THE STABILITY OF UNIFORM PLASMAS

Thesis by

Peter David Noerdlinger

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

1960



The author is indebted to Professor Leverett Davis, Jr.
for constant advice and encouragement. He wishes to thank the
National Science Foundation and ﬁhe Hughes Aircraft Company
for fellowships which made this research possible, and the
United States Steel Corporation for a fellowship from which
the author received support in his studies of plasma physics
leading up to the thesis research. He wishes to thank
Professor Roy W. Gould and Drs. Burton D. Fried and Erich S.
Weibel for valuable discussions. Thanks are due also to
Mr. Allan J. Stone and Mr. Claude E. Walker of the Data Analysis
Section of the Hughes Aircraft Company for performing a numeri-

cal calculation used in this thesis.



ABSTRACT

This thesis desals with the instabilitlies which can exist in
infinite, uniform, collisionless plasmas having non-Maxwellian dis-
tributions of particle velocities. The instabilities are treated in
terms of exponentially growing linearized plane waves in the plasma.
The existence and properties of these waves can be determined from
certain "dispersion relations", or equations relating the frequency
of the waves to their wavelength. These dispersion relations are
exhibited for all classes of linearized plane waves, and a formal
solution of the stability problem is given. A new analogy to elec-
trostatic potential theory, and a classical method, the Nyquist dia-
gram, are used separately and in combination to reduce the formal
solution to practicable techniques in several important restricted
cases. For example, solufions are obtained to the problems of
stability with respect to longitudinal waves in the absence of a
D.Q. magnetic field, and of stability with respect to longitudinal

and to transverse waves propagating along a D.C. magnetic field.

In the course of the analysis it is found that a deficit of
particles at a certain velocity tends to produce growing longitudinal
oscillations of that phase velocity, while an excess tends to pro-
duce growing transverse waves. An arbitrarily small deficit or
excess can still produce instabllity if it involves abrupt enough

variations of the particle densities in velocity space.

Two examples are presented which are important in astrophysics
for understanding the formation of shock fronts, and one example is
given which may be of value in explaining D.C. plasma resistivity at
high temperatures, when binary collisions are negligible. Certain
instabilities in counterstreaming plasmas that have been used in the
literature to determine hydromagnetic shock thicknesses, and to
explain the presence of abnormelly high energy electrons in the outer
Van Allen belt or belts, are found to be absent unless the initial

temperatures of the plasmas are extremely lowv.
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I. INTRODUCTION

Collective Motion in Plasmas

Just as it is useful to distinguish collective motion, such as
sound waves, from random particle motion and fluctuations in an
ordinary gas, it is desirable to characterize collective motions in a
plasma, or fully ionized gas. Numerous perceptive analyses with
varying degrees of rigor (1,2,3,4) have prowvided a sound theoretical
basis for discussing such collective motions; on the whole (except
possibly for unusually cold, dense plasmas) they support the validity
of an equation first proposed by Vlasov (1) for determining the
behavior of a plasma. Vlasov's equation is the Boltzmann equation (5)
with the collision term proper omitted, but with interparticle electro-
magnetic forces taken into account in a smoothed-out way in the ac-
celeration density term F . (Of/dv) . In the Lorentz acceleration
F = (g/m)(E + c';z>(§), E and B are determined from the plasma
charge density p and current i by Maxwell's equations. Various
authors regard this technique as the neglect of collisions (1), "eclose
collisions" (6), or certain "correlations" (4). Certainly binary col-
lisions involving appreciable momentum transfer are rare at high tem-
peratures (7), so that we should expect the description of interpar-
ticle forces in terms of a collective, macroscopic electromagnetic
field to provide a good representation of the facts.

This thesis will consider only plasmas which fill all of space
and*are nearly uniform, having beén slightly perturbed from a per-

fectly uniform state. Clearly, many of the results hold in bounded
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or ncn-uniform plasmas provided they possess large, nearly uniform
regions. The undisturbed state will consist of an equal number no
per unit volume of electrons and protons. The generalization to
more species of particle is simple but will be omitted here.

Many kinds of organized motion have been predicted and
observed in such a plasma. These can be divided broadly into three
groups: the electromagnetic, hydromagnetic and electrostatic, or
plasma oscillations. The first kind are very much like ordinary
electromagnetic waves in a dielectric, with unusual resonance
phenomena, at therparticle cyclotron frequencies (8). The second
kind, hydromagnetic waves, may be divided into two subgroups:
longitudinal ones, which are essentially sound waves with magnetic
pressure added to the fluid pressure (8), and transverse, or Alfvén
waves (8,9), which consist of disturbances propagating along mag-
netic lines of force much as waves travel along stretched strings.
nFinally, the electrostatic oscillations are longitudinal waves
;where the electrostatic forces act as restoring forces upon electrons
;and ions that have suffered displacements (6). As they depend on
. charge separation, they have no analogue in un-ionized media. A

gqualitative discussion of them will be given presently.

Instabilities in Uniform Plasmas

While various boundary instabilities in plasmas are of great
importance in confinement schemes (10), this thesis is limited to
the discussion of volume instabilities due to non-Maxwellian particle
velocity distfibutions, and to the case of infinite, nearly uniform

plasmas. It will be shown in Part IT that all such instabilities



-3-

can be described in terms of exponentially growing linearized in-
finite plane waves in the plasma. For example, when a uniform beam
of electrons of well-defined velocity traverses a plasma, an
instability with respect to longitudinal oscillations exists.
Langmuir and Tonks (11) first used such oscillations to explain
Langmuir's anomalously large measurement of electron scattering in
plasmas (12). Careful attempts to observe the oscillations (13) and
further theoretical studies (6,14) verified their presence under
suitable boundary conditions. Such oscillations can also be used
for amplification in traveling-wave tubes (15) and will be referred
to repeatedly here in discussing additional implications of plasma
instabilities. Therefore, a brief gualitative discussion of them is
in order.

Consider a uniform, perfectly cold electron gas (assuming the
protons only provide a smoothed-out neutralizing background) filling
all of space. Suppose that a layer of electrons, say between x =0
;nd X =X, is displaced a small amount Ax in the plus x direc-
tion. If the electrons have charge -e, mass m, and number density
no/cm3 this produces two charged layers with charge density
inbe Ax/cm2 at x=0 and X=X - Then a restoring fleld
E = +4ﬂenoAx is established, which provides a force (hﬂenOAx)
(noev xo)/ em® on the mass nomxo/ om” between x=0 and X=X_-
Thus simple harmonic oscillation:;is established at angular frequency
o= (Lnr&)eg/nﬂl/g, called the plasma frequency.

Now suppose the plasma consists of two interpenetrating cold
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streams of electrons with mean velocities XU . A small periodic
perturbation density in one stream will produce electrostatic forces
that set both streams to oscillating at the plasma frequency. Charge
density variations in the second stream will be carried, oscillating,
back along the first. These can in turn modulate the first stream.
Thus a kind of feedback is established, and the system becomes
unstable 1f the scale of the original disturbance is so adjusted
that reinforcement occurs between the fed-back and original perturba-
tions. Instabllities of this type are referred to as the double
-stream instability. Their use has been considered for producing
electromagnetic waves, since inhomogeneities can couple electrostatic
to electromagnetic waves, while it 1s thought that instability with
respect to transverse oscillations does not occur when a beam
traverses a plasma (16).

The double stream instability may also be gquite important in
determining the thickness of some kinds of hydromagnetic shocks.
There has been considerable disagreement in the literature (17,18,19)
as to the possible scale of shocks in plasmas, arguments being
advanced for the collision mean free path, for the electron and
proton Larmor radii, and for the distance in which a spatially grow-
ing plasma oscillation increases by some factor, such as e . The
resolution of these divergent opinions appears to depend on a better
understanding of processes that increase entropy, i.e., convert
ordered to disordered motion in a plasma. At the present time most
experiments on shocks in élasmas involve a shock with plasma on the

trailing side but un-ionized gas ahead. The case of greatest interest
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in astrophysics, however, is a shock with ionized gas on both sides,
and 1t is here that the disagreement on shock scale and structure is
the greatest. The scale is particularly important in cosmic ray
theory, as a shock of small thickness may serve to scatter cosmic
ray particles into orbits where the Fermi mechanism can continue ‘o
increase their energy (20).

Davis, Lﬁst, and Schluter consider nonlinear hydromagnetic
waves as a possible component of a shock; in particular they find
nonlinear solitary waves of unchanging form propagating in a cold
plasma in a magnetic field (21). Since these waves contain regions
where perfectly cold masses of protons and electrons move through
each other, the double stream instability may exist. Such an insta-
bility could amplify small fluctuations initially present in the
plasma so as to produce a wake of random plasma oscillations behind
the wave. This would be a structure more like that of a classical
shock. The waves of Davis et al are all symmetric about their
maxima and hence cannot be regarded as shock waves. The research
presented in this thesis was begun in an attempt to treat such ef-
fects, but this problem has still not been solved.

Another approach to shock structure is adopted by Parker (19)
and by Kahn (22). Parker considers the shock as the region of inter-
penetration of two colliding bodies of plasma which interpenetrate
for some time before instabilities become important. Then the dis-
thnce over which a preferentially growing wave increases by some
factor such as e or 2 in the region common to both plasmas gives

some measure of the size to which this region can grow before plasma
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oscillations convert very much of the kinetic energy of motion into
oscillations. When this finally happens, there is a sort of dis-
ordered region which can be called the shock front. The wavelength
of oscillations that grow preferentially in time could be used as a
measure of shock thickness just as well as the distance required for
spatially growing ones to increase significantly. This idea will be
discussed in detall in later sections.

Parker élso shows (23) under certaln assumptions, to be
examined later, that the growing plasma oscillations produced when
plasmas collide can transfer some of the ion kinetic energy into
electron oscillatory energy, suggesting that the high energy elec-
trons in the earth's outer magnetic field may have been produced by
impinging plasma from the sun.

By providing a drag force; i.e., a means for converting the
kinetic energy of relative motion of ions and electrons into random
oscillatory energy, plasma oscillations are thought to contribute to
the D.C. resistivity of a fully ionized gas. Buneman (24) has
carried such a model beyond the linearized theory of instability,
and has found that even an initially sinusoidal growing wave breaks
later, forming a sort of disordered motion resembling thermal motion.

Methods proposed for obtaining thermonuclear power from fusion
in plasmas (10) usually involve radically non-equilibrium states. For
example, large currents often are made to flow in the plasma (stel-
larator; pinch) or a beam of particles is injected into a plasma
(DCX machine) (10). While boundary instabilities aré very important

in éuch proposed configurations, volume instabilities due to the
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unusual distributions of particle velocities cannot be ignored.

New Results Concerning Instabilities

Most of the theoretical work just described was based on
rather restrictive assumptions about the plasma. Ions were often
assumed to be at rest (fixed) or to constitute simply a smeared
out charge density maintaining, on the average, charge neutrality.
The electrons were often taken to cénsist of several interpenetrat-
ing streams, each at zero temperature. Sometimes the entire plasma
was assumed to be nearly in a state of thermal equilibrium. At high
temperatures, when collisions are infrequent, the particles in a
plasma might have a variety of velocity distributions differiné
markedly from the Maxwellian one, and in general interpenetrating
streams of particles will be hot, not cold. We shall consider the
eguations for linearized waves of all types in an infinite spatially
uniform hydrogen plasma having an almost arbitrary velocity distri-
b?tion, and shall obtain a formal solution of the stability problem
for such a plasma. This solution will be put in a form amenable to
agtual use in a variety of important cases. For example, the deter-
mination of whether a plasma can support growing longitudinal elec-
treostatic oscillations when there is no D.C. magnetic field will be
reduced to the evaluation of a few definite integrals. Furthermore,
an analogy will be given to a simple electrostatics problem which
will extend greatly the use of physical intultion in ascertaining
'what types of plasma are unstable, which groups of particles (i.e.,

particles of which species or velocities) participate the most in a

growing oscillation, and other properties of the waves. While
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several examples of physical interest will be considered in detail,
this paper is largely methodological. A detailed study of the
stability of two hot interpenetrating neutral plasma streams, using
a different method, has recently been given by Kellogg and Liemchn
(25), who consider only longitudinal oscillations.

