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| Abstract |

Feedback stabilization is one of the most dominant issues in modern control theory.
The validity of linear control design is based on the assumption that the system
is stabilizable. With rapid broadening of control applications to complex systems
during the past two decades, the attainability of linear stabilizability sometimes has
to compromise with system constraints and affordability of distributed actuation.
The goal of this thesis is to tackle some of the problems in control of nonequilibrium
behavior and to apply the theory to active control of fluid instabilities in gas turbine
engines.

We consider two of the simplest nontrivial scenarios in local smooth feedback sta-
bilization: the steady-state case, when the linearly unstabilizable eigenvalue is zero;
and the Hopf case, when the unstabilizable eigenvalues are a pair of pure imaginary
numberS. Under certain nondegeneracy conditions, we give explicit algebraic condi-
tions for stabilizability. And when the system is stabilizable, the stabilizing feedback
can be explicitly constructed.

The problem of local smooth feedback stabilization for systems with critical unsta-
bilizable modes is closely related to bifurcation control. Under certain nondegeneracy
conditions, a steady-state/Hopf bifurcation can be turned into a supercritical pitch-
fork /Hopf bifurcation if and only if the system is locally stabilizable at the bifurcation
- point. Algebraic necessary and sufficient conditions are derived under which the crit-
icality Of a simple steady-state or Hopf bifurcation can be changed to supercritical
’by a smooth feedback. The effects of magnitude saturation, bandwidth, and rate
limits are important issues in control engineering. We give qualitative estimates of
the region of attraction to the stabilized bifurcating equilibrium/periodic orbits under
these cbnstraints.

We apply the above theoretical results to the Moore-Greitzer model in active

control of rotating stall and surge in gas turbine engines. Though linear stabiliz-
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“;a;l;ilii't‘y can be achieved hsing distributed actuation, it limits the pré,ctica.l usefulness
| dué'xto connsideration‘s of affordability and reliability. On the other hand, simple but
practically promising actuation schemes such as outlet bleed valves, a couple of air
"' injectors, and I‘nagnetic bearings will make the system loss of linear stabilizability,
thus the control design becomes a challenging task. The above mentioned results in
bifuréation stabilization can be applied to these cases. We analyze the effects of mag-
nitude and rate saturations in active stall and surge control using bleed valves and
magnetic bearings using the Moore-Greitzer model. The analytical formulas for bleed
valve actuation give good qualitative predictions when compared with experiments.
Our conclusion is that these constraints are serious limiting factors in stall control

and must be addressed in practical implementation to the aircraft engines.
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Chapt'er 1 Introduction

1.1 Background

1.1.1 A motivating example

Control theory has been applied to increasingly complex engineering systems during
the last two decades, partly due to the rapid development of cheap and powerful com-
putational hardware and software in information technology. Another reason is that
some engineering systems have been highly optimized in design over many years so
that higher performance is harder to achieve without using feedback mechanisms. For
instance, aircraft engines are very complex and high performance engineering systems
that have been developed through many decades, yet there are many limitations on
performance (see Figure 1.1). Rotating stall and surge are aerodynamics instabilities
that occur near the operating conditions of maximum engine power output. Rotating
stall is a nonaxisymmetric flow pattefn in the fan or the compressor stage rotating at
a fraction of the rotor speed, while surge is an axial oscillation of flow and pressure
throughout the engine. The inception of rotating stall and surge is typically abrupt
with a hysteresis and fully developed instabilities can damage the engine. Once ro-
tating stall and surge develop, the engine cannot recover from the instabilities and
_engine shutdown and restart are necessary. Due to the detrimental effect of rotating
stall and surge, there is a safety margin between the designed operation points and
the stall/surge line.

Active control implemented on both laboratory compressor rigs and full scale en-
gines in the past decade has demonstrated as a possible technology to mitigate the
inétabilities and enhance the performance by enlarging the safety margin so that com-
pressors can be redesigned to operate closer to the peak of pressure rise. Due to the

linear decoupling of nonaxisymmetric and axisymmetric flow disturbances, actuation
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Figure 1.1: Performance limitations in aircraft engines (Pratt & Whitney F100 En-
gine).

that only changes the axisymmetric flow and pressure will make the nonaxisymmetric
flow disturbances linearly uncontrollable. The tricky part of using such actuators is
to change the bifurcation characteristic near the stability boundary from subcritical
to supercritical, whereby the hysteresis associated with rotating stall and surge in-
ception is eliminated and the amplitude of the limit cycles are reduced. An example
of this type of actuation is a bleed valve downstream of the compressor.

To stabilize the steady axisymmetric flow against nonaxisymmetric flow distur-
bances, many actuators are needed, distributed around the annulus of the compressor.
An example of this type of actuation is an array of air injectors upstream of compres-
sor stages. Clearly simple actuation schemes such as a bleed valve have advantage
over distributed actuation schemes such as an array of air injectors in terms of cost,
reliability, and éomplexity. But the design of control laws for simple actuation is
challengihg since nonlinear couplings between the axisymmetric flow disturbance and
nonaxisymmetric flow disturbances have to be exploited in order to change the bi-
furcation characteristic. Moreover, it is even more challehging to analyze the effects
of bandwidth and magnitude and rate saturations of such actuation in that linear
analysis is not applicable.

The goal of this thesis is to develop a framework of designing controllers that

change the bifurcation characteristic near the stability boundary for a general class



; of 'finite dimensional nohline?r systems whose bifurcating modes are unstabilizable.
: vFurt.hermore, a framework for analyzing the effects of actuator limits in control of
bifurcations is established. The theory is then applied to nonlinear design and analysis

* . of active control of rotating stall and surge in gas turbine engines.

1.1.2 Preliminaries on feedback stabilization

Many systems in engineering applications can be modeled as ordinary differential
equations (OﬁES). Often it is necessary to understand the dynamics near a specific

solution. Consider the following autonomous ODE:
z = f(z), f(0)=0, z€R". (1.1)

\For any initial condition 2o € R™, we call z(zo,t) a solution of (1.1) if it satisfies the
equation with z(zg,0) = z,. We call x = 0 an equilibrium. The equilibrium z = 0
is locally asymptotically stable in the Lyapunov sense if for any e > 0, there exists a
§ > 0, such that for any zo € R satisfying ||zo|| < &, we have ||z (o, t)|| < € for any
t > 0, and lim;_, 2(xo,t) = 0. Specifically, we say the equilibrium z = 0 is globally
asymptotically stable if lim;_,, (%o, t) = 0 for every zp € R™. In this thesis we only
consider local stability.

The asymptotic stability of (1.1) is given by the Second Theorem of Lyapunov:
the equilibrium z = 0 is asymptotically stable if and only if there exists a positive
definite Lyapunov function V: R* — R, V(0) = 0 and V(x) > 0 for z # 0, such
that

. ov
Vi=—:-: =LV <0. 1.2
(@) = £ (12
where LV denotes the Lie derivative of V(x) along the vector field f(z). There
are no general analytical solutions for the partial differential inequality (1.2), that is,
there is no unified analytical procedure to generate a Lyapunov function for a nonlin-

ear system. In many cases, the local stability can be determined by the linearization
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; ‘aréund the "’equikibfium. 'The‘First Theorem of Lyapunov says that if all the eigenval-
© ues of D f(0) have negative real parts, then the system (1.1) is locally asymptotically
stable; if Df(0) has an eigenvalue whose real part is positive, then the system (1.1)
' is locally unstat{le.

A more complicated situation occurs when some eigenvalues of D f(0) have zero
real parts and all other eigenvalues have negative real parts. In this case, general
algebraic criteria of stability are not available. Nevertheless, there are two simple
cases that are-algebraically solvable. In the first case, there is a simple zero eigenvalue
and all other eigenvalues have negative real parts. Let [ and r be the left and right
eigenvectors of D f(0) corresponding to the eigenvalue 0, i.e., IDf(0) = 0, Df(0)r = 0.
Define

Q = ID*f(0)(r,r), (1.3)
C = %ZD?’f(O)(r,r,r)-l-

ID%£(0) (— (DF(0)TDF(0) + I¥1) ™ Df(0)" D2 (0)(r, 7), r) L (14)

Then the system is asymptotically stable if @ = 0 and C < 0 (see [42]); the system
is unstable if either @ # 0, or @ = 0, but C > 0. We call the case when Q = C =0
degenerate, since the stability has to be determined by 4** and 5% order terms.

In the second case there are only a simple pair of pure imaginary eigenvalues of
Df(0) and all other eigenvalues have negative real parts. Let [ and r be the left and
right eigenvectors of Df(0) corresponding to the eigenvalue iw, i.e., IDf 0) = iwl,
and Df(0)r = iwr. Define o = Re &, where & is given by (see [40])

1

a = Eng’f(O)(r, r, ) + ID*f(0) ((—Df(O))‘lDQf(O)(r, ), r)
+%w2 £(0) ((wi — D) D?£(0)(r, ), ) , (1.5)

where 7* denotes the complex conjugate of . Then if o < 0, the equilibrium z = 0 is
asymptotically stable; if a > 0, then equilibrium xz = 0 is unstable; if & = 0, then the

system is degenerate and the stability is determined by 4** and 5% order derivatives



 of the vector field.
| Consider the following system with control

z = f(z,u), f(0,0)=0, z€R", ueR", (1.6)

where u is the control input. Roughly speaking, the system is said to be controllable
if for each point in the initial set in R, there exists a control u(t) € R™, such that
the_trajeétorx reaches the target set for some ¢ satisfying 0 < ¢ < co. The concept of
controllability can be refined by specifying the initial set, the target set, and the set
of functions for allowable control inputs. For instance, for local asymptotic control-
lability, the initial set is a neighborhood of 0, and the target set is the equilibrium
z = 0. Presently, no necessary and sufficient conditions have been obtained to test
controllability. It is still an active area of research to find more necessary or sufficient
conditions of controllability. Local stabilizability via continuous feedback is defined as
the existence of a continuous feedback u = k(z) with £(0) = 0 such that z = 0 is
asymptotically stable for the closed loop system % = f(z, k(z)). For a control affine

system
&= f(z) +g(z)u, f(0)=0, (1.7)

where g(z) = [g1(z) @:(z) -+ gm(z)] and u = [ur uz --- um|T, Artstein’s
Theorem [12] states that the system (1.7) is stabilizable via continuous feedback if
and only if there exists a C' control Lyapunov function V: R* — R, satisfying
V(0) = 0.and V(z) > 0 for z # 0, such that for some open neighborhood O € R™ of
u = 0, and each = # 0, the following inequality holds:

inf %K (@) + 9(@)) = i (£ LV 4o Funly, V) <O (1)

Presently no analytic solutions are available to the parameterized partial differential
inequality (1.8). This implies analytical construction of control Lyapunov functions

is still not known in general. For a general nonlinear control system (1.6), even the
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‘véjcisténce of a smooth control Lyapunov function V(x) such that

.. OV
;Iel(fga:— < f(z,u) <0

does not guarantee a continuous stabilizing feedback. We remark here that asymptotic
contrbllability to zero does not mean stabilizability via continuous feedback because
the pointwise controllers cannot be patched together in a smooth way.

Consider the linearization of (1.6) around (z,u) = (0,0),
z = Az + Bu, (1.9)
where A = 2£(0,0), B = 81(0,0). Define
C(A,B) =span{B,AB,--- ,A" 'B}.

The linear system (1.9) is controllable if and only if C(A, B) = R". It is stabilizable
if and only if C(A, B) contains all the eigenspaces corresponding to the eigenvalues
with non-negative real parts. Clearly according to the First Theorem of Lyapunov, if
(A, B) is stabilizable, then the full system (1.6) is also locally stabilizable; if (4, B)
is unstabilizable and there exists an unstabilizable eigenvalue with positive real part,
then the full system (1.6) is also locally unstabilizable. So one of the challenging
problems of local feedback stabilization is when (A, B) is unstabilizable and all the
unstabilizable eigenvalues have zero real parts. One of the major contributions of
-this thesis is to give a.constructive solution to the following two cases: the steady
state casé, when the uncontrollable eigenvalue is 0; and the Hopf case, when the
controllable eigenvalues are a pair of pure imaginary numbers.

One of the important applications of local feedback stabilization of nonlinear sys-
tems with linearly uncontrollable critical modes is in bifurcation control. Consider

the following nonlinear system:

i = fu(z), fu(0)=0, z€R" (1.10)
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" Here pe [<e¢, €] C Ris the bifurcation parameter. Define A, = %‘(0), and assume
s-1 AM has a real eigenvalue A(u) satisfying A(0) = 0, X'(0) # 0;

©'S-2 all other eigenvalues of A, have negative real parts for p € [—e¢, €].

Then ‘there are two scenarios. The first is called a transcritical bifurcation, where
the equilibrium branch z(u) = 0 intersects with another equilibrium branch at =0
and exchanges stability (see Figure 1.2 (a)). The second one is called a pitchfork
bifurcation, v(rhere the bifurcating equilibrium branch is either stable or unstable.
We call the bifurcation a subcritical pitchfork bifurcation if the bifurcating branch
is unstable (see Figure 1.2 (b)); we call it a supercritical pitchfork bifurcation if the
bifurcating branch is stable (see Figure 1.2 (c)). By evaluating (1.10) at p = 0, and
defining @ and C according to (1.3) and (1.4), then we have

1. if @ # 0, then the bifurcation is a transcritical bifurcation (see Figure 1.2 (a));

2. if @ = 0 and C > 0, then the bifurcation is a subcritical pitchfork bifurcation
(see Figure 1.2 (b));

3. if @ =0 and C < 0, then the bifurcation is a supercritical pitchfork bifurcation
(see Figure 1.2 (¢));

4. if @ = C = 0, then the bifurcation is degenerate and has to be determined by

higher' order terms in the Taylor series expansion.

It should be pointed out that for the transcritical bifurcation and the subcritical
pitchfork ‘bifurcation, the equilibrium 2 = 0 at the bifurcation point is unstable,

while it is stable for the supercritical pitchfork bifurcation.

The other case is called the Hopf bifurcation. Assume A, satisfies

H-1 A, has a pair eigenvalues () + iw(p) satisfying A(0) = 0, X'(0) # 0, and
w(0) # 0;

H-2 all other eigenvalues of A, have negative real parts for p € [—¢, €],



(a) T_ran‘scritical Bifurcation (b) Subcritical Pitchfork Bifurcation (c¢) Supercritical Pitchfork Bifurcation

Figure 1.2: Steady-state bifurcations.
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Figure 1.3: Hopf bifurcations.

then the system (1.10) undergoes a Hopf bifurcation at 1 = 0. Namely, a continuum
family of periodic orbits emerge as p deviates from 0. If the periodic orbits are
unstable, we call it a subcritical Hopf bifurcation (see Figure 1.3 (a)); if the periodic
orbits are stable, we call it a supercritical Hopf bifurcation (see Figure 1.3 (b)). By
evaluating (1.10) at u = 0 and defining « := Re &, where @ is given by (1.5), then we

have
1. if @ > 0, then the bifurcation is a subcritical Hopf bifurcation (see Figure 1.3 (a));

2. if & < 0, then the bifurcation is a supercritical Hopf bifurcation (see Fig-

ure 1.3 (b));

3. if @ = 0, then the Hopf bifurcation is degenerate and has to be determined by

higher order terms in the Taylor series expansion.

It should be pointed out that for the subcritical Hopf bifurcation, the equilibrium
z = 0 is unstable at the bifurcation point, but it is stable for the supercritical Hopf

bifurcation.
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In some engine‘éring 'applica,tions,' such as active control of rotaﬁng stall, surge,
: ahd’ combustion instabilities in gas turbine engines, the bifurcations especially the
subcritical ones are undesirable because the limit cycle oscillations resulting from
" . the Hopf bifurcz}tions add unsteady loading to the engine parts and limit the engine
performance. So tools for feedback control of bifurcations are needed to eliminate
the bifurcations, or when elimination is unachievable, to change the bifurcation char-
acteristic in order to reduce the amplitude of limit cycles. Consider the following

system

&= fu(z,u), fu(0,0)=0, (1.11)

where £ € R" is the state, ¥ € R™ is the control input, and p € [—¢,¢] C R
is a bifurcation parameter. We assume here that when u = 0, the uncontrolled
system (1.11) has either a steady state bifurcation or a Hopf bifurcation at p = 0.
The linearization of (1.11) around (z,u) = (0, 0) is given by

& = A,r + Byu,

where A, = %‘—(0, 0), B, = %%(0, 0). If (A,, B,) is stabilizable for u € [—¢, €],
then the nominal equilibria zo(x) = 0 can be stabilized by a linear feedback and
the bifurcation is removed. If the bifurcating eigenvalues are uncontrollable and all
other eigenﬁalues are stabilizable, then the bifurcation cannot be eliminated and it is
necessary to design control laws to change the bifurcation characteristic.

To motivate the benefit of bifurcation control and the effects of actuator limits,
assume the uncontrolled system of (1.11) has a subcritical Hopf bifurcation at . = 0
and the bifurcating modes are linearly uncontrollable. Also suppose there is a hys-
teresis associated with the subcritical bifurcation. 'Figure 1.4 (a) shows the open loop
bifurcation behavior. Suppose the initial conditions are small, then as p decreases
passing p = 0, any nonzero initial conditions will lock on to the large amplitude limit

cycle. Thus the instability inception is abrupt. Due to the hysteresis, the bifurcation
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Figure 1.4: Open loop and closed loop bifurcation behavior. z-axis is the bifurcation
parameter, y-axis is the square of limit cycle amplitude A, i.e., J = A2, Solid line:
stable equilibria. Dashed line: unstable equilibria. Dashdot line: saturation envelope
formed by unstable equilibria.

parameter u has to be increased so that the system will go back to the nominal equilib-
rium branch p = 0. Now suppose there is a control law u = K (:c) such that the Hopf
bifurcation for the closed loop system is supercritical (see Figure 1.4 (b)). It is clear
-that as p decreases passing p = 0, the amplitude of the limit cycles increases steadily
from zerd, and the hysteresis has been eliminated. If the controller has a magnitude
saturation limit, then a secondary bifurcation occurs on the stabilized branch of limit
cycles. All the saturation points for different gains in Figure 1.4 (c) are denoted by
the dash-dot line, which we call the saturation envelope. For each fixed control gain,
any small disturbances will converge to the upper branch of stable limit cycles if the
system operates to the left of the intersection between the stabilized branch and the

saturation envelope. If we also include the bandwidth and rate saturation limit, the



region of stabilized branéhes'becomes' even smaller (see Figure 1.4 (d))

bne of the goals of this thesis is to investigate under what conditions a transcrit-
ical bifurcation/subcritical pitchfork bifurcation can be turned into a supercritical
" . pitchfork bifurcz‘:mtion using a feedback, and under what conditions a subcritical Hopf
bifurcation can be turned into a supercritical Hopf bifurcation using a feedback. Un-
der soine nondegenerate conditions, this is equivalent to stabilize the nominal equilib-
rium at the bifurcation point. Although the existence of control Lyapunov functions
is a necessary condition for the existence of a stabilizing feedback, it is too general
for solving our problem. Instead, we use dynamical systems theory to derive explicit
algebraic necessary and sufficient conditions of stabilizability. And we give a construc-
tive procedure of designing stabilizing feedback laws. We also consider the qualitative
effects of magnitude saturation, bandwidth, and rate limits on the extension of the

stabilized equilibria (limit cycles) by quantifying Figure 1.4 (c) and (d).

1.2 Previous Work

The goal of this thesis is to deepen understanding of local smooth feedback stabiliza-
tion of nonlinear systems, the role of feedback in bifurcation control, and the effect
of magnitude saturation and rate limits of controllers in control of bifurcations. The
application of the theory is in active control of rotating stall and surge in gas turbine

engines.

1.2.1 Loca.l feedback stabilization

The geometric structure of stabilizability of finite dimensional linear time invariant
(LTI) systems has been well known (see [44, 80]). Many techniques, such as pole
placement and solving linear algebraic Lyapunov functions, can be used to design a
stabilizing feedback. For finite dimensional nonlinear systems, the question of feed-
back stabilization becomes much more difficult and subtle. There is a huge amount

of literature on feedback stabilization (see [61, 62] and the references therein). There



are two basic ideas 'in‘desligning stabilizing control laws, both of which are originated
froﬁ Lyapunov stability theory.

| The first idea is based on Lyapunov second method, i.e., using control Lyapunov
~ functions (see [12, 18, 47, 60, 62, 64]). The advantage of this technique is that global
stabilizability can be tackled. The drawback is that the method is too general and
solving for control Lyapunov functions can be difficult for many systems. For control
affine systems, Artstein’s Theorem [12] states that the necessary and sufficient condi-
tion for smooth feedback stabilization is the existence of a smooth control Lyapunov
function. The stabilizing control law can be constructed by Sontag’s Formula [60].
For a general nonlinear control system, however, existence of smooth control Lya-
punov functions does not guarantee a continuous feedback [47], but usually yields a
discontinuous feedback. If the feedback is allowed to be time-varying, then existence
of smooth Lyapunov functions guarantees a continuous time-varying feedback [19]. In
his seminal 1983 paper [16], R. W. Brockett pointed out stabilizability via continuous
feedback is not guaranteed even if for each point in a neighborhood of the equilibrium,
there exists a smooth control law steering the system to the equilibrium. He gave an
example of nonholonomic integrator to show that a necessary condition for the exis-
tence of a continuous feedback is that the function f(z,u): R* x R — R" is onto.
Samson [59] in 1990 used a time-varying feedback to stabilize the mobile robot to
a point. Many publications subsequently appeared on stabilization via time-varying
feedback (see [53] and the references therein).

The second idea is based on the Lyapunov direct method and Poincaré normal
form theory. The basic observation is that if the linearized system is stabilizable,
then the full nonlinear system is also stabilizable by the same linear feedback. If the
linearization is unstabilizable and there is an uncontrollable eigenvalue with positive
real part, then the full nonlinear system is not stabilizable ffia a continuous feedback.
So the only challenging problem in local feedback stabilization is the critical case: all
the linearly unstabilizable eigenvalues are on the imaginary axis. In this case, the
system can be reduced to the local center manifold which is tangent to the eigenspace

associated with the unstabilizable critical eigenvalues. Normal form transformation



;is"‘then used to anaﬂyze the s#ability of the reduced system. The adyvantage of this

fnethod is fhat_ local stabilizability for a fairly large class of systems can be analyzed.
The drawback is that it is a local technique so it is not applicable to issues of global
' stabilizability.

Aeyels [7] used center manifold theory to study the stabilizability problem for
single input systems expressed by £ = f(z) + bu in a neighborhood of an equilibrium
point, but sufficient conditions for the stabilizability were given only for a class of
three-dimensional systems whose linearization has a pair of pure imaginary eigenval-
ues. Further, a very simple example was given to show that in some cases, linear
feedbacks are not sufficient to stabilize a system and nonlinear feedback are needed.
Abed and Fu [4] gave sufficient conditions for the existence of a state feedback con-
troller with vanishing linear part to alter the criticality of the Hopf bifurcation with
the bifurcated mode being linearly uncontrollable. The main assumption is that all
other modes are linearly stable. Abed and Fu [5] gave some sufficient conditions
for simple steady-state bifurcations. In [10, 32] the effects of linear feedbacks are
addressed, where sufficient conditions for the linear feedback to stabilize the critical
mode were obtained. Also, the major assumption is that the controllable subsystem
is stable and the controller set is restricted to a ball in R”.

Behtash and Sastry [15] studied a class of systems with two uncontrollable modes:
double zero with nondegenerate Jordan form, a zero and a pair of pure imaginary
eigenvalues, and two pairs of pure imaginary eigenvalues without resonance, and
some sufficient conditions of stabilizability via smooth feedback with vanishing linear
part were derived. Abichou and D’Andréa Novel [6] considers a class of mechanical
systems With a degenerate pitchfork bifurcation and stabilizing feedback is designed
using Taylor series expansion up to the 5% order terms. In Sontag and Sussmann [63],
stabilizing feedback is derived for a three-dimensional system describing a rigid body
that has two equal moments of inertia along the principle axis. The linearly un-
controllable part of the system has a double zero with degenerate Jordan forms.
In [41, 50], planar systems are considered with only one uncontrollable zero eigen-

value. In this case, conditions of stabilizability can be established for higher order



dégeneracy in the T&ylor'seri‘es expa,nSiozi due to the simplicity of the uncontrollable
‘ Inod.é.» Zaslavsky [86] studied the case when multiple complex conjugate pure imag-
inary eigenvalues are in the linearly uncontrollable subspace. Under the assumption
" -that there are no low order resonances between the critical eigenvalues, sufficient con-
ditions were obtained for the existence of linear state feedbacks such that the closed
loop system is asymptotically stable.

The local feedback stabilization is closely related to control of bifurcations in that
if the system -is locally stabilizable at the bifurcation point, then the criticality of
the bifurcation for the closed loop system is supercritical. But changing criticality is
not the only subject in control of bifurcations. Mehra [54] addressed the problem of
globally removing the steady-state bifurcations. Kang [45] studied the effects of linear
‘state feedbacks on the steady-state bifurcations with a single linearly uncontrollable
mode using the the technique of normal forms in control systems. Conditions for

different types of bifurcations are derived in terms of nonlinear invariants.

1.2.2 Active control of rotating stall and surge

One of the limiting factors of aeroengine performance is acrodynamic instability in
the compression system at high loading, typically in the form of rotating stall and
surge (see [26, 27, 34, 35, 66] for detailed descriptions). Rotating stall occurs when
a nonaxisymmetric flow disturbance devélops around the annulus of the compressor
and rotates‘at a fraction of the rotor speed [24, 21, 25, 55]. Surge is axisymmetric
relaxation oscillation of flow and pressure throughout the whole compression sys-
tem [33]. Fully developed rotating stall and surge have detrimental effects on engine
components thus must be avoided.

In 1989, Epstein et al. first proposed the idea of damping out aerodynamic in-
stabilities in gas turbine engines using active control [28]. Active control of rotating
stall refers to either stabilization of the steady a,xisymmetrié flow past the point of
péak pressure rise, which typically requires many actuators assembled around the

annulus [22, 23, 38, 58, 79], or operability enhancement, which implies alteration of
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" the criticality of the ‘bifﬁrca‘qion and elimination of the hysteresis aséocia,ted with ro-
tating stall [20, 29, 30, 49, 84]. With active control and the same stall margin, the
compressor may operate stably near the peak of the compressor characteristic, result-
" ing improvement of both operating range and performance. Experimentally there are
essentially three basic types of actuation techniques that have been used in active con-
trol on rotating stall, namely inlet guide vanes (IGVs) [58], air injectors [20, 23, 38, 79
and outlet bleed valve [13, 29, 30, 84]. In [31], sleeve valves were used to recirculate
air over the engine for active stall control, which is essentially a combination of bleed
valves and injectors.

On the theoretical end, the design and analysis of many controllers for rotating
stall and surge control are based on the model developed by Moore and Greitzer
in their seminal papers [36, 56]. The model is a set of nonlinear partial differential
equations (PDEs) for pressure rise, averaged and disturbed values of flow coefficient
as functions of time and circumferential position around the compressor. The Moore-
Greitzer model captures most of the dynamic behavior of stall and surge and is
sufficient for design and analysis of active controllers [38, 48, 51, 58]. The three
state Moore-Greitzer model is the Galerkin projection of the PDEs to the zeroth
(axisymmetric) and the first spatial harmonics. One of the attractive features of
the three state Moore-Greitzer model is that it captures the qualitative dynamic
behavior of both surge and rotating stall, and is simple enough for designing active
controllers [29, 30, 46, 49, 52].

One of the major considerations in practical implementation of active stall control
-is the complexity of sensing and actuation [1, 2, 3]. Since the rotating stall modes
a,re'rotati‘ng around the annulus of the compressor, distributed actuators are required
to achieve controllability [38, 58, 79]. For example, in [79], 12 air injectors are used
to stabilize the first and second harmonic. As the number of actuators is reduced,
the rotating stall modes may become linearly uncontrollable. For instance, in [20],
three pulsed air injectors are used and the first rotating stall mode is unstabilizable.
For bleed valve actuators located downstream, the effects of actuation is essentially

axisymmetric (nonaxisymmetric effects decay exponentially in the axial direction),
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" and the rotating stall modes are linearly uncontrollable [29, 30, 49] . In order to re-

. duce the éomplexity of the actuators, bifurcation control of rotating stall is one of

the main design tools [49]. Research has been done on the effectiveness of different
* . actuation scherqes. In [39], gain and phase margins of different controllers based on
the linearized Moore-Greitzer model are used to evaluate the effectiveness of differ-
ent aéfuation schemes. In [46], effects of bandwidth were analyzed for a class of

backstepping controllers.

1.3 Overview of Thesis

The main goal of this thesis is to understand the role of controller bandwidth, Tate
and magnitude saturation limits in control of bifurcations. To achieve this, first we
have to understand when a subcritical bifurcation can be changed to supercritical by
a smooth state feedback, which is equivalent to the local feedback stabilization of the
system at the bifurcation point. The local feedback stabilization becomes nontrivial
when the only unstabilizable eigenvalues of the linearization have zero real parts.
We consider two of the simplest scenarios in local smooth feedback stabilization:
the steady-state case, when the linearly unstabilizable eigenvalue is zero; and the
Hopf case, when the unstabilizable eigenvalues are a pair of pure imaginary numbers.
Under certain nondegeneracy conditions, we give explicit algebraic conditions for
stabilizability. And when the system is stabilizable, the stabilizing feedback can be
explicitly constructed.

Since a steady-state/Hopf bifurcation can be turned into a supercritical pitch-
fork /Hopf bifurcation if and only if the system is locally stabilizable at the bifurca-
tion point, solving local feedback stabilization problem implies that we have derived
algebraic necessary and sufficient conditions under which the criticality of a simple
steady-state or Hopf bifurcation can be changed to supercritical by a smooth feed-
back. In applications, various constraints of actuation such as magnitude saturation,
bandwidth, and rate limits have to take into account for control performance. We give

qualitative estimates of the region of attraction to the stabilized bifurcating equilib-



‘f‘i’a:/ periodic orbits under the?e constraints. It turns out the stability vbounda,ry of the

stabilized equilibria/ peribdic orbits are formed by the unstable equilibrium/periodic
orbits after the controller saturates.

We apply thf: above theoretical results to active control of rotating stall and surge
in gas turbine engines. Although distributed actuators can achieve linear stabiliz-
ability, their drawback is the question of affordability and reliability. On the other
hand, simple actuation schemes such as outlet bleed valve and magnetic bearings will
make the system loss of linear controllability. We design control laws for magnetic
bearing actuators that can change the criticality of the Hopf bifurcations of rotating
stall and surge inception using the Moore-Greitzer model. We analyze the effects of
magnitude and rate saturations in active stall and surge control using bleed valves
by deriving analytical formulas of which the bandwidth requirement is a function of
the systems parameters and the shape of compressor characteristics. These formulas
give good qualitative predictions when compared with experimental results done by
Simon Yeung. Our conclusion is that these constraints are serious limiting factors
that have to be considered in practical implementation to the aircraft engines.

The outline of the thesis is as follows. In Chapter 2, we provide the classification of
stabilizability of steady-state/Hopf bifurcations in single input nonlinear systems. We
make use of the controller canonical form for the controllable subsystem of lineariza-
tion. In Chapter 3, we classify the stabilizability of steady-state/Hopf bifurcations in
multi-input systems. We relax the linear controllability assumption in Chapter 2 to
linear »st’a,bilizab.ility, and we provide a technique without using canonical forms. In
-Chapter 4, we analyze. the effects of controller magnitude saturation by estimating
the regioﬁ of attraction to the stabilized equilibria/periodic orbits. In Chapter 5, we
analyze the effects of bandwidth, rate and magnitude saturation of bleed valve actu-
ator in active control of rotating stall in axial compressioh systems. The analytical
results are compared with experiments. In Chapter 6, we design control laws that
change the bifurcation behavior of rotating stall and surge for magnetic bearings that
modulate the rotor tip clearance. The linearly unstabilizable modes are the second

stall mode and the surge mode. And finally, we give conclusions and point out some
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b‘dssible future %il‘iréc‘tions in Chapter 7.
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Chapter 2 Feedback Stabilization: the
‘Single Input Case

We consider single input nonlinear systems with steady-state or Hopf bifurcations for
which the bifurcating modes are linearly unstabilizable. The goal is to find sufficiently
smooth state feedbacks such that the bifurcation for the closed loop system is super-
critical, and at the same time, the dynamics on the linearly controllable subspace
is asymptotically stable. We solve this problem by giving algebraic necessary and
sufficient conditions under the assumption that certain nondegeneracy conditions are
satisfied. We also give explicit construction of stabilizing feedbacks and illustrate the
theory using simple examples. This chapter is based on the paper [74].

Previous work on this problem can be found in Abed and Fu [4, 5], in which some
sufficient conditions of stabilizability were given. Those conditions are some of the
special cases described in this chapter. In contrast, the conditions in this chapter
are not only sufficient but also necessary, and the procedure for design of stabilizing

controllers is constructive.

2.1 Stabilizability of Steady-State Bifurcations

In this section we consvider the case when a nonli‘near system undergoes a steady-
state bifurcation, with the bifurcating mode being linearly unstabilizable. Under
certain nondegeneracy conditions, we derive necessary and sufficient conditions for
the existence of a sufficiently smooth state feedback such that the dynamics on the
linearly controllable subspace is asymptotically stable and at the same time, the
bifurcation for the closed loop system is a supercritical pitchfork bifurcation. We also

give explicit construction of the stabilizing controllers.
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" Consider the:following single-input system
i = fulw,w), 21

where y € R™™{n > 1) is the state variable, 4 € R is a bifurcation parameter, and
u € R is the control input. We omit the discussion of the trivial case when n = 0.
Throughout this section we assume all the assumptions are valid for g in the region

[—&, ). We make the following assumptions:
AS-1 f,(y,u) is at least C* with respect to (y,u) and C* with respect to p.

AS-2 For u = 0, there exists a nominal equilibrium solution y = yo(p) such that

Su(yo(p),0) = 0.

AS-3 \(u) is a simple real eigenvalue of %%(yo(u), 0) and satisfies A(0) = 0, %:‘7(0) #
0.

AS-4 The eigenspace associated with A(p) is linearly uncontrollable, and all other

eigenspaces are linearly controllable.

Under these assumptions, we transform the system (2.1) into a standard form by
the following procedure. First expand f,(y, u) into Taylor series around (yo(x), 0), and
use a linear transformation to linearly decouple the uncontrollable eigenspace with
the controllable eigenspaces. Then transform the linearly controllable subsystem into
the controller canonical form using linear transformation. Finally, evaluate all the

terms éxcept the bifurcating eigenvalue at y = 0. The resulting normal form is given

by

£ = dpz +qui2® + qEs + gisTu + ' geof + sy + gaau’

+ein2® + cr1afr? + crisziu + T eig0Fx + ci23a?ux + ¢1337u>

+Coon (&, &, &) + T CagzFu + cossFu® + ca33u® + hoo.t., (2.2)
I = AZ+ Bu+ §uz®+ G127 + G1azu + §oa (&, T) + GosFu + Gazu®

+h.o.t., (2.3)
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o where h.o.t denotes “'higher order terms”, z € R, Z € R*, A € R**", and B € R**!

- are given by

—a —ay - —ap —ap [ 1
1 0o --- 0 0 0

A= 0 1 --- 0 0o |, B=1|o]|, (2.4)
0 0 1 0 0

and the dimensions of other coeflicients are given by

d, 1, q11, q13, 933, €111, C113, €133, €333 € R,

q12, C112, C123, Ca33 € RY*™,

i1, 413, Gas € R,

G22 = qhy, 120 = ¢y, Co03 = Chys, G2, Go3 € RMX™,

€222, (a2 € RP*™XT,

The tensors cooo and §oy satisfy

l _ ~jk __ ~kj
0222 u,v, w E 2“ v w, Q22 u U) E q SulnF , 222 C%zm 429 = (q93,
4.k,01=1 k=1

where j, k,l=1,---,n, and J, k,lis any permutation of j, k, L.

The goal is to find a sufficiently smooth (possibly nonlinear) feedback such that
the linearly controllable subspace is asymptotically stable, and at the same time, the
equilibrium (0, 0) for the closed loop system is asymptotically stable at the bifurcation
point, i.e., at p = 0. It can be shown that if the bifurcation for the closed loop system
is a nondegenerate supercritical pitchfork bifurcation, then (0,0) is asymptotically
stable at 4 = 0; the converse is also true if certain nondegenerate conditions are

satisfied.
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" Let m(s) = [%\'3”’”1‘ - s 1]%. In the following, we denote

qfy = q12m(0), g5’ = m(0)" geam(0), G, = Gr2m(0), €335 = c222(m(0), m(0), m(0)), etc.

Define

G

451

Qg

dis + q130n, (2.5)
g5 + 3300 + gs30,, (2.6)
[0 ay Q?Z_l l+aqs[1 ap -+ ana ) (2.7)
200 ¢ - g ]+ al0 g o gt

+(g55 +2g33an)[ 1 a; -+ @n-1 ) (2.8)
cun — i, - (2.9)
g + cusn — I (@5 + G13n) — I3 11, (2.10)

5o + Clagn + C1330% — II7 (G35 + Tsm + Gs305)
~115 (g%, + diaan), (2.11)
Co5 + Coalin + Ch30l + 33305 — 105 (@55 + Gpsan + Gsay),  (2.12)

T% —4q11 7o,

where p(s) = det(s] — A) = s" + 15" + -+ + an_15 + Gn.

With these definitions, we define the degeneracy conditions as

SD-1 q11=T1=T2=a3=a2=a1=a0=0,

SD-2 gu=T1=Te=0a3=08,=0, >0, a9 20,

SD-3 qi1 =T1 =09 =0, Ty #0,



SD-4 qui £ 0, ¥y ;é 0, A,T =0, Ps (p) = 0, where Ps(-) is defined as

Ps(K) = ap + alK + a2K2 + O£3K3, (213)
where K €R.

Theorem 2.1 Ezcept for the degenerate cases, there does not exist a sufficiently

smooth feedback

u= K%+ Kz + K322 + KsZz + 37 K57 + h.o.t.,
with

Ki,K, e R>*", K, KseR, Ks=KIeR™"

such that
(i) A+ BK, is Hurwitz,
(i) At p =0, the equilibrium is asymptotically stable,
if and only if one of the following conditions holds
SU-1 g1 =‘T1 =To=a3=as=0;=0, o >0,
SU-2 Q11=T1#T2=a3=0, as >0, ap >0, A, <0,
SU-3 ¢;1.="1=0, T3 #0, ap > 0,
SU;4 g #0, T, ="y =0,
SU-5 ¢q11 #0, Ty # 0, Ay <0,
SU-6 i1 #0, T2 #0, Ay =0, Ps(p) > 0, where Ps(-) is given by (2.13).

A proof of the theorem is in Section 2.4.
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- [ Classification of stabilizability for Steady-State Bifurcations |l

Cases qu | Ty Yo Ay | a3 | a0 | a1 | a0 | As | Ps(p)
.S8S-1 | =0 . <0
SS-2 1 =0|#0 >0
SS-3 |=0(=0]| = 1 #0 >0
: | 8S-4 |[=0|=0| = =0({<0 >0
Stabilizable | SS-5 | =0[=0| =0 =0|=0|#0[>0
SS-6 |=0(=0]| = =0({>0 >0(>0
SS-7 | #0[#0| =0
. SS-8 | #£0 #0 | >0
SS-9 [ £0 #0 | =0 <0
SD-1|=0]|= = =0|=0|=0|=0
Degeneracy | SD-2 | =0 | =0 | = =0]|>0 >0|=0
Conditions | SD-3 |=0|=0|#0 =
SD-4 | #0 #0 | =0 =0
SU-1=0]|= = =0{=0(=0]|>0
{SU-2|=0|=0]| = =0[|>0 >0(<0
Not SU-3 | =0|= #0 >0
Stabilizable | SU-4 | #0 | =0 | =
SU-5 | #0 #0 | <0 .
SU-6 | #0 #0 =0 >0

Table 2.1: Classification of stabilizability for steady-state bifurcations.

