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Abstract

In this study, the two-dimensional steady bow flow in water of arbitrary finite
depth has been investigated. The two-dimensional bow is assumed to consist of an
inclined flat plate connected downstream to a horizontal semi-infinite draft plate.
The bottom of the channel is assumed to be a horizontal plate; the fluid is assumed
to be invicid , incompressible; and the flow irrotational. For the angle of incidence
a (held by the bow plate) lying between 0° and 60° , the local flow analysis near
the stagnation point shows that the angle lying between the free surface and the
inclined plate , 8 , must always be equal to 120° , otherwise no solution can exist.
Moreover, we further find that the local flow solution does not exist if o > 60° ,
and that on the inclined plate there exists a negative pressure region adjacent to
the stagnation point for o < 30° . Singularities at the stagnation point and the
upstream infinity are found to have multiple branch-point singularities of irrational
orders.

A fully nonlinear theoretical model has been developed in this study for evalu-
ating the incompressible irrotational flow satisfying the free-surface conditions and
two constraint equations. To solve the bow flow problem, successive conformal
maf)pings are first used to transform the flow domain into the ihterior of a unit
semi-circle in which the unknowns can be represented as the coefficients of an in-
finite series. A total error function equivalent to satisfying the Bernoulli equation
is defined and solved by minimizing the error function and applying the method of
Lagrange’s multiplier. Smooth solutions with monotonic free surface profiles have
been found and presented here for the range of 35° < o < 60° , a draft Froude
number F'ry less then 0.5 , and a water-depth Froude number Fry, less than 0.4 .

The dependence of the solution on these key parameters is examined. As «
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decreases for fixed Fry and F'ry, , the free surface falls off more steeply from the
stagnation point. Similarly, as F'ry increases, the free surface falls off quickly from
the stagnation point, but for decreasing F'r, it descends rather slowly towards
the upstream level. As F'rp decreases further, difficulties cannot be surmounted
in finding an exact asymptotic water level at upstream infinity, which may imply
difficulties in finding solutions for water of infinite depth. Our results may be

useful in designing the optimum bow shape.
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Chapter 1 Introduction

Beginning with studies on ship waves, fluid dynamists and naval engineers have
been seeking accurate models for designs of optimum bow shapes. The linearized
theory adapted to study this problem has provided limited success in describing the
asymptotic flow field at distances far away from the bow. However, it generally falls
short of accurately predicting the singular behaviors of the flow in a neighborhood
of the stagnation point. What is required is a fully non-linear theory that can
properly treat the field equation and boundary conditions accurately.

By properly satisfying the boundary conditions at the stagnation point of a
two-dimensional inclined bow plate partly submerged in water of finite depth, this
work presents a complete family of solutions to the fully nonlinear problem of bow
waves with the free surface rising smoothly and monotonically to the stagnation
point on the bow. From these solutions, we show their dependeﬁce on the angle
of incidence « held by the inclined bow plate, the draft Froude number F'r;, and
the depth Froude number Fry, .

The problem of steady 2-D bow wave on water of infinite depth was studied
by Dangan and Tulin (1972) by using a two-term expansion in powers of small
Froude number. In Dangan and Tulin’s problem, the bow shape was formed by
a front vertical plane connected downstream to a horizontal draft plane ( the
angle of incidence a@ = 90° and 8 = 90° ). Their solutions first seem to be
smooth, but there exists a very small step discontinuity located on the middle of

the free surface. Vanden-Broeck & Tuck (1977) and Vanden-Broeck, Schwartz &
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Tuck (1978) generalized the bow shape to consist of an inclined flat plate held at

incidence angle o connected downstream to a horizontal draft plane with a sharp
corner. Utilizing up to a 15-term expansion in an asymptotic series of small Froude
number, Vanden-Broeck & Tuck found that their solutions always had a small
discontinuity in the middle of the free surface. Subsequently, they attempted to
solve the problem numerically by using the integral-equation method, finding that
if the whole domain of free surface was assumed to be unknown, it is impossible to
obtain converged solution. However, if an inner part of the free surface near the
stagnation point was assumed to be known, their conclusion was that there always
exist small waves on the upstream side of the stagnation point. (The known part
was taken from the smooth part of the solutions obtained earlier.) On the other
hand, if the free surface at the far field was assumed to be known, they found that
the free surface would become singular at the stagnation point. In our study, we
examine carefully the singularities at the stagnation point and at the far upstream,
and treat the whole domain of the free surface as unknown. Furthermore, we have
successfully found rapidly-convergent solutions.

For the case of water of infinite depth, Tuck & Vanden-Broeck (1985) and
Madurasinghe & Tuck (1986) generalized the bow configuration to include a bulb-
shaped bow of arbitrary geometry shape but still the same angle of incidence
a = 90°, 8 = 90° and obtained solution with very-small- amplitude waves existing
on the upstream side of the stagnation point. However, they made the incompatible
assumption that the free surface leaves horizontally at the stagnation point. On

the other hand, we find that no potential flow is possible for a = 90° .

Assuming that there is a known part in the inner region of the stagnation
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point, Farrow & Tuck (1995) made more calculations and concluded that all the

calculations are only accurate with an error equal to 0.001 times the wave length
of the small waves. Farrow & Tuck could not find a free surface that falls off
monotonically. It therefore seems that their results would be applicable to the
stern waves rather than bow waves (They also found that the amplitude of the
small waves arising on the upstream side mostly depends on the draft Froude
number but not too much on the bow shape) . Yeung (1991) generalized the
problem to provide solution for unsteady start-up flow, subsequent to Vanden-
Broeck’s (1989) conclusion that the bow wave problem does not possess solution
for steady two- dimensional wave in water of infinite depth. Heowever, Vanden-
Broeck shows that in water of finite depth, steady state solutions can be found for
draft Froude number greater than 1.22 by using a series truncation method. For
high Froude numbers, Rispin and Wu (1967) and Dias & Vanden-Broeck (1993)
found that solutions with jet formation exist by using either matched asymptotic
expansions or a series truncation method. Tuck & Vanden-Broeck (1985) suggested
a model for the bow flow with a region of high vorticity on top of irrotational flow
(vortex region). Furthermore, Taneda (1974), Honji (1976) and Cole et al. (1991)
obtained a vortex region on top of a potential flow by experimenting at low and
moderate Froude numbers.

In this thesis, we have succeeded in finding an exact solution to the nonlinear
bow wave problem with a free surface rising smoothly and monbtonically to the
stagnation point on the bow, without a jet or vortex formation. We investigate
the bow flow with a steady free surface in front of the moving object (bow plate),

which is assumed to be irrotational and possessing a velocity potential, with the



viscous effects neglected.

In view of the reported difficulties involved with the case of water of infinite
depth, we consider here the case of finite water depth. For simplicity, the flow
domain is bounded by a free surface, a inclined flat bow plate jointed to a horizontal
draft plate, and supported beneath by a flat bottom of the channel. We are
interested in the regime of small to moderate Froude numbers based on the draft
and on the water depth since if the inertial effects should dominate over the gravity
effects in an inner region about the stagnation, the fluid on the free surface would
be pushed to form a jet, a vortex region, or an unsteady upstream advancing wave.
In this study, we make very careful examination of the flow singularity and the
attachment condition at the stagnation point on the bow plate where the free
surface meets the bow. We also investigate the asymptotic singularity behavior of
the solution at the upstream infinity.

Our local flow analysis for the stagnation region shows that the inner angle
(B between the free surface and the inclined plate must be equal to 120° for the
incidence angle a < 60° . The analysis further shows that the local flow solution
does not exist for @ > 60° . Tuck & Vanden-Broeck (1985) used the incidence
angle a = 90° for vertical bow plate in their problem. They claimed that there
exists a local solution that is valid at the stagnation point, but we have discovered
otherwise.

In addition, we found that there exists in our local flow analysis a negative
pressure region adjacent to the stagnation point on the inclined plate within the
ranges 0 < a < 30° . From such negative pressure, the inclined plate can not hold

the fluid unless we supply an appropriate distribution of suction force to maintain
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the fluid in contact with the inclined plate. In general, as there is no suction force
furnished, the local solution exists if 30° < a < 60° , but may not physically hold
for 0 < a < 30° .

In addition to the necessary condition for having the stagnation inner angle
B = 120° , the singularity at the stagnation point is found to have branch- point
singularities of multiple irrational orders. These singularities are required to make
the free surface turn with the specified local configuration as it leaves the stagnation
point. In addition, the singularity at the upstream infinity has terms with branch-
point of irrational orders. Those terms make the free surface rise along the flow in
a manner to render the solution exact.

There are two major approaches to solving the resulting integral equations
consisted of — the Bernoulli equation and two constraint equations-that we have
derived for the bow flow problem. One is based on the Boundary Integral Equation
formulation (as utilized by Tuck) in which all the integral equations involve vari-
ables only on the boundaries. The second approach uses series expansion method,
in which the coeflicients of a series expansion for the solution are determined by
satisfying the free surface boundary conditions and any complementary conditions.
(Vanden-Broeck used this procedure to find solutions for different related free sur-
face problems.) For the case of bow waves on water of finite depth, we use the
series expansion method, making careful provisions to admit all the flow singular-
ities explicitly in the expression for the series expansion ( to ensure satisfying the
singular behaviors at the stagnation point and at the upstream infinity ) .

From the numerical results obtained for the various cases explored, we found

that smooth solutions generally exist in the range of 35° < a < 60° provided the
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draft Froude number is not exceedingly large. In the other range with a < 30° ,
small waves are found to appear, as a rule, upstream of the stagnation point, with
their amplitude gradually falling off to zero far upstream.

A related problem is the limiting form of Stokes’s highest gravity wave in water
with a 120° crest corner. Olfe and Rottman (1980) claimed to have obtained the
limiting form, but they did not report the accuracy of their computation. Vanden-
Broeck (1986) did a similar computation but only compared the maximum wave
heights without providing the wave form. Recently, Vanden-Broeck (1995) used
the series expansion method to evaluate the Stokes waves up to and including the
limiting form; however, the free surface profiles were not given. In Vanden-Broeck
(1995) , the accuracy of the numerical results is up to the fourth decimal places.
In the present numerical study, the accuracy of our solutions for the bow flow is
at least up to the fourth decimal places.

In chapter 2, the problem will be formulated with giving the basic assumptions
and the Bernoulli equation for the bow wave problem. In chapter 3, we will present
the detailed derivation of the present theoretical model (the equations of the model
are transformed by conformal mapping into different coordinate systems) . The
closure of the model is accomplished with two constraint equations for prescribing
geometric configurations. In chapter 4, the local flow analysis for the stagnation
region is presented along with the possibility of negative pressure arising within a
region on the bow plate adjacent to the stagnation point. Existence of potential
flow solutions is shown for the bow plate incidence angle o lying between 30°
and 60° . The singular behaviors at both the stagnation point and the upstream

infinity are completely determined in this study. In chapter 5, the exact form of
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the complex velocity w is given, with its singular parts explicitly singled out and
with its unknown part represented by a series which is analytic, regular in the
entire flow field. In chapter 6, the numerical method of minimization is used to
determine the coefficients of the series and solve our model equations. In chapter
7, the numerical results are presented with discussion. A few cases (for which the
global solutions can be found) are demonstrated. Chapter 8 presents the summary

and conclusion of our present work.



Chapter 2 A Theory for Two-dimensional Bow
Waves on Water of Finite Depth

A theoretical model is developed for two-dimensional bow waves on water of ar-
bitrary finite depth; its physical background, basic assumptions and the model
equations are presented in this chapter. In general, for a two-dimensional bow of
arbitrary shape moving in a rectangular channel of variable depth, this problem
would be very difficult. For simplicity, we assume that the bow is an inclined flat
plate which has its lower edge connect to a horizontal draft plate, semi-infinite in
length to downstream infinity. The steady two-dimensional channel has its free
surface rising to stagnation on the bow plate and supported beneath by a flat,
horizontal plate. This ideal, simple configuration does not change the essential

features of the two-dimensional bow wave problem.

2.1 The Physical Background and the Basic As-

sumptions

The fluid is assumed to be incompressible invicid of constant density p , and the
flow, irrotational; and the effect of surface tension is neglected. For a ship moving at
a constant speed of few meters per second on the open ocean, the Reynolds number
of the flow based on a draft depth of few meters is very large. The boundary layer
on the front bow plate can then be Neglected. Hence, the invicid fluid assumption

is valid. Surface tension is important only when a typical length scale of the flow is
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in the order of few centimeters by Hocking (1987)and Miyata et al. (1984). For a

ship moving at a constant speed greater than 5 meters per second, the free surface
raises a total height greater than 1.25 meters. Therefore, the effect of surface
tension can be safely ignored.

