -
3 w7
'tfa 10 (
2 ~
r:s
L
5 |
HE
= ~ -8
Gl i 0
@l N
-9
10 I 1 | l
0 1000 ~ 2000 8000 4000 £000
: T, °K .~
Fig. §7n The transparent gas emissivity term (SHZ)L/pI?:IZ as a

" function of the temperature. This term is the sum of the con-
tributio% from the pressure-induced rotational spectrum,

fr)L/?H , and that from the pressure-induced fundamental
- i, (= 2 :
vibration-rotation band, (¢ v)L/ pHZ



&3
]
w
¥
o)
g
o)
]
8
¥
]
s~
+ o3
i
G -
+ ﬁ?:
' o)
ool 24
W
a

Fig. 38.

I I I I I I
1 -
107t B

-
1072 | S -
.
N
.
N

\

107" l | 1 | 1 |

3000 4300 5000 5000 7000 £000 9000

T, °K (¢
<

The transparent gas emissivity terra -
B,

, ‘e *H "
as a function of temperature.

H" + 6}{}‘}' >L

10, 000



-158-

10 I T !

L
9000 10, 000

Fig. 39. The transparent gas emissivity terms (EH 'c)L/pH and
- - +
(5H c')'L/p in cm latmos 1, the maximum value of the Balmer
confinuum absorption coefficient ky o Ppp i cm Tatmos |, and
Lyman ®© ’
s =/ Rwdw as functions of the ternperature.
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