In summary, the classification of stabilizability of steady-state bifurcations is given
in Table 2.1. The blank spaces imply that there are no explicit constraints on the
corresponding parameters, but they may be implicitly constrained by other columns in
the same ro§v. Cases SU-1 to SU-6 are such that there does not exist a sufficiently
smooth state feedback such that (0,0) is asymptotically stable for the closed loop
system at.p = 0; cases SD-1 to SD-4 are degenerate, i.e., we have to resort to higher
(4th and 5%") order terms to determine the stability of the closed loop system; cases
SS-1 to SS-9 are such that (0,0) can be stabilized by a smooth state feedback for
p=0. |

For the cases from SS-1 to SS-9, we can construct feedback laws such that the

closed loop system satisfies (i) and (ii) in Theorem 2.1. First, we select K; such that



A BKj; is Hurwitz, and deﬁne

p(s) == det[s] — (A+BK1)] =s" +a1s" ™" + -+ + n_15 + Gn.

The bifurcation of the closed loop system is determined by the dynamics on the center
manifold near the bifurcation point. The dynamics on the center manifold is given

by
i =dpz + Qz? + C2* + h.o.t.,

where

Q = qu+ 1K +TK? (2.14)
C = Elg(rl +2T,K) (Kg + KK + K™K +

[ 1 @ - Gy ] Q) + Py(K). (2.15)
Q = Gu+ (T + G3an)K + (B5 + Taan + Gasa) K, (2.16)

where K = 2"—;, and T, T3, and Pg(K) are given by (2.5), (2.6), and (2.13), re-
spectively. The goal is to find feedback gains such that @ = 0 and C < 0. The
construction is as follows. Let Ky = K5 = 0, and select K3 and K3 according to the

following different cases.

SS-1 Let K = 0and K3 = —[1 @ --- @p_y |G11, then we have @ = 0 and
C=05<0.

SS-2 Let K =0, then ¢ = 0. Select K3 such that

’ T, : .
a0+d_(K3+[1 a; o Op-1 ](I11)<0-

T

SS-3 We have Q = 0 for any K € R. Let K5 = 0 and select K such that

C = Ps(K) = ag + o1 K + ap K*? +a3K3 <0.
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" Note this vcan'a'lwa.yvs be achieved by letting | K| large enough because a3 # 0.

SS-4 We have @) = 0 for any K € R. Let K3 = 0 and select K such that
C= PS(K) = o + OllK+ C¥2K2 < 0.

Note this can always be achieved by letting | K| large enough because ay < 0.

SS-5 We have Q = 0 for any K € R. Let K3 = 0 and select K such that C =
o9 + a1 K < 0. This can be achieved because a; # 0.

SS-6 We have Q = 0 for any K € R For any K3 € R, C = Ps(K) has a minimum

at K = K,,, .= —2%. So we have

\ A,
C = Ps(Km) =g+ a1 K, + agKfn = _—E <0.
2

SS-7 We have Q =0 ifand only if K = — 2L, Let K = —-"—% and select K3 such that

Ty T

K.
C= Tla—?’ +ép + Ps(K) <0,

n

where
Qy = t—[l a; - &n_l]Q(K).

and Q is given by (2.16).

SS-8 We have Q = 0 if and only if K = T (—Til + v/Ay). So we choose K such
that

1 | .
K=o (=1 + VAx),
and select K3 such that

K
C = EE\/AT + éo + Ps(K) < 0,
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| Construction of Stabilizing Feedback for Steady-State Bifurcations |

K Z:'{_f—f K
SS-11{ ... 0 -[1 & Gn-1 JGu
SS-2 0 op + 2+ (K3 +[1 @ Gn-1 )G11) <0
SS-3 Ps(K) <0 0
SS-4 - Ps(K)<0 0
SS-5 Ps(K) <0 0
| SS-6 ~ 0
SS-7. —?—rlTl TI%{_;; ap + PS(K) <0
SS-8 | 5= (11 +vAx) 2y/Ay +éy+ Ps(K) <0
SS-9 — 5 0

Table 2.2: Construction of stabilizing feedbacks for steady-state bifurcations.

where

Qp = ——
. a,n

SS-9 W have @@ = 0 if and only if K = p := —

C= Ps(p) < 0.

Ar[l a,

On—1 ] Q(K).

%. Let K3 = 0 and K = p, then

In summary, the construction of feedbacks for each case is given in Table 2.1. It

should be pointed out that these conditions are at most third order scalar algebraic

inequalities that can be trivially solved.

Example 2.1 Consider the following system

Ty

Ty

2 2
Ty + 2129 + YZa,

u,

where x1,Z9,u,7 € R, and « is a parameter.

It is easy to compute by the definitions in (2.5)- (2.12), that

g1 =1, Ti=1, T,

=7 01_77‘—0(]_—‘0,

73)7 on'
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" So we consider two cases.

1.y=20. In this case, the condition SS-7 is satisfied. So by the construction

proceédure SS-7, we choose’

K,=-1, K;,= —%.1—1(_7,1 =-1, K3<0,

i.e., the feedback is given by u = —z3 — 21 + Kjz?, where K3 < 0. It is easy to

check that the dynamics on the center manifold is given by

i‘l = K3$? + h.O.t.,

so the equilibrium (0, 0) is asymptotically stable.

2. v # 0. We consider the following three cases:

i.

il.

For v > i, we have T2 — 4¢;; T3 < 0. In this case, it is easy to check the
system satisfies condition SU-5 in Theorem 2.1, so there does not exist a
sufficiently smooth state feedback such that (0, 0) is asymptotically stable.

In fact, the dynamics on the center manifold is given by
i = Qz} + Cz} +h.ot,,

where Q =1+K+~K? and K = %2 So it is clear that there does

a1

not exist a X € R such that Q = 0, and (0,0) cannot be stabilized by a

~ smooth feedback.

For v < % and v # 0, we have Y2 — 4¢1; T2 > 0. It is easy to check that
the condition SS-8 is satisfied. By the construction procedure SS-8, we

select

Ki=-1, Ky=45 (-1+vIT=4), K;<0,
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ie., the's‘tabil'izing feedback is given by

1
U= —-iL‘g-i-a (—1+\/1—4’)/) .’L'1+K31L‘%.
In fact, the dynamics on the center manifold is given by

i = Kaz3 + ho.t.,

-

so (0,0) is asymptotically stable.

iii. For v = i, then the system satisfies the degeneracy condition SD-4 and

it is inconclusive by Theorem 2.1.

2.2 Stabilizability of Hopf Bifurcations

In this section we consider the case when a nonlinear system undergoes a Hopf bi-
furcation with bifurcating modes being linearly unstabilizable. In this case, we have
to use a normal form reduction in addition to the center manifold reduction. Under
certain nondegeneracy conditions, we obtain necessary and sufficient conditions for
the existence of smooth state feedbacks such that there exists a state feedback such
that the dynamics on the linearly controllable subspace is stable and at the same
time, the Hopf bifurcation for the closed loop system is supercritical. We also give
explicit construction of the stabilizing controllers.

Consider the following single-input system

¥ = fuly,u), (2.17)

where y € R**2(n > 1) is the state variable, 4 € R is a bifurcation parameter, and
u € R is the control input. We omit the discussion of the trivial case when n = 0.
Throughout this section we assume all the assumptions are valid for u in the region

[—, ). We make the following assumptions:

AH-1 f,(y,u) is at least C* with respect to (y,u) and C? with respect to p.
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‘AH-2 Foru =90, there éxz’st;s a steady-state solution y = yo(u) such that Julyo(p),0) =
0.
AH-3 )\ 2(p) = o(p) £ iw(p) are a simple pair of eigenvalues of %(yo(,u), 0) and
 satisfy o(0) =0, Z—Z(O) # 0, and w(0) # 0.
AH-4 The éz’genspaces associated with A\ o(p) are linearly uncontrollable, and all

other eigenspaces are linearly controllable.

Under these assumptions, we transform the system (2.1) into the standard form
by the following procedure. First we expand f,(y,u) into Taylor series around
(yo(1t),0). Then we use a linear transformation to linearly decouple the uncontrollable
eigenspaces with all other controllable eigenspaces. Then we transform the linearly
controllable subsystem into the controller canonical form using a linear transforma-
tion. Finally, we evaluate all the terms except the bifurcating eigenvalues at y = 0.

The resulting normal form is given by

A . 2 2 ~ *2 ~ %
z = (dp+iw)z+ quz® + qi2|2]° + 3%z + quazu + qo22™ + a3z
* ~T ~ ~ 2 3 2 ~ 2
+¢242"u + T 33T + g3aZU + quat” + 112" + c112]|2|°z + ci13¥2
2 2 ~ 2 2 ~T ~ ~
+0114Z U+ 6122|Z| Z* + 6123$|Z| —+ 6124|Z| u+tzx C133TZ -+ C134T2U
2 *3 ~ %2 *2 ~T ~ % ~ _x
+C14a2U + C929% + 99322 + C9942 U + X7 Co33T2 + Co34TZ U
2 . S -
+eous 2 u® + c333(%, %, T) + T c334FU + csaaFu? + cuqu® +hoot., (2.18)
- S RN T S
T = A+ Bu+qn2”+ q12|z| + q1322 + quazu + q222* + QQ3IBZ*

+Goaz*u + Ga3(%, T) + GsaFu + cj44u2 + h.o.t., (2.19)
where z € C, & € R*, (4, B) is in controller canonical form given by (2.4), and

d,p,w €R, w>0,

q11, 912, 914, 922, 924, Ga4, C111, C112, C114, €122, C124, Ci44, €222, €224, €244, C444 € C,
013, €23, G34, C113, C123, C223, C234, Caaa € CH*7,

Gy = Ga2, G = Goa € CY, Gao, Gaa € R™Y, g € RM%,

_ T T _ T T = X
33 = (33,C133 = Ci33,C233 = C233,C334 = C334,q13 = Q3 € crn,
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Cazz € C™, e3g3(u, v, w) = c333(8, 0,), Gaz € ™™, G33(u, v) = gas(v, w),

| where (@, 9,) is any permutation of (u, v, w).

The goal is to find a sufficiently smooth (possibly nonlinear) feedback such that
the dynamics on the linearly controllable subspace is asymptotically stable, and at the
same time, the equilibrium (0,0) for the closed loop system is asymptotically stable
at the bifurcation point, i.e., at g = 0. It can be shown that if the bifurcation for
the closed loop system is a nondegenerate supercritical Hopf bifurcation, then (0, 0)
is asymptotically stable at p = 0; the converse is also true if certain nondegenerate

conditions are satisfied.

Define
1 $ §"2 gt
0 1 :
my(s) = , ma(s) = , Mn_1(s) = .t my(s) = m(s) =
s
0 0 0 1
For a row vector v = [ Vi Vg 0 Up ] € C'*" we define the polynomials v;(s) by

’UJ(S) = ’Umj(S), where (] =1,.-- ,n)_ We also define
'U(s) = vn(s) — ’018"_1 + ’UQS""Z et

For a symmetric matrix U = UT € C**" and sy, s € C, we define the polynomial

U(sy,82) by U(s1, s2) = m(s1)7Um(sy). We also define

p(s) :=pu(s) = det[sI— Al =s"+a;s" '+ +ay_15+ an,
Po-1(s) = " '4ms" P+ 4 an 95+ an,
(2.20)

m(s) = s+a.
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" Suppose s, si; 52 € C, we define the following polynomials:

Di(s) = qu3(s) + qap(s),

®1(s) = Qis(s) + quap(s),

Da(s) = goa(s) + quap(s),

®y(s) = Gas(s) + Goap(s), (2.21)
U(s1,82) = 2g33(51,52) + p(51)g3a(s2) + aaa(51)P(s2) + 2q44p(51)p(52),

‘ \I’(ShS;) = 2Gs3(s1,52) + p(51)Gsa(s2) + Ga(51)p(52) + 2Gusp(51)p(52),

where p(s) is defined as p(s) = det(s] — A) = s" +a1s" ' + -+ + ay_15 + 0y, and we

have used the following notation:

Goa(8) := Goam(s), Gas(s1,52) := Gaz(m(s1),m(s2)), Gza(s) := Gaam(s).

We define
M = [0 ¢4 - ¢ 'l+aull & - apa )y (2.22)
oy = [0 G231 (2wi) -+ Qo3 p-1(2wi) ]
+gl 1 p1(2wi) -+ pa_1(2wi) ], (2.23)
0= om) [0 gy o gt | +p) [0 gy o gt
+[¢134(iw)+21144p(iw)][1 a; - an_l]. (2.24)
T = o)’ [0 qua(2wi) <o guas (200) ]
+'p(—ic?)[0 341 (2wi) --- q34,n_1(2wz')]
+[q34(—iw)+2q44p(—iw)][1 p1(2wi) --- pn_1(2wz')], (2.25)
Co = ¢112421u—)Q11Q12~H{1612—Hglfn,' (2.26)

D1 = 6123(i(AJ) + 0124p(iW) — H{I(i)g(’&w) - Hf@l(zw)

. 2 .
_H§Iq12 - EqHCI)g (ZCU), (227)



. =4

. ~ 1 ‘
~T1E @, (iw) + i [q12¥ (iw, iw) — 2P (iw) Py (iw

F122

where ®;(s)(j =

Define

and
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0113(—160) + 0114p(—iw)‘— 2@, (—iw) — T gy,

1 . ) 1, _
“E(‘M + ¢13) @1 (—iw) — ﬁ‘bﬂ)?(—w), (2.28)
1 =
2933 (1w, iw) + €34 (iw)p(iw) + coaap(iw)? — 51’[5\1!(%), iw)

)
iw) + c134(—iw)p(iw)
+2¢144|p(iw) |* — T (iw, —iw) — TH &, (—iw)

(2.29)

26133(’13(.«.), —iw) + 6134(’iLU)p(—

= 1 e Nl
—T1{ @, (iw) — E(qul + g15) ¥ (iw, —iw), (2.30)

1 CNak s 1, .
—Eq)l(—zw)@Q(—zw) — %qm\lf(—zw, —iw), (2.31)

3ca33(iw, 1w, —iw) + e334(iw, iw)p(—iw) + 3caaa|p(iw) 1?p(iw)

+2¢334 (iw, —iw)p(iw) + 2cau4 (iw) |p(iw) |* + caaa (—iw)p(iw)?
~ ~ 1

T (i, —i0) — %nf B, 1) + 5 (i) Wi, )

—% (@1 (iw) + B ()] U (iw, —iaw) — &@2(—@)@*(@@), (2.32)

1 1
R i) - B i\ (i i
iw(I)Z( iw) ¥ (iw, —iw) iwq)l( iw)U* (—iw, iw)

——i@*(zw) U(—iw, —iw),

31 (2.33)

1,2), ®;(s)(j = 1,2), U(sy,s2) and U(s, s,) are defined in (2.21).

04;, = Re(F112 + Fia2),
Qp = Re O(),

o3 = Re(Fiz — Fi12),
o3' = Re(E11 + Eyp + Ep),

(2.34)
= Re(Dy + D»), = Im(Eq — En),
a% = IIII(D2 — Dl), 042 = Re(E12 — E11 - Egg)
11 12 ‘
Q;" 05
=[a%a%]’“f[mam]’“s:[a%a%]- 239
2 2
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o ey g | , . -1 T
- Let T = be an orthonormal matrix, i.e., T-' = T, such that
S tor to2 |
a; 0
o=lal & ]=|ol of|T, G2=TTaT= , (2.36)
| 0 &3
where T and é» can be explicitly calculated as
i a}? a3? T
1212 a1 11)2 12)2 ~2 112
V(08 + (@ — o)) 1/ (ad)” + (83 — o)
T = ) (2.37)
&l — adt a2 — all
@) + (@ - ad)® y(0f) + (63 — od)? |

11 22 11 _ 22\ 2
o = 27% o (% Z9 )y 1) (2.38)
2 2
11 22 11 22\ 2
a2 = .Q‘L;ﬁi’_— \/ (%) + (af2)% (2.39)
Define
~1\2 ~A9\2
. & R & R N A
a1y = (4011)% y Qo = (435)2 , Oy = Qi + Qo (240)
Deﬁne

@1 = Re<I)1(O), @3 = \Il(z'w,O), @5 = F112 + F1*22a
9, = &,(2wi), ©O4=T(—iw,2wi), © =3 "_ |6,

Fi12 and Figy are given by (2.32) and (2.33). It is clear that © = 0 if and only if
©;=0(=1,--,5).

The degenerate cases are defined as those satisfying the following conditions

Al a2 Al A2 o
HD-1 0=4;=8=01=6&{ =09 =0,
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"HD-20=dl=d =04 >0, ag=dom >0,
 HD-3O=&=&=0,8>0, ap= dim > 0,
- HD-4 ©=0, 435 >0, 45 >0, g = Gy > 0.

Note condition HD-1 implies o; =0 (j = 0,1, 2, 3).

Theorem 2.2 Ezcept for the degenerate cases, there does not ezist a sufficiently

smooth state feedback

u = Kl.'i + KQZ + .Kv32,’:|= + .[(42,'2 + K5IZ|2 + Kﬁz*2

+ K5z + Keiz* + 37 Koi + h.o.t. (2.41)
with
K, e R*" K,=K}eC, Ki=K; €C,
KseR  K;=K;eC> Ky,=KTcR»,
such that

(i) A+ BK; is Hurwitz,
(11) At p =0, the equilibrium is asymptotically stable,

if and only if one of the following conditions holds.

HU-2 ©=4 =41 =0, 42 > 0, ag > dam > 0,
HU-3 06=62=4&2=0,4>0, ap > d1m >0,
HU-4 ©6=0, 63 >0, 42 >0, ap > &, > 0.

where 63 and 62 are given by (2.38) and (2.89), respectively. &% (k = 1,2) is given
by (2.86), and &, Gom, and &, are given in (2.40).
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3

N Classification of Stabilizability for Hopf Bifurcations

Cases ) @1 ‘ @2 @3 @4 @5 CAV% (fV% OAZ% OA{% Q)
HS-1 . <0
HS-2 | #0 >0
HS-3 0 |#0 >0
HS-4 0 0 |#0 >0
HS-5 0 0 0 |#0 >0
HS-6 0 0 0 0 |#0 >0
Stabilizable | HS-7 0 0 0 0 0 |[>0] O 0 |0< < amn
HS-8 0 0 0 0 0 0 |[>0] O 0 < ap < digy
HS-9 0 0 0 0 0 [>0]>0 0< o < Gy
HS-10| 0 0 0 0 0 | <0 >0
HS-11| 0 0 0 0 0 <0 >0
HS-12| 0 0 0 0 0 0 0 |#0 >0
HS-13| 0 0 0 0 0 0 0 #0 >0
HD-1| 0 0 0 0 0 0 0 0 0 0
Degeneracy | HD-2 | 0 0 0 0 0 0 |[>0] 0 {>0]| =d9, =0
Conditions | HD-3 | 0 0 0 0 0 |>0|] 0 [|>0| O =Gy, >0
HD-4 | 0 0 0 0 0 |[>0]>0 =@y >0
HU-1| 0 0 0 0 0 0 0 0 0 >0
Not HU-2 | 0 0 0 0 0 0 |>0] 0 |>0]| >é9,=>0
Stabilizable | HU-3 | 0 0 0 0 0 |>0] 0 (>0 O > Gy > 0
HU-4 | O 0 0 0 0 |>0]>0 > Oy > 0

Table 2.3: Classification of stabilizability for Hopf bifurcations.

A proof of the theorem is given in Section 2.5.

Classification of different cases is given in Table 2.3. As before, the blank spaces in
each case imply that there are no explicit constraints on the corresponding parameters,
but they may be'i’mplici'tly constrained by other columns in the same row. Cases HU-
1 to HU-4 are such that there does not exist a sufficiently smooth state feedback such
that (0,0) is asymptotically stable for the closed loop system for u = 0; cases from
HD-1 to HD-4 are degenerate, i.e., we have to resort to higher (4** and 5%*) order
terms to determine the stability of the closed loop system; cases HS-1 to HS-13 are
such that (0,0) can be stabilized by state feedbacks at p = 0. For the stabilizable
cases from HS-1 to HS-13, we could construct the feedback explicitly such that



i A+ BK, is Hurwitz and (0,0) is asymptotically stable. We define |

B(s) == pu(s) = det[s] - (A+BK1)]=s"+ a18" 4 1S + G,
Pn-1(s) = s+ GV + -+ G - Gin-1,
(2.42)
i(s) = s+a.

K. K
Define K = —r2 =KR+z'KI,Kb::[ R},and

pliw) K;

Py(K,)) = a+ oK, + K K, + a3 K| K|, (2.43)
@ = qu+ (WK + %\I!(iw, W) K2, (2.44)
Q2 = a2+ Bo(iw)K + & (—iw)K* + ¥ (iw, —iw)| K |?, (2.45)
Qs = g+ P(—iw)K* + %\Il(—-iw, —iw)K*?, (2.46)
Q1 = du+oi(iw)K + -;—\Tf(iw,iw)Kz, (2.47)
Qs = dio+ B(iw)K + &1 (—iw) K* + U (iw, —iw)| K |?, (2.48)

where ®;(s) (j = 1,2), ®;(s) (j = 1,2), ¥(s1,52) and U(sy,s;) are given in (2.21),
and o; (j = 0,---,3) are given in (2.34) and (2.35). Then from Section 2.5 the

normal form of the dynamics on the center manifold is given by
¢ = (dp + iw)¢ + @|¢|*¢ + hoo.t.,

where o ;= Re & is given by

©; + Re {KOs}
#(0)
w18 o | (@ - miw)QK - m(-iw)@3K")

+1i3) (K" — Q2K) }+

{K5 + K7(—iw)K* + K3 (iw) K + 2Ko(iw, —iw)| K |*

?
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[0+ K76,
R
[ 1 pr(2wi) -+ Pno1(2wi) ] (Ql - m(w)Q K —m(—z‘w)QzK*)

2
| B(2d) (QlK + Q3K*> } }
W
+og + o Ky + Kb as Ky + agKbHKl,||2. (2.49)

[K4 + K7( )K + Kg(’iw, iw)K2 +

Since the cases when o < 0, & > 0 and a = 0 are corresponding to the supercritical,
subcriticél, and degenerate Hopf bifurcation of the closed loop system, the goal of de-
signiﬁg a stabilizing feedback is equivalent to finding feedback gains K;(j =1,---,9)
such that oo < 0. When such gains do not exist, then the system is either unstabiliz-
able or degenerate.

In the following, we give explicit construction of stabilizing controllers. The goal
is to choose feedback gains K7, - -+, Kg such that @ := Re& < 0. First, we select K,
such that A + BK; is Hurwitz. The construction of stabilizing feedback for the cases
HS-1 to HS-13 in Table 2.3 is given as follows.

HS-1 Let K; = 0(j = 2,3,7,8,9). Select Ky = — [ 1 @ - @p1 ]612, and
K,= - [ 1 51(2wi) -+ Pp_1(2wi) ] G11- Then we have a = ap < 0.

HS-2 Let K; =0(j =2,--,9, j #5), and select K5 such that

a=aq+ p(?(;) (K5+[1 a; ‘- an-1]§12)<0-

_HS-3 Let K; =0(j=2,---,9, j #4,6), and select K, = K¢ such that

a = o+ Re {ﬁ(Qwi) (K4 + [ 1 p1(2wi) -+ Pp_1(2wi) ] (]11)} < 0.

HS-4 Let K; =0(j =4,---,9, j #5), for any K2 K3 7é 0, select K5 such that

%&;K}{KE + [ 1 @ -+ 8pot ] (Qz — m(iw)Q: K

p(O)

—m(—z‘w)Q;K*) (QLK* — QuK) b + Py(Ky) <0
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" where Py(Kj) is given by (2.43) which is independent of K5.
CHS-5 Let K; =0 (j=5,-+-,9, j #6), for any Ky = K} # 0, select K, = K& such
that =~ '
‘ 0,K* o _ .
a = Re{m[fﬂﬁ- [ 1 p1(2wi) -+ Pn—1(2wi) ] .
(@1 - m(E)QiK - m(~iw)Q4K")

+ﬁ(?:ji) (QlK + %Q%K") ] } + P (k) <0,

where Py (Kj,) is given by (2.43) which is independent of Kj.

HS-6 Let K; =0(j =1,--+,9,5 # 2), and select K, = K3 with |K}| large enough

such that
o= ay+ o K, + KF K, + a3 K, || K, ||* <0,
KR K2 . . .
where K, := ,K=—"~=Kp+iKr,and o (j =0,--+,3) are given
K; p(iw)
in (2.34) and (2.35).
. 3 i tie |, .
HS-7 to HS-11 Letting K, = T , where T = is given by (2.37)
n lo1 lo2

such that

So we have

a = a0+a1Kb+KEa2Kb,

= ag+ 61€ + a2n+ 636% + aan’.

‘ ~1 21
HS-7 Let K; =0 (j=1,---,9,j # 2), and K = ——=-t),, K; = —~--ty,, where
201 200,
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L #1;-and top are- givén by (2.37). Then the minimum of

a=o0y+ o1 K, + KbTagKb =op + &1€ + &252

. a1
is &g = g — G < 0 when € = _a_ and n = 0, where &y, := (4 )
- . 2a2 052
a2 a2
HS-8 Let K,zO(j:l,,9,37é2), and KR=—2 t12, K[ 2 2t22, where
63
t12 ‘and tyo are given by (2.37). Then the minimum of
o =ay+ o K, + KFu K, = ag + &2 + aan?
- . & _ (@)
1sa0=a0—a2m<0When£=0andn=—2 2,Wherea2m =S
HS-9 Let K; =0(j=1,---,9,j #2), and
]
Kr | |t t 24l
K; to1 a2 -4 ’
285

where ¢;x (j, k = 1,2) are given by (2.37). Then the minimum of

a=op+ o K, + KT K, = ap + &1€ + 63n + 656 + ézn?

&t 32
isdozao—&m<0When£——— and n =

5% ~3a2 2, where &,, = G4, + Gom-
Gy

HS-10 Let K; =0(j=1,---,9,5 # 2), and K = 11§, K; = t21£, where £ satisfies
a=aqy+ o K, + K,,Tasz =g+ o?}f + &252 < 0.

Note this inequality can always be satisfied because &3 < 0.

HS-11 Let K; =0 (j=1,---,9,5 # 2), and Kg = t127, K; = 21, where 7 satisfies

a=oy+ o K, +K|,Toz2K|, =y +d%n—|— &gnz < 0.



» 41
"~ Note this ineduality can always be satisfied because a2 < 0.

CHS-12 Let K; =0 (j=1,---,9,j #2), Kr =0, and Kp, satisfy
a=oay+6;Kg <0.
HS-13 Let K; =0 (j = ,9,7 #2), Kr =0, and Ky, satisfy

CMZOZ()-F@%KI<O.

The above construction procedure is given in Table 2.2. We select K; such that
A + BK, is Hurwitz, and let Ky = K} = 0, K9 = 0. We choose K = K3, K4 = K§,
and Kj to satisfy the conditions in Table 2.2. The notations in the table are given by

50) = [1 @ - au |,
Bw) = [1 piwi) - far(2i) |,

Li(Ks) = a0+t 5%[& +B(0)dul,
Ly(Ky) = a0+Re{p((;) )[K4+p(2WZ)Q12]}
Li(Ks) = %{l{ffs-i-[l Gy --- an_l]-

(@ — m(i) Q2K — m(-iw)QBK")

O @ik - @u) | + Pals6),
Lu(Ky) = Re{ z%fz) [K4+[1 p1(2w) ﬁn_1(2wz’)]'

(@1 - m(iw)@uK — m(—iw)Q;K*)

2wz
2 ) i
PH(Kb) = ag+oK,+ KfagKb + O£3K|,||K1,”2.

It is clear that L, (Kj5) and L3(K5) are linear functions of K5, and Ly(K4) and Ly(K,)
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L
| Constructlon of Stabilizing Feedback for Hopf Bifurcations ||

K= ﬁﬁa Kr+1iK; K, = K* Ks
HS-1 0 —p2wi)g | —p(0)Gi2
HS-2 0 0 I.(K3) <0
HS-3 | 0 ‘ L2(K4) <0 0
HS-4 K 7é 0 0 L3(K5) <0
HS-5 K 7é 0 L4(K4) <0 0
HS-6 | ||K,|| large enough, Py(K}) < 0 0 0
HS-7 — 2 (tay + i) 0 0
HS-8 — iy (t12 + ito) 0 0

Krp | _|tu ti2 —2%%

HS-9 [ 5 ] - [ o ] & 0 0
HS-10 Kn=tnf, K =tnf 0 0
HS-11 KR = tlg’l’], K[ = t22’l'] 0 0
HS-12 K;=0, Ol()+OllKR<O 0 0
HS-13 Kr=0, oy + o KI<O 0 0

Table 2.4: Construction of stabilizing feedbacks for Hopf bifurcations.

are linear functions of K4. Hence the constructions HS-1 to HS-13 are explicit in
that the stabilizing controllers can be solved explicitly.

Example 2.2 Consider the following system

2 = iwz+yz?,

T = u,

where 2,7 € C, z,u,w (w # 0) € R« is a parameter. It is easy to check that for
v # 0, then

01:()’ @2—’:0, @3:77 @4275 HJHZO(j:]-,’Ll))
Q1 =7K? Qy=27K?% Qs=7K*"?, Q:=0, Q>=0.

So the condition HS-4 is satisfied. By the construction procedure HS-4, we first
select K3 = —1 and let Ky = K = 0, K7 = K = 0, and Ky = 0. Then by



' substituting all the ‘abov‘e values to (2.49), we get

& = 29KKs — 47K’ K (vK +v*K*)

27|K|? 9 o 27 KPK?
— (7K |IK|*) - ————.
i +1 0K T VIET) iw
By selecting K = +* and letting Rea < 0, we get
Ks < (44— y|* (2.50)
> T+402) M '

Hence a stabilizing feedback is given by
u=—z+ 72+ 72" + Ks|2[,

where K5 € R satisfies (2.50).
If v = 0, then the system satisfies the degeneracy condition HD-1 and it is

inconclusive by Theorem 2.2.

2.3 Robustness Issues

Robustness is one of the most important issues in control design. In this section we
discuss the sensitivity of closed loop bifurcation diagrams to control gain variations
and parametric perturbations. We also examine the robustness of stabilizability with
respect to parametric variations. We will discuss in later chapters another important
issue of robustness: the closed loop system behavior in the presence of actuator
magnitudé satur'ation, bandwidth and rate limits.

For the steady-state bifurcation case, it is clear from Seqtion 2.1 that under nonde-
generacy conditions, the bifurcation is stabilizable if and only if there exists a control

law

u= Kii + Kot + K32° + K43z + 3T K5 + h.o.t.,
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/

(a) Perturbation of Control Gains (b) Perturbation of System Parameters

Figure 2.1: Bifurcation diagram of the perturbed system in the steady-state case.

such that Q =0 and C < 0, where @ and C are given by

Q = (I11+T1K+T2K2,
1 ' i
C = =(T1+21:K) (K3+KZK+K§}"K2+[1 dy - an_l]Q)

n

+ [on + a1 K + o K? + a3K?]
where K := g—: Meanwhile, the dynamics on the center manifold is given by
& = dpz + Qz* + C2® + h.o.t..

Suppose K; (j = 1,---,5) are selected such that = 0 and C < 0. Now by
perturbing K; to K + ¢j, where ¢; are small, then generically we get Q # 0 and
C < 0. This implies that under generic perturbations of the controller gains, the
local bifurcation of the closed loop system is a transcritical bifurcation instead of the
supercritical pitchfork bifurcation of the unperturbed system. The bifurcations of
the nominal and perturbed system are given by Figure 2.1 (a). It can be seen that
a saddle-node bifurcation occurs on the bifurcated equilibrium branch in addition to
the transcritical bifurcation at p = 0.

If we fix the controller gains and allow generic parametric perturbations to the
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o systems parameters then the nominal equilibrium branch z(u) = 0 will be perturbed
; vaway and a generic blfurcatlon diagram for the closed loop system is given by Fig-

ure 2.1 (b). It can be seen that the transcritical bifurcation is broken and ceases to

*exist, but a sad@le—node bifurcation pops up on one of the equilibrium branches.

We mention here that in the above discussions we only consider generic pertur-
batiohe. Certainly there are perturbations that do not change the qualitative local
bifurcation behavior of the closed loop system, but only change the amplitude of the
bifurcation equilibrium. In practice the perturbations might not be mathematically
generic so we have to quantify the uncertainties in order to analyze bifurcation of the
closed loop system under those perturbations. Also we note here that if the pertur-
bations are small enough, then the perturbed bifurcation equilibria and the nominal
bifurcation equilibria are close so the perturbations might not have huge impact in
some practical applications, although the local qualitative bifurcation behavior is
altered by the perturbations.

We point out an important fact that stabilizability is non-robust to parametric
variations. For example, the case of SS-1 with T; = T3 = 0 can be perturbed into
case SU-4 by perturbing q;; = 0 to g1 = € # 0. This is in contrast to the linear time
invariant systems whose stabilizability is robust to parameter variations. Apparently,
the degenerate cases are non-robust: any arbitrarily small perturbations will perturb
the system into a stabilizable ione or an unstabilizable one. Also, the concept of
unstabilizability is nonrobust to parametric variations. For example, the case SU-
1 will be perturbed into SS-3 by perturbing a3 = 0 to a3 = ¢ # 0 and leaving
- other parameters unchanged. This is also in contrast to the linear time invariant case
where unstabilizebility is robust to parameter variations if the real part of one of the
uncontrollable eigenvalues is positive.

In the case of Hopf bifurcations, from Section 2.2, there exists a smooth control

law

u = F(%,2,2%)

i

K&+ Koz + Kiz* + K422 + Ks|2|? + Ke2** + Kyiz + Kgiz* + Ko(%, ) + h.o.t.,
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(a) Perturbation of Control Gains (a) Perturbation of System Parameters

Figure 2.2: Bifurcation diagram of the perturbed system in the Hopf case. The y-axis
p is the amplitude of the periodic orbits.

such that the bifurcation for the closed loop system is supercritical if and only if

a < 0, where « is given by

©: +Re{K©O3}
p(0)
[ 1 @ -+ Gpot ] (Q2 — m(iw)Q K —m(—z‘w)Q;K*)

PO) ek — @uK) }

{Ks + K7 (—iw)K* + K3 (iw) K + 2Ky (iw, —iw)|K|* +

+—
w
By + K*0y
fte { P(2wi)
[1 m@wi) - Bar(wi) | (@1 - m(iw)QuK —m(-iw)Q3K")

o :
+p(z,—c°:’) (QlK + %Q;K*) _ } + Pu(K),

[K4 -+ K7(ZLL))K -+ Kg(iw, iw)K2 +

K; . Kg - ~ .
—— = Kp+iKj, Ky = , @1, Q2, @3, Q1, and @), are given by
p(iw) K;

(2.44), (2.45), (2.46), (2.47), and (2.48), respectively. Py(K,) is given by

where K :=

PH(Kb) =og+ o Ky + KITOZQKb + OZ3K[,“K1,“2,

where a; (j =0,---,3) are given in (2.34) and (2.35).
Suppose K; (j = 1,---,9) have been selected such that o < 0, i.e., the Hopf



o bifﬁréation for the closed loop{ system is supercritical. Now we perturb‘ K;to K;+e;. If
. € is"small ‘enough, then o will remain to be negative for the perturbed system, i.e., the
Hopf bifurcation for the perturbed system is also supercritical. Thus the stabilizing
" . control law in tl}e Hopf bifurcation case is robust to gain variations. The bifurcation
diagrams for the nominal and perturbed system are given by Figure 2.2 (a).

If We fix the gains K; (j = 1,---,9), and consider a generic parametric pertur-
bation to the vector field of the closed loop system, then the nominal equilibrium
branch y(u) = 0 is perturbed away to y(u) = ya(). But there is still a supercritical
Hopf bifurcation on the perturbed equilibrium branch if the perturbations are small
enough. Therefore, the stabilizing controllers are robust to generic parametric vari-
ations in the system. The bifurcation diagrams for the nominal and the perturbed
system are shown in Figure 2.2 (b). We point out here that although the qualitative
local bifurcation behavior for the closed loop system is robust to parametric uncer-
tainties, the location of the bifurcation, the center manifold, the nominal equilibria
and the periodic orbits are all perturbed away. So in practice we have to quantify
the parametric uncertainties in order to determine the bifurcation for the perturbed
system.

We mention here that if the system is unstabilizale, then the Hopf bifurcation for
the closed loop system is also robust, i.e., the bifurcation remains subcritical under
perturbations in the control gains and the parametric variations.

We point out here that the stabilizability in the Hopf case is robust to parametric
variations, which implies that if the system is stabilizable, then the perturbed system
is also stabilizable provided the perturbations are small enough. The degeneracy
is non—robust: any generic parametric perturbations will make the system either
stabilizable or unstabilizable. The unstabilizability is also non-robust to parametric
variations. For example, all the unstabilizable cases HU-1 to HU-4 can become
stabilizable by perturbing ©; = 0 to ©; = € # 0. This is in contrast to the linear
time invariant case where the unstabilizability is robust to parameter variations if
there is an uncontrollable eigenvalue whose real part is positive.

The robustness of the closed loop system with respect to controller magnitude



o séttﬁrat’ion limits, bandwidth (and rate limits is also an important issue in any control

desfgn in éngineering applications. In control of bifurcations, these issues become
crucial in that the region of attraction to the stabilized equilibria/periodic orbits can
" . be seriously affe(fted by these constraints. In Chapter 4 and Chapter 5 we will present

a framework to quantify the effects of controller bandwidth and saturation limits.

2.4 Proof of Theorem 2.1

Consider the following feedback

u = K1 + Kor + K32® + K437 + 3T K% + hoo.t., (2.51)
with

Ki,K,eR>* K, K3;eR, Ks;=KI e€R™"

First we consider the case when K, = 0. The center manifold around p = 0 is given

by the Taylor series expansion

i = fz? + ho.t., (2.52)
By differentiating (2.52), we get

7 = 261z% + h.o.t.,

andvsubstituting the system (2.2), (2.3) and the feedback (2.51) into the above equa-
tion yields

APz’ + B(K1fy + K3)z* + -+ qua’ +--- = 0+
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- Sowe get ~ » '
B = —(A+ BK) " (BKs + du). (2.53)
‘By Sﬁbstituting‘(2.52) into (2.2), we get the dynamics on the center manifold
& = dpz + qi122 + C2® + ho.t.,
where
C = cm + (12 + g3 K1) B + qi3 K. (2.54)

Proposition 2.1 From (2.54) and (2.53), we have

C=C111*Hf§11+§—:(K3+[ 1 ‘&1 R ]511),
where
T = b+ q13an, (2.55)
Hf = [0 gy - q{’{l]-l-(hg[l a c per s (2.56)
and a;(j = 1, .-+, n) are given by
p(s) = det[s] — (A+ BK;)] = 8" +@8" ' + - + G185 + Gn,
where a; — a; -.K{ (j=1,---,n), and K, =[Ki K? --- K7].
Proof:

C = cn+(qi2+qsK1)b + qisKs
= i1 — (q12 + @3 K1) (A + BK,) 7 (BK; + ¢11) + q13K3



Y T O

- 0 )
= ¢ — (g2 + i3 Kq) (BK3 + G11) + 13K
. 0 0 1
1 @ _On-1
| an an an ]
0
1 :
= e — (12 + qusKy) | —=— K;
. an 0
1
- [ 0 gl +aqsK! -+ df5' +aqKPT ] qu
1 -
+C_L—(€I?2 +Q13K?)[ 1 a -+ Gpa ]Q11 +q13K3
n
%+ qsKY To + 13 K7 ~
= cn+ qL:QE—lKE + qi3 K3 + Q%[ 1 o Gn_1 |11
ay n
+¢I13[ 1 a -+ Gp-1 ]611—1113[ 1 ag - ap ]‘111
[0 gy -~ ¢t
S - T, _ _ .
= cn —1qu + P (Ka +[1 @ -+ Gp ]Q11) .
n

It should be noted that in the above calculations we have used that fact that KJ =
|

a; —aj, forj=1,--- ,n.
From Proposition 2.1 it is easy to get the following corollary.

