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ABSTRACT

The advantages are considered of developing dual approaches
to two terminal lumped constant network synthesis. The first is the
usual S-plane approach emphasizing the positive - real concept; the
second treats the reflection coefficient, involves unitary modular
functions, and is related to the older wave filter theory. The
second viewpoint is developed in some detail and used to unify the
various existing methods of two-terminal synthesis on a common
mathematical basis. The synthesis techniques of Foster, Cauer,
Brune, Bott~Duffin, Failkow-Gerst, and Miyata are re-examined in
terms of the reflection coefficient and some alternate methods of
synthesis are suggested. It is found that all of these synthesis

techniques may be derived as applications of the Schwarz' lemma.
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PART I

INTRODUCTION

I.1 Present Status of Two-Terminal Synthesis

1.2 A Possible Alternative Development



SECTION I.1

PRESENT STATUS OF TWO-TERMINAIL SYNTHESIS

The problem of two-~terminal network synthesis may be
stated as follows: Given a suitable mathematical expression in the
complex frequency variable § , to realize a network consisting of
the usual resistance, inductance, or capacitance elements including,
if necessary, transformers. The resulting network is required
to have the property that the ratio of its input voltage to
current will be just the prescribed mathematical expression. It
is immaterial whether the problem involves an impedance function
as just described or an admittance function in which case the
input current to voltage ratio, the reciprocal of that above, is
involved. 1In the general problem covering both cases the function
involved is often referred to as an immittance.

Modern driving point immittance synthesis techniques are
essentially mathematical programs the use of which starting with a
given positive real function”Z(SL and following a prescribed step-
by~-step procedure, results in a two—terminal network configuration
of passive, linear, bilateral, lumped elements which will perform as
described above,

The basic problem of establishing that, in theory such a
synthesis may’always be performed for a given rational, positive
real function, was carried out by Brune, For particular arrange-
ments of the poles and zeros of the given function, notably

alternating in position along the j-axis in the s-plane in the



manner required for a reactance function, the straightforward

synthesis methods of Foster2 and Cauer3

are applicable and well
known., The former removes individual complex conjugate pole pairs
to obtain a series of additive simpler expressions summing to the
given function. Each of the simpler expressions may then be
synthesized by inspection. The latter method removes poles at
zero and infinity in a continued fraction expansion which leads
to the ladder network realization. Both methods are capable of
extension, one such extension being that which leads to RL or RC
networks when the poles and zeros of the given expression are on
the negative real axis in one of the two prescribed arrangements.,4
Further, one may extend the methods of Foster and Cauer in a variety
of ways which, while important in themselves to the obtaining of
special results, are not fundamental in terms of basic principles,
One such special technique is referencedo5

If poles placed generally in the left half plane are to
be removed in a Foster-like procedure, care must be exercised to
establish that such operations may be performed in the case under
consideration without creating a remainder function which is non-
realizable. Guillemin4, in Chapter 9 of his synthesis text, develops
the conditions that must exist between a pole and its residue in

order that the pole may be removed as one of a complex conjugate

pair, in a Foster-like procedure without prejudicing the possibility
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of later synthesizing the remainder function.

For the general problem of two-terminal synthesis, in
which the poles and zeros neither fall into a prescribed pattern
nor obey the criteria for separate removal, a variety of special
techniques have been developed. An organized, detailed enumera=-
tion of these procedures developing one from another in an
orderly manner has not thus far been available. Textbooks
generally describe the techniques as separate and isolated topics,
although advanced practitioners in the field undoubtedly see many
close relationships between the various methods. As Darlington
points out in a review article,6 there ig not available any real
comprehensive theory of equivalent networks.

The need, then, at the present time is the development
of the logical links between the different synthesis techniques
rather than the creation of new alternate methods of synthesis,
The goals are not mutually exclusive,for progress in the former
task should lead directly to progress in the latter one. The
purpose of this writing is the development of these logical links,
the establishment of a common mathematical basis into which the
important existing synthesis methods may be made to fit in a
systematic scheme. To develop the approach and determine the
tools needed for the task, the historical development of the field

is briefly reviewed.
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SECTION I.Z

A POSSIBLE ALTERNATIVE DEVELOPMENT

A critical evaluation of the historical development of
the field of two-terminal synthesis reveals the existence of two
somewhat independent approaches to the subject. Early work in
filter design, motivated by the needs of the telephone industry,
was the outgrowth of the artificial line theory of Pupin and
Campbell. Generally referred to as wave filter theory, it deals with
the design of reactive sections to be used in signal shaping in
connection with communications equipment. The composite filters
introduced by Zobel are made up of chains of reactive sections all
having matched image impedances but different transfer constants.
Darlington's doctorate thesis7 contains a more complete discussion
of these topics as well as a list of references. A brief review
of the essential characteristics of Zobel filters is contained in
Smythe.8 It is of particular interest, for present purposes, to
note that the input impedance of a Zobel filter section is always
matched to the output impedance of the section immediately preceding it.
The work influenced by Pupin and Campbell and described
above emphasized the importance of the reflection coefficient asg
one of the concepts which developed naturally in a study which
commenced with consideration of transmission lines. The work of

Foster and Cauer placed less emphasis on the veflection coefficient but



rather directed attention to the locations in the s~plane of

the zeros and poles of the driving point immittance. Brune, in
his fundamental work, followed this tendency of Foster and Cauer.
Investigations after Brune in the field of two—terminal network
synthesis were almost all carried through in terms of s-plane
analysis.

It is difficult to make any absolute statements in
regard to the comparative merits of the two approaches to two-
terminal synthesis mentioned above. The difference is a matter
of degree rather than kind for the proponents of the two view-
points have lived and worked in close gquraphic proximity
exchanging ideas freely as they mutually developed the field.
Although one man's name may be associated with wave filters and
another's with the '"exact synthesis techniques," there has never
been, in fact, any clear cut boundary. The situation might be
compared to that in modern physics where one man's name is
associated with the particle approach and another's with wave
mechanics. 1In actual practice, however, all physicists use the
methods of both approaches freely as suits their immediate needs.

There is one aspect of the matter on which a firm
stand may be taken. As in any area of scientific effort, a
distinct loss occurs when an alternative viewpoint is over=-
looked or slighted. If the various approaches to the subject

are truly equivalent then any results obtained by one approach



may be duplicated using another. Properties and theorems which
are obscure in their implications in one framework may, however,
sometimes seem clear and intuitively obvious when expressed in
terms of an alternate viewpoint. It is apparent that, after
Brune, in the study of the two-terminal synthesis problem the
s-plane approach was emphasized and the concepts developed out
of the transmission line approach to networks received somewhat
less attention. The situation suggests that it might be worth-
while to re-examine some of the modern synthesis techniques in
terms of the concepts that are associated with the older trans-
mission line approach.

It was in the spirit of the foregoing remarks that it
was initially decided to explore the implications of the work of
Brune and those who followed him when the work was expressed
in terms of the reflection coefficient rather than in the s-plane
terms used by Brune. It became evident that such an investi-~-
gation was capable of providing the common mathematical basis
for modern two-terminal synthesis called for in Section I.1.

The proposed investigation may be illustrated
diagrammatically. As mentioned, it appears that Brune was
strongly influenced by Foster and Cauer which led to the emphasis
on the s-plane in his and in subsequent work. Sketched out, the

development was:



Foster and Cauer —3J Brune —p s-Plane Emphasis (I.2-1)

The possibility is that an alternative development might have
occurred leading Brune to express his results in terms of another

viewpoint. This development is:
Pupin and Campbell ——§ Brune —p Reflection Coefficient Emphasis (I.2-2)

In accordance with the foregoing reasoning, Part II of
this writing develops the basic properties of the reflection
coefficient., Part III develops the special properties of the
reflection coefficients of reactance functions and presents a
reactance function synthesis technique. Part IV interprets the
important existing synthesis techniques in terms of the reflection
coefficient concept. Finally, in Part V the results are summarized,
The interrelations of these various synthesis techniques, called
for in Section I.l, are presented diagrammatically; some of the
advantages of the present viewpoint are enumerated, and finally,
additional associated topics worthy of continued investigation

are suggested,



PART I1

THE REFLECTION COEFFICIENT VIEWPOINT

II.1 The Reflection Coefficient =~ A General Description
I1.2 The Realizability Conditions

11.3 Useful Characteristics of Realizable Reflection Coefficients
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SECTION II.1

THE REFLECTION COEFFICIENT - A GENERAL DESCRIPTION

The present section is expository in nature. It
presents the definition éf the reflection coefficient and
develops, in broad outline the characteristics of this network
function. Section II.2 which follows establishes the necessary
and sufficient cbnditions that a function must satisfy if it is
to be the reflection coefficient for a realizable, passive,
linear two-terminal network. In Section II.3 some of the more
useful characteristics of these realizable reflection coeffi~
cients are developed. Many of the ideas developed in these
thrée sections are later applied directly to the synthesis
problem. It is possible, however, to scan the material return-
ing later to specific items as they are referenced in connection
with synthesis techniques.

The reflection coefficient is defined in terms of the

notation of Figure II,1-1 as:

E—OZ@ — Ez(s)

/°(8) =

Eols) (II.1-1)




From the preceding, Z(s) may be written in terms of /©(s) as:

___Z_(_S_) = _{_:__/f-(i-) (11.1-2)

R /] + Pls)y

and the symmetry between %ég)and ,° (8) is to be noted in the
two relationships. ‘

In Figure II.l-Z/O (s) is illustrated for those cases
where it is more convenient to deal in terms of admittances aﬁd
current sources rather than impedances and voltage sources.
Examples where this is the‘case arise in later sections of the
study. Note in both Figures II.1-1 and -2 that the various
voltages and currents existing in the circuits may be expressed
in terms of the reflection coefficient, The expressions given
in the two figures lend themselves to partition inté incident
and reflected wave components and it is instructive to consider
the situation as /o approaches the limiting values of zero and
plus and minus unity.

Some straightforward mathematics based on Figure
II.1-1 reveals the outstanding characteristic of the reflection
coefficient-~that it is unimodular bounded in a defined region.
The defined region will vary as various mappings are later

applied. To repeat for emphasis: the single outstanding
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characteristic of the reflection coefficient is that it is
unimodular bounded, in othér words | 2(S)| £ 1 , in a defined
region, This characteristic will be found to play the same
prominent role that the positive~real concept assumes in the
usual approach to synthesis.

