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THE GRAVITATIONAL FIELD OF A BODY WITH ROTATIONAL SYMMETRY
IN EINSTEIN'S THEORY OF GRAVITATION

(ABSTRACT)
Einstein's set of field equations in vaccuo

Gpv =0
is reduced to such a form that simpde problems like the sphere (Schwarz—
schild's solution), the infinite plane and the infinite cylinder can be
solved. The fundamental guadratic differential forms for the latter two
cases are respectively
I

i)

ds® = - [(1+4mez)"*dz® + dp® + p2de®] + (1+4woz)dt?®,

ds® = = cZp"%[(1+4mlogp)™*dp® + p2d9®] -~ dz® + (1+4mlogp)dt®,
where 0 is the surface density of matter on the plane, z = O}  m the li-
near density of matter on the eylinder, p =,const.;c(p,é,¢) the cylind-
rical coordinates; c4 an indeterminate constant and the veleoecity of
"“light is unity. Setting g4, = the Newionian potential + consi., we can
"get the solution of the general gravitational problem for a body whose
mass is distributed symmetrically about an axis provided we cam solve

2—2{(1~2Mw)§2] + —E-‘fez”3 = Q (M = mass of the body)
3y 3y o06% V7.

The gravitational field of an oblate spheroidal homoeoid is characterized
by

ds? = - y"*(1-21y) " *dy® - yT2AE® - v 2cos®Ede? + (1-2My)dtd,

where ¥ = " *cot™*(sinhn), M = mass of the homoeoid whose equation is
c®p2+a®z? = a%c®, k% = a®~c? and &,n are related to the cylindrical
coordinates (p,z,9) by p+iz = xcos(Z+iR). Analogous expressiouns for a
prolate spheroidal homoeocid are obtainable. The oblateness of the ho—
moeoid causes a slight increase in the advance of the perihelion of a

planet's orbit derived from Schwarzschild's solution.
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THE CRAVITATIOKAL FIELD OF A BODY WITH RCTATIONAL SYMMETRY
IN BINSTEIN'S THEORY CF GRAVITATION

INTRODUCTION

The present paper is an attempt to solve rigorously the problem of
the static gravitational field of a body whose mass is distributed sym-
metrically arcund an axis in Einstein's thecry of gravitation. In 81
Binstein's field equations in vaccuoV
(J.1) Cuv = U
are set up and reduced in §% to a form such that simple prcblems like
the sphere (85), the plane (§€) ana the infinite cylinder (27) can te
solved. In the general prcblem there is a fundamental aifficulty which
will ve avoided by the introduction of the Kewtonian potential (§&).
The solution of the whole provlem then depends upon the solution of a
partial differential equation of the second order which is non-liinear.
Finally the gravitational fields cif apheroidai homoeoids (10, §11) are
given as illustrations of the present investigation and the motioun of a
particle in tne field cf an oblate sphercidal homceoid is discuszed(§12),
The paper also ccntains a critical examination cf earlier works upon
the problem notably those of Prot.'s H.Veyl and T.levi-Civita (83, g4).

I BINSISIN'I LAY OF GRAVITATI

1. The {iela eguations. Consider the static gravitational field outside

of a body whose mass is distributed symmetrically about an axis. Hence
the gpv's do not vary with respect to time. The most general fundamental
quadratic differential form in sucn a field appears to ce

(1.1) ds? = = (g,1dx3 + Zg10dx.dxe *+ £220%3) = gasdx3 + g440x%

Where xi,Xp are any two coorainates in the merideonal plane containing
the z-axis, xs = 9, the azimuthal angle, x, = t, the time coordinate,
the unit of time being so chosen that the velocity of light in vaccuo
is unity. The gﬁv's in (1.1) are functions of x, and f? qnly.
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Ve assume that the values of the guv’s exist. From a well-known
theored¥ on positive definite quadratic differential forms of iwo va-
riables in the parenthesis of (1.1), it is always possible when €11,

€22, E12 are explicitly given, to make a real single-valued, continuous
transformation from x; and x, to u and v by

(1.2 Y » . . 194

(1.2) x1 = x1(u,v), %, = x,(u,v), where J = ( 1’X2) £y
“o(u, v

such that the following identity is true,

(1.3) $110%5 * Z€1,0x2dXz + 9,,dx2 = e2B(du? + dvd).