Corollary 2.1 Ezxcept for the case ¢11 = Y1 = a9 = 0, there exists a state feed-
back (2.51) with Ko = 0 such that (0,0) is asymptotically stable at = 0 if and only

if either one of the following conditions is satisfied:
(i) (SS-1) ¢11 =11 =0, and ap < 0.

(ZZ) (SS-Z) g1 — 0 and Tl 7é 0,

- Now consider the cases when feedbacks with K, = 0 fail to stabilize (0,0) at 4 = 0,

i.e., we consider the cases when g3 # 0, or ¢11 = Y1 = 0, ap > 0. In this case, we

must assume K3 # 0 in the state feedback (2.51). After substituting (2.51) into (2.2)
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and ~(2.3), we su\ppose that the center manifold is expressed by the following Taylor
* series:

i = iz + Bz’ + h.o.t.. (2.57)

By using the same procedure as for the Ky = 0 case, we get

T
B = —(A+BK1)‘1BK2=K[0 e 0 1] =m(0)K,
B = —(A+BK)™ [B(Ky+ Kify + BT Ks) +Q — ﬂlQ]
0 ] 0 1 . 0 ]
1 R
= = (Ks + KK 4+ Ki"K?) Q
an | o 0 0 1
0
+ KQ,
1
—n1

where K := ;.LKl, and
n

Q = qu+qub+qas(Kib + Ks) + ] g261 + 2301 (K11 + Ko)
+gs3 (K101 + K>)?,

Gi1 + G1261 + Q13(K1B1 + Ka) + G22(B1, 1) + Gas 1 (K161 + K>)
+sa (K151 + K2)*.

o
Il

It is easy to show that K06, + K3 = a,K, and it is straightforward to show that

Q = gn+ 11K+ T2K2, (2.58)
Q = du+ (G + Gi3an) K + (@2 + @han + dszal) K2, (2.59)



" where T is given by (2.55), and T is given by

Ty = ¢33 + do30n + Q3302. (2.60)
| By égbstituting‘(2.57) into (2.2), we get the dynamics on the center manifold

& =dpz + Qz? + C2® + ho.t.,
where C = C; + C,, and

C1 = (q12+qsK1)Ba + qua(Ks + Ky + ] K5 1)
+267 g2z + Qa3 (K151 + K3) B
+ [q23B1 + 2q33( K151 + K3)) (K102 + K3 + KufBy + B KsBr),

Cy = e +cafi +eus(Kifi + Ka) + B erazB1 + crasfi(K1 B + K3)
+eras(K1 By + K2)? + cona(By, B, Bu) + B 3B (K11 + K2)
+ca33 01 (K151 + Ka)® + cas3(K161 + K3)°

= cuy + (1o + 1138n) K + (5, + Clptn + cr330;) K

+(ch35 + s + g0l + caz3an) K. (2-61)
Suppose we have selected K € R such that Q = 0, then it can be calculated that

Cr = {2 +206] g2 + qo3(K1 51 + Ka) + [q13 + q23B1 + 2433 (K181 + K2)| K1} Ba
+a13 + ga3B1 + 2g33(K1 81 + K2) (K3 + KafBi + b1 KsB)

= {q + (2m(0)" g2 + G230n) K + [q13 + (q35 + 2g3300) K] K3 } -

0 0 1 .- o |
1 o .. : -
— | | (Ks+ K}K + K{"K?) — Q
an | 0 0 0o ... 1

1 | - B =t

+os + (a3 + 2g3300) K] (K3 + K} K + K" K?)



s+ (e + 2me)E) [0 K} - K1) Q

where II7 is

From (2.61)

1
C = — (X1 +21:K) (K3+KZK+K£"K2-I—[1 G e an_l]

53

—'[ 0 23 +ahan -~ 243" + 4 ] KQ

1‘ n n ‘
+a_ {dy + (2653 + g53a.) K + [q13 + (g5 + 2g330,) K] KT'} -
: n

[1 ay - an_l]Q

1
5;(’1‘1 +271,K) (K3 + K7K + K}"K?

S1a e o |Q)- 08 +TSH0Q
given by (2.56) and II§ is given by

I3 = 2[0 ¢ - ¢ " 1+aul0 gl -+ 5]

+(g53 +2¢330,)[ 1 @y -+ ap1 |-

and (2.62), we get

where Ps(K) is given by

and

81}
a

8%)

Qs

Ps(K)=ap+ o K + a K2 + o3 K3,

_ S~

= ¢ — 7 qn,

= " +e HS ~7) ~ HS~ :

= g + c113an — I3 (@05 + G13an) — I5G11,

. .nn n 2 S (~nn ~n ~ 2
= 5 + Clastn + crzaay, — 117 (355" + @3300 + d330y,)

—I15 (s + G1sam),

nnn ~nn

O

-1 ‘ ’ nn | - A
a(T1+2T2K)(K3+KZK+K5 Kz)_[o qly - ‘I?21]Q

(2.62)

(2.63)

) + Ps(K),

(2.64)

(2.65)
(2.66)

(2.67)

= o+ Chpan + Ch3302 + C33305 — I3 (@5 + Gysan + Gizan),  (2.68)
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o Where p(s) det(sI — A) = s" 4+ a15"" Lot an-15 + ap.
The goal is to find the feedback gains such that Q = 0 and C < 0, where

Q@ = qu+T1K+TK?
c = al(rl +20,K) (Ks + K7K + K"K

+ [ 1 @ - G ] Q) + Ps(K),
and Pg(K) is given by (2.64). By letting K} = Kg" = 0, we have the following cases:

L g #0,

I-1. (SU-4) T =Ty =0, then there does not exist a K € R such that Q =0,
so the equilibrium 0 at g = 0 cannot be stabilized by sufficiently smooth
feedbacks.

I-2. (SS-7) T =0, Y1 #0, then @ = 0 if and only if K = -2 Let K, =0,
K5 =0, and select K3 € R, such that

T _ _ ~( qu Q11
C=2 {K3+ [ 1 a - ]Q(—ﬁ)}+PS <_T_1) <0.

I-3. (SS-8) T2 # 0, Ay > 0, then for @ = Oifand only if K** = = (-1, £ VA ).
Select K3 € R, such that

vAr

n

C="22 K+ [1 @ o @ | QKN+ P (KY) <0,
- where Pg(K ) is given by (2.64).
I-4. T3 # 0, Ay =0, then @ =0 if and only if K = p := . In this case,
we have C' = Pg(K). So we should check the sign of Pg (p)
(i) (SS-9) If Ps(p) < 0, then the pitchfork bifurcation for the closed loop
system' is supercritical.

(ii) (SU-6) If Ps(p) > 0, then the pitchfork bifurcation for the closed loop

system is subcritical.
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- (iil) (8D-4) If Ps(p) = 0, this is the degeneracy condition SD-4. In this
case, the i)itchfork bifurcation for the closed loop system is degener-
_ _ate, i.e., we need to refer to the higher order terms to determine the

qriticality.
1-5. (SU-5) Ty # 0, Ay < 0, then there does not exist a K € R such that
Q = 0. So the bifurcation for the closed loop system is a transcritical
_ bifurcation, and the equilibrium 0 is at 4 = 0 cannot be stabilized by

sufficiently smooth feedback.
II. ¢11 =0,T; =0, and o > 0.

II-1. YTy =0, then for any K € R, @ = 0. In this case, we have C = Ps(K). So
we need to select K such that Ps(K) < 0, where Ps(K) is given by (2.64).

(i) (SS-3) If a3 # 0, then we could select K with |K| large enough, such
that Pg(K) < 0.

(ii) (SS-4) If a3 = 0 and o < 0, then we could select K with |K| is large
enough, such that Ps(K) < 0.

(iii) (SU-2) If a3 = 0, az > 0, and A, < 0, then for any K € R, we
have C = Ps(K) > 0, i.e., the pitchfork bifurcation for the closed loop
system is subcritical.

(iv) (SS-6) If a3 =0, az > 0, and A, > 0, then by selecting K such that

"al—\/_A—a<K< —041+\/A_a’
2009 ; 2009
we have C = Pg(K) < 0.
(v) (SD-2) If a3 = 0, @a > 0, and A, = 0, the system is degenerate.
In this case, we have to refer to higher order terms to determine the
criticality of the closed loop system.

(vi) (SS-5) If a3 = as = 0, but oy # 0, then we select K such that
C=ap+a;K <0.



- (vii) (SU-I) If as = oy = a; = 0, and o > 0, then the pifchfork bifurca-
tion for the closed loop system is subcritical.

(viii). (SD-1) If a3 = a2 = oy = 0 = 0, the system is degenerate. In this
case, we have to refer to higher order terms to determine the criticality

_ of the closed loop system.
[I-2. Ty #0, then Q@ = T,K2. So Q =0 if and only if K = 0.

(i) (SD-3) If ap = 0, the system is degenerate. In this case, we have to

-

refer to higher order terms to determine the criticality of the closed

loop system.

(ii) (SU-3) If ap > 0, then by Corollary 2.1, the criticality cannot be
changed.

The classification of stabilizability in Table 2.1 and the construction of stabilizing

control laws in Table 2.2 are the summary of the above discussions.

2.5 Proof of Theorem 2.2

The following lemma gives the normal form for a two-dimensional system with Hopf

bifurcation.

Lemma 2.1 [387] Consider the following system

2 = (dp+iw)z+ Q12% + Qqlz]* + Q32

+011123 + 0112|Z|2Z + 0122|Z|22* + 02222*3 + h.O.t., (269)
where z € C. Then a normal form of (2.69) is given by

¢ = (dp + iw)¢ + &|¢*¢ + ho.t., (2.70)
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where - T A

B Q'le N |Qz|2 i 2|Qs
o w

w Jiw

a = Chip
The coordinate transformation is given by
z=(+ 01(2 + 0’2|C|2 + 0'3C*2 + h.o.t.,

where

@ Q Qs

oy, =—, O9 = ——/—, o3 = ———-
iw W Jiw

The proof of this lemma is straightforward and is omitted. The criticality of the Hopf
bifurcation in (2.69) is determined by oo = Re . If oo > 0, then the Hopf bifurcation
is subcritical and the periodic orbits bifurcating from the equilibria are unstable; If
a < 0, then the Hopf bifurcation is supercritical and the periodic orbits bifurcated
from the equilibria are stable; If @ = 0, then the Hopf bifurcation is degenerate and
the criticality is determined by higher order terms.

Consider the normal form (2.18) and (2.19) with the state feedback given by (2.41).
First we consider the case when K, = 0. By substituting (2.41) into (2.18) and (2.19),

and letting the center manifold be
i = B12% + Bol2)? + B3z + hoot., ' (2.71)
;zve get the dynamics oﬁ the center manifold
2= (dp+ iw)z + qu2® + qua|2> + qu32*® + C|z|2z +o.c.t. +h.o.t., (2.72)
where o.c.t. denotes “other cubic terms.”

C = ci1z + (qu3 + q14K1) B2 + q14 K5 + (gos + ¢4 K1) B1 + qoa Ky (2.73)



""" A normal form of (272) is given by

(= (dp + w)( + &|¢*¢ + hoo.t.,
Whefe

a=C -2 4 554, (2.74)

ww

where p.i.t. denotes “pure imaginary terms.” The goal is to calculate & as a function
of the feedback gains. We first calculate §; and (5. By differentiating the center

manifold expansion (2.71), we get
T = 20122 + Bo(22* + 22*) + 2B32*5* + h.o.t.. (2.75)

By substituting (2.18) and (2.19) into (2.75) and letting the coefficients of z? and |z|?

be zero, we get

B, = [2wi- (A+ BKy)| " (BKy+du), (2.76)
B = —(A+BK;) ' (BKs+Gi2) . (2.77)

Proposition 2.2 From (2.73), (2.74), (2.76), and (2.77), o is given by

a : Co+%(K5+ [ 1 a - Gpoq ](’1‘12)
+]3—(§L¢2J—z) (K4 + [ 1 p1(2wi) -+ Pa-r(2wi) ] 611) + p.i.t.,

where ©1 = Re ®1(0), O, = ®,(2wi), and

1(s) = qu3(s) + quap(s), (2.78)
Do(s) = gaa(s) + gaup(s), (2.79)
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‘ ' q11q12 - ~
G = fuz = — T Hfllhz - quu,

(2.80)
I7 = [0 ¢ -+ g5t ]+aqull a - any ) (2.81)
Iy = [o go31(2wi) -+ Qaan-1(2wi) ]
+gul 1 p1(2wi) - pn_1(2wi) ], (2.82)
where g3 = [ as &5 - g4 ] pi(s) (j =1,---,n) is defined as
p(s)i=pu(s) = det[s] —Al=5"+a;s" '+ -+ an_15+an,
Paoi(s) = "4 ais" P4+ apoas + apoy,
(2.83)
m(s) = s+a.
pi(s) (j =1,---,n) is defined as
B(5) :=Pn(s) = det[s] — (A+ BK;)]=58"+a15"" 4+ +8p_15 + b,
Da-1(s) = " '4as" P+ 4 Gpoas + G,
171(8) = 8§+ (_ll,

where G; = aj—Kf forj=1,---,n. Andqes j(s) is defined as g3 ;(s) 1= gasm;(s) (j =

1,---,n—1), where
11 : s sn2
‘ 0 1 :
mi(s) =] |, mos)=| |, mua(s) = . , mMy(s) =m(s) =
| 0] | 0] | 0]

Note: It is easy to see that we have p;(s) = p;(s) — K1,i(s) ( = 1,---,n), where

K, (s) == Kym;(s), for j=1,---,n.



o Proof: We prove ‘

v 90 .
(gos + K1) By + Ky = —II5 G + a3 ( wzz + q?4p(2wz) (K4 N
o : P(2w?i)
[ 1 151,(2wi) < ﬁn_l(Zwi) ] (711), (2.84)
0 0
(13 + K1) Ba + quKs = TG, + s )ﬁﬂ(LO(imp( ) .
(K5 + [ 1 @ -+ Gp ] 6_712) . (2.85)
First we show
(g23 + go1 K1) [sI — (A+ BK})] " (BKy + 1) + ¢oaKa
= = [ 0 ¢o31(s) - gesn-1(8) ] — Q24 [ 1 pi(s) - pu-i(s) ]
@23(s) + qaap(s) ¢ _
+ 23( )p(s)24 ( ) (K4+ [ 1 ﬁl(s) e ﬁn—l(s) ]QII) ) (286)

Then the identities (2.84) and (2.85) are direct conclusions of (2.86).

From page 660 of [44], if (A, B) is in controller canonical form, then

Sn_l 1 ay - Qp-—1
1 0 1 -+ apo
(sI—A)™ = — 1 s gn—1

il IR |
1 0 0 1

01 s s"2

001 - s"3

0 00 1

LO 00 0
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SR

(q23 + q2a K1) [sT — (A + BKl)]—l (BK4+ Gu) + gaa Ky

1 @ --- an—l- -K4
K 001 o G 0 )
q23(s) _I_- G245 (3) [ 1 s --- g1 ] 2 +dn
B(s) S ) )
o 0o .- 1 0
01 s s"2 - ]
K,
001 - sn3 0
—(gas +qoaky) | 1 1T o | taun |t gk
000 1 '
0
000 0
K4 \
@23(8) + qoa K1 () _ _ 0 . _
0 [ L pi(s) -+ Pa-a(s) ] f +qu
| 0 )
K,
0 .
[ 0 g231(8) + gaaKi1(s) -+ qoan-1(5) + @aKi1pn-1(5) ] : +aqu
| | 0
+q2a Ky
Q23(5) + qua K1 () g23 () + qaa K1 (s) _ ~ .
( 705) | + g | Ko+ s) [ 1 pi(s) -+ Dn-1(s) ] qu1
T [ 0 QQ3,1(8) T q23,n_1(3) ] ‘jll — (g2 [ 0 Kl,l(s) tee Kl,n—l(s) ] (jll
q23(5) + q24p(s) q23(5) + goa K1 (5) _ _ 5
(s) Kat P(s) +q?4 [ L pis) -+ Po-als) ]q”
- [ 0 go3i(s) -+ go3n-1() ] q11 — g2 [ 1 pi(s) -+ pn-a(s) ] I

- ([ 0 g31(8) -++ qo3n-1(s) ] + G4 [ 1 pi(s) --+ pu-1(s) ]) i

¢23(5) + qasp(s)

HEEISEE (K [ a6 ) J3n).




" The formula (2.86) implies (2.84) and (2.85). | n

The criticality‘of the closed loop system is determined by the sign of Rea: if

Red& > 0, then the periodic orbits bifurcated from the steady-state solution are
4 unst'éble and the Hopf bifurcation for the closed loop system is subcritical; if Red& < 0,
then periodic orbits bifurcated from the steady-state solution are stable and the Hopf
bifurcation for the closed lo‘op system is supercritical; if Re & = 0, then the bifurcation
is degenerate and the criticality is determined by higher order terms. So the goal is to
find feedback ‘gains such that Re@ < 0. The following results are direct conclusions

of Proposition 2.2.

Corollary 2.2 Ezcept for the degenerate condition ©; = ©; = ReCy = 0, there
erists a state feedback (2.41) with Ky = 0 such that the Hopf bifurcation of the con-
trolled system (2.18) and (2.19) is supercritical if and only if one of the following

three conditions holds:

(i) HS-1 ap = ReCy < 0,

(1)) HS-2 01 # 0, g =ReCy > 0,
(i1i) HS-3 O, # 0, ap = Re Gy > 0.

The construction procedures HS-1, HSf2 and HS-3 are direct results from Propo-
sition 2.2 and Corollary 2.2.

In the foilowing we consider the cases when smooth state feedbacks with Ky =0
fails to alter the criticality of the bifurcation, i.e., ©; = ©3 = 0 but ap > 0. In
this case, we have to select a nonzero K,. We substitute the state feedback (2.41)

into (2.18) and (2.19), and let the center manifold be given by
I= ,812: + ,822* + ,332’2 + ,B4|Z|2 + ,652*2 + h.o.t.. (287)
So the dynamics on the center manifold are given by

z= (dp+iw)z + Q122 + Qqlz|* + @Q32*% + C|z*2 + 0.c.t. + hoo.t,, (2.88)
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" where C = Wy + Wy + W37 and

Q1

Q.

Qs

441

We

Wy

qu + qu3br + qu(Er By + Ky) + BT gs301 + qaa (K151 + Ka) By

+14 (K11 + K,)?, (2.89)
G2 + Q1302 + qua(K1 B2 + K3) + ¢a3fr + gaa (K1 B + Ko)

+267 g3302 + g34 [( K152 + K3) o + (K181 + K2) o]

- +2gu (K1 B + K3)(K162 + K3), (2.90)

22 + 02352 + qoa (K182 + K3) + B3 g3382 + qaa (K182 + K3) 2

+qu4 (K15 + K3)?, (2.91)
(q13 + qua K1) Bs + 201 gs3Bs + gsaBr K1 s

+@34B4(K1 51 + K3) + 2q14(K1 51 + K2) K1 B4

+ [q14 + @341 + 291 (K1 By + K)] (K5 + K72 + Ksfr + 26] Kof3:)
{ [ms + 28T g33 + qaa (K181 + K3)]

+ (g1 + @348 + 2qaa (K151 + K3)] K1 } By

+ [q1a + @341 + 2qua (K11 + K2)] (K5 + K72 + Ksfy + 26 Kof3s)
(g3 + q24K1)Bs + 205 4335

43402 K183 + qa483(K182 + K3) + 2944 (K152 + K3) K155

+ [qo4 + 3452 + 2qaa (K1 o + K3)] (K4 + KBy + 5] Ko 1)

{ {23 + 265 ¢33 + gs4 (K152 + K3)]

+ [g24 + 3452 + 2004 (K152 + K3)| K1 } s

+ [CI24 + q342 + 2qua (K1 B2 + K3)] (Ky + K21 + ﬂngm)

112 + c11302 + cra (K1 B + K3) + c123B1 + cr2a(K1 By + Kz) + 267 ci33fa
+cisa [B1(K1By + K3) + Bo(Kn By + K3)] + 2c144(K1 By + K2) (K1 B2 + K)
+B1caasPBr + CosaBi (K11 + Ko) + coaa (K151 + Ko)? + 3csss (b1, Bu, B2)
+8T 33401 (K182 + K3) + 287 c33452(K1 51 + K2) + 344 (261 (K1 1 + K3) -
(K182 + K3) + B2 (K181 + K2)%) + 3caaa(K1f1 + K2)* (K152 + K3).



" A normal form of (2.72) is given by

¢ = (dp+iw)¢ + &l¢|¢ + hot.,
whe‘re

C - Q:f2+p1t _W1+W2+W3—QlQ2

a=

+ piit. (2.92)

Since the sigﬁ of o = Red& determines the criticality of the bifurcation, the goal is
to find o the feedback gains such that o < 0. The main task in the following is to
derive the algebraic relations between o and K; (j =1,---,9).

~ Now, in order to find the expreséions for Bx(k =1,---,4), we differentiate (2.87)
and utilize (2.18) and (2.19), and we get

B, = [iw—(A+ BK;)] ' BK; = Km(iw),
B = [—iw— (A+ BK))] ' BK; = K*m(—iw),

Bs = [2wi— (A+BEKy)|™ [B(K4 + KB + B KoBr) + Q1 — $1Q2 — ﬂ2Q§] ;

fs = —(A+BEKp)™ [B(Ks + KB + KB + 267 Kofa) + Q2 — £1Q2 — ﬁ2Q§] ;
where K = Eih m(s) = [ sl s 1 ]T Q1, Q2 and Q3 are given by (2.89)
;5(7;(4)), : I I bl

(2.90), and (2.91), respectively, and

@ = qu+Gubr + qu(Kib + Kz) + 3s3(B1, £r)
+ua 1 (K1 + K) + s (K + Ka)?,

Q: = Gi2+ GaPr + Guu(Ki1fy + Ks) + G + Qaa(K1f1 + K>)
+2G33(B1, Ba) + Gaa [Br (K1 Bz + Ks) + Bo(KnBr + Ko)]
+2414 (K151 + K3)(K 182 + K3).

Since 8; = Km(iw), B2 = K*m(—iw), it is easy to show that K0, + K2 = Kp(iw),
and K1ﬁ2 + K2 = K*p(—iw).
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" Now, Q; (G =1, 2,'3),@,- (j = 1,2) and Wj can be readily calculated as

@
@
Qs

@

o
Ws

g1 + 8 (i) K + —12-\Il(z'w, iw)K?,

q12 + Py (iw) K + &y (—iw) K* + ¥ (iw, —iw)| K |?,
g2z + Do (—iw)K* + %\I!(—iw, —iw)K*?,

i1 + @1 (iw) K + %\if(iw, iw)K?,

12 + Do (iw) K 4 &1 (—iw)K* + ¥ (iw, —iw)| K |2,
ci12 + [c123(iw) + craap(iw)] K

+ [e113(—iw) + c11ap(—iw)] K*

+ [eas3 (iw, iw) + casa(iw)p(iw) + coaap(iw)?] K*
+ [2¢133 (w, —iw) + c134 (iw)p(—iw)+
c134(—iw)p(iw) + 20144|p(iw)|2] |K|?

+{3c333 (tw, iw, —iw) + c334 (1w, tw)p(—iw) +
2c334 (iw, —iw)p(iw) + 2¢344(iw)|p(iw)|? +

caaa(—iw)p(iw)? + 3caaq lp(iw)lzp(iw)}lKFK,

(2.93)
(2.94)
(2.95)

(2.96)
(2.97)

(2.98)

where ®;(s), ®5(s) are given by (2.78) and (2.79), respectively. ®,(s), ®y(s), ¥(s1, 52),

and ¥(sy, s;) are defined as

4 (s)
@, (s)
W (s1,52)
U(s1, 52)

= Gis(s) + quap(s), |

= §a3(s) + Gasp(s),

)
)
= 2Q33(51, 89) + p(s1)g3a(52) + gsa(s1)p(s2) + 2¢aap(s1)p(sz), (2.101)
)

= 2§as(s1, 52) + P(51)Gsa(82) + G34(51)p(52) + 2qaap(s1)p(52).

In the expression of W3 we have used the following notation:

c133(iw, —iw) := m(iw)Teyzam(—iw),

c333(z'w, iw, —’iW) = C333(m(iW), m(iW), m(——?:(d)),

(2.99
(2.100

(2.102
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7 Now we Calcu%lat‘e‘Wl.’

W

0, + K063

{ [lI13n + 26753 + g3a(K161 + K>)]
+ [q14 + ¢34 01 + 2qus (Kr By + K))| K1} B4

- Hlaa g+ 2014 (K151 + Ko)] (K5 + K782 + Ksfr + 2] Kof2)

s + (2m(iw) g5 + g3ap(iw)) K| + [qua + (gsa(iw) + 2¢up(iw)) K] K1 } -

[-(A+ BEK;)] -

{B (K + Ko(—iw) K" + K3 (i) K + 2K (it, —iw) | K
+Q2 — f1Q2 — 52@3} + [q14 + (g34(iw) + 2qaap(iw)) K] -
[Ks + K7(—iw)K* + K3 (iw) K + 2K, (iw, —iw)| K |?]
=757 [05(0) + (2m(i) asm(0) + 454 (0)p(i)) K]

+ [q1a + (gs4(iw) + 2quap(iw)) K] (K1(0) + p(0)) } -

[Ks + K7(—iw)K* + K; (iw) K + 2Ko(iw, —iw)|K|?] +

{ [Q13_+ (2m(iw)"gz3 + g3ap(iw)) K| + [g1a + (gaa(iw) + 2qusp(iw)) K] K1 } -

0 1 .. o |
- . . - . (Qz - 1Q2 — ,BzQ;)
0 0 .- 1

[®1(0) + K'¥(iw, 0)] [Ks + K7(—iw)K* + Kj (iw) K + 2Ko(iw, —iw)| K |?]

{ ﬁ_(lfﬁ [013(0) + (2g53(iw, 0) + g4 (0)p(iw)) K

+(q14 + (g3a(iw) + 2ga4p(iw)) K) K1(0)] [ 1 @ - 8 ]
;[0 ‘I%s q?gl]—2m(z’w)T[0 Qs e q;g—l]K
—p(iw) [ 0 by -+ a5’ ] K — [qua + (g3a(iw) + 2qaap(iw)) K] -

[0 K1 K|} (@- 50~ 5:03)

20) [Ks + K7(—iw)K* + K3 (iw) K + 2Ky(iw, —iw) | K |?]
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‘%@1'+‘K93 . )
{25 [ a o o]
~lon + (au(i0) + 20 @)K [ 1 31 - s |
"_"[0 gty - q?llg—i]—-2m(iw)T[0 gy - qggl]K
fp(iw)[o Gy o qé‘Il]K‘
= [q14 + (g34(iw) + 2qa4p(iw)) K] [ 0 Ky - K77 ] } '
(@2 - 5102 — 5:05) + pit
_ 61_;(%@3 (K5 + Kr(—iw)K* + K3 (i) K + 2Ko(iw, —iw)| K |?]
O +KOy[ )
P aa]
~ [+ (@54(i) + 200 K] [ 1 a1 - aps |
—lo gy o @] -m) [0 g - gt | K
—p(iw) [ 0 g - gt ] K} (Q2 — 51Q2 — ﬂzQ;) +pit
_ % [ + For(iw) K 4+ K () K + 2Ky (oo, —i0) | P

+ [ 1 @ e By ] (Q2 — m(iw)QuK — m(-iw)Q;K*) ]
— (F + T K) (Qs - m{iw) QoK — m(—iw)Q3K" ) +pit,

where ©; = Re ®;(0), ©3 = ¥(iw, 0), [T is given by (2.81), and 1 is given by

¥ = 2m(w)T [ 0 gl -+ g%t ] + p(iw) [ 0 g -+ @ ]
+ (g5 (iw) + 2q44p(iw)) [ Loa - @ar ] . (2.103)
So we get
K ' .

+ [ 1 @ -+ @Gpy ] (Q2 —m(iw)@Q K — m(_ZUJ)Q;K*) ]
— (O + 1K) (Qa — m(w)QaK — m(~iw)Q3K*) + pist. (2.104)
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7 Now we calculate 'Wg.’

W, = { [qés + 2ﬂ§TQ33 + g34(K1 > + K3)]

-t lg2a + g5 + 29ua(K1 Bz + Ks)] K1} s

+ [g24 + gs4B2 + 2qua(K1 B2 + K3)) (K4 + K1 + B Kof1)
= {[g2s + (2m(—iw)Tgss + gaap(—iw)) K*]
g4 + (g34(—iw) + 2gaa(—iw)) K] K1 } -

[20); — (A+BEKy)|™ [B(K4 + K1By + BT KoBr) + Q1 — BrQ1 — ﬁng]
+ [g24 + (gs4(—iw) + 2q44p(—iw)) K*] (K4 + K11 + B{ Kof1)

_ IT;LT)T){Q%(M) + (2m(—iw)T gsgm(2wi) + gsa(2wi)p(—iw)) K*
+ (g2 + (gaa(—iw) + 2q4ap(—iw)) K*] (K1 (2wi) + p(2wi)) } -
[K4 + Ky(iw) K + Ko(iw, iw) K?]
+ { [g2s + (2m(—iw)T gs3 + gaap(—iw)) K*]

+ [q2a + (q_34(—z'w) + 2qu4(—iw)) K*| K1} -

(2wi)™! | (1 @ - e
1 : ) - 0 1 Qp—9
{ m o [ 1 2wi -+ (2wi)™ ! ] i
| ] 1 ] | i 0o o0 -- 1
(01 - (ui2 )
- 0 0 ' 1 ¢ (Ql — @1 — ﬁzQ?,)
00 --- 0
L d 7
= 1?21‘—0—25 [®2(2wi) + U (—iw, 2wi) K*] [K4 + K7(w) K + Ko(iw, iw) K?]

+{ﬁ_(élw_i)[q23 (2wi) + (2¢s3(—iw, 2wi) + ¢34 (2wi)p(—iw)) K*
+(gaa + (g34(—iw) + 2quap(—iw)) K*) K1 (2wi)] -

[1 P(2wi) -+ Ppo1(2wi) ] - [ 0 g¢o31(2wi) --- ng,n_l(sz’)]
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'}_ém(—i‘;‘?)T [ 0 Q33,1.(2uv’i) o g33n-1(2wi) ]K* |
(i) [ 0 guua(@wi) - aana Qi) | K
— [g24 + (g34(—iw) + 2q44p(—iw)) K] -
[ 0 Ky1(2wi) - Kqpo1(2wi) ] } (Q1 — i@ — ﬁzQé‘.)

_ 62+ K64 , N2

= T 0w [Ks + K7(iw)K + Ko(iw, iw) K?]

O, + K*0, o _ _
+{2ﬁ(2—wz)_ [ 1 p1(2wi) -+ Pp-1(2wi) ]

— [g24 + (g54(—iw) + 2q44p(—iw)) K] -
([1 ;i) - paca2wi) ]
+ [ 0 Ki1(2wi) ---Kip-1(2wi) ] )

—[0 maewi) - guans(wi) ]
—2m(—iw)T[0 33,1 (2wi) -+ sz (2w0) ]K*
—p(—iw)[O a1 (2wi) -+ a1 (2wi) ]K}
(@ - 5101 - 5:03)

_ 92_?2.1_(_*)@_4 [Ku + Kn(iw) K + Ko iw, iw)K? +
[ 1 p1(2wi) -+ Pn1(2wi) ] '

/'\

m(iw) Q1 K — m(— z‘w)Q;K*) ]
(Hgf +17K*) (Qr - m(iw) Qi K - m(-iw)Q3K")

where O, = &,(0), O, = ¥(—iw, 2wi), IT¥ is given by (2.82), and II¥ is given by

M = 2m(-iw)7 [ 0 quoa(2wi) - gaooa(2wi) |
+p(—iw) [ 0 g341(2wi) -+ gaan—1(2wi) ]
+ [gaa(—iw) + 2qup(—iw)] [ 1 pi(2wi) -+ pn_1(2wi) ] . (2.105)
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h Sowe get © o+
W, = ,% [+ Krliw)K + Koiw, 1)K
+[1 mwi) - paa(wd) | (@ - ) @K - m(-w)QK") |
— (¥ + I K*) (Q1 — m(iw)Q K — m(—iw)QgK*) . (2.106)

Define Gy (K, K*) and Gy (K, K*) as

Gu(K,KY) = — (I +TK) (@ — m(iw) QK — m(—iw)Q3K")
— (¥ + ¥ K (Ql — m(iw) Q1K — m(—iw)Q;K*)
| '—Qz,lf2 + W, (2.107)
Gu(K,K*) = ReGgy(K,K*), (2.108)

where Q1, Qs, Q3, Q1, Q2 and W are given by (2.93), (2.94), (2.95), (2.96), (2.97),
and (2.98), respectively. From (2.92), (2.98), (2.104), (2.106), and (2.107), we get

_ Qgg(Tfj@_s | K5 + Kr(—iw) K" + K (iw) K + 2Ko(iw, —iw)| K
1@ o dan | (@ - mlw)QeK — m(-iw)Q3K") |
%J(%f%% (K + K (iw)K + Kolio, iw) K
+ [ 1 §1(2wi) -+ Po1(2wi) ] '

(Ql — m(iw)Q K — m(—z’w)Q;K*) ] 4 Gu(K,K*) +pit.  (2.109)

Now the goal is to find feedback gains such that & = Re& < 0. The construction
procedure HS-4 and HS-5 in the above section is clear from (2.109). If ©, =0 (j =
1,---,4), then we have

a=Red = Gg(K,K*). (2.110)
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" where G a(K,K%) is g-iveh by (2.108). The interesting feature of the ekpression is that

. & is only a function of K and K* if ©;=0(j=1,---,4). The goal in the following

is to calculate the explicit expressions of G g (K, K*) as a function of K and K*. We

*claim that the following identities are true:

Mm(iv) =
Mm(-iw) =
M m(iw) =
M m(—iw) =
Mim(iw) =
Mm(—iw) =
Mfm(iw) =

Mm(—iw) =

where ®;(s)(j = 1,2), ®;(s)(j =

Proof: We calculate ¥ m(iw).

Mm(iw) =

{[0 03

= (13-1(tw) + q14Pn—1(iw)

% [@1(iw) — i Tm &, (0) — O],

_% [®1(—tw) — ¢ Im ®,(0) — ©4],

——— [@aiw) - O],

— L (@y(—iw) — 03],

3wi

1 o

o [P (iw,w) — O3],
1 . .

- [¥(iw, —iw) — O3],
1 .

— [P (iw, —iw) — O4],
1

e [ (—iw, —iw) — B4],

1,2), (s1,s,) and ¥(sy, s;) are given in (2.21).

(,’;w)n—l

s ]}

q?§1]+q14[1 ay
W

_ 1_1(; {[m3(iw) + 1ap(iw)] — [13(0) + q1ap(0)]}

_ % [®1(iw) — i Im @, (0) — ©].

Note we have used ©; = Re ®;(0) in the last step. The case for II¥fm(—iw) is the

same.
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" Now we calculate Hfm(zw)

M) = {0 @i - gmai(2wi) |
| [ (i)t |
B [ 1 p1(2wi) -+ pu_1(2wi) ]} o
1

=+ [(iw)" *qas1 (2wi) + - - + (iw)éhs,n—z(%;i) + o3 n—1(2wi)]
a4 [(iw)" ™ + (1w)"2py (wi) + + -+ + (i) P—2(2wi) + Pr—1 (2wi)]
= gl [(w)"2 + (2wi) (i)™ 3 + - 4 (2wi)" 2] + - + g
+goa { [(6w)" " + (2wi) (iw)" 2 + - - - + (2wi)" Y]
+a1 [(iw)" 2 + (2wi) ()" > + -+ 2wi)* %] + -+ + an_1 }
= gy [2(wi)* 7 — ()" ] 4+ g5y
+g2a { [2(2wi)™ ! — (i)™ ] + a1 [2(2wi)™ % — (iw)"?] + -+ + @n-1 }

= 2¢93,n-1(2wi) — ga3n—1(iw) + ¢24[2pn—1(2w3) — Pp—1(iw)]
_ q23(2wi) — g23(0)  gos(iw) — g23(0)

= 2
2wi iw
+qa4 (2 : p(%?w_i p(0) _ p(iw)i; p(O))
1

= — [By(2wi) - By (iw)] = '—% [@2(iw) — O]

Note we have used the fact that @ = ®9(2wi) in the last step.
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IR Now we’ ca]cula't‘e H? m(f”:w)'

T m(—iw)

{[O Q31 (2wi) - 423,n—1(QWi)]
[ (—iw)™1 ]
+q24 [ 1 p(2wi) - pp_1(2wi) ] } Ciw
1

(i)™, (2wi) + -+ + (—it)ga5,0-2(208) + g1 (203)
oa | (i)™ o+ (—ie) "2y (i) + - + (—it)pa-a(2wi)
+Pn—1(2wi)]

0 [(—iw)"‘2 + Qwi)(—iw)" 3 4 -+ (2wz')""2] +ootat
o] [ (i)™ + (28) (—iw) 2 4 -+ (2wi)"

[ (=) (28) (=) -+ (200)7F et an )

N U -
dh | 2wy G 4

{ [:3,'(2”)“ + %“"“””‘1} T E(M)’H + %(—iw>"“2]
ot }

§QQ3,n—l(2w’i) + %ng,n_l(—z'w) + g3 Epn_l(zwi) + %pn_l(_z-w)]
: (2 (20~ (), (i) = q23(o))

i (2 ) =) ploie) = p(0)>

1 . . 1 :
%[@2(2(4)’&) ~ &y (—iw)] = T30 [®2(—iw) — O] .

Note that we have used the definition O = ®;(2wi).
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Sk . Now we "calculate' H:,ffm(zw)

M m(iw)

{2m(iw)T [0 ¢

+ (g34(iw) + 2quap(iw)) [ 1 o

g5 ' ] + Gasp(iw) [ 0 g3

% (g3 (i) + 2qu4p(iw)) [p(iww) — p(0)]

%mwwpwmm

%mmwy@y

]

o]}

(i)t

w

1

%)‘ {lgs3(iw, iw) — gaa(iw, 0)] + gaap(iw) [ga4(iw) — g34(0)]}

qéifl]

Note we have used the fact that ©3 = ¥(iw, 0) in the last step. Calculating II¥m(—iw)

is the same. Now we calculate TT¥m(iw).

M m(iw)

{Qm(—iw)T [ 0 g¢s33.1(2wi)

+p(=its) | 0 gaaa(2wi)

[2m(—iw)"gss + p(—iw)gsd] | 2

+ [g34(— i) + 2q14p(—iw)] (2P 1 (2wi) — Pr1(iw)]

g33,n—1(2w1) ]
¢34,n—1(2w3) ]

-+ [gaa(~iw) + 2gaap(—iw)] [ 1 p(2wi)

(2wi)"—?

1
0

Pn—1(2w1) ] }

L

(iw)™2 |

1
0

(tw)" !

w
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2 ﬁ{[ﬁq@(-—@, 200i) + p{—it0) a3 (209)] — [20s5(—i, 0) + P(—it) s (O)]}

(23, ) + (=)o) — [2na(—0,0) + (i) asa (O]}
| 22)=2(0) _ pi) =200

2wi W

-+ [(1134(;22“’) + 2qup(—iw)) '(2

= i [ (—iw, 2wi) — ¥ (—iw, iw)] = —;1(; [¥(—iw, iw) — ©4].

Now we calculate [IZm(—iw).

Him(-iw) = {2m(-)7[ 0 guoa(wi) - gags(wi) |
+p(—z'w)[0 9341 (2wi) - Q34,n—1(2wi)]
+[Q34(-iw)+2q44p(—z’w)][1 p(2wi) .- pn_l(Qwi)]}‘
[ (—iw)m ]
1
uir=? | [ (ciw)r2
. \T . . 1
= [2m(—iw)"gs3 + p(—iw)gs4] 3 . +§ .
0 | 0

+ [gaa(—iw) + 2quap(—iw)] [gpn_l(%}i) + %pn_l(—iw)

= 2+ {2, 200) + p(—i) g (20
~2g55(~i0,0) + (i) s O]}
g A 2ass( i, —i) + p(—iw)goa(~i)]
—[2g33(—iw, 0) + p(—iw)gs4 (0)]} -

+% [g34(—iw) + 2qup(—iw)] (2  pwi) —p(0) | p(-iw) — p(O))

2w1 —Ww
1 . . . 1 o
- ﬂ [‘II('""'wa 2“)7') - \Il(—zw, —Zw)] = —ﬁ [\I’(—Z(U, —zw) - @4] .
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" Now we-calculate éHl(K , K*).