The method of stability analysis to be presented here will
provide useful information on generalizations of Parker's (19,23)
and Kahn's (22) shock model. Some strange instabilities will be
found which can exist in plasmas arbitrarily close to thermal
equilibrium (i.e., having initial velocity distributions differing
in the mean or mean square sense arbitrarily little from the Maxwel-
lian one.) We shall find that sometimes the removal of all particles
within some range of velocities from a plasma renders it capable of
supporting growing oscillations whose phase velocity lies in this
range, a result which suggests modification of the idea (6) that the
trapping gf particles in the potential trough of a wave is necessary

for the existence of growing electrostatic oscillations.
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IT. PLANE WAVES IN A UNIFORM PLASMA

Fundamental Equations

For a plasma which is sufficiently hot and tenuous, the collision
term in the Boltzmann equation may be neglected to a good approxima-
tion, giving the Vlasov equations for the electron and ion coordinate
velocity distributions, f£(r,v,t) and F(r,v,t) , r and v being

position and velocity vectors respectively:

1

(3£/at) + v - (32/ox) - (e/m) (E+ c ™" vxB) * (3£/aw) =0 (ia)
and
(3F/at) + v - (F/9r) + (¢/) (B + ¢ vxB) + @FhyY) = 0 (10)

where e = charge of the proton, M = mass of the proton, and m =
mass of the electron. E and B are due both to external sources
and to the particles themselves. We shall assume the externally
imposed magnetic field go is uniform and unchanging in time, and
the é&ternally imposed electric field is zero. A steady, uniform
elect;ic field with a component along Eo or with a component
larg§¥ than BO perpendicular to §O would produce unbounded ac-
celefation of the particles. This is quite a different problem as
the plasma is not initially in an equilibrium state; a special case
of the problem (which entails great mathematical difficulty) has
been attacked, but no firm results obtained (26). A steady, uniform
electric field orthogonal to §O and smaller than BO may be

eliminated by a coordinate transformastion.



=10

Maxwell's equations determine the fields E and El produced

by the plasma, viz.:

divE = khnp cVXE = - OB, /0t (2a,b)

il

div B 0 cVxB, = hnj+ g/t (2¢,d)

1

where
p = ef(F- £)dv and  J = ef v (F-f)av (3)

Equations 1 through 3 form a system of nonlinear partial differential
and integral equations. While some non-trivial solutions of these are
known which are not uniform in space (21,27), stability theory is most
easily developed for perturbations about the uniform state f(r,v,t) =
gofo(z) » Flr,v,t) = noFo(X) » n_ being the mean number of either
kind of particle per unit volume. Assume that the plasma is very

close to such a state, in the sense that

b
%

f(r,v,8) = nf (v) + £ (r,7,%)
F(E;E)t) = nOFo(-Y-) + Fl(E:X)t)
(L)
B(r,t) = B_ + B (z,t)
Jxr,t) = g+ 3 (x,t)

Wwhere dev=ffdv=l
0 - o -

and powers .greater than the first of the first order quantities fl,

Fl, Ei, E, p, and can be neglected. This procedure is justified

d

as a means for investigating stability since if the plasma is unstable
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there is by definition some kind of arbitrarily small perturbation of
the plasma which will produce large effects at later times. It is
conceivable that a plasma might be metastable, however, so that some
small perturbations would produce large effects at later times, but
the size of perturbation required would have a lower bound. Our
analysis would not uncover such a situation.

Naturally, fo, Fo and Eo must satisfy equations 1 through 3.
If B, # 0 , this implies that the compoment of X:x(afo/az) along
gc)must vanish, and similarly for FO . If Eo is to be uniform in
space and E zero in the unperturbed state, equations 24 and 3 show
that go s the steady-state current, must be zero. There are several
ways to relax this condition. One can consider the limit ¢ - o0, as
many authors have done (2&,26,31). An alternative is to regard a por-
tion of the infinite plasma as a model for a finite plasma, and to
assume elther that the system is sufficiently swmall in directions per-
s pendicular to QO that the variation in magnetic field over the plasms
due to the steady state current is small, or that charge accumulates
* on some distant plane surfaces so as to produce a OE/dt satisfying
equation 2d, although at the moment when we look at the plasma, there
is no externally imposed electric field.

Consider an infinite plane wave in the plasma:

A
£ (x,v,t) = £,(v) exp i(k- r - 0t)
N
! F (r,v,t) = F(v) exp i(k-r - wt)

| E(r,t) = = ﬁ exp‘i(E ‘r - ot) (5)
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~

B (r,t) = By exp i(k-r - ot)
N~
dy(z%) = ) exp i(k-r - wt)
o(z,t) = 0 e i(k-z - wt) (5)

Assuming equations 5 hold (it will later be shown that such waves
give a complete stability analysis), the substitutions (9/dr)- ik
and (9/0t)»-iw may be used to simplify the linearized Boltzmann
and Maxwell equations obtained from equations 2 through 4 neglecting

higher order terms. The resulting forms are

(k.3 - ) £ -(efme)(yxB) + (3F,/3v) =

A

(e/m)(E + ¢ v xB,) - n_(3F_/3v) (6a)

(kv - @) B +(efiic) (wxB )« (3F /oy) =

- (e/M)(E + ¢t wxB,) - n_(3F_/3v) (6b)
ik+E = hnp ckxE = B ~ (7a,b)
A A A A
kB, =0 and ick xB, = hnj - iaB (7c,d)
A A ~ A~ N
where p=e (Fl- fl)@z and 3 = ed[-v(Fl— fl)dv (8)

Counting a vector equation as three equations and a vector as three

unknowns, equations 6 through 8 are fourteen equations in the twelve

A A

unknowns f B

A ~ ~ ~
12 Fys Pys Jqs E, Bnd B . (0 and k are constants and
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v is the independent variable.) But the divergence of equation 7b
is equation 7c, and the equation of continuity, a consequence of
equation 8, can be used to transform the divergence of equation 74
into equation 7a. Thus there are really only twelve independent
equations present.

Since equations 6 through 8 coﬁstitute a homogeneous set, some
relation D(k,w) = O (analogous to the secular equation for linear
‘algebraic equations) will have to be satisfied in order for nontrivial
solutions to exist. This relation is called the "dispersion relation"
for waves in the plasma. The precise form of D(k,w) will be deter-
mined presently, but first we should understand why waves of the form

of equation 5 constitute a description of any possible instability.

Relationship between the Wave and Initial Value Problems

Certainly if waves of the form of equation 5 can exist in the
plasma with Im(w) > 0 , the plasma is unstable. Tn order to verify
t%e converse, it i1s necessary elther to show that waves of the form
of equation 5 comprise a "complete set" of solutions to equations 6
through 8, as Case (28) has done in the limit ¢ - oo, or to investi-
géte the initial value problem. Instead of extending Case's results
to transverse waves, we shall observe bfiefly how the dispersion rela-
tion for plane waves enters into the solution of the linearized initial
value problem for equations 1 through 4 .

| Bernstein has solved this initial value problem by Laplace trans-
forms (29). He has shown that f(z,z,t) and F(r,v,t) can be found

from £ (r,v,0) and F (r,v,0) once the electric field E(zr,v,t) is
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known,  and that

: iA+co B(k,0)
S e, W _s
E(r,v,t) =_[—el—-£ dk o == IO (9)
- - D(k,w)
1A-co -

where A 1s real and exceeds the imaginary part of any pole of the
integrand, D is the function set equal to zero in the dispersion
relation for’plane waves, and i depends on the initial perturbation,
being analytic for smooth initial perturbations in any case having no
poles in the upper half plane. (Equation 9 is adapted from Bernsteinfs

3V for d3k and his

equation 4, corrected for a misprint of d
equations 25 and 26, with s = -iw and |R| = D.) The contour for
the @ dintegral can be taken as the real axis if D has no zeros

in the upper half plane, but "hangs up" on the zeros of D otherwise
as shown in Fig. 1 (dashed curve). With this contour E  takes the
form

ik e N (k) -iw (k)t xR _
E(_Ii:_";;t) Z,/-elEE dl_é[ ﬂ;l §£<E) o ®AE N f E!(E,w)e—lwtde

(10)

wheré‘ mz(g) are the N zeros of D(k,») in the upper half o plane
(for fixed k), and E, (k) the residues of g(g,w)/(D(_l_z,m) there,
the sum vanishing if N = 0 . The second term of equation 10 is
bounded for t > 0, by Riemann's lemma (30), but the first evidently
becomes igfinite as t - +o0 unless it vanishes, i.e., unless N = O

for all k . Thus the plasma is stable if and only if there are no

roots ® ,Z(E) of D(k,w) = O in the upper half plane for any Xk .
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If the plasma is stable, the second term of equation 10 in the limit
c » ® gives a result in the same form as Van Kampen's (31); Landau's
form (32) is obtained by deforming the contour as shown Dby the

dotted curve in Fig. 1. In order to obtain Landau's representation,
it is necessary to define D (and also i ) below the real o axis
by analytic continuation from the upper half plane. This procedure
yields a different function for D iﬁ the lower half plane than that
obtained by a simple substitution analysis, using equations 5. The
forms obtained for D in this thesis will be the proper ones for
equation 9 above the real w axis and thus will be adequate for
stability analysis. On the basis of Landasu's and Bernstein's form
of the solution of the initial value problem, the roots of the dis-
persion relations obtained here in the lower half w plane do not
correspond to damped waves excited by a sensible initial perturbation
in the plasma. With some effort it can alsc be shown that Case's

solutions of the initial value problem (28) support this view.

The Form of the Dispersion Relation

Having established that the stability problem can be treated in
terms of growing waves satisfying the dispersion relation (see also
Sturrock (33) for an excellent discussion of the philosophy of this
approach), we shall now find the exact form of D(k,w). The carets
in equations 5 through 8 will be dropped where no confusion results.
Frof equations Tb and 7d we have

)

¢” k x (k XE) =—4ﬁiwj-<&%
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or
EH = (—lmi,jH)/a) (11a)
and
_13_:__]_= (lmia)i'l)/ (kgcg— wg) (11b)
where the subscripts "||" and "|" indicate components along and
orthogonal to k . B. can be eliminated from equation 6 by using

1

equation 7b, and equation lla can be simplified by using the equation

of charge continuity to give

E!l = —Mﬂj_p/ k (llc)

which can be obtained also from equation 7a.

In solving equations 6 for the perturbed distributions, E.
will be taken as a given gquantity. Then equations 8 and 11 will be
used to obtain the dispersion relation, which will appear as the
condition that the determinant of coefficients in three linear homo-
geneous algebraic equations for the components of E“ vanish.

Because the solution of equations 6 is tedilous unless BO= Bl=()
(longitudinal waves in a plasma not subjected to a D.C. magnetic field)
and because stabllity theory is completely soluble in this simple case,
this case will be done first. In discussing more general kinds of
oscillations, the necessary conditions for the existence of purely
longitudinal plasma oscillations will be examined in detail; here a
formal justification can be given by taking the limit of equations 6
and 7 as ¢ - 0.

For longitudinal electrostatic oscillations, equations 6, 8

and llc read (omitting carets):



ne . of
i(k-v - m)fl+ (—Ef)(ﬁﬂﬁfi>ﬂ7§§ L%é jr(pl- fl)@g = 0 (12a)
and 3
n e . 13 k
(kv - 0)F)- (20 (FEEE)( = —;;—)f(F -£,)a

,-f)av = 0 (12v)

_ _ o2 2
Let I, = J[ Fldv, I —_]‘flﬁz ;W = Mﬁzhje /m , and

©2 = hxn é?M.
i o

Dividing equations 12 by i(k .v - w) [this divi-
sion is allowable since Im(w)

is assumed to be positive and k 1is
reall and integrating over v , one obtains

o k
— @ ’-—:—d. O
kev-w ov k -
and
wi 1 EFQ k
I,- (I,-I) [ = . = dv= 0
e k E‘X-CD av k -
Defining
2
o w? 1 BFO ok 5
i k 1_;_.:;_-(1) B_Y_ k —_
and o 3
J = fg 1 fo
e k

we find for Ii

and Ie the linear algebraic equations

I +J (I, -I)
e e 1 e

]
e}

and

I; - Ji(Ii - Ie)

I
O

For these to have a nontrivial solution, the determinant l-—Je- Ji
must vanish, i.e.,
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Pe afo m aFo 1
E[E'("BEW W EToe® Y =

Using the previous notation of '| and i_ to indicate components
along and orthogonal to k allows integration over two components of

v in equation 13:

k- [3r,(v)/ 3v] 7 3 (v
fk ;X-w v = fkvnk_@(f[ fBi)LIdV—L) de

-0 -

af (v )/dv
_ || 4
l‘f )

where fo(vll) E‘jrfo(z)dzj_. Similarly, Fo(vll) will be defined by
F (v]!) = Fo(z)dvi_' In order to avoid excessive use of the sub-
script "||", the symbol v with no subscript will henceforth stand
vfor MK and the symbols |v| and v2 will be used for the magnitude
of the vector velocity and its square, respectively. With the forego-

ing abbreviations, the dispersion relation, equation 13, reads

dv = 1 (1k)
vV - u

i o [afo(v)/dv] + (m/M) [dFO(V)/dV]
=3
-0

vwhere u = w/k is the phase velocity of the wave. The total deriva-
tive sign will help as a reminder that fo(v) and Fo(v) stand for
functions of only one velocity component, Vll, obtained by integrating

the three-dimensional distributions fo(z) and. FD(X) over XJ_ .
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Equation 1h may be written most conveniently in the standard
dispersion relation form D(E,w) = 0 by transposing all terms to
the left hand side and multiplying through by ke/wi . It is refer-
red to as the Vlasov dispersion relation after its discoverer in the
limit M - oo (1) . Since the integral in equation 14 is invariant
under complex conjugation of w , growing and damped roots occur in
pairs. As emphasized before, the roots in the lower half w plane
do not represent waves which can be excited by most physically rea-
sonable perturbations; they are definitely not the damped waves of
Landau (32). In constructing Landau's analytic continuation of
D(k,w) dnto the lower half plane, the discontinuity of magnitude
:t[(dfo/dv) + (m/M)(dFO /dv)] in the imaginary part of the integral in
equation 14 at the real axis must be eliminated by redefining D for
points below the real axis. Roots of the dispersion relation in the
lower half plane are irrelevant to stability, however, and will not
be discussed further. The Vlasov dispersion relation is analyzed for
ﬁ%stable roots in Part III.