Figure 2.1 indicates the position of the steady free surface y = n(z) and the
inclined bow plate. We choose the body frame fixed at the bow as the reference.
The fluid flows with a uniform velocity U from the upstream infinity (at z = —o00),
and a different uniform velocity U; under the horizontal draft plate towards the
downstream infinity ( at £ = co ). The stagnation point at which the free water
surface intercepts the inclined bow is taken as the origin of the z and y-coordinates
in the flow plane. The free surface begins at far upstream ( z = ~oo0,y = —h) ,
ascending smoothly (under the gravity acceleration g) towards the stagnation point
(z = 0,y = 0) over a total height h = U?/2g above the free surface at upstream
infinity. The bow, whose shape has a corner at the joint of the front inclined
flat plate with the horizontal draft plate, is located downstream of the stagnation
point. (In our model, we assume that the bow plate is always long enough above
the water surface to accommodate the stagnation point.)

As shown in Figure 2.1, the inclined bow plate is held at incidence angle a
with respect to the free stream and 3 is the inner angle subtended by the free
surface and the inclined bow plate at the stagnation point. The total height of
climb of the free surface to the stagnation point is h above the free surface at
the upstream infinity. H is the water depth at upstream infinity (zr = —o0) . In
addition, d is the draft depth which is the vertical distance of the horizontal draft

plate blow the free surface at upstream infinity, taken positive if downward and
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negative otherwise.

2.2 The Basic Equations

In the flow domain, the motion of an incompressible fluid satisfies the equation of

continuity,

g;ﬁ g—z =0, (2.1)
where u and v are the horizontal and vertical velocity components, respectively.
The flow is uniform at upstream infinity (z = —oo0) with constant velocity u = U .
In the steady state, the channel flow proceeds toward the bow plate, with its free
surface climbing a total height h above its initial level to the stagnation point on
the bow plate. After passing the bow plate, the flow enters a passage of uniform
(closed) channel of depth (H —d) ( d being the uniform draft of the two-dimensional
”semi-infinite ship” ) . It is assumed to reach asymptotically a uniform stream of
velocity (v = Uy, v = 0) at downstream infinity (z = oo). By the continuity
condition of the flow, we have

UH

Ul:(_ff_—*(_ij.

(2.2)

We note that d could be negative even if a suction pressure is required for
sustaining the flow to remain in contact with the entire draft plate.
We assume that the fluid is incompressible and invicid, and the flow, steady

and irrotational. Hence, a velocity potential ¢(z,y) exists, such that u = 9¢/0z
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and v = 0¢/0y, which satisfies, by (2.1) ,

o*¢ 9%

%g—i—a—?ﬁ:o. (2.3)

For this steady irrotational flow, the Bernoulli equation reads

1 2, P(%,9) Po

- ands == 24

5 (U +0%) + o Tw=" (2.4)
where p is the pressure, p the constant density of the fluid, g is the constant
acceleration due to gravity, and p, is the constant ambient pressure at the free
surface. The Bernoulli constant is chosen such that the free surface terminates at
the stagnation point on the bow plate at x = 0, y = 0, where u = v = 0 and

p = po . Hence, on the free surface, y = n(z) , (2.4) becomes
Lo o 2
Q(u +v°)+ g n(z) =0, on the free surface. (2.5)

This equation provides the dynamic boundary condition at the free surface.

This assumed flow configuration is similar to the limiting form of Stokes’s
highest wave with a corner at the wave crest, except that now the bow plate is not
a free surface. From this boundary condition (2.5) it readily follows that the free
surface falls from the stagnation point to a finite level, say y = —h , at upstream

infinity, such that
U?=2gh, (asz — —oo, y — —h), (2.6)

where h is the height by which the free surface rises above the far upstream level.



12

In addition, the flow also satisfies the following kinematic bouhdary conditions:

on

= U—
oz’

v=—u tana, (y=-—z tana,0 <z < (h+ d)tana, on the bow plate) (2.8)

v (y =n(z), z <0, on the free surface) (2.7)

v=0, (y=—(h+d), z>(h+d) tana, on the draft plate) (2.9)

andv=0, (y = —(H + h), on the channel bottom). (2.10)

The set of equations (2.3)-(2.10) constitutes a complicated nonlinear prob-
lem. The goal of our study is to solve the above system of equations by employ-
ing functional analysis and conformal mapping techniques togather with auxiliary

computational methods.

2.3 Nondimensionalization

To simplify the evaluation, we scale all the lengths by the total free surface rise & ,
all the velocities by the free stream velocity U , the velocity potential ¢ by Uh ,
and the pressure p by pgh ( or by %pU 2'), so that we have the dimensionless

variables (denoted by *) :

s f oY gt g o U Y
x_h’y#h’d*h’H_h’n_h’u_U’U_U’ (2.11)
and,
SR A
— = ) 2.12

In terms of these new variables, equations (2.1), (2.3), and the boundary conditions

(2.7)-(2.10) retain the same form as before whilst the Bernoulli equations (2.4) and
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(2.5) become

(@* + %) + p(z,y) + 9 = 0, in the flow domain, (2.13)

(@*+9*) +7H =0, <0, on the free surface (2.14)

where the ambient pressure is set by po = 0 as the gauge. The range of 7 is between
—1 and 0 while @ varies between 0 and 1 on the free surface.

Accordingly, the solution of this problem will depend on three non-dimensional
parameters: the water depth H, the draft d, and the angle of incidence a of the
bow plate. Moreover, the location of the bow-draft corner can be determined in
terms of o and d .

The Froude number is a ratio of the inertial effect to the gfavity effect. For
small Froude numbers, the gravity effect pre-dominates over the inertial effect in
the flow field, except possibly in local regions where the local velocity is very large.
When the Froude number is large, the inertial effect dominates over the gravity
effect at least in an inner region near the bow. There are two Froude numbers
which can serve useful purposes for our problem: a Froude number based on the
free stream velocity U and the water depth H , F}, , and another Froude number,
F; , based on U and (h+d) , the vertical depth of the submerged part of the inclined

bow plate from the stagnation point down to the bow-draft corner, namely

U U

, Fg= m (2.15)

By substituting the non-dimensional parameters (2.11)-(2.13) in (2.15) and



using (2.6) , 2gh = U? , we have

Fu= (2 Fa=(

2
1+d

[

). (2.16)

Thus, the two Froude numbers are inversely proportional to the square root of H
and 1 +d . We note that F; < /2 provided that the draft d > 0 . That the
Froude number F; has this upper bound is because the bow plate is rendered long
enough to admit the stagnation point to fall on the bow plate, however larger U
may be. Only when the bow plate is too short to intercept the stagnation can we
have a spray sheet formation at the leading edge of the bow plate, as is known
for the case of high-Froude-number problem of planing plate first considered by
Wagner(1932).

In this study, we shall assume that F; < +/2 , though we may attempt to
find solutions in the regime slightly above F; = /2 ( with the draft d < 0 ) by
numerical experimentation. Furthermore, we shall assume F}, to be sufficiently
smaller than unity, say Fj, < 0.3 . The critical case of F}, = 1 can be very singular.
Under external forcing, such as by the inclined bow plate moving steadily with a
transcritical velocity lying in a range 0.8 < Fj, < 1.2, say, resonant generation of
upstream radiating solitary waves, periodically and incesantly, is known to occur,
as was first discovered by Wu and Wu (1982) .

Within an appropriate range of the Froude numbers F; and F}, as stated above,
the solution presently sought is expected to exist in a smooth and steady state as
assumed.

In the subsequent chapters, all the variables are dimensionless, and the symbol

" will be omitted as understood unless designated otherwise.
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TS

Figure 2.1: A sketch of bow flow.
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Chapter 3 The Analysis and the Integral

Equations

We shall solve the set of equations (2.1)-(2.10) together with (2.13, 2.14) by ap-
plying methods of complex function analysis and conformal mapping to obtain
a set of nonlinear integral equations for numerical computation of the solution.
By applying the method of conformal mapping, the dependent and independent
variables are first interchanged with the complex potential f = ¢ + i) serving
the independent variable, where 1 is the stream function conjugate to the velocity
potential ¢ . The complex velocity w , where w = u — iv = df/dz , and the
physical plane 2z = z + iy = fw™(f) df , are analytic functions of f in the whole
flow domain. Thus, the problem is reduced to finding a solution for w(f) and z(f)
which also satisfies all the boundary conditions imposed on the flow.

By using a set of successive conformal transformations in complex domain,
the flow is mapped into the interior of a unit semi-circle in the {-plane with its
diameter corresponding to the solid boundaries and the semi-circle to the free
surface. Within the semi-circle, the complex velocity w is analyzed as a multiplying
product of two parts, w = we(¢) w.(¢) , where wy(¢) is expressed in terms of the
known branch-point singularities at the stagnation corner and at the bow-draft
corner and w.(¢) is a complementary part which can be represented in terms of a
complex series. It turns out that the complementary part w,. only has to satisfy
the Bernoulli equation at the free surface and an additional constraint equation

which is related to specifying the water depth H . Accordingly, application of the
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Bernoulli equation gives a nonlinear integral equation, whereas invoking one of
constraint conditions yields another integral equation. This set of coupled integral

equations is found convenient for numerical computation of the solution.

3.1 The Conformal Transformations

We start with employing the complex variable z = z + iy for the physical plane, the
complex potential f(z) = ¢ + 43 for the potential plane, and the complex velocity

w(z) for the hodograph plane, where

9/(2) = u(z) — w(2). | (3.1)

w(z) =

Since the position of the free surface is unknown in the physical z-plane but is
known in advance in the complex potential f-plane, we adopt the variable f =
¢ + i1 instead of z = z + iy as the independent variable, so that z(f) is now an
analytic function of f .

The flow field in the f-plane is given in Figure 3.1 . The free surface and the
bow-draft plate are mapped into an infinite horizontal line, ¥ = 0 and —co < ¢ <
oo , with the stagnation point located at the origin while the channel bottom plate
is mapped into the line ¥ = —@) , where Q is the total lux Q = UH = H . In the
f-plane, the fluid flows along 1) = constant lines with a uniform velocity U from
the upstream infinity (point I), and with a different uniform velocity U; given by

(2.2) towards the downstream infinity (point J ).
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The complex velocity potential w can now be written as

I 0z(f)
w(p ~ of 32
so that z(f) is given by quadrature,
|
2= /0 kL (3.3)

with the origin z = 0 fixed at the stagnation point f =0 .
To facilitate function analysis, we next introduce a conformal transformation

from the f-plane to the complex t-plane, given by

Q

t+1
=—-——1 —_————
f=- og(

=), (34)

by which the flow domain is mapped into the lower half ¢-plane. The bottom
plate of the channel, the free surface, and the bow-draft plate are mapped into
different intervals of the real t-axis, as shown in Figure 3.2 . More specifically, the
stagnation point is mapped onto ¢t = 1 of the real t-axis and the upstream infinity
(point I) into ¢t = —1 , with the free surface covering the segment between ¢t = —1
and t = 1 of the real t-axis. The bow-draft plate is mapped into the part ¢ > 1 of
the real t-axis, with the bent corner mapped onto a certain point Catt =1to > 1.
The bottom of the channel is mapped into the part ¢ < —1 of the real t-axis. The
downstream infinity (point J) is mapped onto ¢t = oo . The flow enters the domain
from the point ¢ = —1 and goes out towards ¢ = oo in all directions.

Next, we transform the flow domain into the upper half of the unit circle in
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the ¢-plane by the conformal mapping

1 1
=5+, (35)

with the flow boundary shown in Figure 3.3 . The stagnation point is mapped
onto ( = 1 . The point ¢ = oo is mapped onto the origin of the (-plane, the point
t = —1 onto ( = —1, and the free surface is mapped into the upper half of the
unit circle [(| = 1 . The bow-draft plate is mapped into the interval 0 < { < 1
on the positive real (-axis, while the flat bottom of the channel is mapped into
—1 < ¢ < 0 on the negative real (-axis. The flow comes in at the point { = —1 on
the real (-axis and exits at the origin.

