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ABSTRACT

L theoretical study is made of the transient response In
two acoustic syshtems. Each system consists of an 1deal fluid
in contact with an elastic solid. Ir one case the Inferface
is plane, in the other case it is cylindrical.

In the plane case °t is found that an exact algebralc
solution can be obtalned on the axis of symmetry.. The verti-
cal displacement at axlal poin%ts 1ls composed of the acoustlc,
afterflow, and correction terms. In solids for which Poisson's
ratio is greater than one third the initial varlation of the
correction is toward positive values (corresponding to motlion
directed toward the interface). In solids for which Polsson's
ratio is less than one third the inltial variation may be
elther positive or negative depending on the magnitude of the
compressional velocity ratio. 4&n interface wave ls shown to
exist regardless of the cholice of elastic parameters. It 1s
found that the reflected wave has a Torerunrer in the regilon
of the fluid in which the refracted wave is the first arrival.

In the cylindrical case the Initlial pulse shape 1s dis-
torted upon reflection. It s found that as the wave approach-
es the axis o7 the cylinder the leadirg edge steepens. If,
at the source, the initlal slope of the pressure-time curve
is finite the amount of steepening Is infinite. An exact ex-
pression for the transient response at polnts off the axis 1s

obtained which can be evaluated by numerical means.



-l-

INTRODUCT ION

The primary object of this research 1s to predict, on the
tasis of theoretlical considerations, the transisnt behavior of
two acoustic systems. Each system consists of an 1deal fluid
in contact with a perfectly elastic, isotroplc solid. In one
case the interface is plane, in the other 1t is cylindrical.

In many problems of this type the maln source of diffi-
culty arises In the evaluation of the formal integral repre-
sentations for the response. The method to be used in any
given case will therefore depend to a large extent upon one's
ability to evaluate the integrals in the region of space
where the response 1s required. At the present time it ap-
pears that, in the treatment of problems degling with plane
toundaries, the operational approach possesses certain advan-
tages over the steady state approach in those cases where the
response 1s required In the vicinlty of the axis of symmetry.
The operational approach in the form used here was introduced
by L. Cagniard (1) in connection with his study of the buried
point source problem.

A number of simplifying assumptions are made in deriving
the usual form of the wave equation from the fundamental equa-
tions of hydrodynamics. These assumptions must be taken into
consideration in interpreting the results of this investiga-
tion. The derivation of the equations of continulty ard mo-
tion for an ideal fluid may be based upon the assumption that
it is possibkle to follow a fluld element in its motion through

space. This fluild element iIs enclosed within a hypothetical
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surface which permanently separates the fluid on the outslde
from the fluid on the inside. Although the shape of this
surface and the volume enclosed by it change continuously,
none of the initially enclosed mass ever crosses it. Tmpliclt
in this assumption is the requlirement that the element contain
sufficient rass to warrant our treating 1t In the ssme manrer
‘as matter in bulk. In order for such a forrulation %o be use-
ful it is necessary to assume that the spatlal derivatives of
sﬁch quantities as the pressure anéd the velocity components
exist and are finite at all points within the fluid at all
instants of time. In an ideal fluld the equations of continu-

ity and motlion take the form

d
(1) o—,-zg-l- 7-@¥) =0

and
-+

) +@7)]=F-LTP ;
where ¢ 1s the fluld density; V , the vector velocity; F, the
total pressure; arxiF’ , the force ekerted on unit mass by any
external flelds which may be present.

We now consider the assumptions which must bte made in
deriving a wave equation from equations 1 and 2. If the vec-
tor veloclty vanlshes in the time interval precédihg the in-

troduction of acoustic energy, equations 1 and 2 reduce to the

form

(3) dG, -
gt =9

and

(2) oF = VE,
where the subscript indicates that the density and pressure

are to be determined in the undisturbed system. In the prob-
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lems to be investigated it 1s assumed that the only external
force acting is the force of gravity. The Initisl density
distritution, J,, will, in general, reflect the influence of
a number of fgctors acting simultaneously. For example, tem-
perature and salinlty as well as gravity exert an important
Influence on the density variation in the ocean.

In order to descrive the propagation of sound iIn such

a medium 1t 1s convenlent to introduce the notation
=0, 4+
(5) o+
P=P°+P8 )
where § 1is the change in density and PS 1s the change in pres-

sure caused by the disturbance. The equation of continuity
mgy then be expressed in the form

(6y  434¥v0,+0,v-7 +Tvs +svd=0.

It is interesting to rote that, if the amplitude of the sound
wave is finlte, the terms which contain Vg, and V§ can
be made to approach each other in magnitude by increasing the
frequency of the vibration. 1In order to obtaln the first
order sound theory it 1s necessary to assume that the displace-
ment amplitude 1s vanishingly small; then equations 1 and 2
reduce to the form

(7) ‘i-é-t—?-Va.i-a,v-V:.o

and |

(e ad¥=F5_yp,.

& solutlon to this system of equations can be obtained
1f 1t is assumed that there exists a unique relationship be-
tween the pressure and the density within each fluid element.
On the basis of this assumption 1t 1s possible to define an

effective bulk modulus, K , by means of the relation
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(@) 4E. 7P - X €’£+VW} :
In general, K will depend not only on position “ut also on
time. Equatlon S expresses the fact that, within the fluid
element, the time rate of change of the density is related to
the time rate of change of the pressure by the broportiona]ity
factor K/b', In the limiting case, when the oscillations about
-the equilibrium position are small, K can be replaced by the

acfabatic bulk modulus, K;, and eaquation 9 can ke rdduced to

the form
(10) 35 47.7E = Ko{JS+VVa}

P. G, Bergmann (2) has taken eguations 7, 3, and 10 as the
basic equations of the first order sound theory and hss de-

rived from them a linear, second order, partial differential

.

equation for the differentlal pressure assocliated with a peri-

IS
odic disturbance. If the system has been completely speciflied
thls equation can te used to determine which factors can be
neglected,

In the discussion which follows we will restrict our at-

tention to systems which can be characterized by a velocity

PRI
3

potentiag

e o
o)
s}
foud
}..J
[77]
-

to systems which are in adighatic equl-

1ibrium. Eaquation 10 can be rewritten in bthe form

K It g Jt )
where
(12) = %6 _ VR,
os K

In the cases to he considered ths "eotarzg vanishes., This is

a consequence of the Tact that the magnitude ofz: s propor-

Y 2
il

ti

ufficient conditions for the existence of g veloclity poten-
1 are discussed in Lambt, reference (3), pages 17 and 18,

B0z
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tional to the difference between the existing density gradient
and that which would te present if the system were in a state
of adiabatic equilibrium.
-y

A partial differentisl equation in ¥ can be obtained by
differentiating the equation of motion, equation 8, with re-
spect to time and by using equations 7 and 11 to eliminate %%'

- -
and 994 . The resulting expression for V has the form
2 —A
(13) O, Q‘_gz =-F lv-vo;w,v.V} +V {%"{V-VG.-*G,V.V]} .
: (-]
The introduction of a velocity potential § , defined by the
relation
-

(14) V=V® |
reduces equatlion 13 to the form

v{cd® _K.[ g 2
(15) {6. I‘g’ 3;[745 -VG,«-G.V‘Q]} =-F{vave,+cy2d}+ %_tgvc, .
This relation may be further simplified if we note that the

—tp
vanishing of the vector G implies that

(16) Y0 - YP = GF .
00 Ko K.
Equation 15 can now be rewritten in the form

o) v{5dd -Kelvg.ve, +avl] =(va)| 55, - byve ¥0,- K~v’9}

This relation 1ndlcates that

(18) G.V{*%,?;-ég.[v@-VG.*-G.V‘QIFO

The guantity in parenthesis in equation 18 must vanish iden-

tically. It is clear that this quantity cannot be a function

of the space coordinates—neither can it be a constant nor s

function of time, for if this were the case the resulting ex-

pression would imply that ® is variakle In regions of space

which have not been reached by the disturbance. The equation
(19) %) V*i Kovqsva=o

describes the propaéation of small amplitude sound waves 1in
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an ideal flvid which 1s in adiabatic equilibriuma and which 1is
acted on by an external, conservatlve force fleld. If the
direction of the external force 1s constant throughout the
fluid and the coordinate system 1s chosen in such a way that
the direction of increasing Z coincides with the direction of

? the eqguation for § can be reduced to the form

ooy K Jd:',,
(20) T %VQ' — =0

The equation which connects the differential pressure and
the velocity potential can be found by introducing the expres-
sion farij from the equation of continuity, in equaftlion 11

and by replacmgv in the resulting expression bvv§ ; then

(21) j{‘— K"N Vo, ~K7 %8,

It 1s evident that
(22) P, =-q JI¥.
§77% 5%

The analytical results are most easily interpreted if we
focus our attentlion on the displacement field, at. One of
the chief consequences of our previous assumption corcerning
the smallness of the motion is that thes velocity and displace-

ment flelds are simply related by the expression

(23) JL(
}/ Jt’

This relation implies the existence of a scalar displacement

potential,¢, which satisfies the equation

(24) d=F0Q.

The fact that:ZT'vanishes in the region of the fluld which has
not been reached by the dlsturbance indicates that @ must be

independent of the spatial coordinates in that region. It is
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important to note that 0 is not necessarily Independent of
time In the undisturbed region. The velocity potential may
be expressed in terms of  as follows:

(25) §=%¥-\4(’t)-

Throughout the subsequent discussion 1t will te assumed that
the arbitrary function of time, #(f), may be set equal to zero;

then the expression for the differential pressure tecomes

2
6 = -G .
It is clear that if 4{)®0 the displacement potential must

gatisfy equation 19, which can now be rewritten in the form
(27) %-Vﬁv’¢-3£=o,
where V‘_==(K¢,I<5,)"g and Eaa-ﬁ . The significance o‘f the indi-
vidual terms in equation 27 1s made apparent 1f this expres-
gion is first multiplied by =@ . The first term is then
just the differential pressure actiﬁé at a point and the third
term 1s the change in hydrostatic pressure associated with g
given vertical displacement from that point. 1In a system of
thls type 1t is expected that the displacement amplitude will
decrease as the frequency of the pressure oscillation is in-
creased. For frequencies which are not too low the direct
effect of gravity, expressed by the third term in eéuation 27,
becomes negligible. The ultimate Jjustification for neglecting
this term can be obtained only after the solution is intro-
duced into equation 27 and the relative importance of the in-
dividual terms ascertained.,

Gravity also exerts an indirect influence btecause of the

fact that 1t causes the density and incompressibility to be

depth dependent—that 1s, it makes the medium dispersive. TIn



-8

our investigations 1t will be assumed that within the confines
of the system this variation is so slight that 1t may be neg-
lected, In this special case equation 27 reduces to the form
(28) %-vazlp =0.

Bquations 24, 26, and 28 will be taken as the starting point

in all of the subsequent discussion.
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PART I

REFLECTION OF AN ACOUSTICAL PRESSURE PULSE
FROM A FLUID-3SOLID PLANE BOUNDARY

1.1 Introduction

- The purpose of this Investigation is to study the tran-
sient behavior of the fluid in the vicinity of a plane fluid-
éolid interface. In solving probtlems of this type the usual
procedure consists in first determining a valid aSymptotic
solution to the steady state problem at great distances from
the source,and then in using the Fourler integrai to synthe-
gize the transient response. This Investigation will serve
to 1llustrate é different approach to problems of this general
type which was developed by L. Cagniard. Application of
Cagniard's method leads directly to an expresaion for the
tfansient response at any point In the system. One of the
remarkakle features of this method is that it gives an exact
algebréic expression for the response at points located on
the axls of symmetry.

I.2 Description of the Source

Vie will leave unspecifled the physical characteristics
of the source and assume only thgt it is capable-of exerting
a uniform pressure over the spherical surface '=Q, and that
the pressure-time dependence gt this surface 1is known.

It is instructive to consider the case In which the dif-
ferential pressure, at the spherical surface ¥=Q,1s given by

the relations:

(29) %lt,%)ﬂo, 0= taa,/v,
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(29)  Flr,a)=F, s (Ket-aa/V)} , ao/v st Qo/Ve+ T,

S0, t>a/VtT,
where K=2%/T . The displacement potential, @ , and the radial
displacement, U., are readily obtained by expressing the wave
equation, equation 26, and the source function in terms of
the Laplace transform variables P, ¢ ,and U . If 1%
is assumed that Q and.%g vanish at =0 st all points in the
f.luid for which Y2Qe,the transformed wave equation takes the
fofm
(z0) wP=(s*3) P,
which, In the special case being conrsidered, reduces to
(31) ‘.;5.:-‘,” =Y v2)(r®).
The quantity § is the variable which appears in the Laplace
transform. A solution to equation 31, which is appropriate

for describing a spherical wave diverging from the point ¥v=0,

is

(32) (s) =(A/r)e St

The constant, A , can be evaluated by requiring that the dif-
ferential pressure, which is to be determined from the relation
(33) R(rS)=-6,5P=- 6,52 (a/r) €S/ |

reduce to the correct form on the spherical surface r=0, The
leplace transform of equation 29 is

(54) Byla,8) = B (K/Ktest)1-€5Ty(em S0y

4 comparison of equations 33 and 34 indicates that the con-
stant, A , has the form

(35) A= =(GR/GIHK/ I3k} (-€T).

It may te readily verified that the result which is obtained

by inverting equation 32 1s:
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(36)  Q@(nty=O, taf/Vi
= - (R/&) (1/rK) {(t-1/W) - (/0 SR -E PN L4TAT;
= - (@,R/6) (TY27r) , 1>/, 4T.

The radial displacement 1is:

(37)  Upr,O)=0, t<r/V;

= (a, P /6.1 (1K) {(W Mi- cos Kix-r/v)l+ (V) fie-va)-0/K) sin m-rm]}
r/N EtEY/V 4T,

= (a,R /) (TR20r2) , L >T/V, 4T,
The second expression in equation 37 (which describes

thé time varlation of M, in the interval YN &t&at/V+T) is com-
posed of an oscillatory part and a part which Increases mono-
tonically with time. In order for the amplitude of the oscil-
latory part to be large compared with the residuél displace-~
ment it 1s necessary that

(38) 2/, »>Tle,

that is, the wave length of the oscillation must be small
compared to the diameter of the source. This Inequality is
somewhat misleading. Actually ¥ and no'are notlindependent.
The relatlonship between these two gquantities cannot te spec-
ified without a knowledge of the physical characteristics of
the source. Satisfaction of the inequality and of the re-
quirement that the area under the pressure time hufve vanish
are sufficient to define an "acoustic source" in this partic-
ular case. Cole (4) has shown that if the latter condition
is not satisfied the fluid is left with a residual velocity.
In such a case the source acts more like a source of fluid
than a source of sound. It can also bte shown that there 1is
no residual displacement if the area under the pressure time

curve vanishes and the condition
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QN +T, ¢

ST ) et =0
QY QGN;
is satisfied.

It is of iInterest to compare the relative amplitudes of
the first and third terms in equation 27 for the special case
in which @ is determined from equation 36. The differential
ﬁressure at a point on the vertical axis through the source 1is
(40) P = —c._gg =(a,R/2) swiKet-z/w)] .

The fluid element, which was inltfally at Z , experiences a
change 1n hydrostatic pressure of amount

(41) §q39=(aRq/K2) |omoi-cos etz « (v k20 -0/R1sn xet-z}.
The amplitude of the third term in equation 27 will be small
compared to the amplitude of the first if the perlod satisfiles
the condition

(42) Te< 1\\!\_/9.

The quantityv‘_lg enters in this equation as a natural perilod
of the system. It is irteresting to noﬁe that for a given T
the inequallty might be satisfied in water but not in air.
This 1s due to the fact that a pressure pulse of given ampli-
tude and perilod causes larger fluctuations in the hydrostatic
pressure acting on an element of air than on an element of
water,

We will next put iIn evidence a guite gereral expression
for the Ilaplace transform of the source potential function.
The most general expression for a diverging sphericsl wave 1is
of the form:

(43) @, = 0, tar/vi (Pza),
=(a,/ )4 (t-/V.) , T2/
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The ILaplace trani;orm of this function 1s

(42) Q=i | vy dt.
v/
Changing the lntecrration variable to T{st-l‘lv.,} reduces @ to

the form

(25) cp-co.lr)) PSR Loy T
=(q,/r) &SN ‘ & T4 4T =Ye, )/ rs] e 3

nhere K(S) is an ar‘"ltrary function of § to be determmed
from the particular form of the pressure-time relation at

the surface Pt=Q,, This form of the source function 1s not of
much value in problems where the bouncdary conditions are im-
posed on planes of constart Z . & more suitatle relationship
can be obtained by mak ng use of the integral transformation
(26)  Cursy e 3 (AISO‘)T(AQ)Q'MZ'M:!A)

where NE(A‘QS"/VL‘)": ,» =h 1s the vertical distance between the
point P20 and the Interface (2=0), ard rafzmi4p2|"® | mne
coordinate system is chosen in such a way that thexy plane
coincldes with the plane of the interfade and positive ® values
are assoclated with polnts iIn the solid (fig. 1). This trans-
formation is given in Watson (5).