Klimontovich (34) has derived the relativistic Vlasov equations
fgr the electron and ion coordinate-momentum distributions f£(r,p,t)
éﬁd F(r,p,t), vhere, for example, £(r,p,t)dr dp is the number of
particles in the volume of phase space dr dp at r,p . As usual,

P=mvy =mv(l - XE/CE)_1/2 . Klimontovich found

il
O

(3£/3t) + v + (3£/3r) - e(E+c™" vxB) - (3¢/3p)

~and

I
O

(38/3t) + v + (3/30) + e(®+ " vxB) - (3F/3p)
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A derivation like the foregoing one for longitudinal electrostatic

waves gives the dispersion relation

¥ dv = 1 (15)

fk ol w'(r,3p) ol w'(or f2p)

E-v-o

In equation 15 BfO/BE and BFO/aE must be expressed as functions
of v wusing p =mvy; since Yy involves p 1t may not be brought
through the differentiation sign. The domain of integration may be
taken as all of v space, but the integrand is zero for |X| 2 c .

The normalization of, say, f_ = is Jffo(g)ig =_jﬂm3Y5fO(my;Y>@X = 1.

Thus f_ contains three inverse powers of m and (Bfo/ag) contains
four. The linear combination of (Of /Op) and (anBE) in the
numerator of equation 15 is then really the same sort of combination
as in equation 13. The integ;ations over XJ_can be formally done in
equation 15, just as was done in equation 13 to obtain equation 1k4.
This operation would necessarily introduce more notation, e.g., the

factor T5

would have to be written as a function of vll and XJ_ .
Since it is clear that these steps may be performed with no difficulty,
and since no remarkable differences seem to exist in the relativistic
calculations, the matter will be dropped here. Any analysis of the

Vliasov dispersion relation may be carried over to the relativistic

one.

While the Vlasov dispersion relation can be obtained from a one-
dimensional analysis (that is, for example, by assuming v 1is along
the x axis for all particlés, eand E and k are along the x axis),

its relativistic analogue cannot; the factor TS in equation 15 is the
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Jacoblan (Op/dv) in three dimensions and does not equal (dpx/dvx)
when vyz vz= o . The physical explanation is that particles with
relativistic velocities in the y direction, say, are more resistant
to changes of thelir x wvelocities than if they were at rest--their
"transverse masses" increase.

In dealing with arbitrary kinds of linearized waves (i.e.,
B, # 0), the calculation of D(k,») is much simpler if B = 0 than
otherwise. Furthermore, Bernstein has found (29) that as B, ~0,
a certain class of waves can propagate only in directions more and
more nearly perpendiéular to Eo' When BO = 0 this class of waves
cannot exiét physically in the plasma, but they would be found in
taking the limit of D(E,w) for a plasma as BO - 0 . This suggests
agaln considering the case Bo = 0 separately. Very little extra
labor is involved in carrying along Eo for a while; since some dup-
lication of equations can be avoided in this manner this will be done.
Assume without loss of generality Eo: g, BO ; Where e Ey and e

Z

aré the unit triad. Let the abbreviations
Q= eBO/m ) (afl/az) = CP)Q:r) 2 (afo/az) = (Pquoyro) )

(aFl/aX) = (PJQ;R) ) (aFO/aE) = (Po’QO’RO)
be used whenever they shorten the equations. Once equation 6a has

been solved for £, the substitutions -e - +e , (of /ov) »(BFO /ov),
m-M, and Q - -(m/M)Q will convert the result into a solution of

6b, i1.8., F Using equations 7b and 6a we find

1 -
(kv - o) £ alvp-va) =

(eno/m)[g +m'1y;x(5)<§)]‘. (Expo+ quo+ gzro) (18)
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In the case Bo = 0 the term in Q simply drops out of equation 16.
We can assume the coordinates chosen so that k = gzk when
Bo =0 , as then Eo does not define a preferred direction. It should
be remembered, however, that a rotation of coordinates has been made
to bring k into coincidence with the z axis. (There is no con-
venient way to avoid choosing a specific coordinate system in this
problem, on account of the distinction between the "parallel" and
"perpendicular" components of E in equations 11.) The solution of
equation 16 with BO =0 =0 and k= k_e_Z is

£, = -ienom’l(kvz- co)“l {[1-m']kvz][EXpO+ E‘qu] +

+ [a)—lk(vXEXJr VyEy)+ EZ] ro} (17)

To find p and J _l_ , f. as well as va and v_f. are integrated

1 1 y 1
first over vX and Vy and finally over vZ . Certain terms such as
a: : i -
f fépo devy drop out, and others, such as [ fqovydvxdvy can be inte
grated by parts to give terms involving [ fod.vxdvy . The dispersion,
re‘?’lation has a simpler appearance if one imagines such integrations
pérformed. In this spirit, define for any function \lr(y_) , the func-
tion < V¥ > = ff\lr(y_)dvxdvy , which is then a function of v only.

With this notation, the charge and "orthogonal current" j _L due to

the electrons alone are

o
. . 2 =1 -1
Plectron = & € BB f (kVZ— W) de X

“m

x[a) ]'K(<vxro> E_+ <vyro> Ey)+ E, <ro>]
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and
-1
0 -(1-0"kv ) <f > E +
o 1 1 Z o X
=ienm (kv - w) ~av
o 2 z
oo

J -(1-m“lkvz) <f > E_+
y electron o vy

+a>-lk(<v2r>E+<vvr>E)+<vr>Ev
X 0 X Xy o g X 0 z
+de<vvr:>E+<$r>jE)+<vr:>E
Xy o X Y o v vy O Z
The proton terms have the same form, with m - M, fO»-FO, and r.> RO,

leading again to a dispersion relation in which fo and FO and

thelr derivatives and mowments appear only in the linear combination

£+ (m/M)FO = f_ . Similerly, r_, defined as r _+ (m/M)RO, is

~/
(afo/az), ete. As the tildes serve only to remind us that the ion
terms are absorbed into the electron terms, they will be dropped when

no confusion results, and a tilde placed over the equation number.

Equations 11 now take the form

Qo

2, -2 -1, -1
, By 0K f (v-w) Tu ™ (<vr > Ea<vor > B )+<r > E dv, = 0
~00
(18a)
[o.0]
2, 2 2,-1 -2 -1 o
E_+ we( -u7) "k (VZ— u) [(VZ— u)<fo> Bt <vir > B+
=00
t <y e > Eu <vor > EZ] v, = 0 (18b)

and
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o
2, 2 2,=1 =2 -1
+ - - -
E we(c u ) k ‘jr (vZ u) [(VZ u)<:fo>>Ey+ vxvyro B+
-0
-F<V%?>E-+H<VI‘>E]®I = 0 (18e)
y o Ty yo Tzllz

where u = w/k .

Equation 18a reduces to the Vlasov dispersion relation, equation
1k, if <:foé>’ and <:vyf;>- are zero. This is evidently the necessary
condition for longitudinal electrostatic oscillations to be uncoupled
from all others when BO = 0 , as then also the Ez terms disappear
from equations 18b and 18c . Equations 18b and ¢ can be put in a

more convenient form by more manipulations, such as
0
=1 .
(v.-uw) T u<v.r >dv_ =
Z X 0 Z
-0
o0)
-1
vV - u - + v r dv =
f(z )T lw - v )+ v I<v r >adv,

(v_- u)'l v <v.r >dv
z X o z
and

0
—l fad
</— (vZ— u) (VZ— u)‘<fo> dv, = 1+ m/M
“oo

In this manner we can obtain for equations 18 the form

"

e ¢]
kga)-gE -f (v - u)‘l [u'l(<‘v r >E +<vr >E )J+<r >E ]dv_ = O
e z Z X 0 x valel y 0 Z Z
=00

(198)
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€3]

2 -2 2 2,-1 -1 2

Kw "B+ (c™= u") 5}1 + (m./M)]EX +-]“ (VZ- u) [<:VXrO>EX +
oo

+<:vaer>>Ey+ v, <vxro>-EZ]de} = 0 (19b)
and
oo
2 - 2 2.-1 -1
K mezEy+ (c™= u%) [1+ (m./M)]Ey +-jr (VZ—Tl) [<<vaer>EX +
-00
+ <V%'>E~+V <v.r >E Jldv = 0 GE&
vo Ty ‘z yo Tzz

The determinant of coefficients of Ex’ Ey and EZ in equétions 19
assumes the convenient form D(k,w) =_[&(k2,u) , where A s analytic
in the upper half u plane. Under special circumstances'JAL may factor
into two or into three factors each containing at worst sums of products
of two integrals or just sums of integrals, respectively. For instance,
if <v f5>> and -<v§fg> are zero, the Vlasov dispersion relation splits
% off and a two by two determinant is left for equations 19b and 19c. This
| two by two determinant factors again if <:V§§5> = <:v§f;>-, for then it

' has the form

= A2-}32=(A+B)(A-B)

The factors A X B contain only sums of integrals like those
in the Vlasov dispersion relation multiplied by coefficients involving
u and real numbers only. This makes the stability problem completely

soluble.
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Since < v.T > = -—d—-<v £ >, and <v2f> =—g—-<v2§> , ete.,
X O d.vz X 0 X 0 de X o

relations such as < vX':E"O> =0 or <v§fo> =< vif'0> imply certain
conditions on the total electron and ion momenta and energy. ©Since
these relations, obtained by integrating—-e.g. » < vxf"o> over v, -—are
not sufficient to guarantee <foo> = O as a function of v, and
are not very simply related tS the momenta, they will not be discussed
in detail.
To continue with the case Eo% 0, let us substitute
v=v_ +e_ V_ Wwhere ve=ve . *t Vy_e_e_y , into equation 16, obtaining

-1 —Z Z X=X

v - qu - 107t (ke v - a))fl =

-nocn-lB;l [mgr_lc (BfO/BE)—k V. x(kXE) - (EX p,* gy QO) +

Ve, x(kxE) (_e_XpO+ quo)+ Erx(_]gx_E_) ‘e, rO] (20)

&

where a triple scalar product containing the two parallel vectors

v e, ‘and r.e, has been omitted, as it must be zero. As has been

noted previously, fo must be a solution of the Boltzmann equation, -

implying vy_po- quoz 0 . This means Y. and gxpo+ quo are

parallel, and hence also that fo is a function only of V. and

v, The second term in the brackets in equation 20 is thus zero.
Sll’lc{e fo(_y) = fo(vr,vz) » P, end q_  may both be repre-

sented in terms of a single function s = (Bfo/avr), viz.:
-1

pP=V.V s = s cos® and g=v v s = s_s8in 6 , vhere
o) Xr 0O -0 o yr o) o)
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-1 : »
© = tan (vy/v ) . Then v _=v (e cos ©+ e sin 0) .
X -r r—x -y
In terms of V. 8 and © , eguation 20 reads
1

vyp>- vxq;-iﬂ_ (k*v - ) £, = —ndm-lB;l [WE - (Bfo/az) +

+e, x(kXE) -+ (EXCOS @~+§y51n Q)(vzso- rovr) =T (21)

where T' 1is an abbreviation for the right hand side. This is a
first order partial differential equation in fl(vx,vy,vz). It may
be solved by the method of characteristics (35), viz.: If
ui(vx,vy,vz) =c ,1=1,23, ‘are three independent solutions of

the auxiliary equations

dv dv dv daf

X=_ y= Z= 1 (22)

x 107k - v -t T

(the solution Uy must involve an arbitrary constant ci), then the
&

“most general solution of equation 20 is ¢(u1,u2,u3) = 0 where §
;1s an arbitrary function. By inspection, two independent integrals
~of equations 22 are v,= and V.= Cy (from the equations de= 0

and vxdvx+ Vydvy = 0, respectively.) In terms of the representation

<
If

v, cos 6 , v, = v, sin ) (23)

The remaining indepéndent integral of equations 22 can be found by

observing that (de/vy)r= (-dvy/vx) = -d06 . Then equation 22 be-
comes
X

(dfl/d@) +10 (kv -w) £ +T = 0 (2h)
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whose solution is

: e Q ’
1= exp[—iﬂ-l_[-(g-.z - w)d@}} J[.P(@)exp[iﬂ-ljﬁ (E-x-w)dGJdgF-C
0 0 0

H
1l

(8]
fll[ver,G;g,E,m,(afo/az)] + C’exp{-iﬂ"lnjn(g- ) d@] (25)
. ;

v

which defines fll . For fl to be single-valued in velocity space
(that is, invariant ﬁnder © >0 * 2nx), C must be zero. The formal
machinery used in solving equation 21 cannot proceed properly, however,
if C is set equal to zero at once; it must be retained as an

"arbitrary" constant for a while.