The development is as follows: The power into Z(Ww)

of Figure II.1~1 is:

w) = Eo
Pz( )-— U(‘*’) R, F2059) (I1.1-3)

where
Z(w) = U) + IV ()

The maximum possible power into this impedance is:

E P
'me = =9 (II.1-4)

4R,

The power "lost' due to mismatch is:

— = E‘Dz — (2] ;——EL————- ]
Foax FZ. 4R, Uk) R,+£(J‘°)
2| RUHVE L ELT (I1.1-5)

(R1+U)+'VL 4‘R|

209 | P

]
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From which it follows that:
‘ 2 iw) ! < 1 (II.1-6)

Reference to equationm II.1-1 reveals that the above may be

generalized to:

~2(s) Ig 1 for F?e,[Z(S)] Z 0

oy from the positive real nature of Z(s):

A6 |$1 for Re[s]2 0 arm

This is the unimodular bounded characteristic of //o(s)

previously mentioned. It will be shown in Section II.3 that
equation II.1-7 is both a necessary and sufficient relationship.
The theory of unimodular bounded functions is well
developed in the mathematical literature of analytic fumctions
of a complex variable as is brought out in Section III.l1. The
usual treatment involves functions which are unimodular bounded
inside the unit circle in the plane of the independent variable.
To take advantage of theorems developed in this notation and
bécause the notation is convenient in the present work, the

following change of variable is introduced;

p - 1 (11.1-8)

(1I1.1=9)
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Equation II.1-7 then becomes:

$Ifer IPI€ 1 (11.1-10)

I/"(P)

Note that equations II.1-1, 2, 8, and 9 are all bilinear
transformations which transform circles into circles. The mapping
relationships between the p- and s-planes are illustrated in
Figures II.1-3 and 4 along with a simple example of a concept to
be developed in detail in Section IV.1l. The location of the
axis of zero real part for an impedance consisting of an inductance
in series with a resistance is shown in Figure I1I.1-3., As one
learns something of the nature of the immittance by noting the
relationship of the two lines s = jtﬂ and‘Z(Jué) so in the p-
plane the relationship of these two circles yields the same inform-
ation. The mapping Z(p) always maps the unit circle onto a portion
of itself. As will be developed in Section IV.1, the foregoing
is a statement of Pick's interpretation of Schwarz' lemma. The
game information is presented in an alternate form in Figures
IT1.1-5 and 6.

The mappings introduced in the present discussion

serve to illustrate the relationships involved in the four bilinear
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equations II.1-1,2,8, and 9. 1In the work that follows these
mappings will be referred to continuously and the concepts presented
in a discursive manner will be developed rigorously and in detail,

preparatory to being applied to the synthesis problem.
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SECTION II.2

THE REALIZABILITY CONDITIONS

The necessary and sufficient conditions that Z(s) be
realizable as a driving point immittance of a circuit composed
of a finite number of lumped constant linear elements are that
it be a ratiomnal, positive real function of s. That Z(s) be
rational requires that it be capable of being expressed as a
ratio of two polynomials in s. That Z(s) be positive real
requires: first, that it be real for s real; and second, that
the real part of Z(s) be non-negative for the real part of s
non-negative.

From the definition of /©(s), see equation II.1-1, it
follows that for realizability it is necessary that ,°(s) be a
real, rational function of s and, further, that ,2(s) be
unimodular bounded for s not in the left half plane. These
results follow directly from the properties of Z(s) described
above,

Using equation II.1-2 it can be shown that the properties
of being real, rational, and unimodular bounded are sufficient to
derive a realizable immittance from the given reflection coefficient.
If °(s) is real and rational it follows immediately that Z(s) shares
the same properties. When 2 (s) is unimodular bounded, then the

real part of Z(s) is non-negative as is seen from the following:



f“:
- j -

AE) 2 A+IB | e <)
gLS_?)_ = /"A’JB
R /I +A+iB
_z_@( /~(A‘+B’)
Re' [+ (A+

Hence, foq/qgl</' the real part of Z(s) is non-negative. The

preceding results are summarized in Table II.2-1 in which the

necessary and sufficient conditions for realizability are given

for both /2(8) and AP) .

Item Z{(s) ~(8) PP
Rationality
a) Z(s) must be Als)must be A{Pymust be
rational rational rational

Positive - Reality

b) Z(s) real for Als)real for A(P) real for P
s real s real real
) Regz(spo for P ¢ 1 For || AEI 1 for
(S)>O Re(5)>o ®)< |

Necessary and Sufficient Conditions for Reaglizability

TABLE II.2-1

Several authors give procedures for testing for positive
reality. The tests, which contain redundant items, are designed
to simplify the problem of eliminating from consideration those
immittance functions which are not realizable. Parallel procedures
may be developed for the reflection coefficient. To develop such
procedures, however, involves material which is developed in

Section II.3. Accordingly the results are presented here without
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proof and the appropriate material in Section II.3 is referenced.
9
Tuttle's procedure for testing Z(s) for realizability
is presented in Table 1I1.2-2 along with the parallel operations
4

for testing ,0(s). The Guillemin test and its parallel are

presentéd in Table 11.2-3.
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ITEM Z(s) 7°(s)

A Analytic in RHP | £ ,< | for Re [SJ >0
B RQ[Z(J«»)]ZO ,/o(d-w) <1

c j-axis poles simple and See 2(c) of Table

have positive real
residue

I1.2-2 preceding

REALIZABILITY TEST BASED ON GUILLEMIN TEXT
TABLE II,2-3
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SECTION II.3

USEFUL CHARACTERISTICS OF REALIZABLE REFLECTION COEFFICIENTS

In the present section some of the characteristics of
realizable reflection coefficients which are useful in synthesis
will be developed. First, those characteristics which aid in the
recognition and manipulation of these network functions are dis-
cussed and then summarized in Table II.3-1. Next, the 1oci’of
the zeros and poles of the reflection coefficient are examined
and that material is presented in tabular form in Table II,3-2,
Finally, Table II.3-3 presents the results of the discussion
of the behavior of the reflection coefficient in the vicinities

of the singularities of Z(s).

Characteristics of A2(s) Useful in Manipulations:

The most useful properties of the reflection coefficient
are those by means of which its realizability may be established.
This matter has already been covered in Section II.2 and hence,
for completeness, the positive real concept and the unimodular
bounded are presented as the first item of Table II.3-~1 but
without further comment.

The negative of a realizable reflection coefficient is
realizable just as is the reciprocal of a realizable immittance

function. This follows from the fact that the negative of a
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realizable reflection coefficient is the reflection coefficient
of the dual of the original immittance, if the dual is taken with

respect to Rl: a
R,

- (S) - - R,-Z(s) - RI’Z(S)
/° —L_WRJZ(S) RTERE (11.3-1)

Z(s)

The useful mapping theorem of Brune1 - that a realizable
immittance function of a realizable immittance function is itself
a realizable immittance function has an analog in)terms of re-
flection coefficients., Consider the following function:

OV AVAL)
- where /5 (P} and /3 (p) are realizable reflection coefficients.
To determine, under these conditions, whether /°(F0 is a
realizable reflection coefficient apply the tests of Table II.2-1.
Since /T(P) and /2(p) are rational functions of P , it follows
that /°(P)is also a rational function of P . Further, since
/703) and /:(P)are real for P real, the same property holds

for 2(P) . Finally, if

)] ]

l/‘;(P)lS 1 'FoklPlsi

Then
|~ ee)] :;/;[/fzp)]lé 1

since a unimodular bounded function of a unimodular bounded function
is also a unimodular bounded function. From the foregoing, ,° (P)
satisfies the conditions that it be a realizable reflection

coefficient.
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Loci of Singularities of /2(s)

The locations of the singularities of °(s) are now
examined in terms of the locations of the singularities of

Z(s). S8Since:
Z23) = ZI(s) © (I1.3-3)

it follows that:

~(3) = /2Ls) (II.3-4)

and as the singularities of Z(s), when not real, must occur in
complex conjugate pairs, the same property must hold for ,2(s).

‘Zeros of ,°(s) must satisfy the following equation:

Z(s) _ N{s) =1
R, | R.D(s)

(1I1.3-5)

The above is typical of the forms that arise in the theory of
1
feedback control systems and to which Evan's root locus techniques

may be applied. Equation II.3-5 may be written:

v
T (5-50;
2 (575) 1 (II.3-6)

R, (s-Spi)

i pey

from which it is clear that the loci of the zeros of //9(5) must

originate at the zeros of Z(s) for R, vanishingly small and terminate

1

at the poles of Z(s) as R, grows without bounds.

1
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Item Z(s) 2(5)

a) A driving point function The reflection coefficient
for linear, lumped constant, for a linear, lumped constant,
passive networks is: passive network is:

rational; real for s real; rational; real for s real;
and of non-negative real and unimodular bounded for
part for s of non-negative s of non-negative real
real part part

b) The reciprocal of a re-~ The reciprocal of a re-
alizable immittance function alizable reflection coefficient
is again a realizable immittance] is non~realizable since the
function ’ unimodular bound requirement

is violated

c) The negative of a realizable The negative of a realizable
immittance function is non- reflection coefficient is again
realizable since the P.Yr. a realizable reflection co-
property is violated efficient

d) If 7.(s) and Z,(s) are If /?G» and /:U% are realiz-

realizable immittance
functions, then Zl[Za(S) is
again a realizable immittance
function

able reflection coefficients,
then fl[/;’_ (P)] is also a
realizable reflection
coefficient

Characteristics of ,/P(s) Useful in Manipulation

TABLE II.3-

1
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Similarly, the loci of the poles of /° (s) must satisfy

the equation: v

Z (92 - N(s) cu/ ' - 1
R, R,D (s) R,%}(S-—S ) (I1.3-7)

({3
)

and again, the loci of the poles originate at the zeros and
terminate at the poles of Z(s) as R1 grows from zero to extremely
large values.

There is still a third set of loci of interest in network
synthesig and that is the set of lines for which the real part of
Z(s) vanishes and for which ,/’(SH: 4 - These loci satisfy the

equations:

';’r( s Z(am+1)
S = S0y : 2m4 |
Z(s) - N(s) - ez Du) - J i
R = & D© R———_’})‘ < =€ (11.3-8)
i ¥ ,“I' (S- Pa)
where:
» [ a’ I’z ......

For this system, too, the loci originate at the zeros and terminate
at the poles of Z(s).

From eqﬁation 11.3-6, 7, and 8 it follows that at any zero
or pole of Z(s) in the s~plane there are four loci originating or
terminating respectively. The situation is illustrated in

Figures I1I.3-1 and 2 for a simple reactance function:

. R (II.3-9)
Z (s) praT



FIGURE II.3~1

g

P-PLANE

FIGURE II.3-2
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The amount of detail presented in Figure II.3-2 makes it
somewhat difficult to see the important features involved. These
are as follows:

a) Since, for a reactance function, as in II.3-9 above,
the loci of zero real part of Z(s) coincide with the s-plane axis
of imaginaries, their images coincide with the image of that axis
which, in the P ~plane, is the circumference of the unit circle.

b) The loci of zero real part of Z(s) divide the s-plane
into two regions, one in which the real part of Z(s) is positive,
which must include the right half plane, and the other in which
it is negative. Further, the loci of zeros ofp(Plor ,(s) are
constrained to be in the former region and the loci of poles are
constrained to be in the latiter region.

¢) By symmetry, the zeros and poles of ,(s) in the s-
plane, for the reactance function of equation II.3-9, are comple-
mentary with regard to the imaginary axis. That is, in terms of the
usual two dimensional potential analog,11 the j-axis is an equipotential
line in the‘field of the line ;harges represented by the zeros and
poles of »(s). A unit positive line charge is associated with the
singularity of one type, and a unit negative line charge with the
other. The bilinear transformation, which defines the reflection

coefficient, preserves this relationship. Hence the unit circle
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circumference is an equipotential under the effect of the images
of the charges representing the singularities of ,(Pp).