Gu(K,K*) =

(0 + 1K) (G — (i) @K — m(—iw) Q3K")
— (¥ + 7 K*) (Q1 — m(iw)QuK — m(—iw) Q3K )
Qle

Q1Q2

+ W5+ p.i.t.

+ M m(iw) KQy 4+ M m(—iw) K*Q3 + I m(iw) KQ;
+H2 m(—iw) K* Q3 + T m(iw) K*Q; + 11 m(—iw) | K Q3
I m(iw) | K [2Qq + T m(—iw) K*2Q% — (I + T K) @,

— (I + T K*) Q1+ W3 + piit.

H(K,K*) — % [QH + @, (iw)K + %\Il(iw, z'w)Kz] :

[12 + P2 (iw) K + &1 (—iw)K* + ¥ (iw, —iw)| K|?]

+%<I>1(iw)K [g1 + @a(i0) K + &1 (—it) K* + U (i, —iw) | K 7]
—%@ﬂ—iw)K* [}y + B3 (—iw) K* + &} (iw) K + U (—iw, iw) | K[?]
-;&@2@@1{ [qu + By (iw)K + —;—\I/(iw, z'w)K2]

—ﬂ%(—zw)K [q22 + @} (iw)K + 5\11 (zw,zw)Kz]

1
+E\If(zw, iw)K2 [Q12 + q)g('LUJ)K + (I)l(—’l:LU)K* + \If(z'w, —’L(U)IK|2]

T
—E\Il(zw, —iw)|K|* -

(g, + ®3(—iw) K* + &} (iw) K + ¥*(—iw, iw)| K |?]

1
, '—,—\Il(z'w, —iw)|K? [qu + @4 (iw)K + —;-\If(z'w,z'w)Kz}

| ——\Il( iw, —iw) K*2 [q§2 + @5 (iw) K + %‘If*(iw, iw)Kz]

3w
— (07 + I¥ K) [612 + &y (iw) K + &1 (—iw) K* + U (iw, —iw)|K|2]
— (I + 11 k) [611 + & (iw)K + -;-\if(z'w, iw)K2] + Ws + p.it.
H(K,K*) + Cy + D1K + Dy K* + E1 1 K? + Ep5|K|* + Epp K*?
+Fi12| K|°K + Fi|K|*K* + p.it.,



77
~ie., wehave

Gu(K,K*) = H(K,K*)+ Py(K,K*) (2.111)
4Whevre
- *
H(K,K*) = 'i—(;(@l + 03K) (Q5K* — Q2K)
1 1
+;,,-(; (@2 + @4K*) (QlK + §Q§K*) , (2.112)
Py(K,K*) = Cy+ DK+ D;K*+ E;1 K? + Epp| K|
+EpK*? 4+ Fi15|K|’K + Fi|K|?’K* +pit.,,  (2.113)
and

Co = ciz2— E‘hﬂhz - H{{lflz - Hgliu,
D, = cras(iw) + crop(iw) — TH O, (iw) — TH &, (iw)
2
—TH Gy — — 11D (i
3 Q12 inu 2(%0),
Dz = 6113('—2'(1))4- 6114p(—iw) - H{I(I)l(—’iUJ) — Hfijn

1 . . 1 ., .
_E(QII + ¢15) @1 (—iw) — =05, P2(—1w),

w1
. 1 _pge.. .
B = 2c3(iw, iw) + co34(iw)p(iw) + coaap(iw)? — §H§I\Il(zw, iw)
= 1 o : :
~TT17 @y (iw) + % (129 (iw, w) — 284 (iw)Ps(iw)] ,

Ejy, = 2c133(iw, —iw) + c134(iw)p(—iw) + c134(—iw)p(iw)
| +2¢1da|p(iw) [ — TTH W (iw, —iw) — TE®, (—iw)

~ . 1 N . .
—Hf@l(lw) - E(qul + ¢i2) ¥ (iw, —iw),

1 ) . . 1, . .
E22 = —i—wq)l(—u())q)z(—'LW) - E;Eq22\1.j(_zw) —'LU)),
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Fiin = 30333(@,@, —iw) + ca34(tw, iw)p(—iw) + 3caaa|p(iw) [*p(iw)

42334 (1w, —iw)p(iw) + 2344 (iw) [p(iw) |* + 304 (—iw)p(iw)?
—E¥ (iw, —iw) — %Hf\il(iw, iw) + —Z-bq)l(—iw)\lf(iw,iw)
o @) + B (i) Wi, —i)
_alu—i%(—qu*(iw, iw), (2.114)
Fip = —iq);(—iw)\ll(iw, —iw) — %@1(—1'(,0)\1!*(—1'(4), w)
-—-?)—jj—z:(b;(iw)\ll(—iw, —iw), (2.115)

where ®;(s)(j = 1,2), ®;(s)(j = 1,2), ¥(s1,52) and ¥(sy,s;) are given in (2.21).

3 K
Letting Py (K, K*) := Re P(K, K*), and K, = [ R
K;

} , then we get
Py(K,) = ap+aiKr+?K;+ o' K2 + 203  KrKy
+05° K} + (a5 Kr + 05 K1) (KR, + K7)

= og+ ale + KbTO{sz + Ongb”Kb”z. (2116)

where Define

ol = Re(Fii2 + Fiz), o2 = Re(Fia2 — Fiia),
o = Re Oy, all = Re(Ey; + Eip + Ex),
ol =Re(Dy + D;), a2 =1Im(Exn — En),
o =Im(D, — Dy), 22 =Re(Ez — E1; — Fa),

(2.117)

and

i1 12 :
alz[al oz2] 0y = |:a2 Gy :| 'a3=[a1 a2] (2.118)
1 %o ’ 3 “3 |- )



""" By combining (2:109), (2.111) and (2.112), we get

L+ K
= 9%(5)"% [Ks + Kr(—iw) K* + K7 (i) K + 2K (iw, —iw)|K[* +

[ o ] (@ - m(w) QK — m(-iw)Q5K")
+Zi,(—u(j) (@K™ - QzK)]

62 + K*94 . . . )
W [K4 + Kq(iw) K + Ky (iw, iw) K* +
[‘1 p1(2wi) -+ Py (2wi) ] (Ql —m{iw)Q K — m(—z’w)Q;K*)
p(2wi 1
| P(2wi) (Q1K+ —QSK*) ]
w v 3 v
+ap + o K + K;fongb + agKbHKsz + p.i.t. (2.119)

Define o := Re &, then we have -

©; + Re {KO3}
p(0)
(1@ - an | (@ mw) QoK — m(—iw)Q3K")

2O (Qsr - uk) |

iw
60, + K*6,
+Re{ P(2wi)
[1 5wi) - Fus(wi) | (@1 - m(iw)QuK — m(—iw)Q5K")
+’ﬁ(2wz‘) (Q1 K+l o K)]}
W 3

+ap + ale + KEOAgKb + a3Kb]|Kb”2- (2120)

{K5 + K7(—iw)K* + K3 (iw) K + 2Ky (iw, —iw) |K|* +

-+

[K,; + K7 (iw) K + Ko(iw, iw)K? +

The goal is to find control gains such that o < 0. We have already discussed the cases
when ©; # 0 (j =1,---,4). In the following we assume ©; =0 for j =1,--- ,4. In

this case, we have
a = Py(K)) = ap + oy K, + KX 0o K, + 03K, || K3 |2

If a3 # 0, we have the following two cases:



" e if o) # 0,*thén let'vKI =0 and KR
enough.
o if a2 # 0, then let K = 0 and K;

~enough.

—ksgnai, we have a < 0 for k large
gnag g

—ksgnaj, we have o < 0 for k large

This explains the feedback construction HS-6 in the previous section.

t11 t
Now suppose a3 = 0, then let T' = " "2 be an orthonormal matrix, i.e.,
. lor ta2
T-1 =T7, such that
as 0
wm=lat & ]=|ol |7 G=TTaT=|" . (2121)
&
where T can be explicitly calculated as
i al? al? 7
12)2 A1 11)2 12)2 ~2 _ 11)2
(23?)” + (& — 3') (03%)" + (63 — ')
T = , (2.122)
&l — of! 63 — ol
@l + (@ —ad)? /() + (6 - ad))? |
all 4+ 22 all — 22\ 2
all 4+ 22 11 22\ 2
@ = - % _ (O‘z - % ) + (ad2)% (2.124)
Define
~112 ~ 9212
. o . o . .
Uim = —1) 2m = (4})2 y Om = Qi + Q2. (2125)
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R ¢
Letting K, =T , where T is an orthogonal transformation satisfying (2.121),
v I
then the expression of & in (2.116) becomes

a = ao—!-ale—l—Kfasz+a3Kb||K1,||2

= o+ 61€+ a2n + aie + adn’. (2.126)

So the cdnstruction procedures HS-7 to HS-13 in the previous section are clear

from (2.126).
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&

Chapter 3 Feedback Stabilization: the
Multi-In‘put Case

Classification of stabilizability is obtained for multi-input nonlinear systems possess-
ing a simple steady-state or Hopf bifurcation with the critical mode being linearly
uncontrollable. Stabilizability is defined as the existence of a sufficiently smooth
state feedback such that the bifurcation for the closed loop system is supercritical,
and in the meantime, the linearly stabilizable modes are locally asymptotically sta-
ble. Necessary and sufficient conditions of stabilizability are derived under certain
nondegeneracy conditions. Explicit construction of stabilizing feedbacks is obtained
for the cases when the system is stabilizable. This chapter is based on the paper [75].
The derivation in this chapter does not depend on the controller canonical form as in
the previous chapter. Also, in this chapter, we relax the assumptions in the previous
chapter by allowing uncontrollable but stable eigenvalues in the linearization.

This chapter is é generalization of the results in the previous chapter. No previous
work has been done on stabilization of bifurcations in multi-input systems. So all the

results in this chapter are new.

3.1 Stabilizability of Steady-State Bifurcations

In this section we consider the case when a nonlinear system undergoes a simple
steady-state bifurcation, with the critical mode being linearly unstabilizable. We
classify the stabilizability of the bifurcation by providing necessary and sufficient
conditions.

Consider the following nonlinear multi-input system

U= fuly,w), (3.1)
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‘where y € R**l(n > 1) 1s the state variable, 4 € R is a bifurcation ﬁarameter, and
‘ u € R™ (mr > 1) is the control input. We assume n > 1 in this paper since feedback
stabilization for the case when n = 0 is trivial. Throughout this section we assume
“all the assumptipns are valid for p in the region [—f,i]. We make the following

assumptions:
AS-1 f,(y,u) is at least C* with respect to (y,u) and C* with respect to p.

AS-2 For u = 0, there exists a nominal equilibrium solution y = yo(u) such that

Fu(yo(p), 0) = 0.

AS-3 A(u) is a simple real eigenvalue of %(yo(u), 0) and satisfies A(0) = 0, %(0) #
0.

AS-4 The eigenspace associated with A(u) is linearly uncontrollable, and all other

eigenspaces are linearly stabilizable.

Under these assumptions, we transform the system (3.1) into a standard form by
the following procedure. First expand f,(y, ) into Taylor series around (yo(1),0),
and use a linear transformation to linearly decouple the unstabilizable eigenspace from
the stabilizable eigenspaces. Then we evaluate all the terms except the bifurcating

eigenvalue at g = 0. The resulting system is given by

& = dpz+ g’ + iz + q3uz + 7 g + 37 gosu + u gssu + c1117°
—I—cnz:i::c2 + 113Uz + BF cro08 s + L crogur + ul czaus + co90(, i, )
_ +02§3(i, Z,u) + co33(Z, u, u) + c333(u, v, u) + hoot., (3.2)
T = AZ+ Bu+ §ua? + Guiz + §izux + G20 (3, T) + Go3(E, u) + Gas(u, u)
+h.o.t., ' (3.3)

where z € R, Z € R*, (A, B) is stabilizable, and all the coefficients are real tensors
with appropriate dimensions. We assume the tensors have symmetric properties if
two or three subscripts are the same, for example, g9 = ¢, c;g;iii:juk = c%’;;fczi;,uk,

for any Z € R*, u,€ R™,i,5 € {1,--- ,n},and k € {1,--- ,m}.
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- ’*’v '.The goal is to find a éufﬁqiently smooth feedback with Taylor series expansion
- u=Kii + Koz + Ksz® + KqZz + Ks5(Z, %) + hoo.t,
and
Ky, K, € R K, Ky € RPX Ky € Rmxnxn,

such that the giynamics on the linearly stabilizable subspace is asymptotically stable,
and at the same time, the equilibrium (0, 0) for the closed loop system is asymptot-
ically stable at the bifurcation point. For the simple steady-state bifurcation, this is
equivalent to the supercriticality of the bifurcation. We claim that the stabilizability

of the bifurcation is not changed by a state feedback.

Claim 3.1 The stabilizability of the bifurcation cannot be changed by sufficiently

smooth state feedbacks that vanish on the nominal equilibria.

Proof: Suppose the system (3.1) is stabilizable, then there exists a sufficiently smooth
state feedback u = Hy(y) satisfying Hy(yo(1)) = 0, such that the equilibrium y =
yo(0) of the system

¥ = fu(y, Ho(y))

is locally asymptotically stable at the bifurcation point u = 0. Let H;(y) by any
éufﬁciently smooth map R™ — R™+! satisfying H; (yo()) = 0, then for the system

’g = fﬂ(ya v+ Hl(y))7

the feedback v = H(y) := Ho(y) — Hi(y) is a stabilizing feedback.
" On the other hand, if we assume the system (3.1) is not stabilizable, then for any

sufficiently smooth state feedback, say u = Hy(y) with Hy(yo(n)) = 0, the equilibrium
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Z/,i:‘ yo(0) of the ‘*sys;tem

9= fuly, Ho(y))

is not locally asy}nptotically stable at the bifurcation point 4 = 0. Now suppose there
isa suﬂiciently smooth feedback Hi(y) : R™ — R**! that changes the stabilizability
of (3.1), i.e., the system

y = fﬂ(y7v + Hl(y))

is stabilizable, that is, there exists H(y) : R™ — R*"! such that the system

¥ = fuly, H(y) + Hi(y))

is locally asymptotically stable at the bifurcation point 4 = 0. But this implies
the original system (3.1) is stabilizable with the feedback v = H(y) + Hi(y), which

contradicts the assumption. |

Since the system (3.1) is linearly unstabilizable, the linearization of the dynamics
near the nominal equilibrium at the bifurcation point is not asymptotically stable by
any state feedback. So we must consider the nonlinear stability of the system. If
the vector field is sufficiently smooth and all the hyperbolic eigenvalues are stable,
then Theorem 3.2.2 in [37] states that the system is locally asymptotically stable
if and only if the dynamics on the center manifold is locally asymptotically stable.
bur approach of classification of the stabilizability‘ relies on the this theorem. First,
we ﬁse a linear feedback v = K;Z such that A + BK; is Hurwitz, then we reduce
the system on the center manifold. We choose other feedback gains such that the
dynamics on the center manifold of the closed loop system is asymptotically stable.
If the dynamics on the center manifold truncated after the 3" order terms is unstable
for all possible feedback gains, then we conclude that the system is unstabilizable. If

the stability has to be determined through higher (4** and 5™) order terms, then we
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sgiy the system is dégenerate.‘ In the rest of this section we first define constants that

-~ are needed for the classification of stabilizability, then we state the main theorem.

The derivation of the main result and feedback design are in Section 3.3.

Without loss of generality, we assume that A~! exists. If not, then we use a

feedback u = v + Ko# such that A + BK, is invertible, and the stabilizability does

not change by Claim 3.1. Define

T,
Ty

8 %)}

= qu3+ q12(—A)"'B, (3.4)
= BT(—A)Tgn(-A4)"'B + g3

42 (BT (-4) g + (- 4)B] (5.5)
= can+q(-4) " . (3.6)

Since Yo = YI € R™* ™ there exists an orthonormal matrix U € R™ ™ such that

Denotem = {1, 2, ---

TZ = UTTIU = Dlag[ ,i.%, T%, ey, ?72-"' ] ) (3'7)
T, = T1U=["Ar% 12 ... ﬁn], (3.8)

m}, and define index set [; (j =1,---,4) € m as

-

L = {iem;i*g>0}, (3.9)
L = {iem; Tg<o}, (3.10)
I = {ie_m_; Ti =0, Tﬁ;éo}, (3.11)
Iy = {z'Em; Ti=Ti=0 - (3.12)

It is clear that LN ;=0 (i # 4, t,j =1,--+,4),and ; U, U I3 U I; = m. Define

K, =

qun =

Ps(K) =

) ) . T

f1 12 tm P
U[_?ﬁ .- _m] L ifL=I=0,  (3.13)

N2
(1) -
i1 — & ) .
i€ Ul AT

ap + oK + KTy K + o3(K, K, K), (3.15)



where - - %

84}

8%)

Qg
v C\!g(X,K Z)

a3t(X: Y'? Z)

To(X,Y)

where X,Y, Z € R™.
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cuz('—A)__lB + cus + qu2(—A) 'Yy
+a1,(—A) ™" [2g22(—A) 7' B + gas]
% (a2 + 0gy)

BT (—A)™e190(—A) B + BT(—A)Tey93 + c133
+q2(—A)" - Ty + [2BT(—A) Tqa + q53] (—A) 7171,
% [03:(X, Y, 2) + as(X, Z,Y) + a3(Y, X, Z)

+o3(Y, Z, X) + a3(Z, X,Y) + a(2,Y, X)],
cooz((—A)'BX, (—A)"'BY, (-A)"'BZ)
+ecos((—A)'BX, (—A)"'BY, Z)

+eps3((—A) 7 BX,Y, Z) + cs33(X, Y, Z)

+XT [2B"(=A) T g + 433] (-4) 7' T(Y, Z),

di3 + G12(—A) ' B,

Gn((—A)7'BX,(—A)"'BY) + gx»((-A)"'BX,Y)
+d33(X, Y),

If g1y #0, I = I; = 0, but I # 0, then define

Ky =U, & €R™1, f:z;:{ 21y

$i.
—2L qel,

0, 1€ 1.

If g1 #0, I = I3 = 0, but I, # B, then define

K, =

B el
UG, &eR™, g=¢ M
0, icl,.

If g1 =0, and I, = 0 or I, = 0, then we define K = 0.

(3.16)

(3.17)

(3.18)

(3.19)
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. o, . -
Now let fi, ---, f; be a set of basis of Ker ! , then any K, € Ker ! ,

V Tg T,

we have K, = FX, where F = [ fi fo - fi ] € R™ and X € R™*!. Define

gy = o+ oK+ KITGZQK(, + a3(Kb, K, Kb) € R, (3.20)

Q1 = [C\!l + ZKEQQ + 30!3(Kb, Kb)] F e Rle, (321)
agy = FT oy +303(Kp)] F € R, (3.22)
(X, X, X) = as(FX,FX,FX) e RXX (3.23)

Let V € R be an orthonormal matrix such that

Gy = o,V =|at & - &l | (3.24)

Qo = VTag,,V:Diag[al d%m dl2 ], (3.25)

2ry

Let1={1,2, ---, I}, and define index sets [;; (j =1,---,4) €l as

L, = { i€l; &%,>0}, (3.26)
Iy = { iel ai <0 } (3.27)
L, = { 1 €1 OA{%T =0, &'i'r 7& 0 } , (328)
Ly = {iel a,=ai,=0} (3.29)
Define
dor = 00r — ), (@) (3.30)
i€y, 4055.,.

With above definitions, the classification of stabilizabi’lity for steady-state bifur-

cations is given by the following theorem.

Theorem 3.1 A complete classification of stabilizability of simple steady-state bifur-
cation is given in the diagram below. Each of the cases is a full path on the tree in

the diagram.



11—12--73 -0 ©

I3 =0, 20, #0 @

g #0 1375@ qu>0® Ps(K,) <0 &
| L=I=0, #0 1111<0 14:@<PS(Ka):0 ©
' 11 =0 Ps(K,) >0 ©
[ =13 =0, #0 Q11<0® Ty # 0
: Gin>06
Q11:Ol—>a0201——>T1=0K >l——‘a3r?é0®
oy < 0 Tl 75 0 11 75 0
® ® IL#0
® I, = 0 Ly #0
@
@ Stabilizable: 25 cases /\
@ Unstabilizable: 9 cases I, # 0

® Degenerate: 6 cases /l\\

O!or>0 CMOT—O Olor<0

A proof of this theorem is given in Section 3.3. It should be noted that the classifi-
cation of stabilizability here for the multi-input case is more complicated than that
for a single input system in the previous section. Theorem 3.1 gives a complete clas-
sification of stabilizability if stability can be determined through cubic terms in the
dynamics on the center manifold. The degenerate cases imply that the stabilizability
has to be determined by the 4th, 5t or even higher order terms in the differential
equation describing the dynamics on the center manifold.

The results in Theorem 3.1 can be written in a more compact form.

Corollary 3.1 The system is stabilizable if and only if there exist K, K3 € R™, where
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K = [I + KA B] ™ K, such that

Q(K) KTT2K + TlK + g1 = 0

dQ

C(K Ks) i

K3+a3(K K, K)+KTa2K+a1K+a0 < 0.

More Speciﬁcally, we have the following cases.

1. VK € R™, we have Q(K) # 0, then the following three cases are unstabilizable.

(i) To=0,T; =0, g #0.
(i3) Yo is positive (semi)-definite, rank[YT Y,] = rank Ty, and i1 := qu1 —
17,7517 > 0.

(i4) Y5 is negative (semsi)-definite, rank[Y] T, = rank Yo, and §i; < 0.
2. 3K € R™, such that Q(K) = 0, but R(K) # 0, then the following four cases
are stabilizable.
(i) Yo is indefinite.
(i) Y is (semi)-definite, rank[YT Y] = rank Yo + 1.
(i) Yo is positive (semi)-definite, rank[YT T,] =rank T, and ¢ <O0.
(iv) Y, is negative (semi)-definite, rank[YT Y] = rank T5, and g1 > 0.
3. Any K € R™ satisfying Q(K) = 0 also satisfies R(K) = 0. This case is true
if and only if T, is (semi)-definite, rank[YT T,] = rank Yy, and g1 = 0. So

1
QK) = 0 iff K = Ky + FE, where Ky = —2Y;'Y], and V= [f fo -+ f]
- is a set of basis of Ker YT, and £ € R, so in the &-coordinate, a(K) is given by

a(f) = O3y (67 57 €) + gTa2r€'+ al’r'g + apr < 0,

where o, (r =0,---,3) are given by (3.20), (3.21), (3.22), (3.23), respectively.

We have the following cases:

(i) aor < 0, then stabilizable.



S (i) dor 290, o #‘0, tﬁen stabilizable.
(i) aor > 0, a3 = 0, ag, # 0 is indefinite or negative (semi)-definite, then
stabilizable.
(i) agr >°0, a3 =0, ao, is positive (semi)-definite, then

( a) rank[al. s, = rank oy, + 1, then stabilizable.

1

-1,.T
70170, O, then

(b) rank[of, o] = rank ay,, define éor = ap, —
-o If Gy, < 0, then stabilizable.
e If &y, > 0, then unstabilizable.

e If &y, = 0, then degenerate.

This corollary is a direct result from Theorem 3.1.

3.2 Stabilizability of Hopf Bifurcations

In this section we consider the case when a nonlinear system undergoes a Hopf bifur-
cation with the critical modes being linearly unstabilizable. We classify the stabiliz-
ability of Hopf bifurcations by giving necessary and sufficient conditions.

Consider the following multi-input system

9= fuly, ), (3.31)

where y € R*"*2(n > 1) is the state variable, 4 € R is a bifurcation parameter, and
u € R™ (m > 1) is the control input. We assume n > 1 since feedback stabilization
is trivial if n = 0. Throughout this section we assume all the assumptions are valid

for p in the region [—[i, i]. We make the following assumptions.
AH-1 f,(y,u) is at least C* with respect to (y,u) and C* with respect to p.

AH-2 Foru =0, there erists a steady-state solution y = yo(p) such that f,.(yo(p),0) =
0.
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"AH-3 A1 2(p) =o(p) + zw(y) are a Simple pair of eigenvalues of %%(yg(u),O) and
satisfy 0(0) = 0, 92(0) # 0, and w(0) # 0.

AH-4 The éiyenspaces associated with A1 2(p) are linearly uncontrollable, and all

~ other eigenspaces are linearly stabilizable.

Under these assumptions, we transform the system (3.1) into the standard form
by the same procedure as the steady-state case. The resulting normal form is given

by

2 = (dp+iw)z + quz® + quol|2]* + @38z + qrauz + g2 + gsFz* + quiuz®
+53TQ33.’E + .i'Tun + U,TQ44'LL + 611123 + 0112]z|2z + 6113.”1?22 + (3114UZ2
+erg9|2P 2 + cia3% |22 + 0124u|z|2 + 3l 13372 + L cr3auz + Ul Craauz
+6222Z*3 + 62235'2*2 -+ >6224’U,Z*2 + .'fT0233£iZ* + .’fT6234’U,Z* + UTCQ44UZ*

—+c333 (53, 53, :i?) + 0334(5, .'INI, u) -+ 6344(i', U, u) —+ C444(’LL, U, 'lL) + h.O.t., (332)

z = AZ+ Bu-+ 61122 + ijlelZ + Gi3Zz + Guauz + q~222*2 -+ (1235}2:* ’

+624UZ* + g33 (IZ‘, .’Z‘) + 634(57, u) + (j44(’LL, ’LL) + h.o.t., (333)

where z € C, ¥ € R", and other coefficients are real or complex tensors with appro-
priate dimensions. As in the steady-state bifurcation case, we also assume the tensors
have symmetry properties if they have two or more identical subscripts.

The goal‘ is to find a sufficiently smooth feedback with Taylor series expansion

v o= K% + Koz + Kaz* + K42° + Ks|2|* + Ke2*® + K132 + K3z
+Ky(Z,Z) + ho.t., (3.34)
and with

K eR™™, K,=K;eC", K,=K;eC,
Ks€R",  K;=K; € O™, K,eRmxmn

such that the dynamics on the linearly stabilizable subsystem is asymptotically stable,
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and at the sameitime, thé eqﬁilibrium (0, 0) for the closed loop systein is asymptoti-
' cally"stable at the bifurcation point.

Similar to the steady-state bifurcation case, a state feedback does not affect sta-
’ '-bilizabiblity of the system. We first select K; such that A+ BK; is Hurwitz. Then we
reduce the dynamics of the closed loop system to the center manifold. Finally, we use
a diffeomorphism to transform the dynamics on the center manifold to a normal form.
We select feedback gains such that the normal form is locally asymptotically stable
at the bifurcation point. In the following we define constants that will be needed for
the statement of the main theorem. Without loss of generality, we assume (s — A)™!
exists for s = 0, 4w, and +2wi. If not, we use a feedback v = KyZ + v to move away
the resonance eigenvalues of A and the stabilizability will not be affected.

Letting s, s, s9 € C, define

®1(s) = quu+aqs(sl—A)™'B,
®y(s) = @oa+qa(s] — A)7'B,
®i(s) = Guu+qs(sI — A)7'B,
Dy(s) = Goa+ Gos(sI — A)7'B, (3.35)
U(sy,s9) = 2BT(s:] — A) Tqas(sel — A)7'B +g34(so:] — A)7'B
+BT (511 — A Tg34 + 2qua,
U(s1,52)(X,Y) = 2Gas((s:] — A)7'BX, (s, — A)"'BY)
+G34((s2] — A)7'BX,Y) + Gaa((s1] — A)T'BY, X) + 214(X, Y).

We define
01 =Re®:(0), ©;=,(2wi), O3="T(iw,0), Oy =(—iw,2wi).  (3.36)
Letting K = [I — Ky (iw — A)"'B] " Ky = Kg + iK[, we define

1 1. ; -~
Co = cii2— L + qi3(—A) G2 + go3(2wi — A) gu,
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D, = culiv — A B+ coon + qis(—A) " Baliw)
+qo3(2wi — A)71®, (iw) +
Gia(—A)™T [2gs3(iw — A) 7' B + gas] — Z%(Juq’z(iw),
Dy = cns(—iw—A)"'B+cug+ qis(—A) 71 (iw) +
(jﬂ (2wi — A)~T [2q33(—iw - A)7'B+ q34] -
= (g1 +08) (i) — o),

. By = BT(iw— A)Teys(iw — A) B + BT (iw — A)Teyay
+eoaa + [2BT (1w — A)Tgs3 + ¢] (—A) T 0(iw)
+%q23(2wz’ — A"V (iw, iw) +
e [, i) — 287 ) ()]

Ey, = 2BT(—iw— A) Teyss(iw — A)™'B + clyy (iw — A)™'B
+BT (—iw — A)Teyzq + 2c144
+&T (—iw)(—A) T [2gs3(iw — A)T'B + gas] +
[2BT (—iw — A) T3 + g5y) (2wi — A) 7 @ (iw) +
(=AY (i, i) = == (211 + G3) (i, ),
Eyp = —i@{(—iw)@;(—iw) - 3—30—iq;2\ﬂ(—iw, —w),
Fio(K,K,K*) = 3c353((iw — A)"'BK, (iw — A)"'BK, (—iw — A)"'BK*)
+cs34((iw — A)"'BK, (iw — A)"'BK, K*)
+2¢334((iw — A)'BK, (—iw — A)"'BK*, K)
- 4+2c344((iw — A)'BK, K, K*) |
+esa((—iw — A) ' BK* K, K) + 3c4(K, K, K*)
+KT [2BT (iw — A)Tgss + g3y (—A)"-
B (iw, —iw) (K, K*) |
+%KH [2B" (—iw — A) Tqss + q34] (2wi — A)~ -
¥ (iw, iw) (K, K)

1 v T .
+§E(I)1(—’LLU)K K (iw,iw)K



Fin(K,K*,K")

Define
Qg =
ol =
o =
' =
ay? =
a? =
oz (Kg, Kr, Kr) =
oz (Kp, Kp, K1) =
o322 (Kg, K1, K1) =
a§i2(KI7KIaKI) =

and
1 =
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1 .. '

- [®: (iw) + @} (iw)] K - KXW (—iw, iw)K
1
w2

1
—EQI(—iw)K* - KT (~iw, iw) K

(~iw)K* - KTU* (iw, iw) K,

1
—ch-u—(I);(—iw)K* - KR (—iw, iw) K

| . N ow
—ﬂ@rz(zw)K - KHU (—iw, —iw) K*,

Re C().
Re{D1 + Dz},
Im{Dz - Dl},

1

5 [RG{EH -+ E12 + E22} -+ Re{(Eu + E12 + E22)T}] s
1
2
1
5 [Re{Elg - E11 - Egz} + Re{(EIZ — EII - E22)T}] 3

Re{Fuz + F122}(KR7 Kk, KR)a

[Im{E22 — Eu} + Im{(E22 - EII)T}] )

Im{F12 + Fi2} (KR, Kg, KT)
—Im{Fy5 — Fi22}(Kg, K1, KR)
—Im{Fy12 + Fioe } (K1, Kg, KR),
Re{F112 + Fin2 }(KR, K1, K1)
+Re{Fi12 — Fi22 } (K1, KR, KJ)
~ Re{Fu + F122} (K1, K1, KR),
Im{F12 — Fi12}(Ky, K1, K1),

11 .12
_— | % 0y
a; of |, = .
1™ aé2 agz

(3.37)

(3.38)
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e Kg |
Define K, = , and

a3a(Kb7 KIH Kb) = aéil(KRy KR7 KR) + aééZ(KRa KR7 KI) +
a32?(Kg, K1, K1) + o322(K1, K1, K1),

and define a3 as the symmetrization of as,, i.e., for any 4, j,k € (1,-- - ,2m), we have
off* = = (o +all) + o + off’ + o + off). (3.39)
Define the norm of a3 as the infinity norm ||as|| := max, ; ,com o*|, and (|©;]| (j =

1,---,4) are defined similarly. Define
© = [|O1]| + [|©2]| + 1Bs]| + |4l + llexsI- (3.40)

From Section 3.4, the normal form of the dynamics on the center manifold is given

by
¢ = (dp + iw)¢ + @|¢[*¢ + hot.,
where « := Re & is given by

o = (0,+Re{K"0;}) [T+ K1A_IB]—1 [KS + K702 + K1 + 2Ko(B1, B2)
+K,A™'B (Qz - Q2 — ﬁzQ;) + z_l(; (I+ K,A7'B) (K*Q5 — KQz)]
Re { (0 + K¥6y) [I — Ki(2wi— A)'B]™ [m + Ko

+Ko(f1, 1) — K1(2wi—~ A)™'B (Ql R ﬂéQ;)
+—,1— [I — K (2wi — A)"lB] (KQ1 + %K*QE) ] }

ww
+ [ao + a1 K, + K 0o K, + 03(K,, Ky, K3)] (3.41)
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where O;(=1>- . ,4) aife given by (3.36), and o; (j = 0,--- ,3) are given by (3.37),
-~ (3.38), and (3.39). Here K, K;, 8; (j = 1,2), Q; (j = 1,2,3), and Q; (j = 1,2) are
given by

K = [I-K(iw—A)"B]" K, = Kp+iKi,
“- o)
K;
fr = (iw-A)'K,
fo = (~iw—A)TK" =0,
Q1 = qu+ @ (iw)K + —;—KT\I'(z'w, w)K,
Q2 = g2+ B(iw)K + & (—iw)K* + KA (—iw, w)K,
Qs = gon + P(—iw)K* + %KH\I!(—iw, —iw)K*,
Q1 = i+ P (iw)K + %\il(z'w,iw)(K, K),

Q: = G2+ P(iw)K + & (—iw)K +§\Il(zw,—zw)(K,K).

where ®;(s) (j = 1,2), ®;(s) (j = 1,2), ¥(s1, 52), and U(sy, s2) are defined in (3.35).

Since the Hopf bifurcation for the closed loop system is supercritical if and only if
a < 0 except the degenerate case when a = 0, the goal is to find feedback gains such
that o < 0. From (3.41) it is clear that if any of ©; ( = 1,--- ,4) is nonzero, then
feedback gains can be selected such that o < 0. If all of ©; (j = 1, -+ ,4) are zero,

then « is given by
a=ay+a K, + K;Fasz + a3(K), Kb, Kb).

Apparently o can be made negative if a3 # 0. In the following we consider the case
when a3 = 0.

‘Let U € R?™*2m he an orthonormal matrix, i.e., U™ = U7T, such that oy is
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" diagonalized, i.ex,

Define 2m = {1,2, -++,2m}, and

I = {j€2m; & >0}, (3.42)
L = {je2m; & <0}, (3.43)
I = {je2m; & =0, & #0}, (3.44)
I, = {je2m; & =0, 4 =0} (3.45)
~j\2
) &
Jjenh 2
Let K, = U¢, then o can be written as
a = at+ok,+ KéragKb
= ap+ &€+
2
= (104‘ :E: d1§7 ZE:(%J£2'+'§E:CW (%5._'_T—) .
jeIUI3 JEL jeh

It is apparent that a can be made negative if I, U I3 # 0. If I, U Is = (), then the
minimum of o is &p. In this case system is stabilizable, unstabilizable, and degenerate
if and only if &y < 0, o‘zq > 0, and &y = 0, respectively.

In summary of the above discussions, the following theorem gives a complete
classification of stabilizability for a simple Hope bifurcation except for the degenerate

case.

Theorem 3.2 A complete classification of stabilizability for a simple Hopf bifurcation
is given in the following table, where oy, ©, Iy, I3, and &, are given by (8.87), (3.40),
(8.43), (3.44), and (8.46), respectively.
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Classification of Stabilizability of Hopf Bifurcations

Cases ap | © | LUIL Qo
HS-1| <0
Stabilizable | HS-2 | >0 | #0
HS-3|>0|=0]| #0

HS-4|>0|=0| =0 <0
Degenerate | HD |>0|=0| =0 =0
Unstabilizable | HU |>0|=0| =0 >0

A proof of Theorem 3.2 is given in Section 3.4, in which the main task is to derive the
formula (3.41). A more compact form of Theorem 3.2 can be given by the following
corollary.

The Taylor series expansion of (3.31) is given by

y = Ay + Bu+ (v, 9) + 2512(y, u) + Go2(u, u) + &(w, w,w) + h.o.t.,

where A € Rn+2x(n+2) B e R(+2)xm and 4 := [ Y
. u

} . Define

Qu = 1@ — 5 ()7 (@) (rade) + (ral) Q- Gu)(rD)]
“% [(r 0T - qu)(rol) + (rol )T - @) ()],
Q12 = Uiz — %(Tl)T(l - qi2) + %(T*l)T(l* - qi2),

Q22 =1 * Q22
where [, [, 7, and 7, satisfy
l ! | iw 0 0

rilr ™ r.]1=1, |lAlr r 7. ]=] 0 —iw O

' n 0 0 A
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" Define T '

0 A-\I B
SAnA) = | (A=2DT  Qu Qu
BT | Q’{z Q22

Corollary 3.2 The classification of stabilizability of system 1s given by the following:

1. Ifrank X(0,iw) > 2(n + 2), or rank £(2wi, —iw) > 2(n + 2), then the system is

stabilizable.

2. If rank (0,%w) < 2(n + 2), and rank ¥(2wi, —iw) < 2(n + 2), then the system

' K
is stabilizable if and only if there ezists a K, € R*™, where K, = [ f } , and
K;

Kp+iK; =K := [ - Ky(iw — A)'B] 7 Ky,
such that

OZ(KI,) = a3(K,, Ky, Kp) + Kl,Tasz + a1 Ky + oy <0,

or more specifically,

(i) ap <0, the system is stabilizable,
(it) ap >0, az # 0, the system is stabilizable,

(iii) ag > 0, az = 0, ap # 0 is indefinite or negative (semi)-definite, the system

1s stabilizable,
(iv) ap >0, a3 =0, ay is positive (semi)-definite, then
(a) rank|a] o] = rank a; + 1, then the system is stabilizable.

(b) rank[a? ay] =rank as, then define

1
A e -1.7
oy .= Qg — Zl-ozlaz aq,
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18 Gy < O, the system is stabilizable,
e &y > 0, the system is unstabilizable,

o &y = 0, the system is degenerate (stability is determined by higher

order terms in the normal form).

A provc‘),f of this corollary is also given in Section 3.4.

3.3 Proof of Theorem 3.1

First, consider the case when K, = 0. Choose K; such that A + BK; is Hurwitz.
Then at p = 0, the center manifold is given by

% = f12° + h.ot.
By differentiation and using the system dynamics, we get
B = [-(A+ BE))]| ™ (BKs + dn).
The dynamics on the center manifold is given by
& = dpz + qi122 + Cz* + hoo.t.,
where

C = aun+ (Qiz + q13K1) 1 + q13 K3
= o + (@12 + q3K1)[—(A + BKy)| 71 (BK3 + du) + 13K
= o+ {qs + (@12 + @13K1)[- (A + BK,)| 7' B} K3
+(q12 + @13 K1) [~ (A + BK1) 'qu
= o1+ [qs + q2(—A4)7'B] (I + K, A™'B) T Ky + q2(—A)"Nqu
+ [q13 + q12(—A) ' B] Ki[—(A + BK1)] 'qus
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= cin + q12(—A) G + [qus + q2(—A)"'B] (I+ K1A_1B)_1 '
{Ks+ (I+K:iA7'B) K1 [~(A+ BK)] ™ qu
1

= i + qia(—A) di + [qs + ¢2(-A)T'B] (I + K1AT'B) -
[K3 + Ki(—A) " qu]

Here we have used the equalities [I + K;A™'B] K, = K; [ + A"'BK}], and

(12 + qu3Ki)[sI — (A+ BK1)]'B + 3
1

= [qus + qio(sI — A)7'B] [I — Ky(sI — A)7'B] .