The general solution of equation 21 is then

e
¢ ([fl— £,,] exp{isz'lf (kev - w?dOJ y Vi VZ) = 0

0
where (¢ is arbitrary. Solving for f,- £, this can be expressed
%p the form
* o
1 .
% fl = fll + 9 (vr,vz) exp[—lﬂ ./r(g °v - m)d@} (26)
0

&here ¢ is an arbitrary function of v, and v . Now f . must be
invariant under © - © X 2nx , but exp[-in'l é (k*v - w)d®] is not.
Therefore, the only physically meaningful solution of equation 21 is
obtained by setting $ =0 in equation 25, i.e., £1°= £

» The integrations in equation 25 can be performed, but unless k
is along Eo’ only at the éxpense of introducing an infinite series of

Bessel functions. The series of Bessel functions is likely to be of
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more use than the integral in specific examples, and permits the
stability problem to be formally solved; hence the series method
will be used. In the case k = Ezkz R however, the integrals
are elementayy. The dispersion relation is so much simpler in this
case that it will be derived first as a separate example.

From equation 21, ,

I = -(now-l B;l)(F + T, cos © + I'_ sin 8)

1t e 3
> (27)
where I, =wrE , T,=wsE+ (kXEZ— kZEX)(stO— rovr) s
and ' =ws E + (kE ~-kE )(vs-rv)
3 o'y yz "zy' 'zo or

If k = ky = 0 , this becomes

rp=wrE , T = (w-—kaZ)SOEX+ rvkE

and ' =(w-kv)sE+rvkE
, 3 z 2z’ 0y orzy

§When k 1is along e, the integrating factor in equation 25 is

Lo=1
exp[iQ (kzvz- w)6] and fll becomes

i

-1 -1 . -1
f1, = 0@ " B, {;wﬂ ro(kaz— w) E, +

‘ o1 . -2 2
+ [(kzvz-w)so— kzrovr][lﬂ (kZVZ-w)cos(9+ sin €1[1-0 (kZVZ—w) ]EX +

=1 \ -2 2
+ [(kaZ-@)sO-krOvr][lﬂ (kaZ—co)81n 9 - cos 0][1-0 (kzvz—w) ]Ey }

The subscript is retained on 'kZ because kz may equal either +k or

-k . Again, is obtained by replacing Q by -(m/M)Q@ and

Fi1
(afo/ag) oy (aFO/aX) in f

11 ° When equations 1lb and 1llc are used,
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the longitudinal and transverse oscillations are found to be uncoupled;
the longitudinal ones obey the Vlasov dispersion relation. For the

transverse oscillations equation 11b takes the form (with dv = Eﬁvr}dvrdvz)

00 00
2 -1 2 2 2\~1 2
E}_-L.—:(lmnoeBo)(w-ke) b[vrdvrf av, X
-

" [[ (kZVZ—a)) s =K, T V.. ]Q_l(kzvz-w) (M/m)[ (kzv'z-co) 8,k RV, ]Q-l(kzvz—w)J

+ B+
-2 2 2 -2 2 =L
1-0 (kzvz- W) 1 - (M/m)~ Q (kZVZ- w)
(kv—w)s-kr‘v (kv-m)S-kRv
. z 7 o or z or
+1 ) o) - 2 eZ XE
1-0 (kaZ-a)) 1- (M/m) Q" (kZVZ-w) L

This can be written as

E = AE +B e XE
n L ZT

where A and B are scalars, or as

1]
o

(1 - «A)EX - BEy

2 P

and
«: ) S A
4 B E_ + (1 )Ey

It
O

The determinant of coefficients is

2—

(l—A)2+B (L - A-1iB)(1L - A+ iB)

which is zero when either of the two factors vanishes. The dispersion

relation D(k,w) = O then factors into DJE,&))D_(}_{_,&)) = 0 , where

5 (kv-m)s-krvr
D+ = 1 - J( V.. dv Jr dv +
- kc-w wiQ
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(k v -»)S = kK R v
7'z o Zor

(28)

m
+— —
M szz_w_+ (m/M) @

When allowances are made for different unité and sign conventions,

this reduces to Weibel's dispersion relation (36) in the limit (M/m)- co.
Dropping the assumption that k 1is along Eo , let us return to

eguations 25 and 27 to determine the form of £ . The integrating

11
-1 ¢

factor exp| i kv - w)do is, up to a constant phase factor,
i —_ 2

.

. oA=L .
exp {1 Q {kxvr sin © -kyvr cos © + (kaZ- w]}

= exp {i Q—l[krvr sin @ + (kzvz-<n)@]}

where
2 2 2 -1
k., = k_+ ky ;, $=6-¥v , and ¥ = tan (ky/kx) (29)
whence
-1 _-1 o=l .
. £, = (ndm B_ ) exp {—1 9 “[k v, sin ¢ + (kaZ - w)]} X
&
: X | exp iQ_l[k v, sin 6-k v cos 6 +(k v - w)e]f X
¢ xr v zZ Z
[Pl+ I, cos © + I sin @] e (30)
or
- (1) (2) (3)
fpp= Ty Iyt + T fp7 + Ty g

Clearily the f£i> and f§i> terms can be found from the first by

differentiating the integral in equation 30 with respect to kx and

ky (vefore substituting the values of the I''s). From equations 29
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and the relation (37)

1 s in¢ 1
exp(10 kv, sin g) = 3 e g (0K, v,)

n==w

2

(1)

11 can be obtained in the form
(1) _ i mlo-l o1 . x
£ = -1(now lBo ) exp {-i0 [Vrkr sin ¢4—(kzvz- w)@]

X }: [Q_l(kzvz- )+ nL)]-:L exp { o (k v -(D)+ n]¢} (o k v )

n==00

(31)

Expressing ¢ in terms of 6 , substituting the appropriate expres-

(2) (3)

sions for fll and fll , and inserting the I''s from equations 27

we find after considerable manipulation:

R -1 -1 L =1 R
£ ~-;(now B ) exp[-iQ (kar sin © kyvr cos 9)] X

2 B

Co

> [Q-l(kzvz—.m)+n]—l exp { n[o - tan~ ky/kx)]} X /\

n
n=-=00

b

where

_ -1 -1
AN, = lor+ (vzsO rovr)nQ'vr ] Jn(Q krvr)EZ +

-1 -
+ [wso— kz(vzso- rovr)}[nﬂ'v k (k B+ k E )J (@~ k v ) +

) + ik‘l(k E - kE )J'(Q‘lk v.)]
rVy x Xy ' n rr

The calculation of fll was simplest in a coordinate system whose =z
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axis lay along §o5 however, the application of equations 11 is most
easily pefformed in a system with one axis along k . Transforming to
such a system would be most laborious, as not only E and J , but

v and hence vr,vz,ro,so ++» , etc. would haveto be expressed in the
new coordinates. The alternative is to express gl. (p presents no
difficulty at all) in the present coordinates, e.g. as

£i~= J- k’?g(g -J) where j=e Jr(Fl— fl)z dv . Then equations 11
will be four equations in Ex’ Ey and EZ (one for p , one/for each
component of é) , Which must be redundant, as the equation of charge
continuity holds. Except for special directions of polarization of the
waves, 1t should make little difference which equation is dropped.
Omitting the p equation leaves the remaining ones more symmetrical,
but omitting one of the components of ql. shortens the equations more.
The equation for the z component of éﬂ_ should not be dropped, for if
k is along &, or Ey’ one of the other equations vanishes identi-

cally.‘ If, however, the y component of %1— is dropped, there is no

éérm if k 1is along e, since then the dispersion relation given by
eguation 28 may be used.

Since the detalls of a given problem may dictate which equation
may most profitably be omitted (e.g., one may be looking for nearly
longitudinal or transverse waves, in the limit of small Q ), all four

will be given. Equation llc reads:

® oo
o
a1 -1 -1 -
i (L = i X
1(4§w) (kXEX+ kyEy+ kZEZ) onin lBO Jﬁmgf v av,, z: eJn(Q lkrvr)
- 0 n=-m

: -1
X [ﬂ_l(kzvz- W)+ nJ /\, + ion terms (32a)
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The lon terms are as usual obtained by letting -e — +e ,
Q - -(m/M)Q, r, >R, s, > 8, etc. The x, y, and z components

of equation llb are, respectively:

i(lmw)_l (wz- kgcz) [E - k k_g(k E+kE+kE)] =
X x XX Yy 7 Z

@ e
oo
. -1 -1 -2 -2 -1
2rin lBO Jﬁ &, Jr v, av, E: e[nSZkX(kr -k )Jn(Q krvr) -
-0 0 n=-@

-1 - - - - -
v kT g @k v ) k kv kT (@ v )10 Nk v o)+ n] T +
rr y n rr X Z zZn rr Z Z n

+ ion terms (32b)

i(hﬁuﬁ-l(wg- kzcg)[E -k k_g(k E+kE+kE)] =2rxin o gt
v Uy Xx yy ‘z&z o o

Q0 @ @
[ av fv dv Z e[nQk (k‘g- k_g)J (Q'lk v )+iv. k k‘lJ""(Q"lk v_)-
Z r r 2o y r n rr X r n rr
-0 0 B
s
&
k kv k23 (Q—lk v )][Q_l(k V- W)+ n}—l.[l + ion terms (32¢)
‘ Yz z n rr Z Z n
§
and
i(unm)*-l(wg- kgce)[E -k k_z(k: E+kE+kE)] =2xin w7t
Z Z Xx yy Z Z o} o]
a (0)e]
= -1, -2 -1
f v [vrdvr Z e[vZJn(Q rvr)' k k (nQ+ VZKZ)JH(Q krvr)]
n=-m
-0 0
[S‘l_l(k-zvzn- w) + n]_lAﬁ + ion terms (324)

The dispersion relation D(E,w) = 0 may be obtalned as described above
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by equating to zero the determinant of three of these four linear
algebraic equations in Ex’ Ey’ and EZ . The components of E of

course appear in 'A‘n .
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ITI. THE EXISTENCE AND PROPERTIES OF GROWING WAVES

Some of the dispersion relations presented in the last section
will now be analyzed for growing waves in considerable detail. A
formal solution of the stability problem in each case is simply to
determine the zeros of D(E,w), the function set equal to zero in
the dispersion relation, by evaluating it at each point in the upper
half of the o plane for each value of the vector k . The search
in the o plane may be simplified by the use of Nyquist's criterion
(38): If D(k,») dis analytic in the upper half o plane and tends to
zero as ® - o there (which is the case for all dispersion relations
considered here), then the equation D(E,w) = 0 has roots in the
upper half o plane if and only if the path M+ . traced out by D
as  ‘traverses the real axis from -co to +oo encloses the origin
in the D plane. The Nyquist diagram (the path I in the D plane)
would still have to be constructed for each vector value of k .
There are obvious simplifications if only some components of k ,
or k2 , etc. appear in D(g,w) . It will be shown here that one fur-
ther major reduction in the labor is usually possible: Instead of
having to construct the full Nyguist diagram, one may have only to
find the points at which the path II crosses the real axis, and in
fact only some of these. In addition, these points are usually easy
to locate, as Im[D(E,w)] is often very easy to evaluate in the 1limit
0f real o . )

For the Vliasov dispersion relation and its relativistic analogue

(equations 1k and 15), the problem of plasma stability can then be
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reduced to the calculation of a few definite integrals for each direc-
tion of Xk . For the other dispersion relations given in part II,
substantial reductions in the labor of stability analysis may be
achieved. Because the method to be described here was first
developed in ignorance of Nyquist!s criterion, and has many worth-
while features of its own, it will be presented separately and later

correlated with the better known Nyquist method.

Stability Theorem for Longitudinal Oscillations

Under the assumptions stated in parts I and II, a necessary and
sufficient condition that growing linearized plane longitudinal oscil-
lations may exist in an infinite, uniform plasma with angular frequency
w and wave number vector k is that w and k fulfill the Vlasov
dispersion relation, equation 1k. The assumption that the waves grow
in time but not in space means that Im(w) >0 and Imk =0 . Since
this dispersion relation contains fo and Fo only in the linear com~
bination £ + (m./M)FO = %; , the discussion will be carried on in terms
of f with the tilde usually dropped when no confusion results and
tildes placed over equation numbers. It should be remembered that
fo(v) is defined as the integral of fo(z) over directions orthogonal
to k , with v = k-l(z -k); thus the form of fo(v) depends on the
vdirection of k . There is usually a good physical reason for believing
one of a few directions is most likely to give instability. In order
to carry through thié gimple case with considerable care, some proper-
ties of fo \must be noted and some restrictive assumptions about fo

must be made. The following ones are physically Justifiable and suf-

ficient for the analysis:
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(a) Let fé(v) = (dfo/dv) exist and be differentiable at
all but a finite number of points, where it has Jump

discontinuities.