I.3 Specification of the Boundary Conditiors

It is of interest to consider the form which the boundary
condltions take on a plane surfsce between two flulds. If
the effect of caplillary forces 1s neglected toth the vertical
displacement and the total pressure must be continuous across

the surface of discontinuity. The pressure condition takes

the form

(47) ‘P,@«n)-?Psmn);’r,(m)#‘P,(a»«n),
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where ﬂs “z\z:d is the vertlcal displacement of a point on the
interface and Zed is the original position of that point. Ex-
panding both sides of equation 47 in Taylor series and retain-
ing only first order terms leads to the condition
(48) a‘r.\ 14" R = J"E.\ 1+%4)
Iz lzed S 3Zlzed &7 )

which, in terms of the displacement potential, is
(49) ‘oogg.‘c,ef_b =."'a;q£?-"‘o°ef_‘¢.

Iz "R 9z Tyt |
The question concerning the form of the toundary condition at
an.air—water interface grises in many problems of practical
interest——for example, Iin the study of acoustic ?ulse propa-
gation In the ocean. In eguation 49 let the superscript @
refer to air and the superscript w refer to watef. If ths
displacement of the interface takes place very gradually the
movement produces galmost no compression of the air in the
vicirity of the interface. In this case the left side of equa-
tion 49 becomes quite small and the boundary condition reduces
to Y

2
(50) “o, %-{,_=“'c.3%‘-'2-
It 1s clear that in the low frequency limit the differential
pressure at the original position of the interface 1s due
entirely to the change in the hydrostatic pressufe fesulting
from the elevation of the Interface. This is glso the reason
that equation 50 1is identical with the condition imposed at
the free surface of an iIncompressible fluid. It 1s interesting
to note that if the density and incompressibllity of the air
are decreased (but not so much that the water in the vicinity

of the Interface charges phase) the left side of equation 49

diminishes in value. In many papers on this subject it is
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~ assumed that the differential pressure at an sir-water Inter-

face vanishes, The foregolng discussion seems to indicagte
that this is not g valild assumption. If the verticgl dis-
placement oscillates very rapidly, the correct boundary condi-
tion 1s obtained from equation 49 by neglecting the terms
Involving 3 . In the low frequency limit equation 50 must be
satisfied. It appears that the differential pressure will
vanish only 1f both the frequency and the amplitude of the
veftical displacement go to zero.

It may be verified that a solution to the liquid layer
problem, which satisfles equatlons 27 and 49, can be obtained
by an analysls which is quite similar to the one éafried out
below if either the liguld layer is so shallow thagt the vari-
ation of V_ with depth can bte neglected or V¥ is constant.

It is worth noting that I1f VY. 1s constant the density-depth
relation can be determined directly from equation 17; it 1is
(51) ©,=", e/¥)Z. & (1+(gI¥)z),

where qf is the denslity at the surface. It would be extreme-
ly Interesting to compare thls solution with existing solutions
In which gravity has been neglected. Such a comparison would
yield valuable information about the frequency depeﬁdence of
the gravitational effect and the consequences of requiring

that the differential pressure vanlsh at the air-water inter-
face.

It is convenlent to formulate the boundary conditions at
the liquid-solid interface In terms of the potentials (P . + R
and U . The displacement field in the solid can bve derived

from the relations
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(52). u = J X1

and

(53) Mp= ;‘,’—:’*Sé’* ]

The stress components can also be written In terms of the
potentials if these expressions for sue and ‘uz aré substituted
in the stress-strain relationa., The relevant stress éomponents

have the form '

(54) Ty = A V% +2/l‘{

and
55 = 2 \ V-
95) Tz ’u‘i déz*%{ﬂ*"%y“@ az3})

where AS anijls are the Lame constants appropriate to the

oL &2 )]
¢ dpdz

solid., The equations

(56) plopm L, ¥

Vo 9t
and
2 a3
(57) V U ez 4&? dtz

are obtained by introducling relations 52-55 in the equatlons
of motion. Vg and Ms are the compressional and transverse
velocities in the solid. In deriving eguations 56 and 857 it
has been assumeC that the followlng conditions are fulfilled:
(a) the solid 1is isotroplc, perfectly elaétic, and homogeneous;
(b) the variation of the density and elastic paraméters with
depth can be neglected; (c) the stresses produced by the dis-
turbtance are sufflciertly small to justify the use of the
linear elasticity theory; and (d) the stresses vary so rapld-
ly with time that the body force can te neglected.

At the liquid-solid interface we reguire that: (a) the
vertical component of displacemert be continuous, (k) the nor-

mal comporent of stress be contiruous, and (c¢) the tangential
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component of stress In the so0lid vanlish., We find that, in

view of our assumptions, these conditions take the form:

(s8a) §2),.o= (3T + JU e)\

4z Z=0

(580) =g SO —_[ s d +4 d%eY)
*att [ v dt,_+2/4 idzz e ﬁ’-}i}] z=0 )
and
(580 IV _o24 =
'(58) [ZQZ. 2:;2‘93 vz tz]z.a o‘

I.4 Formal Solutions for the Potentials

The Laplace transform of the displacement potential, (P ’
can be expressed in the fornm

(59) cpcs,e,z)-j [(a,msm/scc] 30 )AA+‘ {NE*T e dA .

The first term is just the source function. The second term

-od -hl

describtes the perturting influence of the bourndary. Similar
expressions f‘or"\_ﬁ and U can be obtaired “rom equations 56 and
o7 if we first take the Laplace transform cof these relations.
Ve fird that

- 00 8
() Fsem= [ na 00 e
and ; T

- . -VZ
(61) Tisp= | j 4100 €Ty,

° ae

%, 8 , and T' all have the same form. ﬁ differs fromol only
in the substitution of VS forVL; similarly, T' is obtained
from & by substituting Ng for VL . The boundary condltions
will be satisfied if $(A) , h(A) , and 3(;\) are determined

from the equations:

(62a) b +@h+2] = (@x9)AeN)/s

(620) =6 ™ +2080h 4209 TH | = G,5a,K5)A %R /ot
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and

(62¢) gh+fj=0;

where .0.8/\21'32/205?'. The solution to this system of equations

can be reduced to the form:

(63) $(N=(aXS)/5)(Af) e%h (G-H)/(ath),.

(62) A= (4K($)S) (0,/0,U2) (A /x) €™M /(@ +H)

and

(65) jO= -(a:XS)$)(0/05u2) (A8/e) €™M/ (GAN) ;
where

(66) G =0>-)*aT

and

(67) WA= (0,/05) (sY4vd) (8/x) .

In this discussion we will confine our attention to the
response In the fluld and to that component of the response
which describes the perturbting Influence of the bouhdary. The
second term In equation 52°can now be wfitﬁen in the form
(68) 6?(5-,@@)—_-.(&.)«5)/5) i (A/x) e'NP'A(A)'J;(t\E)dA,
where A(A\*(&"I’-\)/(G‘\'H) ang -\-‘,‘-‘—h“z- . It is important to note
that Tﬂ is the vertical distance from thé image source to the
point of observation. It is possible to achleve a consider-
able degree of simplification in equation 68 by makirg the
substitution A=Su. This substitution makes both the furction

A(X)and the radicals independernt of § and reduces eouation
68 to the form
7 ° Sal}
(69) Gpls5;02)= ko) [(w/@) AWV T, 5u@ € > T du.
The dlisplacement comﬁ%nents can be ottained directly from

equation 69; they are
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(70)  Uz(S; 0,2)= Q SX(S) , w Aw) J(Sup)€ Sy

and
-Sq

(71) %(S,e,Z)— -a.sxcs)s (WfQ)AW ] (Sup)€ .
On the axis the transform of the radial displacement vanlshes.

This indicates that the radial displacement itself must be

zero for all time at axial points.

I.5 Inversion of gaat Axial Points

The behavior of the function A(M), In the Interval 0&U<0d,
can be inferred from the fact that G(M) is positive real in
this interval. The value of G(U) at W=0 is S7/4'(S,=1/vs) .
The fact that the compressional velocity 1s alwa;}s greater
than the transverse velocity iImplies that
(72) g_(u +$ )112{“4:._‘,52)“& (u"-ts")""}?o
where Sa=|/V5 . If the multiplication 1is carried out and
the expression S;‘/‘} Is added to each slide of the ihequality,
i1t becomes evident that G(U) must be positive on the positive
real W axlis and greater than or equal to its value at U=0 ,
Since QW) and W(W) sre positive, A(W) must have a value be-
tween plus and minus one. It should be noted, however, that
AW) spproaches unlty Iin the limit as U approaches .infinity.
Also, if GQVL/GSV521 , A(u) must pass through zero as U varies
between zero and infinity. Graphs of G(W, H(U) , and A)
are plotted in fig. 2 for a speclal selection of parameters.
It can be verified that A(U) reduces to unity if either the
density ratio vanishes or the rigidity of the solid becomes
infinite. In either case the solid acts like a perfect re-

flector,
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.The evaluation of the veritical displacement at axial

points is stralghtforward. If Q=0 , J,(Sup)=| sand equation

70 reduces to*

(73) uz(S,O,z)-a,SS a Aw) & 3%Tgy

The determining function can be obtained directly if we make
the substitution t=al dU/dt"(L[uT‘. : then

(74) Wo($;0,2) = _(Qcﬁ.)s a Ald (€3Yy/dt } gt

=) “ccu‘\)t A s v ""{d(aA)/dt}d‘CS
It 1s convenlent to make the substitution i; -8 (B=2H/GtH)
In the Integral. This is done to separate the terms which
describe the afterflow and the transient behavior‘. .The trans-

form of the vertical displacement can then be written as fol-

lows:

(75) Uy(5,0,2) = @, {(s./r, o-xyu+x) eSS, am {we'“_’@aldﬂd’r

LV

- om | € dcab/dtiat b
ST

where K= oovL/6sv5 « The reason for making the substitution is

now apparent. The first Integral 1s simply the Laplace trans-
form of the unit step function j(‘t-S.“)/T" . The second inte-

gral is the transform of the function f(t;o,z) , defined as

follows:
(76)  §(;02)=0, t<S%;

= ~ (G /T) daB)/dt = -(a,{vz)(a/u)d (aB)/du | £ 257,
The first term in equation 75 1iIs interpreted as the Laplace

transform of the Dirac delta function, S(t-s.?.) . The verti-

cal displacement 1ltself can be written in the form

# The consequences of setting X(S) equal to unlty asre discussed
on pages 28 and 29.
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T U t020)=0, t<sST;
= a, \\u-x)/ a0} (/1) § (E-ST) + (/r®) M(e-ST)
- (/T8 (a/w) d(a.B)/du] y XzsT.

The first and second terms add nothing new to our understand-
ing of the reflection process. These two terms are identical
with.the corresponding two terms 1In the expression for the
incident wave except for the presence of the factor. G=%)/ (14 X).
It 1s clear that this quantity is Jjust the plane wave reflec-
tion coefficient for vertical inclidence,

The third term in equation 77 describes the transient
characteristics of the resporse. On the axis the amplitude
of this term decreases Inversely as the square of the distance
from the Image source. It therefore represents a correctlon
to the afterflow. It is Important to note that the effect of
making the density ratio arbltrarily small is %o céuse’the
correctlon term to vanish while leaving the afterflow term
unaffected,

A spréading of the correction term accompanies its prop-
agation. The characteristics (e.g. -~ max!mum and minimum) of
the function € depend only on the value of |,while the time
depends on the values of tothWw and © . This means that the
time difference tetween two points of the correction curve,

U, and W, , increases linearly with increasing distance from
the image source according to the relation

(78) =1, =T, {cugeshH2 (ul+s2}.

It can also be shown that the amount of spreading Increases

toward the tall of the wave.




I.%a Calculations

Detalled calculgtlions of the time dependence of the
functian-#ﬁzg/do were msde for three choices of the elastic

parameters.

Case Poisson's | Compressional Velocity (mt./sec.) Density
Ratio Solid Liquid Ratio DI./DS
1 0.4 2,000 1,500 2/3
II 0.4 2,000 500 2/3
I11 0.2 6,000 1,500 1 1/2

The cholce of parameters in Case I should bte appropriate
for describing the wave which has been reflected.from a moder-
ately well compacted, egslly deformed materlial., In Case III
the solid has properties similar to those of granite.

The curves of fig. 3 have bteen drawn for the special
case In which the source is located two meters above the inter-
face and the reflected wave 1is otserved at a point midway be-
tween the source and the interface. Each of these curves has
a discontinuous beginning and each approaches zero asymptoti-
cally from negative values. The function -(1‘.2/4,)! has the
asymptotic form
(79) -cv*/ao)t ~ ~(0,/0%) €53/(53-53)) (1/W2).

It 1is noteworthy that this expression 1s independent of VL .
The effect of changing the llquid velocity can be studied by
comparing Cases I and II. Case II 1s marked by a much lgrger
discontinulty and a more rapid oscillation between its maximum
and minimum values. Case III differs from the other two in
three important ways: (a) the displacement is negative origin-
ally; (b) there is no oscillation iIn the displacement; and (c)

instead of decaying the displacement Increases slightly to a
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maximum negative value,

Fig. 4 was constructed in order to shed some light on the
reasons for these differences. In this figure -(T\%2a,)§(ST,;0,2)
has been plotted as a function of the ratlio of the compression-
al velocities, 7((=VL[V5) , for different values of Polsson's
ratio and for a fixed value of the density ratio. The ex-
_ﬁression from which these curves were obtaired can be put in

the form

(80) =(TY20,) §(ST;02) = (Gu/G3)N /(146,10 N)) o

[(\/ \H6/057)) Ei/n®) tt-s(silsi) (- 5,153)]-1] +I] .
The dependence of the sign of this function upon the elastic
parameters can be investigated by determining thé vélues of
Poisson's ratio for which there exists a value cﬁ'ﬂ which
causes the expression in the outer square brackets to vanish.
Equating the quantity within the outer square brackets to zero
leads to an equation from which the desired information can
be extracted; namely,
(81) (0,/G5)715)= 8(53/53) (1= 5,/55) ~I
ﬁ% has a real positive value only 1f the term on the right
is greater than or equal to zero. This méans that the veloc-
i1ty ratio,¥s/V¥g » must satisfy the relation
(82)  (Ug/Ve)X(\-vs/ys) 2 1/8 -
The positive roots of the equation are 0.500 and 0.809. 1In
actual materials Polsson's ratio carnot be less than zero and

the velocity ratio cannot exceed 2-\12

. This means that it
is always possible to find a value of J] which makes equation
80 vanish if Polsson's ratlio lies between zero and one-third.

It should ve noted that JJ, has a maximum value for a Poisson's
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ratio of one~tenth. If curves corresponding to Polsson's
ratios less than one-tenth had been included in fig. 4, it
would have been found that they cross the abscissa slightly
to the left of the point Q. How far to the left can be read-
11y determined from equation 81. For a Poisson's ratio of
zero and a density ratio of two thirds (which was used In ob-
 taining all the curves of fig. 4) this distance 1s about .009
units, | |

I.5b Interpretation

The Interpretation of fig. 4 and the response curves can-
not be carried out in a satisfactory manner unless certain
points of the discussion, which were passed over rather rapld-
ly, are clarified at this point. First it is important to
distinguish between the correction term arnd the expression
which describes the actual motion of the interface at the
axlal point. The displacement of the "epicentral pbint" is
obtalned by adding the displacements produced by the direct

and reflected waves; 1t 1s glven by the expression

(83) Up(60,0)= ~Cao/-h) [CUV)(2X/C142)) §(£-C-h)/V,)
+(1/-h)(a/u)d @B)/du] -

The presence of the delta function indicates thgt the incident
wave produces an instantaneous oscillation in the vertical dis-
placement. The absence of an afterflow term indicates that
the displacement at the axial point approaches zero asymptoti-
cally according to equation 79.

& second point which requires clarification is the role
played by the Dirac delta function., This function enters st

the stage of evaluation represented by equation 77. Its ap-
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" pearance is a direct consequence of setting N§equal to unity
in equation 73. The functionJS) canrot have the constant val-
ue urity and at the same time represent a physically reallizable
source’. This means that the inverse of the function J(5)e pall
should have teen found and not the Inverse of the function

o-SSIT,

It is clear that if this had been done the result
6btained would have been identical with the result which is
obtalned from using the superposition integral to generalize
equatlon 77. We therefore do not attach any signlficance to
the Dirac delta function when 1t appears by 1tself but only to
the term obttained from it after superposition. If we bear this
in mind it is possible to reach some Iinteresting coﬁclusions
without actually carrying through the numerical integrations.
These concluslons sre not restricted to a specific form of the
pressure-time relation, as they would be if the inverslon had
bteen carried out directly, but apply equally well to a kroad
class of physically realizable source conditions.