It should be noted that we have assumed A is invertible. If not, then we use a
feedback K, such that A + BKj is invertible. Using the notations in (3.4), (3.5),
and (3.6), we have

C=ag+ 7T [[+KAB] " [Ks+ Ki(-4)"qu]. (3.47)

Using this relation, it is easy to know

I. q11 # 0, then the system is not stabilizable with K, = 0.
II. g1 =0, T, =0, and ap > 0, then the system is not stabilizable with Ko = 0.

III. ¢;; =.0, and oy < 0, the system is stabilizable with K, = 0. In fact, the
controller is given by u = K 1% + K3z? where A + BK; is Hurwitz, and K3 =
KA Gy,
IV. g11 =0, ap > 0, and Ty # 0, then the system is stabilizable with K, = 0. The
stabilizing controller is given by v = K17 + Kjz? with A+ BK; being Hurwitz
and K satisfying C' < 0, where C is giving by (3.47).
For the cases 1. and II., we must consider the state feedback with Ky # 0. In this

case, the center manifold is given by

% = Pz + Bax® + hoot.



104

i The dynamics on the center manifold is given by
& = duz + Qz?+ Cz® 4+ ho.t.,
Whefe C =C, +C,, and

Q = qu+qubf+a3(Kif + Ky) +ﬂf¢122ﬁ1 + A1 qu3 (K11 + K>)

+(K1By + Ko) qss(K1 51 + Ka),

O = {|qz+ 267 g2 + (K11 + K2)Tq3)
+ [q1s + B o3 + 2(K181 + K3) qss] K1} 52
+ [q13 + BT qos + 2(K181 + K2)" qs3] [Ks + Kufy + K5(By, Br)),

Cy = cn+cb +as(Kif + Ka) + ,3?0122,31 + /8:1110123(K1,61 + K5)
+(K1B + Ka2)"c133(K1B1 + K3) + ca02(61, B, 1)
+¢223(B1, B1, K161 + Ka) + coas(Br, K151 + Kz, K11 + Ka)
+c333(K1 81 + Ko, K1 B + K3, K1 + Ka).

Now we calculate 3; and (. By differentiating the center manifold expansion and

using the system dynamics, we obtain

B = [-(A+BK))|'BK,= (-A)"'BK

B = [=(A+BE)™ {BI[Ks+ Kafy + Ks(B, )] + @ - B:Q}

Q = Gu+ qbr+ Gs(Eifr + Kz) + (1, Br) + Gas(Br, Ki B + K)
+633(K1,31 + K, K16 + K>),

where K := [I + K;A7'B] ' K,.
Now, using the expressions of ; and (3, and the identities K10, + Ko = K and
I+ K\[-(A+BK)|"'B=[I+ KlA‘lB]_l, we calculate Q, Q, C; and C in terms
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" of feedback gains by straightforward matrix manipulations.

, Q = qu+ 11K + KTT,K,
Q = dn+TiK +To(K, K),
C, = (T1+2KTT,) [+ K,A'B]™"-
[ + Kb+ Ks(81, ) + Q — 510
+ [q13 + KT (BT (—A) " q23 + 2¢s3) | (Q - ﬂlQ) ;
CCK) = o+ [eua(~A)B 4 cus) K

+KT [BT(—A) Teipn(—A) "B+ BT(—A) 1 + c1ss] K

team((—A)'BK, (~A)'BK, (—A) ' BK) +
szg((—A)—lBK, (—A)_lBK, K)
+6233((—A)—1BK, K, K) + C233(K, K, K),

where

T, = qz+ Q12(—A)_lBa

1
T, = BT(—A)Tgu(-A)'B+ 5 [BT(—A) Tqas + q35(—A) " B]
+q337

T1 = Gi3+di(-4)"'B.

So we have
C = Ci+0Cy
= (T1+2KTT,) [I+ K A'B] -
[Ks + Kab + Ks(81,8) + @ = iQ] + Ps(K),

where

Ps(K) = Co(K) + [q13 + KT (BT (—A) Tqas + 2g33) | (Q - ,31Q) ,

(3.48)
(3.49)

(3.50)

(3.51)

(3.52)

(3.53)
(3.54)

(3.55)

(3.56)
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el Co(K) s gi ven by (351) When Q — 0, Ps(K) can be calculated as

PS(K) = Qp +(11K+KTC¥2K+O£3(K, K,K),

where

1251

Qo

Qo
O[3(X, l/7 Z)

a3t(X,Y,Z)

T2(X,Y)

where X,Y, Z € R™.

cr2(—A) B + c1s + qa(—A) 7Ty
+35(—A)T [2¢22(=A) 7' B + gas]
5 (o +af),

BT (—A)Tein(=A)'B + BT (—A) Teyos + crss |
+qua(—A) - Yo+ [2BT(—A) T + 3] (—A) ™M1y,
2 [onlX, Y, 2) + an(X, 2,Y) + a(Y, X, 2)

+ay (Y, Z, X) + a2, X,Y) + as(Z,Y, X)),

e ((—A) "' BX, (—A)7'BY, (-A)"'BZ)
+eps((—A) ™' BX, (-A) 7' BY, Z)
+e3((—A)'BX,Y, Z) + e333(X, Y, Z)

+XT [2BT(~A)Tges + q33) (—A) ' To(Y, 2),
G((—A)"'BX, (—=A)"'BY) + Gas((-A) ' BX,Y)

+(733 (Xa Y)’

(3.57)

(3.58)

- Now the goal is to find feedback gains K, K, K3, K4, and K5 such that Q =0

and C < O; where Q and C are given by (3.48) and (3.55), respectively. Letting
K = U¢, where U™! = UT € R™™ is an orthonormal matrix such that UTY,U is

diagonalized, i.e., we have

UTY,U = Disg | T3, 13, -, p ],
TU=[1 1 .. 1r],

(3.59)
(3.60)
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" Denote m = { 132, -, "m},(and define index set I; (j =1,---,4) eym as

111 = {iEl’_n_; Yg>0}, (3.61)
L, = {z'e_m; ““fg<0}, (3.62)
I; = {ieg; Ti =0, Ti;éo}, (3.63)

I, = {ie_m; ngﬁzo}. (3.64)

It is clear that LN =0 (i #3, 4,j=1,---,4),and [ULULB UL, =m

Now in the &-coordinate, () can be expressed as
2
Q=du+» Ti&+ >, T3 (fz z) :
Iels ie1UIy 2T
where §,; is given by (3.14). Now we consider different cases.

1. Consider the case when g1, # 0.

(1) I, = I3 =0, and I; # 0. In this case,

—Q11+ZT (fz ;;z) .

i€l

1. If g;; > 0, there does not exist an £ € R™*! such that Q =0, i.e., the

system is not stabilizable.

2. If g11 < 0, then the bifurcation is stabilizable. We construct the sta-

bilizing controllers as follows. Let

4 4+ S €I,

6. _ 2'r1, \/_)
03 7 ¢Il7
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where ¢; € R (i € I) are selected such that

Q=du+y e =0 (3.65)

1€l

,ISeﬁneE:[el ey - em],where

21/ Tie, iel
€; —
0, i ¢ I,

From (3.65), and 11 < 0, we have E # 0. From the above construction
it is easy to see that 2§TT2 + 71, = E. So we have

2KTYy+ Y, =E,

where E = EUT # 0, and K = U¢. Now from (3.48) and (3.55), we
have ) = 0, and

C = E [I+ KA B]) ™ [K; + Kupy + K5(B1, )] + Ps(K).

Since E # 0, we fix K; and K = U¢, and let K4, =0, K5 = 0. Then
it is easy to choose K3 such that C' < 0.

3. 411 = 0, then we have the following cases.

(1) If I, = 0, it is clear that Q = 0 if and only if §; = —zﬁ;—(z € I = m),
2

and if and only if K = K,, where K, is given by (3.13). In this
case, we have 2K Ty + T; = 0. So

C = Ps(K,),

where Ps(-) is given by (3.15). We will treat this case later in this

section.
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(2) If I, £0, then @ = 0 if and only if

T
—_—— ‘ZEII
=4 A !

€eR,  icly,

i.e., if and only if K = K}, + K, where

T T
K,eKer| |, Ky=Usg, &=24{
T? 0, 1 € I4.

In this case we have 2K7Y¥5 + T, = 0, and
C= Ps(Kb + Ke),

where Pg(-) is given by (3.15). We will elaborate this case later in

this section.

(1) I, = I = 0, but I, # 0. We have

oo\ 2
~ ¥ TZ
Q=du+» Til&a+—2]),

2T

i€1s
and the situation is similar to the previous case.
1. If 1, < 0, then there does not exist K € R™*! such that Q(K) = 0.
So the system is unstabilizable.

2. If Gi1 > 0, then the bifurcation is stabilizable. We construct the sta-

bilizing controllers as follows. Let

_n & € I
=) A S
0, i¢I2:
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where ¢; €R (i € I) are selected such that

Q=du-Y =0 (3.66)
i€l
~ Define £ = [ €1 €y  em ], where

€; —

24/ —Tie;, i€l
0, i & I

From (3.66) and §;; > 0, we have E # 0. From the above construction
it is easy to see that 27T, + T, = E. So we have '
2KTYy+ Y, = E,

where E = EUT # 0, and K = U¢. Now from (3.48) and (3.55), we
have () = 0, and

C = E [+ KiA™B] 7' [Ks + Kufy + Ks(By, )] + Ps(K).

Since E # 0, we fix K; and K = U¢, and let Ky =0, K5 = 0. Then
it is easy to choose K3 such that C < 0.

3. g11 = 0, then we have the following cases.

(1) T I, = 0, it is clear that Q = 0 ifand only if & = — 2-(i € I, = m),
2
and if and only if K = K, where K, is given by (3.13). In this
case, we have 2KI Y, + T, = 0. We have

C = Ps(K,),

where Ps(-) is given by (3.15). We will discuss this case later in

this section.
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(2) Tf I, # 0, then Q = 0 if and only if

i .
——=, 1€ I,
& = 213
€eR, 1€ Iy,

i.e., if and only if K = K} + K., where

K, € Ker , Ky=Ug&, &= 2%

T, 0,
In this case we have 2K7 Yy + T; = 0, and

C = Ps(K, + K.).

We will elaborate this case later in this section.

(II) I; =0, I; # 0, and I # 0, then

2
Iminr 2 T (& 2T’) |

€Ul

Let

- s e,

27% A /TE
;o= ____Ti €4 ;
é.l 2T" + \/—_'i"é, 1 E Iz,

0, 1€ ;U I,

such that

Q———(jn-l-Ze?—Zez.:O,

el j€l2

1 € I,

1 € Iy.
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‘ éde”:“[el ey - e,,;];EO,Where

24/ Tie;, iel)
€= 2 —T%Ei, 1 E .[2
0, i I Uy,
~ then we have 2KTY, 4+ YT, = E, where E = EUT. Now we have

C=E[I+KA"B]7 [Ks+ Kb + Ks(B1, 61)) + Ps(K).

Since F # 0, we fix K; and K = U¢, and let K; =0, K5 = 0. Then it is
easy to choose K3 such that C' < 0.

(IV) I, = I, = I; = 0, then we have T; = 0, and T = 0. In this case,
Q@ = q11 # 0. So the system is not stabilizable.

(V) I; # 0, then

A 2
. i i T
0-au+Tiier I 1 ar i)
2

Iels 1€1UI

and the system is stabilizable. The argument is as follows. Let

Tite
—?lif’, 1€ I1 U _[2,
67: = €is 1€ I3,
0: (S I4J

where ¢; (i € I; U I, U I3) are chosen such that @ = 0 and

A

Ei‘—‘[el € 6m]7£()_

Note this can always be achieved. If there are more than one number of
elements in I3, then we fix one to be nonzero and choose another such that

@ = 0. Suppose there is only one element in I3, say T{ #0. LU #0,
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- then '%We.selecty €; # 0 for some j € I; UI, and choose ¢; such that Q = 0. If

LU =0, then @ =0 if and only if ¢, = —% = —%+ # 0. Since £ # 0,
1 1

we have 2KTY, + 11 = E = EUT + 0. Now
C = E [+ K;A™'B] ' [Ks + K4y + K5 (B, B1)] + Ps(K).

Since FE # 0, we fix K; and K = U¢, and let Ky =0, K5 = 0. Then it is

~ easy to choose K3 such that C < 0.

I1. Consider the case when ¢q;; =0, T; =0, and o > 0. Then

Q=qu+ KT+ KTT,K = KTT,K.

Let K = U¢, where U € R™™ is an orthonormal matrix such that UTT,U is di-
agonal. Then we define the index sets I; ( = 1,--- ,4) asin (3.9), (3.10), (3.11),

and (3.12), respectively. Since Y7 = 0, we have I; = 0. Now we consider differ-

ent cases.

(D

(IT)

IfI, =0, or I, = 0, then Q = ¢TT,¢ = 0 if and only if €77, = 0, if and
T

only if KTY, = 0, if and only if K € Ker ' (since T, = 0), if and
Ty

only if T; +2KTT5 = 0. So

C= PS(K)a

- where Pg(-) is given by (3.15). We will further discuss this case later.

L #0, I, # 0. We choose £ € R™! such that Q = ¢7T¢ = 0 but
7Ty #0, ie., KTTy # 0. Since T; = 0, we have

C = 2K™; [ + K1 A" B] 7' [Ks + Kuafy + Ks(B1, B1)] + Ps(K).

Since KTYy # 0, we fix K; and K = U¢, and let K4 = 0, K5 = 0. Then
it is easy to choose K3 such that C < 0.
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" Now we' considér-the’case(s that have’not been settled above.

i. For the cases I-(I)-3-(1) and I-(II)-3-(1), we have @ = 0 if and only if K = K,
where K, is given by (3.13). In this case, C = Ps(K,).

<

- (i) If Ps(K,) <0, then the system is stabilizable.

(i) If Ps(K,) = 0, then the system is degenerate, i.e., we have to resort to the

4t 5% and higher order terms to determine the stabilizability.
(iii) If i’S(Ka) > 0, then the system is not stabilizable.
ii. For the cases I-(I)-3-(2), I-(I11)-3-(2), and II-(I), we have @ = 0 if and only if

K = K, + K., where K, is given by (3.13). In this case, C = Ps(Kj + K.),
where Kj is a fixed vector given by (3.18) and (3.19) for the cases I-(I)-3-(2) and
I-(I1)-3-(2), respectively; and K}, = 0 for the case II-(I). Here K, € Ker

Ty
By substituting K = K} + K, into (3.15), we get

C = Py(K.) = ag + a1 K. + KX ag K, + azp(Ke, Ke, Ke),
where

gy = op+ oK+ K;;FaQKb + Oég(Kb, K, Kb) € R,
Qppy = [Oll -+ 2K,Ta2 + 30!3(Kb, Kb)] Fe Rlxrn,
Cayw = FTlap +303(Ky)] F € R=™,

Qs = O3 ERlexm.

T T
Let fi, ---, fi be a set of basis of Ker [ ! ] . then any K, € Ker [ 1 }, we
Ty Ty
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. have K, 2FX,where F=[ f; f, --- f; | € R™" and X € R*'. Define
Opr = Oy ERJ
ay = ale € Rlxza
on = FlogF e R¥,

OZST(X, X, X) = ap(FX,FX,FX) € RIxIxL

Here a;r (j = 1,2,3) are the restriction of the tensors ajp (j = 1,2,3) to the

Ty
linear space Ker C R™. Now we have

T,

C = gy + a1, X + X0, X + 03, (X, X, X).

The goal is to find X € R*! such that C < 0.

a. If as, # 0, then C < 0 can be achieved by letting X large enough.

b. If az, = 0, then

C = O + aer + XTaer

= g + G1pn + 0 dgm,

where X = Vn, V™! = VT € R, and &3, and Gy, are given by (3.24)
and (3.25), respectively. Let I, (j = 1,---,4) be defined as from (3.26)
to (3.29), then

~d 2
n g i i [8%
C=dor+ »,6 &m+ Y &7+ > ah, (m + 262,) :

i€l3,Ulzn i€l iehy

(a) If I, # 0, then by letting n; (i € I»,) large enough, we have C' < 0. So
the bifurcation is stabilizable.
(b) If I, = 0, but I, # 0, then by fixing n; (¢ € I1,), and letting n; (3 € Is,)

large enough, we have C < 0. So the bifurcation is stabilizable.
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(c) If I, = Igr =‘(Z), then

a) If &y, < 0, then choose 1 as

1 € I11-,

- d}?iL)
2a27‘

01 1€ I47‘7

i =

we have C < 0. The‘bifurcation is stabilizable.

b) If &g, > 0, then for any n € R, C > 0. So the bifurcation is not
stabilizable.

¢) If 6o, = 0, then the minimum of C for all n € R*! is zero. This
case is degenerate, i.e., we have to resort to the higher (4% and

5%) order terms to determine the stabilizability.

By combining all the cases, we obtain the diagram in Theorem 3.1. It should be
noted if m = 1, then both the cases and the control laws here are the same as those
obtained in Chapter 2. Also in Chapter 2, we use the controller canonical forms of
(A, B) so that the inverse of A can be explicitly obtained. Hence the control laws in
the single input case are more simple than the multi-input case in the sense that they
do not need to calculate the inverse of matrices. But one of the advantages of the

procedure in this section is that it does not rely on the controller canonical forms.
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3.4 Proof of Theorem 3.2 and Corollary 3.2
| Theorem 3.2 |

* Consider the feedback

u = F(322")
= Kl.'i + K2Z + ng* + K422 + K5|Z|2 + K62*2 + K7532 + Ksif?Z* + Kg(i, ii‘)

+h.o.t.,

where

K1 € Rmxn, K2 = K; c (Cm, K4 ZKg € mel’
Ks e R™!, K;=K; € C™", Ky € R™™",

We select K; such that A + BK; is Hurwitz. Without loss of generality we also
assume A does not have eigenvalues at 0 and +2wi. If it does, we can use a linear
feedback to move away those eigenvalues. We first consider the case when Ky = 0,

then the center manifold is given by
F = £12% + Po|z|? + Bs2** + hoot.
Then the dynamics on the center manifold is given by
2 =iwz + qu#® + qi2|2)* + q132** + C|z[>z + 0.c.t. + hooot,,
where
C = cnz + (13 + 14 K1) B2 + (g2 + ¢24K1) By + quaKs + Ky
Now, a normal form is given by

¢ = iw + @|¢|*¢ + 5% order terms,
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"~ where - -

a=-2192 L oy b
w

As in the single-input case, §; and 3, can be calculated as

B = [2wi- (A+ BK))]"Y(BK4+ du1),
B = [~(A+ BEK)| " (BKs+ Gi2),

So

a = ¢111(J12_|_C+p1t
W
2

= o + ¢112 + {C.I24 + (go3 + g24K1)[2wi — (A + BK;)|™ 1B} K,
+ {q14 + (@13 + @ K1) [— (A + BK})]~ 'B} Ks
+(g23 + guaK1)[2wi — (A + BK1)] 7 Gu1 + (q13 + 014 K1) [— (A + BK1)| g
+p.i.t.
B qlzlzlz + qas(2wi — A) 7 + qu3(—A) G2 + o2
+[go4 + qo3(2wi — A)'B] [I — Ky (2wi — A) ' B] ! [Ks+ Ki(2wi — A) G

+qus + qi3(—A) ' B] [I — K1 (—A)'B] 7 [Ks + K1(—A) 'dia] + piict,
Note in the derivations we have used the following identities:

 @oa + (gos + goa K )[s] — (A + BK))|™'B
| = [goa + gos(s] — A)'B] [I — Ky(sI — A)‘lB]_1 )

(gas + q2a K1) [sI — (A + BKy)| 'an
= qo3(s] — A)7'Gu1 + [goa + qus(s] — A)7'B] Ki[sI — (A + BK1)| " 'qu,

[I - Ki(sI — A)'B] Ky[sI — (A+ BK))]™" = Ki(sI — A)™
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' The third identity is trivial. A proof of the first two identities is as follows. For the
- first identity,

X = quu+(qus+quKi)[s] — (A+ BK,)]™'B
= qot + (g23 + quE)[I + (sI — A— BK1)"'BKy|(s] — A)™'B
= Qos + (gos + quuK1) (s — A~ BK,)'BK,(sI — A)"'B
+(g23 + qu4 K1) (sI — A)™'B
= G2 + (X — qua) K1 (sI — A)7'B + (go3 + qua K1) (sI — A)7'B
= g+ XKi(sI — A)7'B + qu3(s] — A)7'B,

so we have

X = [goa + gaa(sI — A)™'B] [I — Ki(sI — A)'B] .

For the second identity, we have

(go3 + qoa K1) [sI — (A+ BKy)] 'du,

= [g2 + (g2 + qus(s] — A)"'B) K1 — qos(sI — A) ' BK] -
[s] — (A+ BEK})] 4u

= g [I - (sI — A)"'BEK:] [sI — (A + BKy)]'qn,
+ (o + ass(s] — A)'B) Ky[sI — (A+ BE)] g

= q23(SI — A)_I(‘jn + [q24 + q23(SI - A)_lB] Kl[SI — (A + BKl)]_lqll.
Letting @ = Re &, and

@1 = Re {q14 4 Q13(—A)_IB} s
Oy = ot + q3(2wi— A)7'B,

Q11912 . 1. 1.
oy = Re{cm—- o + o3 (2wi — A)'Gu1 + q1a(—A) 11112},
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| then o N

@ = ag+6 [I - Ki(—A)"B]7" [Ks+ Ki(—4) " qn)
+Re {0, [T - Ki(2wi — 4)B] ™ [Kq + Ka(2wi — A) ] }.

It is easy to see that for Ky = 0, there exists K;, K, and K5 such that a < 0 if and
only if

(1) ap <0,

(2) >0, 81 % 0 or O # 0.

Now we consider the case when oy > 0, and ©; = O, = 0. In this case we must
have K, # 0. The center manifold is given by
T =[Pz + P2 + ,83252 + ,84|Z|2 + ,652’*2 + h.o.t.

The dynamics on the center manifold are given by

7 = iwz + Q122 + Qq)2|? + Q32*? + other 3™ order terms + h.o.t.

where

Q1 = ‘(I11 + qu3B1 + qa(K1 81 + K2) + B qasfr + 01 gsa (K1 f1 + K3)
+(K1B1 + K2)Tquu (K11 + Ka),

Q2 = g2t CI13,32'+ q1a(K1 B2 + K3) + qus By + qaa (K1 81 + Ka) + 267 ¢33 32
+B8T g34 (K182 + K3) + B3 gsa (K151 + K)
+2(K181 + K3) (K152 + Ks),

Qs = ¢ + 02302 + Qa(K1Ba + K3) + 03 q3302 + 3 ¢34 (K152 + K3)
+(K1B2 + K3)  qua (K1 52 + K3),
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" and C = Wi + Wy + Ws, where |

W; = {{a13 + 267 ¢33 + (KB + K2) 34
o+ [q14 + BT a34 + 2(K1 81 + K2) qua] K1} By
+[qua + BT gss + 2(K1 By + K2) " qaa] -
(K5 + K22 + KB + Ko(Br, B2)] (3.67)
Wao = {[g2s + 267 33 + (K182 + K3) g3y
‘ + [gos + B3 a3a + 2(K1 B2 + K3)" qua] K1} Bs
+ [goa + B3 g3a + 2(K182 + K3) qua] -
[Ka + K761 + Ko (b1, Br)], (3.68)
Wi = cua+cnsBe+ cua(KiBo + K3) + 12361 + ciaa (K161 + Ko)
+20] c13382 + B c134(K152 + K3) + B3 c13a(K1 51 + K3)
+2(K151 + K2)  crua(K1 B2 + K3)
+B7 cass P + B3 c1aa (K151 + Ko)
+c334(B1, 1, K162 + K3) + 2¢334(61, Ba, K11 + Ka)
+2¢344(61, K161 + Ko, K1 2 + K3)
+c344(B2, K151 + Ka, K151 + K3)
+3ca1a(K1 01 + K2, K151 + K, K11 + K3). (3.69)

Now B; (j =1,--+,4) can be calculated as

B = [iw— (A+ BK;)]'BK; = (iw — A)"'BK, (3.70)
By = [—iw—(A+ BK;)|"'BK, = (—iw — A)"'BK* = f, (3.71)
By = [2iw—(A+ BKI)]‘I{[K4 + K181 + Ko(B1, B1)]

+01 - /11 - B}, (3.72)

B = [(A+BE)|{BIK; + Kufs + Ksfy +2Ko(B, 5o)
+G2 — BiQ2 — Q3 (3.73)
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[I - Ki(iw — A)'B] ™ Ko,

du1 + G131 + Gra(Kq1 61 + K2) + Gs3( 61, Br1)

+G34(Br, K151 + Ka) + qua (K101 + Ko, K151 + K3),

Gi2 + G1302 + Gua(K1B2 + K3) + GosPr + Goa (K161 + Kp)

+d33(B1, B2) + Gaa(Br, K1P2 + K3) + Gaa( 02, K151 + Ka)
+2Gu4 (K151 + K2, K162 + K3).

K =
Q =
Q =
Define
(]:)1(8)
@2(8)
&)1(8)
&)2(8)
\11(81,82)

\il(sl, 32) (X, Y)

qis(sI — A)7'B + qu,

g23(sI — A)7'B + qu,

@1a(sI — A)7' B + qus,

Go3(sI — A)7' B + G,

2B (s,] — A) Tqas(so] — A)7'B + qay(s2 — A)7'B
+BT (511 — A)Tga4 + 2qua,

2G33((s2] — A)TBX, (s, — A)"'BY) + 2Gu(X,Y)
+G3a((s1 — A)T'BX,Y) + Gaa((s2] — A)7'BY, X).

Using the fact that K;8, + K2 = K, we get

G
Q2

= qn+ @1 (w)K + %KT\II(iw, w)K,

= g+ Dy(iw) K + &) (—iw)K* + KF ¥ (—iw, iw)K,

= qgo + Po(—iw)K* +

%KH\II(—iw, —iw)K*,

- 1 -
= qu + O1(iw)K + 5\Il(z'w,z'w)(K, K),

. . 1-
= Giz + Pa(iw)K + @1 (—iw)K* + §\Il(iw, —iw)(K, K*),
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L W3 = “crigtt [¢1'13({iw — A)B + ¢114] K* + [e193(iw — A)‘IB’+ c1oa) K
+KT [2BT (—iw — A) Teigs(iw — A) 7B + ¢y (iw — A)7'B
BT (—iw — A)Tewsa + 2c144) K

+K7* [BT(iw — A Teygs(iw — AY'B + BT (iw — Ay Tegzq + 6244] K
+3c333 ((iw — A) ' BK, (iw — A) 7' BK, (—iw — A) "' BK")
+ea34 ((iw — A)7'BK, (iw — A)T'BK, K*)
+2¢334 ((iw — A)7'BK, (—iw — A) "' BK*, K)
+2¢344 ((iw — A)7'BK, K, K*) + c344 ((—iw — A) 7' K*, K, K)
+3cus(K, K, K*).

Now we calculate W;. Define ©; = Re ®,(0), and O3 = ¥;(iw,0). By substitut-
ing (3.70) into (3.67), and using the following identities:

K\p + Ky =K,

Ky[sI — (A+BEy)| ™ + I = [I - Ky(sI — A)"'B] ™",
sI — (A+ BK)| !B = (s — A)™'B [I — Ky(sI — A)™'B] ",
qis = O, — qi3(—A)'B + p.i-t.,
BT (iw — A) T gss + 2914 = O3 — [2BT (iw — A) T qss + g3y (-4)7'B,
{ve get

Wy = [Re®(0)+ KTW(iw,0)] [I + K A™B] ™ -
[Ks + K732 + K + 2K9(ﬁ1, B2)]
+{[q1s + 2K"B" (iw — A) Tqs3 + Kqu;]
+ [q1a + KB (iw — A) T gaa + 2K qua) K1 } -
[-(A+ BEK))|™! (Q2 — BiQa2 — ﬂng) + p.i.t.
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(1 + K765) [+ K1 A~ B] ™ [Ks + KBy + Kby + 2Ko(Br, )]
+{ (61 + K703) K1 + [q13 + 2K" B (iw — A) Tq33 + K" q3,] -
[I = (—A)"'BK,] }~(A+ BK,))™ (Qz — 81Qy — ﬂzQ;) +pit.,
(61 + KT03) [I + K1 A™'B] ™" [Ks + K1 + Ksf1 + 2Ko (51, 52)]

400+ K76y) ([1+ KA B] " — 1) (G - £1Q2 - £:23)

+ [q3 + 2K" B (iw — A) Tgzs + KT q34) (—A) ™ (Qz — Q2 — ﬂzQ;)

+pite
(01 + K76;) [I+ K1A7'B] -

| K5 + Kas + Kby + 2K (1, B2) + K1A™'B (@2 - 7122 - 5:05) |
+ [q1s + 2K" B (iw — A) P'gs3 + KT g3, (-4)™ (Qz — $1Qa — ﬁzQZ)

+p.it.,

Similarly, define ©5 = ®9(2wi), and ©4 = ¥(—iw, 2wi), so we have

gos = O3 — go3(2wi — A)™' B,

BT (—iw — A)Tq34 + 2qs4 = O4 — [2B” (—iw — A)Tqs3 + q34] (2wi — A)7'B,

and W, can be calculated as

W,

= [®5(2wi) + KT (—iw, 2wi)] [T — K;(2wi — A)7'B] -

1

(K4 + K71 + Ko(B1, £1)]

+ {[g2s + 2K7 BT (—iw — A) Tz + K" g

+ [goa + K" BT (—iw — A) Tgss + 2K qua] K1} -
[2wi — (A + BK,)] ™! (Q~1 — hQ1 — ﬁng)

= (034 K"0,) [I - Ki(2wi — A)"B] ™ [Ks + K1 + Ko(B1, B1)]

+{ (@2 + KH@4) K, + [Q23 + 2KHBT(—iw - A)_Tq,?,g + KHqg;] .
1 - (2wi = A)'BEK] } - wi — (4 + BE)]™ (Q1 — A1Q1 - 5:Q3)
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= (Oa KOy [1 - K (2wi— A B] 7 [+ Koy + Ko(r, 1)
-+ (@ + K70y) ([T - Kaawi— A)7B] ™ = 1) (@1 - /iQ1 - 523)
+ [gos + 2K B" (—iw — A) T gss + K7 g3,] (2wi — A)7 (Ql = 6@ - ﬁzQz)
= (©y+ K%O,) [I - Ki(2wi— A)™'B] " -
+ [Ka+ Kay 4 Ko(Br, Br) — Ka(2wi — 4) 7B (Q = BiQ1 — o3 )|

+ [g23 + 2K¥ BT (—iw — A) Tgss + K" q3,] (2wi — A)™ (Ql - pi@1 — 32Q§) ;

Define

Gu(K,K*) = [Q13 +2K"BT (iw — A) Tgss + KTQ;‘Q] (—4)™! (Qz — Q2 — ﬂzQz)
4 [go3 + 2K BT (—iw — A) Tgps + K7 qly] (2wi— A)* -
(01— 5101 - o) - L2
w

Gu(K,K*) = ReGu(K,K"), (3.75)

+ Ws(K, K*), (3.74)

then we have

a = Rea Z'RG{W1+W2+W3 - Qzlfz}

= (61+Re{KT0;}) [T+ K,A™'B]™"-
(K5 + Kapy + Kay + 2K (B, o) + K1 A7 B (G2 — 5@z — 5223 ) |
+Re { (0, + K704) [ - Ki(2wi — 4)'B] -
[Ka Koy + Ko(Bi, 1) — Ka(2wi = 4) B (@1 - B1Q1 - B:03) | |
- +Gu(K, K. | (3.76)

The cases when o < 0, a > 0, and @ = 0 correspond to supercritical, subcritical, and
degenerate Hopf bifurcations of the closed loop system. Thus designing a stabilizing
feedback is equivalent to finding K; (j = 1,---,9) such that @ = Re@ < 0. The cases

when ©; # 0 or ©, # 0 have been discussed. We consider the following two cases:

(1) If ©5 # 0, then let K, = 0, K; = Ky = 0, Ky = 0, and fix K such that
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KTO; # 0. By seléctipg Ks = —E[I—i— KiA'B] T eTK and letting & > 0
‘large enough, we have o < 0.
(2) If©4 # 0, then let K5 = 0, K; = Kg = 0, K9 = 0, and fix K such that
" KT@, # 0: By selecting K5 = —«[I — K1 (2wi — A)~'B] " ©FK and letting

x> 0 large enough, we have a < 0.
(3) If O3 =04 =0, then a = Gy (K, K*) is independent of K; (j =4,---,9).
If ©; =0, = 0 in addition to ©; = ©5 = 0, then we have

a = Gg(K,KY)
= [Q13 + K" (QBT(W — A) gz + q§"4)] (—4)™! (Qz - 5@ — ﬁ2Q;)

+ [gos + K™ (2B (—iw — A) " gs3 + g3y) | [2wi — A7 (Ql - 5@ — ﬂng)
Q1Q:
W

2

+ Ws(K, K*) + p.it.

It is clear that o = Re & is only a function of K and K* since f3;, (; and Qj, ji=1,2,
only depend on K and K*. In the following we show that « is a third order polynomial
of K and K*.

By using the fact that ©; =0(j =1,---,4), and the following equalities

(~A) i = A = - A 4 (- 4),
(A M= A = (i = A7 ()
(2wi — A)Hiw — A)™! = i(z’w — A7 - i(zm — A
(2wi — A)—l(—z‘w — A = g-cl—ﬁ(iw — At - %(Zwi — A

it is straightforward to show that

[a13 + KT (2B" (iw — A)Tgss + 43,) | (—A) 716y

= L (8, (w) K + KTV (i, i) K] + @

1 K+ — [0, + KT03] K,
w ww
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[a15 + K7 (2B (iw — A) Tgss + ¢)] (—A4) 72
- Im &, (0)
w

= ;15 [@1(—iw)K* + KT ¥ (iw, —iw) K*] — K* - ;15 [0 + KT8] K7,

[(I23v + K" (2BT("’W — A Tqa +q3)] [2wi — A]7'By

1
= [®(iw) K + K7 ¥ (—iw, iw) K]

[(")2 + KH@4] K,

1
1w

[gos + K¥ (2BT(—iw — A) Tgss + 34) ] [2wi — A]7' 6o
- &1; [®y(—iw)K* + KT U (—itw, —iw)K*} — §¢1Tz 0, + K76, K*.

Now G (K, K*) can be calculated as

Gu(K,K*) = H(K,K*) + P(K,K"), (3.77)
where
1
H(K,K) = — (01 + K70;) (K*Q3 — KQ2) +
1 1
— (02 + K704) (KQ1 + gK*Q;) : (3.78)
P(K,K*) = Co+ DK+ D;K* +KTE K + KPEsK + KT EpK*
+F112(K, K, K*) +F122(K, K*,K*) +plt, (379)

and

Co = cnz2— (h;zu + g3 (2wi — A) 7 G + qui3(—A) e,

D = Clzg(iw — A)_IB + C194 + q13(—A)f1<i>2(iw) -+ q23(2wz' - A)_l .

= . - _ . - 2 )
<I>1(zw) -+ q%;(—A) T [2(]33(7/(1.) — A) 1.B + Q34] - Z,—u;qu(I)g(zw),
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Eqs

F112(K1K7K*)
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¢113(fiw — A7 B+ 114 + q13(—A) 719 (iw) +

1 (2wi — A)7" [2gs3(—iw — A) 7' B + ga4] —

1 . . 1, ,
i (g11 + qi2) P1(—iw) — ﬂqn@z(—zw),

BT(iU) — A)_T6233(iw — A)_IB + BT(iw - A)_T6234
+eous + [2B7 (1w — A)Tgs3 + ¢] (—A) T ®p(iw) +
1 -

§q23(2wi — A) "N (jw, iw) +

1
2wi
2BT(—iw — A)—_TClgg(iw — A)_lB -+

(@12 (iw, iw) — 2®7 (iw) Py (iw)]

chy(iw — A)7 B + BT (—iw — A)Tepzq + 26144

+8] (—iw)(—A) 7T [2gs3(iw — A)7'B + gas] +

[2B" (—iw — A) " qss + q34] (2wi — A)LOy (iw) +
s~ A) 8 (i, i) — (2011 + g3y) Ui, i),
BT (i) (i) — 5 ¥ (i, —i),

3cas3((iw — A)7'BK, (iw — A)'BK, (—iw — A)"'BK*)
+cs34((iw — A)7'BK, (iw — A)'BK, K*)

+2¢334((iw — A)7'BK, (—iw — A)"'BK*, K)
+2c344((iw — A)T'BK, K, K*)

+cgu((—iw — A)'BK*, K, K) + 3cau(K, K, K*) +

KT [2BT (iw — A)Tqz3 + gog) (—A) ™ - ¥ (iw, —iw) (K, K*)
1

+- K7 [2BT (—iw — A)"Tqss + g34) (2wi — A)7"-

2
- 1
¥ (iw, iw) (K, K) + ﬂcbl(—z‘w)K* - KT (iw, iw) K

—% (B4 (iw) + & (iw)] K - KHO(—iw, iw) K
1

—aj—i@g(—iw)K* - KT (iw, iw) K,
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Fin(K,K* K*) = -—;,—a;@;l(—zw)K - KA (—iw, iw)K
| ~ L (ciw) K KU (=i, i) K
w
—gcl—u—iég(iw)K - KB (—iw, —iw)K*,

Define

o = ReCo. (3.80)
o = Re{D;+Ds},
of = Im{D,— D},
o' = % [Re{Ew + Eiz + Bz} + Re{(En + Eiz + Ex)'}],
ay? = % [Im{E'22 — B} + Im{(Es — EII)T}] ’
o2 = % [Re{E12 — Byt — Bz} + Re{(Bra — B — Bn)7}],
oz (Kr, Kr, Kr) = Re{Fis + Fin}(Kg, Kr, Kr),
i (Kp,Kr, K1) = Im{Fi1z+ Fio}(Kg, Kg, K7)
—Im{Fi12 — Fina}(Kr, K1, KR)
—Im{Fy12 + Fin }(K1, Kr, Kr),
a3??(Kg, K1, K1) = Re{Fi+ Fin}(Kr, K1, K1)
+ Re{Fi12 — Fin} (K1, Kg, K7)
—Re{Fi12 + Fin}(K1, K1, Kr),
22K, K1, K1) = Im{Fin — Fi2}(K1, K1, K1),

and

a? o??

ol aézb
Oé1=[a} a%], a2=[ 2 : (3.81)
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Define K, = , and

aga(Kb’Kl”Kb) = aéclzl(KR7KR7KR)+C¥;‘1LZ(KR,KR,KI)+
32 (Kr, K1, K1) + 037 (K1, K1, K1)

Let a3 as the symmetrization of as,, i.e., for any ¢,5,k € (1,---,2m), we have
ijk __ ijk tkj ik ki kij kji
o3 =g (a3a, +az, o3, + 03, toz, Taz ).

Define Py(K,) := Re Py (K, K*), then we get -
Py(K,) = ag + oK, + KF oy K, + a3(K,, K, K). (3.82)
Define o = Re &, then from (3.74), (3.75), (3.76), (3.77), (3.78), (3.79), we get
o = (61+Re{KT0,}) [[+K.A"B]™ [Kg, T Koy + Koy + 2Ko(Br, o)
FEGATB (G~ 51Qs — 03) + — (T+ KiA™'B) (K°Q3 - KQz)]
+Re { (0y+ K70,) [I — Ky(2wi — A)~'B] ™ [K4 + K151

+Ko(Br, 1) — Kn(20i = A)7B (@1 — A1Q1 - 5:Q3)
+_—1— [I — K1 (2wi — A)~'B] (KQl + %K*Q;) ] }

w
—+ [ao + O(le_ + K[,TagKb + a3(Kb, Kb, K[,)] 5 (383)

The objective is to find feedback gains such that o < 0. We have discussed the cases
when ©; #0for j=1,---,4 When©; =0(j =1,---,4), then o is expressed as

a = Py(K,) = ag + . K, + Kl ou K, + a3(K), K, K). (3.84)

K, € R?™ such that o < 0 in (3.76). The goal is to select K, such that o < 0, we
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" have the following cases:

(1) Ifas #0, then there is a K? such that as(KP, K, K) # 0. Letting
K, = —rsen {o (K8, K2, K9))
Where n € R and k > 0, then
K = ap— ko KO sgn {as (KO, K, KO)} + k2 K0T 0 KO — 17 | s (K2, KO, KY))| .