(b) Let fo(v) and. fé(v) be small at least of order v’LL

as v - o .
(¢) Note that £ >0 .

®
(d) Note that | fo(v)dv = | fo(x)dx =1
-0
”
(e) Let £ have a finite number of extrems and points of

inflection.
Assumption (d) is actually a slightly incorrect normalization condition
when spplied to f_ , as _zz fo(v)dv =1+ (m/M) . This small dis-
crepancy may be eliminated if mi 1s replaced by ,mi[l-k(m/M)] and
fo by fo[lﬂ-(m/M)]-l in the Vlasov dispersion relation, but the
physical effect of such replacement is only a slight change in the wave
frequencies. Assumption (c¢) holds for any distribution function, as

probabilities are positive, and (b) is just the reguirement that the

energy density be finite. In the present notation, equation 14 be-

comes
T e
£ {v)dav 2 . ~r
f 2 -5 (33)
-0 V-1 o
e

where again u=<q/k is the phase velocity of the wave, and it is
assumed that Im(w) [and hence Im(u)] is positive. Let u=u, + iu,
and m==wl+ Lml . It will soon appear that the discontinuity of the

imaginary part of the integral in equation 33 can be interpreted as

the usual multi-valuedness of the imaginary part (stream function) of

a complex potential in the neighborhood of charges; for definiteness,
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the imaginary part of the integral on the real u axis will be defined

as its limit, nfé(ul) , when the real axis is approached from above,

whenever that limit exists (i.e., when fé(v) is continuous at v==u1).
Under the foregoing assumptions (a) and (b), equation 33 may be

integrated by parts to give

- f 1n(v- u) fg({r)dv = Wlu) = kg/wee (gll*)

which defines W(u) = U(u) + J':V(u) - Any discontinuities in f! are
to be interpreted as ® functions in fg . W(u) is the complex
potential of a line charge distribution along the real axis of the u
plane of strength % fg(ul). The 8 functions in fg correspond to
true line charges (logarithmic singularities) and the remainder to a
charged sheet. Henceforth, fo(v) and its derivatives will be imbedded
in the u plane by regarding v as identical to Uy whenever‘this is
convenient, gnd the symbol w will be reserved for points in the open
upper half plane. W 1is defined also by the integral in equation 33.
We shall take advantage of the large body of knowledge extant
about the complex electrostatic potential by discussing the stability
problem in terms of the properties of the "charge density" % fg(v)
and its "complex potential"” W(u) in the upper half u plane. [This
analogy was discovered independently of a similar one discovered
earlier (39), in which U and -V are the x and y components of
the electric field of a line charge distribution % fé(v) , and which
seems less Trultful, because the x and y components of an electric

field do not possess as simple relations to charge distributions as do

the potential and stream fuhction.] The plasma is unstable if and only

if there exists a point u - such that



U(w) >0, V(w =0, Im(u) >0 (35)

for then a real number k can be chosen to fulfill equation 33 . The
lines V = const are lines of force and the lines U = const are
equipotentials. Some of the most important properties of the charge

distribution and potential are listed below.

(i) By integrating fg from minus infinity to v , we see
that the total charge to the left of v is % fé(v) and the total
charge of the distribution is zero.

(ii) For this distribution the total dipole moment vanishes
but the quadrupole moment is 1 . Asymptotically then, W(u)»vl/u2
at infinity. Thus there is always a V = 0 line of force which tends
to infinity asymptotically parallel to the imaginary axis. Any other
V = 0 lines in the open upper half plane which tend to infinity would
have to be asymptotically parallel to the real axis. It can Dbe shown

g(with some effort) that there are no such lines; but if there were, U

would be decreasing toward infinity on them and from the discussion it

§

will be clear that they would have no effect on any of the conclusions.
The asymptotic form shows that there are two U = 0 lines in the upper
half plane which‘tend to infinity at angles + 450 with the imaginary
axis. For large !u[ ; U 1s negative between them,and positive
between them and the real axis.

. (iii) Just above a point v on the real axis V is nearly

nfé(v) whenever the latter exists, since this is just half the flux

from the charge % fé(v) to the left of v* . When f! has a jump

*This can also be seen from 1/(v-u-ie)= P[1fy ~u)]+ind(v - u).
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discontinuity at v , say from value & to B , a succession of
flux lines radiates from the discontinuity {(a line charge) with V
values ranging from e to wp..Thusa V =0 line meets the real
axis at v if and only if fé changes sign there. This is just the
condition that fo have on extremum at v . If fé =0 at a point
v but fg % O there, it can be seen by looking at the variation of
V  Jjust above the real axis near v +that a single V = 0 line
meets the real axis there; again fo has an extremum at v . If

fg is also zero at v , or if fé is zero in a whole neighborhood
of v , several V =0 %ines may meet the real axis there. Points
or intervals where fé = fg =0 and fé is of opposite sign on
either side will be called "horizontal places of inflection" of fo.
Since these, along with extrema where f; = 0 , introduce qualifica-
tions into some of the following arguments, it will be assumed at
first that they do not occur, but the extension of the method for
them will be stated later. The particularly simple case where fo
is zero or an absolute maximum’ and fé = 0 will also be treated
explicitly.

It has been found that lines V = O meet the real axis at
places where fé changes sign (extrema of fo) but one other possi-
bility should be considered. IT fO =0, say, for v>A, a
V = 0 line runs along the real axis from A to o . (For example,
this must occur in the relativistic case, with A< c¢.) Is it pos-

sible for other V = O 1lines to meet the real axis in this region?

If so, there would be a neutral point (Eg = % = 0) there, but
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differentiating the formula

T oti(p)a
U(V)=f o

P~V
=00

with respect to v and integrating by parts (for a point v where

f o=f'=1£" = O), one obtains
0 o) e

v £ (P
ofo (p-v)3

which is of constant sign by assumption (c) from A to infinity.
Thus no V = 0 lines can meet the real axis entirely outside the
region where f_ # 6 .

In view of equation 35 the lines of flux on which V =0 are
particularly important, as the plasma is stable if and only if U <O
everywhere on them. Since there are no charges in the open upper
half plane all such lines must terminate on the real axis or tend to
infinity; i1t has been shown that precisely one tends to +ico, but
U< 0 on it near infinity [(ii) above]. Since U varies monotoni-
cally along lines of force except at neuiral points, we can imagine
each V = 0 1line to be marked with an arrow in the direction of the
electric field, i.e., the direction of decreasing U , i1llustrated
in Figs. 2 and 3. The problewn of checking the sign of U at each
éoint on the net of V = 0 lines can now be reduced to the following
simple procedure: By assumption (e) and property (iii) above, the
lines V = O meet the real axis at a finite number of points,

v ...'vn where fé changes sign. Starting at a point \f

l) vg)
we can follow a V = 0 line into the upper half plane, and by taking
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the line immediately to our right away from any neutral point we
encounter, return to the real axis at some point rvj (with the one
exception that we may end on the line tending to ioo). Since the
arrows on lines at a neutral point are directed alternately toward
and away from it, U varies monotonically during such a traversal
and hence has its extrema on the ends of the lines, being larger at
the end where the electric field points away from the axis. Since

the normal component of the electric field at the real axis is

ﬂfg(v) , the points where U is the largest on those V =0 lines
which are traversed during the above procesé are the minima of fo on
the real axis. From the asymptotic form for W , the arrow on the line
tending to ioco is toward the origin, so U <O on it up to the first
neutral point. By a well-known theorem of potential theory, the

V = 0 lines cannot enclose any region of the open upper half plane;
therefore we traverse the entire net of V = 0 1lines if we repeat the
above process for all i, 14 i £€n . This proves the theorem: The

é"
tplasma 1s stable of and only if U <O at each minimum of fo- (We

%have temporarily assumed that there are no places where fé = fg = 0.)
In generalizing this method to other dispersion relations, and in com-
paring it with Nyquist's criterion, it will be worth while to remember
that the minima of fo(v) are those places where V(v) changes sign
and is increasing toward the right [see (iii) above].

In practice, the potential U at a point v on the real axis
is calculated from

, @ fi(p)a ©C £i(p)dp ~
U(v) = Re lim f fo) =Pf - (36)

p-v-ie D=V
-0
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The principal value sign is not needed if fé(V) =0 . If fé is
discontinuous at v , a line charge is located there and U - X oo
at v according to the sign of the jump discontinuity in fg . If

"+" and the plasma

v 1s a nondifferentiable minimum the sign 1s
1s unstable, but a nondifferentiable maximum gives the opposite sign
and introduces no instability. (See the analysis of transverse waves
later in this part, however.)

Since the depth of the minimum and the discontinuity of fé(v)
may be arb%trarily small and still produce instability, there are
unstable velocity distributions arbltrarily close to stable ones and
even to the Maxwell-Boltzmann distribution in the sense of most of
the usual metrics of function space.

It fo has any nondifferentiable minima it is now known to
represent an unstable plasma. If fo is zero at one of its differen-

tiable minima, the plasma must again be unstable: When fé(v) =0,

equation 36 may be integrated by parts to obtain:

£ (p) - £ (v)
U(v) = Jr 0P S ap [vhen £!(v) = 0] (37)

J m-w°

which shows that U(v) 1is positive wherever fo(v) is zero.
Suppose that there are no particles at all with a particular

vector velocity v, in the plasma, but that there are particles moving

2
in the same direction with speeds both greater and less than Vg o Then
when k 1is taken along YV, , fo(vg) is zero, so that the plasma can

support growing waves with phase velocity very close to 22 .
R Where fé = f; = 0 , several lines V = 0 or none may meet the

real axis. At a horizontal place of inflection the sign of V Just
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above the real axis is the same on either side, so an even number of
V = 0 lines meet the axis there. Then if there are any such lines,
there is at least one on which U increases awsy from the real axis.
Following this line (as in the procedure outlined above for traversing
lines), one reaches another point on the real axis where U is surely
higher; if this is again a horizontal place of inflection one can
continue following the line.\ By induction and by assumption (e), one
eventually reaches an extremum of fo where U is greater than at
any of the horizontal places of inflection encountefed, g0 that it is
unnecessary to check the sign of U at horizontal places of inflection.
if fg is positive on each side of a place vhere fé = fg =0
(making it a minimum), at least one V = 0 line must meet the real
axis there, as just above the real axis V changes sign. Further-
more, consideration of the normal component of the electric field
right above the real axis shows that there must be at least one such
line on which U increases toward the real axis. Hence one must
check the sign of U where such lines meet the axis. If fé = f; = 0
only at an isolated point, U may simply be evaluated there by means
of equations 36 or 37, but if this holds in a whole interval, the
situation becomes more complicéted. By studying what patterns of
lines of force are possible, one can show that if (JU/dv) has no
zero in the interval, one should check the end where U 1is largest,
but otherwise at the zero of (JU/dv). Similarly at an isolated
Jaximum point of fo there must be at least one V = 0 line meeting

the real axis on which U increases away from the axis, and one need

not check the sign of U there. At a maximum, however, where fé =0
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throughout a whole interval, one must check the sign of U at any
neutral point (%g = 0) therein. In the above discussion, reference
was made to finding the zeros of (JU/0v) in an interval where
£l = é , a cumbersome procedure for most functions fo(v). If f_
is an absolute maximum or is zero there, equation 37 shows U is
negative or positive throughout the interval, respectively, making
it unnecessary to know just where the V =0 line comes in.

From the preceding arguments it is clear that a single-peaked
distribution is stable: the one extremum is an absolute maximum

where either fé = 0 and equation 37 applies or fé is discontinuous

and the first form of the stability theorem shows the plasma is stable.

Properties of the Longitudinal Waves

It has been shown that to each growing wave there corresponds
a ?oint u in the upper half of the complex phase velocity plane
where equation 35 holds. From the foregoing discussion of the V =0
lines and the variation of U along them, it is clear that these
points comprise portions of the V = 0 lines which are connected to
the real axis at those of the points v, Where U(vi) >0 . Assume
that f; % O at each of these points, so that a single V = 0 meets
the real axis at each of them and the normal component of the electric
field is non-zero. Consider a point, say v s Where fo is a minimum
and U >0 . The electric field points away from the real axis at v,
and By following the V =TO line away from Vv one will eventually
come to a point u where W =0 , or will return to the real axis at

some point Vs (using the right-hand turn rule at neutral points). In
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the first case equation 34 shows that unstable solutions occur for

valubs of k fulfilling

0<k<k
max
K = Uﬂﬁlyg (38)

and in the second case for

k. <k<k
min max

2 -\ 1/2
kn =@ U S k= tu@ Y (39)
The rate of growth of a wave is given by
1/2
w. = ku. = wu. [U)] (40)

2 2 e 2

Thus ®, is zero at u and at v ; in most .cases it will have only
one maximum in between. This is surely true when u and Vv are
close together, as when the distribution differs but little from a
stable one, i.e., if U(v) is small.