The response of the system to an arbitrary pressure vari-
ation, which can te derived from a displacement_potential q% s
can be found from the superposition integfal. This integral
relates the generalized response,ﬁb , to the responée produced
by an Input step function in the displacement potential. It

has the form

# The pressure variation corresponding to X)=/ can be deter-
mined directly from equations 33 and 45, It is glven by minus
the derivative of the Dirac delta function. The time varia-
tion of the displacement potential is given by the unit step
function. It is Interesting %o note that these same results
can te obtained by multiplying equatlions 29 and 36 by minus
one and allowing the pressure amplitude to approach infinity
and the period to approach zero in such a wsy that the quanti-
ty BT%2n0, approaches unity.
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T
(e R (602 = goryc) + [ J_f!r’s U (-T)dT.
[ ]

o

Actually we shall only be Interested in that part of the gen-
erglized response which depends on the correction term; ac-
cordingly, we replacely(t-T) by §(t~T) in equation 84. Tt
can be readlly verifled that both the generalized resﬁonse
and its time derivative vanish at €=S§7T, if the function Cﬂg
and its time derivative vanish at T=0. Furthermore, if these
conditions are satisfied, the initial variation of the time
derivative of the displacemen® potential must be toward negg -
tive values when the initlal variastion of the source pressure
is toward positive values. This fact indicates that if the
initlal variation In the source pressure is toward positive
values the inltial variation in the sign of the function -f
will be preserved In the process of superposition. This fact
1s extremely important in interpreting fig. 4.

We are now In a position to Interpret the response curves
and fig. 4. Descent zlong s vertical lire in fig. 4 corres-
ponds to changing the elastic properties of the solid in such
a way that the compressional velocity is unaffected while the
transverse velocity is continuously increased. The relevant~

relationships among the elastic constants are:
(852) U= (s72)(1-20)/(1-0)

(858) My = (g Y /2) (F20)/(1-6),

(859) Ay = (479 (140)/01-0),

and

(85) Eg = (g ) 1+0) (I-20)/( I-0).

Changing Poisson's ratio from .5 to O increases the transverse
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-veloclity, the rigidity, and Young's modulus and decresses the
incompressihility. These facts indicate that *f the behavior
of two elastlc snlids, which have the same densti*fes and com-
pressional velocltiles, 1s studied during s short time ’nterval
following the arrival of the disturtance, it will be found that
the solid_which has the larger value of Poisson's ratio will
.undergo a larger distortion of the interface, a deeper inden-
tatlon at the point of applicatior, and s smallef over-all
cﬁange in volume.

Sketches have been made 1In figs. SA and.5B which illus-
trate these effects. These sketches are drawn for the partic-
ular case in which the velocity ratio,47 y, 1s small compared
to unlty. The part of the interface which 1s intersected by
the spherical wave front is indicated by the line segment 0P.
The snlid vertical lines indicate the radial distance traveled
by the compressional wave in the solid. Equation 93 shows
that there 1s a3 residual deformation nf the interface even af*-
er the effect of the incident and reflected acoustic” waves
has been removed. This residual deformation has an effect on
the fluid which is expressed at axlal points by the correction
term. The part of the deformation which is producéd by the
direct and reflected acoustic waves is Insensitive to changes
in the rigidity and the Polsson's ratio as_long. as 6 and Vs
remain constant. The effect of such charges in the elastic
properties of the solid must therefore appear in the correc-

tion term. The residual dlsplacement 1is sketched in fig. 5A

# The "acoustic” wave 1s to be associated with the delts
function in equation 77.
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for a solid with a Polsson's ratio close %o one halfl, anc in
fig. 5B for a solid with a Polsson's ratio close to zero,

Fig. 54 1llusftrates a situatlior in which the residual cefor-
mation causes the fluld at axial points to move toward the
interface. Fig. 5B illustrates a case in which the motion is
directed away from the Interface. The response curves des-
.cribe the effect of this residual deformation or the motlon of
the fluvid. Cases I ard II ars to be associated with a situa-
tion of the type 1llustrated in fig. 5A. Case III 1s to be
assoclsted with fig., 53. It is Interesting to ﬁote that the
curves of flg. 4 iIndicate that prescribed changes in the elas-
tic propertles of the so0lid at constant values oi‘ O and %
lead to a great amount of variatility in the initial hehavior
of the correction term if‘7 is small snd to practically none
1t f/ is large.

T.6 Sinpularities of the Function A (&)

The investigaticn of the singularities of the functlon
Alw) s s necessary preliminary to the study of the response
at points off the axls, It is evident that the function G(w)
has branch points at U=% (S and at wW=%¢S;. The rfunctimn
H(@w) nas vranch poirts at U=%(J, and at u==9, . In order
to select the proper sheet of the Rlemann surface we reguire
that the sign of the radlicals be positive on the positive real
W axis and Jfoln the palrs of branch poin%s by cuts of finlte
length along the imaginary & axis {(fig. 8).

The behavior of &(W and H@ for large values of « 1s

given by the expressions
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(86) G(W ~ (U*2) (SP52)

U~neo
and

(87) H@) ~ (@, fo Vs )(5;Y4),
It is clear that in this limit the function A approaches
unity. At u=:t(S, the function A has the value minus one. The
problem therefore reduces to finding the points iIn the U plane
;Nhere the function G+H vanishes*. One such point can be found
immediately. If‘.ff%/zuz(corresponding to a Polsson's ratio of
zero), the quantity (u%+%ﬂ”zcmn.be factored out of the ex-
pression forGtH . In this speclal case the function Gf” van-
ishes at the branch points #(J, .

We rext show that the d contour indicated in fig. 8 en-
closes one and ornly one zero of the function&+# . 1In order
to do this we must show that the mapping of this contour in
the G+# plane circles the origin once. Actually we will prove
this result only for the case in which the reciprocél velocl-
ties satisfy the inequality§>3,> S5 ; that the result remains
valid for asny selectlion of the elastic parameters can te read-
ily verlified.

The procedure to be used can be divided into three parts.
The first step consists in mapping the U contour iﬁto the H
plare (fig. 7). Polnts on the negative Imaginary axis between
the origin and the point ~(+(€ map into a finite segment of
the positive real H# axis. It can be shown that H decreases
monotonically throughout this interval. The semi-circle a-

bout the branch point —(J3 maps Into a quarter clrcle about

% A similar investigation is carried out in Cagniard, ref. (1)
ch. 4.
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-the origin of the H plane. The interval between the points
-¢'5a-l'6 and-('-s +(€ maps into the negative imaginary H axis.

It is obvious that H decreases monotonically throughout this
interval. The circle atout the dbranch point-d& maps into

the Infinlte seml-circle to the right of the imaginary'H axis.
The rest of the mapping can be obtalned directly from-these
 results. It is important to note that the infinite semi-
circle iIn the ( plane maps iInto a single point 1nlthé H plane.
Clearly there are no zeros of the function H within the
contour.

The second step consists in using the procedure just
outlined %o obtain the mapping of the « cortour in the & plane.
The result 1s indicated in fig. 8. Points on the imaginary
axls between the arigin and the point—&&ffé map into a finite
segment of the positive real & axis. With one exception
points on the imaginary axls between -('.&-('6 and -('J:,-H'é map
into the fourth guadrant of the & plane. The point u=—('.f,/2"z
maps into a point on the negative imaginary & axis. Points
in the interval between —(§~(€é and -(§~¢é map into a finite
segment of the real & axis. These points are confined entire-
ly to the positive real & axis if §, does not exceéd the
Rayleigh pole, Ug. I1f § exceeds the Rayleigh pole some of
these points will map into the negative real G axis. The in-
finite semi-circle in the W plane maps into the infinlte
circle in the & plane. It is clear that if § does not exceed
the Rayleigh pole, theyf contour encloses a zero of the func-
tion & ; if s exceeds the value of the Rayleigh pole the

contour encloses no zeros of the function G .
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The mapping of the { contour in the G+” plane can now
be obtained by making a vector addition of the indlvidual map-
p‘ngs. The result is indicated ir fig. 9. The mapping cir-
cles the origin only once, Thils indicates that the functilon
G+H vanishes at only one point within the & cortour. 4 simi-
lar result can kte obiained for the upper half of the u plane.
There st11! remains the possibility that G+H vanishes at a
point or points on the branch cut., I% 23 not G1fficult %o
demonstrate that thils is possible only If the Poisson's ratio
of the so0lid vanishes, In wnich case the radicai (“E+J?y¢may
e factored out of the expression ~or G+H .

The easlest way to locate the zeros 1s to aétually plot
the real part of & and of # as a function of u=~L (o2l <e0) ,
This has been done In fig. 10 for three cases. In the flrst
case the liguid velocity exceeds the compresslional veloclity,
%; in the second case the liguid velocity 1s intermediats
besween the compressional and transverse velocities; and in
the third case the liguid velocity 1s less than the ftransverse
velocity. The curves of fig. 10 show quite clearly thasl, in
each case, the functimu&*” vanlshes at a point, ={We , which
exceeds Ug in absolute value. In the subsequent discussion
it w111 be shown that ths existence of this singularity 1is
connected with the presence ol an Intsrface or Stoneley wave.
It is Interestirg to rote that the velocity of the Ztoreley
wave and §| approach each other in the limit as i approaches
zero, 1t Is also evident that the Storeley wave velocity
must always be less than the smallest body wave velocity in

the system.
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I.7 Solution at Points off the Axis

In order to study many of the more Interesting aspects
of the response it 1s necessary to invert the transforms of
the vertical and radial components of displacement at points
off the saxis. The steps leading to the Inversion of 5; will
now be considered.
| - The success of the Cagnlard treatment rests,to a large
extent, upon the fact that it 1s possitle to expreés the de-
pendence of the integrand in such a way that § appears only
as a coefficient in an exponential,. Iﬁ the preéent case this
1s accomplished bty introducing an Integral representation for
.Icsae) In equation 70. It 1s convenient to expfess the inte-
gral representatior’},zin the form (6)

(88) T (Sup)=2 f l e-isupeosw

The expression for &; reduce%”to .

(89) = aoSX)(2/n) ff / mf [ wAw 5@l e) } dw.

The symbol 6 indicates %hatoanly the real part of the quantity
on the right is to e considered., The Iinterchange in the or-
der of Integration 1s legltimate due to the uniform conver-
gence of the Inner integral.

We now define the new variable f by the relation
(90) ¢=alj+iupcosw,

This transformation redaﬁgs &Ee expression. for &; to the form
(1) & = apsxesy2mif / f / weat)Aluet)] e'“z’.«/ dt ]Jw

0 n JdTCle )
where the subscriptw Iindicates that each point on the con-
tour, Aw , 1s dependent upon the value ofw . This contour is
sketched 1In fig. 11.

Explicit expressions for & and Q(d) , in terms of the in-
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dependent variables T andw, can be obtalned from the defining
relation fort; they have the form

(92) W, t) = (—(’f'e costl +T,’(t‘:..s;‘f‘)"z) /£

and

(93) @)= (LI -cpeosw (EL52PY) ”2)/ et

where fz=7:'7'+r)"co.yzw . In order to keep 4 and Q&) single-

valued we cut the ‘t plane along the real axis btetween the

branch polnts .S;f and - ,fand define the radical to be positive
real on the real € axis to the right ofJ5,f. Equations 92 and
93 are useful in obtaining eqguivalent forms of the expression

for the partial derivative of U with respect tot; name’ly

(94) 5’% w ’/(T‘,u/q Hecosw) = @/ (5912

A study of equations 92, 93, and 94 indicates that the singu-
larities of the function uaq,t);_%(/w are located at the points
5F .

We next close the contour, ”w s, £y adding to 1t the circu-
lar arc of Infirite radius, {, and the portion of the positive
real € axils which lies between the point &7 and infinity (fig.
11). In closing the contour we must be careful %o stay above
the branch cut. If we fail to do this, the mapping of the €
cortour in the « plare wlll not close on itself and we cannot
apply Cauchy's integral theorem. This mapplng 1s indicated
in fig. 12. The ‘ranch polrt §;f maps into the point -(§pcs@/f .
The segment of the real € axis which lies between the points
5}7;’ and S',f maps Into a segment of the negative Ilmaginary «
axls which lies between the origin and the poirt -('J;f‘“w/r.
We have already noted that the singularities of the functlon

A(u) are located at the branch points tt'\s;,:t(j'a, and i‘t'53 and
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at the poles_tdQ . In the discussion which follows we will
continue to assume the existence of finite cuts along the
imaginary « axis between the branch points ¢f and -¢J, , ete.
The turning point,-<'5;fcosw/f, is always less than 5, in absolute
value. This indicates that 1t must also be less than U,.
This statement follows from the fact that the Stonéley wave
veloclty cannot exceed the fluid velocity. These facts indi-
cate that the closed contour encloses no singularitiés of the
Integrand and, therefore, the integral around it must vanish,

We note that the presence of the exponential, C'St, makes the

result obtained from the integration along C arbitrarily small

In the limit 7t“*°° . We therefore arrive at the conclusion
that #, and the portion of the real ¥ axis to the right of te
point §/] and lying abtove the tranch cut are equivalent con-

tours. This fact enables us to rewrite equation 91 in the

form 0. LOBHIE
(95) U, =a,$x(s)C2/m) /7 / { wat) Aluw] €€ Jy dt f dw
)
o L STveE /e

where € 1s a finlte btut small quantity which is inserted in
equation 95 for the sole purpose of indicating which sign is
to be associated with the radicals.

This expression for E; can be put In the form of the
direct Laplace transform by interchanging the order of inte-
gration. In order to Jjustify the interchange we appeal to
Pubini's theorem (7). This theorem requires that the double
integral of the absolute value of the Integrand exist. This
is readily demonstrated if we recall that 44“018 bounded

everywhere except in the vicinity of the polnts (U, . In
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no case does the contour in the ¥ plane approach these singu-
lar points. This fact permits us to replace AW ty a finite
upper bound. Therefore, the result which is obtained from

the integration of equation 95 cannot exceed

(96) [/Wa[ e—-‘f/awt)Ju/ /dt+/m/ ‘t/acwt)it/ clt]Mat JAw)

in absolute value. An investigation of the quantity aathJ“/
indicates that, in absolute value, it cannot exceed (t*e/Nd)s}2 t’[’n
+errynd +(€/",’3)/S;’]’-’lt‘/‘.,z Tt 1s apparent that only the first term
can lead to a divergent result. Proof of the existence of

the double Integral can now be obtained ty Integrating the

expressions

2 ,f

° SJT

and iz "

(98) f dw / et eidt/tsren) it
0 s, f

by parts. Intercharging the order of integration in equation

95 leads to the expression

oo /2
(99) Uy = a,,sxrs)(z/‘lr)f / e“’t{ / u(w,f)A[“(w_,t)]’lg/ dw [dt,
S 0 Jt’w

A remarkadble simplification can be obtained at this
point by using the original transformation, equation 90, to
replace the integration variahle w and the path along the
real@ sxis by a contour in the complex ¢ plane. Equation 92
can te used to obtaln the desired mapping. The point w=0 maps
into the point
(100) o, = (-cte+TI(t25rYH1?) Jpt.

This point lies on the negative Iimaginary axis if ST = (=S
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and in the fourth auadrant if (=5, . ]ﬁﬂ%ﬂétkﬁf',the interval,
02w cos’[ctis,"n‘)"}’s,elmaps into a finite segment of the nega-
tive imaginary & axis. The endpoint of this interval maps
into the turning polnt
(101) =€ oy =—(S, CI-STYEYY2
It is evident that the imagirary part of « decreases ﬁonotoni~
cally throughout this interval. The interva1,cw"[(t*-f;‘qa)'n/‘:ﬂ‘w‘wz;
maps Into the fourth gquacdrant of the ¢ plane. Bofh the resal
and imagirary parts of « Iincrease monotonically in this inter-
val. If €>§F ,the interval,o=w<f/2 ,maps into the fourth guad-
rant of the « plane. In this case both the real and imaginary
parts of 4 Increase monotonically throughout the interval.
Regardless of the value of € the endpoint,w=n/2, maps into s
point on the positive real ¢ axis; namely
(102) Uy qyp = (ELSARHA(1TT,

The mapping is sketched in fig. 13.
The desired transformation of the integrand can te ob-
tained by substituting the partigl derivative of w with re-

spect tod in equation 99. This partial derivative has the

form :
(103) 3%0/ = ( T[Ufa +(Peasw) [(PUSIND = (Tufa+(p cosw) [{((t-al ) pup?)¥2
t
The produvct of the partial derivatives 1is
(104) ddy dew ) _ 1/ ¢ ((é-am)? purp2)ile
dl‘/»dut /( ’)_ eI
These relgtlons reduce equation 992 to the form

_ s “w:ﬂ/&
(105) @, = a, SX(S)(Z/!I)/? / et / / uAcydu /e ( (t-al))ue* )% [ dt )
5T

Uewao
c

where the contour, C, will dgbend on the particular instant
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at which the response i1s to be computed. If J®=//5 ,the
vertical displacement itself can be obtained directly from
equation 105; it is

(106)  u(tel)=0, t<sT;

Uwe ﬂ/i
= a, c2/m)[] | uhardu/i(t t-all )2 p)"? , t 57,
“wzo
<

It must be kept in mind that this displacement field 1s to
be associated with a source pressure variation which is gilven
by minus the Dirac delta functlon.