Apparently, a can be made negative when x increases.

(2) If a3 < 0, then
o= o+ o K, + K;;FOQK[,.

Letting K, = U¢, where U € R*™*?™ g an orthonormal matrix such that,

UTa,U is diagonal. Define

Define 2m = {1,2,---,2m}, and

I = {je2m; & >0}, (3.85)
L = {je2m;él <0}, (3.86)
I = {je2m; al=0, & #0}, (3.87)
I = {j€e2m; & =0, & =0}, (3.88)
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o = a0+a1Kb+K,,Ta2Kb

= a+ 61 + ETéne

2m ) 2m
= o+ 8lg+) ag
i\ 2
“ i s a i i i
= d+ Za% (:Mj + Alj) + Z (ajlfj + 0[%632) + Z &g,
. 20n . ,
. Jjen jelz JEI3

where

. (&)
Gy = Qg — Z —_—
JEn 40‘%

We have the following cases:

(i) If L,UI; # 0, then « can be made negative by letting |¢;| large enough for
jehLUL.

(ii) If I U I3 = 0, then we have

min o = &y,
§€R2m

where the minimum is achieved when §; = —% for j € I;. It is clear
2
that when &y < 0, the system is stabilizable; when &g > 0, the system is

unstabilizable; when &g = 0, the system is degenerate.

Corollary 3.2

Now we proceed to prove the corollary. The Taylor series eXpansion of (3.31) around

(y,u) = (0,0) at p =0 is given by

y- = Ay + Bu + ‘jll (y7 y) + 2612(3/7 ’LL) + 622 (U, u) + E(w7 w, ’LU) + h.O.t., (390)
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where w := v ,and
. _ ) )
A :‘: -le(oa 0)1 B := DZf(Oa 0)1 qll = §D%1f(07 0)7

1 1 1
(712 = ED%Zf(Oa 0)7 q_22 - '2"D%2f(0,0), c= 8D3f(07 0)7

where Di is differentiation with respect to y, D, is differentiation with respect to u,

and D is differentiation with respect to w. Now let

where
l
T=[r™r], T'=]|1r/|,
Iy
satisfying
w 0 0 0
T'AT=|0 —iw 0|, TB=]o0|, (3.91)
0 0 A B

and | L € Rx(+2) ) e ROH2Dxn and A € R™™. With the linear transforma-

tion, (3.90) is transformed into the following equations:

2 = wz+ (- qu)y,y)+ - q2) (y,u) + (- d) (u,u) + 1 - &(w, w,w) + h.o.t.
T = AT+ Bu+ (L -a1)@Wy)+ (L q2) (y,uw) + (L - Goo) (w,u) + L é(w, w,w)

-+h.o.t.
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' By comparing with system (3.32) and (3.33), we have

z=ly, 2*=l'y, T=0Ly y=rz+r'z+ryz,

and '

Cqu=rT(-qu)r, g2 =2rT (I - qu)r*, qus=2r"(l-qu)ry,
qa =27 (1 @), g2 =17 (-qu)r, qs=2r"(l qu)ry,
Goa = 2r7 (1 Ga), gz =71 (I-qu)re, gqsa=2r](l-qu2),
Qe = L G,  qu=lqulnr), G =2L-qurr),
Gia =201 - qu(r,ry), G =2l qQa(r,Id), Goo=11-qu(r*r),
Go3 = 211 - quu(r*,re), Goa =211 - Gua(r, Id), Gz =1L qu(re,r1),
Gza = 211 - Qra(ry, Id), Gaa =211 - Guo, etc,

where Id is the m by m identity matrix. Define

0 A-MI B
EAnA) = (A-2DT  Qu  Qun
L BT r{g Q2 i

where

Qu = L= 3 [0 @) (raks) + ()7 ( ) ()]
5 (0070 @) (k) + (raba) 0 ) (07
Qe = g %(Tl)T(l “fi2) + %(T*Z)T(l* “q12),

Qr = -G,

Using the relations in (3.91), it is straightforward to check in the (z, z*, %, u) coordi-

nate, 3(A1, Ag) is given by
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[0 0 0 iw— N\ 0 0 0 |
0o 0 0 0 —fw — A 0 0
0 0 0 0 0 A—MI B
; 1 1 1
W — Ao 0 0 q11 §Q12 5 Reqis 3 Requy
. ) 1 1 1
0 —iw — Ay 0 5(112 q22 51123 5(]24
T 1 T ]‘ T 1
0 0 (A= XI)" | zRegqi; 5423 433 5434
2 2 2
1 1 1 1
|0 0 BT 3 Req?, 5qu1 5(1;51 S0 |
(3.92)

Now by substituting A; = 0, A\s = iw into (3.92), and applying elementary transforms

to rows and columns, we get

0 0 0 |iw 0o 0 0|

0 0 0 0 —iw 0 0

0 0 0 0 0 A 0
20,w)=|0 0 0 0 0 0 O |,

0 —2wi 0 0 0 0 0

0 0 (A-w)T|0 0 0 0

[0 0 0 0 0 0 O

where

©;1 = Re{qu+as(—A4)"'B},
63 = 2BT(7,(.U - A)—TQ33(—A)_IB + q;ﬂ(—-A)_lB + BT('LUJ - A)_TQ34 + ZQ44.
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" Tt can be easily ’S‘eén‘that rank 33(0, iw) > 2(n + 2) if and only if ©; # 0 or ©5 # 0.
Similarly, by substituting \; = —iw, Ay = 2wi into (3.92), and applying elementary

transforms to.rows and columns, we get

[0 0 0 owi 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 A+4iw 0

N(—iw,2wi) = | —jw 0 0 0 0 0 0 |,
' 0 —2wi 0 0 0 0 0
0 0 A-2w)T] 0 0 0 0

L 0 0 o e o0 ef]

where

©; = quu+qs(2wi— A)7'B,
©s = 2BT(—iw— A)Tqs3(2wi — A)'B + ¢, (2wi — A)"'B

+BT(—’iw - A)_TQ34 -} 2(]44.

It can be easily seen that rank 3(—iw, 2wi) > 2(n+2) if and only if ©, # 0 or ©4 # 0.
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£

- Chapter 4 Effects of Magnitude

‘Saturat'ibn in Control of Bifurcations

Motivated by problems such as active control of rotating stall in compression systems,
an analysis of the effects of controller magnitude saturation in feedback stabilization
of steédy—state bifurcations is performed. In particular the region of attraction to
the stabilized bifurcated equilibria is solved for feedback controllers with magnitude
saturation limits using the technique of center manifold reduction and bifurcation
analysis. It has been shown that the stability boundary is the saturation envelope
formed by the unstable equilibria for the closed loop system when the controllers
saturate. The framework allows the design of feedback control laws to achieve a
desirable size of the region of attraction when the noise is modeled as a closed set
of initial conditions in the phase space. Modulo the phase of the limit ‘cycles, the
qualitative behavior in the Hopf bifurcation case is the same as some cases in the
steady-state bifurcations. This chapter is based on the paper [71].

Although much research has been done on bifurcation control, no previous research
has addressed the role of controller magnitude and rate saturation. The results in this
chapter is the first to give qualitative analysis on the effects of magnitude saturation

in bifurcation control.

4.1 Steady—State Bifurcations

In this section we use the same notation as Section 2.1. Consider the following single-

input system

g: fﬂ(yiu)a (4'1)
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7" Where y € R""'l%(n > 1) 1s the state varlable peRisa blfurcatlon parameter, and
~u € Ris the control input. We assume that the vector field is sufficiently smooth
and the system has a steady-state solution yo(p). A(u) is a simple real eigenvalue of
- the linearization around yo(u) and the eigenspace associated with () is the only
linearly uncontrollable mode. Under these assumptions, we use Taylor series expan-
sion fbllowed by a linear transformation to decouple the uncontrollable mode from

the controllable modes. The resulting standard form is given by

. 2 ~ ~T = ~ 2
T = dpx+ qx® + q12ZT + qi37u + T qo% + go3Zu + q33u
3 ~ 2 2 ~T ~ ~ 2
+C1112° + €112Z2° + C113Z°U -+ T7 C199T X + C193TUT + C133TU
o e ~T ~ ~ 2 3
+0222(.’I7, z, .’17) + I CoozTU + Co33TU” + C333U” + - - - s (42)

T = AZ+Bu+qus’+ quis + fisvu + §o2(Z, 2) + fadu + fasu’ + -, (4.3)

where z € R, Z € R*, A € R and B € R**!, and (A, B) is in controller canonical
form. The state x represents the uncontrollable mode and the vector Z represents the
controllable modes.

Lete, =[0 --- 0 1]% € R". In the following, we denote ¢% = quze,, ¢ =

eX'gasen, etc. Define

Ti = g+ qisa, (4.4)
T2 = g3 +5an + gnar, (4.5)
Iy = [o o gyt ltas(l e - oanoy | (4.6)
O = 20 ¢ - ¢ 1+an[0 gfy - gf"]

+(g35 +2g33a0)[ 1 a1 -+ @y s (4.7)
o = o — i, _ (4.8)
o = ¢y + 130, — Hf((ﬂ‘2 + G13a,) — I15 i1, (4.9)
ay = Cipy + Clostn + c1s3al — 7 (G5 + Gaam + ds3ay,) |

—I05 (@ + G13an), (4.10)

nnn

O3 = C999 + C223an + 623301 + C333a H (q22 -+ ijgéaln -+ (jggai), (411)
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quu | T1 | T2 | Ay | 03 | ay 251 ap | Ay | P S(P)
SS-1 | = <0
SS-2|=0|#0 _ >0
SS-3|=0|=0|=0 #0 >0
SS-4 [«=0|=0|=0 = <0 >0
SS-5|=0|=0|=0 =0(=0|#0[>0
SS-6 | = =0|=0 = >0 >0]1>0
SS-7|#0|#0|=0
SS-8 | #0 #0|[>0
SS-9 | #0 #0|[=0 <0

Table 4.1: Different cases when steady-state bifurcations are stabilizable.

K K;
SS-1- 0 -1 @& -+ @p-1 )
SS-2 0 (o) + g—:‘ (K3 + [ 1 (_11 vt (_ln—l ]611) <0
SS-3 Ps(K) <0 0
SS-4 Ps(K) <0 0
SS5]  Py(K)<0 0
556 — 0
SS-7 —‘,Irl.—ll T1§:&+&0+PS(K) <0
SS-8 ﬁ (—T1 + \/A'r) %:‘\/A—'r + G + Ps(K) <0
SS-9 _2TTI2 0

Table 4.2: Construction of stabilizing feedback for steady-state bifurcations.

L
=
I

oy + o K + K + 05K, (4.12)
Ay = T% —4q¢11 1o,

A, = ozf — das oy,
p - 2T2 )

where p(s) = det(s] — A) = s" +a;8" 1+ + a,;_ls + ay,.

Under some nondegeneracy conditions, there exists a sufficiently smooth feedback

u=F(%1) = Ki+Ky+ Ksz®>+ KsZz + 3 KsZ +h.o.t., (4.13)
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;‘ ‘such that (0,0) is dsymptotiqally stable if and only if one of the conditions in Table 4.1
is satisfied. The construction of the stabilizing feedbacks is given in Table 4.2, where

K =% and.

Gn ’

. T ~
Gy = Z-l‘nl [ 1 a -+ Gy ] Q(K),
. 1 .
Qy = g; AT [ 1 a; e Op—1 ] Q(K)1
QK) = Gu+ (@ +G3an) K + (35 + Baan + Gasan) K2, (4.14)

where det[s]—(A+BK;)] = s"+a;s" '+ - -+8,_15+@,. The construction procedure
consists of the following two steps: First, choose K; such that A + BK; is Hurwitz,
then let K4, = 0, K5 = 0, and choose K5, K3 as shown in Table 4.2.

We consider the system (4.1) with state feedback u = a(y) constrained by con-

troller magnitude limits:

Umag,  if @(Y) > Umag,
v=o(a(y) =1 afy), if|ey)| < tmy,

—Umag, If (Y) < —Umgg-

By the same procedure in the previous section, we transform the system into a stan-
dard form (4.2) and (4.3) with v = o(F(Z, z)), where F(%,z) is given by (4.13). For
the simplicity of discussion, we make the following additional assumption in addition

to AS-1 to AS-4 in Chapter 2:
AS-5 A is Hurwitz for all values of y in a neighborhood of u = 0.

From thé construction procedure in Chapter 2 it is sufficient to only consider the state
feedback on the linearly uncontrollable mode z, i.e., K; =0, a; =a; (j =1,---,n),
and u = o(F(z)). |

The goal in this section is to analyze the qualitative bifurcation behavior of the
closed loop system under the constraints of controller magnitude saturation. We
approach this problem in the following way: first, we derive the dynamics on the

center manifold for the closed loop system without controller magnitude saturation,
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Figure 4.1: Bifurcation diagrams of case SS-2 for two different gains.
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then we add saturation limits to the dynamics on the center manifold. By doing so,
we could estimate the region of attraction for the stabilized equilibria. The details of
the center manifold reduction can be found in Chapter 2. We analyze the effects of
magnitude limits case by case. For SS-1, the bifurcation for the uncontrolled system

is already supercritical. For SS-2, the dynamics on the center manifold is given by

& = duz+bzu+ b,

U = 0o (K3IL‘2)
where b, = :f_:’ and
1 ~
by = 0111+;<q?2[1 ap --- an—l]_a’”[o ‘I%Q Q?z—l])‘hb

n

W ithoﬁt loss of generality we assume d < 0 and b; < 0, then the bifurcation for the
open loop system is a subcritical pitchfork bifurcation since by > 0 (see Figure 4.1 (a)).
If K3 > 0is small, then the bifurcation for closed loop system is given in Figure 4.1 (a).
The bifurcation for the closed loop system is still a subcr'itical bifurcation, but the
region of attraction to the nominal equilibria = 0 is enlarged. The enlarged region
is given by the shaded area in Figure 4.1 (a). If we increase Kj, then the bifurcation
for the closed loop system is a supercritical pitchfork bifurcation (see Figure 4.1 (b)).

Also, the region enlarged from control is given by the shaded region. The intersection



" between the stabilized eQuilibria and the saturation envelope signiﬁes the operating
| limi.tin terms of the bifurcation parameter, i.e., any trajectory from a nonzero initial

condition to the left of the intersection will go to infinity. As the gain K3 goes
" to infinity, the gaturation envelope is a closed curve shown in Figure 4.1 (b). The
equation of the saturation envelope can be solved by calculating the equilibria when

the controller saturates, i.e., when u = up,qy. The saturation envelope is given by

1
"= (|b1|umag + b2$2) .

u

It is clear that any trajectory from a nonzero initial conditions will go to infinity if
the system operates at p < p* = %umag. In other words, the region between the
saturation envelope and the unstable bifurcated equilibria of the uncontrolled system

is the maximal augmented region of attraction due to the magnitude saturation limit.

For SS-3, the dynamics on the center manifold is given by

T = dypr+ oz’ + onz?u + apzu? + agud,

u = o(Kz)

where a; (j = 0,---,3) are given by (4.8), (4.9), (4.10), and (4.11). The saturation

envelope is given by
1 2 2 a3u§na9
H = —E QT + 0 Umagd + agumag + T .

The bifuréation diagrams could be characterized by two cases and they are given in
Figure 4.2. The interpretations to Figure 4.2 for the region of attraction are the same
as the previous case. In the first figure one branch of the saturation envelope has at
most one point at which g—g = 0, whereas in the second figure there are two points
on the saturation envelope at which %’i = 0. The solid line parts on the saturation
envelope in the second figure are stable equilibria. If |K| is sufficiently large, this

stable equilibrium branch attracts the initial conditions between the upper and lower
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Figure 4.2: Bifurcation diagrams of case SS-3 with different values of gain.

branch of the unstable equilibria on the saturation envelope. The difference between
the saturation envelopes of SS-2 and SS-3 is that the saturation envelope of SS-2
is closed but the saturation envelope of SS-3 is open and goes off along the p-axis.
This implies that if the noise (i.e., initial conditions) is infinitely small, then SS-3
will give larger region of stable operating range.

For SS-4, the dynamics on the center manifold is given by

& = duz+ opx® + uz?u + apru®,

u = o(Kzx)
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Figure 4.3: Bifurcation diagram of case SS-4 with different values of gain.

where «; (j = 0,1, 2) are given by (4.8), (4.9), and (4.10). The saturation envelope is
given by

1
p= - (aoxz T A1 UmegZ + 0‘2u72nay) :

The bifurcation diagram is given in Figure 4.3. The saturation envelope is a closed
curve. y, is the maximum of operating range that can be achieved, i.e., any trajectory
from a nonzero initial condition of z diverges to infinity. Also the stable equilibria
for p € [p1, p2] are determined by the controller saturation limit, so increasing gain
will not make them arbi_trarily closed to the nominal equilibria z = 0.

For SS-5, the dynamics on the center manifold is given by

& = dpz+ opz® + onz?u,

v = o(Kzx),

where o and o, are given by (4.8) and (4.9), respectively. The saturation envelope
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s given by %
1 2
p=—c (002? & 1 UmagT) -

Thelbifurcation diagram is given by Figure 4.4. In this case, we have p; < 0 < pg, S0
the bifurcatioh for the closed loop system is subcritical if the gain is very large, but
the region of attraction to the stable part of the saturation envelope is larger than
that to the nominal equilibria for the open loop system.

For SS-6, the dynamics on the center manifold is given by

& = duz + opz® + onr’u + apzu?,

u = o(Kz),

where a; (j = 0,1, 2) are given by (4.8), (4.9), and (4.10). The saturation envelope is
given by

1
w= _E (a0x2 + 01 Umag? + Olz’Uz,Qnag) )

The bifurcation diagram is given by Figure 4.5. It can be seen that the saturation
envelope intersects the bifurcation point, so as the gain increases, the stabilized bifur-
cation branch will intersects the stable part of the saturation envelope. In this case,
we have py = 0, so it is impossible to bring the stable equilibria arbitrarily close to
the nominal equilibria for x € [u1,0).

For SS—7 , the dynamics on the center manifold is given by

T = dur+ |:b1K3+C~¥0+P (—q—l-l-)] :1:3,

U = a(—%x+K3x2),
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Figure 4.7: Bifurcation diagram of case SU-2 with different values of gain. Note the
system is unstabilizable.
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~where - »

dozz—:[l_ a; ‘- an_l]Q(—%),

P(-) is given by (4.12), and Q(-) is given by (4.14). The saturation envelope is given
by |

T, qu I qu1 5
= —— | = ma ~ -7 P{——— 3
L dan< U 9+T1m P o + Y, T
:|:Umag = "%.l‘l$+K3$2.
1

A bifurcation diagram is illustrated in Figure 4.6. Since the bifurcation for the open
loop system is not symmetric about the z-axis, the bifurcation for the closed loop
system is also asymmetric about the z-axis. In Figure 4.6, the region of attraction to
the stabilized equilibria for x > 0 is smaller than that for x < 0. The case SS-9 can
be similarly analyzed, and the qualitatively picture is similar to that of Figure 4.6.
Now we consider the case SU-2 for which the system is unstabilizable. The
conditions for this case is given by Table 2.1 in Chapter 2,i.e., ¢ =T =T =3 =

0, ag >0, ag > 0, but A, < 0. The dynamics on the center manifold is given by

& = duz+ opr® + oqzu + apru’,

v = o(Kzx),

The shape of the saturation envelope is given by Figure 4.7. It should be noted that
the saturation envelope is in the region p > 0, and the bifurcation for the closed loop
systém is always subcritical for any control gain. But still, the region of attraction
to the nominal equilibria‘and the stable equilibria on the saturation envelope can be
enlarged by choosing appropriate values of the control gain.

‘The above is a complete discussion of the effects of magnitude saturation in feed-
babk stabilization of steady state bifurcations. The most important feature is that

the boundary of the region of attraction to the stabilized equilibria for all the gains is
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" the saturation ehvélyope ermed by the uhstable equilibria for the cloéed loop system
: Wheﬁ- the controllers saturate. We remark here that for the cases when there does
not exist a sufficiently smooth feedback such that the bifurcation for the closed loop
*-system is supercritical, we can design feedbacks to enlarge the region of attraction.
As in the stabilizable cases discussed above, the boundary for the enlarged region of

attraction is formed by the saturation envelope.

4.2 Hopf Bifurcations

Similar to the steady-state bifurcation, we have classified the stabilizability for Hopf
bifurcations in Chapter 2. We have also given the construction of the stabilizing
feedback controllers. We remark here that the techniques for analyzing the region of
attraction to the stabilized equilibria in steady-state bifurcations here apply to the
Hopf bifurcations. The only difference is that in the Hopf bifurcation case, we have
to take into account the normal form transformation in addition to the center mani-
fold reduction. The qualitative behavior of the feedback controllers with magnitude
saturation for the Hopf bifurcation case is the similar to the steady-state bifurcations
discussed in the steady-sate bifurcations.

In addition to the assumptions AH-1 to AH-4 in Chapter 2, we make the fol-

lowing assumption
AH-5 A is Hurwitz for all the values of y in a neighborhood of 2 = 0.

Now we consider the case HS-2, i.e.,

©; = Re{ds +quan} #0,

where

q11q12 - -
Co = cuz— " — O 1o — I 1,

Iy’

[0 gy -~ ¢t 1+aell a1 -+ anan ],
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Hf = 10 %31 (2wi) -:- o3n-1(2wi) |+ Gaal 1 p1(2wi) -+ ooy (2wi) |-

We choose the control law as u = o(K|z[?) with K € R and o(-) is the saturation
- function. The normal form of the dynamics on the center manifold of the closed loop

system is given by

& = (dp + iw)C¢ + &|CJ%C,

where

Q
Il

ag + bo K + p.i.t.,

) : . S ) A~
ag = O{Q + a—l[]. a, - U/n_l]CIm + Re {-(J,_z[l p1(2wz) s pn_l(sz)]qu} ,
91—

?
Qan

z = ¢+ '711(2 + ’712|C|2 + '711C*2 + h.o.t.,

where 711, 712, and 22 can be calculated explicitly. Here p.i.t stands for pure imagi-

nary terms. Letting z = pe'®, and ¢ = re®, then then normal form is given by
i = dur + (ao + b K)r?.
Now

u = o(K|z|?)

= o(K|¢+ Y11¢? + Y12|¢ P + ’}’11C*2|2)
~ o(Kr?).

Now if the controller is not saturated, then the normal form is given by

P = dur + (ap + bpK)r?

dur + agr® + bur.
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" Here we have used the fact that u = Kr?. If the controller has magnitude saturation
' limit,' we use the following system to approximate the normal form dynamics on the

center manifold:

F = dur + agr? + bour,
u = o(Kr?).

Note theA equations are the same as the case SS-2 in the steady-state bifurcations.
So thé bifurcation diagram is the same as Figure 4.1, except that the y-axis is now
replaced by r. By fixing K such that the bifurcation for the closed loop system is
supercritical, the bifurcation diagram and the phase portraits are shown in Figure 4.8.
Phase portrait (c) shows that if g > 0, then the nominal equilibrium is stable and the
region of attraction of the equilibrium is bounded by an unstable limit cycle which
is on the saturation envelope. Let px be the bifurcation parameter at which the
stabilized periodic orbits intersect the saturation envelope. If ux < p < 0, then the
phase portrait is given by (b). The nominal equilibrium becomes unstable due to the
supercritical Hopf bifurcation at g = 0. The region of attraction is bounded by the
unstable limit cycle. At u = g, the stabilized limit cycle merges with the unstable
periodic orbit on the stability envelope and the region of attraction of the nominal
equilibria becomes unbounded when p < pg.

The bifurcation and the saturation envelope for other cases in the Hopf bifurca-
tions can be analyzed in the same way and they are the qualitatively the same as
SS-3 to SS-6 iﬁ the steady-state bifurcations except that the equilibria in the bi-
furcation diagram are replaced by limit cycles. We also point out that the shape of
the periodic orbit on the stability boundary is not necessarily circular in the normal
from coordinates for other cases. We also point out here that the bifurcation diagram
Figure 4.6 does not show up in the Hopf bifurcations since the dynamics on the center
manifold for the Hopf bifurcations can always be transformed into a normal form in
which the periodic orbits are circles.

If the controllers also have bandwidth and rate limits, then bifurcation analysis
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Figure 4.8: Bifurcation diagram and phase portraits of case HS-2 with a fixed gain.
Dashed: unstable periodic orbits for the open loop system. Solid: stable periodic
orbits for the closed loop system. Dashdot: saturation envelope composed of unstable
periodic orbits when the controller saturates.

can also be carried out. We omit this part since the general idea of analysis will be
illustrated in the next chapter by analyzing the Moore-Greitzer model for rotating

stall and surge in axial compression systems.
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| Chaptér 5 Application to Active Control
of Rotating Stall Using Bleed Valves with
Magnitude and Rate Limits

In this chapter, nonlinear qualitative analysis is performed on a reduced order model
of compression system instabilities to evaluate the tradeoff of fluid noise, actuator
magnitude saturation, bandwidth, rate limits, and the shape of compressor char-
acteristics in active control of rotating stall in axial compressors with bleed valve
actuators. Further model order reduction is achieved by approximating the dynamics
on the invariant manifold that captures the bifurcations and instabilities. Bifurca-
tions and qualitative dynamics are obtained by analyzing the reduced system. The
operability enhancement is defined as the extension of operating range for which fully
developed rotating stall is avoided. Analytic formulas are derived for the operability
enhancement as a function of noise level, actuator saturation limits, and the shape
of the compressor characteristic, which is the major nonlinearity in the model. The
shape of the compressor characteristic, especially the unstable part, is critical to the
rate required for robust operability near the peak for the closed loop system. Ex-
periments are carried out on a single-stage low-speed axial compressor using different
level of steady air injections to generate different compressor characteristics. The the-
6retical formulas give gdod qualitative estimates to experimental data. This chapter
is based on the papers [68, 70, 72, 73].

Previous work on the effects of actuator bandwidth are given in [39, 46], but the
technique is linear stability analysis and the effects of magnitude saturation and rate

limits cannot be cast into a linear framework. The results in this chapter are new.
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Figure 5.1: The composition of an axial compression system and assumptions on the
flow.

5.1 Background and Motivation

In this section we describe the Moore-Greitzer model and the dynamics and bifur-
cations associated with rotating stall and surge. Then we discuss the benefit of bi-
furcation control. Finally, we motivate the effects of actuator limits from bifurcation

theoretic point of view.

5.1.1 Background

The Moore-Greitzer model for an axial compression system

An axial compression system is composed of an inlet duct, a compressor, an outlet
duct, a plenum, and a throttle (see Figure 5.1). The important assumptions of the
Moore-Greitzer model are shown in Figure 5.1 (see [56]). Also shown in the figure
is the bleed valve actuator on the plenum. The flow in the inlet duct is assumed
to be two-dimensional potential flow, where 7 is in the axial direction and @ is in
;che circumferential direétion. The compressor is modeled as two-dimensional quasi-
steady actuator disc, which implies that the pressure-rise across the compressor is
given by

AP dy

= F(p) — 71—
%pU2 (90) Tdt,
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" where U is’ the ‘wheel sp"eed(at mean diameter, v = (0,§) is the‘local, unsteady
- a,xiai velocity coefficient at the compressor face, F(p) is the axisymmetric steady
performance of the blade row, 7 is the coefficient of the pressure-rise lag. The flow in
" .the outlet duct i‘s modeled as linearized steady two-dimensional rotational flow. The
flow in the plenum is modeled as compressible, isentropic, and quiescent. Using these
assumbtions, Moore and Greitzer derived a set of partial differential equations (PDEs)
for which the unknowns are the flow coefficient ©(0,&) evaluated as the compressor
face and the annulus-averaged pressure-rise coefficient U (£) across the compressor [56).
By projecting the PDEs onto the zeroth and the first spatial harmonic, Moore and

Greitzer derived a three state model given by

27
d® 1 (i V(P + Asin () d¢ — \If) ,

de lc \27 Jq
dv 1
F 15 (@~ (YD), (5.1)
dA 1 1 [ o
& = pep——— (@ + Asin () sin¢ d¢,
0
where ®(¢) = [" ¢(6,£)df is the annulus-averaged flow coefficient, A is the am-

plitude of the first harmonic of the axial flow disturbances around the compressor
annulus, v.(-) is the compressor characteristic, ®r(-) is the throttle characteristic,
l. is the effective length of the compression system, B is the Greitzer B-parameter,
m is the duct parameter, p is the inertia parameter, £ is the nondimensional time
in rotor radians, and ( is the circumferential angle around the compressor annulus.
Suppose the compressor characteristic is analytic and the throttle characteristic is
$7(¥) = (v + u)V'¥, where u is the control input of the bleed valve and v is the
throttle coefficient denoting the opening of the throttle (v = 0 means the throttle
is fully closed). v and B are the bifurcation parameters of the model [52]. The
operating condition is determined by v and rotating stall occurs when the throttle
characteristic intersects the peak of the compressor characteristic. B is proportional
to the size of the plenum and determines the axisymmetric dynamics ® and ¥. When

B is large, the eigenvalues of the axisymmetric dynamics tends to become unstable
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Figure 5.2: Behavior of rotating stall and surge in the ®-¥ plane.

near the peak of the compressor characteristic.

Properties of the dynamics of the model

We first discuss the dynamics and bifurcations for the uncontrolled system, i.e. u = 0.
We treat the throttle coefficient -y as the bifurcation parameter. The shape of a typical
compressor characteristic is shown in Figure 5.2.

The unstalled equilibria of the system are the axisymmetric equilibria given by

®=d(y), V= Te(y) = Ye(®e(7)), J=0.

where J = A2. The axisymmetric equilibria denote the axisymmetric flow condition.

There are two types of bifurcations of the axisymmetric equilibria.

e At the peak of the compressor characteristic v = 7, a transcritical bifurcation
to rotating stall occurs. The rotating stall equilibria denote the unsteady non-
, axisymmetric flow which is a first modal traveling wave rotating around the

annulus of the compressor at a fraction of the rotor speed.

e If B is large, then at a point on the positive slope of the characteristic y = ;5 <
7o, a Hopf bifurcation to surge occurs. The surge limit cycle denotes the ax-
ial unsteady axisymmetric flow and pressure oscillation across the compression

system.
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Figure 5.3: Open and closed loop bifurcation behavior with feedback u = K.J.

A complete numerical bifurcation analysis is in [62]. Throughout this chapter we
assume B is small such that there is no Hopf bifurcation to surge. The transcritical
bifurcation to rotating stall is typically subcritical, and there is a saddle-node bifur-
cation on the stalled branch (see Figure 5.3 (a)). The stall inception is catastrophic
because of the hysteresis associated with the subcritical bifurcation. It is easy to show
that the stall mode A is linearly uncontrollable with bleed valve actuators. So it is
impossible to design a state feedback to stabilize the axisymmetric equilibria beyond
the peak of the compressor characteristic. Nevertheless, Liaw and Abed [49] designed
a feedback control law « = KJ such that the bifurcation of the closed loop system
is supercritical. By changing the criticality of the bifurcation, the stall inception

becomes progressive and more benign (see Figure 5.3 (b)).

5.1.2 Motivation from bifurcation theoretic point of view

Due to actuator magnitude and rate saturation, the actual domains of attraction of
the stable operating points could be small. In this section we motivate the effects of
actuator saturation limits from bifurcation theoretic point of view.

Consider the a feedback control law with magnitude and rate saturation constraint

and first order dynamics
i = x(®, ¥, J; Umag, Urates T), (5.2)

where Umqg and Uupq are magnitude and rate saturation limits, i.e., 0 < 4 < Upaq,
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“and Qura‘te < U £ Urgte, Whelfe 7 is the time constant associated With the actuator.
- vEspe'(‘:ially, we consider the feedback control law u = KJ with first order actuator
V dynamics constrained by magnitude and rate saturations. The full closed loop system

"is given by

d® 1/1 [* ,
Egzza(%()%@+Ammm¢4Q,

B = o (2 (r+uVE),

dé 4B2l,
dA 1 1 ™
2z = - ® + Asi in¢ d
E = mma ), %@+ AsnQsinCdc,
( —Urate if w S —Urate,
. T
du Udes — U .. |Udes — U
—d—€ = < deT lf d < urate, (5'3)
L Urate if Ydes — 8 2 Urate,
T
.
0 if KJ <0,
L umag if KJ Z U'magy

together with the magnitude constraint 0 < u < Upqg-

The effects of actuator limits (magnitude saturation, bandwidth and rate limits)
and fluid noise on rotating stall control can be demonstrated by analyzing the bifurca-
tion diagrams of open and closed loop systems. A typical bifurcation diagram for the
uncontrolled three state Moore-Greitzer model is in Figure 5.4 (a). The region of at-
 traction of the stable axivsymmetric equilibrium is the shaded region in Figure 5.4 (a).
Now consider the controller with infinite magnitude saturation limit and infinite band-
width, i.e., the bleed valve can bleed out as much air as we want and is infinitely fast,
then the bifurcation diagram for the closed loop system is shown in Figure 5.4 (b).
The bifurcation for the stall equilibria is supercritical and the stall inception is pro-
gréssive. The stall branch can be arbitrarily close to the axisymmetric equilibrium

by increasing K. The region stabilized by control is shown in Figure 5.4 (b).
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Figure 5.4: Bifurcation diagrams for the effects of actuator limits.
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. Now suppose the magi}itude saturation for the actuator is finite bﬁt the actuator

-bandwidth is infinite, i.e., the valve is infinitely fast but it can only bleed out a
certain amount of air. The bifurcation diagram for the closed loop system is shown

"in Figure 5.4 (c). The thick solid and dash lines denote the equilibria for the closed
loop system. It can be seen from this figure that there is a new saddle-node like
bifurc&tion point Sk due to the actuator magnitude saturation. This saddle-node
like bifurcation point defines vk such that any arbitrarily small noise of J will drive
the system to the fully developed rotating stall equilibrium if the throttle operates at
a position such that v < yg. Also we have

lim =y =9—U
K t+00 YK Yo Yo mag

where 7} is the throttle coefficient of the stall inception point when the bleed valve
is fully open. It is clear from Figure 5.4 (c) that the bleed valve controller cannot
eliminate the hysteresis loop if its magnitude saturation is finite. Furthermore, any
arbitrary small noise of J will grow to fully developed rotating stall no matter how
large the controller gain is when the throttle operates at a position such that v < 3.
It can also be seen that the region stabilized by control is much smaller than the
previous case if g, is small. This implies it is impossible to build a valve with small
air bleed to achieve a large extension of operable range.

Now, in addition to the finite magnitude saturation assumption, suppose the band-
width and rate limits are finite, i.e., the bleed valve opens and closes with a finite
speed. Also assume the bleed valve is initially closed, i.e., u(0) = 0. Then the region
stabilized by control is vshown in Figure 5.4 (d). By comparing (c) and (d), it is
clear that the region of attraction from control is further restrained by the actuator
bandwidth and rate limits. It can be proved in later sections that if the rate limits
goes to zero, then the region of attraction from control becomes arbitrarily small.

‘The noise level for a real compression system is not arbitrarily small due to dis-
turbances such as inlet distortion and inlet turbulence level. We model the noise as

a closed set of initial conditions of J. When the noise level is of finite amplitude, the
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6pén loop systerh gde‘s to"rotating stall at a throttle coefficient 1arger‘ than the nomi-
* nal é’sall iﬁception point vg. The eﬁtension of operable range becomes even smaller if
the noise level is of finite amplitude.

It should be noted that in the above discussions are valid only if the initial con-
ditions for ® and ¥ are close to the axisymmetric equilibrium for a fixed throttle
coeflicient and B is small enough such that there no surge dynamics. In the following
sections we will systematically develop the ideas in the above discussions and obtain
analytical estimates for the controller performance in the presence of noise, actuator

magnitude saturation and rate limits.

5.2 Control Analysis

In this section we reduce the four-dimensional system (5.3) into a two-dimensional
system. We give qualitative phase portraits for the reduced system for different
throttle settings. It turns out that the stable manifold of a saddle equilibrium in the
system is the boundary between two regions: one with the trajectories converging to
the stabilized stall equilibrium, the other with the trajectories converging to the fully

developed stall equilibrium.

5.2.1 System reduction and approximation

Numerical bifurcation analysis by McCaughan [52] confirmed the typical qualitative
phase portraits of the open loop system for different 7’s look like Figure 5.5 if the
Greitzer B-parameter is small enough. Let ®g, ¥4 and 7 be the axial flow coefficient,
the pressure rise coefficient, and throttle coefficient at the peak of the compressor
characteristic, respectively. Let <y, be the throttle coefficient at which the unstable
stall equilibria merge with the stable stall equilibfia. It is clear that the saddle-sink
connections in Figure 5.5 are attracting (stable) and they captures the instabilities
(rotating stall) of the Moore-Greitzer model. The main effort of this section is to

approximate the dynamics on the saddle-sink connection.
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Figure 5.5: Phase portraits for the three state Moore-Greitzer model at different
throttle coefficients.

The following proposition gives the center manifold reduction of the controlled
system. We use the convention O(z") to represent terms of the order |z||™ and

higher, where z € R".

Proposition 5.1 For sufficiently small B, the dynamics of (5.3) near the transcrit-
ical bifurcation point (®g, ¥o,0) can be approzimated by the dynamics on the center

manifold and can be approzimated by the following two-dimensional system

dJ :
-(—l—g = 041(5+U)J+C¥2J2+O(J[5 u J]z), (54)
( —Uprate 'l'f Ldes 7 B S —Uyrate,
T
du ) Udes —U . |Udes — U
T = ﬁ - ’Lf P < Urates (55)
Upate Zf Hdes — B 2 Urate,
\ T
,
0 if KJ <0,
Udes = § KJ if0<KJ<’U,mag,
L Umag Zf KJ > Umag,




/T

a = '—m—"'ﬂ—, (5.6)
_ 1 " 701/1"2
= g () -7

and all the derivatives of 1. are evaluated at ®y.

Proof of Proposition 5.1: The proof of Proposition 5.1 is the standard center
manifold reduction (see [37]), and is given as follows. We assume the compressor
characteristic 1.(-) is an analytic function, i.e., the Taylor series of expansion of

(P + z) is convergent for any ®. So

o

k=0

Now, by substituting the Taylor series expansion into the three state Moore-Greitzer

model (5.1), we get

4o 1 20 (@
& - E( L) +21[p(2k>("]3 )

- o (2- (Ve (5.8)

i€~ ip,

) (2k-1)
a _ 4 3 2k (@) Ik
& T mtpl [P

where J := A% From the actuator dynamics (5.3) we know in different regions of the
u-J plane the control law has different forms:

KJ—-u Umnag — U
,and 4 = —%——,
T T

(1) The bandwidth limit form: u =

(2) The rate limit form u = Fu,gse.
(3) The magnitude limit form u = Upqy.

We first consider the case when 4 = 5";’—“. Letting ¢ = ® — @, v = ¥ — ¥y,

v =u— KJ, and § = v — 7, then by using Taylor series expansion, the system
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"becomes
j = _1_ 2¢"¢J+lJ2 + h.o.t
. 1 1 " £4)
¢ — 4l(:J_ l_,(p_‘_ c¢2+_C¢J+ J2 + h.o.t.
¢ _ __V OK 1 ¢_ w _
4le B2l B2l 1/ 432l 4B2l
1 Yo 2)
- KoJ — — h.o.t.
BT <¢vv+ ) 4\1107# +h.o
b o= _LH__K_ 2¢”¢J+—giJ2 +h.ot
— - — c 1 .0.t.

Since 7 > 0 and B is small, the system possesses a three-dimensional stable manifold

ahd a one-dimensional center manifold. Let

¢ = PBud+pul+0(6 JJ),
- ,621(5 + ,822J + O ([6 J]z) 3
v = [316+ B3] +O ([5 J]2) .