For further analysis, we express the complex variable ¢ in polar form, { =
|¢|exp(ix), where x = arg ¢ . On the free surface, || = 1, hence { = exp(ix)

with x varying between 0° and 180° , and with the corresponding ¢ given by
t = cos(x), on the free surface. | (3.6)

The physical z-plane therefore follows accordingly as

o Emp 1
z=fﬂy=;lw@wu)@ (37)

. _H (¢~
or z = = /w )C‘l‘l dC, _ (3.8)

where H is the free stream water depth. In particular, position z on the free

surface, by 3.6) and (3.7), is given by

sin(x)
G=otiy = _._«/ w(x)(1 + cos(x))

dy, (0<x<m) (3.9)
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in which the velocity w(x) is complex. The net result of these coordinate transfor-
mations is to map the flow domain into the upper half of the unit disk |{] <1 so
that the undetermined part of w(¢) can be expressed as a series in ¢ with unknown
coefficients. A similar method of coordinate transformations is used in the calcu-
lation of Stoke’s highest waves with a 120° corner by Schwartz (1974) . However,
the present bow-wave problem is considerably more difficult due to the presence

of both free and solid flow boundaries.

3.2 Bernoulli’s Equation and Constraint Condi-

tions

We proceed to express Bernoulli’s equation (2.4, 2.5) in terms of ¢ . First, we have
u? +v? = (u — i) (u + iv) = W, (3.10)

where W is the complex conjugate of w = w — iv . Alternatively, in polar form,

w(¢) = q exp (—ih) , where ¢ = |w| and § = —argw , or
v/u = tan, (3.11)

which holds throughout the flow domain and signifies, in particular, that the kine-
matic condition on the free surface is automatically satisfied. Alternatively hence-

forth, we shall also make use of the logarithmic hodograph variable,

w=log(l/w)=7+1i0, w({)=gq exp(—ib), 7=1log(1l/q). (3.12)
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In terms of 4 , the kinematic boundary condition on the bow-draft plate, (2.8) and

(2.9) clearly become

0 = —a, (c<({<1, Im(=0, onthe bow plate )

6 = 0, (0<(¢<e¢ Im{=0, on the draft plate ) (3.13)

where ¢ (0 < ¢ < 1) is an undetermined real constant.
On the free surface, { = exp(ix) (0 < x < 7) , the position z = x + iy in the

physical space can be expressed, by (3.9), as

I I

(R = (3.14)
100 = [FRIG) ey (3.15)
10 = [ ) s (3.16)
J(r) = % (3.17)

where RI(.) and I'm(.) stand for the real and imaginary part of (.) . The last
equation (3.17) represents the result of applying the condition that y(x) — -1
as x — = along the free surface towards the upstream infinity. After obtaining
the solution to w = w({) , (3.17) is then a constraint condition by which the free
stream water depth H is specified.

Finally, the dynamic condition on the free surface , (2.5) , is invoked by

requiring that on ¢ = exp(ix) ,

wB +y(x) =0, (0<x<m).
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or, by (3.14)

7z =JW
W = T(r)’ (3.18)

where J(x) is given by (3.16) .

The problem remaining to be solved is to determine an explicit expression
for w(¢) which can facilitate the final stage of analysis and numerical computaion
of the solution. As will be shown in the following chapter, this expression for
w(x) consists of two parts , w(¢) = w,(¢) w.(¢) , where w,(¢) is singular with
known branch points at the stagnation point and at the bow-draft corner such
that the kinematic conditions on the solid boundaries are satisfied whereas the
unknown complimentary part, w.(¢) , can assume the form of a power series.
With this expression of w({) , it can be determined from (3.18) as a nonlinear
integral equation for w(() , under the constraint condition (3.17) for subscribing

the water depth.
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Figure 3.1: The flow field in f-plane
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Figure 3.2: The flow field in ¢-plane
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Figure 3.3: The flow field in (-plane
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Chapter 4 The Local Corner Flows

In this chapter, we are concerned with local flows in a neighborhood of the stag-
nation point and about the bow-draft corner. These local solutions are needed to
determine the value of the wedge angle # and the range of the incidence angle o
of the bow plate that will assure existence of smooth and accurate solutions.

The corner flow about the stagnation point is assumed to be locally a flow
within a wedge bounded on one side by the wetted bow plate and on the other by
the free surface, as illustrated in Figure 4.1 . This simplification of the local flow
is ideal to avoid unnecessary details without affecting the essential features of the
result that is required.

Our local flow analysis shows that the wedge angle 3 between the free surface
and the front bow plate must be equal to 120° for the incidence angle 0° < o < 60° .
For a > 60° | no local flow solution can exist. If there is no local solution for the
given set of parameters, no global solutions can exist either. If there is a local
solution, the global solution still remains to be sought.

The higher order singularities of these local solutions in a neighborhood of
the stagnation point and of the free stream at upstream infinity are found to have
branch-point singularities of irrational orders. By understanding their structures,

we can incorporate them into the full solution.
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4.1 Corner Flow Solution

The same conformal mappings as described in the last chapter can still be used.
Near the stagnation point at ¢ = 1 , the lowest order local solution of w(t) for the

corner flow is given by
wy(t) = ge™® = e~ = A(t — 1)(1_B)ei°‘, (B=g/m,ast — 1), (4.1

where A is a real positive constant. In the neighborhood of t =1, for [t — 1| << 1,
this wy(t) gives § = —a on the plate for ¢ > 1 and # = 7 — 3 — & on the free surface
for t < 1, which satisfies the kinematic condition on the bow plate.

On the free surface and near the stagnation point, 0 < 1 —t << 1, we have
g=AQ-t)"F  g=r-pB-qa. (4.2)

To satisfy the dynamic condition on the free surface, we differentiate the Bernoulli

equation (2.14) with respect to ¢ , giving

2q g—¢ +sinf = 0, (4.3)

because dy/0¢ = v/q* = (sinf)/q . In terms of ¢ , we have,

8q _Hsing

2
29 . wt+1l

(4.4)
since Q = HU = H . Substituting (4.2) in (4.4) yields

243(1 — B)(1 — )@3A) = %sin (r—B—-a), 0<l-t<<l). (4.5)



27

This is satisfied for all ¢ in this limiting range if

B = -g— ,or B=fr= §7r (= 120°) (4.6)
3H T
3 _ o .M
and A° = g sm(3 Q). (4.7)

Thus, the wedge angle 3 of the free surface flow at the stagnation point is deter-
mined to be # = 27/3 = 120° . Since A > 0 as required by the local conformal
mapping (4.1), (4.7) imposes an additional condition that the local solution can
exist if

0<a<-§ (or 0 < a < 60°), (4.8)

in which the lower bound is clear on the physical ground for the bow to remain
submerged. The conditions (4.6) and (4.8) together imply that the free surface
approaches the stagnation point from below. In addition, we point out that (4.7)
arises as a condition on the magnitude A of ¢ defined in (4.2) .

The above analysis is for the lowest order local solution of w(t) near the
stagnation point at ¢ = 1 . By extending our analysis to higher orders, the local

solution of w(t) for the corner flow can be rewritten as

wl(t) — qe—io — 8—(T+i9)

m=0o0 =00

= -1 exp (Y Y amn (E— 1)),

m=0 n=0

(B=p/m =3, ast - 1), (4.9)

where the coefficients a,,, and the index u are all real, and B = 2/3 , as just
determined. Moreover, the first coefficient agg is related to A defined earlier by

exp (ago) = A . Such choice of w;(t), including series expansions of analytic (m =
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0) and branch point types (m > 0) , is necessary for the local solution to be
matched at all orders, as will be shown presently.

In the neighborhood of ¢t =1, for |t — 1| << 1, this new w;(t) gives § = —«
on the plate for t real, t > 1 . On the free surface and near the stagnation point,

treal,0<1—1%t<< 1, wehave

0 = =00 ep{'S S ap (1= ™ cosfrlmp-+ )]

m=0 n=0
1 m=00 N==0C m“+n .
6 = 3@ + 3N e (1-1) sin [r(mp + n)). (4.10)
m=0 n=0

Thus, both g and € have higher order terms that will be shown below as needed
to satisfy (4.4) and to make the free stream turn smoothly as it approaches the
stagnation point. In the limit ¢ — 1, § = # —  — « on the free surface, as has
been determined in (4.6) with 8 = 27/3 .

Substituting (4.10) into the Bernoulli equation (4.4) gives , to the lowest order
(m = 0 and n = 0), exactly (4.5) which we already obtained earlier. The matching
of the next order in 1 (i. e., m=1and n=0) yields

3 (1+ p)tan (%ﬂ' — ) = tan (mu). (4.11)

The above expression is a transcendent equation and have infinite number of ir-
rational roots, 0 < p; < po < .... . In Figure 4.2 , the smallest root p; lies in
the range 0 < p; < 0.5 depending on the value of o . Here we note that p — 0
as a — 7/3 (= 60°) . The coefficient a;9 can not be determined but can remain
arbitrary in this matching.

For higher-order matchings based on (4.4), we will only state our results with-
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out showing the details of derivation. To the higher-orders matching of (4.4), we
found that all of the coefficients a,,,’s for m # 0 can be expressed in terms of the
coefficient a;o which remains arbitrary. In addition, ag,’s for n > 1 can be de-
termined explicitly. The determination of the arbitrary coefficient a;o must come
from the full solution that satisfies the constraint condition (3.17) as an integral

equation.

4.2 Negative Pressure on the Bow Plate

By examining the pressure on the bow plate, we will discover more specific new
features due to variations in the angle of incidence « . For the lowest order analysis
of local corner flow, we take the bow plate and the free surface to be two flat sides,
both semi-infinite in length, following the same ideal simplification adapted above.
First, we examine the pressure on the bow plate. If the pressure is positive on the
whole plate, the solution is physically feasible and admissible, so that the plate
will exert an onward normal force on the fluid while delivering a positive amount
of mechanical work on the fluid ( in the absolute frame with the fluid at rest at
infinity, of course ) . However, if the pressure vanishes or becomes negative on the
whole plate, the fluid would require a suction appropriately distributed over the
plate to remain in contact with the bow plate. But the suction would do a negative
work, corresponding to extracting flow energy from the fluid and so the present
potential flow solution may not exist by itself. It will be shown below that the
situation of having negative pressure on the entire wedge plate actually arises for
the incidence angle o < 30° . This exact solution for the wedge flow will be used

to characterize the local flow near the stagnation point for further interpretation
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and discussion of the final results pertaining to the present problem.
To find the pressure p(z, y) on the semi-infinite bow plate, we apply Bernoulli’s

equation in the ¢- plane (2.13)
¢ +p(z,y) +y =0, (4.12)

after setting the ambient pressure py =0 .

From (3.3), the position z is given by

t 1 df
= iy = | ——=—-dt .
z2=1z+1y /1w(t)dt , (4.13)
in which we may substitute f = (H/7)(t — 1) in (4.13) to convert the local stag-
nation corner flow to the ideal case of the entire (unbounded) wedge flow.
In order to find y on the bow plate, we take ¢t real and ¢ > 1 . Substituting w

from (4.1) into (4.13), we obtain

H ~(t — I)Be‘m.

Zz =
2mAB

Hence, on the wedge plate, with ¢ real, ¢t > 1, and with § = 2 /3, we have

W

T+iy = %(t—l) (cosa — isina). (4.14)

To find the pressure on the bow plate, we first obtain from (4.1) and (4.6) that on

the wedge plate,

@ =A%t —1)2 0B = L2¢—1)5, (t>1). (4.15)



31
Substituting (4.14, 4.15) into Bernoulli’s equation (4.12) gives

_ An AP
_ _ @
By invoking (4.7), we then find that
3H T
_1\® —sin(= —
p= 47rA(t 1)'3’(sin (o) sm(3 a)), (4.17)
which is simply
31H 2 m
= —1)3 - = > 1). .
p=>t-Disn@-5), (21 (4.18)

This exact solution for the unbounded wedge flow shows that the pressure on
the bow plate is positive for 30° < a < 60° , vanishes over the entire plate at
a = 30° and becomes negative for o < 30° . This implies that the fluid would
leave the bow plate by itself unless an appropriate suction is applied over the plate
to prevent this from happening. For the global flow past the bow-draft plate now
being considered, this means there should exist a negative pressure region in a
neighborhood of the stagnation point and the fluid in this region would separate
from the bow plate unless an adequate suction distribution could be provided
over the bow plate. Even if adequate suction could be furnished as required, it
remains to be determined whether the solution may exist for the assumed flow
with o < 30° . In this respect, we take note that under the said circumstance,
predicted region of negative pressure are found indeed to occur in the numerical
results as will be shown later.