From equations 38 and 39, if U is bounded near v growing
waves will be possible only for wavelengths A\ longer than
Xmin = gﬁ/kmax' If, however, fé is discontinuous at v , producing
a logarithmic singularity in U there, Kmax - o0 and growing waves
of arbitrarily short wavelength can occur. One might distrust this
result since the derivation of equation 33 is valid only for suffi-
éiently long wavelengths, ﬁhen collective motion dominates individual
particle effects (3). If fo(x) is nearly Maxwellian, equation 33

1/2

2
is valid for X X )= (kT/hﬂnOe )7, but if not, one could consider
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using the cut-off distance xﬁ obtained by evaluating &D for a
Maxwellian plasma with the same particle and energy densities as the
one in question. Since an instability usually persists at long
wavelengths (k - 0) , the conclusions on instability will not be
affected in most cases by the introduction of a minimum wavelength.
The use of the concept of Debye shielding in discussing unstable
plasma oscillations will be criticized in part IV.

Qualitatively, one can see from equations 38 through 40 that
the sharper the minimum in fo(v) and the steeper its sides, the

larger the maximum values of k and w, will be for growing waves,

2

as U(v) will be greater.

There are no instabilities for ]u | sufficiently large since
W A—l/u2 asymptotically. On the other hand, U has at worst
logarithmic singularities which are all on the real axis. Therefore
the right hand side of equation 40 is bounded,'and infinite rates of

growth do not occur.

&
) Since the V = 0 lines are lines of flux, the electric field
AWy *
du

real axls where a V = O line meets it and U > 0 , one could in

E= -~ ( is tangential to them. Having found a point v on the

principle trace the instabilities into the upper half plane by inte-

grating the equation

(&%
du _ _du
ds lﬂl

" du

where s 1is arc length, or simply
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du dW %
s - & (k1)
where p 18 a parameter. This would yield a parametric form of the
® - k relation for non-real ® . If u and v are close together,
this can be done approximately by expanding W in a series about
v , provided fo is sufficiently smooth there. The derivatives of

W defined by

+ n
dw R d Wi
= 1im o
n n .
du . € >0+ Vdulu=v+ie

can be used to form a Taylor series which gives W in the upper half
plane and an analytic continuation of it below the real axis. - For
points near v , write

aw’

Kol = Ww) ~ W(T) + (-9 (o)

~ UE) + (u+ 1o, 7) [(%%); i(% _] (42)

W Pl

Tak%ng real and imaginary parts of equation 42 yields

1/2
2
®, = ku, ~ ® U, [U - u, |v Ul / (%%)} (k3)

where all quantities (except u2) are to be evaluated at v . For

the maximum value of ®, between v and U we get

® W

COR |
~ o — | 9V 32
2max T e v 3 IVUlE ‘U u=v ()
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This is valid if U(v) is small but fails if (—g{—i); = f;(?) =0 .
Equation 44 shows that at the threshold of instability, when
U(V) ~ 0 , the rates of growth increase slowly, like v/2 4 v
increases.

Since the instabilities lie on portions of the V = 0 lines
emanating from the minima of fo(v) , they may be divided into
groups, a group consisting of the instabllities near a given minimum.
Generally, a group of instabilities can be thought of as a sort of
double stream instability between the beams representing the peaks on
eithgr side of the minimum. The behavior of W (and hence of the waves)
near a given minimum, v = v s> 1ls affected most strongly by the values/
of fo(v) near Vv , i.e., by the distribution of particle velocities
near the phasé velocities of the waves. Also the phase velocity of
growing waves near a given minimum is closest to those of the particles
in nearby peaks of fo, implying a largef wave-particle interaction.
These ways of lo%?ing at which families of particles participate most
in a growing wave usually agree with more gquantitative methods; such
as evaluating thegmean velocity or energy changes of these families
when a growing wave is present in the plasma. Qualitative methods
such as ldoking at the'general location of instabilities are a valuable

complement to mathematical analysis of the problems.

Relationship to Nyquist's Criterion

Assume at firsf that fé(v) 1s continuous for all v . It has
been shown (see p.lkh) that the plasma is unstable if and only if

U = Re(W) dis positive at one of those places on the real axis of the
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u plane where V = Im(W) is zero and increasing to the right. This
may be interpreted in terms of ‘the crossings of the Nyquist path with
the positive real axis in the Nyquist diagram plane (see p.36). Let

2 2 2

D(k,u) = Dl(k,u) + 1D, .(k,u) = wi Wu) - kK = [0 U(u)- k7 ]+ imi V(u),

o
where W is defined in equation 34 or by the integral in equation 33.
The Nyquist diagram for finding roots of the equation D = 0 in the
upper half wu plane consists of the path Hk traced out in the D
plane by D(k,v) as Vv traverses the real u axis from -0 to 4+ .
From thg-asymptotic form W'“ml/ u2 it can be seen that
D(k,-0) = D(k,+c0) = k% . The path I will sometimes be said to
start at D = Jkg for v = -o0, proceed into the complex D plane as
v increases, and end back at —k2 again as v - +00, an arrov being
affixed to Hk in the sense corresponding to increasing v . Since
V(v) = ﬂfé(v) and f_ tends to zero monotonically from sbove as

v -t , fé(v) and Dg(k,v) tend to O as v - - and to O
as v »-+oé . From the asygptotic form for W, Dl(k,v) tends to

-k2 from above as v e-icn§. A little study of the behavior of U
and V along the real axisishows that for a Gaussian or similar dis-
‘tribution, the Nyquist diagram looks like Fig. 4A. As long as fo(v)

"ends"

obeys assumptions (b), (c¢), and (e), the form of I near its
at -k2 is about the same. It is because p(k,u) maps the upper half
u plane onto the iﬁterior of Hk that the plasma is unstable when Hk
encloses the origin, for then the origin is the image under the mapping
D of some point u, in the upper half u plane, i.e., D(k,ui) =0 .

The V = 0 lines in the upper half u plane all map onto portions of

the real D axis interior to Hk=0 = Ho . But Hk is simply HO
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translated to the left a distance ke. Therefore the plasma is
unstable if and only if Hb encloses some point on the positive
Dl a%is.

The Nyquist diagram for a typical unstable plasma represented
by a velocity distribution fO(v) having two peaks is shown in Fig.
LB. In this example, instability exists for values of k2 betveen
zero and an upper limit kiax’ given by the value of Dl where HO
crosses the positive real axis of the D plane. This crossing point
is the image under D(0,u) of the minimum Vv of fo(v) on the real
axis of the u plane, since V(v) = &g2D2<Q,V) = ﬂfé(v). Equation 38
can be obtained by setting kiax = miDl(O,§) . The crossing from
below to asbove is characteristic of a minimum in fo(v) at v .

Other initial distributions fo(v) produce more complicated
Nyquist diagrams. Because II is Just translated as k is varied,
instability exists, however, for precisely those values of k2 such
that the point D = K2 is in the interior of HO. "Interior" is, of
course, defineg in the sense of winding number (40): A point is
interior to I, if the winding number of II about that point is not
zero. A point around which T winds n times is the image under
the mapping D of [n[ points in the upper half u plane.

It has been found that the net of V =0 lines in the u
plane maps onto those portions of the real axis of the D plane in-
terior to the Nygquist contour I . Because this mapping may be

many - one (not one-to-one), it is difficult to distinguish insta-

bilities as being due to one or another portion of fo(v), or one or

another family of particles, as can be done in the u plane. On the
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other hand, it is particularly easy to ascertain for what values of
k2 growing waves can occur. D(0,u) maps the extrema of fo and

the point o onto the points Pl Tt Pn where HO crosses the

real D axis. It is easy to find the direction of the arrow on HO
at Pi ; when 1 £ 1 £€n-~1, the arrow is "up" when Pi is the

image of a minimum of fo(v) and "down" when P; 1s the image of

1" 1

a maximum of fo(v). The arrow on Pn’ the image of "oo" , is always

1 i

up . It is usually preferable to imagine Pl sos Pn rearranged in

order of increasing D Define a function w(D for any point on

1)

the real D axis which is the number of points Pi to the right of

1

Dl with the arrow on I "up", minus the number of points P, to the

right of D, with the arrow "down". Clearly, w(Dl) is the winding

1
number of T with respect to D . Then if ,w(kg) ;é/ 0 , the plasma
will support growing waves of wave number k . (Actually Qﬁ/K is
the wave number as usually defined). If Ho passes through one of
the Pi more than once, an arrow in the appropriate direction is of
course inéiuded in the count for each passage.

Hbr}zontal places of inflection of fo(v) correspond to places
in the D plane where HO is tangent to the Dl axis but does not
cross it. Extended maxime and minima correspond to intervals where

HO runs- along the D axis and does eventually cross it. The fore-

1
going discussion of Nyquist's criterion may be modified for these

cases, but seems to offer no advantage over the electrostatic analogue.

? Generalizations to Other Waves

In principle, much of the foregoing analysis can be extended to

any dispersion relation D(k,w) = D + iD, = 0 such that D. is analytici

1
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in the upper half o plane and is bounded as |w| > o there. For
example, the crossings of the Nyquist path Hk with the real positive
D axis (or any other straight line through the origin) may be used to

find the winding number of I, about the origin. The diagram of

k
crossings of Hk with the real axis together with the directions of
crossing will be called the "arrow diagram”. Its use reduces the labor
of constructing the Nyquist diagram whenever the zeros of D2 for w
real are easily determined. These diagrams must usually be formed for
each k value. When D is invariant to certain operations on k,

or transforms very simply under certaln operations on k , the labor
can again be reduced. If D can be written as D(k,w) = A(w) - K2

or B(w/k)- K< the dependence on K°  can be handled as before by
observing that Hk encircles the origin if and only if Ho encircles
the point k2 + The charge analogy method gives an equivalent solution.
If D can be written in the form D(k,w) = Q(kz,w)— K2 , one can again
avoid much of the l%bor of searching k space for instabilities.
Fixing kZ ; One caj determine for what values of ‘k2 D has zeros in
the upper half plane by finding what portions of the Dl axis are in-
terior to the Nyquist contour of Q . If these portions include any
points to the right of ‘Dl
D(g,w) = O;‘then the plasma is unstable. This would have to be done

= k2 » k and %k _ can be chosen so that
z X Y

for each kZ , but the work of searching over k2 is avoided. Other
hypothetical examples can be generated ad.lib., but let us see how far
the Nyquist and charge agalogy methods can proceed for the dispersion
relations of part II. |

The dispersion relation D(k,u) = O for arbitrary waves (from
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equations 19) when B_= O 1is generally cubic in k2 , and really
involves the direction of k too, since a rotation was made to put

k- along e - In addition, Im(D) is not easily evaluated along the
real u axis since the real parts of the integrals come into the
imaginary part of the determinant. None of the methods given can

help appreciably in making the stability analysis manageable--the
Nyquist diagram would have to be constructed for each vector k unless
physical arguments suggested obvious choices. When fo(z) is such
that D splits into the factors A X+ B , as described on p.25, the
charge analogy method or the arrow diagram method may be used to

solve the stability problem. The charge analogy method will be exhi-

bited.