Hence (1.1) becomes
(1.4) ds? = - e20(qu® + dv?) - e®®dx? + e?Vdx2,

where wm, n, v are functions of u and v tc bte determinea. Let

u = Xi, V = Xzo
. _ - 2 - on 2y
Then €11 = €92 = = €70, €aa = = €7, ga44 = e?Y,
— - - afteont2y
(1.5) £ T £11E02883644 T ~ € 3
g1 = 22 = o gmED 433 o _ omER a4 o =2V

Now (1.4) is an orthogonal quadratic differential form. The general
expressions of the Christoffel symbols of the second kina for such forms
are well known.\¥ In the present problem the non-vanishing sywmbols are

§11,1} = my 11,2} = - n,
§12, 3 = m, \ 11%,2} = m,
§22,13 = - m, 22,2} = u,

(1.6) 193,1} = - e?*=7p, §33,2Y = - e~ %y
44,1} = e2V720y, $44,2} = e2VTemy
$13,3} = n, 314,41 = v,
23,3} = n, j24,4} =

< 2. Bl - Fouk, ™ Vo\muuyw W iL%dﬁmthnﬁi?,wuﬂﬁut, }f-éq (1910).

% A.S. i&ﬁuu?Cn ﬁxt OV o @? 83.



where for simplicity we denote partial differentiationsby subscripts.

¥ritten out in full Finsfein's field equations in vaccuo are

(1.7)

¢f which the

(1.8

r

Suv =T %3(;%-“": ak * {p,ot,;B}fv}% O(}

o2 !
+ -
3 aX)‘log( g)
G VA
following five components are not identicaliy szero:

~ a - o a I I's I
: o f11,1} - g;:ill,a} + §11,1} f11,13} + 211, 23§12, 13

9
-
»

1

|

+ {12,831, + 113,81§13,38 +{14,43% §14,43

© 2 lop(=¢f* - 21 =Sl0g (=g )k
+ ax§¢og(~gf' $11,1% Bxllog( g;£ {11,&}ax210g( g)?,

G1s = - ;;:ila, 1} - -%{12,2} + §11,13321, 14 + {11,23f22,13
+ $12,1} {12, 2} + {12, 28822,2} +13,38125, 3 + §14, 43124, 2}
+ ;;Eg;-;logﬁ-i) - {1z, 1}:@%log(-g)z‘ - 312,2§-c-;:log(-g)&;
Gpp = - 5%322, 1} - 5%322,2} + 21,1} {21,118 + zi21,28e, 1}

+ 22,2} §228,2F + 923,31%23,3} + {24,4}824,4}
R'Y

. gg;:mg(-gf“ - to, 1}t log (-l - 12, 2h=toe-0)
Ges = = 5%333, it - 5—;%33,2} + 2§231,3}133,1} + 2{32,3}{33, <}
- 183,13 5%1og<-g)"”' - 38,2} :é%-;log(-—g)%,
Gaes = = :5(—;{44,1} - 5%{44,2} + 2§41,41444,11 + 274,41 944, 2%

L 72 q S o
- 4 ~=-log(=g)* - $44,2% —=1log(-g) .
944,11 e og(-g) §44,53 axalog\ g)



If we substitute the three—index Christoffel symbpls of the second
kind from their values (1.6) into (1.8), we obtain