In summary, we shall regard the range of incidence 30° < o < 60° as a sound

basis to proceed with our analysis of the solution intended. Nevertheless we will
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still pursue successful resolutions of the problem for the range of 0° < a < 30° .

4.3 The Bow-draft Corner Flow

The local flow in a neighborhood of the corner joining the bow and draft plates at
t = t. can be readily represented by the conformal mapping

t—t,

1+tc> Gi(t), (&@=a/m,ast — t.), (4.19)

w(t) — qe—ie — e—(r—}-z’&) — (

where G;(t) is an analytic function, regular in a neighborhood of ¢ = ¢, and real
positive on the real t-axis so that 8 = 0 for ¢ real, > ¢, , and § = —a for ¢ real,
t < t. , thereby satisfying the kinematic condition on the bow-draft plate across

the corner.

4.4 The Asymptotic Behavior of the Free

Stream

Here, we shall first assume the radiation condition to hold: that no gravity waves
can propagate upstream to infinity. Physically this assumption is based on the
reasoning that the group velocity of the gravity waves, regarded as the velocity of
propagating wave energy, is less than their phase velocity which is taken to hold,
even under the nonlinear effects due to finite curvature of the free surface. Under
this assumption, the asymptotic behavior of the free stream at upstream infinity
can be conveniently investigated in a neighborhood of ¢ = —1 in the lower half
t-plane.

To proceed, we note that (i) § = —argw = 0 on the bottom plate ( ¢ real,
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t<—1),and (ii)w — 1 (implyingw =log(l/w)=7+i — 0)ast — —1
from below (in the lower half ¢-plane) . For the asymptotic free stream, we may

therefore assume

w=r1+i0 = mioo b ((t+ 1)), (ast — 1), (4.20)

m=1

where v is real, > 0 , yet to be determined, and b,,’s are real constants. This form
of w is found appropriate for describing the asymptotic free stream to be matched

to any order.

On the bottom plate, 6§ = 0 for ¢ real, t < —1 . On the free surface of the free

stream, we have,

m=o0
T+i0 = Y bn(t+1)™(cosmym +isinmyr), (treal,0<1+t<<1). (4.21)

m=1

Substituting (4.21) into the Bernoulli equation (4.4) , which can also be written as

or H siné »
—-37 _ _ 2 _ —2
e % =5 T 1) (H/2=gH/U* = F,*), (4.22)

we find , to leading term with m =1,

“37(;—; = b(t+1)" " cosvm,

H sin6 b H 1
e = t+ 1)
27mt+1 27r( +1)" sinvm,

whence

vrF? = tan(vrm), (4.23)
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where Fj, = U/\/gH = \/5/_1; . Equation (4.23) has infinite number of roots,
0 <11 < vy < ..., all irrational in general. Their values have two branches,
according as the free stream is subcritical (F, < 1) or supercritical (Fj, > 1) . For
the smallest root v; , Figure 4.3 shows that 1 < 14 < 1.5 in the subcritical regime
(Fr, < 1), and 0 < 1, < 0.5 in the supercritical regime (F, > 1) .

For the higher-orders ( m = 2,3,4,... ) matching of the Bernoulli equation
(4.22), we found that all the b,,’s can eventually be expressed in terms of b, . We
notice that the asymptotic free stream depends only on the first coefficient b ,
which is arbitrary, and which can be evaluated from the full solution satisfying the
constraint condition (3.17) .

As commented previously, we shall only consider the subcritical regime ( with
0 < F, < 0.5 say ) in this work, leaving the other regime for further studies in
view of the distinct features that the unsteady effects may be outstanding in the
transcritical range and hydraulic jumps are generally manifest in front of the bow
in the supercritical regime. Although we shall devote our subsequent effort only
to the subcritical case of this bow wave problem, we should nevertheless note that
for analyzing the solitary wave of maximum height ( hence with a cornered crest
subtending an angle of 120° ) , the flow is supercritical throughout.

In passing, we note that equation (4.21)-(4.23) imply that, to the leading
order,

w=u—iw=14+A4"" (asz — —o0), (4.24)

A being a real constant, which shows an exponential decay of w towards the

upstream uniform flow with the rate of an irrational index.
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Figure 4.1: Local flow in z-plane near the stagnation point
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Figure 4.2: Plots of tan (mu) and 3 (1+ p) tan (37 — ) are shown for three values
of o as a function of ¢ . The lower, middle and upper straight lines correspond
to a = 59° , 45° and 30° respectively. The two curves in the figure correspond to
tan (um) . The roots of (4.11) are located at the intersections of the straight lines
with the curves in the figure.
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Figure 4.3: Plots of tan (v7) and vr F? are shown for three values of Fy, as functions
of v . The lower straight line for F}, = 0.5 corresponds to the subcritical case,
the middle straight line for F}, = 1.0 corresponds to the transcritical case and the
upper straight line for Fj, = 1.5 corresponds to the supercritical case. The two
curves in the figure correspond to tan (v7) . The intersections of the straight lines
with the curves in the figure give the roots of (4.23) .
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Chapter 5 The Velocity Field

Having determined the branch-point singularities of the velocity field at all the
corner flows in the previous chapter, we proceed to construct the solution for the
hodograph variable by synthesis and incorporation of the asymptotic corner flows

into the full solution.

5.1 Synthesis of the Complex Velocity

For simplicity and convenience, it is desirable to solve for the complex velocity w
in terms of the ¢(-plane given by (3.5) . Based on the asymptotic representations
of w at the various corners of the flow field obtained in the previous chapter, we

assuine

”U)(C) = qe_ie = wo(g) ’wc(C) ? (5'1)

wo(¢) = qoe—wo=<1;<)% ((C“(f{flc)‘ﬁ))_%, (5.2)

where ¢ = 1 corresponds to the stagnation point at f = 0 (and 2 =0) , { = ¢
(0 < ¢ < 1) is the image point of t = t. (> 1) , and the multi-valued function w,(¢)
is rendered unique by introducing a branch cut from ¢ = 1 to { = co outside the
upper half circle |¢| < 1, Im¢{ > 0 ( e.g. in the lower half {-plane ) and another
branch cut from ¢ = ¢ to { = 1/c just below the real (-axis . Here, w, is the
asymptotic representation of w(() in the neighborhood of the stagnation corner at

¢ = 1 and of w near the bow-draft plate corner at { = ¢, whilst w, stands for the
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complementary part of w(¢) such that w(() satisfies all the boundary conditions
and the correct asymptotic properties of the stagnation corner flow and those of
the free stream as have been identified. More precisely, w,(¢) has the following

properties

(@) 6b = 0 (-1<{<c<1, on thedraft and bottom plates),

() 8, = —a (c< (<1, onthe inclined bow plate). (5.3)

On the unit circle, |(| =1, { =exp(ix) , we have for 0 < y < 7,

1

wo(eX) = <sin K)g (1 i cos? %) N exp <Z (% - %) (x - 7T)) (5.4)

2 T (1+c)?
Hence,
(c) 6, = g —a (asx — 0, towards stagnation along the free surface).
In addition, near ¢ = —1, the free stream value of w,(¢) assumes the asymptotic
expansion:

@ wl@) = 1+(E-EC+D+
<1a o 2¢ 1 1

3
5;(;“'("1“‘47)24‘5 *%) (<+1)2+O|C+1| .

In contrast, we have shown that for the free stream velocity field, the boundary
conditions imposed on the bottom plate and the free surface jointly require w(¢)

to take the asymptotic expansion (4.20) , or in terms of ¢ to the leading term,

w(() = 1+B(+D)¥+ol¢(+1” (as¢ — -1), (5.5)
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where B is a real constant, and use has been made of the relation (3.5) , which
gives (t + 1)e"™ = (( +1)?/2 as ¢ — —1 . For the subcritical regime now under
consideration, we have already shown ( see the part below 4.20 ) that with v being

the smallest root of (4.23) ,
2<2v <3 (for F <1). (5.6)

In this case ( F, < 1), we therefore have w,(¢) ~— 1 at a rate of O(|¢ +1|) ,
which is lower in order than that of w(¢) as indicated by (5.5)-(5.6). These distinct
rates of w(¢) and w,(¢) in their limits tending to unity will have to be reconciled
through the construction of the complementary part w.(¢) .

Guided by the above analysis, we may summarize the requirements that must

be satisfied by w.(¢) = g.exp (—i0,) :

(@)  we(¢) is analytic, bounded in || <1, Im¢ >0,
(0) 6.=0 (-1<¢<1, Im¢=0),

() we(¢) = 1 as { — —1 such that (5.5) be satisfied. ~ (5.7)

These conditions imply that w.(() is analytic, regular everywhere in |¢| < 1, Im({ >
0 , except possibly at ( = —1 and ¢ = 1 where it may have branch points such
that w.(¢) is purely real on the real ¢-axis, —1 < ¢( < 1 . Hence, w,(¢) may be
continued analytically into the entire unit circle || < 1 by the symmetry of w.({)
about the real (-axis.

Therefore, by invoking conditions (a) - (c) of (5.7) , we assume the following
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form
D 1B+ k1)
we(¢) N ' 2
C+1 21/ Z Za )Zmp Cn (58)
m=0 n=0
with
a 1
b=y
la, o 2¢ 1 1
R R R oA U

where the unknown coefficients a,,,’s are all real so that w.(¢) is purely real for real
¢ . With the coefficients b; and b; so assigned, the asymptotic behavior (5.5) for
w(() at upstream infinity as well as the local properties of w(¢) near the stagnation
point can then be satisfied by (5.8). The irrational exponent p is taken to be the
smallest root of (4.11) , 0 < p < 0.5 . On the unit circle, |{| =1, ¢ = exp(ix) ,

we have for 0 < xy < 7,

1
RI (w_> = 1+ (2b; + 4b; cos x) cos? %

m=o00 N=00

+(cos X 2 ) 3 3 ama(sinZ )2"”‘ cos [(mp + m + v)x + Tmy),
m=0 n=0
1 . 2 X
Im (—) = by siny + 4by cos® < siny (5.9)
W, 2

M=o =

+(cos Y amm (sm Y™ sin [(mp + n + v)x 4+ mmypy),

m=0 n=0

where Rl and I'm stand for the real and imaginary parts of 1/w. , respectively.

Now, to satisfy the corner flow solution (4.6) , we have w(¢) from (5.4) and
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(5.8)sothat as ¢ — 1, (m = 0)

(59} () e

) = g T iy 1 "= don (5.10)
or in the ¢-plane as ¢ — 1, we have for w(t) to the leading order
w(t) = At — 1), (5.11)
hence from (5.10) and (5.11)
0 () -

1 + 2b1 + 4b2 + Zn—o agn

Substituting A from (5.12) into (4.7) and rearranging the terms, we obtain

the second constraint condition,

n=0o0

> am + S=0, (5.13)

n=0

Wl

(1—c)2r¥‘ [3H T -

TEwSE —2—%—sm(——a)

S = 1—|—2b1+4b2—[ 3

The dynamic boundary condition on the free surface in a neighborhood very close
to the stagnation point ( || =1and ( — 1) is satisfied exactly by (5.13) .
Finally , the downstream condition (2.2) requiring that as ( — 0, w(0) =

U, = H/(H — d) can be deduced from (5.1) (5.2) and (5.8) to give.

B—F <z—1~j}.cc?>_% HH 3 [1 +b+ b+ ( )2V :z;: amo(%)zm“ . (5.14)

This condition (5.14) can be conveniently used to assign values to the draft d as a
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priori. This completes the formal analysis of the solution for w(¢) .