Similar relationships obtain for immittances which are

not reactance functions. Consider the RL immittance:

Z(s) = Sfsta) (1I.3-10)

(s+b) az2b

The two mappings involved are presented in Figures II,.3-3
and II.3-4. The example selected might be thought to be too complex
for clarity of illustration. A simpler example of a non-reactance
function has, however,; been partially’mapped already in Figures II,1-3
through 6. The features to note in the present example are:

a) The loci of zero real part of Z(s) do not coincide with
the circumference of the P -plane unit circle for Z(s) not a reactance
function. Indeed, these loci are not necessarily circles at all
although such is the case in the present example which was selected
for ease in sketching.

b) The region of the P -plane for which the real part of Z(s)
is positive necessarily includes the interior of the unit circle
which is the image of the right half s-plane. The loci of zeros of
/Plor  /°(s) are no longer constrained to fall within the P -plane
unit circle, as is the case with reactance functions, but are limited
to the larger region of positive real part of Z(s). Poles of 2(P)are
still restricted to the region of negative real part ofg(P)which is only

a portion of the region of the P -plane exterior to the unit circle.
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c) The loci of zero real part of Z(s) remain equipotentials
under the influence of the line charges associated with the singular-
ities of 2 (s) but, as mentioned, these loci are no longer simple shapes.

The material presented in the preceding discussion is

summarized in Table II1.3-2.

Behavior of /® (s) Near Singularities of Z(s):

By inspection of the defining equation II.1-1, it can be
seen that zeros and poles of Z(s) condense on the points +1 and -1,
respectively, in the  (s) plane. As is well known, the concept of
positive reality restricts the behavior of Z(s) at certain singulari-
ties, notably those on the s-plane axis of imaginaries. See items
2a and 2c¢ of Table 1I.2-2. It follows that these restrictions must
imply limitations on the behavior of /® (s) near the points * 1.

Consider the behavior of ,® (s) as s approaches s

where:
Lim Z(s) : Lim k
R Sp S—p Sp §~Sp (I1.3-11)
and k is real and positive
Then:
- - 5
Lim Ps) = Lim R, - Z (8) (I1.3-12)

S—»Sp 5—Sp R, + Z(s)
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Item

Loci

Characteristics

Loci of zeros

part of Z(s)

of real

Divides s-plane into two regions,
one of positive real part of Z(s);
the second of negative real part
of Z(s). The right half s-plane
is part of the former region and,
for reactance functions coincides
with it. These loci map into the
/2 (P)plane unit circle circumfer-
ence and, in the case of reactance
functions, into the P -plane unit
circle circumference as well.

Loci of zeros

reflection

of

coefficient

Constrained to the region of
positive real part of Z(s). Hence
may be interior to or exterior to
unit circle in P -plane.

Loci of poles

reflection

of

coefficient

Constrained to the region of

negative real part of Z(s). Hence

must be exterior to unit circle in
P -plane.

Relationship of above

three loci

types

Loci of zeros of real part of Z(s)
are equipotentials in the two
dimensional potential analog where
line charges are associated with
the singularities of A2 (s). All
three loci types originate at
zeros of Z(s) and terminate at

its poles.

Behavior of Singularities of Reflection Coefficient

TABLE .II.3-2
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— 2L (5-5,) ~
Lim @5y - Lim Rn 5-3p Lim [k ( P) I:]
&S S =S + _k 585
g o R 5-5p Py + Bi(s-5p)
(1I.3-13)

55

Similarly, in the region of a zero, where:

Lim Z(s) = Lim Je (5"S°>‘

535, 55

There, one writes
4
= (s-5

Lert 2 (5) = N R, —Z(s) = Lim ! = R ( o)

S~&5, $ 5, R, ’f"Z(S) 5—5o / -I-f—fé'— (5-‘50)
¢
(I1.3-14)

z b /—--——-——zk(S-So)]
S —& S, R,

These conditions are necessary. It is now established that
they are sufficient to insure the proper behavior of Z(s). Consider

Z(s) as S —-&SP where (° (s) behaves as described in II.3-13.

Lim ;éél: LM /- p(s)
s—»5, R, 5—5, )+ /°(s)
- Lim A = %?'L [S-~ SP )
§—&3p AR (5 -5,)
- L " (I1.3-15)

5—55P R,(S"SP)

& L Z(s) = Lim k
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Similarly, near Sg where (®(s) behaves as described in II.3-14.

L .Z(So) Y /= (0(5)
§Se R,  s-p5, / +2(s)

Z;k(

—_— (§~§

Lim R ° )
(1II.3~16)

S—+3Se 4 & %a_’?*f_(s-so)
§

-
=

- Limy b (5“50)
5——"Sa R’
Limm Z(s) = dim k (5..50)
S-—wso S_—bSO

These results are summarized and applied to the immittance function,

reflection coefficient relationship in Table II.3-3.
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Item Z(s) Vad €
a Any poles of Z(s) on the The approach of /2 (s) to the
s-plane axis of imaginaries -1 point due to an s-plane
must be simple and have imaginary axis poles of Z(s)
real, positive residues must be of the form:
Lim Pls) = Lim ZRi (5.5
sios, s—osp I+ &L (5-5p)
where k, is the residue of the
poles and must be real and
positive.
b The behavior of Z(s) as The behavior of /° (s) as

§—p 0 or & must be of
one of the forms £S5 , & ,
or éf where A is a positive
real constant

S—®» 0 must be of one of the forms:

- -
2k
B / R, -
" Ri-k
| Rtk i
-] + iEQLS
LT R

and these apply respectively
to the three forms for Z(s)
on the left.

The behavior of /© (s) as
§—Pemust be of one of the

forms:
-+ 2R
L ks
= -
R~k
Rik |

EQE
RS
and these apply respectively to
the three forms for Z(s) on the
left, A4 must be real and positive
in all the above six forms.

/ -

Behavior of /° (s8) Near Singularities of Z(s)

TABLE II.3-3
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PART III

REACTANCE FUNCTIONS

I171.1 Reactance Functions and Unit Functions
I1I.2 A Reactance Function Synthesis Technique

IIT.3 The Significance & Limitations of Reactance Function Synthesis
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SECTION III.1

REACTANCE FUNCTIONS AND UNIT FUNCTIONS

With equation II.1-8 a special class of unimodular bounded
functions was introduced, namely those which have modulus unity
everywhere on the boundary of the unit circle. Such functions,
which have particular significance to circuit theory, are called
unit functions or E-functions (from the German - Einheitsfunktionen);
the notation is that of Caratheodory.12 One may write the general

th

form of a unit function of n degree as:

v R -P (III.1-1)
En (P) =TT ——o—o
Vzj [ - /3 P
A unit function of nth degree is a rational function whose numerator
and denominator are polynomials of degree n.
The reflection coefficients of reactance functions map the
s~plane axis of'imaginaries into the boundary of the unit circle in
the ,°(p) plane, since the boundary of the unit circle is always the

locus of Re [ Z(S)J = 0. Thus both E-functions and the reflection

coefficients of reactance functions, denoted as 43 {p), share

# Dr. E. C. Ho of the University of California in Los Angeles has pointed
out to the writer that functions of this form appear in several places
in the literature of network synthesis. Investigation reveals that
they are used by Norton 3, Darlington7, and Guillemin™ in applications
where the behavior F(ew ) = 1/F(l/ws ) is required. Guillemin in the
latter reference notes the early use of these functions in a monograph
by Cauer.!
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the property:

lE, PY] = 2
[P P)] = 1

It will be shown, in fact, that the E-functions, with

18

8

} for Pl =1 (II1.1-2)

certain restrictions, may be identified with such reflection
coefficients. The restrictions involve the arbitrary phase factor
for, from item b of Table II.3-1, /2 {P)must be real for P real.
In Sections II.2 and II.3 it was convenient to speak of /®(s) since
comparison was constantly being made with Z(s). Here attention is

focused on the unimodular bounded characteristic:
G N I ¢
i/’ S or [P|] £ (I1.1-9)

and the P -plane is often referenced, hence /°(P) is used. The

change in variables causes no difficulty. Note, further, that to

this point it has been proposed that the reflection coefficient viewpoint
be considered in synthesis and the properties of the reflection
coefficient have been examined. The present discussion begins

applying and evaluating that viewpoint, a task to which the remainder

of the paper is devoted. In view of the restriction mentioned above,

the only forms of the E-function which can be accepted as realizable

reflection coefficients are:

£ (p) = #* 7;‘- P,-P (II1.1-3)
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To demonstrate first that the E-functions do satisfy

(I11.1-2), consider the single factor:

F(P) = -’fﬁi (TII.1-4)
/=P P

=

[r]. BP -7
I-FP  /)-R P

A*+B* -~ 2AB ¢ ¥
/ + A*B* -~ 2AB oy

(II1.1-5)
where: P = Ae_é*
R = B8 613’3
Y = x"ﬂ
By inspection, IF(P)_-: { when [Pi =] . It remains to
show that F(P) is unimodular bounded, that is:
F(p)| </
I )| for |Pl<l (I11.1-6)
The proof requires verifying that: I
2 ¢4
) N [ A*+B*- 2ABcee ¥]
’ (111.1-7)
[ 1+ AB-2ABewer |*
or:
/
N /

> 4 . 4 i
A {/-I- {%)—2(’%)“,{?" { | + AB~2ABcos yj (I11.1-8)



- 41 -

The steps taken and those to follow presume that A 2 B; if
B » A factor B out of the left hand side of equation IITI.1-7
rather than A and parallel the following development to arrive
at the same conclusion. Using the expansion for reciprocal
distance in spherical coordinatess, the above becomes:

* = (8) Rler) > X (A" Bleonr)
where Rn&u‘)’) is the Legendre coefficient.
It follows that:

T > AT
which is true for A € 1, hence condition, equation III.1-6, is
satisfied. Hence, the E-functions of III.1-3 satisfy éhe
conditions of Table II.3-1 which they must in order to be
realizable reflection coefficients.

That the E-functions are the reflection coefficients for

reactance functions will now be shown. Using equation III.1-3 in

IT.1-2:

\

’ r (4
P) / + Ve:I /

(III.1-9)

€D
€Dl
wu

ooy

u /- @

By straightforward ménipulation and substitution of variable, one

obtains:

Z(s)  T(s+5,) ¥ T (s5-5)

= (I11.1-10)
R, T (s+S)) * 1 (S-5)
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Equation III.1~10 is recognized as a reactance function when it

is noted, for the case of the upper signs, that its numerator and
denominator are the odd and even parts, respectively if n 1s even
or odd, of a Hurwitz polynomial. Intevrchange the words even and
odd in the foregoing for the case of the lower signs. The Hurwitz

polynomial involved is:
;]

(5) = (5+S))

H Ve v (I1I.1-11)
- In arriving at equation IIL.1-10 it was presumed that the Sy occur

in complex conjugate pairs, which must be the case if the E-function

is a realizable reflection coefficient. The foregoing development

leads to the following theorem:

Theorem I; The unit functions:
»
B-P
En(p) = = T 4 (I1I.1-3)
V=i - RP

provided they meet the criteria for realizability, are the reflection

coefficients of purely reactive driving point immittances.