(1.8 = + + + + pn? + y2 .
(1.8) Gaa = @y, * myy + Oy + vy, * 0d + v2 = (o)
. -
+ my(nygtvy) = G,
; o = + - - = [
(1.10) Ci2 2 nyy * vyy * gy + vyvy = ag(ng+vy) m (ngtvy) = G,
N I'a} — : 2 2 Y
. = + + 1 + oy o+ »
(1.11) So2 2 Wy, + Wy + Dyy + Wy Y ng * Vet (ngev)
- ay(ng+v,) = C,
Iy -~ — 2n—-2mr 4 . f -
(1.12) Ggs = € (nyy + ngy + nyng+vy) + ny(ngrvy)l = G,
3) 3 = - g2V 2L + + ( ’ = 0
(1.13) G4a = — € [Vgu * Vey * Vulngrvy) + vy(ng*v, )] = G.

<. Reauction cof tne fieid equations. By Putting

(2.1) X=mn+v,

and adding the expressions in the square trackets of (1.1Z2) and (1.13) we
get

2 o
Xmu * %vv * Xuz + xv = {,

Py
AN
.
oo
N

which bLecomes Lap.iace's equation in the uv-plane

-

(5.3) B, * vi =, on setting

It is well known that the solution of (£.2) is unique, if the boun—
dary value of $ be given in the uv-plane. Then G4 = { Gbecomes

N

(2.4 Vau * Vet Agvu t Ay T Y

\

which determines v. Ve obtain n by (2.1/.

To get the unknown function, m, we use (1.9), (1.10) and (1.11). ¥rite



G120 = U8 Ayliy * Xgty = gy + Dby + vyVy = 4,
(2.5) 1
- = e - ! - - 2
Cia = Gop = U1 —Yumy, + Aymy = Z (Xgu*Ayy = ni-vorng+vyl
= B,
Then vy solving m, and m, simultaneously from (2.5) we get
fe o) — 2 271 ] - - -

It will now be shown that
' y vy - B .
im = uw + .

(2.7) dm = m du + myav,

where m, and m, are given in (2.6) is an exact differential and secondly
that m must satisfy (1.%) and (1.11). By (1.12), (1.13) and (2.2), we note
that

= Xuh =Ly Xyy + ng + Vi),

w = XXy oyt ve) = Xvh,

o
[ W]
E ]
[o+]
) -
P
c
| +
w W
<
1" i

from which we obtain immeaiately

(2.9) Ny lhy=By) = AuChy*By) = (G = XG)A + 2 X )8,

- Xk -Xﬁ(?ﬁuu+ nl o+ vl

'7(;(7(vv+ ny + "\21)"

(2.10) %u(Av—Bu\) +%V(AU+BV)

By differentiating m, with respect to v we get

Sy = [0+ A0 e T A= X Bt + 1 Xy Ko =15 =2 XK Xuw tA

(2.11) =
+ P =) + 2 XXXy BT

which, by (2.2) and (2.8), becomes

TS+ L ™ [(xtfx})§ A + X Bt = s X=X +2 XX X A
+ %X\rw(lz’x\:) =2 XAy Zuw %B—]

3
=50 My



Differentiating m, and @y with respect to u and v respectively we

have

(2.12) o, = [X_g +7(§]“‘[(x:+7(;){7(\rA.f leu.z"' SLXN(Zi—X:) ‘Z.’X,wx\rlwu..SA
+§qu(X:"X\:) *Zluvau.v} B];

(2.13) oyy = D2+ X272 00D PhAv + A B — $hur (- 250 42202 Xow F A

oy = %) = e Koy 1 BT

AY

On adding (2.12) and (£.13) and by (2.2) and (2.1(), we obtain

(2.14) My * Gyy T Oyhy * OV V.
By (2.14) and (2.2), it is easily seen that (1.9) and (1.11) are

satisfied. This completes the proof that the functions, mw,n,v, thus

obtained satisfy every component of Zinstein's field equaticns (1.7).