By differentiating these equalities and using the systems equations, we get

B = v Vo, - Pa=0, B5=0,

P12 = V¥ K+;’°¢4¢—, Bor =Y, B =0.
So the dynamics on the center manifold is given by

r 1 " gl 2
J = m+’u(2@b¢J+ 7 ) +hot.

= a1(6 + KJ)J + azJ? + h.o.t.

= a6 +u)J +axJ?+ h.o.t.,

where oy and ay are given by (5.6) and (5.7), respectively. The last equality holds
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" because u = v +KJ and v =0 (6% 4/, J2) So the reduced system is given by

J = a6 +u)J+ > +hot, (5.9)
. KJ—u
U = ,

=

where o and g are given by (5.6) and (5.7).

For other types of control laws, similar procedure could be followed. The resulting

reduced system is the same as (5.9), together with the actuator dynamics. It should

be mentioned that for the case when 4 = FUrqate, the reduction is no longer a center

manifold reduction, but rather an approximation of the ¢ and v variables using J

and 8. The proof is done by combining all these cases. |

Here are several observations from Proposition 5.1.

(1)

If u = 0, the coefficients a; and as in the center manifold equation determine
the bifurcation characteristics of the uncontrolled Moore-Greitzer model in the

neighborhood of 7.

For a typical compressor characteristic we have ¢ < 0, so oy < 0. The sensitiv-
ity of the eigenvalue of the stall mode to variations of the bifurcation parameter
~ is given by oy .‘ It is easy to see that if |¢)!| and ¥, are large, which is typical
of the high speed compressor of an aircraft engine, then |oy| is large and the

system‘ quickly goes linearly unstable beyond the bifurcation point.

If as > 0, then the transcritical bifurcation to rotating stall is subcritical; if
o < 0, then the transcritical bifurcation to rotating stall is supercritical. The
subcritical bifurcation is typical of axial compression systems and is more detri-
mental in that there is a hysteresis and the stall inception is catastrophic. The
positivity of ay implies nonlinear instability which accelerates the growth rate
of rotating stall once it is out of the linearly dominated region. Also, the posi-
tivity of aip is the main reason why active control of rotating stall requires high

bandwidth actuators. This point will become more clear in the later sections.
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Figure 5.6: The stall equilibria of the MG3 and the approximate 1D system for the
Caltech rig.

(4)

"
c?

Note that «s increases quadratically with and increases linearly with ..
If the unstable (left) part of the characteristic becomes steeper, then 27" > 0
and o become larger, and the nonlinear instability becomes more severe. Later
in the experiment section the unstable part of the characteristic is leveled by
upstream steady air injections and the rate requirement of bleed valve actuator

is drastically reduced.

The minimum gain for feedback control law u = KJ to make the closed loop

system be supercritical is K* —%i—. It is clear that K* increases as |¢)| and
¥y increase. This is also true for the rate requirement and will be shown in

later sections.

Since the equation (5.4) only captures the local behavior near the bifurcation

point, we use the following system to approximate the dynamics on the attracting

saddle-sink connections to capture the hysteresis behavior (see Figure 5.5):

(5.10)
k=2

J=aJ (a1(5+U) +26¥ka_1) ,
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| where u is the ¢ontrol input given by (5.5), and the a’s are selected such that the
. equiiibria of the ordinary differential equation (5.10) fit the rotating stall equilibria

in -J plane.in the following way:
(1) o, and oy are taken from the center manifold equation (5.6) and (5.7).

(2) ax (k = 3,---,n) are selected such that the equilibria of the one-dimensional

system (5.10) fit the equilibria of the full system in the hysteresis region.

(3) « is selected such that the growth rate of J for the approximate system (5.10)
matches that for the full system at y = .

This choice is designed to give an approximation that not only matches the local
bifurcation characteristics, but also matches the magnitude and growth rate of fully
developed rotating stall. Figure 5.6 shows the stall equilibria for the three state
Moore-Greitzer model for the Caltech rig (see section 5.4.2) with a fourth order
polynomial compressor characteristic and the stall equilibria for the reduced system
withn =T.

Throughout this chapter we make the following assumptions on the shape of the

stall equilibrium branch:
(A1) The bifurcation of the open loop system is subcritical, i.e., az > 0.

(A2) There is only one saddle-node bifurcation on the stall equilibrium branch. The

bifurcation point is at 45 := vs — 7e.

‘We remark here that assumption (A2) may not be true for §’s for the full model (see
Figure 5.6), but it is true in a neighborhood of § = 0, which is sufficient for our
analysis since the magnitude saturation limit w,,, is small, and the Moore-Greitzer
model is not an accurate model when the throttle bperates far away to the left of the

peak of the characteristic.



168

oo (a) TUrate < Umag
J ) Umag — TUrate
magnitude
3 o Umag — U saturation
U = Upgte U= —T—_— D
m
rate limit Dy U = Umag
D S PRSI SETTERRPRRNE JK
T bandwidth limit
Jk — J.
. KJ-u e
U=
T
D,
Dy .
Jr U = —Urqte
rate limit
r
0 . TUrate Umag u

Figure 5.7: Controller dynamics in u-J plane when Tu,ee < Umag-

5.2.2 Bifurcations and phase portraits of the reduced system

In the following we describe the qualitative dynamics of the reduced two-dimensional
system (5.5) and (5.10) by providing the phase portraits for different throttle coeffi-
cients.

Due to the magnitude saturation and the rate limits, different regions in the u-J

phase plane are governed by different control laws. Let

Umag TUrgte
I = =g

K ?

Then we have the following two cases. If TUyate < Umag, then there are three regions
in the phase space: the bandwidth limited region D,, the rate limited region D,, and
the magnitude saturation part D,, = {(u,J)| v - Umag, J > Jx} (see Figure 5.7).
If TUrgte > Umag, then there are two regions: the bandwidth limited region Dy, and
the magnitude saturation part D,, (see Figure 5.8). Due to the magnitude saturation

constraint, the phase space is only limited to the region 0 < u < a4, and J > 0.
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Figure 5.8: Controller dynamics in u-J plane when Tu 4 > Umag-

Let v; = ¥s — Umag, and

K

’
A2 Umag

a1]( + o9 Uma
HXY— ———— K =" — U — —h = TH ~
v 8 Qo T 7 Vi mag o ( K ) ’

where h(J) := Y ¢_, axJ¥71. Assuming tmey < ¥s—"0, the qualitative phase portraits
for the reduced two-dimensional system (5.10) and (5.5) at different operating throttle
positions are shown in Figure 5.9. The sequence of the figures is when the throttle is
closing beginning from the stable side of the compressor characteristic, i.e., when the

throttle coeflicient v is decreasing.

(1) Figure 5.9 (a) shows that if the throttle is operated at a throttle position vy such
that v > 7%, then the axisymmetric equilibria O is the only equilibrium and it

is globally stable.

(2) Figure 5.9 (b) shows that if the throttle is operated at «y such that v =}, then

a saddle-node bifurcation occurs. The equilibrium splits into two as 7y decreases.

(3) Figure 5.9 (c) shows that if the throttle is operated at y such that vy < v < 7;,

then two equilibria are born from the saddle node bifurcation. S; is a saddle
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Figure 5.9: Qualitative phase portraits of the reduced system.
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denoting the unstzible stall equilibrium when the actuator is fully open. S, is

‘a sink denoting the stable stall equilibrium when the actuator is fully open.

There are two different regions in the u~J plane divided by the stable manifold

- of the saddle Si, denoted by W*(51): the trajectories above W* (S1) converge

(5)

- (M

to the fully developed rotating stall equilibrium S,, while the trajectories below

W*(S1) converge to the stable axisymmetric equilibrium O.

Figure 5.9 (c) shows at vy = 7, i.e., the throttle is operated at the peak of the

compressor characteristic, a transcritical bifurcation occurs on the axisymmetric

equilibrium O.

Figure 5.9 (d) shows that if the throttle is operated at y such that v, < v < 7,
then the stabilized stall equilibrium S, is born from the axisymmetric equilib-
rium O. At the same time, O becomes a saddle. The trajectories below W*(S)

converge to the stabilized stall equilibrium S,.

Figure 5.9 (e) shows that when v = 73, heteroclinic connection occurs between
the unstable axisymmetric equilibrium O and the unstable stall equilibrium
S1, and the heteroclinic orbit is structurally unstable. This implies that if the
bleed valve actuator is initially closed, i.e., u(0) = 0, then any nonzero initial
condition of J would go to fully developed rotating stall and at the same time
the actuator saturates. v, can be fbund numerically by integrating a point near

S; backward in time at different throttle coefficients.

Figure 5.9 (f) shows that if the throttle is operated at « such that vz < v < v,
then the heteroclinic connection is broken and W*(S) is connecting u = Upqg
instead of u = 0. An interesting point is that if the initial condition of J is small,
then for any initial condition of u, the trajectory will go to the fully developed
stall equilibrium S,; while if the initial condition of J is not too small, then
there exist initial conditions of u such that the trajectory goes to the stabilized

stall equilibrium S,.

(8) Suppose 7 > Tg, then at v = g, a Hopf bifurcation occurs on the stabilized
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"~‘stall branch S’,-,: S,, becomes unstable and stable limit cyclés are born (see
Figure 5.9 (g)). If 7 < 7y, then there is no Hopf bifurcation on the stabilized

stall branch S,. Here we assume 7y, > vg.

(9) Figure 5.9° (h) shows that at v = g, the source S,, the stable limit cycle,
and the saddle S; are all collapsed together through a degenerate saddle-node

bifurcation.

(10) Figure 5:9 (i) shows that if the throttle is operated at v such that v < vk, then
the degenerate node Sk disappears and every trajectory except v = 0 converges

to the fully developed stall equilibrium S;.

If Umag > ¥s — Yo, then we have v; < . This implies the saddle-node bifurcation
of the stalled branch is at a lower throttle coefficient than that of the peak of the
compressor characteristic.

A typical phase portrait for the reduced system for the case (d) in Figure 5.9 is
given by Figure 5.10. The main new feature of the phase portrait is that there is
strongly attracting manifold whose physical meaning is that the fully developed stall

occurs and the bleed valve opens until it saturates.

5.2.3 Control analysis

In this section we give the problem statement of control analysis. We omit the solution
here for the control law (5.5), but we sketch the ideas of how to solve the problem.
In the next section we given a solution to the “bang-on” control, which is a limiting
case of the control law (5.5).

The noise in the flow through the compressor is a complicated issue. The turbu-
lence level in the inlet flow may be the source of localized disturbances. But other
disturbances such as inlet swirl and inlet distortion may have larger amplitude. We

model the noise as a closed set of initial conditions for J in the system, i.e.,

E={J|0< J <€},
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Figure 5.10: A phase portrait from numerical simulation of the reduced system (case
(d) in Figure 5.9). The main throttle is operated at 4 percent of the stall flow to
the left of the peak. The values of the parameters are: Umqg = 0.12, Upqze = 0.0385,
T =0.6293, 6 = —0.036, K = 2K* = 6.7257. Here K* := —Z—i is the minimum gain
such that the bifurcation for the closed loop system is supercritical. The equilibria
are denoted by “x.”

where € is the largest initial condition for J and is called the noise level. We remark
here that in practice € can be increasing as the throttle coefficient v decreases. Here
we assume e is a constant.

The operability boundary &(u(-),€) for the reduced system (5.10) and (5.5) is
defined as the minimum throttle coefficient § at which none of the trajectories with
initial conditions u(0) = 0 and J(0) € & reaches the fully developed rotating stall
equilibriufn. T hé operability enhancement is defined as the difference between the

stability of the uncontrolled system and that of the controlled system, i.e.,
A(u(-),€) :=6(0,€) — 6(u(:), £).

The control analysis problem is: given all the parameters in the control law (5.5) and

determine the operability enhancement A(u(-),&).
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" Tt is trivial to show that the operability boundary for the unconfrolled system is
: givén by 0(0,€) = —- Y g o€t &~ —22¢ > 0. This implies that rotating stall
occurs to the right of the peak of the characteristic. Now from Figure 5.9 it is clear
" .that at the opelja,bility boundary of the controlled system, we have J,; = ¢, where
Jerit is the y-coordinate of the intersection between W*(S1), the stable manifold of S,
and the Straight line u = 0. Jgs can be determined by integrating backward in time
of the local stable manifold of S;. Exact analytic solution of W*(S1) can be difficult to
find since the system is nonlinear and W*(S;) might travel through different regions
with different control laws (see Figure 5.7 and 5.8). But we can obtain approximate
solution of W*#(S;) assuming the shape and matching the boundary conditions at
u = 0 and ¥ = Upmqe,. We omit the details here, but we will illustrate the idea in
the next section for the bang-on control law. The stable manifold W*(S;) can also
be found by numerical integration of the reduced system with an initial condition
near the saddle S; backward in time. The stability boundary can be found by binary

search on 7 until J.; = € is satisfied.

5.3 Control Synthesis

In this section we claim the “bang-on” control law is optimal in the sense that it
maximizes the operability enhancement when there are magnitude and rate limits on
the actuators. We derive approximate formulas for the operability enhancement as a
function of noise and actuator limits. The formulas will be used in the next section

to compare with experiments.

5.3.1 System reduction and bang-on control law

In the following we consider the control input u in the function set I/ defined as

U:={u|0 < u < Unag, [U| < Urate, ¥ is piecewise smooth}.
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" The goal is to find the cdntrql laws to maximize the operability enhancement. As for
- the control analysis problem, we first reduce the order of the Moore-Greitzer model

with control u(&) € U.

‘Proposition 5.2 If B is small, 1.(-) is analytic, and the azisymmetric disturbances
are small, then the Moore-Greitzer model (5.1) with control input u € U can be

approzimated by the following one dimensional system:

J = aJ (a1(6+u) —I—iakﬁ_l) ) (5.11)

k=2

where 6, and oy are given by (5.6) and (5.7), respectively, and other a’s are selected

in the same way as in Section 5.2.1.

Sketch of proof of Proposition 5.2: The reduction is the similar to Proposition

5.1. Let

¢ = [110 + Piad + fisu+hoo.t.,
Y = [210 + P + Pasu+h.o.t..

By differentiating these equalities and use the system dynamics, we get

B = V¥, bra=+vV¥ K+ ;%i;, P13 = v ¥,
P21 =0, B = 1=, P2z = 0.

So the dyr.lamics' of the reduced system is given by

J =00 +u)J + o J? +hot.,

where oy and ay are given by (5.6) and (5.7), respectively. The other coefficients
in (5.11) are used to match the hysteresis loop and the growth rate of stall at the

bifurcation point. |
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Figuré 5.11: A phase portrait for bang-on control with threshold. The dashed line
denotes the unstable stall equilibria, and the shaded region is the noise set.

The “bang-on” controller is defined as

] 0 if J < Jihresh, OF J > Jinresn and U = Upgqg,
U= (5.12)
Urgte I J > Jipresn a0d 0 < U < Uppgg,

where ¢ is the nondimensional time, and Jipress is the threshold. Usually Jipresn is
set to be above the noise level, i.e., Jipresn > €. The “bang-on” control law can be
obtained from the control law (5.5) by increasing K and decreasing 7. Then the
bandwidth limit region D, shrinks to the empty set and the whole phase region is
rate limited. A phase portrait for the reduced system (5.11) with the bang on control
law is given by Figure 5.11. The line segment {(u,J) | 0 < % < Umqq, J = 0} forms
a continuurﬁ of equilibria, with (u,0) being stable for —0 < u < ey and unstable
for 0 < u < —6. It should be mentioned that for the bang-on control law (5.12) the
actuator is not actuated if the stall disturbance is in the noise level. If the actuator is
actuated when the disturbances are under the noise level, induced oscillations might

occur. Consider the following control law:

—Urate it J S Jthresh;
U= 0 if J> Jipresn and u = Umag) (513)

Urate  if J > Jihresh and 0 < U < Uppqg.
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Figure 5.12: A phase portrait for bang-on control without a threshold.

The actuator would close if the disturbance is under the noise level. A phase portrait
for the reduced system (5.11) with control law (5.13) is shown in Figure 5.12. It can
be seen that a stable limit cycle exists, and the actuator experiences magnitude and
rate saturations during the cycle. In practice, this would lead to “chattering” of the
actuator, and the system may become unstable if there are sensing uncertainties and

delays.

5.3.2 Problem formulation

Let A; = {J| 0 < J < a(d)}, where a(d) denotes the maximum amount of rotating
stall that cdn be tolerated. Usually a(d) is chosen to be larger than the noise level
and smaller than the magnitude of fully developed stall. The noise set is given by
& ={J|0<J< e} In the following we assume a(8) = J.(8), where J.(8) is the
y-coordinate of the saddle S; (see Figure 5.11). Let u(0) be an initial condition for
u. We assume 4(0) = 0, which means that the bleed valve is initially closed. Let
(J5(&; €),us(€;€)) be the trajectory of (5.11) from the initial condition (J(0), u(0)) =
(e,0). We say the initial condition e is Aj; attractive if lim éupg oo J5(€;€) < ald).
We define the operability boundary for the initial condition e and the control u(¢)

as 0.(u,e) := min{d | e is As-attractive}. Define é.(u,&) := maxees dc(u,e) as the
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;' vépérability‘“boundary for thé noise lével £ with control u(§), and 50(5) = 6.(0,€)
s dperability boundary for the uncontrolled system. In other words, d.(u,&) is the
minimum throttle coefficient such that none of the trajectories for (5.11) and control
. u(€) with initial conditions 4(0) = 0 and J(0) € & goes to the fully developed rotating
stall. We define the operability enhancement as A(u, &) := 6,(0,€) — 6.(u,E). The
optirﬁal control problem is a minimax problem defined as finding a control v* € U,

such that the operability enhancement is maximized, i.e.,

A(u*,€) = mg;cA(u,é’) = 0,(€) — min max é.(u, €).

u€ld ecé&

Theorem 5.1 Suppose the assumptions (A1) and (A2) are true, then for any e € £,

we have

de(u*,e) = glei&léc(u,e),
5C(U*7e*) = Iﬂfleigr?g’g}((sc(u7e)7

'U'mte£ 7’f 0 S g < 62; and J > €,

Umag o =&, and J > ¢

where e* =€, & 1= 2L

Urate

The idea behind the proof of Theorem 5.1 is the simple fact that for the system (5.11)
and (5.14), the stable manifold of the saddle Sy, denoted as W*(S;), is monotonously
increasing as u increases from 0 t0 Umaeg- Also, any trajectory for the system (5.11)
with a controller u € U cannot intersect W*(S;) transversally from above. The detail

proof is given as follows.

Proof of Theorem 5.1: The key figure for the proof is Figure 5.13. The reduced

system with bang-on control is given by

J = alog(d+u)+ ()],
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Figure 5.13: Key figure for the proof of Theorem 5.1.

0 if J < Jthresha or J > Jthresh and u = Umag>

Urate if J > Jthresh and 0 Su< Umag

where h(J) = Y_7_, o J*1, and Jypresn = €. It is easy to see that the curve J=0

with J # 0 is given by the curve Sg:

Sg : u=—6—ih(J).

(84]

From the assumptions (A1) and (A2), the shape and location of J = 0 is the dash-dot
line in Figure 5.13. Assume up,, > —4, then the curve Sg intersects the saturation
line 4 = Upqy at two points S; and Sy: S is a saddle and S is a sink. The shaded
regions in Figure 5.13 satisfy J < 0. Let W*(S;) be the stable manifold of S;. It
is easy to prove that W?*(S;) must be in the region J > 0. Or in other words, on
W3(S,), we have J > 0. It is also clear that the trajectories under W*(S;) denoted
by D will remain in D. Let As = {J| 0 < J < J,(6)}, it is clear that the region D is
As attractive, i.e., all the trajectories in D satisfy J(§) < J.(6) for any & > 0. Since
the noise set is £ = {J|0 < J < €}, the operability boundary for the bang-on control
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o denoted byA(u%(),S) satisﬁes Jerit(A) = ¢, where J.; is the interséction of W*(S})
and u=0.

Now fix § = A(u,E), and let
vEU = {u|0 < u< Unqg, [U] < Urate, u is piecewise smooth}

be any control law with magnitude limit %,e, and rate limits +uq. Let (u1, Ji) be

a point on W*(S;), then for the reduced system we have

=J

v

J

0 < U= Urage, (5.14)

u

where J| is J with control input v(¢), and J ‘ is J with control input v(£). Relations
in (5.14) Uimplies that the vector field for control input v(€) on W*(S;) point to the
outside of D. In other words, each trajectory for control v(§) with initial condition
(0, Jopit) satisfying Joriw > € will not enter region D, and will eventually intersects
with Sg since the trajectory is either in the region J > 0, or in the region D; with
J < 0 (see Figure 5.13). So the operability boundary for control input v(£) denoted

by A(v(-), ) satisfies
A, E) > A, E).

The fact that € is the worst noise is clear since if a trajectory for the bang-on
control input u with initial condition (u,J) = (0, Jo) (Jo < €) converges to the fully
developed stall equilibrium Sy, i.e., (0, Jy) is not A; attractive, then we must have
Jo > Jmt-(see Figure 5.13). So € > J > J.it, and the trajectory with initial condition
(u, J) = (0, €) will also converge to Sy, i.e., (0, €) is not A;s attractive.

We remark here that control laws in I/ might create equilibria or limit cycles for
the controlled system. But Theorem 5.1 only claims that it is the bang-on control law

that prevents more trajectories going to the fully developed stall equilibrium. [ |
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" The types of control laws for the disturbances in the noise level do not affect the

: opefability enhancement. To avoid the chattering effects, we set 4 = 0 for J <e.

. 5.3.3 Calcplation of operability enhancement

Now we consider the reduced order system with the optimal control 4* and the worst
noise e*. The goal is to solve for W*(Sy). Specifically, we consider the following

system -

J = (6 +u)J + agd? (5.15)
) 0 if J <€ or J > e€and u = Upq,
4 = (5.16)
Urgte if J > € and 0 < u < Upmqg,
with initial conditions and final conditions
u(0) =0, u = Umag,

J(O) =€, J(£2) = —z_;(umag + 5)7

From Theorem 5.1 we have

A(u*, &) = 6, — 6.(u*, e*),

Q2€

where §, can be calculated as — =,

and d&.(u*,e*) can be found by solving the sys-
tem (5.15) and (5.16) with with the boundary conditions (5.17). In the following we

solve for 6. Let

A*:1+ﬂ§’ n:azeg’ f:.{, A:E,
Qi€ € T2
- uﬁm af - *
o=—"T20 1= oney, f'z—f, J(&) =elo+1-4%).
Qi€ d"]

Then the equations (5.15) and (5.16) with initial and final conditions (5.17) can be
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" written as follows:

o= (A* —1-A)f+f% (5.18)
f0) =1, (5.19)
flp) = 14+0—A" (5.20)

The exact solution of (5.18) with initial condition (5.19) and final condition (5.20) is

given by the fellowing integral-algebraic equation

e—(%'l'l_A*)m

1
_ — —-(5¢2+a-A"))me
e /0 Nge \2 dc¢. (5.21)

Suppose the solution to (5.21) is A*(o,72). Then it is easy to see that if 7, = 0, then
A*(0,m2) = o. This implies that the operability enhancement is o if the bleed valve
actuator is infinitely fast. The following proposition gives the operability enhancement

when the bleed valve is slow.

2
Proposition 5.3 If n, > o, then A*(o,n2) = % +0 (%) .
2

To prove the proposition, we need the following lemma on asymptotic properties

of the incomplete I'-function.

Lemma 5.1 Define the incomplete I‘—fuhctz’on as
I(a,z) :/ et ldt, (a>0)

then as x — 0o, I'(a, z) can be expressed as the following series

oy = [§1 T2 o).

where the T'-function I'(«) is defined as
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" Proof of Proposition 5.3:

Define the complementary error function as

erfc(z) = %/ eVdt=1-— %/ e~ dt.
x 0

It is tfivial to show

erfc(z) = %I’ (%,:ﬁ) .

By Lemma 5.1, we know for z very large, we can write

exfe(z) = %e-mz (% - 5;;—3) +0 (6;5) . (5.22)

Consider the integral in the right hand side of the integral-algebraic equation (5.21),

it can be show by straightforward calculation that

1
RHS = /1726—(%<2+(1_A)C)"2dC
0

— @(1_2?)2772 2y - 2 _
= 4/ 5, ¢ [erfc( 20’(1 A)) erfc (‘/20(1 A+a))]

(1o
1 o e (9( 1 ) .

1-A np(1-AP 14+0-A + n°

We have utilized (5.22) in the last equality. Now by equating this to the left hand
side of (5.21), we get

1
A1—A2=3+0<—>. 5.23
( ) 2 M ' (523)
Suppose A*(o, 1) is the solution to this equation. Letting 12 — 00, we have A*(0, 1) —
0 or A*(o,72) — 1.
- Now we show that

lim A*(o,n0) # 1.

j2—r00



By substituting:A*(o, 772) = 1 into the iﬁtegral—algebraic equation (5.‘21), we get

LHS =1 Letom,
: o

RHS = ,/2’72 / ~Cdc = ’”72 O(1), (m =~ o).

Hence, when 1, &~ 0o, LHS # RHS. So we have

lim A*(o,72) =0.

72—00

By solving (5.23), we get

Ko =7 +0(55):
[ |

The implication of Proposition 5.3 is that when 7 > o, i.e., the bleed valve is
very slow, the noise is large, or the compressor characteristic is very steep near the

peak, then the operability enhancement is given by

A, €) = 6,(€) — 6 = 22 pr g AT F W thrate (5.24)
-0 (,d)m + Yoy )
s

ThlS implies that the operablhty enhancement decreases if either the noise level e,
or |[¢¥(Dg)|, or ¥ (Po) increases. If the rate limit Urgte decreases, then the oper-
ability enhancement decreases. In the multi-stage high speed compressor in aircraft
engines, |7 (®g)| increases sharply as the engine speed increases, so the operability
enhancement is expected to reduce drastically when engine speeds up (see [35]). The
third derivative v’ denotes the relative curvature on each side of the peak. If the
left, (unstable) side is steeper (or shallower) than the right (stable) side, then ;" > 0

(or ¥ < 0), then formula (5.24) implies that the operability enhancement decreases
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 as the unstable pa,ft ‘of the compressor characteristic becomes steepevr. This result is
- intefesting because the effectiveness of the controller is determined by the unstable

part of the characteristic which cannot be directly measured in experiments. The

' .experiment in the next section proves this point, i.e., the rate requirement for the

actuator reduced drastically when the unstable part of the characteristic is made

shalloﬁer by steady air injection upstream of the rotor.

It might be difficult to solve A*(c,72) explicitly from (5.21). In the following we
solve A*(o, 72} by approximating the stable manifold of the saddle. Suppose W*(5) is
the stable manifold of the saddle S; ih the (n, f) plane, and W*(S,;) is parameterized
by f = f(n) in the (5, f) plane. Then from (5.18), (5.19) and (5.20) we get the
boundary conditions of W*(S)

fO) =1, f(p)=1+0-A%

(5.25)
f'0)=4r f(n)=0.
We assume f(n) has the following form
= 2
s = 7 (1-Coir ). (5.20

otn) = arctan (2214 0)ln - m)?).

where the unknowns f and C are to be determined by boundary conditions. Letting
f(n) satisfy the boundary conditions (5.25), and considering that o > 1 in practice,

we get

ag

Ai(o,m) = (5.27)

1+ tmony? arctan (3monz)

If we use the form of (5.26) to satisfy the following boundary conditions of W*(S;)

fO) =1, flp)=1+0-A4%

(5.28)
f'(’lz) =0, f”("h) = —)‘(1 +0 - A*)a
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Figure 5.14: Comparison of operability enhancement for the bang-on control law
obtained through simulations of the full Moore-Greitzer model and the reduced 2D
model, and the predictions of the formulas (5.27), (5.29) and the asymptotic for-
mula (5.24). The y-axis is the operability enhancement normalized by the throttle
coefficient at the peak of the characteristic, 7.

then we get

1 — 2 arctan (3(1 + o)ne)

1— 22 arctan (5(1+0)n)

As(oym) =0 (5.29)
The comparisons for predictions of the formulas (5.24), (5.27), and (5.29), and nu-
merical simﬁlation of the full Moore-Greitzer model and the reduced two-dimensional
system is given by Figure 5.14. Although the formulas do not match the simula-
tions qualitatively, they give the same trend as the bleed valve rate limit is reduced.
The formulas (5.27) and (5.29) will be used in the next section to compare with the

experimental results a low speed compressor.

5.3.4 Effects of time delay

In this section, we present the effects of time delay on the operability enhancement

for the bang-on control. Finite bandwidths of sensors, the filters, and the computer
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; hardware cause time -deléy between the actual flow signal at the senéor position and
- the éontrol input in the control logic embedded in the compressor. Spatial separation
between the downstream bleed valve and the stall disturbances within the compressor
-is another source of time delay due to the compressibility and the inertia of air. The
main point of this section is that the operability enhancement decreases exponentially
with fime delay, noise level, and the second and third derivatives of the compressor
characteristic.

By considering the time delays, the bang-on control law is give by

0 if0<€ <,
=40 HfE26,J<GorE>E > € U= Ungyg, (530)

Upate lff 2 617 and J > €,

with initial condition u(0) = 0. Here &; is the time delay. Assuming & < =7

Urate

and 4 is small, then by similar asymptotic analysis as in the rate limits case, the

operability enhancement is given by

ef 1m0 ¢"2

o€ O e ( +—°—£—)

Ag(u, &) m 25 . T A T\ TV (5.31)
—ap  fle™

where
— Q1 Urnag _ 09€lUmgg 4(m + p)trate
= ave m= ag€ly, 1= u ) A= " o2\
2 rate € ( mn -+ ___-a__)
c V¥

Here A, is the operability enhancement for the pure rate limit case. It can be seen that
the time delay is more detrimental than rate limit since the operability enhancement
decreases exponentially with the time delay &;, the noise level €, and the second and
third derivatives of the compressor characteristic at the péak, while in the pure rate
limit case, the operability enhancement depends on the reciprocal of these parameters.
For high speed multi-stage compressors, the curvature of the compressor characteristic
near the peak is large, so the operability enhancement could be very sensitive to time

delays.
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Figure 5.15: Sensor and injection actuator ring (courtesy Simon Yeung).
5.4 Comparison with Experiments

In this section we describe experiments to measure rate requirement for different
compressor characteristics actuated by different level of steady air injection upstream.
We compare the predictions of rate requirement from the theoretic formulas derived
in the previous section and the» experiments. The experiments were done by Simon
Yeung [81, 82, 83, 84, 85]. In the following we only sketch the experimental setup

and procedures, details can be found in [81].

5.4.1 Experimental setup and procedures

The Caltech compressor rig is a single-stage, low-speed, axial compressor. Figure 5.15
shows the sensor and injection actuator ring and Figure 5.16 shows the entire rig.

Experiments are run with a rotor frequency of 100 Hz, and under this condition the
frequency of rotating stall is 65 Hz . Experimental data taken for a stall transition
that the stall cell grows from the noise level to its fully developed size in approximately

30 msec (3 rotor revolutions).
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Figure 5.16: Experimental setup (courtesy Simon Yeung).

The sensors are composed of six static pressure transducers with 1000 Hz band-
width that are evenly distributed along the annulus of the compressor. The amplitude
and phase of the first and second mode of the stall cell can be obtained using discrete
Fourier transform. A high speed valve that is capable of bleeding 12% of the ﬂow at
the stall inception point is used for control of rotating stall. A low speed valve is used
to move the operating points, i.e., to change the throttle coefficient ) of the system.
Three air injectors are used to change the shape of the compressor characteristic 1.(-).

In the ekperiments, the injector angle with respect to the axial flow direction is
varied between 27° and 40° in the opposite direction of the rotor rotation, and the back
pressure of the injectors is varied between 40 to 60 psi. There are 17 different scenarios
with different angles of injection and different back pressure of injector. At the various
injection settings, experiments are carried out to obtain the rate values required for
peak stabilization. Peak stabilization is achieved if the conditions ® > 0.9®, and
A < 0.5Anom are met during the experiment, where ® is the nondimensional axial
velocity, A the amplitude of the first Fourier mode, ®; the nondimensional axial
velocity at stall inception, and Apom the amplitude of fully developed stall without
bleed valve control. It should be noted that ®, and Apnom are different for each
of the air-injectbr settings. The experiment procedure is as follows. First set the
throttle at the stable side of the characteristic to make sure there is no stall. By
turning off the controller and closing the throttle, stall point of the open loop system
is recorded. Then reset the throttle to the stable side of the characteristic, increase
the rate and gain, and close the throttle to the open loop stall point. This procedure
is repeated by increasing the rate until the conditions of peak stabilization are met.

Among the 17 injection settings, peak stabilization is achieved in 11 cases and the
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Figure 5.17: Identified compressor characteristics at three different continuous air
injection settings (courtesy Simon Yeung).

nominally stable side of the compressor characteristic is experimentally recorded at
each of the 11 settings. The unstable sides for each of these cases are identified by
using surge cycles data with an algorithm proposed by Behnken [14]. For this study,
a fourth order polynomial is used to approximate the piecewise continuous curve for
each case. The polynomial compressor characteristics are to be used in the theoretical
formulas (5.27) and (5.29). The fitted compressor characteristics for three injector

settings are shown in Figure 5.17.

5.4.2 Comparisons of theory and experiments

Based on the functional dependence of the analytical relations for the minimum rate
requirement on ¢! (®o) and 9.'(Po), an examination of Figure 5.17 would indicate
that exptb should require the least rate while expt7 should require the most. With
the back pressure to the air injectors being 55 psi, Figure 5.18 shows the open loop and
cldsed loop behavior in the ®-¥ plane and the ~-J plane. The subcritical bifurcation

of the open loop system associated with stall inception is changed to supercritical
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Figure 5.18: Open- and closed-loop behavior of system on ®-¥ plane for control with
bleed valve and continuous air injection at 55 psi injector back pressure (courtesy
Simon Yeung).

for the closed loop system. An interesting phenomenon is that the amplitude of the
first stall mode becomes smaller when the throttle is operated around 0.37. This is
because at these throttle values, the second mode dominates the compressor stall.
Another interesting behavior of the closed loop system in the &-U plane is that the
stabilized stall branch tilts to the right of the peak before folding back to the left.
The phenomenon is different from the closed loop system behavior in the experiments
of Eveker et al. (1995, 1998): the stabilized stall branch tilts to the left of the peak.
The back-tracking stall branch can be explained from the three state Moore-Greitzer
model as follows. From the center manifold analysis in the proof of Proposition 5.1,

we know that for the control law u = K J, the center manifold is given by

5 ’)’01/)"J

v = h.o.t. 5.32
V¥ +8\/\ITO +ho (5.32)
Y = T‘:J+h.o.t. (5.33)

where ¢ = ® — @y, ) = ¥ — ¥g. On the other hand, for the control law u = K J, the

dynamics on the center manifold is given by

j = 011(5+KJ)J+ 0!2.]2 + h.o.t.
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'S0 on the stabilized stallybra,nch, we have
5;—(K+%)L (5.34)

where o, and a are given by (5.6) and (5.7), respectively. Now, by substituting (5.34)
into (5.32) and (5.33), we get

,l[}III
8y

¢ = J +hot. (5.35)

Equation (5.33) implies that on the stabilized stall branch we must have ¢ < 0, since
¥” < 0 and J > 0, i.e., the stabilized stall branch always drops below the peak. If
¥y > 0, i.e., the unstable (left) part of the characteristic is steeper than the stable
(right) part of the characteristic, then we have ¢ > 0 by equation (5.35), which means
the stabilized stall branch tilts to the right of the characteristic. This back-tracking
phenomenon is observed in our experiments (see Figure 5.18). On the other hand
if Y < 0, i.e., the unstable (left) part of the characteristic is shallower than the
stable (right) part of the characteristic, then we have ¢ < 0 by equation (5.35), which
means the stabilized stall branch tilts to the left of the characteristic. This agrees
the phenomena observed by Eveker et al (1995, 1998). It should be mentioned that
the case 9" > 0 requires faster bleed valves than the case when .’ < 0 provided all
other conditions are the same. | ,

In Figure. 5.19, the dashed line represents the one-to-one line between the theory-
predicted and experimentally obtained rate values. The uncertainties associated with
disturbance valve in the experiments is about three percent of throttle coefficient at
the peak of the characteristic. So in the two formulas (5.27) and (5.29) we use three
percent operability enhancement and solve for the rate. The rate obtained from the
formulas are plotted against the rate obtained on the experiments in Figure 5.19.
Although the rate predicted by formulas is quantitatively different from that of the
experiment, they give qualitatively the same trend. For example, the rate requirement

order of exptb, expt2 and expt7 is consistent for both the experiment and the theoret-
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Y o Rate: 1-D Formula vs. Experiment
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Figure 5.19: Comparison of rate predicted by theory and experiments (courtesy Simon
Yeung). The bars in the x-direction indicate the standard deviation associated with
the fluid- and human-induced error in computing the theoretical rate values (through
identifying the unstable of ¥ (®) using surge cycle data), and the bars in the y-
direction the standard deviation in the experimental values.

ical formulas (see Figure 5.19). For the comparison results, it should be pointed out
that the experiments show that the rate requirement for peak stabilization is reduced
from approximately 3300 cm?/sec to below 200 cm?/sec are reported by varying the
amount of compressor characteristic actﬁation. This is equivalent to a reduction of
bandwidth from about 145 Hz to below 10 Hz. Regarding the theoretical tools used
for prediction, one can see from the figure that formula (5.27) seems to predict the
rate requirement more accurately than formula (5.29). The main difference between
the two expressions originates from the different ways an approximation to the solu-
tion to the stable manifold of the saddle S;. The difference between the predictions
of the two formulas has also been shown in Figure 5.14. Also, the difference between
rate predictions by the formulas and the experiments becomes larger as the rate in-
creases. The reason is that in the experiments, the rate was set as a constraint so

that the valve would not open or close faster than that. As the constraint relaxes (the
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“rate increaseés), the valve /hit the rate Conétraint during only part of the cycle, and is
' limitéd by bandwidth during the other part of the cycle. But the theoretical formulas
assume the valve hits the rate limit all the time, and thus they predicted lower rate
- requirement. Nevertheless, both the formulas and experiments have predicted the
same trend: the steeper the unstable part of the compressor characteristic near the

peak, the more rate it requires. This can be seen from Figure 5.17 and Figure 5.19.
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Chapter 6 Application to Active Control
of Rotating Stall and Surge Using
Magnetic Bearings

A sét'of magnetic bearings supporting the compressor rotor is a potential actuator
for active control of rotating stall and surge. Based on a first-principles model we
show that using this type of actuation, the first harmonic mode of rotating stall is
linearly controllable, but the second harmonic mode and the surge mode are linearly
uncontrollable. We then give an explicit procedure for designing feedback laws such
that the first mode is linearly stabilized and the criticality of the Hopf bifurcations of
the second mode and the surge mode are supercritical. We also investigate the effects
of magnitude saturation on the regions of attraction. We demonstrate the theoretical
results by numerical simulations of a model for a transonic compressor at the NASA
Glenn Research Center. This chapter is based on the paper [76].

In [65], extensive analytic and numeric analysis has been done on modeling the
effects of tip clearance and its potential applications to active control. But the tech-
nique is linear control design. The results in this chapter address issues of nonlinear
control law design so that in addition to stabilizing the first stall mode, the critical-
ity of Hopf bifurcations to the second stall mode and the surge mode is changed to

supercritical.

6.1 Problem Statement

In the following we model the effects of tip clearance into the Moore-Greitzer model.
Suppose the rotor position is controlled by the magnetic bearing actuator to create a

nonaxisymmetric tip clearance (see Figure 6.1). Then, to first order, the tip clearance
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Re

Figure 6.1: Geometric relation between rotor position and tip clearance.