From the form of III.1-3 and the realizability restrictions
which require singularities to occur in complex conjugate pairs, the
zerog and poles of the E-function plbt as shown in Figure III.1-1.
This behavior was brought out in the discussion of Figure II.2-2 from
a different viewpoint. The s-plane behavior of the singularities of
the E~function are shown in Figure IXI.1-2. The results of the

discussion are summarized in Table III.1-1.



- 43 -

P-PLANE

o

X
FIGURE III.1-1
X 0
5-PLANE
X o)

FIGURE III.1-2
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2, (5) /% (P)

a) Reactive driving point The reflection coefficients
immittances have a numerator of purely reactive networks are
and denominator polynomials always E-functions.
which are the odd and even
parts, respectively and con-
versely, of a Hurwitz
polynomial.

b) Zeros and poles of re- Zeros and poles of the re-

active driving point
immittances are restricted
to the s-plane imaginary
axis along which they occur
in complex conjugate pairs
and alternate.

flection coefficients of reactive

networks occur in complex con-
jugate pairs and are in comple-
mentary positions in respect to
the p-plane unit circle; that is
the product of the amplitudes of
a pole and zero on the same
radius vector must equal unity.

BEHAVIOR OF REACTIVE NETWORKS

TABLE III.1-1
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SECTION III,.2
A REACTANCE FUNCTION SYNTHESIS TECHNIQUE

Caratheodory12 presents a theorem concerning unit functions
which may be used as a basis for a synthesis procedure. While not
of practical value in itself, the technique is interesting: first,
as 1t establishes an initial point for synthesis studies; second,
as an aid in the development of insight into the synthesis process;
third, as it brings out the relationship between lumped constant
and distributed parameter systems; and, finally, as it also inci-
dentally casts a light on some of the approximation techniques that
have been used. This last characteristic will be discussed very
briefly as the subject of approximations does not fall within the
scope of the present investigation.

The theorem of interest reads as follows:

"The totality of unit functions is part of a
normal family, the limit functions of which are not

necessarily unit functions, though they must be functions
of bound one. Thus, for example, the sequence of unit

functions fy (p) = po, J =1, 2, - - - - converges to
the constant zero."
The foregoing, except for a trivial change in notation, is
quoted directly from Caratheodory. He goes on to say that one may
assign to every function whiéh is unimodular bounded in the unit

circle, a sequence of unit functions: El(P)’ Ez(p), - - - - -

that converge to a given function. From this sequence of functions
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one obtains finally a unit function of infinite degree such that,
if one had used a realizable reflection coefficient as the given

function, then:

Lim E,(P) = p(P) (III.2-1)

P GO

The theorem implies that any realizable reflection coefficient may
be written as the limit of a family of E-functions. An equivalent
statement is that any realizable network may be developed as a
network made up of an infinite number of reactive elements. The
theorem makes good physical sense when one recalls that transmission
lines may be approximated by lumped circuit elements, an infinite
number of infinitely small elements being required to give an exact
equivalent. In regard to dissipative elements the effect as far as
a driving point source is concerned is the same whether power is
lost in localized heating or by being sent down an infinite
dissipationless line. The technique under discussion obviously uses
the latter method for handling power dissipation.

Caratheodory's procedure for finding the family of E-
functions to associate with /@ (p) so that the property expressed in
equation ITI.2-1 is realized, is as follows:

First, expand /@ (p) as a power series.

~P)= 2 a; P’ (II1.2-2)

veo
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Next, obtain the function ¢(PD and expand it in a power

series. ¢(P) is defined and expanded as follows:

¢ (P) = -0 (P) = Z b; Pu’ (I11.2-3)
P[/" aof!P)] “=e

It can be shown that ¢(P)iﬁ unimodular bounded since /°[P) has

that property by virtue of being a realizable reflection coefficient.
Further, following Caratheodory, the E-function, the first(n—l)of
whose power series coefficients are identical with those of /’(53)

has the following property:

Eer (P)= a, - P EX(P) (IT1.2-%4)
/= ‘ao lj E}:‘(P)

where:

E}j!(P) is the E-function of degree n whose first n-1
power series coefficients are identical with
those of ¢(F0-

anq(P) is the E-function of degree n + 1 whose first

n power series coefficients are identical with

those of /°(P)

It follows, then, that:

Lm  EpP) = ~(P)
” P oo

and just as an ideal transmission line made as long as one pleases

always has a purely reactive input impedance, yet in the limit
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as the length becomes infinite, the input impedance becomes re-
sistive--so, in this case, all members of the family En(p) are
E-functions except that the limit function is not itself necessarily
an E-function.

Caratheodory shows that the foregoing mathematical
properties may be made the basis of an orderly iterative program
for developing consecutive members of the family En(p).

To start the process, El(p), the first degree unit function

which has the L2 of I11,2-2 as the first term of its power series is:

E(p) = =P (11I.2-5)
/= doP )
Similarly:
E,*(P) = b"-_P
|~ by P
and

E,(P) = a,~- P E’*(P)
!/ - ioPE'*(F)

Q,,"(Qogo + bc)\P"l"P&

=~ - - 2
I = (@ by + b,) P+a, P
To develop an EZ*(p) so that E3(p) can be obtained requires the

it

creation of a new function

+(P) = lio_ ¢(P)
pL/— b, ¢(P)]

(p) may be written and from which EZ*(p) and finally

Sk

for which an El

E3(p) may be derived., The process, then, is repetitive.
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If it is true that any unitary modular bounded function
may be expressed as the limiting member of a family of unit functions,
or equivalently, that any driving point immittance can be realized by
a circuit consisting of an infinite number of reactive elements, then

such a realization may be obtained for the case of a pure resistance.

Consider Z(s) = R and let Ry = R so that:
R,-R
() = RR Lo
/o R.*R

Then, following the procedure described:

$(p) = ©
+ip = °
and:
E,(P) =-P
E*(P) = -P
B, (P) = PY
E** (p) = -P
s
.4 = P

g, (P = -P*

By inspection, these unit functions are members of the family:
”
o E, (P) = (-P) (III.2-6)

each of which satisfy the requirement that its first (n-1) power series
terms match those of /@ (p). Accordingly, Table III.2-1 has been
developed and from it the network consisting of an infinite number of
purely reactive elements which has a purely resistive input may be
expressed as the ratio of the even and odd parts of the binomial

expansion of (s + 1)n.
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With the expansion for a pure resistance available as in
Table III.2-1, it is in principle established that such a realiza-
tion may be obtained for any driving point immittance., It is
always possible to realize the immittance by one of the more
orthodox techniques and then substitute the appropriate infinite
network of Table II1I1.2-1 wherever a dissipative element appears.

If the method is applied to reactance functions it auto-

matically terminates in an identity. Consider, for example,

Z(s) = s:
Let R1 = 1 so that
(@) =p
¢ () =-1 (I11.2-7)
4+ =0
Then:
E,(p) = -p
(III.2-8)
E,(p) =p

and recognizing the identity between II1IL.2-7 and -8 one halts the process.,

If a more complicated reactance function is considered:

Z(s) = Ls
LCS®+ ]
; (I11.2-9)
Arsy = _Rikest—Ls + R
R, LCs*+Ls + R,
Let Rl = 1/2 1./C so that:

((vfis—l/)): where f = VLC
s+

| &1
A+

mEE

2ls) =

Then:

2P =
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which is immediately recognizable as an E-function.
The method is by no means simple or elegant to apply,
for consider the simple impedance Z(s) = Ls 4+ R:

Let R, = R, so that:

1
-Ls
s) = ———
f() AR+ Ls
Then:
- -L /- P /- P
2 (P) by = -4 (I1I.2-10)
)+ (2R-1) o /1 %R
(AR +1)
where:
< = 2R-L ahd 3 = L
2R+ L AR+ L

Expanding equation III.2-10:

PP = [1- 1+ P+ < (=) PY+ - P* ===~ ]

(II1.2-11)
Applying equation IIIL.2-3:
$(p) = -3(1) / L eer ! (111.2-12)
/-p% | 14+ XtBDp 1+dP
/=%
where:
= _t d= R
R+L R+L
Applying equation III.2-5 to (p) and (p) in turn:
E,(P) = - B+P (1II.2-13)
/+rP
E*(P) = - &+P (III.2-14)

/[+&P
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By straightforward substitution:
+L
Z(s) = B’§" (1I1.2-15)

And using equation III.2-4:

-e - PE P
/| + 08P EXP)

11

E, (P)

_ p*+y(1-B)p-(3 (I11.2-16)
-@P*+¥(1-B) P+

From which:

AR (R+L)S
(R-L) 5% + (R+L)

L1

z?z (s) (I11.2-17)
To carry this work further leads to appreciable labor.
An answer may be obtained by inspection using other techniques.
Translating the s-plane axis of imaginaries to the location of the
zero of the function yields a simple reactance function in the new
plane and the technique may be said to have been applied. Alternately,
an inductance in series with the circuit of Table III.2-1 gives an
immediate solution. The above development demonstrates, however,
the difficulties involved in finding an appropriate E-function
family directly for even relatively simple immittance functions.
It is shown in the discussion in the section which follows

that in spite of the difficulties involved in the manipulations in
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application of the technique described here, that the method is
important for conceptual reasons and leads logically into approaches
from which the usual exact synthesis techniques may be derived.
Further, while the Caratheodory approach guarantees that a solution
may be found it must be appreciated that, as in all synthesis
techniques, the solution is not a unique one and alternate solutions

for the identical problem are always possible.
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SECTION III.3

THE SIGNIFICANCE & LIMITATIONS OF REACTANCE FUNCTION SYNTHESIS

Reactance function synthesis serves, for conceptual and
pedagogical purpoées, as the primary synthesis technique. For these
needs its practical shortcomings are not particularly important.

Its use depends only upon the most obvious property of the reflection
coefficient - that it be unimodular bounded on the P -~-plane unit
circle. Even the shortcomings of the method militate in favor of
considering it as a starting point in synthesis for those difficulties
focus attention on the need for special handling of the dissipative
elements of a network if a finite number of elements realization

is to result.

Brune's synthesis method has been thought of, in the past,
as the basic technique since, historically, it W%S used to prove
the sufficiency of the p.r. condition. The method, however, is
basically an advanced topic and involves the recognition of special
properties of network functions and treatment of those functions in
a manner which always results in the appearance of unity coupled
transformers. As such the method falls into a class also occupied
by the techniques of Darlington and Miyata. The latter synthesis
technique avoids the transformers by recognition of further special
properties of the network functions, The topic is treated in

detail in Section IV.3.
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It appears that the E-function expansion shows promise
as a basis for approximation techniques. Although approximation
methods do not constitute a part of the present investigation,
a little conjecture is not inappropriate. The usual approximation
methods can be related to the potential analog approach11 and are
concerned with obtaining a desired result over a portion of the
frequency spectrum. E-function synthesis appears to hold more
possibility as a time domain than as a frequency domain approxima-
tion. That this is so,is evident when one recalls that a very long
and lossless transmission line looks like an infinite line until
that time when the reflection from the far end has returned.