The foregoing analysis now leads to the solution in terms of the integral equa-~
tions (3.14) and (3.18) from which the unknown coefficients a.,,’s and ¢ can be
determined in terms of the parameters ( o, H = 2/F?,d ) by numerical methods,

as will be presented in the following chapters.
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Chapter 6 Numerical Method

In this chapter, we describe the mumerical formulation which we used to solve the
integral equations (3.14)-(3.18) and the second constraint condition (4.7).
By substituting the complex velocity w(¢) from (5.4) and (5.9) in the Bernoulli

equation (3.15), we obtain

W = ww, H(x) = %, (6.1)
where H(x) = (sin %)% {1 e j-cc)2 cos? %} *27&, (6.2)

and,
wic (wz) ~RI (wi>2 +Im (-Uf—)z (6.3)

The real and imaginary parts of 1/w, can be found from (5.9) .
To put the Bernoulli equation into a convinent form , we multiply both sides

of the Bernoulli equation (6.1) with J(7) -+ %) ,

We

) 1) = 300 3 () 6.9

c \We

Such multiplication can be taken because both J(7) and i (wIc) are not equal to
zero. From (3.17), J(w) never equals to zero since H is finite. From our intuition,
the flow enters with a finite speed at the upstream infinite, and its speed decreases
to zero as it approaches the stagnation point. Hence, w, never becomes singular

anywhere on the free surface.
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For convinent, the first constraint condition (3.17) can be written

J(r) — % =0, (6.5)

where H is the dimensionless water depth at the upstream infinity and it does not
relate to the function H () .

Our problem has now been reduced to finding the a,,,’s that satisfies both
Bernoulli’s equation (6.4) and two constraint conditions (6.5, 5.13) on the free

surface.

6.1 Minimization

We select the minimization of error method to satisfy those equations optimally
over the whole interval on the free surface. On the free surface, we define F(x, amn)
as the difference between the left-hand side and right-hand side of the Bernoulli
equation (6.4), the local error to be minimized. Similarly, let G(a;) and K(a;) be

errors of the first and second constraint conditions respectively (6.5, 5.13) .

Flt, ) = J(r) Hx) — J(x)i(%) (6.6)
Glam) = J(m) - & (6.7)
K(ao) = 3 aon+S, (6.8)

where both indexes m and n range from 0 to co . We defined a total error E(anm,) ,

which is a positive quantity, as

Eam) = /0 " F(x, @) dx. (6.9)
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Since E(@mn), G(Gmn) and K (amy,) are functions of only the coefficients a,,,’s
but not x , we can treat a,,, as independent variables. Our problem is now trans-
formed into the minimization of E(a,,) with two constraint conditions G(amy,) = 0

and K(ao,) =0 .

6.2 Lagrange’s Multiplier Method

To solve the problem exactly, an infinite number of modes a,,,’s are required, in
theory. In particular, however, we solve those equations (6.6)-(6.9) with sufficiently
large number of modes a,,,’s while expect that such truncation errors will be
limited within certain small bound.

We use the method of Lagrange’s multiplier to find the minimum of the total
error E(amy,) (6.9) under the two constraint conditions (6.7) and (6.8) , for which
we employ two Lagrange’s multipliers A; and A, corresponding to (6.7) and (6.8) .

A new function M , including the total error E(a,,,) and the two constraint

equations, is defined as:
M(amn, )\1, )\2) = E’(amn) — )\1 G(amn) — /\2 K(aon), (610)

where the indices m and n range from 0 to (M —1) and 0 to (N —1) , respectively.
The total number of a,,,,’s is M x N . By including A; and A,, there are M x N +2
independent variables in the function M .

To minimize the function M , the partial derivatives with respect to the
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independent variables a,,,’s, A; and A, are set to zero,

OM (@, A1, A2)  OE(X, Gmn) ) 0G(amn) ) 0K (agn)
0amn B 0amn ! O0tmn ? O0ampn,
= 0, (M x N equations) (6.11)
OM(amn) _ _(a) = 0. (1 equation) (6.12)
O\
—a% = —K(a;) =0. (1 equation) (6.13)
2

The explicit form of the last set of equations will be given later. We shall solve
M x N + 2 equations (6.11)-(6.13) for the M x N + 2 unknowns by Newton’s

method.

6.3 Newton’s Method

Since the set of equations (6.11)-(6.13) is already linear in terms of A\; and A; but
nonlinear in a,,,’s, the idea is to linearize the set of non-linear equations in terms
of some previous known values of @, 0’s . For each apy, , let an, be represented
by the sum of two parts, amn = Gmno + Aapy, or with a change bf dummy index
to jk, ajr = ajr0+ Aajr . We then substitute a;x’s into the set of equations and
linearize the set, with Aa;j, considered as being small with respect to a0 -

Next, applying linearization to 0E/0a,, , G and K , we take the partial
derivatives with respect to the independent variables a;;, ,

OF OFE 0’E :
b (3amn> 0 + Aajy, (W) . (M x N equations) (6.14)

G = Go+Aaj (5%%) , (1 equation) (6.15)
J 0
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K
K = Ko+ Aa (—8—) , (1 equation) (6.16)
aajk 0

where j and k is summed from 0 to (M — 1) and 0 to (N — 1) , respectively, in
the above equations. Those functions with subscript o contain the independent
variables Gy, 0’s Or Q;1,0’s .

We substitute the expressions (6.14)-(6.16) into the set of equations (6.11)-

(6.13)
oM OF O’E oG 0K
Ba'mn h <8a’mn> 0 " Aajk (aamnaa’jk> 0 - )\1 (aa’mn> 0 - )\2 (aamn> 0
= 0, (M x N equations) (6.17)

oM oG ,

W Gyt (5—-—) (=0, (1 equation (6.13)
oM 0K ,

gg = —K,—Aagj (%) . =0, (1 equation) (6.19)

where 0G /00y , 0G/0aj , OK/Oam, and 0K/daj, involve only amno or ajko as
constants, not a function of an,, , ax, A1 and Ag .

In the matrix form, we rewrite (6.17)-(6.19) ,

/3213 ... _®E 8¢ _ ok

Ok Aa _9E

BagoBaogo Bapolar Bago daoo 00 dago
3’E .. O’E _8G Aa __JE
dao18ago dap18ar Baot dag1 01 Bag1

_ o (6:20)
2B ., B _8G _ 6K Ag _ B
Bardagg Bapdag dag Bap R dap
_9G ... _98G
8@00 BG/R O 0 A 1 G

- Bapo ) dap
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where the subscripts ¢ are omitted in the matrix element and the index R repre-
sents (M — 1)(N — 1) . The linearized matrix equation (6.20) is solved iteratively
by Newton’s method.

Let ! be the number of iteration. For the first iteration (I = 1) , the elements
of af, equals some known values. In Newton’s method, the initial choice of a); is
important in determining the convergence of the method. For the [ iteration,

ahy = it + Adyl, 1>0, (6.21)

in which the new agk are updated at every iteration. In the theory, Aag_l ap-
proaches zero if the the scheme converges. However, in the numerical computation

Aaé‘l would approach a certain small bound, because of the truncation error.

6.4 The Matrix Elements

The matrix equation (6.20) contains a square matrix on the left-hand side and a
single column matrix on the right hand-side. We shall give details on calculating
elements of those matrixes.

For the square matrix on the left hand side of (6.20) , its elements involve
E,G,K,F (6.6-6.9) and their first or second derivatives with respect to the inde-
pendent variables a,,,’s or a;;’s or both.

In summary, we list elements of the square matrix:

(a)  On the last row or the last column of the square matrix, elements yield

0K

Oamn
or else = 0 if m=#0.
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Each of matrix elements (6.22) equals to 0 or 1 since K depends linearly on ag,’s.

(b)  On the second row or column from the last, matrix elements give

oG 8J(r)
B Ba, (6.23)

= /0 (cos -g—)z”(sin g)zm“ sin (mp +n +v)x + 7vmu + 0)

4c X . X\ 1
(1 — (—1——_’_—0)—2mSZ 5) (sin 5)3 dx,

where 6 = (1/3 — a/7) (1 — x) , index m ranges from 0 to (M — 1) and index
n ranges from 0 to (N — 1) . Evaluating elements (6.23) requires one integration
that must be done numerically.

(c) Matrix elements having the second derivatives with respect to @, and/or

Gj are

2 - 2
B :/02<F or , 9OF aF)dx, (6.24)

Oamn0a;y 0amn0aj O0apn Oaji
where F' |, 0F /00y, , and 8*F /8a,,0a, can be evaluated from (6.6) . We will not
show them here. The final expression of 8*E/8am,0a;, (6.24) is straightforward
and will not be presented explicitly. The matrix elements (6.24) need two numerical
integrations.
For the column matrix on the right hand side of (6.20) , its elements contain
O0F/0amy, , G and K . The last two elements G and H have been given earlier.

Matrix elements of 0F/0a,,, give

OF " oF
S = /0 2F g dy, (6.25)

where F' and 0F/0a,,, can be evaluated from (6.6) . The final expression of

OE/0ay,, will be curtailed here. Calculating (6.25) involves one numerical inte-
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gration.

We shall set forth the details of solving the minimization matrix equation
(6.20). First, we use Simpson’s method to evaluate the elements on both sides
of (6.20) requiring double or single integrations with respect to the independent
variable x . Next, the matrix equation is solved by the Gaussian elimination
method. The unknown Aagj)’s are calculated iteratively using Newton’s method
(6.21) .

Our forgoing numerical procedure solves the matrix equation (6.20) from

which a,,,’s and d can be found in terms of the parameters ( o, H = 2/F?, c).

6.5 Inverse Iterative Method

An inverse iterative method is used in which the unknowns a,,,’s and ¢ can be
determined in terms of the given parameters ( o, H = 2/FZ d ).
This inverse method uses the downstream condition (5.14) which we can re-

express as

S 2(2_"")2“4, (6.26)

where

s

. z

£ H m=o0 «

2(23 (1+bi+b+(z 21’z:amo 2m“> )
m=0

<

H-d

and r represents a temporary variable.
We summarize the inverse iterative method as follows:
(a) An initial guess ¢, first be given. We usually take a value of ¢ from some

previously solved problem with slightly different parameters.
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(b) By using the procedure given in the last section, we solve a,,’s in terms
of (a, H=2/F2c).

(c) From the downstream condition (5.14), ¢ can be calculated in terms of the
original parameters ( a, H = 2/F?,d ) and the temporary a,,’s from step (b) .

(d) We repeat the steps (b) and (c) until ¢ and a,,,,’s converge to the solutions

with certain pre-specified tolerance.

6.6 Free Surface and Bow Plates

Once we have determined a;4’s and ¢ , we proceed to compute the free surface
shape , draft depth and the drag acting on the bow plate. The free surface shape
gives the overall pattern of the flow. The bow draft depth and drag assure the
accuracy of our numerical solutions, upon comparison the numerical result for the
drag with another theorectical equivalence which is exact.

On the free surface, the position z and y given in (3.14) can be rewritten as

a function of x ,

L = _’% y Y= —j_gf_'; ) (627)
700 = [Y(0 (1 - f‘;) %) %))—dx (6.28)
and Y(x) = Im (Zul‘) cos + R (wi) sin

m=0o0 N=0

= YE)(X)“‘ Z Z a’mnYmn(X);

m=0 n=0
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where Y5(x) = sinf + 2b; sin 6 cos? 22<— + 4b, cos? 22<— sin (x + ),

Yun(x) = (cos 3)™(sin 3 )™ sin (mps+ 1+ v)x + wmps +6),

with 6 = (1/3 — a/7) (7 — x) from (5.4).

Similarly,

100 = [ X0 (1‘(1100)2008%);%% (6.29)

—1—) cosf@ —Im (—1~) sin f

We W,
m=00 N=00

= XO(X)+ Z Z amnan(X)y

m=0 n=0

and X(x) = Rl(

where Xo(x) = cosf — b; sin ) sin @ + 2b; cos 8 cos? % + 4b; cos® 226— cos (x + ),

Xon(X) = (cos —;g)”(sin 22(—)2’”“ cos ((mu +n+ v)x + mmu + 6).

In our numerical computation, we shall take the free surface shape as one of our
main results. We will show it in the next chapter.

To check the accuracy of our solutions for a,,,’s and ¢ , we use an inverse

method to find the position z and y of the corner of the bow in the physical plane.

Substituting 1/w given by ( 5.2, 5.8 ) into the expression z (3.8) on the front

plate ( ( real and ¢ < { < 1), we write the position of the corner,

H e -1

2 = ztiy= ;/1 FC()C(C'T)D_CdC’ (6.30)

wi L cosa — isina L= Cyays (((= 90— ) .
th w({) ( ) ( 2 ) ( (1+c¢)? )
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X(I4+b(C+ 1)+ b:(¢C+ 1)2

HEER TS (R 0,

m=0 n=0

with the expressions for #; and &, given in (5.8) .

By comparing the last expression (6.30) with the exact position of the corner
of the bow determined from the initial values prescribed on « and d, we can verify
the accuracy of our solutions.