€ is sinusoidal in the circumferential coordinate, 0:

1
€(0) =€ — 3 (we™ + w*e”?) ,
where ¢ is the nominal tip clearance and w = X 41Y is the rotor position. The local
(in #) compressor pressure rise depends strongly on this tip clearance variation. Con-
sistent with our current understanding, we express the pressure rise @ZC as a nonlinear
function of local flow rate ®(6, £) and a linear function of e:

e

Ve(®, €) = (&, €0) + (P, €0) (e — €0) = 1e(®) — e(B) (€ — ),

where 1h,(®) = ¥.(®, ) is nominal compressor map and ¢(®) = —3—’-&(@ eo) is the
sen31t1v1ty of the axisymmetric pressure rise to the tip clearance variation.
Suppose also that at any given time the axial flow at the compressor face can be

expressed as:

(I)(e) =@+ aleia + a26i20 +(1,16 —i0 4 a;e—z20,
i.e., we only consider flow disturbances in the zeroth mode (axisymmetric disturbance)

plus first and the second modal waves representing stall disturbances. Then the

Moore-Greitzer model (see [8, 9]) with magnetic bearing actuators truncated at the
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* fourth order is givén by |

(i) = i [—-‘I’ -+ ’lbc((I)) + lbg(q)) (|a1|2 -+ |CL2|2) + %’(/)Z’(CI)) (afa,; + a’{zag)}

: .

Vo= 2 -3, (6.1)
i = o |01®) - ) o+ @ + 02 (Gl + ol )

. i [ ’ . 1 " 2 " 2 1 2

i = i [ e+ @)+ (@) (Jaf + Gl o

where a1(£). = A;(8)e*®) and ay(¢) = A2(€)e®® are first and second mode of

nonaxisymmetric flow disturbance. Here v is the control input:

1
Uu = "2-6011),
where ¢y = —a—’;pf(@o, 0) is the sensitivity of pressure rise to tip clearance variations

at the peak of the compressor characteristic, ®,. Note in the above model we have
omitted nonlinear effects of the tip clearance on pressure rise.

To make our overall goals clear, we first discuss the dynamics and bifurcations for
the uncontrolled system, i.e., u = 0. As in the previous chapter, we treat the throttle
coefficient v as the bifurcation parameter.

The unstalled equilibria of the system are

®=2.(y), ¥=Uc(y)= Ye(Pe(7)), a1 =az =0,

which we call the axisymmetric equilibria. The bifurcations of the axisymmetric

equilibria are:

e At the peak of the compressor characteristic v = -y, double Hopf bifurcations

occur for the first and second mode of rotating stall.
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" e IfBis la.rge,‘ then 'at a positive slbpe of the characteristic v = s < 7, Hopf

-bifurcation to surge occurs.

It is clear from controlled system (6.1) that the first stall mode (a;) is linearly con-
.troll'a.ble, the second mode (az) and the surge mode (®, ¥) are linearly uncontrollable.
To further elucidate the bifurcation characteristics, consider the case where u = Kja;,
with Re K; < 0. This feedback stabilizes the first mode; the bifurcation properties of
the remaining modes depend on the shape of the compressor characteristic as follows:

o if I + "\"/’/-"’— > 0, then the Hopf bifurcation of the second mode is subcritical;

"2
o if Y + 79\/%—% < 0, then the Hopf bifurcation of the second mode is supercritical,

where all the derivatives of 1. are evaluated at ®,.

If B is large enough, then from [72], we know that
o if 9!'(®y) > 0, then the Hopf bifurcation to surge is subcritical;

o if ¢'(®q) < 0, then the Hopf bifurcation to surge is supercritical.

6.2 Low B Case

In this section we consider the case when B is small enough such that the axisymmetric
dynamics are stable. We design feedback control laws such that the bifurcation to the

second mode stall is supercritical. The results are given by the following proposition.

Proposition 6.1 The following choice of feedback makes the closed loop system sat-
isfy
e the first stall mode is stabilized,

e the Hopf bifurcation to the second mode is supercritical.

1) If " < — ME—, then we choose u = Kia,; with Re K; < 0.
c NETY
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Feedback chosen: N || |ao|® | @00} a1 |2 é P
Gain required: K3 | K | B3 K | 8| 2K | B K | Bp K
Figure 6.2: Feedback gains for different state variables
(2) If ’Yo% <P’ < ;f}p—c— )
that

then we choose u = Kya1 + Ksag, K1, Ko € R, such

K;

< 0,
K, (%b,';" Yo )
> (m+ —s + =
K]? ( y’) ¢g2 2 WO
| K| > Kom
where
LIK? + (wy — wy)? ](W""‘ Yovy? ) N o)
Kom = m o Youl? A ¢ ’ wl:?’ﬂ‘l’ ' W2—m+lll
(lﬁ to/ T m’l{—z_lj) K 2
(8) If ¥ > ';‘i’/pc—, then we choose u = Kja; + Koas + K3N. The closed loop
system has a supercritical bifurcation only when N is chosen to be |as|?, asaf,
lai|?, ¢, or ¥, where ¢ = ® — D(7), v = ¥ — V(). K; is chosen as in
Table 6.2, where K, Ko, K € C satisfy Re K1 <0, K3 #0
(iﬁ"ﬂle) (wm_i_ ’Yo¢"2) 4 IIB |2( m 70¢”2 lﬁ,';'z .—KI )
Kl w1 ) \/\I’ 2\/ m+,uK12+w% ’
where
—-K,
= . , 6.2
Far K+ ’L(u)2 — wl) 7 ( )
Yo, 2
= 1
B2 2\/@;( +|ﬂ31|),

B2 = o (1+ |,331|2)
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" The proof of this pfoposition, uSing the center manifold theorem, is given in

- Section 6.5.

.6.2.1 Implementation considerations

Having derived expressions for control laws that achieve the desired result, we turn
now to some practical issues. First is the question of which feedback variables to
use. A straight-forward (although not necessarily optimum) answer comes from sens-
ing considerat‘ions: one must sense distributed pressure or velocity perturbations to
linearly stabilize the first harmonic of rotating stall. Thus for the remainder of the
chapter we concentrate on a control law which could utilize the same sensors for both
first harmonic stabilization and bifurcation modification of the zeroth and second
harmonics, i;e., u = Kya; + Kaay + Kslas|?.

The next practical issue is that of gain selection. Because of the complexity of
the expressions Proposition 6.1, the method by which gains should be chosen is not
clear. To elucidate gain selection, consider the normal form for the dynamics on the

center manifold for the closed loop system:

z = (daf + iws)0z + &|2|*z + h.o.t. (6.3)
, /\I’o’l,b"k
here § = v — vy, dy = ——=, and
where 'y‘ Yo, do _122_!_“ an
. 1 [ BnK; 1 ( " ’70%'2)
a = - +=|y, +
,-’2’1+M[K1—zw1 2 w AT
" ,70,(/)"2 ,(/)IIQ 1 > :|
+ 2 + c c : , 6.4
Bl (wc 0T, m+pK; —iw (6.4)

where (3; is given by ('6.2). If we define « := Re &, then o determines the bifurcation
branch for the closed loop system (see the normal form (6.3)). If & > 0 then the
Hopf bifurcation for the closed loop system is subcritical; if @ < 0 then the Hopf
bifurcation for the closed loop system is supercritical. The bifurcations for the open

loop system and the closed loop system are given in Figure 6.3.
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Figure 6.3: The bifurcations for the closed loop system by varying the control variable
Q.

The parameter o governs the “gain” of the system, and the resulting degree to
which the bifurcation is “softened” by feedback. Thus ¢ is an intuitive design parame-
ter for trade studies, performed either experimentally or in higher fidelity simulations.
Determining Ky, K3, and K3 from « requires a better understanding of the practical
design issues. A brief discussion will therefore help to motivate our derivations.

Although the simple model used here does not predict it, the first harmonic mode
is actually the first to go unstable in most compressors, and thus optimization of the
linear feedback for this mode can be carried out independently of the other gains. The
design of the linearized controller for first harmonic rotating stall typically involves
system identification of first harmonic compressor dynamics, followed by robust linear
controller design, as detailed in [78, 79]. It has already been shown experimentally
that this type of control can extend the compressor’s stable operating range to the
point at which the second or zeroth harmonic go unstable (see [65]).

For ouf analysis purposes, it is consistent to view the first harmonic controller as
a constant gain K; over the frequency range of interest. Experimenta,l procedures to
optimize this complex gain are well in hand. The question, then, is how to choose K,

and K3. First, we define

¢II
[&

U = UKy)= (K1 —iw)[Ky +i(w — wy)]’
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Figure 6.4: Design of nonlinear gains based on control variable a.
| 1 oyt 9 { a—
V = V(K= - v+ = - ——R - ,
(£5) | K + i(we — w)|? <¢’c 2/, m+u ¢ K, — iw,

| — 1 " 70"#!2 m
W = 2(1/)c+m (2+,Ls)a.

Then the real part of the equality (6.4) is given by
Re {UK,K3} + V|Ks|> + W = 0.

Note also that o appears explicitly in the expression for W and that U and
V depend only on K; and system parameters. We next consider case (3) in the
proposition (i.e., modification ‘of the second mode bifurcation from super- to sub-
critical). If we set a < 0 as indicated in Figure 6.3, then we know that V > 0 and
W > 0. If we let Ky = Rye®, choose Ry as our design parameter for the second
harmonic, and express U as Ue??, we can write an expression that can be solved for

Kgl'

~ w
The geometric explanation is shown in Figure 6.4. Suppose K; and R, are chosen;

then the set of K3’s that satisfy (6.5) is the straight line [ which is perpendicular to
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A Magnitude Limit

Region of attraction
from control

“ Open Loop

(a) Region of attraction for single o (b) Maximum region of attraction by varying «

Figure 6.5: Effects of magnitude saturation limit.

the vector ~U* and at a distance from the origin of |17| (VRZ + 1%) If we select
different o and Ry, then the set Kj is another straight line parallel to [, the phase of
K, 05, would rotate the solution in the complex plane, but would have no real effect,

due to the circumferential symmetry of the problem.

6.2.2 Magnitude saturation

Our design problem has been clarified somewhat, and reduced to the problem of
choosing Ry and a. We can further clarify the design process by considering the
effects of magnitude saturation. Tip clearance modulation obviously carries with it
a hard limif on actuation, one which cannot easily be increased. Thus the effect of
magnitude saturation on the effectiveness of the control laws is critical. In Chapter
4 general results on the effects of magnitude saturation on bifurcation control have
been derived that address this issue. We can apply these results here.

In the following we again assume that K; is fixed from the linear design. Assume

now that the control magnitude is limited by |u| < Upmqg, i-€.,
|K1a1 + Kaaz + K3)as|?| < tmag-

If this constraint is violated by the states, then the system will go unstable; this
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" effect is illustrated in Fi'gure‘ 6.5. In Figure 6.5 (a), a single set of gains are chosen
' sucﬁ that the bifurcation for the closed loop system is supercritical. The enlarged
region of attraction to the stabilized stall equilibria and the unstalled equilibria is
' -given by the shaded region, which is bounded by the saturation envelope composed
of unstable equilibria for which the controller saturates. As the gains change such
that o increase, then the amplitude of the stabilized limit cycle decreases, and the
enlarged region of attraction becomes larger (see Figure 6.5 (b)). The shaded region
is the region of attraction when o goes to infinity. Our goal is to choose K and
K3 such that the length of the stabilized bifurcation branch is maximized under the
constraint of magnitude saturation. The particular branch being maximized depends
on o; the combination of a, K> and K3 that maximizes the domain of attraction
depends on the details of the dynamical system (i.e., the parameters in the model).

To derive expressions for K, and K3, We consider the worst case, i.e.,
|K1| Ay + | Ka2| A + | K3] A3 < g, (6.6)

where A; and A, are the amplitudes of a; and as. From the center manifold relation

in Section 6.5, we know a; = (33102 + h.o.t., so

| K2
|K1 -+ z'(w2 — w1)|

Ay~ B4z = As,
substituting this into (6.6) and recalling that |K3| = R,, we get

|K3|A§ + CR2A2 = Umag < 07

where

K
Kl + ’i(u)2 - wl)

(=1+
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" So we have Az 1*< A2 < Ajp, where '

2Usnag

—(Ry £ +/(CR2)? + 4| K3|tmag

Aga(Aszq) =
The goal is to select K3 and R, such that A, is maximized. From (6.5), we have

1 w
> _
|K3| > ] (VR2+ R2> )

so we: choose Ry to minimize f(R;), where

f(Rg) =(Ry + \/ (CRy)* + Abmag (VR2+ K).

Assuming that e, is small, we get an approximate solution

1
Wimag \ 3
T =fm = (zc%v|) !
AUz, \ 3
2 mag
As = Agm = ( il )

=.

4 \/_uma 3
1+3\/1+ V( C2|U|g)
The optimal gains are thus given by

Ky = Koy = Rume™,

U*e~ib2 %%
TiE @&+E)

Based on this derivation, we can describe an experimental procedure for optimizing

K3:Km

the gains of a particular system with magnetic bearings. After the linear controller has
been designed and tested, a is chosen based on the desiréd shape of the bifurcated
branch. Based on « and tp,,, optimal values for K3 and K3 can be computed.
Néxt an experiment is performed to determine the range of mass flows over which
bifurcation modification is successful, the limit cycle amplitudes, and (possibly) the

domains of attraction of important operating points. Various values of a can then
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b;é "compa,re"d. In additioﬁ, an experimehtally optimized complex gain on the entire
' secoﬁd harmonic feedback can be introduced, to account for the effects of unmodeled
dynamics (actuator lags, unsteady losses, etc.). This additional phase shift is the

" -spatial equivalent of a lead compensator.

6.3 High B Case

In this section-we consider the case when B is large. In this case, the Hopf bifurcation
to sufge occurs very close to the peak of the characteristic. Since both of the surge
mode and the second stall mode are not linearly controllable when the system operates
beyond the bifurcation points, the nonlinear interactions of the unstable modes are
strong. The goal is to design feedback control laws such that both the surge and stall

bifurcations are supercritical.

Proposition 6.2 If B is large enough, and ¥!(®y) # 0, then both Hopf bifurca-
tions to the second mode stall and surge can be changed to supercritical via a smooth

feedback.

The proof of Proposition 6.2 is in Section 6.6 and the the rest of this section.
If B is large, it can be calculated that the Hopf bifurcation from the axisymmetric

equilibria to surge occurs at v = v, = Y +46 satisfying

I @e 2 — Vs : 8: Yo ’
'ch( (")’ )) SB_ 2\/‘1’_4’)’—9 832\I’o'¢g

where 7, is the throttle coefficient at the peak of the characteristic, and 9! is evaluated

at the peak. Suppose the control feedback is given by

u = Kyag + Kra1 + Kqas + K3|a0|2 + K4|CL2|2,
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 where ay =z + iy is the complex form of the surge mode given by

z = ¢

o 1
y = —w—0(5+6)¢+ =%
q; = ¢— 707’[) |a2|2+h0t

LTS
¥ — "|ag|?> + h.o-t.,

<
il

and -

d():

N\ 2
N J vz (5:+9) 1
, Wo =Wy 1-— =
21, 86

A normal form for the dynamics on the center manifold is given by

j() = Iy (5 - 8) Jo + (a11J0 + 0[12J2) Jo + h.o.t. (67)
jz - I/26J2 + (Olzljo + 0122J2) J2 -+ h.o.t. (68)
where Jy ~ |aol?, Jo & |2a2)%, vy = —‘/jﬂ, vy = ——%, and o4 (4,5 = 1,2) are

functions of the feedback gains and are given in Section 6.6. Also in Section 6.6, we
show that feedback gains could be selected such that the oy; < 0 (4,5 = 1,2). Now

we discuss the dynamics of the normal form (6.7) and (6.8).
1. Types of equilibria

(1) Axisymmetric equilibrium (Jo, J2) = (0,0).

(2) Pure modes
(i) Pure surge mode (Jy, J2) = ( o (6 5) )
(ii) Pure stall mode (Jo, J3) = ( Lo )

022

(3) Mixed mode

(Jo, J: ) = (arovs — Qa1)0 + Qoatgd (aa1v0 — 0112)0 — Qi1 /90
0,J2) — 9 .
Q11022 — Q1909 110022 — (120021
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(a) Case 1 (b) Case 4

Figure 6.6: The bifurcations for closed loop system for the high B case. Solid: sinks,
dashed: saddles, dotted: sources. :

2. Bifurcation of the mode in the region Jy > 0, Jo > 0,

(1) At 6 = 0, the pure stall mode merges with the axisymmetric equilibrium.

(2) At = §, the pure surge mode merges with the axisymmetric equilibrium.
(3) At

A

)

__ o1av3)
Q2210

525575:1

the pure stall mode merges with the mixed mode.
(4) At

~
_onvy?
Q2110

5= 4=

the pure surge mode merges with the mixed mode.

There are six different cases of bifurcations for the closed loop system.

v a o . . —
2 5 2 5 7 the bifurcations are shown in Figure 6.6 (a), and the phase
Vo 21 1897)

portraits are in Figure 6.7.

1.

9 LT 9—1—2, the bifurcation is given by (a)-(d) in Figure 6.7 (in this case
01 Va Q22

dsg > 0).
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Figure 6.7: One possible phase portraits for the closed loop system in the high B

case.

@6>0 << (©6,<d<d @y <8<by (&)< by

J2

Jo J J J
Y
=R
A
5 To To Jo

Jo Jo,

Figure 6.8: Another possible phase portraits for the closed loop system in the high
B case.
ay 12 W . S R . .
3. — > —= > —, the bifurcation is given by (a)-(c) in Figure 6.7 (in this case

4 5)] (057 Vs
8sg > 0, 05 > 0).

U A , the bifurcations are shown in Figure 6.6 (b), and the phase
V2 Q22 091

portraits are in Figure 6.8.

a w_ o«
=12 5 2 5~ the bifurcation is given by (a)-(d) in Figure 6.8 (in this case
Q2 12 0121

dst > 0).

o o
= U > 2 , the bifurcation is given by (a)-(c) in Figure 6.8 (in this case
Q22 Q21 vy’

05> 0, 059 > 0).
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6.4 Simulations for a Model of a Single-Stage Tran-

sonic Compressor

" -In this section we simulate the Moore-Greitzer model for a single stage transonic com-
pressor at the NASA Glenn Research Center. The compressor characteristic we show
here is a cubic polynomial fit to a more precise piecewise polynomial characteristic

idéntiﬁed_ in [17]. The fitted polynomial is given by
1he(®) = —12.53819° 4 7.8460%” — 0.6498® + 0.0495,

which is shown in Figure 6.9 (b). Other compressor parameters are also from [17],

which are given by

m =1.0047, p=0.6040, X = 0.4044,
lo = 17.5500, B =0.3464, e, = 0.0079.

A more complete description of the compressor is can be found in [77] and [17].

The simulation results for the open loop system are in Figure 6.9 (a) and (b). It
can be seen that there is a hysteresis since the stall inception point is at v, = 0.744.
Now we consider the controller is given by u = Kja,, where K; = —10. Then the
simulation results for this case are shown in Figure 6.9 (c) and (d). It can be seen
that although the first mode is stabilized, the bifurcation for the second mode is still
subcritical and there is a hysteresis associated with it. Also, the amplitude of the
second mode in this case is much larger than the second mode for the open loop
system. Now we choose the controller u = Kia; + Kaay + Kslay|?, where K; = —10,
K, =10, and K3 = 4K3,, = 388.6. The simulation results for the closed loop system
are given by Figure 6.9 (e) and (f). In this case, the prf bifurcation to stall is
supercritical and the stall inception is progressive rather than catastrophic as in the
previous cases. It should be noted that the first mode also takes part in the limit
cycle oscillation since the controller couples the first and the second mode. When

the throttle is operated near v = 0.725, both of the controlled first and second mode
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Figure 6.9: Bifurcation of uncontrolled and controlled systems from numerical simu-
lations. Solid: compressor characteristic, dashed: throttle characteristic, square: first
mode amplitude, diamond: second mode amplitude, star: stall inception point.
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Figure 6.10: The bifurcations for the closed loop system with magnitude saturation.

increase drastically as «y decreases, but there is no evidence of hysteresis. The local
bifurcation analysis in Section 6.2 did not predict this phenomenon, but it gives good
predictions of controlled system behavior when v > 0.73.

We remark here that our simulations also showed that as the the gain K3 or
K, increases, the oscillations of the limit cycles for the closed loop system also in-
crease when the throttle operates father away from the stall inception point. This
phenomenon is not predicted by the local bifurcation developed in Section 6.2.

The theoretical predictions of the control effectiveness for the magnetic bearing
actuator with magnitude saturation is given by Figure 6.10. The z-axis is the throttle
coefficient normalized by the throttle coefficient at the peak of the characteristic. The
y-axis is fhe amplitude of the second mode normalized by the fully developed second
mode amplitude. If the noise level is one percent, i.e., the ratio between the energy
of the second modal content in the noise before stall incepﬁon is one percent of that
for the fully developed stall, then the range extension is about 0.6 percent, which is
so small that it might very difficult to observe in experiments. Hence the magnitude

saturation seriously restricts the range of extension.
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6.5 Proof of Proposition 6.1

Letting ¢ = & — ®.(7), v = ¥ — ¥,(v), then the Taylor series expansion around the

where
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- peak of the characteristic is given by
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It should be noted here that the axisymmetric mode (¢, 1) and the second stall mode

ay are linearly uncontrollable, but the mode is stable if we assume B is small enough.

Suppose the control law is given by

Uu = K1a1 + K2a2 + K3|a2|2,

and substitute the control law into the system. Since the axisymmetric dynamics is

stable, the center manifold expansion is given by

4]

,311(1% + ,312|a2|2 + ,313&;2 + e,

ﬂ21a§ + ,322|0:2|2 + ,323032 +

Bs1a2 + Bazas + /33303 + ,334|0:2|2 + ,335a;2 +

)

(6.9)
(6.10)
(6.11)
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" The dynamics on the center manifold is given by
= (d26 — twa)an + Q103 + Qolaz|* + Q303 + Clag|* + o.c.t. + h.o.t., (6.12)

where o.c.t. denotes “other cubic terms,” and

2 ,lpll

Ql - /331,
7 3
Q= %ﬁ_ Mﬂslﬂsm

1 u

Qs = %-I— :5327 ,

_ ¥ Ve 2 2, 1

¢ = m (,312 + B31 054 + P32/33) + m iy |Bs1]° + |Ba2|” + 5]

2

The normal form of (6.12) is given by

z = (dod — iws)z + &|2[*z + hoo.t.,

where

Q1@

iwz

a=— + C +pit.
Letting o = Red, then the criticality of the Hopf bifurcation for the closed loop
system is determined by a. If @ > 0, then the bifurcation is subcritical; if a < 0,
then the bifurcation is supercritical.

Now we calculated f3;;’s. This can be done by differentiating (6.9), (6.10), and

(6.11), and using the system dynamics. The results are as follows:

i 1831 —Kl - i(w2 — wl)’
P2 = 0,
,333 _ :‘631Q1
K1 + 2(2(.02 - wl)’

fu = oo (- -k,




and @ = Qs =0. So we get '

~ ‘ 1 —'102'531-’{ 1 ( m %WZ) 2 ( n 70¢g2 "/)212 1 ):I
= —— -+ = v+ — : :
“ %+u'[K1 —tw; 2 ¥ VA +1Bul" ¥ 20y m+p K —iw

The first two claims in Proposition 6.1 can be proved from the expression of &. For

the third claim, we could repeat this procedure for other feedbacks.

6.6 Proof of Proposition 6.2

For the high B case, the Hopf bifurcation to surge occurs very close to the peak of
the characteristic. In this case, both the second mode stall and surge are linearly

unstabilizable. By expanding the system around the peak of the characteristic, we

get
- - - . 1T - - _ -
$ ATIZN S 0 0 6] |[o i
bo|_| @ -TEES 0 0 L I I IV
C-ll 0 0 d15 - iwl 0 ay 1 f3
dg 0 0 0 d25 - i(.dQ a9 0 f4

where f; (j =1,---,4) are the same as in the previous section.

In the small B case, the surge (axisymmetric) dynamics is stable. If we use the lin-
ear feedback u = Kja;(Re K; < 0) to stabilize the first mode, then for v > v, near the
peak, there are saddle-sink connections between the stable axisymmetric equilibria,
the unstable stall equilibria and the stable fully developed stall equilibria; if v < 7y,
then the saddle-sink connection is between the unstable axisymmetric equilibria and
the fully developed stall equilibria. We postulate that these connections are persisted
as B in creases, but the stability changes. Using the center manifold approximation

" as in the previous section to the low B case for v = K;aq, the attractions are obtained
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| by(qb ) =(0,0), Where

‘;IS = ¢— ’7\0/1&|a > + h.o.t.,
P = 9 —¢la’ +hoot.

Now we consider the coordinates transformation

(¢ Y oa az)—)((lz b a az),

the system is transformed into

s VAL S 0 0 3 o] |4

= | _ \/‘1731#2'8 0 0 y 0 f.

¢ — 482, Ic ¢ + u+ .{2

dl 0 0 d16 t z'wl 0 ay 1 f3

i dz | 0 0 0 d26 — Wy a2 0 L f4
where
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3282, \112 2%,
w/ﬂ
Tm _c,_ [2¢|“2|2 + 5 (afa; + a’{2a2)] + h.o.t.,
2 TH ‘
- "pg ' 1 y ,¢n2
f3 = . o (¢a1 + azal) R w/// + 20 c |a2|2a1
"/}::” 1 72 2 ®
- +m +p 5 (¢ + |0,1| ) a) + ¢a2a1 + h.Q.t.,
f '@bg (; 1 2) 1 ( " ’YO"/)’ ) 9
f% Ztu daz+ 50 m+2u Ve V% |as|"a;
" 1 /- _
+ mwj_ I [5 (‘15“2 + a%) ¢+ |a1|2a2] +h.o.t.
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Yoo (6 + (5)2
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r= [ tedo (5+5) Ly
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2Bl

And letting ag = x + iy, then the system is transformed into

o do (5 - 8) iy O 0
| aq = 0 did — iwy 0
dz 0 0 d25 - ’I;(x)g
where

go _ ,¢}u (a +a*2) l|a0|2+|a1|2 _|__1_ ’l,/)'"—
T, |18V Ty 2, \ "¢

(2} + atas) + —

ap 0 o

a |+ 1 lu+| g |

a2 0 92
(6.13)

m+2u \/\IIO

e v
(3 + ) wo

21,

2 2 W” %2
(Ja1|’ao + |az|’a ) oY1 (ao +ag )

Q/)m_'_ (_1__ lc >70¢g2 _
© 2 F+u) Vo

29 |
(% + 1) wo

1
EIGQP + |a1|2] (ao + (13) + h.O.t.,

70¢£,2 2
ooy Ak

1
= (ao + ap) aza’{] + h.o.t.,

1/)112 \
% laz|2as
0

g — 1/)2, l(a +a*)a +a a* +__1_ ¢///+
. m+u |2 0 %oJ PR m+p \¢
-’Qb::" 1 *\2 1 2
+m+u 8(a0+a0) a1+2|a1| a1+ 5
,"/)II 9 1
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3+ﬂ: 8

It should be noted that we have dropped higher order terms associated with 4. Sup-
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| ?p-‘o(‘sé the controller is giveﬁ by the folldwihg form:
U= Koa() -+ Kl@l + K2a2 + K3|a0|2 + K4|0,2|2.

By substituting the control law into the system and assume Re K; < 0, the center

manifold is given by the following Taylor series

a; = [iao+ Paog + Bzag + Baas + ﬂsa% + ,36|a0|2 + ﬁ7a<’§2 + ﬂsa§ + ﬂ9|a2|2

+,310a§2 + ﬂuaoaz + ,8120100,; + ,813(1/30/2 + ,814(1130; + h.o.t. (614)

Later in this section we will show that 3 = 8, = 0, so the dynamics on the center

manifold is given by

a do (5 e S) -+ in 0 (47
| = "1+, (6.15)
Gz 0 dad — iwy az g2
where
go = 7 8% + 8a0 + 4 + 15117 ) laol® + |B2|*|az|” + BiB3a0a; + B Baagaz
C
+611|aol?ao + Guz|as|*ag + o.c.t. + hoo.t.,
’l/)”
» = o (823 + (1 + 26182)agaz + f3a3 + ajas)
+6i1 |ao|2ag + Giaz|as)®as + 0.c.t. + ho.t.,
where

0y = ve (,31,36 + 31 Bs) + ( + |6 |2>

2l
| b = ’(P (,81,59 + 3213 + B5011) + 1 (1 + 2ﬂ1ﬂ2 + |8 2) W”
+_1_ (1 _ L+ ﬂlﬂz)> 70¢22 2¢"2(1 +Biba),
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am 2 (Bt a0 + e (21 a1
21-—m+ﬂ113 206 m+/i4212 1]
.2 2
~ "/).I:, [ 2 " 70¢Z2:|
= 1+2 + —=].
Qigg %+Mﬂ2ﬂ9+m+2ﬂ ( + 2| 82| )d’c NG

Letting 6 = 0 and 5 = 0 in the system (6.15), we use the following coordinate

transformation to eliminate the quadratic terms and “other cubic terms” in (6.15),

* * *k *
ao = 2o+ qo(20, 22,25, 25) + colz0, 22, %3, 23)

— * * * *
az = 22+ qa(20, 22, 25, 23) + c2(20, 22, 25, 25)

where go and ¢, are quadratic functions, ¢y and ¢, are cubic functions. The major
assumptions are that there are no lower order resonance between the surge mode and

the second stall mode, i.e.,
nowo + nawg £ 0, |ne| + 2| <4, |nol + |n2| #0, ng,ne € Z.

Using the coordinate transformation, a normal form of system (6.15) is given by

Z'O [do (5 - 8) + in] 2o + (&11[2!0'2 + 6!12|ZQ|2) 2o+ h.O.t.,

29 = (dod —iwg) 22 + (5121|Zo|2 + @nl2)?) 22 + hot.,

where

" n2 2 m
G = ¢ (/31/36 B+ l(m% Jﬁ;iwﬁ21522wo) +¢_< +|ﬂ1|2) +p.it.,

204”5152 | ol
le(m + 24) (2w2 — wo)
1 L(14818)\ w¥e :
3 m oy ) \/\ITO]_'_p'l't"

a1 = 'l—c (6185 + B2Bys + B3 011) +

2l (1426182 + |B2f*) ¥y + (
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Let

20(€) = po(§)e™®, Jo(£) = (€)%,
2(8) = p2(£)ePO, J(€) = (€)%,

then the dynamics for Jy and J, are given by

jo = Iy ((5 — 8) Jo -+ (a11J0 + a12J2) -]0 + h.O.t.,

j2 = oy + (OlzlJo + a122J2) Jo + h.o.t.,

where

VA TYVA

Vo = 2dp = T = 2Red;, app= 3 Re a3,
/\I’ "
Vy = 2d0 = 0%c y, Qg1 = 2Re5421, 19 — = Re 5[22.
m+2u 2

Now we calculate 3; (j =0, - -, 14) by differentiating the center manifold expres-

sion (6.14) and using the dynamics of the system (6.13). The results are as follows:

B = o
v Kl —’L.((Ul +w0)’
IB2 o Kl -_ 7;((.4.)1 — (,UQ),
ﬂ3 = 07
:64 = 01
8 Ve [_1_ b 1
> Ky —i(w; +2wp) 18I, mA+2u  2(m+ p)



o . 221‘ ' .
B =—1—[‘/’( +|ﬂ1|2) B, - (Wl KgJ,

Kl — lc 2(m + )
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7, Coe K1 - i(wl - 2(4.)0) 8lc ’
1 S
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. 1 " ) 1/)11132 )
= —_— —+ - K )
By Kl—zwl( c|ﬂ2|,3 — 4
:610 = 07
X Ve B 142610, 1
/611 = . -
Ky —i{wotwy—we) [ m+2p  2(m+p)
B = Yo piss
12 — . ’
K —Z(CUQ+LU1 +w2) I,
_ (A [ Pa Pa + 2057 ]
bra ,— Ky +i(wo — wy +wa) | A1z + m+2u  2(m+ p)
pu = 0.

We have the following proposition.

Proposition 6.3 If 9] < 0, then there ezist K; (j = 0,---,4) such that a;; <

0(i,j=1,2).

The proposition can be proved by observing that the map

CxC — CxC : (K3, K4) — (B, Bo)

is an isomorphic affine map, and «;; (i, 5 = 1,2) are given by

: 2
o = "Pc Re {£16:} + Fi1(Ko, K1, K3),

o = —cRe{ﬂlﬂ;}+F12(K0,KlyK2)7
w”

o = Re {6:06} + Fa (Ko, K1, K3),

T tu

w”

an = — +c2u Re {8200} + Fop( Ko, K1, K3).

In summary, we design the stabilizing control laws by the following procedure.
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B

Figure 6.11: Geometric interpretation of constructing stabilizing feedbacks.

(1) Select K; € C with Re K; <0,
(2) Select KO,KQ € C such that 8 # —«f3;, where k € RY,
(3) Select K3, K4 € C such that a;; <0 (4,5 = 1,2).

The geometric interpretation for fs and fy in the region in C in which a;; <0 (i, =
1,2) is given in the shaded region in Figure 6.11.
Remark 6.6.1:

1. If 4" = 0, then we have to use the fourth order derivative of ..

2. The dynamics of the closed loop syStem is in Section 6.3.
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A

Chapter 7 Conclusions and Future Work

In this chapter we give a summary of the thesis and suggestions for future work.

7.1 Coqclusions

One of the main goals of this thesis is to characterize the local smooth stabilizabil-
ity of nonlinear systems near an equilibrium, under the assumption that the linearly
unstabilizable eigenvalue is zero or a pair of pure imaginary numbers with algebraic
multiplicity one. Explicit algebraic necessary and sufficient conditions of stabilizabil-
ity are obtained up to the third order in the normal form of the dynamics on the cen-
ter manifold. Explicit feedback laws are constructed when the system is stabilizable.
These results not only reveal the complexity of local stabilization in non-hyperbolic
systems, but also give insights into the geometric structure of stabilization.

One of the most important applications of local smooth stabilizability of nonlinear
systems near an equilibrium is in bifurcation control theory. An important question
in bifurcation control is how to design a feedback to change an open loop subcritical
bifurcation to closed loop supefcritical bifurcation, under the assumption that the
bifurcating eigenvalues are linearly uncontrollable. For simple steady-state and Hopf
bifurcations, this question is equivalent to design a control law to stabilize the system
at the bifurcation point. Thus we have solved the problem of feedback stabilizability of
a simple st-eady—s'ta,te bifurcation or a Hopf bifurcation by providing explicit algebraic
necessary and sufficient conditions. These results contribute to the understanding of
feedback control of non-equilibrium behavior.

Since subcriticél bifurcations are usually associated with nonlinear instability at
the bifufcation point, controller bandwidth, rate limits and magnitude saturation
have a significant effect on the region of attraction to the stabilized equilibria or

periodic orbits. We evaluated the size and the shape of region of attraction for



| 224

" controllers with ma;gnitude saturation limits. The boundary of the region of attraction
to the stabilized equilibria/periodic orbits is formed by the equilibria/periodic orbits
after the controller saturates. The effects of bandwidth and rate limits in control of
- bifurcations are demonstrated by analyzing the Moore-Greitzer model for compression
systems. The analysis on the effects of controller bandwidth and rate limits can be
carried over to bifurcation control of general nonlinear system in a straightforward
way. _

By applying the general results to the Moore-Greitzer model, the effects of actu-
ator magnitude saturation, bandwidth, and rate limits in active control of rotating
stall are analyzed for the bleed valve actuators. Analytical formulas are obtained to
relate parameters and characteristic shape of a compression system to the rate and
magnitude requirements of bleed valve actuators. The formulas give good qualitative
predictions when comparing with the experimental results on a low speed compressor.
The formulas have also shown that the actuator bandwidth and magnitude saturation
limits are serious constraints that have to be considered for implementation of bleed
valve actuators in an aircraft engine.

Magnetic bearings are potential actuators for active control of rotating stall and

surge in compression systems. The second stall mode and the surge mode are linearly
| uncontrollable when magnetic bearings are used to actuate the tip clearance. Control
laws are constructed to changé the criticality of the Hopf bifurcation of the second
stall mode when the surge mode are stable. The effects of magnitude saturation
of magnetic bearings are analyzed. The magnitude saturation seriously affect the
effectiveness of tip clearance modulation in active stall control. Control laws are also
designed 1;0 simultaneously change the Hopf bifurcations of second stall mode and the

surge mode for the high B case.

7.2 Future Research Areas

Nonlinear control theory has been developed rapidly in the past two decade based on

differential geometry [43]. With the rapid development of computational power and
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‘information 'techlaolbgy, the role of computation in nonlinear control design becomes
more"and more important. On the other hand, with the rapid widening of control
technology in engineering applications, new problems will definitely arise and will
‘ require new tools‘ in nonlinear controls.

Local feedback stabilization of bifurcations can be further pursued for systems
which have multiple bifurcations which are near one another in the space of bifurca-
tion parameters. One example is control of rotating stall and surge using magnetic
bearings, where the Hopf bifurcations of second mode stall and surge occur near each
other and both modes are linearly uncontrollable. For Hopf/Hopf bifurcations with-
out low order resonance, the dynamics near the bifurcation point has been well known
for the nondegenerate case [37]. Some sufficient conditions have been obtained fdr a
class of systems with two pairs of uncontrollable pure imaginary eigenvalues [15], or
for multiple critical modes without lower order resonance [86]. Necessary and suffi-
cient conditions for a general multi-input systems with multiple pairs of uncontrollable
pure imaginary eigenvalues remain to be solved. If the Hopf/Hopf bifurcation exhibits
lower order resonance, then algebraic tests of stability property may not exist [11]. In
this case, obtaining algebraic necessary and sufficient conditions of stabilizability is
hopeless. So it is necessary to obtain necessary and sufficient conditions that are nu-
merically tractable. The role of symmetry in control of bifurcations is an interesting
problem. For systems whose critical modes have some symmetry (say SO(2)), it is
worthwhile to study the role of symmetry preserving and symmetry breaking control
schemes in local stabilization of nonlinear systems. The research in this direction not
only will shed light on the geometry of local feedback stabilization, but also may have
wide»appliéations in engineering systems. It is necessary to direct more research effort
in bifurcation control of dynamical systems described by functional differential equa-
tions. Some sufficient conditions of stabilizability of Hopf bifurcations in functional
differential equatidns have been obtained in [67]. The results in this area will have
implications in understanding the sensor/actuator allocation problems in control of
distributed systems. One of the applications would be in active control of combustion

instabilities [69], where the model is a retarded functional differential equation. The



" issue of robustness in bifﬁrcaﬁ:ion control is also worthwhile to investigate. Although
é, coﬁstructive procedure ‘of designing stabilizing feedback laws is developed in this
thesis, the geometric structure of stabilizability in these cases remains to be explored.
" .Some preliminar‘y results can be found in [57].

Control of nonequilibrium behavior in nonlinear systems is expected to receive
more fesearch effort. In some applications it might be undesirable or impossible
to stabilize a local bifurcation. Control of homoclinic/heteroclinic cycles near their
tangency will shed light on the role of feedback control on the global dynamic behavior
which are crucial in some engineering applications. Much research have been done
on control of chaos, but there is not a general framework. It is interesting to develop
some tools to design feedback laws to regulate a chaotic attractor. The research in
this area will heavily rely on the development in the theory of dynamical systems.

Much research has been done in the area of active control of rotating stall and surge
based on analysis of the Moore-Greitzer model, which is an oversimplified model for
an aircraft engine. Since actuator limits are crucial in active stall control, developing
novel high authority, high bandwidth actuators is necessary for implementation on an
engine. It is not clear how the active control schemes would affect other components
in the engine, such as the downstream combustors, the turbines and the afterburners.
The results in this thesis will not lead to understanding of these questions. More
experiments and modeling have to be done to obtain a sensible model. Other trade-
offs such as affordability, reliability, complexity of control architecture also remain to
be investigated, though preliminary evaluations exist [1, 2, 3]. Most of the experiments
on active stall control are on laboratory compressor rigs, and more tests on engines
are neceséary. In [31], active control of rotating stall is achieved on an engines using
sleed valves to recirculate air. Robustness of active control technology is an important
issue. For example, a systematic tool is needed to understanvd how the inlet distortions

affect the controller performance in different actuation schemes.
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