For future reference we collect the following inaependent equations:

(2.3) Byt Sy =0 where &= &L =Y,
(2.4) Vau * Vuv * Agvy t Ayvy = 6,
(2.6) my = N2 +XIIT0E -xuBl,  my = DG ¢ AEITIALA + A B,

= +
A= Agv * bghy ¥ Vavys

c 2 _ 2 2 2
(= X yy *Ayy = 05 = vy * 0y * vy,

w
i
R )

- e28(4u? + gv?) - e®"dx2 + e?V4t®.

(1.4) . as?



II REKARKS ON DARLIZR DISCUSSICKS OF THE PRUBLZi

3..0n Veyl's original solution. The problem under consideration was
first attacked by H.¥eylW. His result was sebsequently criticised by
T.Levi-Civita¥ as being incomplete. The latter started with (C.1) and
gave a complete though restricted set of solutions (for reasons see g4
below). The incompleteness of Teyl's procedure seems to lie in the fact

that the formal statement of (C.1) by tne variational principle fails
when certain gravitational potentials, Evs vanish iuentically and some
cf them are equal to each other. It is well known that?¥

1

o . 3 & . . PN L v
(3.1) 04 ==—0 f G(-giwar = | TPVoguN\—g) dT = ¢ (aT = dx, " dxa)
[

gives the {ield equations
, i, \ i
(3.2 CEY oz oo ?%(GM'V, - -gWVG) = (,
<

provided the»égﬁv's are entirely arbitrary. If, however, (tc fix our
ideas) g1 = C and gi1 = €22, it is unlikely that we have the rignt

2=, I'*=¢(, 1%7=0C.

to conclude from (5.1) T°° =C,

In Beyl's work the fundamental quadratic differential form for a
body with axial sympetry is taken to be (1.4) in which g44 = S22, and
€11, 8ss, Bes are all functions of %4 and x,. He then constructes G{~g)
from (1.4) and varies the action integral, 4, with respect to gi11, €as
and g.4, which are the oniy gpv's present in the integrand. The three
Zulerian equations (3.2) thus obtained are indeed

(8.3) T +722=0, T*=0, 1T*=05
while the equation, T2 = C, which is the only component of Tik (i#k)

in the present problem not identicaliy zero, is entirely neglected.
Moreover, it is obvious that the solution of (3.2) satisfies (3.3).

But the converse is in general false.
Lfter levi-Civita's criticism Yeyl¥ repliea in Lonnalen der Physik

expecting to justify his previous result bty assuming the relation

& o0 Wil Al doy Chgk’, 8L S . i3a (1916).

¥ T -G, tRund Accsd. dod Lowews Vb, L dp- 10 U919) -
¥ AS. %AALMjme Qev. ok p.13m.
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(3.4) T+ X3 =0

between the components of the mixea energy-momentum tensor density, 3:;,
which, in his opinion, keeps the body in equilibrium. This assumptiomn,
however, is inconsequential because from the physical considerations
every component of :: should vanish in the gravitational field outsiae
of the body, and matbcmatlca;¢5 (.4) in the present case is merely the
first equation of (3.3). In short (3.4) aces not lead us Leyonda the set
(3.3).

4 plausible mathematical justification of Tleyli's result seems to lie
in the four Bianchi relations¥,

(5.5) (THY), = < (v = 1,2,3,4)

which reaguce to the following two in the present case: i

(T**)q + (27%), = oL, [1|||}+——Jl‘,?rt T }']’ + 22,1} T 43, :3"["3‘
OX 4 CXe
(5.6) + T 232,03 + ;LM(-})’“] '

aT21 "\*‘12

S e 2o s [t Tl e T T 43,2 T

OxX1 X2

+ a2} T [ 4212 + 53 Mg %] T™ =0

(12%), + (1*),

1]