2
I.7a Investigation of the Function ,(m)=(t‘—al',')+¢("pz-

We cannot proceed further without Iinvestigating the prop-
erties of the Function fuw)=(t-al)*+u*p*. First we will con-
sider the behavior of (&) in the interval ~($=«<4(S, at poirts
which are located an infinitesimal distance to the right of
the branch cut. The substitution w=c/(-§=(=5,) reduces fe) to
the form
(107) )= ( -T(§%197*)*-[%e2,

This function has teen sketched in fig. 14 for various values
of the parameter,t. The following facts are readily estab-
lished. 1If €<§PYM ,the first derivative of #(L) vanishes at
[=0 and at L= tL,=2(s:Tt¥/rHi"% 1¢ tz85,PYIT the first derliv-
ative vanishes only at the origin. In the first case #(L) has

a relative maximum ati=0 (}a»:(fifﬂﬂﬁ and relative minima at
t/,. Iftzsr7l ,the function has a relative mirimum at the
origin. #UL) nas the value (P¥YPI(E=5r® at L=2[, and the value
t25%*atL=%5,, These facts indicate that HL) vanishes abt two
points in the interval -$=l£S, if¢«Sp or if t=§, and at four

points if J,‘fé‘(z.f," . It is important to rnote that 1f €<5/ the
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point « lles in the interval-—[,z-u‘r<-/%=°/ , while if t=§r the
points -4,,-ur , and-Jz_o] coincide. These facts will be uti-
lized many times in the Investligation of the response in the

time Interval §r-e<CgSr+6& .

The behavior of #(4) at points which are located an infin-

itesimal distance to the left of the branch cut can bé found
in the same manrer; the only difference being that the sign

of the radical in equation 107 must now bte positive; The
facts concerning the behavior of #«) on the branch cut are
sumnarized In the following remarks: (1) if €<§@ ,the functlon
vanishes at two polnts on the right side of the cutbt and at

two points on the left side of the cut; (2) if €=5p ,the func-
tion vanishes attJd, and at two points on the right side of the
cuts (3) if&(AtASJ‘ ,the function vanishes at four points on
the right side of the cut; (4) if ¢=§, ,the function vanishes
at two polnts on the right side of the cut; and (5)' irt>sr ,
the fﬁnction does rot vanish either on the right side or on

the left side of the cut and Is positive real on both sides

of the cut. The effect of increasing ¢,in the interval

0<l<8P , 1s to cause the zeros of @ ,which lie on the positive

imaginary axis (and also those which lie on the regative im-
aginary axis), to migrate toward each other. Exactly at =&/
the two zeros colnclde.
If €25 ,the points Upme and tho are the only zeros of
{”ﬁ. This fact can be established by mapping pasrticular
cortours in the £ plane and bty making use of the same proce-

dures as were used previously in our study of the functlon

Aw), Each contour in the bottom row of fig. 15 is the map-
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ping in the f plane of the « contour directly above 1it. A
study of the first mapping on the left reveals thagt the asso-
ciated U con%our encloses two zeros of the function fd. It
is found that if ¢=$,/" the mapping circles the orligin twice in
the counterclockwise directlion (indicated by the paths 1-3-10-1
and 3-4-8-9) and twice In the clockwise direction (1nﬂicated
by the paths 4-5-8 and 5-6-7). Therefore, In this case, the
U cortour encloses no zeros of the functlon qu.. A study
of the center mapping reveals that the associgted « contour
encloses a single zero of the funcht’on H) . It is found that
if ¢=5P the mapping circles the origzin once In the counter-
clockwise dlrection (indicated by the path 1-2-3-4) and once
in the clockwise direction (indicated bty the path 6-7-8-9),
Therefore, In this case, just as ir the previous case, the
cortour encloses no zeros of the function F(& if ¢=§P. &
study of the mapping on the right reveals that the d contour
cirecles the orligin once in the counterclockwise direction and
once in the clockwise direction. This 1s true regardless of
whether € 1s greater than or equal to §° and indicates that
the U contour encloses no zeros of the function {au. We con-
clude that for <P the function H(«) vanishes at four points
in the complex U plane and for tz5,M 1t vanisﬁes at two polnts,.

We will now determine whether the zeros of the function
F() are simple or multiple by examining the second term in

the Taylor's series expansion of (&) about the point¢f,_, .

=0
The first derivative of (&) , evaluated at t,_,, 1s

1c8 .?’_.’L/ = 2_ 2 2y W2

( )Jll U=lyy_, 2“‘”"’ P Ht/(uw,,.-r,\‘,) }

=-2p(th5 1712 { (-iTp T (¢=52p2) i) / (ET]-(p (f%s‘r‘)"‘)].
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The second derivative of‘fud, evaluated at 1s

2
o9 & | i MRS Vi
U=

R e l-)
It is clear that ¢  Is a simple zero If Z#§/ard a double
=0

u ’
w=0

zero if E=8. Arn examination of the expansion of #(W atout
(} Fs

& .
the point &,_, leads to the same conclnsior,

I.7t The Refracted Wave

These facts concerring the hehavior of f(w will be used -
to investigate the response ir the time *nherval preceding
the arrival of the reflected wave. If §<C<€8Pr, the singular

P * . : .
points, « ancd ™ , lie on the imaginary @ axis. The con-
W=9 =g - *

tour, C, has already beer sketched In fig. 13A. ™his contour
can bve replaced by the one indilcated in fig. 164 by the dashed
lines. We have already seen that $(0 is positive resl along
that part of the imaginary « axis which lies tetweer thre

A . .
branch poinks e ardtﬁp_a. I% can be easlily established

o
that this function canrot vanish on the real « axis unless
t=£ﬂ. Since we are orly interested ir the response at points
of f the vertical axis we need not consider %5his particular
Irstant of time. We also recall that the function AlW) is

real when ({ 1s real and when  lies on the imagirary axis be-
tween the tranch pnints l.'sz ard =(Jd,. We conclude that az(_z;e,z;')
2 The location of the

point %” ockqxwﬂs or the time, the spatial coordinates, and

vanishes identically iF/% oLf $

the 1innid veloclty. Ir order for Lthere to be a corntribuntion

to the response, in the intervalSJF=t<$fn these parameters

rmist ve adjusted in svch a way that the inequality (U ’>S
w=0 2

holds, This means that
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(110) (tp-Ti(srEt)¥2)/r*>S, .
If the function Q('f)@r(‘t‘f-ﬂ(.f,"f"‘-'t".)'/z)/f'z— S, ) is plotted as =a
function of € ,1t is found that egquation 110 cannot te satis-
fied for any value of € ,in the interval Sfl<t<y) |, if (50/1)-5<0.
This means that,in the time interval preceding the arrival of
the reflected wave, Up(t;e]]) can be different from zeré only
in that region of space for which (§@/N)-5,>0 . According to
ray theory this Is just the region of space in which the re-
fracted wave is the first arrival (fig. 17). If@e/)-S,»0 ,
equation 11C ls satisfied for all values of time which excseed
L= S tTI(S2-s1 )"

In fig. 17 we have divided space into the two regions I
and II. In region I the reflected wave 1s the first arrival,
in region II the refracted wave iIs the first arrival. In
order to study the refracted wave we will confine our atten-
tion to region II and to the time interval G=T<Sr . It
is apparent that, in this time interval, ép(€gl)is given by the

expression

-('.fg_
(W1} U l€567)=00t/) (L M) udi 1 (t-ali 24 9™, Tos s,
o

If the compressional velocity In the liquld is intermediate
between the transverse and compressional velocities In the
solid, the imaginary part of A4} has the form
(112) JA@) = (s S2) (S X% /0) ( (- s2)/ (s 39) V>

/ I [ 5797 1§ w3 (5530 f0s) (=S SV 1] ] .
It is important to note that this expression 1s positive or
zero for all values of ¢ on the path of Integration. The re-

sult which is obtained from integrating equation 111 must
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therefore be a positlve guantity. This fact indicates that
the vertical motion at the point of otservation must be di-
rected towards the interface. This result can be interpreted
if we recall that the source pressure variation, corresponding
to Y=/, is gilven by minus the Dirac delta function. This
means that at the instant the acoustic wave reasches the inter-
face there 1s a release of pressure which causes that part of
the interface which is In contact with the negati#e pressure
area to move upward. This uvpward motlon in the region of in-
teractlon must be accompanied by a downward mobtion at the
periphery., It is this downward motion which causes the fluid
to move toward the interface.

If the compressional velocity In the lioguid is less than

the transverse velocity in the solid, the imaginary part of

Aw)is glven by equation 112 when & lies between the branch
points =S, and-(J; and is given bty

(113) QAW = § cu*+53/2)" 4w Cu>5)" 4539V (55/2)(a, fos) (= 51y % 59)

/ I/ [§ L SH0 WSH 524 {(S5Ya) O ) (- S 579 ) V412 j
when  lies between-«kg and Uy.,. We have now reduced the
original integral to a form which can be evagluated quite
easily by numerical methods., We rnote that in everﬁ case the
magnitude of the refracted arrival must be critically depend-
ent upon the density ratio and the rigidity of the tottom.

I.7c The Reflected Wave

We next consider the response In region II in the time
interval, §r-€=<¢<s,r , just preceding the arrival of the re-
flected wave. The change of variable,11=aa0, reduces equation

111 to the form



(5 2:3;;/ 12

(11%) U, (€ 0,T)= (I (2/m) | (LA(M) AdA / { (A-TT/r )= prdis: 3@}'@

(t-’;l_‘_P(Slz,)?._tz) l/l)/pz

This integral can te transformed Into the 3htieltles form if

we note that the part of the “"ntegrard which does not confain
CQA( can e expressed as the differeriilal of the function 0(4),
where -

(15) QU= (LAt pyrosir ey}

+ (TIPD L og UA-LTIr)+JA-TTIPD %L eTPOCs P o] 2] -

Sufficlient conditions for the applicabllity of the first mean
value theorem for Stiéltjes integrals are'that:prﬂA) e 3 con-
Finuous "urehtion 0?11 and that GMZD he monotonic in thae inter-
val (ﬁ;’-{-(oﬁ;’f‘.’.‘.tz)w)/p}/fﬁ(‘i;if)vz(8) . Applicabion of the mean

value theorem reduces eqguati-n 114 to

(116} UalGOT) =@ WU AAL) [ AeHSI)-teryr3Log (Grusir2ey),

where(t7;'+€(.911"3.'t’~)”’)/f‘2/]f.‘.:(-i}“—-%_l)m.' e now see that the magni-
tude of the response diverges logarithmically Wh@n.t is al-
lowed to approach . This is a rather remarkable result In
that 1t indicates bthat the rellected wave has a forerurrer in
that region of space where the reflracted wave is the {irast
arrival.

We rext consider the resgonse in region II in the bLime
interval, §P<f<Sr+€, just following the arrival of the re-
flected wave. The branch points, a;_oandba:o, are now lo-
cated 1n the fourth and {irst guadrants of the complex «
plane, 1In order to keep ff(aQ}”1 single-valued we Join these
branch points by *the tranch cub Ind’catead in fig. 163 by the

Meavy dark Iine. The path of Inftegration lies an infinites-

[

imal d'stance to e leflt of that portion of the branch cut
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which lles in the fourth guadrant. An equivalent contour is
indicated in fig. 16B by the dashed line. The fact that #(w)
i1s positive real on the resl « axis and on the imaginary «
axls between the branch points -, and (J, enables us to re-

write equation 106 in the form

. ~‘32- -‘T?/,\l
(117) U1 = @o (2/m) Wl (Aw) )dut va (W)f] L Atde .
¢te/ ra (('l‘-d?')’#l(‘f’)”z ¢ (‘f_aﬂ)z_‘a:lpt)l/ﬂ

Upszo
The procedure which was used in studying the response at

times just prior to the arrival of the reflected wave is also
applicable here. The substitution A=a@@ and the use of the
first mean value theorem for 3tieltjes integrals reduce the
first integral in equation 117 to the form

-
(118) @, (/M) / ujla)a’u /(<t-al,'mu?z)n,m,/r)(z/ﬂ)(«ﬂAm’))[qfwbvz)

—('telf‘l — 9((4}1_{?1/r4):/1)} )
where (S:t%Yr)"« A'2(s2 59" Tt can be readily verified that
QE-tE/rY) aiverges logarithmically in the limit €38P*. Ve
have now shown that in region IT the reflected wave has a
forerunrer and that the response diverges logarithmically when
t approaches §/* either from the right or from the left.

We next corsider the response iIn region I in the time
interval,Sr<t<§,f+€ |, immediately following the arrival of
the reflected wave, The singular point, Upmo » lies In thé
fourth quadrant. The Imagirary part of ,_, cannot exceedd,
in absolute value if the values of ¢ are restricted to a suf-
ficlently limited Interval followirg the arrival of the re-
flected wave., This fact indicates that the response can be
obtained by Integrating along a contour which is parallel to

the positive real ¥ axis and a dlstance 2¢/F* below it and
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which extends from the point—fte/ﬁt to the point U, ,. In
order to evaluate this Integral we make the substitution
{=5/+€ and define the new variatle // by the relation
D=iSe/r+ee/r+u . The mean value theorem for Riemanr integrals
can then be used to reduce the Integral appearing in equation

106 to the form

(110) UelSPee; ) =—CadM2f] [ C-ceS/rAC-cesr) .
rmemvmyrl
/ df/( f[-",f‘*fe'ﬂ[(-l PS/r-coe/P} )52 V2] ,P’[_‘PJ /f‘-tfﬁf‘"-l-?]]z] va

The integ;gtlon of this expression 1s involved algehraically
but straightforward. We note that terms which contain the
second power of/ must te carried In the calculaﬁions since
ikbecomes comparatle with € at the upper limit. Equation 119
can be reduced to the form R aesPVYre
(120) dp (S @T1) = - a0 (2/N) /7 [(-S,P/r“)ﬁ(-d,e/r‘) / dN/(2€STY P %) 112 ]

= CQ/2)(ST]/r%) f Acces/r) +A¢ 1¢=J /r)]
The expression on the right is just the discont*nuity in the
response at the time . The fact that the discontinulty is
finite indicates tha% the § which appears in ecuation 105 can
be removed bty integrating that expression by parts, The ef-
fect of performing this operation is t o introduce the expres-
sion or the right side of equation 120 as a reflection coef-
ficlent. This same procedure was used previously to separate
out the reflection coefficient at gxial points, It is inter-
esting to compare the result obtained by settingfzoin equalion
120 with the acnustic term in equations 75 ard 77, In regionm
IT the factor$§ cannot be removed by integrating by parts,
The reason for *hls lies in the Tact that the response dlverges

logarithmically at¢=§P . It is clear that Iin reglion IT the
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usual conception of a reflection coefficisnt, in the sense of
a quantity which measures the fraction of the energy in the
incident acoustic pulse which is reflected in various direc-
tions, must bte abandoned.

I.7d Evaluation of the Response in the Time Interval fihﬁp

Vie next consider the response in the time Interval fol-

lowing the arrival of the refleckted wave. The singularities
) /71 L
of the function ffﬂU} are located at the branch polnts Ugy=e
+

and U,_, . An expression for the real part of the integral
appearing In equation 106 can be obtained by addirg to it,
1ts complex conjugate and by dividing the sum by two. The
expression for the vertical displacement then reduces to the

form a*
w=g
(121) uz(t;'e)n)':(‘b/ﬂ‘)/6(A‘a)d“/((f-d”)"-;-u’?‘-)”z.
Yoo

In order to keep the radical,/iﬂd}”ﬁ single-valued we cut the
U plane along the dark line iIn fig. 18A conrecting the tranch
points «,.,and L/,:;o. The sign of the radical, ﬂ‘(q)}"?’is then
negative at points on the reald axis which lie %o the right
of the branch cut., The actual path of Iintegration lies an in-
flnitesimal dis%tance to the 1aft of the cut. Ve néte that the
integral along the contour which lles ar Infinitesimal dis-
tance to the right o the cut reduces to that given in equa-
tion 121, if the direction in which the in*tegration is carried
out 1s taken In the opposite sense. This I1s a consequence of
the fact that the sign oZ the funotion,[;uofﬂfcharges if a
complete lcop is made about either of the branch polnts. I%

is with this fact in mind that we deform the original contour
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-into the one which 1s Indicated In fig. 18A by the dashed
lines.