Another method to check the accuracy of our solutions is to compare the drag
on the front plate computed in two different ways. The first way for calculating the
drag D, is by theoretically formula derived from the balance of the £ momentum
integral equation,

d H

Di=d(5+1-=—). (6.31)

The drag (6.31) does not depend on « but only on H and d . The entire con-
tribution to the drag comes from the front plate only since the drag is in the
horizontal direction. The lift on the front plate can be computed from the drag
since the total force on the bow plate must be perpendicular to it. However, the
lift on the horizontal draft plate may be unbounded due to the length of the bow
is semi-infinite.

In the secod way, the drag can also be found from the horizéntal component
of the pressure p integrating over the front plate. The pressure p acting on the

bow can be computed from Bernoulli’s equation (2.13) ,
p=—y— wi. (6.32)

Inserting w given by (5.2, 5.8) and y of (6.30) into the above equation, pressures
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on the inclined plate and the horizontal plate can be found separately. The drag

D,, on the front plate becomes:

B 0 _ 1 ?—:q
D= [ o 2 = [ 90 5 % (6.33)

In the next chapter, we will give and compare the two drags, D; and D, (6.31,

6.33) , which should be exactly the same.

6.7 New Improvement in Accuracy

To gain greater accuracy, we put more points near the stagnation point where the
maximum error is expected to occur. On the free surface, we introduce a new real

variable o to replace x by the transformation,
i, _
X = 5(1 — Cos0). (6.34)

From this transformation, the point x = 0 and x = 7 are transformed into o = 0
and ¢ = T respectively. In addition, the total error is redefined to change the

variable of integration from y to o :

E(amn) = /0 " F(x(0), amn)?do. (6.35)

We also change OE /Oan,, (6.25) and 0*F/da,,0a; (6.24) consistently into:

oF ™ OF
o~ 27 iy (6.36)
&°F ™ 8°F OF OF
Bamndag, /0 2 (F TR - aajk> do. (6.37)
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By substituting the transformation (6.34) into all expressions containing inte-
grations, the matrix equation (6.20) is solved similarly as before. We discuss the

result of this improvement in next chapter.
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Chapter 7 Numerical Results

The numerical method given in the last chapter has been applied to computing
our model equations (6.4, 6.5, 5.13) to provide free surface profiles and to verify
our local analysis of the branch- point singularities of the velocity field at the
stagnation point and at the upstream infinity.

In a typical case, the free surface shape is shown in Figure 7.1 and 7.2 with
the parameters o = 45° , H = 100 and d = 17 . In those figures, the vertical
axis represents the free surface height y , and the horizontal axis represents the
horizontal distance x . The bow is located to the right of the free surface y . The
stagnation point is located at the origin. In Figure 7.1 for the global view, both
the bow and the free surface are shown. A zoomed in plot of the free surface profile
y is given in Figure 7.2, in which the bow (not shown) is located to the right of
the free surface; it exhibits the free surface profile changes its shape. Figure 7.2
shows that the free surface falls off smoothly and monotonically to zero from the
stagnation point (z = 0) to the upstream infinity (z = —00) .

In typical case, we use 341 evenly spaced grid points in the new coordinate
o transformed from the coordinate x on the upper half plane of the unit semi-circle
in the ¢-plane and use a total of 32 modes of the coefficients a,,,’s ( including a; o,
az o and ag ¢ ... Qo 29 ). This is sufficient to give accurate and converged numerical
results to the 5th decimal-places ( e. g. the free surface profiles).

Figure 7.3 shows the velocity slope angle € of the velocity (u, v) on the free

surface based on the set of the parameters of Figure 7.2. The curve of 8 showing
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smooth and monotonic falls off steeply in a neighborhood of the stagnation point
from 15° to 4° over a distance less than 2k and then levels off from 4° to 0° at
the upstream infinity. Such a pattern of § in the figure implies that we correctly
incorporate the singularities of multiple irrational orders at both the stagnation
point ( z = 0 ) and the upstream infinity ( = oo ) . More definite evidences will
be shown below with the issue pertaining to the rate of convergence of the series.

Corresponding to Figure 7.2, the pressure distribution p on the inclined flat
plate and the horizontal semi-infinite draft plate is shown in Figure 7.4 . In the
pressure graph, the vertical axis represents the pressure p on the front and the
trailing horizontal draft plates of the bow, while the horizontal axis represents the
horizontal distance z . We note that p on the inclined plate of the graph increases
slowly from zero at the stagnation ( z = 0 ) to a maximum positive value and
then falls off steeply to —oco in a small neighborhood of the bow-draft corner at
z = 17 . In addition, p on the horizontal plate of the graph rises steeply in the
neighborhood of the bow-draft corner from —oo to a positive value and then level
off to a constant positive value at the down stream infinity ( z = co) . Since this
singular behavior of p at the bow-draft corner agrees to the prediqtion of our local
bow-draft corner flow analysis in the earlier chapter, it further demonstrates the

exactness of our numerical result.

7.1 Convergence and Accuracy of the Results

The object of this section is to indicate the convergence and the accuracy of our
numerical results. We consider numerical solutions well-converged if the solutions

do not change significantly within a certain tolerance as the numbers of grid points
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and modes of an,’s increase in our numerical computation. For the maximum
difference between the left-hand and the right-hand sides of the Bernoulli Equation
(3.18) , we usually set the error rounded to be < 10~* .

As shown in Figure 7.5, we confirm the convergence of our solutions by
using the same set of parameters as in Figure 7.2 with the exception when using
different numbers of modes of a,,,,’s. Figure 7.5 demonstrates that the free surface
curves y having different numbers of modes of a.,,’s are located closely on the top
of each other. Hence, the solution is already converged and the error due to the
truncation of the higher order terms of the infinite series to a finite series is small
and insignificant ( with the tolerance of 0.0001) . In Figure 7.6 , we compare the
solutions of 341 and 1361 grid points while keeping the other parameters same as
in Figure 7.5 . The free surface curves y of the figure are almost identical to each
other. We conclude that the convergence of our solution is excellent. However, if
less tolerance of the solution is required, greater numbers of modes a,,,’s and grid
points will be needed to achieve the convergence of the solution.

The accuracy of the solutions of the bow problem can be further scrutinized
by comparing the two values of the drag obtained numerically and theoretically.
Our theoretical work of the bow problem gives for the drag coefficient derived from

the balance of the z momentum integral equation (6.31), the formula

d H

Alternatively, the drag can also be computed by numerically integrating the pres-
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sure acting on the bow plate,

_ /[ _ [ %
D, “/_(d+1) p dy »/c p(¢) ac g . (7.2)

A comparison between the two values for the same drag (7.1, 7.2) has been
made based on the same set of parameters used in Figure 7.2 (¢ =45°, H =100,
32 modes of a,;,’s) . For the pressure integral, we used 10041 grid points on the
inclined bow plate to evaluate the drag (7.2) . Two values of the drag on the bow
are thus found to be 141.01807 ( theoretically by 7.1 ) and 141.00881 ( numerically
by 7.2 ); they agree with each other up to the 5th significant digits, with an error
of 0.01 . Thus, the accuracy of our result is well confirmed.

Having established the fast-convergent and accurate numerical method, we
proceed to investigate how the shape of free surface will vary with different values
of the three parameters: the incidence angle a , the bow draft depth d , and the

upstream water depth H .

7.2 Variations in the Incidence Angle

We examine the effect due to variations in the incidence angle o on the free surface
profile while keeping d and H constant (see Figure 7.7) .

In Figure 7.8, three free-surface profile curves are shown for o = 55°, 45° ,
and 35° appearing from top to bottom with the same set of parameters d = 17 and
H =100 . The top free surface profile for o = 55° takes the slowest rate to fall off
to zero at infinity. The middle free surface profile for a: = 45° falls off steeper than

the top curve. The discrepancies of these two curves is located primarily within
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a horizontal distance x of 100h from the stagnation point z = 0 . The bottom
free surface curve for v = 35° falls off to zero at the steepest rate and shows very
slight oscillations. This could be associated with the branching of our local corner
solutions at the stagnation point for o arounds 30° .

In Figure 7.9, we present the surface profiles with the draft kept constant at
d = 17 but with the water depth increased to H = 200 . The three curves represent
the numerical results for the free surface for o = 55, 45, and 35° , appearing from
top to bottom in Figure 7.9 respectively. The top curve for the free surface profile
for a = 55° falls off to zero at the lowest rate, whereas the bottom curve free
surface for av = 35° falls off to zero at the highest rate. The discrepancies among
these curves are occured mostly within 100 h upstream from the stagnation point
(z=0).

The numerical results presented in Figure 7.10 are with the draft depth
d = 17 , the water depth H = 50 , for the incidence angle a = 55, 45, and
35° respectively. We note that the third sets of figures can be quantitatively
differentiated to exhibit the effect due to variations in « , but qualitatively similar.

We next proceed to examine the effects on the free surface profile due to
variations in the draft depth d and water depth H .

In Table 7.1 , we present a list of numerical data on the numerically-computed
drag D, acting on the bow and the theoretically- calculated drag D, jointly with
the free surface curves on these three figures (Figure 7.8, 7.9, 7.10). For each row,
the values of o, d , H , Fry , F'r), , the number of grid points , the number M of
modes arg’s, the number N of modes ag,’s, D, , and D, are given. By comparing

D, and D, for each row, we can see that their values agree with each other to
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at least four significant digits. Hence, D,, is accurate up to this limit. From the
theoretical drag (7.1) , we note that the drag does not depend on the angle of
incidence « . This implies that the discrepancies between the fall off rates of the
free surface curves on each figure are not related to the drag because they have to

vary in such a manner as to keep the drag unaffected.

7.3 Variations in the Draft Depth

We next investigate the effect due to the variations in the draft depth d on the free
surface profile while keeping a and H fixed (see figure 7.11) .

The first figure of the second set ( 7.12) presents five curves, appearing from
top to bottom, which represent the free surface profiles for the draft deph of 3, 9,
17, 40, and 70 ( Fry = 0.816,0.471,0.343,0.224 , and 0.169 ). The parameters of
the first figure include & = 45° and H = 100 (Fry, = 0.141) . Starting from the
largest draft depth of 70 , we can explore the effects of decreasing draft depth. The
top free surface curve for d = 70 having the largest draft depth, takes the longest
horizontal distance to fall off to zero, the middle curves decrease faster than the
first one, in their orders, and the bottom curve falls off with the largest slope to
zero. Clearly, it shows that the rate of decrement of the free surface is negatively
correlated to the draft deph d . The curve of the smallest slope is associated with
the largest draft depth d and vice versa.

The free surface shapes of the top two curves (d = 40, 70) have only very small
differences apart. This seems to suggest that the free surface shape changes slowly,
approaching a limiting shape as the draft depth increases beyond 50 percent of the

water depth. The reason is that the added inertial effect from increasing draft
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depth does not effectively reach the free surface.

As the draft depth decreases to only 3h, the bottom curve exhibits oscillations
of finite amplitude which bring forth a new class of free-surface profile in contrast
with that the monotonic shape as shown above.

To help explain how this breakdown takes place, we examine the pressure
disribution over the front and horizontal plates of the bow. Corresponding to the
fourth curve from the top for d = 9 in Figure 7.12, the pressure distribution on the
plates is given in Figure 7.13 , which shows that the pressure on the front plate
(in Figure 7.13) is almost all positive except for a very small negative region near
the corner of the bow where the pressure becomes —oo . The pressure distribution
on the plates of the bow corresponding to the bottom curve for d = 3 , is plotted
against the horizontal distance z in Figure 7.14 . For comparison , the negative
pressure region for d = 3 at the corner of the bow in Figure 7.14 is located closer
to the stagnation point than the negative pressure region for d = 9 in Figure 7.13.
In general, the importance of the presence of a negative pressure region in the
neighborhood of the corner of the bow grows when the draft depth decreases. We
believe strongly that this growing negative pressure region eventually causes the
steady wavy profile to arise.

In the second and third figures of the second set, we show two additional
combinations of a and A . In the second figure shown in Figure 7.15 , we set
a =45° and H = 50 (Fr, = 0.2) while keeping d at 3, 9, 17, 21 and 25 . In the
third figure (Figure 7.16) , we use o = 55° and H = 200 (draft length d of 3,
9, 17, 40 and 70 ). Similarly, there are five curves of the free surfaces shown in

each figure. Since the patterns of the second and third figures are identical to the
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pattern of the first figure in the second set, we do not give the details.