None of the reactance functions obtained in the E-function
expansion are equal to the desired function with the exception of
the limiting member of the family of reactance functions. In the
case of the resistance expansion illustrated in Table III.2-1, the
series of alternating imaginary axis zeros and poles can, by no stretch
of the imagination, be considered equivalent to a resistance. As
long as the sequence of elements is finite, there will eventually be
returned reflections and the input immittance assumes its proper
reactive form. It is clear, however, that until the time that the
return reflection does appear the possibility that the network may
approximate a constant resistance does exist. Additional work beyond
that presented in the preceding section would be required to establish

the technique as a useful one.
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There is a possibility that E-function synthesis
may be applied to approximations in the frequency domain. The
effect of the return reflection may be minimized by including a
small amount of dissipation with each reactive element. Thus if the
series of poles and zeros of Table III.2-1 ére displaced slightly
into the left half plane and if they are sufficient in number, it
becomes reasonable that the effect along the axis of imaginaries
will approximate that of a constant resistance.

Lastly, as a matter of interest, it is noted that Leo
Storch in his approach to approximating a constant delay15

essentially makes use of an E-function expansion to approximate

the irrational reactive impedance Z(s) = t&hﬁ(s).
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PART 1V

IMPLICATIONS OF THE SCHWARZ' LEMMA

Schwarz' Lemma - A Measure of Dissipation
Direct Application of Schwarz' Lemma - Richards Thecrem
Extended Use of Schwarz' Lemma in Synthesis - Ladder

Type Networks



- 59 -
SECTION IV.1

SCHWARZ' LEMMA - A MEASURE OF DISSIPATION

The single important point to be developed in the present
section is one of the implications of which may be readily seen by
inspection. It is this, that the Schwarz' lemma is at least a
qualitative measure of the amount of dissipation represented in
a realizable reflection coefficient. The Schwarz' lemma, in p-plane
terms, states that any unimodular bounded function may be written
as the product of an E-function and another unimodular bounded

function. Stated mathematically:

~(p) = EMP A(P) (1v.1-1)

In Section III.l1 it was seen that the E-function represents
a pure reactance and maps the p-plane unit circle interior on to
itself. Presuming that a combination of E(p) and /f(p) can be
found so that both are realizable, thenw/?(p) must represent all the
lossy elements of ,(p) and, further, must be responsible for the
fact that the p-plane unit circle interior maps onto only a
portion of itself in the /°(p) transformation.

Since E-functions are alWéys readily realizable as reactance
networks, see Theorem I of Section III.1, equation IV,1.1 evidently
shows prbmise as an approach to synthesis. This is particularly true
in view of its property of factoring out the portions of the function

involving resistive elements in their realizations, since it was seen
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in the E-function expansion method of Sections III.2 and III.3 that
these are the elements that cause the difficulty. It is shown in
Section IV.2 that equation IV.1-1 applied as is,with only a few
straightforward steps taken to insure the realizability of /?(P)
leads to the Bott-Duffin and Fialkow-Gerst family of synthesis
techniques. With a few further refinements, as explained in
Section IV.3, the equation leads to the Foster, Cauer, Brune, and
Miyata methods. The point is made finally that all known synthesis
techniques, with the sole exception of the E-function expansion
method, are representations of Schwarz' lemma in the form given in
equation IV.1-1.

The fact that the closeness of approach of the image of
the Z(s)-plane axis of imaginaries to the circumference of the unit
circle in the P -plane is a measure of the dissipation in the network ,
has a direct analogy in s-plane analysis. The planes involved are
shown in Figure IV.l. Evidently in the s-plane the location of the
image of the Z(s)-plane, axis of imaginaries with respect to the
Z(s) plane axis of imaginaries contains the same information. The
advantage to the P -plane viewpoint is that the relationship may be
expressed in a simple mathematical form as given in equation IV.1-1.

It was mentioned in the opening paragraph of this section
that the only point to be made here was that the Schwarz' lemma was
a measure of the dissipation in a circuit. That point has been made
and discussed. The remainder of the section essentially repeats the

material already presented and adds nothing new. The concept just
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§— PLANE

FIGURE IV.1-1
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developed is more rigorously developed within the framework of
non-Euclidean geometry. Since no new material is introduced and,
with non-Euclidean geometry, a branch of mathematics is applied
which is not in common use in network studies, some justification
for the procedure is required.

As brought out in Figure IV.1-1, the concept described
here has an analogy in the s-plane. It is also clear from comments
made earlier that the intention is to demonstrate that the Schwarz'
lemma is the cornerstone of driving point synthesis techniques. The
basic work in the field of driving point synthesis would appear to be
that of Brune, although admittedly, the field is characterized by
regular and gradual growth resulting from the investigations of
many people over an extended period. 1In his contributionl, Brune
explores the implications of the Schwarz' lemma and concludes from

that study that, for positive real functions:

[ang 2 ()] & [ong® | when [omf |7 (1v.1-2)

Evidently the foregoing expresses mathematically and in more
generality the observations made here in regard to the s-plane
significance of the Schwarz' lemma. Brune's results while interesting
are not in as simple a form as those of the ~-plane as a comparison

of equations IV.1-1 and IV.1-2 reveals. 1In addition the s-plane result
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expressed in IV.1-2 is not as immediately applicable to synthesis as
is equation IV.1-1. This latter statement as to the applicability
of equation IV.1-1 will be demonstrated in Section IV.2 and IV.3.
The situation demonstrates the utility of having several viewpoints
or approaches to a subject - in the present case, the s~plane and
p-plane approaches. It is seldom evident from the beginning
that one approach will bring out all the implications of a result that
are evident in the alternate approach. 1In view of the importance
of Brune's work and because of the interest here in contrasting the
two viewpoints it seems worthwhile to parallel Brune's non~Euclidean
s=plane analysis with a similar p-plane development.

A second reason for extending the analysis is a more tenuous
one. In the present investigation the Schwarz' lemma is used as a
basis for the development of synthesis techniques and its property
of revealing the extent to which dissipation is present in a network
is pointed out. No deep investigation of this property is made and no
attempt is carried out to develop it on a quantitative basis. It
can be conjectured that such a development of a quality factor similar
to the "Q" factor commonly used for resonant circuits might yield a
parameter useful in determining the nature of the network Ffunction
before detailed computations are made. For example, it is pointed
out in Section IV.3 that Kuh has developed criteria, based on the
location in the s-plane of the zeros of the even part of an immittance

function, for ascertaining the extent to which Miyata's synthesis
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technique may be applied. The criteria are not complete in that
they cover regions of zero locations which cannot be so realized
and other regions which can, but include a region in which it is
not evident to which class the function belongs. Whether or not
a quality factor developed along the lines indicated here would be
superior to Kuh's criterion is a matter for further investigation.

A third reason for the non-Euclidean analysis is that it
introduces a non-linear scale of distances which, in many applica-
tions, reflects the importance of dissipation as a function of the
location of the immittance singularities in the s-plane. Thus if
dealing with high-Q circuits whose zeros and poles are close to
the s-plane axis of imaginaries, as, for example, with crystal filters,
a small amount of dissipation may be extremely important. In other
applications where the zeros and poles are well into the left half
plane, the matter is usually not as critical. This topic is
obviously related to the possibility of the development of a quality
factor suggested above.

To re-capitulate:

The basic results of this section are presented in
equation IV.1-1 and the discussion associated with it. A non-
Euclidean analysis of the significance of that equation is presented

for the following reasons:
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1. Such an analysis parallels one presented in Brune's
work and so serves to compare and contrast the s-plane and P -plane
viewpoints.

2. It seems worthwhile recording all important character-
istics of equation IV.1-1 because of its present significance to
synthesis, brought out in Sections IV.2 and IV.3, and the possibility
of the future development of additional uses for the equation.

3., The non-Euclidean scale of distance developed by the
analysis to be presented would appear to reflect the relative
importance of small amounts of dissipation in different parts of
the P -plane.

If somewhat elaborate explanations have been made as to
the reasons for a non-Euclidean analysis, the analysis is itself
presented with little ?reamble. A discussion of the implications of
non-Euclidean geometry would be too lengthy and carry the present
discussion too far afield. The study began with the development by
Lobatschewsky, Bolyai, and Gauss of systems of geometry for which
Euclid's parallel hypothesis did not hold. In the course of this
work there were developed alternate concepts of the straight line and
of distance, which concepts depend on the nature of the curvature of
the surface being considered. A simple well-known example is that
the sphere on which great circles are the "straight lines" along which
distance is measured in degrees. Several texts which have Been

helpful in gaining an understanding of the concepts are referenced16’l7’18.
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The Caratheodory text = has been the most useful single source.

Pick makes a non-Euclidean interpretation of the Schwarz'
lemma of equation IV.1-1 which reads as follows:

"Any function /®(P) of bound one maps the non-

Euclidean plane P} < f onto itself, or onto a part of
itself, in such a way that the non-Euclidean distance
of two image points under the mapping never exceeds
the non-Euclidean distance between their pre-images.
If these two distances are equal for even one pair of
image points and the corresponding pair of original
points, then the mapping must be a non-Euclidean
motion that leaves all distances invariant."

The foregoing, with a trivial change in notation to
conform to the present writing is quoted from CaratheodorylZ. The
concept of non-Euclidean distance will be developed briefly, the
proof of the statement outlined, and it will be seen that the lemma
suggests means for handling dissipative elements in synthesizing
networks.

The non-Euclidean plane referred to in the theorem above
is the unit circle |P}< / in which straight lines are defined to

be the ares of circles orthogonal to the unit circle and the

distance between two points, denoted as D(P, P.,) is defined as:

D (P,,P,_) = 2 tanh”' B:-_E*:- (IV.1-3)
I'RP&

The above concept of distance has the property that

distance increases monotonically as the two points separate, equals

zero when they coincide, and approaches infinity as one of the
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points approaches the horizon of the plane. The horizon is simply
the boundary, the circumference of the unit circle.

The plane in question is illustrated in Figure IV.1-2,
As a matter of interest and to emphasize the non-Euclidean aspects
of the matter, in that figure two lines through a common point X and
parallel to the same line AB have been constructed. The lines are
parallel to AB in the sense that they meet that line only at infinity
which is the circumference of the unit circle. To demonstrate this
sense of infinity consider the distance of the point F; from the origin

by letting P, be zero in equation Iv.1-3.
-
D (o, p,_) = 2 tanh ’ P. l (IV.1-4)

By the relationship19

-l - ) P+
tanh x = /J.. 'o;_ == (IV.1-5)
This may be written:
- + | P.
D (0, ﬁ) = /o,_ (1P (Iv.1-6)

I“ 'Pll
and an examination of either form IV.1-4 or 6 reveals the rapid change
in the scale of distance as RL moves out along a radius from the origin.
To demonstrate Pick's interpretation, consider/a(P), a

unimodular bounded function which at some Po assumes the value o
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FIGURE 1V.1~2
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Then, if/a(p)iél, the expression
/o ™ /0(73)
| = oo °(P)

is also unimodular bounded. By application of the Schwarz' lemma

(v.1-7)

it may be written:

TS —
-

/=~ RP T | 1-RP

where the E-function on the right side of the above expression has

2= r°(P) . i }(P) (1V.1-8)

been selected to have a zero and pole corresponding to those of
the function on the left anda.(P)is necessarily unitary modular
bounded. It follows that:

=r (P) ¢ » = P (1v.1-9)

-AreY| T | I-AP

- From equation IV.1-3:

! @”f(P) (Iv.1-10)
tanh | = = e . L=

§

Po- P
I-RP

it

(IV.1-11)

tanh [.;-‘ b(® ,‘P)]

Hence equation IV.1-9 may be written:

D(ﬁ,(") £ D(P,P) (IV.1-12)

From the above, Pick's interpretation of Schwarz' lemma
follows directly. The case for which distances are left invariant

¢
corresponds to 3.(P)of IV.1-8 being of the form € ’ Expressing
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these results in mathematical form, the following theorem is

obtained:

Theorem II: Any reflection coefficient ,/°(p) maps the interior of
the p-plane unit circle onto itself or onto a portion of itself,
If the former is true the reflection coefficient is necessarily an
E-function and hence by Theorem 1 represénts a purely reactive
immittance., If the latter is true, the extent to which the two

mappings fail to overlap is a measure of the extent to which the

associated immittance fails to be purely reactive.