It !s clear that the closed contour erncloses no singu-
larities of the Integrand. The Iintegral around it must there-
fore vanish. The parts of the contour which parallel the real
€ axls are traversed in opposite directions and therefore can-

.cel each other. The parts of the contour which parsllel the
imaginary axis in the intervals (Jel=l-(&  _dtiEsUacS, |
and —(ed< U ~(Uy—=(E must also vanlish and for the same reason.
The Iintegral along that portion of the iImaginary axlis which

lies between ¢§; and-¢S, must also vanish., This is a conse-
gquence of the fact that only the sign of d changes when the

contour crosses the real «# ax’s. These facts have teen used

to express equation 121 1In the form

u:-o
(122 )(Qo/ﬂ’-)J {}du=cm/2ni)[[”du+{ du +/”clu+/ clu+[ }du )
dw=0 E’ (U,

where {}= uAm)/((t-al‘)’-u,usz)-lz The mean mg of the subscripts
is indicated in fig. 18B. The integral [R can te evaluated
by exparding the Integrand in powers ofd . The first two

terms ir the asymptotic expansions of A€ ard u/YHu»VZare

(123) Aw) ~ 1= (/o) (SF/(57-5)) C1/u?)

U—>o0
and

e
(124) /() '~ Ijr + tT /urs,
U-»ov
The integral therefore has the wvalue

(125)  (@e/2%() [ wAwodu/((t-ali2rutp?) V2 - cz,l"/','/l“?’) t>sh,
R

The linear incregse with time 1s a consequence »f the fact

that the aresa under the pressure-time curve, corresponding to
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Xes)=i/S , does rot vanish.

The evaluation of the integrals around the poles 1s
straightforward. The residue at the polnt -¢lp 1s given by

the expression

(126) (/2mi) [ { fdu =.ZL'ao/7’(-¢'uo)/[(t+(77(%’:_5;1):/2)2_%9??:]:/1[& /ot 4],

= =ty
"C'U [
where

(127) Je/fu+oHfIu =u { HURG12) ~ U [ USSP U SD) V2 4 (S 5PN

-2’83 u "f.g") Vay (q /o )(5;"/1-)( ( ‘5;1. S:) (U™ 52%) (C=+5D/ (> £5,%) IIL] .

The sum of the residues 1is

(128) (/2an() [ [u”d“ +£t ! ]JLJ = ~(6/05) SF (Cw, -STYd=-53) "> Kt 0,77 ) -
© -{

[I/ {4150y + UMLO Q52 (PSR 24 (LUF-S D) U ST) P21+ 200558V UG- S

+ (Co /O STHR) ((S252) /LU= 5) %) (( =52/ CUd-53)) Y ‘]]
The coefficlent of K&E,71) relates the amplitude of the

Stoneley wave to the elastic properties of the liguid-sollid
system. The actual time varlation of the response 1s glven

by the expression
(129) K@) = cos { w2 -ty tar’ [24 T =53 Hdreneed)] } y
/LTSIt T 53] 1R | ) Sire t = iy,
= ¢0$ { (1/2) fan"]_ztf,’(%’z-j;l)'l’/(fz+”zxz_%xrz)] ] .
[ LNl r T w5917, > (eri sy
In order %o obtain the response which is gssociated with
an input step functlon in the displscement potential we convo-

lute NG with the function
(130) F=0,t<T,

= ~(R /0:)sinamyT) t, 0=ts T)
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and require that the period,T, approach zero and the pressure
amplitude, ﬁ,, approach Infinity In such a way thatlthe croduct
ﬁTﬁ?mq approaches unity. This procedure amounts to taking the
time Cerivative of K(GEN) . In Tig. 19 the time derivative of
Kt;e,)l) has been plotted ss a function of time for various
values of @ . In each case both the source and receivér are
-locﬁted one mater above the interface. The elastic parameters
which were used In making the calcnlahbinons are Edenﬁical with
those wsed in Case I.

There s a very strikirg resemhlarce habween the tlime
variation of-d@Mt at a radial dishance of twr-meters and
the time wvariation nof the correction term at axial points
(fig. 3). This fact can be used to argue that the formabtlon
of the phase, which we ldentify as the Stoneley wave at large
values ofe , teging at the Instant the direct wave reaches
the Interface.

In fig. 20 we have plotted the amplituce of the response
as a function o{'e on log-log graph paper. A stralight line
can be drawn through all the polnts for which @ is greater
than two meters. The slope of the stralght line 1s mlnus one-
hal?. The amplitude of the Stonelev wave therefore decays
like e'"z. Such a resuly ‘s to be expectbed for a wave that
spreads in two dimensions.

A time-distance curve reveals that the point at which the
resporse is a maximum travels with the velocity /o . Arn 1In-
vestigation of the dependence of U, upon the elastic pronerties

of the lilquid-3nlid system can be used %o predict how *these
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factors affect the Stoneley wave velocity. It is interesting
to rote that at distances of flve meters or more we can char-
acterize the Stoneley wave by a half period (defined as the
time Interval between the relative maximum and the relative
minimum) and that this gquantity does not seem to vary appre-
ciably as e increases. The half period of the oscillation is
approximately 4;3 milliseconds and the velocity is 689 meters
per second. These two results can bte combined to give a wave-

length of 5.9 meters.
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PART II
PULSE PROPAGATION IN 4 FLUID CYLINTER

JI.1 Introduction

It 1s of interest to consider whether the Cagniard method
can be extended to include regions which are b%ounded by"cylin-
drical surfaces.. In the problems which we will study the
fluild is assumed to bé enclosed In an infinitely long cylinder
having a finite radius. The center of the source is located
on the axls of the cylinder. We consider the following cases:
an ldeasl fluid enclosed by perfectly rigid walls, a perfectly
elastic sclid cylinder in vacuum, and an ideal fluid surround-
ed by a perfectly elastic solid extending to infinity in all
directions.

The coordinate system will te chosen in such a way that
the Z axis coirncides with the axis of the cylinder, and the
center of the source cavity coinclides with the origin. Ry
differentiating the source function (equation 46) with respect
to Z one obtains the vertical component of displacement. This
function must vanlish in the plane Z=0 and be antisymmetric
with respect to it. It is apparent that the result obtained
from the differentiation of equation 46 cannot te used to de-
fine the vertical displacement in the plane Z=0. However, a
more sultable representation for the source can be obtained in
which the Z dependence enters in the form ¢esAZ . This trans-

formation takes the form (Watson, page 416)

— (-]
(131) @ (Se,2)=0/sr)e-ST %)_ (2/ms) J Ko(fcw%s’/v:)"‘)mwzdw,

with the restriction that P bte non-zero,
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I1.2 Cylinder with Rigid Walls

We conslder first the propagation of acoustic waves in
an ideal fluid, which is contalined in an infinitely long
cylindrical tubte having perfectly rigid walls., Seversl im-
portant questions arise immediately. In particular, one must
consider whether there exist certain points in the fluid where
-the pressure does not remain finite. The absence of such
points 1s certainly not obvious. If such points'do'exist they
must result from a focusing effect of the boundaries, similar
to what happens when a uniform pressure 1s applied to the sur-
face of a perfect sphere. In that case it 1s found that as
the wave approaches the center of the sphere the’normal stress
Increases without limit, and the radial displacement approaches
zero In such a way that the Inward flow of energy remains con-
stant. That such a result is physically unrealistic is obvi-
ous. It results from the assumption that the stress-strain
relationship remains linear even when the applied stresses be-
come quite large. In the problem of the spnhere it 1s the ad-
vancing wave front itself which gives rise to the non-linear
behavior. Effectively what happens 1s that the wave causes the
medium to react as if 1ts elastic properties varied continu-
ously with the distance from the center. Evidently the second
order terms should bte taken into consideration in the btasic
equations. This non-linear behavior causes energy to be re-
flected as well as transmltted, and this division of energy
must take place in such a way that no energy reaches the center
of the sphere.

A complete solutlion to our problem should also answer such
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questlons as the lollowing: (a) doss a spherically symmetric
pulse develop a tall after reflectior from a rigid cylindrical
toundary? () in what way s the original wave shape distorted
as the wave approaches the axis of the cylinder? and {c) at
what rate 1s energy removed from the nelghborhocd of the
source?

In what “ollows we attempt to answer some of these basic
questions. The complete solntion for the transform of ths
displacement potential will conslist of a term which descrites
the source singularity, az, and a bterm which deécribes the per-

turbing elfect of the boundary, Q?. Q} 1s a particular solu-
tion of the transformed wave equation which is well behaved
on the axis and symmetric with respect to the plane Z=0. Such

a2 solution is of the form

(1e2) = / F I fp sy "] cosdZ dA
[4

The total transform of the displacement potentlal is simply

(133) G = / cosAZ; (2/18)X ) Kytpo) +40) I cpe0 } dA.
0

The function,f(A), can be determined by requiring that the
radial displacement, ﬂ;, vanish on the cylindrical surface€==R.
F(his given by the relationship

(134)  $(N) = (2/7XS) K (xR)/T (xF) .

The main protlem centers around the Inversion of the

expression

(135) ‘T’P = (2/115) I (KR T, () I (oxp) cosAZdA .

[

Probably the most natural way of proceeding is to attempt to

find an expansion of equaticn 135 in which each term can be
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asgsoclated with a particular reflection event. On physical
grounds this seems reascnable; for it is apparent that the
original wave will undergo multiple reflections at the cylin-
drical wall. What 1s not apparent is whether or not the cyl-
inder has associated with it g dispersive property which dis-
torts the initial pulse shape. Should this be the caée, the
'response at timés which are large compared with the arrival
time of the first energy might be expressed more'naturally as
a superpositlon of an infinite number of modes of oscillation,
which are characteristic of the cavity itself when certailn
conditions are satisfied at the boundary. In what follows
toth approaches will ke discussed. |

We conslder first the expansion of a; in an infinite
geometric series. The substitution A=W reduces equation 135
to the form ”
(136) Gp=(2/m) f (K, (sRa) /T,(SR@W) T ,($¢Q) cos SUZ du.
If Ttoth the nugerator and denominator of the integrand are
multiplied by the factor K,(SR@ and use is made of the relation-
ship
(137) KotSRa)I (SRa)+K,(SRa)I (SRa)= |/SRa ,

qLcan be rewréﬁten in the form

(138) C?P =02/1) ] SRaK(SRa) KUSRa)I(Spa) cosSuz du /( I-SRa K,(SRa)I,(SRa)) ,
Direct calculgtions show that the functionT@=fK(E)LF) has the
value unity iff=0, and has a value tetween zero and unity for
positive, real, non-zero values of £ . It is clear that, in
the present case, £ cannot vanish (SRS, is the minimum value

of this quantity). G} can now be expressed in terms of the

geometric series
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(139) C7P=cz/n)§ [ QURae) T‘e(-fﬁa)l;(&pa) cosSUZJU,
=0 0

where
(140) Q(Ra) = SRa KSR KalsR@) .
That the individual terms In this expansion do not describe
individual reflections can ke seen from the following argument.
A1low § to hecome arbitrarily large, then T(SR@) approaches the
value one-half and each term In the geometric series reduces
to the same asymptotic form. This indicates that the term by
térm Inversion of equation 139 leads to 2 series iIn which the
time vbehavior of the individusl terms 1s nearly ildentical in
a small but finite time interval following the arrival of the
first energy. |

We also note that the ssymptotic behavior of the integrard
In eguation 135 and of the integrard In the first term of the
expanslion are 1dentical except for a factor one-half. There-
fore, by inverting the first term in the expansior we can ob-
tain information about the perturbatior potential 1tself in s
limited time interval followirg the arrival of the first
energy.

Nicholson's (9) integral representation for the product,
K(sRa) Ko(SR@), has the form
oo
(161) K(ROKSRD) = 2 [ K (25R a cosh€) cash £

2 [t iy

This expression is useful in reducing the first term in the

expansicn to a more convenient form, On the axis of the cyl-

—

inder the first term,}y , can Ye written iIn the form

(142) I@r _ (4/”)5‘,?4/»/”[0:(“) cosl. 7/«:3,‘ 5 e_S(zRQcoahfcosl‘”—. (uzéfc/ﬂo/t(
o ¢ % ’
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In order to invert 'Eﬁp we make the change of variable
(143) t=2Ra cosh§coshl~cuz.
For the present we consider this relationship to deflne « in
terms of €, §, and/?. The partial derivative of « with re-
spect to t is

(144) Ju
Jt
s

Ir (P 's rewritten in ferms of the new varldb]ef we obtain

(145) -(4/n)ﬂs/7/7 f/ ’ a*a‘m)e-sfdt jcosl.fco_sMchU/,

R, Ruttfn)-izaltsn)

= au) /( 2RU coshfeoshDl -iz atu) ) .

where

(146) Tl =2Rcosh§eosh/].

The path of integration, ”f,ﬂ , nNow depends on the values of
both § and? (fig. 21). What we would like to do is deform
this path into one which lies along the real € axis. The de-
fining relation for ¥ can be used to obtain explicit expres-
sions for « and @@) in terms of the variables T,§£ , andX;
namely

(147) = [Tz + (=M 4229)¥2} 112,72y

and

(148) Qo ={ T, +(Z(t25}T242%) 12} (273

In order to keep the radical single-valued we cut the T plane
along the portion of the real € axis which lies btetween the
points #§(*4+z9"* and require that the sign of the radical bhe
positive on the real ¢ axis %o the right of the point SBEHZYHVE
The expression for ¢P reduces to the form

(149) cp—m/w)frs/[ / /Q [ j e tat }coshf coshNdEdA,

o tip (tRsun> (T s 7y
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It 18 clear that the singularities of the integrand are lo-
cated at the branch points #5(NY*%+zY»M2 | We now close the
contour, ‘-ICW’ by the dotted path in fig. 21. The integral taken
along the closed coniour vanlishes since it encloses no singu-
larities of the Integrard. The exponential dominates the be-
havior of the integrandé for large values of . This indicates
that the result which is obtsined by Iintegrating along C must
become vanlshingly small In the limit ft=ec . |

In order to proceed .with the inversion it 1s necessary
to change the order of integration in equatior 149 in such a
way that the integration is carried out first with respect to

/. Reference to fig. 22 facilitates the inversion. The re-

sult is " cosh ™ (T/aRS,cosh §)
(150) ,'a-’,, = (4/MRS /:sl)f df / eyt / d'(tﬂ”)coslﬂo’ﬂ/ (t-SHT2zY) 2,
0 aRS0sh€ 0

A much simpler expression for :@f can be obtained by using
the original transformation to introduce the variabtle @ in
place ofy. The partial derivative of 7 with respect to ¥ 1is

(151) f)!g = ~(/Q) [ (ThU~i2a) /21?4:0:/)58:7)572 f .
1€
I? nse is) made of the fact that

(152) a’i‘/ = @/(Tu-i2a) = Qf(tLsNILA2z)) "
JCle y )

the Integral over }, in eguation 150, can be reducec to

(153) dpeo

I(te)= f / aw coshtEu) du /zRam) cosh§ sinh (.6, .

U = cosh™ (/3RS cosh €)
The U contour i3 easlly determined from equation 147 by allow-

ing /7 to vary tetween 1ts upper and lower limits for various

values of ¥ . The end poinbts of the « contour are



L

(154) Uy =[itz+2R<esh {t‘-s,"(zhflﬁ*mh’f)ﬁ [(Rcash*€ +29 = uy

and

(155) =0,

ul/: cosh™'(C/2RS,cosh § )
We now distinpguish between the two cases l<STH(T=(z%9R%cosh €)")
and t>57. In the first case the contour lies entirely on the
‘positive imaginary axis. It is clear that in this case the
functlon I(6f) vanishes. This fact enables us to replace the
lower limit in the integral over t, in equation 150,ty &7 .
Next consider the.case in whicht’ﬁﬂ. The corresponding

contour is indicated In fig. 23 by the pathqﬂgLé The Investi-
gatlion of the singularities of the integrand, in equation 153,
is facillitated bty expressing the denominator as an explicit
function of the independent variabtles, namely

(156) 2Ra coshEsiph/l = }(1‘-&(02)"—43"&’(«) cos/!,'f] v j-ﬁ(t,u,f)] "z

The function H(t,u,f) is a quadratic in ® with zeros located

at the points

(157) = [tz + 2R cosh € (t=52THV2] /T,

Equation 143 can be used to express @csh?] in terms of the in-
dependent variables. The relationship has the form

(158) Qcosh¥ = (t+cuz)/2Rcosh .