For all 15 free surface curves included in the three figures of the second set,
their corresponding drags D; and D,, are shown in Table 7.2 . For each horizontal
row, we notice that D; agrees very well with D,, . So, the accuracy of our numerical
results are uniformly excellent. In general, for each figure of the second set, the
drag D on the bow increases with increasing d . Physically , for a greater drag D,
the inertial effect in an inner region near the stagnation point is greater because
the bow pushes the fluid harder; thus, the free surface falls off slower.

To summarize, we note that if the solutions are monotonic and smooth, , the
effects due to decreasing draft depth d are the following: the free surface falls off
faster to zero, the magnitude of the drag D on the bow becomes smaller, and the

importance of the negative pressure region at the corner of the bow grows.

7.4 Variations in the Water Depth

We now proceed to study the effects due to variations in water depth H on the
free surface shape while keeping d and o constant, as depicted in Figure 7.17 . In
this third set of results, three combinations of d and « are shown in three different
figures.

In the first figure of the third set (Figure 7.18), d = 17 (F ra = 0.343 ) and
a = 45° , the free surface profiles are for H = 35,50, 100, 200, and 400 (Fry, =
0.239,0.2,0.141,0.1, and 0.071). Since Fry, < 1 and not close to unity for all the
five curves, the free surface profiles are all smooth, monotonic, and well-converged.
We note that the top curve (H = 400) falls off at the slowest rate to zero from the

stagnation point to the upstream infinity and the bottom curve (H = 50) falls off
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at the fastest rate to zero. The higher falling rate is associated with shallower water
depth H and is due to a weaker inertial effect in the inner region near the stagnation
point. The reason is that the total pressure on the flat bottom plate of the channel
is the sum of two parts, one is being the static fluid pressure corresponding to the
state when there is no flow, and the other part the excess pressure which does

dynamically affect the flow. From the Bernoulli equation (2.13) ,
(@®+9*) + p(z,y) + 9 =0, in the low domain, (7.3)

the magnitude of velocity squared can be related to the excess pressure. From the
law of conservation of mass (2.2) and the Bernoulli equation (7.3) , the velocity
U, (downstream infinity) at +o0o must increase with decreasing the water depth
H . Thus, the velocity on the flat bottom surface also must increase. Since the
velocity increases on the bottom surface, by applying the Bernoulli equation, we
see that the excess pressure will be smaller. Effectively, the bottdm surface does
not push the moving fluid as strongly as before; therefore, the free surface falls off
faster.

Another important observation is that in Figure 7.18 , every free surface
curve starting from the stagnation point decreases quickly first to a tail region in
which the curve then falls off very slowly to zero at the upstream infinity. From
the top curve of Figure 7.18, we observe that the free surface descends to a slowly
sloping tail region at a distance of about 80A from the stagnation point. For greater
water depth H , the tail region grows longer. This could be a primary reason for
explaining the difficulties encountered in determining solution for H = oo .

Similarly, we can show well-converged solutions for the second and third figures
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of the third set. In the second figure (Figure 7.19) , five free surface curves are
shown for the water depth H = 35,50, 100, 200, 400) together with a = 55° and
d =17 . In the third figure, (Figure 7.20), another group of five curves are given
for the water depth H = 35,50, 100, 200,400, with o = 35° and d = 17 . The
patterns of the curves in the second and third figures are similar to the pattern in
the first figure. The conclusion is the same for all three figures.

In Table 7.3 , we show D, and D, corresponding to all the free surface curves
in the three figures of the third set. By comparing the drags D for the curves of
each figure in the third set, we find that the drag D on the bow increases with
increasing water depth H .

To obtain a monotonic well-converged solution, we prefer to keep the water
depth H greater than 10A ( F'r, < 0.4). Otherwise, the solution will be oscillating
or not convergent. In addition, as Fr, approaches 1, we expect that there will be

intrinsically unsteady waves generated moving upstream.

7.5 Pressure Variation Near a = 30°

In this section, we further examine the free surface profile with the incidence angle
o around 30° while keeping H and d fixed.

From our local flow analysis near the stagnation point, the angle of incidence
a around 30° exhibits two distinct types of flow behavior. For the first type with
a > 30°, the fluid pressure increases from zero at stagnation and remains positive
on the bow plate until the bow- draft corner is approached. For the second type
with o < 30° , a region of negative pressure exists adjacent to the stagnation

point for o < 30° . The presence of negative pressure appears to confirm the
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expectation raised in Chapter 4 based on the free surface wedge flow. The criticality
in the incidence angle of o = 30° associated with the negative pressure adjacent
to the stagnation is thought to be responsible for giving rise to the conspicuous
phenomenon of steady wave profile on the upstream side of the bow plate.

Next, we compare the results of our local flow analysis and numerical results.
In Figure 7.21 , the free surface height is plotted against the horizontal distance
z for the angle of incidence a = 35°, 31°, 27° , and 22° with the water depth
H = 100 and draft length d = 17 . The top curve corresponds to o = 35° . The
second curve from the top represents o = 31° and shows small oscillations. The
third and fourth curves (27° and 22°) from the top show large oscillations. Those
oscillations have the same wavelength which is very nearly equal to the wavelength
of the free waves in deep water, which is 47 in the present dimensionless form.
Moreover, the amplitudes of the oscillations of the wavy free surface decrease to
zero at a sufficiently large distance ( more than 100 A ) , a result which implies the
waves are not radiating energy. Clearly, the results of these wavy surface represent
a new type of flow solutions.

In Figure 7.22 | the pressures corresponding to the free surface curves of
Figure 7.21 are presented in a neighborhood of the stagnation point on the inclined
bow plate. For o = 31° and 35° , the pressure distributions are positive in a
neighborhood of the stagnation point and monotonically increasing downstream
on the front bow plate . On the other hand, for a = 27° , there exists a small
negative pressure region next to the stagnation point on the front bow plate. As
« decreases to 22° , the negative pressure region increases in size. This negative

pressure region for o < 30° is responsible for the changing of the solution and
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agrees with our local flow analysis predictions.

In our observation, the solution bifurcates (from the smooth profile class to
the wavy profile class) even before a decreases to 30° , since our analysis on the
criteria with the negative pressure is only a local one. However, our computational
results show a global solution. The draft depth d and water depth H modify our
result from local analysis slightly . Nevertheless, the breakdown of the solution
involving smooth profiles around a = 30° seems to possess a sound validity.

If the flow should be reversed, we might first think that the oscillatory solution
would be a good solution for steady gravity waves moving behind the bow. Since
we have imposed the radiation condition of no outgoing waves to the upstream
infinity, the oscillatory solution does in fact satisfy this condition. Thus, the wavy
profile solution is ruled out to be a steady-wave solution for the reverse flow that
radiates wave energy.

The drags D, and D,, on the bow are shown in Table 7.4 , from which we
observe the following: (1) the numerical and theoretical drags agree very well with
each other, and (2) that the drags corresponding to different values of o also agree
very closely.

In general, with other combinations of d and H , the branching of solution
around a = 30° is invariably found to manifest. To gain comprehension about the
new phenomenon of the upstream wavy motion on water, more research will be

required.
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Figure 7.1: The profiles of Free surface and front bow plate for o = 45° , H = 100,
d = 17 with 2430 modes of a,,,’s , 341 grid points.
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Figure 7.2: Magnified free surface profile with the maximum relative error of
0.000009 for « = 45° , H = 100 , d = 17 employing 2+30 modes of ap,’s ,

341 grid points.
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Figure 7.3: Velocity flow direction 6 (degrees) on the free surface for o = 45° |
H =100, d = 17 with 2430 modes of a,,,’s , 341 grid points.
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Figure 7.4: Pressure on the bow plate and horizontal draft plate for a = 45° |
H =100, d = 17 with 2430 modes of a’s , 341 grid points.
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Figure 7.5: Comparison between the two results for the free surface profile obtained
with 2+30 and 5+60 modes of am,’s for a = 45° , H = 100, d = 17 , using 341
grid points.
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Figure 7.6: Comparison between the two results for the free surface profile obtained
with 341 and 1361 grid points for « = 45° , H = 100 , d = 17, using 2+30 modes

of a,n's.
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Figure 7.7: A sketch of the bow plate with variations in the incidence angle « .
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Figure 7.8: Variations of free-surface profile with varying the incidence angle for
o = 55° (top), 45°, 35°(bottom) , with H = 100, d = 17, using 2+30 or 4+30(top)

modes of a,,,’s.
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Figure 7.9: Variation of free-surface profile with varying the incidence angle for
a = 55°(top), 45°, 35°(bottom), with H =200 , d = 17 , using 2+30 or 4+30(top)
modes of a,,,’s.
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Figure 7.10: Variation of free-surface profile with varying the incidence angle for
a = 55°(top), 45°, 35°(bottom), with H = 50 , d = 17 , using 2+30 or 4+30(top)
modes of a,,,’s.
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Figure 7.11: A sketch of the bow wave with variations in draft depth d .
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Figure 7.12: The effects due to variations in draft depth d on free surface shapes
for a = 45° , with H = 100 , d = 3 (bottom), 9, 17,40, 70 (top) , employing 2-+30
modes of a,,’s .
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Figure 7.13: Pressure distribution over the bow plate and horizontal draft plate
fora =45°, H=100,d =9, with 24+30 modes of a,,,’s , 341 grid points.
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Figure 7.14: Pressure on the bow plate and horizontal draft plate for o = 45° |
H =100, d=3, with 2430 modes of a,,,’s , 341 grid points.
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Figure 7.15: The effects due to variations in draft depth d on free surface shapes
for a = 45° , with H = 50 , d = 3(bottom), 9,17,21,25 (top) , employing 2430
modes of a,,,’s.
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Figure 7.16: The effects due to variations in draft depth d on free surface shapes
for a = 55° , H = 200 , d = 3 (bottom), 9,17, 40, 70(top) , employing 4+30 modes
of ap,y,’s.
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Figure 7.17: A sketch of the bow wave with variations in Watér depth H .
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Figure 7.18: Variations of free-surface profile with varying water depth for H =
35(bottom), 50, 100, 200, 400(top) , with o = 45° , d = 17 , using 2+30 modes of
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Figure 7.19: Variations of free-surface profile with varying water depth for H =
35(bottom), 50, 100, 200, 400(top) , with o = 55° , d = 17 , using 4+30 modes of
QAmn S.
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Figure 7.20: Variations of free-surface profile with varying water depth for H =
35(bottom), 50, 100, 200, 400(top) , with a = 35° , d = 17 , using 2430 modes of

A’ S.

0.2}

<
[N

Sree surfacey
[
EN

Figure 7.21: Variations of free-surface profile with varying the incidence angle for
a = 22° (bottom), 27°,31°,35°(top) , with H = 100 , d = 17 , using 2430 modes
of a,,,’s.
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Figure 7.22: Variations of the pressure distributions in a neighborhood of
the stagnation point with varying the incidence angle for @ = 22° (bottom),
27°,31°,35°(top) , with H =100, d = 17 , using 2430 modes of a,,,’s.
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a | d H| Fry | Fr, |Grid| M+ N Dg, Dg,;
1135|17|100|0.343 | 0.141 | 341 2430 | 140.99827 | 141.01807
2145 |17 {100 | 0.343 | 0.141 | 341 2430 | 141.00881 | 141.01807
35517 | 100 | 0.343 | 0.141 | 341 4+30 | 141.01358 | 141.01807
4135 |17]200|0.343 | 0.1 341 2430 | 142.90836 | 142.92077
545171200 0.343 0.1 341 2430 | 142.91461 | 142.92077
6|55|17]200|0.343 | 0.1 341 4430 | 142.91762 | 142.92077
713517 | 50| 0.343 | 0.2 341 2430 | 135.69028 | 135.74242
8145 |17 | 50| 0.343 | 0.2 341 2430 | 135.72198 | 135.74242
915517 | 50|0.343 | 0.2 341 4430 | 135.73353 | 135.74242

Table 7.1: Data for variations in the incidence angle « .

a| d| H| Frq | Fr, |Grid| M+ N Dg, Dg,;
1145| 3100 |0.816 | 0.141 | 341 2430 4.40313 4.40722
2145 9100|0471 0.141 | 341 2430 39.60792 39.60989
314517100 | 0.343 | 0.141 | 341 2430 | 141.00881 | 141.01807
4145|140 | 100 | 0.224 | 0.141 | 341 2430 | 773.19031 | 773.33333
5145170100 [ 0.169 | 0.141 | 341 2430 | 2281.95097 | 2286.66667
6145 3| 50|0.816 0.2 341 24-30 4.30785 4.30851
7145 9| 50047102 341 2430 38.52137 38.52439
8145 |17 | 50 |0.343 0.2 341 2430 | 135.72198 | 135.74242
9145|121 | 501{0.309 | 0.2 341 2430 | 205.24635 | 205.29310