. . 1 .
As previously mentioned, Brune carried through a
treatment parallel in many respects to the foregoing to arrive at

the important theorem:

"if Z( A ) is a positive real functionl arng, i(’*-),sl Mﬂ-)‘"
for all values of A, satisfying 0 < fwbg.;»f £ f’
The equality signs can only hold simultaneously, 2
unless they hold identically.™

In his development of the above, Brune quotes the Pick
interpretation of the Schwarz' lemma as:

"If the function W of & has no essential singulari-
ties for values of & within the circle Ky/ , and takes
on values which lie only in the interior of another
circle Ky, then all non-Euclidean distances, elements
of arcs and arcs are shortened in the conformal mapping
by W( )/ ). If one such mapping remains unchanged, all
remain unchanged and W is a linear function of ¢/ ."

Brune's non-Euclidean space is the right half s-plane, his

"straight lines,' the arcs of circles orthogonal to the s-plane axis
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of imaginaries, His distance measure is defined as the logarithm
of the cross-ratio of the two points involved taken with the two
points which are the intersection with the axis of imaginaries of
a circle through the original two points and orthogonal to the
axis of imaginaries, His is the Poincare! representation as com-
pared to that ﬁsed here which is sometimes referred to as the
Klein representation., Obviously Brune's non-Euclidean space maps

into the non-Euclidean space of Figure IV.1-2 by the definition of p:

1 - s

(Ilo 1 “8)
1+ s

and his straight lines into the straight lines used here since
the mapping is conformal., Finally the distance concepts may be

related by application of equation IV.1-5,
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SECTION 1IV.2

DIRECT APPLICATION OF SCHWARZ' LEMMA - RICHARDS THEOREM

To consider the synthesis possibilities of Schwarz'

lemma, write equation IV.1-1:

2P = EWMPA(P) (IV.1-1)

in the s-plane representation. It becomes:

(Iv.2-1)
_ / /
Z8) = ! / + / /
R + —
Z(s) [ B Z,(5) R
Zn (8) Z(s)
where:
() _ 1 - (%)
R . + (s 2
! ) ;?‘(s) Ré ©
Z(s) . 1= Als) Z6)
. Rl
R, I+ (8 Z(s) Yz, (s)

Zals) _ 4 — E(9)
R. ) / + E(s) FIGURE IV.2-1

By inspection of equation IV.2-1, the balanced bridge

circuit of Figure IV.2-1 1s seen to be the network representation
for the Schwarz' lemma. Equation IV.1-1 is useful in the general
synthesis problem only if the function Zl(s) is easier to synthesize
than was the original Z(s). The network is useful in design for
with Z, = Rl’ it becomes one of the Norton constant resistance

1

networkslB. To return to the synthesis problem, solve IV.1l-1 for
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/7 (p) substituting the general form of E(p) from equation III.1-3:

i -BP
Ve (p) = [i ‘E -/F-—:;—- 2 (P) (IV.2-2)
= v\—

Consider E(p) having only one factor in its numerator
and denominator or at most two since complex conjugates must
occur in pairs. In either case only one factor need be considered
in the discussion. /7 (p) for realizability can have no poles
inside the unit circle from item ¢ of Table IL.3~l. However,

“%)’ < /. Hence the factor (Pp ~P) must be cancelled by a
like factor in the numerator of @ (p) if /? (p) is to be
realizable. Hence:

~(R) = o (IV.2-3)
Further, to insure ,ff(p) be not merely realizable
but that it be less complex than 2 (p), it is necessary that
the factor (/ ‘E)P)also cancel with a similar factor in the
numerator of 2 (p). Hence:
P(B™) —> e (IV.2-4)

Equations IV.2-3 and 4 require respectively that:

Z(s) =R,
23,

Since Sv is always taken with its complex conjugate, the above

(IV.2-5)

113

...R'

is equivalent to:

Z(s) + Z(-5)) = © (1V.2-6)
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Equation IV.2-6 then states as a condition that /?(P)be
realizable and less complex than2(P), that the E-function be
constructed so that 5“ occurs at a zero of the even part of
Z(s) at which Z(s) is equal to a positive real number.

The foregoing brief treatment contains the essence of
Richards' TheoremZI, Bott-Duffin synthesiszz, and the Fialkow~-
Gerst synthesiszo which latter work contains the twé preceding
contributions and generalizes on them. The development presented
here depended upon three distinct aspects of the situation:

1. The Schwarz' lemma, equation IV.1-1 assured the
possibility of factoring an E-~function out of the reflection
coefficient expression.

2. The choice of Sﬂ and R, can be made so that the
remaining expression, after factoring an E-function, is a
realizable reflection coefficient.

3. The product of two realizable reflection coefficients
may be realized in circuit form as a balanced bridge.

It is important to recognize the separate existence of
the three factors above for they may be used one or two at a
time to obtain additional results. The first and third are

formalized as theorems as follows:
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Theorem III: Realizable reflection coefficients of degree higher
than the first in numerator and denominator may be written as the
product of an E-function and a reflection coefficient of lower

degree.

Theorem IV: The product of two reflection coefficients may be
realized in circuit form as a balanced bridge. The relationships
involved may be obtained by inspection of equations IV.1l=1 and
IV.2-1 and Figure IV.2-1. It is not necessary that one of the
factors in the product be an E-~function as shown in the referenced

example.

To complete the Fialkow-Gerst synthesis procedure one must
consider the realizétion procedure when, at the zero of the even
part, Z(s) is not a positive real number. In the case when it is
a pure imaginary on the s-plane axis of imaginaries, that isﬁ

Z(s) = gl (IV.2-7)
S= ey
which is the Bott~Duffin case, the following variation of the

technique is appropriate: Write the Schwarz' lemma of equation

1v.1-1 as: /:(S) = Ef(s) /;:(s)

Z(k)=2(s) R -s Z (k) -Z,(s) (1IV.2-8)
Z(k)+2(s)  R+S Z (k) +Z(s)

1]
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Then:
2 (8) = ket Z (k) -2() (1V.2-9)
k- § Z (k) +Z(s)
It is seen by inspection that Z,(s) is of the same degree as
Z(s). However, if:
Z(k) = LA (1v.2-10)

then, also by inspection./z(s) = 1 at s =Jﬁﬂohence ZZ(S) must have a
zero on the s-plane imaginary axis and so it and its dual in the
bridge circuit may be easily reduced. 1It is well established in
the literature that a ke satisfying IV.2-10 may always be found.
The reactance function Ls yields the E-function required in equation
IV.2-9, It has already been mentioned that the Schwarz' lemma
has other applications in circuit theory beyond those in synthesis.
Recall that it can be used to realize constant resistance networks.
In the present case the lemma was used first in equation IV.2-8 to
obtain from a given immittance, another having more desirable
properties.

A gimilar technique applies when, at the zero of the even

part, Z(8y) is a complex quantity. Using:

24(5) = /a Z(k)
S

Z,(s) = Z(k) Z,(s)

write Schwarz' lemma in the form:

_ S~ k s = Z4 (3)
2 S+ kb ] + Za (8)

It can be shown that a value of & can always be found for which

and

Zz(s,k) has a zero of its even part at SV and is equal to a positive
real constant there. Hence Zz(s) may be reduced by the method

previously described.
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Details and proof are presented in the Fialkow-Gerst paperzo.
Note in reading that paper that Fialkow and Gerst use Schwarz® lemma
in the form given in Theorém 294 of Polya' and Szegoe23. This is
essentially a combination of equations IV.1-1 and II.1-3 of the present
work. The simpler and more commonly used form of Schwarz' lemma written
in the present notation is:

r® = P p(P)
and involves only the simplest E-function. It is Polya' and Szegoe's

Theorem 280,
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SECTION IV.3

THE SIMPLIFIED FORM QOF THE SCHWARZ' LEMMA
CAUER, FOSTER, BRUNE, DARLINGTON, AND MIYATA SYNTHESIS

Basic Principle

As was pointed out in Section IV.2, the direct applica-
tion of the Schwarz' lemma at a zero of the even part of the
immittance function at which the function assumes a real positive
value leads directly to a synthesis procedure, since at such

points:

R, - 2(s) = R, +2(s) = o

This property, that a pole and zero of the reflection coefficient
be complementary with regard to the s-plane imaginary axis, is
just the requirement that they be singularities of an E-function,
see Figures III.1-1 and 2. It follows, then, from Schwarz' lemma,
that these terms may be immediately factored out of the expression
for the reflection coefficient leaving the remaining expression
simpler to realize. It follows, then, that, thru use of the
bridge realization for the product of reflection coefficients, a
practical synthesis technique results.

The concepts described above are easily explained in
terms of the s-plane root locus plot of the zeros and poles of the
reflection coefficient., Refer to Figures II.2-2a and b. The poles
and zeros of 2 (8) originate at the zeros of Z(s) for small Rl and
approach the poles of Z(s) as Rl grows without bound. In the

20
Fialkow-Gerst work  these loci are essentially examined for the
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value of R1 at which at least one pole~zero pair assumes the
required complementary relationship. Since the value of Rl
required is just that at a zero of the even part of the immittance
the seafch of the locus is actually performed implicitly without
actually drawing the locus, but merely by examining the expression
for the zeros of the even part of the immittance.

There is one situation where no detailed examination is
required to determine the value of Rl and s, . As Ry grows
without bound, the pole-zero pairs of the reflection coefficient
converge on the poles of Z(s). If some of these poles of Z(s)
are located on the axis of imaginaries in the s=plane, then, in the
limit as described, the pole and zero of ,° (s) converge on the axis
of imaginaries and assume the required complementary relationship
with regard to that axis. Conditions of positive reality prevent
these root loci from approaching the imaginary axis along paths
other than ones orthogonal to it.

In the special case just described, when R; grows without
bounds and the singularities of the reflection coefficient approach
sy » an imaginary axis pole of Z(s), the equations of Section IV.2
are modified as follows: Equation iV.2-5 becomes:

Z2(sy) = Z(“g,,) —p <o (IV.3-1)

and equation IV.2-1 simplifies to:

Z(s) = Z,(s) + Z(s) (Iv.3-2)

Hence, the balanced bridge relationship of IV.2-1 has become simply
the equation for two impedances in series or two admittances in

parallel.
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It is the foregoing situation which is the basis for Foster
and Cauer synthesis as well as for those of Miyata, Brune, and
Darlington., The methods for developing Foster and Cauer synthesis
in 8chwarz' lemma terms are straightforward and the required
concepts are brought out in a discussion of Miyata and Brune
synthesis. Accordingly, these two former methods will not be
discussed explicitly, the material necessary for their understanding
being contained in the discussion of the more complex Brune and
Miyata techniques.