The precise form of D(k,u) in this case is

o

5 © 3 (<vE >Et<y v s)

K 1 de X o0 XV O

~ =—5—5 |1+ (m/M) + av

2 5 2 \ I

w U=~ C A

e § -0
= (- D™ 1+ () T (W T (Wlza (W+ 18 =T (u)
- + + Tt + 4

(45)

which defines U, V, G, H, and T . ILet T, + V+ = W+ , and denote
| ' T 2
) . - +
the numerator in the integral by ¢i(vz) . Then Qi(vz) <V >k
f . 114 2 14 L3 " " ;
< vay o> gi(vz) is the "charge density” for the "complex poten
tial" W+ , and .{ug- c2>'l ¢‘;(vz) is the "charge density" for the

", 3 " = ) 2
complex potential' T . If £, = fo(vr,vz), A

= v2+ v2 5 then
r X Oy

< vxvyfo>’= 0 and equation 45 reduces to equation 28 in the limit

@ ~0 . The x signs will be omitted from now on whenever no
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confusion results. In terms of ¢ equation 45 is, in part,

2 T pr(v)
55 = —EE——é {1_+ (m/M) + J( ;——:Ea dvz} = T(u) (4s)
@_ u - c k 2

The plasma is unstable with respect to transverse waves if there are
points in the upper half u plane where G >0 , H =0 . BSince

= 2
W~1/u" at oo, just like W for the Vlasov dispersion relation,

1 e? e -] 1 e
TNE(H_ + = +ooee) [1 4+ (m/M)+ 1/u7] = > [1+ (m/M) ]+ EE[2+(m/1;/[)].

e

The second term will not be used here but is included because it is easy
to £ind and may be useful in other connections. Since T 1s analytic

in the upper half u plane, most of the discussion of the netwoirk of

V =0 lines and the variation of U along them carries over to H and
G . The charge distribution for T now has two dipole sources at
u=22c . It is these which make it more difficult to use Nyquist's

criterion, as they make the Nyquist contour go to infinity when

v, - +C . Thisiéan be handled by letting u move from -~co+ i€ to
o+ie , € =20 2 in forming the diagram, but the electric dipole con-
éept is of great value in determining the behavior of T(u) near
u=*c . Again the plasma is unstable if at any point where an H = 0
line meets the real axis, but agaln we need check only those points
where the "electric field" E = -(dT/du)* points into the upper half
plane. The H = 0 lines tending to infinity are of no importance, as

before. The points where H =0 lines meet the real axis are those

vhere V =0 [i.e., ¢(VZ) changes sign] and possibly the points
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VZ = tc . If either of the point dipoles at ¢ points toward the
upper half plane, an H = 0 line with G — +00 near the dipole will
emanste upwards from it, implying instability. For other orientations
no H =0 lines with E directed into the upper half plene emanate
from the dipoles. The phase of 1 + (m/M)+ W(*tc) determines the
dipole orientations. Since u+c¢> 0 at u=c¢ and u-c< 0 at
u = -c, the dipoles both point directly away from the origin if

W(tc) is real. The derivation of equation 45 involved a nonrelativis-
tic form of the Boltzmann equation, so one should assume most particle
velocities are much less than ¢ . Then ¢'(VZ) and W(VZ) are both
small for IVZ!’= ¢. Then the condition for no unstable roots near
u=tc is that lim V(c+ie) = ¢g'(c) £ 0 , and similarly

gr(-c) 20 . The:e age fulfilled if f_ is assumed to be zero in
some neighborhood of [VZI = ¢ , say for lvzi >c~€ ,0<ee.

This small restriction on fo seems desirable, since combining Max-

well's equations with nonrelativistic mechanics (as exemplified by

£

eauation 1) can be expected to give wrong results when there are par-
ticles moving at or arbitrarily close to the speed of ‘light. It is
sufficient, however, to have  a decreasing function of ]vZI at
|v,] = ¢ . It can be shown that if f, is zero for all |v | greater
than some constant, neutral points do not occur on that portion of the
real u axis; only zeros of @' interior to the region where i #0
are intersections of H = 0 lines with the real axis. Because the

- 2 - .
factor (u - c2) t is negative for real u < ¢ , the analogue E is

into the upper half plane at the maxima rather than at the minima of
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¢(VZ) . Assuming that f, has at the worst a small tail for v, > c,

1

the stability criterion is then as follows: The plasma 1s stable 1f and

only if the quantity G(u) defined in equation 45 is negative at each

maximum of ¢(VZ) .

From the electrostatic analogy, it i1s evident that a nondif-
ferentiable maximum in ¢(v) produces instability with respect to trans-
verse waves.

While the integral in equation 45 15 invariant to Galilean
transformations along the Z axis, the factor in front is not. If the
transformation i1s v - v + gzzﬁv , u-u+Av , then ch is changed
by an amount 2:u.Av/cg if Av << c¢ and u is not close to c¢ . If
there are few particles with velocities near ¢ , the dipole singulari-
ties dominate the behavior of T(u) near * ¢ ; there are then no
instabilities with u= ¢ , and the second condition (u not close to ¢)
is fulfilled. The small discrepancy uAv/c2 is another result of
comb%ning nonrelativistic,mechanics with Maxwell's eqguations. Since
ther: are no instabilities near v = %fc, the stability of the plasma
can Ye found in a variety of reference frames with no disagreement; only
small changes in the properties of the growing waves will occur.

The dispersion relation for transverse waves propagating along
Eo , given in equation 28, can be analyzed by an "arrow diagram". If
the (szzséw) in the numerator of equation 28 is written as
(kaZ- ® X Q)¥Q for the electrons and (kaZ- o F [m/M]Q)+ (m/M)Q for

the ions, ® can be eliminated from the numerators by the relation
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and a similar relation for ions. (This is Jjust the normalization
condition and an integration by parts.) The resulting form for egua~

tion 28 is

(De n @ 5 « EXY) 5" kzvrro
Di(kz,(b) = 1 + Tm 1+ M we TC erdV [ av +
0 -0

+ (m/M)a s - k v R

o 'w
kzvz— o F (/M) Q

= = 0 (L7)

=18

Using the previous notation [ W dvxdvy = < V¥ > and the equation

gv dv = 2x v dv , one obtains
Xy r r

2 —_ 2
a)e - 1 @ +0 <VI'SO> - kZ <vrro>
D (k0) = 14+ 55— l+ﬁ+§[" ' +
- ke o kv, -®£0
-0 Z
o = (m/M)Q <v 8 > -k <v°R >
+ 2 I‘—O Z r o av = 0 (48)
M kv -o7F (m/M)a z
z %
’i 2, 2 2 2
. L B o -1
Again, let = w,+ iw, and let Di =Dy, + :LD2__t~ l-cbe(k ™= %)

[1+ (m/M)+ W+(kz,aa)] where W, _ stands for the integral in equation 48,

For fixed kZ 5 the Nygquist contour Hk is the limit as € - 0 of the
Z

+i€) when
2y ~1

,  8oes from -co to +oo .

, 1t is helpful to think of € as

path traversed by Di(kz 50y
Because of the factor (kgcg_ w
not quite zero, so that the path II is bounded. The electrostatic
analogue will be useful in understanding the behavior of T when

\w% + ke ;3 unless 1 + 'w(m/M)+ W happens to be zero at w =+ ke , D

is singular at these places, and the singularities are again most easily

studied by interpreting D near w = + kc as the complex potential of
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a dipole whose orientation is related to the phase of l-k(m/M) + W
there. A study of the signs of the various factors shows that if

—|1 + (m/M) +‘ﬁ] 1s real and positive at both ® = ke and @ = -kc ,
the dipoles both point away from the origin. Otherwise, each dipole
is rotated counterclockwise an amount equal to the phase of

~.[? + (m/M) + @]. Therefore, unless-fi + (m/M) + @] is real and positive
at w = + ke, the dipoles produce crossings of sz with the real axis.
For example, if the left hand dipole points "up", I crosses the Dl
axis at +w, going from the lower to upper half plane as wl+ ie
passes -kc . If it polnts "down", II crosses the Dl axis at -oo
from the upper to the lower half of the D plane.

The remainder of the real axis crossings of II come from zeros

of ITm W as o traverses the real axis. These may be found from

®

Iim JQT[" k{v)dv

n
€ - OF kv-w-ic + 0k
-00

WALy (49)

While it is possible fog 1+ (m/M) + W to have a zero at = + ke ,
this can happen only for a discrete set of k values; according to the
order of the zero (Simple, double; etc) I is affected in different
ways. A simple zero just gets rid of one of the dipoles, while a
double zero produces a crossing of II with the real axis, etc. This
matter must be‘dealt with on an individual basis in any given example.
Such a situation can arise only when the numerators of the integrals in
equation 48 are sizeable for v, ck (@/k); they represent some sort
of resonance between particles and the wave where the frequency kvz

with vwhich a particle crosses successive wave crests minus the frequency
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ke with which a light signal does so 1s equal to +0 , the particle
cyclotron frequency.

As wl - 400, D -1 . This is another crossing of I with

the real axis. The direction of the arrow may be found from the
22 2\-1 . , .
factor (k" ¢~ %) alone 1f the integral goes to zero rapldly
enough, and is "up" in that case. In most physical cases, <V,8,>
and <v§ro> tend to zero at least as fast as exp(—vi/vg) for some
constant v ) which is sufficient to Justify the neglect of the inte-
gral as ® -» @ . In summary, the places where II crosses the real

axis are as follows:

1. Crossings at Di= xco due to the "dipoles at w = + ke ,

unless W 1s real there

2. A crossing in the upward direction at Dl= 1.

3. Crossings due to zeros of Im(W), easily found by means

of equation 49.
While physical applications have been reserved for part IV, the prac-
£
ticabllity of the methods Just given can best be shown by an example.
Therefore some,of the work will be carried through for the electron
distribution function of Weibel (36), with (M/m) - @ . Weibel's

form for fo is

V2 v2
1 r z

£ (v) - e | - =5 - % (50)
o= q§¢z(2ﬂ)3; 2 2a” 2a§

= _oalion)"1/2 2/5 42
Then <V 8 >= -2ax (2x) ez@(~vz/2 aZ)

and

BN o H

<V

2 2
r >= (a.rvz/az) <S> .

Along the real  axis, equation 49 gives
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- (. exp[ (w0 = 2)%/k° ai]

Im [Wi(kz,wl)] = — X
Z Z
2 2
X [i (= - 1o - ®; 5 (51)
a a
z z
2

a
This has zeros at «, = % (1~ —%)Q and the arrow on I is up or

down according to wvhether (kECEW- mi)kz is negative or positive. The
phase of 1 + W;” at w, = X ke must be found by integration, unless
assumptions are made on @ and k such that ]Re W| is certain to
" be less than 1 there. In the latter case, Im(W), which is exhibited
in equation 51, is sufficient to determine whether the dipoles point
into the upper or lower half of the & plane. The integrals for
Re(W) can be transformed from "principal part" integrals into forms
involving the error function of imaginary argument, which is tabulated.
The necessary formulas and references are given in the next part. Having
found the real axis crossings of II and the directions of crossing, one
then findg the winding number of II with respect to the origin by
counting, say the nunmber of arrows up minus the number down on the
positive real D axis. If this number is not zero, the plasma is un~
stable with respect to waves with the value of kZ used in constructing
the diagram. Since the calculations needed to complete the analysis
are tedious (e:g. even for fixed ar/aZ many graphs of functions of
Q/kaz Would‘have to be prepared) and since Weibel's treatment seems
to be as detailed as is warranted by the physical importance of the
example, it wiil be dropped here.

No further simplifications of the dispersion relation for arbi-

trary waves propagating at an arbitrary angle to Eo’ implicit in
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equations 32, seem likely to be found unless physical reasons suggest

a preferred value for k and some likely values for the other parameters.
It is hoped that in specific examples, certain directions or magnitudes
of k will be suggested by physical arguments, or that some physical
limit, such as @ - o or pressure transverse to Bo - O can be
taken)and that the equations will then become amenable to analysis by

one of the condensed methods Jjust described.
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IV. EXAMPIES

Counterstreaming Electrons and Ions

If magnetic fields are neglected (see p.ll), instability in a
hot plasma carrying a current may be investigated via the Vliasov
dispersion relation. If the plasma is fivst in thermal equilibrium
and then an external uniform electric field is turned on and off, a
relative drift velocity Xl Wikl be established between the elec-
trons and ions. The electrons and ions can then be described by
displaced Maxwellian distributions at the same temperature T , and

the combined effective velocity distribution in a frame moving with

the ions is
£ (v) = (m/2ﬁm)3/2 exp[-m(z-gl)g/%l‘] +
(/) (/2 2 expl v/ KT

The direction for Xk most likely to yleld growing waves is along

zl . Intﬁgration over Vv and differentiation gives
m \1/2 m(v- Vl) m(v--vl)2
PEN(V) - (m=m) ——— exp | - ————— | +
0 20KT KT 2KT

(ol [
M KT % |~ KT

The minimum v of fo is where the arguments of the exponentials

are equal, that is, where

1/2 _ 1/2

(v~ ¥) (w/KT) vWKD) T T = ¢ (52a)

In terms of ¢ ]
U(v) = -2(m/KT) h(g) (52v)
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where
(o8]
1.2
n(t) = —— P J— xexp (-5%) o
\/ 2x X - £
~00
£ 1,2
1-rem (469 [ as (53)
0

The function e dt is tabulated in Jahnke and Emde (41) , and

n(ev2) is

complex argument, are available in Russian (43). The relations

O\.ﬁwr
A

o

bulated in Unscld (L2). More accurate tables, for

L R [l v /)| we(e) (54)

V=V J

and. 4 )
n'(E) = -& - e7H(1 - £9) [1 - h(g) (55)

are of interest if one wishes to study the properties of growing waves
near the threshold of instability by the use of equation 44. From the

tables, one %gnds that h(&) has only one sign change, from positive

&
to negative, at £ = 1.32 . Thus equation 52b shows the plasma is

stable only if ¢ 1is less than 1.32, which implies, through equation

1/2. This corresponds to an electron translational

52a, v, < 1.35(KT/m)

1
energy in the center of mass frame of .87 KT, recovering the results of
Jackson (44) and Buneman (24). As the relative velocity is increased
beyond the threshold of instability, the growing waves occur first at
very long wavelengths, since U(;) is small. This suggests that it

may be difficult go achieve Buneman's initial conditions where the rela-

tive velocity greatly exceeds the thermal velocity, so that the hydro-

magnetic approximation may be used to get the wavelength 1L of the most
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rapidly amplified waves, but there are as yet no waves larger than

thermal fluctuations.