It is clear that a»=a is the only singularity of the integrand,
In equation 183, which lies to the right of the imaginary.axis.
In what follows we consider thHe &« plane to be cut along the
heavy dark curve in fig. 23 which connects the branch points

U and U_ .
Now let us determine the range of ¥ for which fw is posi-

tive real when & is pure imaginary. The substitution «=¢L
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reduces fiw) to the form
(159) $LL) = (E-LD* (5% L)(4R%ash’f).
The first and second derivatives of # with respect to L are
(160) 2'1":2“-77:'-2'0
JL
and
9% ot
6 v T =275,
The function $(u) therefore has a minimum value at
(182) L,=zt/T%
which is
(163)  #{Le) = (E=S M) (4R ,5h*6) / TT™
Therefore, 1f ¢>57, (@ is positive real at all points on the
imaginary « axis.
The expression for I(¢£)can now be rewritten in the form

(184) T(t€)= (I/2Reesh§ )’/ “ne (ttiaz)du / [ (t+cuz)2 4f%a* coth {f‘j e
0

The part of the «4 contour which lles on the imaginary axis
contribtutes nothing to the final result since_ifc is a pure
imagirary quantity. The integral from 4 to %___oand the inte-
gral from %a to A1 are ldentical since on the 1atter path the
direction of integration 1s in the opposite sense and the

sign of the radical 1s negative. It is clear that this latter

contour can be replaced by the path AZA3L;,

o+ The Integral

along the path AAy is pure imaginary. In order to evaluate
the integral along the path @%ﬂwe make the substitution
(165) = itz/T*+ R

in equation 164. The Integral, I(¢,f), then reduces to the form
LS R cosh £) /T
(166) o °

Tt = (112RTcoshs) /7 (Greashe/m St +i2R)dR /] cqret,sb*f/m)«ts;'f,")-#‘]'f

L
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- which, upon being integrated, yields the result

(167) T(t) = (W2) (I/2Rcosh€) (AR cash™ IT)E,

;@ can now bte written in greatly simplified form by intro-
ducing this expression for I(%f) in equation 150. We find
that " o

(168)  @n =A% / (mh‘f/nﬂf / e*zdt f df.
R o : ST
If the order of Integration is interchanged this'expression
for ,a; takes the form of the direct Laplace transform. The
lower 1limit of the T varlable is found to bes,(éﬁ‘+2‘)"". This
1s Just the time required for the wave which has beer reflected
once from the walls of the cylinder to arrive at the axial
point Z. Interchanging the order of Iintegration reduces equa-

tion 168 to the form "
cosh ™/ ((¢1532Y¥2RS,)
L

(-]
— y _
(169) G, =4S | e-st+ f/ (cosh®F/T13) d§
5,(4R%ZHV: o
The § , which appears In the coefficient, can ke removed by in-

tegrating the expression
o

(170) = -qp> [ ¢ (de*Ydt) gevdt

SR ZYVL
by parts. gﬂ9kms been used to denote the functicn.in paren-
thesis in equation 169. The Integration by parts leads to the
expression ot . _
(171) G, = -4R*( e‘“taft))/ + R | @3 (deactrgt) dt
(=SB ZH> 5,92y V>
The first term in equatlon 171 vanishes at infirity because

of the presence of the exponential and at the lower 1limit be-

cause Jfﬁ is zero there. We obtain in this way the determin-
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ing function which 1s the inverse transform of the first term
in the series expansion of a; s 1t Is
(172) ’cyf,(t,z)s 0O, o0=&tTs= S,(4£’-+z1)'/*=7;).
= ($/T) [ (125223 /(tESHEARM2ZIN/* + 4RY(T), t>7.

As indicated earlier the total displacement potential will be
proportional to fﬂ, in the time interval L<{<TL+€¢ . In this
.time Interval the behavior oflq; is governed by the first term
in equation 172, We are therefore led to the rather surpris-
ing result that the wave arrives ak axial points with an in-
finite discontinuity In the displacement potertial.

The pressure resoponse, P(¥J), to an arbitrary time variation
In the source displacement potential can be detefmined from
the superposition Integral. The resultant displacement.poten-
tlal at an axigl point,¢, is related to the source function,
'P, and the response function,d’, as follows:
(173) = “FIY gty g7,

o JT

The pressure is simply

- —_
(174) PV o:,“,_.

The guantlties ¢ and P are a valld description of the response

only In the time Intervsl, € , following the arrival of the
first energy. The term which dominates the @ behavior in this
interval can bte obtained if we replace t by T, everywhere in
equatlion 172 except in the denominator of the radical., We

hen find that

(175)  @(€)~ (2RS,/(4R*+2ZY) ") ( //(tt_nzyng , To<T&T46€,

If this result is introcduced into the expression for ¢ and the
resulting integral integrated by parts,¢is obtained in the

form
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(175) ¢=-<2Rs,/mx‘+z*)'/z)[§$/ LogT; - /L.:,(tmlrz)"‘)f
T=t-T, T=0

¢-T
+ (RS, /(AR IZ*) /2 . . 2
% J )[107 [t-T+{ct 'r)’-_-/;z}l/z_] Jai dr.

It is evident that unless dﬁjr o vanishes the time derivagtive
cﬂ‘¢ tecomes infinite at =% . It can be shown Iin a similar
manner that the pressure has ar infinite discontinulity at T

unless the following conditions are sstisfled:

(177) 4| . =o c.’i"l =0 JW'/ =0,

T=0t 2 JTlr=or  ° ITHgaot
If these conditions are satisfied the pressure can te deter-

mined from the relation

(178) Pt} =-q, (2RS:/<4R‘+21)"‘)/fl/((t—r)*-To‘)""} % 7

= ‘“”S'/“’R”"Z‘)"‘)/ { 1/ ( -1y T")r/z} JF dT,

where f; refers to the source pressuvre. 4 study of equaticns
177 and 178 reveals three very interesting facts: (1) a finite
but Instantaneous change in the source pressure leads %o an
infinite change in the pressure at axlal poirts at the time 7,
(2) the form of the coefficlert indicates that the initial
rate of change of the pressure is proportional-to the cosine
of the angle of incidence, and (3) the Initial wave shape 1s
distorted. These effects have no counterpart in the case of
vlane boundaries and serve to illustrate the influence of
curvature.,

IT.2a Study of the Reflected Wave at Points off the Axlis

The objective in what follows 1s to determine how the dis-
continuity in pressure, across the leading edge of the reflected

wave, changes as the wave approaches the axls of the cylinder,
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We hrave just shown that if Ye)=l/S% corresponding to an input
step function 1In pressure at the source, this discontinuity
is infinite at axlial points. We now determline the discontinu-

ity at non-axial points.

. The first term In the asymptotic expansion of the ratio

K.(5Ra) /T,(SRa) 15*

' -28a
(179)  Ki(sRQ)/T,(5Ra) ~w e 23R,
S 00
The displacement potential then takes the form
"]

(180) =2 l e-25eR T (sap) cosSUZAU.
In order to Invert this expression we replace I,(Sap)by the
integral representati?n
(181) T,(Sap)=(2/m) | cosh(Sapf)df /Ci-e1":
[4

—

The expression for CV is then
(182) @, = (4/7) / e-23k | suz f / cosh $Qp§ dFfC1-§D V™ ] dy .

If we Intercharge the order of integration and replace the
hyperbolic cosine by the sum of a decaying and increasing

exponential, equation 182 becomes

(183) ¢, = (/M) /{df/(/-f*)”‘) [ /“s.mz e‘”‘”‘(e“f"' e3%8)dy )7

4]

- 7 /1) / (df /(,_fz):/z ) j / (e-S LQmR-Pf)-z'QzJ+ e..S[Q(zmpf)-(uZ]) d u] )
v )

We iIntroduce the notation

(184) I, (5,p,z)=(z/n)f / (dE/(1-£9") j ] -szaak—pf)—mz] d ]

T,(5;02)= tz/W)/f / (df/u-£2") } /o o= [aaRtpf)-cuz] Ju ] :
¢

and consider each of these integrals separately.

% The asymptotic exparnsions of the Bessel functions are de-
rived in Watson, ch. 7.
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The method previously used ylelds the result that the
expression forj'; is the Laplace transform of a function which
vanishes up to the time 7, =5 (4R*+2Y%* . From geometrical con-
siderations we know that the first energy arrives at 7, =
S,LCZR-?)"-#Z"]'”Z Therefore, the expression forl—;_ cannot be used
to determine the magnitude of the discontinuity In the dis-
.placement potertial at the arrival time. In fact no meaning
should te attached ’r,o.}.'_.:z since the use of equatior 179 automati-
cally restricts the validity of our results to a2 small time
interval following the first arrival. |

The expression for z can te Inverted by the methods pre-
viously demonstrated., First we make the change ‘of variatle
(185) U= a(2R-¢&)-Cuz.
This transformation maps the real ¢ axls Into a contour which
lies in the fourth quadrant of the T plane. The contour te-
gins on the positive real € axis and then moves to the right
with inonotonically increasing real part and monotonically de-
creasing imaglnary part approaching the asymptote o=-tan”'(z/arpp),
This contour can ke deformed into one which coincides with the

W
<t< a 554 which is

real T axis in the interval S, [(aR-pf)*+2Y]
parallel to and an infinitesimal distance btelow thé real axis
in the Interval $R-p£)< TS5 LR-I*+Z2]V2 | Tyne only singu-
larities of the Integrand occur at the branch points 7; =

z §, Laar-e§)2422]J72, To keep the integrand single-valued we cut
the ¥ plane along the real axis between the two branch points,
If we then intercharge the order of integratlon in equation

184, I, reduces to
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2RS’
{1886) I(s,e,Z) @anm) i - e)—Stq/t f / {Jufdt) df/(l-fz):/zj
1(K-C 2RS~L)/5, e

mm)/] / oSty [ f Wu/dt), df/cz-fz)f/z} ,
2R S, (4

where
(187) 5"‘{-( / = afuct$) / [ R-ef)uctf)-iZajuct )] )1
£
= afuctf) /| tLstar-eer4z9 ] "
and

(188) W@ F)= f (zC+R-ef) [T 5HaR-e)%2Y)] '/"} / (z2%+0R-p %)

The final step in the inversion procedure consists In
uging the original transformation, equation 185, to express §
in terms of ¢ and¢ . The partial derivative of § with respect
to U is simply
(169) 4F / = [GR-eE)usa) ~c2] fap .

Uy
The product of the partial derivatives 1s
Jus Jf
19 ol N = | Sap .,
Now let us consider the mapping of the interval aR§t/§¢<f<! 1in
the & plane when € 1s confined between the 1imlts $(20-@)<T<2RS,
(corresponding to the first term in equation 188). The upper
and lower limits of W are
¢ = - 2L e Ve . _
(191) af=: ]’ (24 R~E) [ % S aR-p) 242 Y] ] [ (2% (2R-E)?)
and
(192) « =
£=aRS-tYs,e
We see “rom the firsht expressisn that if €S Lar-@*+2 1" tne
point Uf=l lies in the first guadrart, whereas, if ¢4
g[ax1n%+z{]”z the contour is confined to the poslitive Ilmagin-

ary U axis, In either case the Tirst term in enquation 186 re-

duces to
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2R,
18%) I(-" g,z)=(z/7)¢/ e"*o’t‘// du fawp (1-Fxu )2 | -
$CR-¢) 0
We infer from ecuation 191 that if t.‘-S‘,[(ZI?-t’)"—rz‘;]”", ‘{;-___, is a
pure positive imaginary quartity which cannot exceed S, In ab-

solute value. In this time Interval the double Integral 1is

~pure imaginary and contributes nothing to the final result.

It also indicates thatq}' vanishes identically in the region

-

of the cylinder for which

(194) S LcaR-@r+z*] l/1>2"s[
Z:> 4KP_P’-
If §, LaR-*+22] %<t «2RS, , the Integral does not vanlish but

makes a contribution to the final result. For ﬁhe time being
we will corsider the response in a reglon of the cylinder for
which the inequality in equatlon 194 is satisfled, We there-
fore focus our entire attention on the second term in equation
1686,

Equation 185 can be used to reduce the sepond term in the
expression forf to the form

- © Ye=/
(195) I, =‘“/”)y/e““dt// da/a(wpu—f‘w,t))‘”} )
285, oo

where

(196) d,_ = [¢z t+zﬁ(tts,1(4ﬁ+z9)'/zj /(IR*+2ZY)

Tn the interval 2RS< C£5[R-0*+29"* the path of integration
is confined to the positive imagirary axis and the absolute
value of & _, canrot exceed J,. This indicates thapgz;zo in
this time interval. It is now clear that no energy arrives

at any point in the cylinder before the time required for the
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~wave to reach the point of observation from the ring source
which has a radfus 2R and which lies in the plane Z=0 .

‘e are interested In times iImmediately followling the
arrival time. If € lles in the Interval
(197) 2RS; <5 LOR-*+2] "> 2 C & S (FR%2Y /2,
the contour in the « plane starts at %F-a on the positive im-
aginary axis ard moves upward along 1t to the point Up. Tt
then leaves the Imaginary axls ard moves into the first aquad-
rént (rig. 24). The point Uy is the mapping of the value of
§ which causes the radical in equation 128 to vénish, namely
(190) £, = 2R/p ~(t=522%)"*/p5,.

The value of Uy is

(199) o, = (ZS*/¢.

The fact thatl satisfies equation 197 Indicates that & can-
not exceed §;, . This means that on the path %&:o u% the
integral 1is pure imaginary. Therefore, the entire contribu-
tion to the value ofbi: comes from the integration along the
curvea;q9=l.

The Integrand in equation 195 car be written as an expllic-
1t function of U and € by substitutine the expression 2R/p- (t+iuR)fap
sor f . ;z then reduces to the formr |

o Yy _
(200) ‘f/=(2”)//?"rfdf du/[ta’l-(Ma-(-t-u'az))‘] "y,
205, Yr

The radical 1s most easily investigated 17 1t 1s expressec as
the product of the two functions

(201s) Hlw = —a(2R-¢) +(t+iuZ)

and

(201b) H(u)= @ (2R+P) — (t+/u2),
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It can Ye readily verified that In the time Interval given by
equation 197 these functions have the following properties:
(a) 4 (4w vanishes at ?’=I In the first quadrant and at a point
in the second quadrant which is obtained from uf___, ty changing
the sign of the real part; (b) K€« is positive real In the
interval ~§ s« %S, ; (c) fW vanishes at the points:

(202) ‘3;’- = [(Tz + CQR+0) [ S*(24+QR+pR) -t ] "7 [ (2% (2R +0)%)

and

(203) U ={ Tziamp)[sPapre)I-1]" | [ (24 R4

(d) #4 is located on the lmaginary axls between Uy and ¢4
arnd cannont approach ((7.; (e) & is located on the imaginary
axis between -¢J; and %:o; and (f) £(«) 1is positive resl in the
interval ¢<ucd,.

To make the square ronts of ')(,(l() and 1‘-,_(14) single-valued we
make cuts in the « plane as shown in fig., 25. We now return

to the determination of the discontinuity in the displacement

potential at the arrival time. As mentioned earlier the entire

—

contributioh to the value obe, must come f[rom the integration
alorg the curve uT‘?:-/ . The result of Integrating along this
curve is identical with the result which Is ottained by Inte-
grating from ‘{Fs/ to UT above the trarch cut. This Integral

s In turn eaqnal to the Integral along the path (17./4 l?,‘___/ .
Properties (b), (d), and (f) of the functions $) and ﬁ(l()
indicate that the radical is real between UT and A and, there-
fore, the Integral 1s pure imaginary and contributes rothing.

We have therefore reduced the original path of iIntegration,

U Y , to the contour AW, . 3By rewriting the inner inte-
£=0 p=y £=/
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gral in the expression forgr, we obtaln

(200) T, 60,2 = i Jf [ du /140 i00)
A

where T=5 [QR-p)*+z2] "*1¢ =5/ +€.

To evalua teél}(z‘;-(’,Z) we introduce the new variable § by
means of the relationship
(208) U= (Z8/r +(Z€/r*+§ =A+§.
The value ofg?=, , iﬁ terms of € , 1s _—
(206) t“:, = (Z8,/r+0(Z€/P*+(2R-L)(RES,1)"/r* = A-+(2R-)(2€5,M) %/ p>
In equation 206 and throughout the evaluation ofKI}ﬂ§6Z)we
will not carry terms which involve &€ raised to higher powers
than the first,

The result of Introducing equations 205 and 206 in the

expression for I (%;p2)1s
ap-e)zes,ryr>
(207) I, (¢2)=(2/m) i / d§ / [a¥9)p™-{aRals)-[sirseysiz(izs rvizerr+HIF] VL
J .