The discussion diverges for a few paragraphs to cover an
essential point of mathematics. In the simplification of equation
IV.2-1 to the form of IV.3-2, that is taking the balanced bridge
to the simpler series network form there arises a question of

defining the value of such terms as:

Lom '?'z
R—we Z (s)

at points in the complex plane where Z , (s) itself has a pole.

Implicit in the foregoing treatment has been the assumption that
2

the Ry term dominates so that the above expression grows without

bound in the limit. Hence the reciprocal of such terms vanishes

leading to the simpler form. On the other hand, R, may be so large

that ~(s):
R, — Z(s)

(s) =
4 R, + Z(s) (IL.1-1)

reduces to a point mapping. It is hard to conceive that such a

mapping contains any information.
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The difficulty is resolved by noting that in the circuit

of Figure IV.3-1 the terms approaching infinity involve R12 whereas

in the reflection coefficient Rl is involved only to the first power.

Further, from the discussion of Section II1I1.2, it is clear that any
realizable immittance may be considered to involve only simple poles
limited in location to the axis of imaginaries. Hence, it follows

that if Rl is defined as:

1
R = lim

S-——;Sk 5 Sk

that the circuit will simplify as required, while the mapping will not
be reduced to a point mapping. The situation that makes both these
events possible simultaneously is the fact that in the first case

ratios of the form:

2
Rl

Z(s)

are involved while, in the second, the ratios are of the form:

*1

Z(s)

Miyata Synthesis:

The outline of Miyata synthesis which follows will be only as
complete as is required for present purposes. A complete description is
already available in the 1iterature.24 The purpose here is a re-

examination of the method as a special application of the Schwarz' lemma.
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FIGURE IV.3-1
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The Miyata contribution establishes the following:

a) For a function U(s) satisfying the conditions that it is
an even rational function of s with real coefficients and with no
poles on the imaginary axis and if'UQjoo) 2 0, then there exists an
impedance function Z(s) which has U(s) for its even part and which is
uniquely determined when Z(s) has no poles on the imaginary axis.

b) The function Z(s) of "a'' above may, in many important
cases be written as a sum of separately realizable terms which have
zeros of the even part at the origin or infinity.

¢) Impedances with zero even part at the origin or infinity
may be reduced in a repetitive manner similar to that of the Cauer
process for reactive functionms.

The formulas expressing the relationships between the
even and odd parts of an immittance and its reciprocal are presented
in Table IV.3-1l. Listed in Table 1IV.3-2 are a few elementary

deductions as to the characteristics of these functions when

Function Form Even Part 0dd Part

Ni + SNa N,D, - SZN& D2 S[NzD:"N:Dz.]

Dy + 5Dz D*—s* D D* ~ s*Df

Y(5)=[Z(5)J—f D, + $D, NiD/ = szNz. De, S[N: Dz—NzD:]

Ny + SNy N*—S* N N - s*Ng

TABLE IV.3-1
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Z(s) has zeros of its odd and even parts at the origin. From the
conclusions presented in this latter table, it is evident, as
mentioned, that with a zero of the odd and even part of a p.r.
function at the origin, the reciprocal function has an even part

with a zero of lower order and an odd with a pole at that point.

‘Observation Conclusion
Dl + SD2 is Hurwitz Dl & D2 have no zeros at origin
Y(s) is p.r. N1 + SN2 has a simple zero at origin
2
le - SZN2 has a factor S2

le has a factor 52

N2 has no zeros at the origin

TABLE 1V.3-2

The reciprocal function then fits the conditions for appli-
cation of the simpler form of Schwarz' lemma. The lemma is applied
with Rl'—-_’ e and a reactive element, a simple series inductance or
parallel capacitance for the cases of impedance or immittance respect-
ively, is removed. ‘Miyata shows that if the original even part zero
was of higher order than the first power in s, that the remainder
function, in turn, has a zero even and odd part at the origin so that
the process may be repeated. The repetitive process involving recip-

rocal functions at each new stage results in a ladder network of

inductances and capacitances terminated finally in a resistance.
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Kuh, in a reference which is discussed in more detail in
Section V, develops the conditions on the locations of the original zeros
of the even part of Z(s) in order that it may be developed into the series
of additive terms which have zero even parts all at the origin or infinicty.
In terms of the Schwarz' lemma, the Miyata synthesis is a method whereby
the simplified form of the lemma may be applied in an iterative manner.

It is worthwhile therefore to show a simple example to illus-
trate a single step in the use of the simplified Schwarz' lemma. The

example taken is that of a simple resistor and inductance in parallel,

The reflection coefficient using the form of Figure II1.1~2 is:

. RtLs
7°(s) = & RLs
R+lLs
G + R¥Ls
L
. oms - %- %
RLs + M + s
&

Consider the reflection coefficients of the two elements separately

/ /

/_—-—-.-—. — —cc——

Ré& / L

/;(5): —_ /f(s): q‘/S
!+ e SREry

and the product

=~

/2 (8) /2 (s)

I

R L
RL5+4+{
so that

/2 (s)

1

/2 Cs) /2 (s)

in the limit as G, —B® 0o to first order terms in G

1

s R
Ris — X — £ + 4~
S

%

10
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To re-iterate, Miyata synthesis is made up of two
distinct features. The first part is the method of decomposing
Z(s) into additive terms which have even part zeros at the s-plane
origin or infinity. That technique has not been discussed here.
The second contribution of Miyata is recognition of the fact that
simple reactive elements can be removed in successive steps from an
immittance function when it has even part zeros at the origin. In
terms of the present discussion, Miyata recognized that the simple
form of Schwarz' lemma of equation IV.3-2 may be applied on an
iterative basis to the additive terms of Z(s) described above.

The treatment when the zeros of the even part are at infinity
is related to the treatment described here by the usual 1/S mapping.

An example of Miyata synthesis applied to one of the
additive terms of an immittance function is given in Figure IV.3-1.
The material just discussed is by no means a complete analysis
of Miyata synthesis. As mentioned the goal has been to demonstrate
the method as an application of the Schwarz' lemma. Some of the
limitations of the Miyata technique are discussed in a critique
presented in Part V. For more details see the referenced

article.24
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Brune Synthesis

Brune synthesis represents a peculiar extension of the
simplified Schwarz' lemma form of equation IV.3-1 and 2. A
necessary preamble to it is the creation of a zero even part on the
s-plane axis of imaginaries by resiétance minimization which need not
be discussed. Further, for simplicity, the situation will be
considered where the initial reactive element removed is a series
inductance creating a zero of impedance of the s-plane axis of
imaginaries. Once this zero has been created, the simplified
Schwarz' lemma may be applied, in the usual Foster procedure, to
remove a resonant section. Brune's contribution was the step required
to make the Foster procedure possible;

Brune's thought processes, in terms of the Schwarz'
lemma, might be described as follows: The Schwarz' lemma is
written:

r(P) = E(P) 5 (P) (IV.1-1)

The success of other synthesis methods depended on selection
of a unit function such that the remaining f?ﬂﬂ was reélizable and
simpler in some way than was the original /°ﬂp).Brune notes, however,
that it is not really necessary that /?(P) be realizable by itself,
since the realizability of /®(P) guarantees the realizability of the
product. Further, referring to item 2(a) of Table II.2-2, he notes
that the behavior of Z(s) at infinity can only be that of a simple

pole, a simple zero, or a constant. In the immittances with which
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Brune is concerned the behavior at infinity must be that of a constant.
This is due to the Foster preamble which removed the other two possibil~
ities. 1In this case if, by use of the Schwarz' lemma, a pole at
infinity - which isn't there - is factored out, the /?(P)term in
equation IV.1-1 above is necessarily unrealizable. The manner in
which it is unrealizable, however, affords hope for a practical synthesis
technique.

The pole or zero behavior at infinity is primarily due to
the presence of reactive elements in the network. Factoring out a
non~-existent unit function thus created a non-existent reactive
element and, in addition, created in /?(Fq a reactive element of the

opposite sign. Essentially Brune wrote the Schwarz' lemma as:

Ri-Ls R LS
R.+Ls R.“‘LS

1

~(s) P (s (IV.3-3)

)y - (8)

1]

The second reflection coefficient involving inductance is
recognized as that of a negative inductance. Brune then essentially
realized that he would have a configuration of reactive elements some
of which would not be realizable individually but that collectively
they were realizable. As is well known, the gain made by this procedure
is involved in the fact that the inductance selected to be removed is
of such a value that a zero of the impedance is created on the axis of
imaginaries making a Foster reduction possible. Further, the fact

that /5(s)is not realizable but the product £ (8) /9 (S)is, results in a
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circuit where the elements representing these two terms are combined
in a unity coupled transformer.

As a matter of interest an example of Brune synthesis taken
from the Tuttle text’ has been worked in Figure IV.3-2, The Foster
part of the procedure was carried through in terms of the simplified
form of Schwarz' lemma. Since admittances are involved G1 rather than

R1 is used in the reflection coefficient expression and as G, grows

1
without bounds, in accordance with equations IV.3-1 and 2, its reciprocal
is used and higher order terms of the reciprocal are discarded. The
procedure while illustrative of the validity of the concept is obviously
cumbersome compared to the usual manipulations in the Z(s) plane.
As is pointed out in Tuttle's text, the Brune process may
be extended to the case of zeros of the even part on the s-plane real
frequency axis. The same procedure is carried out as previously
described, the non-existent pole at infinity is factored out leaving
the same situation that led to the unity coupled transformer before.
In this case of zeros on the real frequency axis, an RC or RL network
is removed rather than the resonant network of the preceding situation.
Further, Tuttle points out that the extension of Brune's
method to apply to zeros of the even part located generally in the
s-plane, that is located neither on the real nor the imaginary axis,
is identical with Darlington's synthesis procedure. The Darlington
procedure is most simply explained in terms of four-terminal rather
than two-terminal synthesis. Developing it as a special case of

Brune's procedure is a complicated procedure useful principally for

its conceptual importance.
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Immittance ' Characteristic & Action

2
st
to[2,] = _(5*4)
s¥+195*+100
Even part zeros at s -~ T j2
Remove series inductance
Ls = 2(s) g, ;»

= - Ls i
Zb Za L= 4 henry

Z,= s*+3.6s 416
$* 4 S+10

~0.65%40.45%245+1-6

M[Z,] = odd [2,] =0
Sz

- Sz3®
Zy= S+ S +10 ’
Invert & apply simplified Schwarz' lemma
at s = 32
rels) - G, - Yh(S)
T G + Yy(s)
-0.66 5 +[04 G-1]st-[246+]s + [1Leg~10]
0.6 G 5%+ [0.464] s*-[246-1] s+ [166+i0]
[s* -256"s+4 ] [otst2s56 ~04]
= - - (see text)
[s* + 266 st4] [065-25@" -04]
= /as) 77 (s)
<
1= /5(5) 48
() = g ¢+ ——— = e~ (realize by inspection)
T Y As) S+ 4 v Rnepeetion
5
Y, (5) - 6‘, ° '-’/:-'6'——(—5'2"‘ = "‘““'Zé""‘ (realize by inspection)
[+ /2 (s) - Va
4" - % H
Ty
Y u
Z,— zb_.é = s
s a¥
T %f

FIGURE IV.3-2
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The Simplified Schwarz' Lemma - Summary

It has been pointed out that Foster and Cauer synthesis,
the removal of resonant section in series or parallel or in a ladder
network, may be looked upon as special cases of Miyata synthesis and
that all three techniques are simply applications of the simplified
form of Schwarz' lemma. The significant feafure of Miyata synthesis
is that, by virtue of being performed at the origin where the odd
part of the immittance necessarily has a zero or a pole, the process
is iterative and may be continued until the immittance is reduced
to a simple resistance.