10 | 451 25| 50 |0.283 | 0.2 341 2430 | 287.39286 | 287.50000
11|55 31200 0.816 | 0.1 341 4+30 4.45403 4.45431
12155 9120010471 ]0.1 341 4430 40.07512 40.07592
13 (55|17 |20010.343 | 0.1 341 4430 | 142.91762 | 142.92077
14 | 55| 40 | 200 | 0.224 | 0.1 341 4+30 | 789.97393 | 790.00000
15|55 |70 | 200 | 0.169 | 0.1 341 4430 | 2412.16485 | 2412.30769

Table 7.2: Data for variations in the draft depth d .
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a| d| H| Frq | Fry, |Grid M+ N Dg, Dg,
14517 35(0.3430.239 | 341 24-30 | 128.39709 | 128.44444
2145117 | 500.343 0.2 341 2430 | 135.72198 | 135.74242
3145117100 |0.343 | 0.141 | 341 2430 | 141.00881 | 141.01807
414517200 |0.343 | 0.1 341 2430 | 142.91461 | 142.92077
5| 45|17 | 400 | 0.343 | 0.071 | 341 2430 | 143.74066 | 143.74543
6155|17| 35|0.343 | 0.239 | 341 4430 | 128.42652 | 128.44444
7155| 17| 50| 0.343 | 0.2 341 4430 | 135.73353 | 135.74242
815517100 |0.343 | 0.141 | 341 4430 | 141.01358 | 141.01807
9155|17{200|0.343 | 0.1 341 4430 | 142.91762 | 142.92077
10 | 55 | 17 | 400 | 0.343 | 0.071 | 341 4430 | 143.74291 | 143.74543
11 13517 | 35(0.343|0.239 | 341 2430 | 128.29181 | 128.44444
1235|117 | 50| 0.343 | 0.2 341 24-30 | 135.69028 | 135.74242
13 13517100 | 0.343 | 0.141 | 341 2430 | 140.99827 | 141.01807
14 | 35 | 17| 200 | 0.343 | 0.1 341 2430 | 142.90836 | 142.92077
153517400 | 0.343 | 0.071 | 341 2430 | 143.73604 | 143.74543
Table 7.3: Data for variations in the water depth H .

a| d| H| Frqg |Fr, |Grid| M+ N Dg, Dg,
1135|17|100 | 0.343 | 0.141 | 341 2+30 | 140.99827 | 141.01807
213117100 |0.343 | 0.141 | 341 2430 | 140.99057 | 141.01807
3127 |17 |100 | 0.343 | 0.141 | 341 2430 | 140.97856 | 141.01807
412217100 | 0.343 | 0.141 | 341 2430 | 140.94953 | 141.01807

Table 7.4: Data for pressure variation near a = 30° .
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Chapter 8 Summary and Conclusion

In water of arbitrary finite depth, a fully nonlinear theoretical model of 2-D steady
bow flow problem has been developed in this study for evaluating the incom-
pressible irrotational flow satisfying the free-surface conditions and two constraint
equations. The bow shape is assumed to consist of an inclined flat plate which
has its lower edge connect to a horizontal draft plate, semi-infinite in length to
downstream infinity. The bottom of the channel is assumed to be a horizontal
plate. By applying the method of complex function, a complex velocity w is used
to satisfy all the boundary conditions imposed on the flow. We apply a set of suc-
cessive conformal transformation in the complex domain to map the flow domain
into the interior of a unit semi-circle with its diameter corresponding to the solid
boundaries and the semi-circle to the free surface. To choose the best form for the
complex velocity w to incorporate into the full solutions, we analysis the local flows
in a neighborhood of the stagnation point, the bow-draft corner and the upstream
infinity, separately.

Our local flow analysis in the stagnation region shows that the wedge angle
B between the free surface and the front bow plate must be equal to 120° for the
incidence angle 0° < a < 60° . The pressure on the bow plate is positive for
30° < a < 60° , vanishes over the entire plate at a = 30° and becomes negative for
a < 30° . This implies that an appropriate suction on the bow plate is needed to
prevent the negative pressure on the bow plate from happening. If no suction is

provided on the bow plate, a local solution can only be existed for 30° < a < 60°;
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otherwise, other types of flow might be possible. In addition, the higher order

singularities of these local solutions in a neighborhood of the stagnation point
and the upstream infinity are founded to have the branch-point singularities of
irrational orders. We incorporate these singular structures into the full solution.

We represent the complex velocity w of the bow flow as a product of a known
and an unknown velocities to satisfy the boundary conditions on the solid bound-
aries and on the free surface, respectively. The unknown velocity with its singular
parts explicitly single out is represented by a series expansion. A set of non-linear
equations in terms of the coefficients of the series is obtained by the method of
minimization and solved by Newton’s method.

By proceeding to compute the full solution of our model equations, we find
that the incorporation of the singularities of irrational orders at the stagnation
region and the upstream infinity into the full solution help greatly to improve the
numerical convergence of the solution. Hence, only 30 coefficients of the series are
needed for our calculation to reach an accuracy of 4 significant figures. In contrast,
if the singularities of irrational orders are not included in our model, few hundreds
or even thousands coefficients of the series are required for the convergence of our
solution.

Comparing the two values of the drag obtained numerically and theoretically
can check the accuracy of the solution. The values of the drags agree with each
other to 4 significant figures.

Having established the fast-convergent and accurate numerical method, we
proceed to investigate how the shape of free surface will vary with different values

of the three parameters: the incidence angle o , the bow draft depth d and the
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upstream water depth H .

First, we examine the effect due to variations in the incidence angle o while
keeping the draft length d and water depth H fixed. The free surface profile falls
off smoothly and monotonically to zero at the upstream infinity can be founded
for 35° < a < 60° . On contrast, the free surface profile becomes wavy surface,
a new type of solutions for a < 35° . This bifurcation of solutions is due to the
presence of a negative pressure in a neighborhood of the stagnation point on the
bow plate around o = 30° .

In addition, our results of monotonic and smooth solutions show that the free
surface curve corresponding to the larger value of the angle of incidence « falls
off to zero at a lower rate. This implies that the fluid at the stagnation region is
pushed harder by the bow plate as « increases, but the flow must adjust itself for
the drag D on the bow remaining unchanged.

Second, we examine the effect on the free surface profile due to variations in
the draft depth d while keeping o« and H fixed. If the solutions are monotonic
and smooth for Fry > 0.5, the effects due to decreasing draft depth d are the
following: the free surface falls off faster to zero, the magnitude of the drag on
the bow becomes smaller, and the important of the negative pressure region at
the bow-draft corner grows. The free surface profile becomes wavy surface for
Fry > 0.5, which may be due to the effect of the negative pressure region at the
bow-draft corner getting very close to the free surface.

Third, we study the effect on the free surface profile due to variations in the
water depth H while keeping d and « fixed. We find that the monotonic and

smooth free surface profile for Fr, < 04 . The effects due to the increasing
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water depth are that the free surface falls off slower to zero, and the drag on the
bow becomes larger. As the water depth H goes to infinity, we find no limiting
free surface profile. This could be a primary reason for explaining the difficulties
encountered in determining solution for the water of infinity depth.

Branch-point singularities of irrational orders exist in certain neighborhoods
for other problems. For example, such singularities exist in the neighborhoods of
the upstream and downstream infinities, given solitary water waves in water of
arbitrary finite depth, including the highest solitary wave. In addition, such a
branch-point singularity exists in a neighborhood of the stagnation point for the
highest water waves, regardless of the water depth or the periodicity of the waves.

In our studies, we have found monotonic, smooth solutions for certain ranges
of the parameters: « , H , and d . Further research outside these ranges is needed
to find other forms of solutions, such as vortex flow, jet flow and unsteady flow. It
has been reported other flow configurations may be feasible, such as a spray sheet
forming at the bow plate and another kind with a forward recirculating vortex
cell occurring at the free surface adjacent to the bow plate. The possibility of
jet sheet formation is more likely at the high supercritical regime, a case which
is not consider here. The recirculating vortex cell formation has been found to
occur depending on the geometry configuration of the bow plate and its angle
of inclination, as discussed by Dias & Vanden-Broeck (1993) and Miyata et al.

(1984) . The result of our studies may be useful in bow shape design.



89

Bibliography

[1] Cole, S. L. & Strayer T. D. 1991 Free surface flow past a cylinder. In Mathe-

matical approaches in Hydrodynamics. (ed. T. Miloh), pp. 193-206. SIAM

[2] Dagan, G. & Tulin, M. P. 1972 Two-dimensional free-surface gravity flow past

blunt godies. J. Fluid Mech. 51, 529-543.

[3] Dias, F. & Vanden-Broeck, J. M. 1993 Nonlinear bow flows with spray. J. Fluid
Mech. 255, 91-102.

(4] Farrow, D. E. & Tuck, E. O 1995 Further studies of stern wavemaking. J.
Austral. Math. Soc. Ser B 36, 424-437.

[5] Hocking, L. M. 1987 The damping of capillary-gravity waves at a rigid bound-
ary. J. Fluid Mech. 179, 253-266.

[6] Honji, H. 1976 Observation of a vortex in front of a half-submerged circular

cylinder. J. Phys. Soc. Japan. , 1425-1478.

[7] Madurasinghe, M. A. & Tuck, E. O 1986 Ship bows with continuous and splash-

less flow attachment. J. Austral. Math. Soc. Ser B 27, 442-452.

(8] Miyata, M. , Kajitani, H. , Matsukawa, C. , Suzuki, N. , Kanai, M. & Kuzumi,
S. 1984 Numerical and Experimental Analysis of Nonlinear Bow and Stern
Waves of A Two-dimensional Body. J. of the Society of Naval Architects of

Japan 155, 11-17.



90
[9] Olfe, D. B. & Rottman, J. W. 1980 Some new highest-wave solutions for deep-

water waves of permanent form. J. Fluid Mech. 100, 801-810.
[10] Teneda, S. 1974 Necklace Vortices. J. Phys. Soc. Japan. 36(1), 298-303.

[11] Tuck, E. O & Vanden-Broeck, J.-M. 1985 Splashless bow flows in two dimen-
sions?. In Proc. 15nd Sym. Navl Hydrodynamics, Hamburg, 1984, pp. 293-301.

National Academy Press, Washington,DC.

[12] Vanden-Broeck, J.-M. 1986 Steep gravity waves: Havelock’s method revisited.
Phys. Fluids. 29, 3084-3085.

[13] Vanden-Broeck, J.-M. 1989 Bow flows in water of finite depth. Phys. Fluids.
A 1, 1328-1330.

[14] Vanden-Broeck, J.-M. & Miloh, T. 1995 Computation of steep gravity waves
by a refinement of Davis-Tulin’s approximation. SIMA J. Appl. Math. 55(4),

892-903.

[15] Vanden-Broeck, J.-M. , Schwartz, L. W. & Tuck, E. O. 1978 Divergent low-
Froude-number series expansion in nonlinear free-surface flow problems. Proc.

R. Soc. Lond. A 361, 207-224.

[16] Vanden-Broeck, J.-M. & Tuck, E. O. 1977 Computation of near-bow or stern
flows, using series expansion in the Froude number. In Proc. 2nd Intl. Conf.
Numerical Ships Hydrodynamics, Berkeley, CA, pp. 371-381. University Exten-

sion Publications.

[17] Wagner, H. 1932 ZAMM vol. 12, 193.



91
[18] Wu, D.-M. & Wu, T. Y. 1983 Three-dimensional nonlinear long waves due

to moving surface pressure. Proc. 14th Sym. Naval Hydrodynamics, National

Academic Press, Washington, D. C. , pp. 103-125.

[19] Wu, T. Y. T. 1967 Bow flows A singular perturbation theory for nonlinear

free surface flow problems. Intl. Shipbuild. Prog. vol. 14, 88-97.

[20] Yeung, R. W. 1991 Nonlinear bow waves-invicid and viscous solutions. In

Mathematical approaches in Hydrodynamics. (ed. T. Miloh), pp. 349-369. SIAM