Colliding Plasmas and Shock Fronts

The shock model of Parker and of Kahn mentioned in the intro-
duction will now be discussed more fully. Suppose that two identical
uniform bodies of plasma, with mean velocities + Vios collide. It
is reasonable to assume that each has had time beforehand to reach
thermal equilibrium, but that collisions may be neglected for some
time after they meet. When the region of interpenetration becomes
large enough, the double stream instability may disrupt the motion
there. It would be interesting to know the temperature range in which
instability exists, and the particles (electrons or ions) that partici-
pate the most in the oscillations. If the value of ng used to deter-
mine wi is the total number of electfons per unit voiume (from both
plasmas),kthe appropriate combined electron and ion distribution in

&
&
the region of interpenetration is

£ (v) = % (w/enr)d/? {exp [-n /2 xe] +
+ exp [—m(x~‘zl)2/2wf]} +
+ (/M) (u/25xT) 3/ 2 {exp [~M12/2KI] +

+ exp [-M(x-xl)g/EKT]}

Again taking k along Yy oo integrating over EEL , and differentiat-

ing, one obtains

fé(v) = % (m/QItKT)l/2 [S(V) + S(V"Vl)}
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where

S(v) == (vm/KT) exp(-mv2/2KT) - (m/m) Y 2(xM/KT) exp(-Mv2/2KT)

The minimum (if any) of fo(v) mist be at v = % v, , vhere

A

U = -(u/kT) [h(% e) + n(z ¢ {/n} 1/2)} : (56)

2
Again & means vl(m/KT)l/ and h is defined in equation 53. The
only zero of U as given by equation 56 is at ¢ = 2.64 , where the
second (ion) term is negligible. This supports the view that the

electrons come to equilibrium first, followed more slowly by the ions

1/2

(19,22). For wv.< 2.64(KT/m) the plasma is stable and collisions

1
are the principal thermalizing process. The transition to the
unsteble case v, >-2.6M(KT/m)l/2 where plasma oscillations are
important is smooth, however, for the quantity U(V) in equation ik

increases smoothly with increasing v, , implying very small rates of

1
growth at the threshold of instability.

An exper;ment has been performed in an attempt to verify Kahn's
and Parker's predictions on the formation of shock fronts when two
plasmas collide. Two identical beams of deuterium plasma each con-
taining about lO12 particles/cc were directed at each other along a
wniform magnetic field. The relative velocity of translation was
6xlO7cm/sec, the ion temperature approximately 45 e.v.,and the electron
temperature was known to be somewhat higher. These conditions corres-
pond, however, to ; single peaked combined velocity distribution

fo(v), and indeed no shocks or other strong interactions of the beams

were observed. The electron thermal velocity (KT/m)l/2 was at least
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2x108 cm/sec , ten times the allowable value for instability to exist

vhen v, = 6x10" cm/sec.

Later Phases of Shock Front Formation

* Equations 12 may be solved for f., and Fl’ the perturbations

1
of the electron and ion distribution functions associated with a
growing wave. It 1s possible to verify from the form of these func-
tions that when the phase velocity uw of a growing wave is near ‘5',
the minimum of fo , The ions are perturbed very little, as far as the
linearized theory can determine. Certainly u is near v , since

U(u) can be positive only on the V = 0 line from v +to the neutral
ﬁoint shown in Fig. 2. IT vy appreciably exceeds the threshold
value, electron oscillations triggered by inhomogeneities and fluctua-
tions will grow large in a few electron plasma periods and bring the
electron streams to a halt, while the ion streams remain relatively
unaffected. This gives the Kahn-Parker shock model described pre-
viously (22,2?). Kahn, however, assumed that the electrons and both
ion streams were perfectly cold, while Parker allowed only the electrons
to be hot. Uﬁless the ions also are allowed to have non-zero tempera-
ture, there is always instability. Since Buneman (24) has shown that
similar kinds of oscillations ought to produce a disordered state re-
sembling thermal motion, it is not unreasonable to assume that the
electrons converﬁ their kinetic enmergy into heat, while the ions, unaf-
fected as yet becg}Se of their greater mass, still constitute two
streams of mean velocity -+ vl , with some small initial temperature
T, . It will be shown that if the ion thermal energy exceeds

=l :
4,2x10 ~ times the ion translational kinetic energy, there is no
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instability. This condition for the ion instability is much more
stringent than the one for the original electron-electron two stream
instability. The possible wavelengths for growing oscillations turn
out to be bounded both below and above. This simplifies the estimation
of a hydromagnetic shock thickness, but the low ion temperature re-
guired for instability to exist weakens the position of plasma oscil-
lations in explaining shock fronts and "supratherﬁal electrons". (23)
If the initial ion and electron temperatures are both small, thé

3

mean electron thermal energy 5 KTe after the electrons have come to

equilibrium should equal % mv% . In the usual notation, the initial

velocity distribution integrated over Xﬂ_ is

2 “M(v-v,)
£ (v) = 2(-2';—;3’—2‘)1/2 em(—;—?—z—) + () (E%KT—. 1/2 eXp(—*—EK_—i‘__L.—) +
1 1 i *
-M(v + v )2
: <§><2ﬂmmi>l/ ? ep(— g (57)
1

For suﬁ%iciently small Ti this function has two minima, say at

V=iV, Y, f;vl . Growing waves can exist with phase velocities

P ri(v)a
U(u) = Re f ...2.(__2_:,.

vV=-u
-0

 is positive at u = + v, , otherwise not. Such waves are clearly

recognizable as electron-ion waves since their phase velocities lie

near the mirima of fo(v) in the u-plane and these minima fall

between electron and ion peaks. Moreover, one ion term in £y is

extremely small near the farther minimum. Modifying one ion peak,
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e.g., 80 as to destroy the instability there, would not apprecisbly
affect the state of affairs near the other minimum. This means that
any instability 1s an electron-ion interaction. It also suggests an
obvious generalization of the results presented here to cases where
the ion streams have different (small) initial temperatures, and
suggests halving the computational work by considering, say, only the
neighborhood of Vo dropping the last term of equation 57 . It
is easily verified, at the end of the calculation, that this approxi-
mation is justified.

The calculations are simplest using the dimensionless quantities

1/2 -1
o = (KTi/M) vy
E=¢+in= u./v:L 5 £ = v/vl s £ =V /Vl B
£ (&) = v T (vq8) , end
B © £!(x)ax 2 o)
- T - =vo W
£ W(t) = U +dv f — vy Wivgt
-0

where W is the usual analogue electrostatic potential.

In terms of these variables the dispersion relation for growing
waves of frequency «_t and wave number k is W(t) = kevi wi , and
f_ takes the form
1 LY2 o (827
a 2w’ 2

' 2
7 (5) = 2(2) Y2 exp(- 3 + -

2
Thus  (10/m) (20) /2 Ti(e) = (1- )73 exp(- 5 [1- £1° o) -

- 19080.3 ¢ exp(-1.5 £°)
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if (M/m) is taken as 1836.00 . The function ?o has two peaks
if and only if o <o , where « = .011079 . When Q=0 _ ,
cr cr cr
the ion maximum gi merges with the minimum go to form a horizontal
point of inflection (?:"é = %‘; = 0) , at a value of & designated by

E=E,. = .98182 . For a < Q. the ion maximm of f@ will be
designated as gi and the electron one as §e .

It might be expected that if « were increased from a very
small value up to the critical value acr’ the plasma would first
become stable [ ﬁ(éo) < 0] and then the second peak would disappear
(a 2 aer) . Instead, careful investigation shows that ﬁ(go) is
positive even when « is very nearly @ . > and indeed ﬁ(gcr) is
positive, being numerically equal to .2131 . This implies, by con-
tinuity, that ﬁ(go) is positive at least in some neighborhood of
&, say O £q ¢ @, 5 SO that instability persists as long as

£ (v) has two peaks. The exact structure of the V = 0 lines in the

W plane for a

"N

QEr ‘can be deduced from the charge analogy. The

e

V=0 line from +ic "starts" with T = 0 at +ico, and, from the

asymptotic form ¥W'A~l/u2, ﬁ must decrease along it as it comes doun
toward the central part of the plane. By continuity, U is positive
at both go and Ei for o Jjust a little less than acr; therefore,

the V = 0 line from i cannot end at & or &, and cannot cross

. e} i

any V = 0 line connected to them. Thus the V = 0 line from +ico

must simply curve down and end at ge, and snother V = 0 line must
run from go to gi , as shown in Fig. 5.
The structure vwhich has been established for the V = 0 line

connecting go and. Ei has important consequences. When « is close
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to - Qgr’ U is positive at both Eo and gi « This means U is
positive all along this V=0 line, or that any point on the line
represents. the phase velocity of a wave which can grow in the plasma.
The relation k = we(U) 1/2 = weV;_l(—ﬁ)l/ 2 shows then, that self-
excited waves occur for wave numbers k in the range

1/2 1/2 s rather than the more usual

o VTO(e 1Y E 2k 200 v]T [T(e )
case where k 1is bounded only above. For « close to acr , this
condition restricts k +to be approximately wevil[ﬁ(gcr)]l/2 =.46l6a%/vl.
This gives A =2x/k = 13.6 vl/a)e . Since w, is here the electron
plasma freguency Mﬁnbe?/m for one stream, this suggests a shock
thickness on a scale of length lOvl/we » rather less than Parker's
vauw,Vy@ﬁ.

The calculation above was for waves propagating along Yy o
Other directions of propagation give different fo(v), but certainly
near threshold, at least, the fastest growing waves must be along Xi .
It can be shown that Ehe sole effect of choosing k not along ¥y is
to replace vl in thé last two terms of equation 57 by (zl . 5)/k .
The effect of this replacement is clearly to reduce U at the minimum
of fo or eliminate the minimum completely, which means more slowly
growing waves or none at all along k . It seems that these other
waves will not substantially change the conclusions about shock thick-
ness, and they certainly do not relax the stringent requirement of small
Ti for instability.

As a numerical example, consider Parker's case of solar corpuscular

radiation moving at 500 kmmsec—l impinging on the outer geomagnetically

trapped plasma. Parker suggests a temperature of ].Obr °kK (19), or 10° g
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(23) which gives o = .018 or « = .057. These values are respec-
tively twipe and six times acr’ so that instability of the ions
would be absent once the electrons had thermalized. For obtaining
"suprathermal” electrons, whose mean energy is close to the original
ion translational energy, the ion instability is essential.

When o 1s indeed less than acr so that electron-ion oscillg-
tions grow, it is possible to verify Parker's assertion that the
electrons receive a good deal of the ion translational energy in the
- form of oscillatory energy. The changes in mean electron velocity and

mean ion velocity may be found from

ol fon o] [
g i leu- e)Flde} UFl d&] *

where flig) and Fl(g) are the perturbations of £ and F, expres-

AV

[

and.

e
<
|

1

8
sed in the dimensionless units. If ¢ is fairly near go , 1t may be

shown that Ave/Avi ~ 85 , or m(Ave )2 ~ LLM(AVi )2. Thus, within the
domain of linearized theory, the electrons receive about four times as

much osclllatory energy as do the ions.

Concerning the Debye Length

It was found in part IIi that in certain kinds of plasmas, the
theory based on Vlasov's equat%ons perﬁits growing oscillations of all
wavelengths. The theory is certainly not valid when the wavelength
approaches an interparticle spacing, butrI feel that it is not wholly

correct to simply cut off the oscillations when A< XD on the basis
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of Landau damping (32). Landau considered a nearly Maxwellian plasma;
furthermore a Debye length is not even defined for other plasmas.
When several streams of particles are present, it is particularly
imprudent to assume those of one stream can shield those of another.
For example, suppose Ti in the preceding example is very small, but
the electrons are heated to several times their original temperature.
One might conJjecture that the electrons can no longer shield the ion
streams from each other, since xB is greater than the wave-
electron
length vl/mi of preferentially growing ion-ion oscillations. Then
ion~icn cscillations would grow. Any instabilities, however, must be
near the electron-ion minima of fo(v) in the u plane, and hence are
clearly electron-ion interactions. For the electron peak to become
so broad and low: that the minima are near the origin and the picture

loocks like an lon-ion two stream instability, it is necessary that the

ratio of electron to ion thermal velocities
L 1/57/ 1/2

1s nearly ) /
iy = w3 (3 o] ey

3000

If, for example, & = .01, this means Te/Ti > e , which is surely
unattainable. This uncommonly large number results from the rapid
falling off of the ion distribution function Fo(v) avay from the ion

Higher ion temperatures result in more modest

®

peaks at v = % Vqe

figures.
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