To create an iterative procedure for zeros of the even
part that occur on fhe axis of imaginaries but not at the origin,
requires use of the Brune procedure with a resistance minimization
taking place between each Brune realization. As a purely intellectual
achievement, Brune synthesis is remarkable in that in the process the
individual elements are not required to be independently realizable,
the mathematical manipulations being so contrived that the sub-circuit
as a unit is realizable. Just as Foster and Cauer synthesis may be
extended to zeros of the even part not on the s-plane axis of
imaginaries by positive real mappings, so Brune synthesis may be
extended in the same way. In particular, Darlington synthesis is a
special case of the Bfune procedure.

Many of the important results mentioned in the present section
have been adequately treated in the literature and hence have merely been
mentioned without the proofs being repeated. The emphasis has been on

relating these topics to the simplified form of the Schwarz' lemma.
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PART V

SUMMATION AND CONCLUSION
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PART V

SUMMATION AND CONCLUSION

Summary

It was proposed at the beginning of this work to re-examine
the developments in two-terminal network synthesis beginning with
Brune's work to see whether those developments, when written in
reflection coefficient terms could not be expressed in terms of a
single unifying approach.

Upon investigating the properties of the reflection
coefficient it was found that its most prominent feature, for
realizable networks, is the unimodular bounded characteristic. This
corresponds generally to the positive real concept for immittance
functions which derives directly from the linear, passive, causality

25 26,27,28
conditions. Meixner develops both concepts for thermodynamic systems
for small departure from linearity and shows that the causality
- condition can be replaced by a statement of the second law of thermo-
dynamics. The references serve to indicate the fundamental nature
of both approaches to the subject.

Using the reflection coefficient, a basic synthesis method,
E-function synthesis, was developed by direct application of some of
the mathematical properties of unimodular bounded functions. E=function
synthesis realizes a driving point immiittance as a circuit made up of
an infinite number of purely reactive components. Since it is the

lossy elements which lead to the infinite number of elements in the
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circuit, it was clear that a method was necessary for handling
dissipative elements. The Schwarz' lemma was shown to be a measure
of the dissipation represented in a driving point function and
proved to be the desired tool.

Finally, it was shown or indicated that all the various
techniques for the exact synthesis of driving point immittance
functions may be demonstrated to be special cases of the Schwarz'
lemma. The resulted are tabulated in Table V-1.

In view of the fact that the two concepts are equally
fundamental it can be expected, in general, that results obtained
by use of the impedance concept may be duplicated by use of the
reflection coefficient concept and vice versa. It does not follow,
however, that parallel operations can be carried out with equal ease
or yield equally worthwhile results in both frameworks. The present
work has several examples of this statement. In Section IV.1 the
usefulness of Pick's interpretation of Schwarz' lemma is apparent
when the results are expressed in p-plane form; in the s-plane the
results are merely a curious and somewhat awkward relationship between
the angle of an immittance function and the angle of the independent
variable in a restricted domain. In Section IV.2, it is seen that
Fialkow and Gerst were able to generalize the Richards and Bott-
Duffin work by reference to the p-plame. It would be awkward, but
not impossible, to relate Cauer, Foster, Miyata, Brune, and Darlington
synthesis as is done in Section IV.3 without use of the reflection
coefficient. Indeed, the basic problem of synthesizing a rational

function in a network consisting of a finite number of elements involves
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Method

Relationship

Reference

Fialkow-Gerst

Direct Schwarz' Lemma

Section IV.2

Bott-Duffin

Special Case of
Fialkow~Gerst

Section IV.2

Miyata

Simplified Form of
Schwarz' Lemma
Applied at Origin

Section IV.3

Foster

Simplified Form of
Schwarz' Lemma
Applied on Imag. Axis

Section IV.3

Cauer

Simplified Form of
Schwarz' Lemma
Applied on Imag. Axis

Section IV.3

Brune

Forced Foster Form by
Artificial Form of
Schwarz' Lemma

Equation IV.3-3

Darlington

Special Case of
Brune

Not Discussed
(See Ref. 9)

TABLE V-1
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the method of handling dissipative elements and this feature became
obvious early through use of reflection coefficients as was discussed
in Sections IIIL.2 and III.3.

If it is characteristic of the reflection coefficient
notation that it presents the basic concepts clearly and hence acts
as a guide in synthesis, it is also obvious that the immittance notation
is the more convenient one in which to carry out the actual manipulations.
There is simply no point in becoming involved in multiple mappings of
complicated functions when such steps can be avoided. Even the simple
removal of a resonant section becomes a very complicated procedure when
it is required that the operation be carried out in terms of the

reflection coefficient as is illustrated in Figure IV.3-2.

The Competitive Aspects of Synthesis Techniques:

In seeking to determine which synthesis technique to use for
a particular problem, the fact that all practical techniques are just
applications of the Schwarz' lemma may be used in the decision making
process. That is, the basic topology of the network and the type of
elements involved is determined by the choice of synthesis method.
Thus, the direct application of the Schwarz' lemma in the Richards,
Bott~-Duffin, Fialkow-Gerst type procedure of Section IV.1 leads
inevitably to the balanced bridge configuration. Similarly, the
Brune procedure involves the use of unity coupled transformers.

There is a general feeling, and not an unjustified one, that

the Miyata procedure is superior for general synthesis purposes. It
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avoids the large number of elements and the balanced bridge and its
inherent sensitivity to variation in element value which result from
the direct application of Schwarz' lemma. Although the Brune method
uses the simplified Schwarz' lemma and so uses fewer elements it
involves transformers which are less desirable than are the other

passive elements.

29

Kuh, in a critique of Miyata synthesis, shows that zeros

of the even part which occur on the axis of imaginaries in the s-plane
cannot be realized by the Miyata technique and that such singularities

located in the sector:

‘f&h"' J"‘ 2(5) < -”‘
e 2(s) = 4 (V-1)

may always be so realized. He then states the following:

"The basic concept behind this technique is to
realize that the minimum resistance, or looking at
it another way, the zeros of the real part in the
region described by equation V-1 represent the re-
sources of a given immittance function. Advantage
should be taken of the resources in the realization.
The reason that Brune had close couplings and Bott-
Duffin required a large number of elements is simply
that they removed the minimum resistances to start
with in each cycle."

Kuh's comments guoted above - and they have been paraphrased
slightl?'fo fit into the present text - are important in that they
direct attention to the importance of the location of the even part
zeros in syﬁthesis. However, in the light of the developments

presented here those remarks require extension. Brune and Bott-
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Duffin synthesis have the defects mentioned by Kuh because those
defects are inherent in the way the Schwarz' lemma is applied.
They exist regardless of whether a resistance minimization has
been performed or not and, indeed, since these techniques may
be applied at even part zeros which are not on the axis of
imaginaries, resistance minimization is not required.

The writer is not inclined to consider one synthesis
technique as inherently superior to another. The implications of
such a position are that one network topology is superior to
another. If, as may be expected, an important future application
of network theory is to be in the development of models of
physical processes, then the modél to be most useful must approx-
imate the process as closely as possible. Meixner's fundamental
approach already discussed indicates the reasons for the usefulness
of electrical networks in such applications. Obviously it cannot
be stated categorically that in all such applications one topology
will always be superior to others.

There are many linear approximations to the transistor,
for example, based simply on application of the g, h, y, z, or
chain matrices to a four-terminal black box. LinvillBO, however, has
developed a network model which promises to.be truly useful in that
the passive elements each represent an actual independent physical
phenomenon. The model as used by Carver Mead31 has proven to be

capable of easily handling phenomena which were awkward to handle
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with previous models. In cases of this type, transformers or
balanced bridge networks might be most appropriate to the problem
at hand. 1In the case of models of nerve networks, for example,
one might desire to use transformers as most closely approximating

the actual process.

The Case for New Synthesis Procedures:

The statement can be made that all the practical synthesis
techniques are merely applications of the Schwarz' lemma., It is
probably true that the same situation will hold for any new techniques
to be developed - although predicting the future is always a
dangerous pastime. Accepting this restriction as reasonable,
however, it would appear that there are two main sources of new
techniques. The first involves broadening and extending the present
procedures as was done, for example, by Fialkow and Gerst in connection
with Bott-Duffin synthesis. The second involves going back to
fundamentals to develop completely new approaches.

One of the most prolific sources of new techniques
derived by extending known methods is through use of multiple
mappingsvbased on the property of realizable immittances given
in item d of Table II.3-1 and its reflection coefficient analog.

The property is that of Zl(s) and Zz(s) are realiable then Zq [Zz(si]
is also realiable. Using essentially this property Reza32 has
very ably extended Foster synthesis to cover a wide class of

special cases. Presumably the same thing could be done with the
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balanced bridge technique so that, for example, a single balanced
structure would result rather than the bridges within bridges that
are realized through formal iteration of the process. Somewhat
similar results may possibly obtain in regard to Brune synthesis
and it should be interesting to observe how complex networks, one
of which is separately not realizable, combine to give a realizable
configuration.

These types of synthesis techniques are more a matter of
manipulation than of fundamental investigation. They have the
characteristics that one has some assurance of success beforehand;
the work required to accomplish the task is sufficient to establish
a level of competence and the results are often useful and
interesting.

A more worthwhile approach, however, would appear to be
one which wéuld develop methods for examining the zeros and poles
of an immittance function to determine when such mappings should be
applied. Guillemin in his synthesis text develops criteria for
determining when complex poles may be removed in a Foster-like
procedure., It ié probable that the last word has not been said on
this subject and that the topic could be placed on a more convenient
basis if developed in terms of the various root loci discussed in
Section II.3., Were it planned to extend the present paper, this

topic would be the next topic for investigation.
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The Brune use of the Schwarz' lemma, where the realiz-
ability condition is no longer applied to the individual factors
in the product, is very stimulating to the imagination. It implies
a useful approach - the factoring out of any expression whatsoever
in order to so shape the second term in the product thatit will
fall into a convenient class for realization. Since the product
itself is realizable it is presumed that the circuit represented
by the product is vealizable as a whole. Such an approach might
be applied to the synthesis method of Section IV.1 to extend the
possible variations of the balanced bridge realization.

The foregoing are possibilities suggested by the theme
of this investigation. All of them obviously are subject to
further study. The test of the utility of a basic concept
is that it does suggest new approaches to a subject. These
foregoing topics are offered as evidence that the Schwarz' lemma

unifying principle does meet that criterion.
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