We only note here that since we are carrving terms up fo the
Pirst power 1in € we must carry terms up to the second power
in§. If we do this we find that the coef®icient of the herm
in the radical which involves § to the first power vanlshes
and the integral reduces to |

(2R-0)/r2) (2€8,P) /™
8 /[ 2e5,0R-0)/P2-§7]""

The actual disé%ntinuity in the displacement potentlal is
(209)  @USIT)-QisP) = Ci/r) (ar-e)/p )?

At p=K, the discontinuity isi/P. This is just the discon-
tinuity in the source potential gt the boundary. It 1is clear

from equation 209 that as e approaches zero the discontinuity
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Adncreases until, at€=0 , 1t tecomes infinite. This is in ac-
cord with the result already obtalned, but now we are in a
position to interpret this result. In virtue of our discussion
concerning the superposition integral we see immediately that,
if the source pressurs ls continuous, equation 209 prédicts a
steepening of the leading edge ol the pressure pulse as the

reflected wave approaches the axis of the cylinder.

II.2b Response In the Plane of a Ring Source
In the preceding discussion it was noted that the singly
raflected wave arrived at the poinkt of observation at the same

time 1% would have arrived 1f energy had teen Introduced gt
t=0 along the circumference of a ring line sourcé of radius 2R
located in the planez=o ., It is iInbteresting tno determine 1l
these two waves have other properties In common. A study of
the exact transient response produced by a ring line source
in an infinite Tluld leads, In addition, to 3 tetter under-
stand’ng of the effects produced by focusing in *the cyiinder.
In what follows the radius of the ring is designated by
b and the helght byZh. We divide space into the two regions

(a)obeeb and (b) bgp<ew. In region (a) we will take a solu-

tion of the translformed wave equatlion of the form

— )
(210) qg-:/ 4 )L (px) eosAZ d)

()
and in region (k) a solution of the form

(211) c—y;.—.- f.o‘l(.s('” Kolex) eos AZdA .

[/
The functions J%C» and 43()) are Lo be determined by

requiring that the pressure be continuous across the cylindri-

cal surfacef=5 and the radisl Adisplacement have g discontinu-
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ity ateab which 13 given ty the functimdQGn. This function
is defined bty the relations
(212) (4 4 ), = (blas)o = @=1/h, izi<h;
= 1/2h, |Z|=h)-
= 0, 1z{>h,

- It is convenient to write Chnin terms of the Fourier cosine

.1ntegral
(213) O(Z)-'-'(Z/lf)/(smﬂl/)“cos AZd) .

The bourdary conditions will be satisfied if £(A) and
-&(M are determined from the equations
(214) £ L) =, WK b
and
(215) akM) Ilbed +AhA) K, (ha)=-(2/m XCS) sinAh /A,
where X(5) designates the Iaplace transform of a function which
describes how the disconbtinulity in the radlal displacement
charges with t ime. The expressions f‘or-&(/\) and ﬁ(ﬂ) can be
simplified to a corsideratle degree by utilizing the formulsa
for the Wronskian of the modifiled Bessel functions of the
first and second kinds (equation 137). The expressions for
the potentials then reduce to the form

(216) G =-(m L)(rs;/(:mM JAR) K, (be) T (po0) cosAZ d)

and o

(217) @, = - rm bXS|(inAh/ M) T, (bex) Ky (o) cos AZ dA .
A _
The potentials which describe the radiation emitted from a true

ring line source are obtalned from equations 216 and 217 bty

allowing h tec approach zero,
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Qur primasry objective in what follows will be to Investi-
gate the eflects of focusing. Ve note immediately that, 1f @

and h toth vanish, equation 216 reduces %o

(218) @;: —czm)b%(:)ﬁ(b«)cos)lc/) .
(/]

Therefore,

(219) P = 6,bs2res)(2/m) f K (ba) cos A=z bsxe) €y p
(-]

where P= (b*+ZH"* unc B, is the Laplace transform of the
pressure response in reglon {(a). Tor the moment let us assume
that $2)(S) 1s the Laplace ftransform of the function (¥ .

The pressure response can thern be expressed In the form
(220) R, (t;0R=0,T<lS;
=@ b/r)4(t-rs), t>rs,.

It is clear that the pressure at axial onints is directly
proportional o the cosine of the angle »f ircldence, a fact
which has been previously demonstirated for the waﬁe relected
from a riglild cylindrical suvrface,

wie row consider the problem of inverting Ei in the plane
of the source (Z=0). TthGXpression fer'E;reducss to the form
(221) E_ =(2/1:)0.;1:31)((3)/,1;(5«)1;(5«)&2 =A(S)G(€,S))_

(/]
where

’ L
(222) G(p,.s)=/ Ko=) T (pe) dA -

In order to invert this expression for G(e,s) we make the sub-
stitution A=SW ard introduce the following relationship for
the product of the Bessel functions (3, page 38):

(-7
(223) ’ﬁ“”"”;"?“)-‘-fI(zs«(ng"*mhi‘) e-Sa(b-f)cosh_f‘ ¢
/]
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/1) /f / 2¢5albe) ™ sink§cosV 4oy ] - Sads- f)whf

(2r3) =[

[]

The interchange of order of Integration ‘s clearly legitimate
In equation 223 and reduces the expression for &@S) to the

form
N/a.

Y ~p)eosh& -2¢ b )llz. <o
094) G@J”’-’W’")@ﬁd/dv df 6 a ftb-pleosh§ -2i(bp. mff sy

.
Now make the ftransformation

(228) ¢= Q'{(é—p)cubf-—zi(ée)'/’&mﬁfcos'}"f

and conalider this relation to de:f‘i.ref in terms nf the inde-
pendent variavles { U, and Y. The partial derivative of §
with respect to € is simply

\226) 5{% ;/ Cb-p)sinh§ -2¢(bp)¥ o:bfcos'y’}

The integral over §, in squation 224, 1s reduced by this trans-

Fformation to the form

He,
(227)  Flu,¥) = "'tJF dt
a(b-p) JT. u,

where the path Hu),p is dependent on the values of btothu and¥.
In order to Investipate the singularities of the Integrand we

write .‘if‘/ w as an explilcit Nunetion of the indsperdent vari-

iy

-

ables., An expression for the ca.s/:§ can Te obtained from the
defining relation for . It has the form

(228)  cosh § ={ (b-p) t +2(80)*cosp (a%9:tHV2] Ja %%

where

&0

! * 2

(223)  @'= (4-p) +4bp cos™ .

4 one to one correspondence “etween poinks in the{ and ¢
planes can be obtalined ty cutting the t plane alorg the real

{ axis between the “ranch points *a@ and by selecting the

positive sign for the racdical when (‘;aQ. The relation
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(230) sinh § = cosh™€~1
can be uéed to obtaln a similar expression for the ﬂﬂ#g
namely
(231) sinh £ = ~(/ag?) [ b-p) @@ty _ 2t (be)"% aw}
These expreséions for the hypertolic sine and coslne reduce

the expresslion for 257 to the form

232) Jf
Jt%@

It is clear that the singularities of the integrand, in equa-

= fa@gtey i,

tion 227, are located at the “rarch points @@, This indicates
that the contour,#uy,, and the portion of the real € axis which
extends f'roma(b-(’) to Infirity and which lies an infiritesimal
distance below the branch cut are equivalent cortours. The
expression for 6(65) can be r'educed to the form
(232) G(@S)= (2/7/)8/7/a’a/ d'w/ eStedt /=2,

0 aa;@
This result can be further reduced by noting that the real

part of the integral over T vanishes if a(s-p)€t<£a@. Accord-

ingly, we rewrite GQ%{) in the form
we feo
(234) G&(p9) =(/MWS j du / d¥ | e-Stdt/it a2,
ag

To proceed further we assume that the order in which *the
U and ¥ integrations are carried out can be interchanged. It
is then easy to justify the change in the order in which the «
and C Integrations are carried out. This dnuble Interchanse
reduces the expression for GQ%S) to a form which can ke readily
integrated, namely

(235) GBS = @/m) S [ do| ety

o 5i9 o

599" Q
'('/ du /(t=a*gy'?,
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The fact that
(026 =509 tt59Y"/¢ .
du /(=290 = (i/§) / du/ | (t=526Y/9*~u™} . n/2Q,
0
reduces the expression for G(ge)to the doukle integral

w2 os
(237) G(-%(’)"S/ d""/e'ﬁdt/o)

o 59
from which the final result can be obtained by Iinterchanging

the order of integration. The expression for Gﬁ%&’then re-

d t
uces 0 3[@*?) a2 WL

0
(238) GlpH=S| e-Stat| dy/q +35 et | dy/q .

56-¢) cos” [CE=52(b-0)* )5 be] " Stbre)
The coefficient,$S , can be removed from this expression by
integrating the first term on the right by parts. We obtaln

the result that

S Cb+p) t=5,(b+g) S\'(bfe)
S(b-e) teSi(b-p)  Si(b-¢) It
5(btp)
- e-SS(be) 7({%(”*9, o)+ e"“’“'f’J(s, (b-¢),p) + / et Jf dt,
where e 3(6-p) I

(240) J-H,e):j dv/Q

cos™! [t -sHb-00%) /454 p] V>
The fact that 4(5,(6-())()50 and that the first term on the right

of equation 239 and the second %term on the right of equation
238 gre equal and opposite ir sign Indicates that G(ﬁs)is the

Laplace trans form of the function 7(t, ¢), where

(241) 7(1.‘,(’):—- 0, t<5(b-¢);

= dFe 5 [{trsi- e s brp ) 3] Si(b-p)< t 5590

]

o, t?-ﬁ(ﬂ-ﬂf).
This result can be easlly interpreted 1f A(S) is specified
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ty the relation
(242) AG)=(MUGbISH(K/s™Kk)(1- ) = L{A)],
where K=2W/T . The determining function, A(t), is then glven by
the relations
(243) At)=M@Gb/SY) sinkt, e=taT;
o t>T.

9

n

The final result can be obbtained by convoluting ¢(Gewith AW,
r

It 1is '

(244) P)=0, t<S(b-e);

t |
= /N)(5b/5) / sinK(t-u)9(U,p)du , $Cb-p) s T £ 5 Cb-p)+T ;
S¢6-¢)

= (2/7) (b/S}) f.u'n K@wqprdu ,  §Cb-p)+T< = 5(b+¢);
t-7

, (bt ) :
= /1) (%b/5Y) /: . SAKA-WGUOIdU,  SteI= <5, (b10)+T ;

=0, >50+e)+T.
Many of the sallent [eatures of the pressure response can Dbe

obtained without actually carrying through the numerical in-
tegrations. This procedure is facilitated by rewriting P@)
in terms of the dimensionless time ¢Sb=Ul=Ff and the dimension-
less distance ¢/b=§ . 1In the time interval §(b-p+Ts <S5, Cb4p)

PO can ve expressed in the form
t/% '

(245) P =) (/Y| sin LA IR df [{ 2 0-e9 (e pryin]
TN, U-E)1T/HL£ T (14£) .

In fig. 26 we have plotted curves of the functlon *(f)-—- :
I/i(f’-'-(/—-f)")‘/"(ll'ff)"—f‘-)'/"} for values of £ ejual to .1, .25, and
.50. Tt is easily demonstrated that #(f) has a minimum value
at B=+89" | whnich is HfJ)=1/2§ . The period of the sine
term can be fixed by specifylng the value of the quantity T/7 .
This quantity 1s just the ratio of the wave length of the sine

term to the radius of the source, In order to Investigate
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"the time behavior of the pressure response we mush conslider

how P() changes as the sine wave is dlsplaced “rom left to
right across the graph of the functionfﬂv . This 1s most easi-
1y accomplished if we take the ratlo of the wave length, A, and
the radius,b , to e culte small, say .02, and 1f we introduce
the quantitles 7;;, 7f, and 7';,?. Eref’ers to the %time required
for the direct.wave to reach the po’nt of observatlion (or the
time at which the “irst discontinuity in fig. 26 occurs),7;
refers to the time rejuired for the wave from the opposite

side of the ring source to reach this polint (of the time atb
which the second discontinuity in fig. 2€ occurs), ﬁﬁ specifles
*he time at which the iniividual curves in fig; 26 take on
their minimum values, and the superscript § deslgnates the
curve which Is being considered.

By differentiating the second and fourth relat’ons, in
equation 244, we can show that the slope of the response curve
vanishes a% g and T#T . Comparison of the areas under the §
curves, in the interval [etl<&lt7/2, indicates that the pressure
increases steadily as § varies from .5 to .1. If we focus our
attentlion on a particular value of £, we ?ind that, in the in-
terval TpeC<TtT, the pressure flrst increases %0 ‘a maximum
positive value, then decreases to a maximum negative value,
and then approaches zero from negative values ag the time In-
cresses. It is also noteworthy that the amplitude of the
pressure maximum 1s greater than the amplitude of the pressure
minimum. These remarks certainly remain valicd as long as the
time interval,'/i-u , i3 greater than about twice the pertod of

the sine wave. Foints which are so close to the axls of the
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cylinder that they violate this restriction reguire special
attention,

This same type of reasoning can be used to investigate
the rehavior of the pressure response Iin the time interval
-T«t=T+T . Study of a speclfic £ curve reveals that
the reflected wave has a positive forsrunrer., The amplitude
of the response Iiricreases with time until it attains a maximum
positive value, 1t ther decresases to a maximum negative wvalue,
ard then returns to zero at t=7}+T . It is interesting to
note that the depth of the mirimum is greater than the height
of the maximum.

The characteristics of the resporse can be readily inter-
preted 1f we consider the ring to be composed of zn Iinfinite
number of point sources., The distortion results “rom a pro-
gressive variation Ir the way In which the waves radiated from
the indilvidual polirt sources superpnse themselves; The steeo-
enlng results from the fact that, as @ decreases, the waves
arrive more nearly in phase and reinforce each nther, The
presence of a forerunner shows that 1t is poasihle for waves
radiated ty polint sources on either side of the diamctrically
opposite point to reinforce each other. The response vanishes
at'u+7'kmcause of the fact that the last energy which reaches
the point of observatlion cores from the diametrically opposite
point ard that this point radiates only during the time inter-
valoest&T ,

Ve now see that the pulse which '3 radliated bty a true

ring source and the pulse which appears to be radiated Ly 3

ring source, of radius b=2R, have at least two properties in
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common. In koth cases the pulse pressure at axial polnts is
Airectly proportlonal Lo the cosine of the angle of Incldence
and, in the planeZ=0, the leading edge of the pressure pulse
steepens as 1t approaches the axis. It also appears that we
can row offer an explanation for the difficulty which 1s en-

P

countered In expanding equatlon 135 Into a series of terms
whicﬁ represent multiple reflections. In the case of the ring
source the positive forerunrer results from a constructive
interference of waves originating on either side of the dia-
metrically opposite point—that 1s, the least time path 1s no
longer the path from the point ol observation to the cdiamet-

rically opposite pnint. It seems quite reasonable to believe

that soch an effect should also be observed in the eylincer.

1

T this is indeed the case, we should not expect to Tind 4dis-

ct
=3

nct phases appearirg at times which corresoord to the ar-

£

rival btimes of the multinly refllected waves.

N

I1.2¢c The Pressure Response Within the Cylinder

Vie now Jderive an exact expressi»-n for the pressure re-
sponse. We will use an approach which nas certain features In
common with the method vsed to find the steady state, rormal
mode solutions for systems having more than one piane houndary.

The expression for the transform of the pressure resporise can

e reduced to the form "

(246) P =~(0,S9/MS)SX(S) | cos SUZ [ {/Q(:pQ)L(JRa)+lgfxﬁa)L,(qu)} /I,(.vea)]du.
This relatlon can ke ob%ained ty corbining the source anc per-
turbation terms in equation 133, multipnlying the resulting ex-
pression by—d;fz , and making the substituebionA=S« . The

presence of the radical, @«) , indicates that the sign of the
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argument of the Bessel functions charges when one completea
loop 1is made abhout either »f the points:t(@ . We now show
that the inbtegrand 1s unchasnged when W makes a complete clr-
culh about the polint [8 . To do thls we asanwme that the
plane 1s cubt along the imaginary agxls hebween the points (&

nosihive on the

L

anid —éﬁ and that the sizn of the radical, @, is
-Peal U axis. The shudy bf the quantity In Trackets, alt points
which are located on the left side of the cut, 1s facilitated
Ly Introducing the following reiations:

(247) L tSpae™ = T (spa)

(248) T (SRae'™)=-T,(sRa),

(249) K, (Spae™)= K, cspa)- 7 L(Spa),

and
(250) K (SRae™) = K (SRQ)- (L (SRe).

On the left slde o2 the cut the Integrand has the form

[ (K.(5p@)-wiT,cspa))T(5Ra) - (K (sRa)+ 0L (sR=)) T (Sp) | / Tt5%a)

= [KkGew] (sﬂa)+/ﬂfsﬂallf,(5ra)]/l'(3ﬁ¢)-

It Is clear that neither Gs nor-—&% are tranch polnts »7 the

intecral. Therefore, the assumed branch cut batweer these two

noints can te removed. The expression for P reduces *o

(251)  P= ~(qSY@/U)S/XN(S) /: Suz [(wea)l (ska) +/§(Sﬁa)l(seq))/_[6xi)].lu.

~e0
The Ttehavior of the intezgrard, in the vicinity of the

91

pcint (S , can be investligated by Introducing the Zirst few
terms In the series expansions of the Bessel functions about

zero, namely

(252) [ ¢sear ~1,
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(253) T(SRa)~SRal2,
(254) /re(-$~€Q) ~‘(Y‘+L07.S‘PQ/2))
and
(255) K (SR} ~((SRa)/2)(P+LogSRa/2)+ (I/5Ra)~(SRa/4) .
In the vicinity of the point ¢§ the integrand reduces to
(256) €¢SUZ [ T ~ (e~ %ftsRas2)) [-(SRa/2)(r+Log Spas2)
| e ' + (SR@/2)( r+1.07 SRe/2) + I/.S‘Rq]

= (e~%5%/csRa/2) ( 1/5Ra +(R2/2) Log R/p)

= e S22/ +Log Rlp).
e pnint ¢§ therefore behaves like a simple poie. The other
singularities of the integrand are also simple poles and are
located on the imaginary axis at pnints where .Z;(S'Ra) vanishes,

Next we consider whether the result which 1s obtaired by
integrating along the arc of the semi-circle, which lies in
the first and second quadrants of the &« plane, can te made to
vanish when the radius of the semi-circle approaches iInfinity.
In order %o do this we make use nf the asymphorlic expansions
of the Bessel furnctions. Thils means that from the heginring P
must be assumed to be non-zero.

e make the substitution (1=9€"¢in the inteér‘and of equa-
tion 251, @ 1is 2 positive quantity which can be made arbitrar-
ily large. The first terms in the asymptotic expansiors of the
Bessel f’uhcti_ons have the {ollowirg form:

(257)  Ko(SeQe @) ~ e~T0FE (q’/(zm)'/'-(:pqel'?) ’/’~)
(258) K, (SRQeD) ~ e-m‘?e"‘p/czm’/'-(:ﬁgec'q’, ”

(259) 7,450 ~ (¢09 T, (&89 jamspgeityur

(260)  Lcsr@e®) . (e<R9eT_  &~RF€T) Jamsrge P s,
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f these relatilons are subshituted in the expression in brack-

14

z4%s 1Tn emuation 221, 1t 1s found that .
‘o @y 2. fyoSQR-01€P __soR-0)e P, 1, skRQe(P . _sRGe(?
(261) [ T~(mf2509e D ">4(e +€ )/(e 9e7 e )].
The result of rationalizirng the denominator 1is
(262) eﬁkgcosw_ZS‘,”a'rR?“.ﬂw)*e—dJR?cosq‘
Ir@=m2, this expression redvces to 2{/-S(N2SRG) | Thervefore,
the cdenominator vanishes 17 SRQ=m+I/)NW . This mears thas we
must chonse the value of @ in such a way that th.is relasion
*s rot satisfied—ary other vnlue o°@ is permissible. I
0eP£M2-§ (§4#0), the <“irs* term in equation 262 incresses ex-
penertially., IrfR+i£@P<£l | the third term increases exponen-
tially. In the interval W2-§£@£M2+§ we can always select a
particular value of @ which will make the denominator greater
than some positive quantity 8. This fact is nncessary to She
subsenuvent discussion.

& 1ittle algebra is sufficient to show that, in the in-
tervaloe@<¥, the absolute value of the Integrard canrot ex-

ceed

(26m) 1L T/[e“4F < (q§/250)¥% e=$295n?, |
[ e25RQ cosP-spGees? e"”g“"% eJ‘chquf e.zsﬂqwf¢+3€9°“4’ ] /

[ €°595? 2 sin(a3hqsin@) + 238905 @ .
In *he 1mema1o.«.-cy¢-ﬂ/z—8 the denomingtor carrot be less than

S ‘e .
(rz) e* Rq“"(p. Similarly, the numerator s always less than

S
4e€ QQR—F)C“¢. e see fthat the absolute value »f the integrarnd

canrnoh excecd

(264) & (UWQI28p) 2> e~FFZsinP+pcos)

and that the integral s less than

(255) 8(MQraspIv / m'é-sgcz:mq’,pec,,q) 4o
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If we riote that cos@zl-Q/IMP(oeP<n/2-§) 1t is an easy matter to
demonstrate that this integral must vanish when @ 1s allowed
to spproach Infinity even if Z is identically zero. A simi-
lar stasement also holds in the Interval TR+§<QP=T |
fie have now demonstrated that the result which is ot -
tained by Integratirg along each of the circular arcs,

0= P=Me-§ and W2+é£@P<mw , can be made to vanish in the limit,

=

Tt remains to be shown that this result is also hrue 1f we

integrate along the arc w2-§<@<Mi+§ . Ve now make usé of the
fact that @ can always be chosen In such a way ﬁhat the de-
nominator is greater than8 . This means that, in absolute
value, the integral must be less than |

(266) (MQr25e)V2(84/B) e~ 293 (S0 UR-@)sind

- There fore, if_'(o and Z are non-zero, the result which ls ob-
tained by integrating along the semi-circle can be made arbl-
trarily small bty selecting progressively larger values of .

-

ve expressed in the form

& o
(267) F=Al) / «HEL] da = 20 AP By
= =0

tie now see that P carn

where the ff& are the residues of the Integral at the points
on the positive Imaginary axls where Z(SR@) varishes. The
function L(SRQ) varlshes if« satls”ies the condltion

(268) J‘RQ’(%)=('C.04

or

(263) U, = C(/SRI(W*+SEERY) ”j

U,

4 Y

where the w£ are the voslitive zeros of'J,—(x) . We can find the
first term in the series expansion of the function I, (SRa)

about the pointl:(‘ from Taylor's theorem. It is
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(270) T (SRa) = (SRuy [acdy)) T (SRaldp) (d-L4) + - - -

The residve, at the pointdp , can be put In the forn
LWL i’
(271) 2wy = (M3ugrass,RY) (e~ FH YIRS +SV"f iR 4 512 ),
2
S (aqe/R) N eayy) .
In Ceriving this axpressiosn we have used the "act that M(dqp=
((m@)x(%z).ﬂﬁd the fact that the VWronskliar of the Bessel func-

1

tions of the first and second kinds, of zero order, reduces

The res’due at the pnint ¢ s easlly evaluated from
aquation 256, It is found to he
(272) 296f, = an/sy e~ "%/ s
The transform of the pressure response can now Le sut in the

form

(274) PUS;0,2) = ~(0S™) (2/TS) ($/2)XCS) (/5,87 .
Sy ~ 28 (Of (RIS 24 $Y V2
/ (z/:*)e“"z-;(r/l/zsizazf g (peqm) & U /¢ st ”z)«/vz/'
=/

t is clear that the Laplace transform variable, S

4

, nhas been
removed [rom the argumen® of the Perssel functions. This fact

reduces to a corsideratle desree the lador veqiired in ‘rvert-

—

ng P.
In order to Iirvert +he QXpressior*fﬁm‘F.we make use of
the result (10)
PN 214 “_{‘L/R %S ’)”7( Y I £
(278) e " S =°C{&(t5‘2’a-}&)] J

where
(276) f‘(t,.z,a;‘)s 0, t<5Z;

=J]cwymsytisizong | t>sz.

Now we consicer the result of convoluting each term in the

“
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series expansion with the function whose Laplace trarnsform 1is
SXGS) . Tr we cali this function F(T) , the expression for P

can he rewritten in the [orm

(277) P(S; 62 ——(20'/318‘)/43-4‘* [J—(t-a)l(u-:,z)o/a]df
JZ

_(m’/zs,x‘) Z c%'- Ye cag)f gelR) | e / ‘"j / K-, {rw IRINUW=s72Y V2 du [ dE.
It is oleaﬂ that the expr9331on or the actual pressure var:-
at.lon can be obtalned from equation 277 by ‘ntercharging She
order in which the operations of surmation with respect toqg

and n%egration with respect to € are carried subt. Il we

*

atlempt to Justify the interchange by appealing to Fubkini's

%heorem we must show that either

(278) Z / /Q(f.rp,z)/

A= 32

or
(273) !,z Z‘él%(t,.gp,z)]]c/f

exists. The function, gﬁ, is defined by the relation
(280) (,3 ‘f;l Vew, _‘J(%pm)e‘“/ F(t0) (%/ﬁ:)(u" 29,/1] Ju.
52
if

The difficulty which Is encountered in obtai ning a good approx-
‘mation to the in%tegral stems in part from the fact that ‘or
large values ofq% (and/or small values of the hore hole radius)
the Integrand is a rapidly oscillating lunction. It appears
that the problem o7 just![lying the interchange rcduces to that
of fInding a particular time function for which the integral
can be evaluated.

It 1s clear that each term in %he 'n-ini%e serles expan -

sion of the pressure response stanrhs contrihuting at the time

$Z, independent of She value ofp . This Indicates “hat the
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individual terms of the expansion-must interfere destructively
In the time Interval §(p#z¥"-s5z .

The @ depencence enters only in the combination.l(qkewo .
This Indicates that within a given mode there is an oscilla-
tion of the sign of the Bessel funchion when @ 1s ai]owed to
increase from zero to R and that the rate of oscillation in-
creases as we go to hlgher modes., A4lso, ife=R., the sign of
the Bessel functlon Is alternatively positive and-negﬁtive as
.I increases. Finally, we note that the pressure varles as the
inverse square of the bore hole radfusfK . Such a result
clearly has meaning only for those times which are large com-

pared with the time required for the direct wave to reach the

point of observation.

=1

o

I17.3 Pulse Propagation in an Elsstic Ro

A closely related problem, which is of practical Interest
and which serves to illustrate the extreme complexity of the
transTormed functions in a less idealized situation, will now
Fe formulated,

Ve will obtain btransforms of fthe functions which describte
she translient vesponse in a perfectly elastlic rod of inlinlte
length., The source 13 consl!dered to Le spherical in shape.
It's center 1s located on the axis of the rod in the nlaneZ=0,.
As in the preceding case the source function can te expressed
in the fTorm

— 00
(201) % = (ﬂ”:)’((f)//ﬁ;(f’ﬁ)col‘)zcla)
— o
where'% is the Laplace transform of that part of the scalar
displaceriert poftential which descrihes the effect ol the source

; 2y 1/2 iy
and ge=(A*+SY ") / . The transform of the displacement po-



tential is

e 0
(282) ¥ = ca/ms)XES) / K(pB)cosAZ dd + / HOL (R casAZ dA .
o [

£ the solution for the transform of the vector poatential is

expressed in the fornm

_ s
(295) {f = / g1, (re) sindza
4

(T=(A+8*2)VY%2 ), 1t can be easily ver!lied that the normal
and tangential components of stress, and thse vertical and
radial components of ¢ splacement have the correct symmetry
with respect to the plane Z=0. The functions }(A) and 7(» can
te determined by reouiring that the radial and bangential
stress components vanish on the cylindrical surface€=ﬁ .
These conditions are satisfied if
(284) (D=~ C2/TSINC)(1/DV) -

[a*L K rg)+ T KABILRT) 4 Y2030/ R KR T, (RTY ]
and '
(285) ?()) =~ (2/S)X(S) (/D) (AL2/R)
where
(286) 2= A% s¥20)2
and
(257) D=L kL re) -1er ke [erm-(sv20 eI eI cre) .
it is noteworthy that the Integrand, in the expressions for
@-andg , remains unchangad when a complete loop is made about
elther of the points where 8 or T vanishes. This is true even
though the argument of the Bessel functions changes sign.

If we combine the source and perturbation Serms and limit
ourselves to a consideratlon of the response at the surface

o

nf the rod,‘V reduces to the Torm
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) .
(288) P =~(2/TS)X(S)(I/R) / (cosAz dA/DIN) [ AT x4 (s Veed0/R) L, cRT] -
[/

An alternate way of establishing a compressional source
for this problem consists in specifying the nérmal stress at
the surface of the rod in sueh a way that 1t 1s symretric with
respect to the plarneZ=0. The expresslons which are obtalned
for the potentiéls contain DA in the denominator and are not
mathematlcally simpler than those already obtained for the
response produced by a point source.

IT.4 Pulse Propagation in a Fluld Cylinder with Elastic Walls

A related problem is concerned wihth predicting the re-
sponse in a linguid-rilled cylindrical cavity whichxis surround-
ed by a perfectly elastic, isotropic solid extending to infin-
ity. This case is an idealizastion of the situation which
occurs in accustic well-logging, where the crystal source and
detector, as well as the electronic enuipment required lor ex-
cﬁtihg the source and amplifying the recelived signal, are
lowered into the boré hWole in a compact unit having a cylin-
drical shape. The source is generally located at the lower
end of the wnit and the two detectors are separated from the
source by prescribted distances. At least a part of the energy
which is radiated by the source travels through the adjacent
forration tefore reaching the detectors. In favorabls situa-
tions one car determine, from an analysis of the records, the
average longitudinal and transverse velocities in the adjacent

formation. This inlormation 1s generally used to obtain the

velocity depth dependence. It can also be used to determine
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-certalin of the elastlic quartities, such as the rigidity and
incompressibility, and hence can provide additicnal parameters
which may te useful in correlating between hore holes,

It 1s easily verified that expressions nf the [lorm

— L
(289) @= / ( cxns)xCS) Kol p) + HMI(px)) cos AZd A 5

(290) P = [“hiWhutpBleosdzd?,
[

and

o0
(291) t7=/ J'O)M(f”)ﬁn}ZJ}

A :
satisfy the transformed wave equations, the conditisns at the
gsource, and the symmetry conditions. The functions {, h, and
g.can e determined Ly requiring that the radial displacement
and the radlal stress be continuous and that the tangential
stress vanlish at the cylindrical boundary. OSatisfactlion of
these conditions leads to the following relations Tor the
functions + , h, .fmdj' :

(292)  FUN = (2/NS)N(S) /DN ( Kyt R)G Q) - K, (R HA)) J
(293)  hA) = 2/18) xS (1/0D) (k) (S 202)( Dp/R) 47(7'4’),

(204)  § () =~CMOXCS /PR (ST24)(Op/ R P/ex) K, (BR) .

The quantity Dp has been substituted for the density ratio,
0s/0s . Thne functionsD, &, and H are given by relations
(295) DN =T R G +LRIH ),

(2268) G=n*KRMK(RB) -1 26T ko (RP) A’;(ﬁp)-r(s*/zus*)(pm) fr,(ﬁﬁ)lf,(kn))
and

(297)  H)=(sY4uY) D, (pr) Ki(Rp) Kicrr) .

If either the dens’ty ratln approaches zero or the riglildity

approaches Infinity the functions h fnwij vaniah ahd* reduces
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*

to the form it has for a rigié boundary.

)



0

N

-112-

RRFSREN CT G

Shviles s

Cagniard, L., BErflexion et Refraction des Ondes Selsmiques

Prosressives, (1223}, »p. 1-821.

Bergmarn, P.G., The Jovrnal of the scoustics]l Soclety of

"

tmerica, (1946), 17, pp. 229-21EF,
Lamk, Y., Hydrodwamics, {(1932), pp. 1-20, Z63-370
Cole, Hobvert H,, Tnderwa*er IZxplosios, (1919}, pp. 14-22.

Yatson, TN., & Treatise on the Theory »7 Tessel Fanction

(1944), vp. 70-80, 202-203, 415-416,
Grey, A.; Mathews, G.B,; Macrobert, T.M., & Treatise on

Ressel Tunctleons, (1322), pp. 45-82,

David V., The Laplace Trans®orm, (1946 N, 26,
r, ’ 2 ) s

a V., Adverced Calculus, (1947), pp. 137-123.

Shell »f the Bateran Manuscript Project, Hicher Transcen-

dertal Tunctions, (1922), 2, rp. 34, 38,

Staff n® the Bateman Vanuscerint Prolect

., Tables of Inhtepral

Trars forms, (1954), 1, p. 2482,