If equations (3.3) are satisfied, these relations become

~m 13 ~m12 - ) Y i .
ol + ol + [5\11,171 + :ngg(-g)w - %24, 1%]1“
an_ BXQ
+ [2{12,1} + ---log(-g) “17*® = C,
(3'7) 12 mil
e S ¥ R n—log(-gf’“ - §22,2}11%
X4 [} & X2

r

9 v
+ [2312,2} + :——log(_g)klrl2 - U’
[}.§1

where the coefficients of T'* and T** are functions of xi and Xs. The
general solutions of (3. 7) are not I1*=T'? E-O fhich{ iy fac?, is
only a very trivial case. Tnis shows that even if (3.5) is introduced
's equatlions (s. 3) do not necessarily satisty

here, solutions of eyl

& A3 Whoifo, Qe ik, p. 08,




€very component of Einstein's field equations (3.2). Consequently the
condition on the covarlance of physical laws as required by the funda-
wental postulate of the general theory of relativity will not be satis-
fied generally.

4. Cn_VeylrLevi-Civita's soiution. Levi-Civita's solution of (G.1) is a
special case of the results we obtained in 8Z. Consider (2.3), ana set
$=p. Let 2 be the conjugate function of p. Then

'(;.1) p + iz = f(u + iv)

where f(u+iv) is analytic in u+iv. From this it follgws that

(4.2) dp® + dz® = £'(utiv)f' (u-iv){(du® + dv?);

namely, one set of coordinates (u,v) is confcrmailly transtformed into the

other (p,z). In order to avoid cumbersome mathematical manipulations in
82, both Veyl and Levi-Civita assume initially that

(4.3) p=u, z=v. Then e2" = p2e™2V and

(4.4) ds® = — e*T(ap® + dz?) - p%e~*Vap® + e*Vat?.

boreover, Cas = ¢ and dnV¥Y become respectivaly

» ~2 -
, ) 9°v ol 1 ov
R — A avemew b aw wme— = ()
(4.5) op2  vz? p 9p <
LoV, 2 AN oV GV
(4.8) dm = = dv + pl{==) - &-—) 1ap + Zp —— =— dz.
op op- oz

%e recognize (4.5) as Laplace's equation in cylindrical coordinates
(p,2z,9) indepenaent of 9. ¥eyl calls p,z in (4.3) the "canonical cylin-
diical coordinates™ which are apparently different from the ordinary
cylindrical coordinates used in sclving Newtonian potential problems. He
then emphasizes the fact¥ that if the aistribution of mags of a given
body in our dpace~time manifold is known in terms of this set of confi-
gurational canonical coordlnates, the problem 1s reduced to the soliution

& T - Gt R, hoead dud Lonced * V. 2, ¢, 37-%614"13-

% “Ahugz, "o Bov @Lﬂo‘ BA. 54, ¢-131 008,
N2} w}ﬂ, "Rovm, ok, Moot S 4R a2z, . 266




of (4.5). He shows%'that Schwarzschild's solution in: isotropic coordinates
of a body with mass m having. spherical symmetry, corresponds to that of a
finite line segment of length 2m, with constant linear density, lying on
the z-axis of the configurational canonical space—time manifold. But he
does not make clear that it is almost impossible to know the correspond-
"ing distribution of mass in this canonical coordinate system when the
distribution of mass in cur space-time coordinates is given, This diffi-
culty is clearly brought out by the following argument.

When we carry out the transformation from (xi,x»2,9,t) to (p,z,9,t)
by (1.Z2) and (4.3) we assume only the existence of the values of gq4,
€12, 822 in (1.1) so that the transformation is possible, but their ex-
plicit forms are not given a prioeri and consequently (1.2) is not expli-
citly known. Although we know the boundary values of g“v-in the original
(x1,%e,9,t) system, we do not krow the corresponding boundary conditions
in the (u,v,9,t) system oun account of the uncertainty of (1.2). Since
(4.5) nas an infinite number of solutions if the boundary value of v is
not specified, the solution obtainable from (4.5) and (4.6) will not be

unique, and consequently it is indeterminate.

The same aifficulty arises even if we do not assume tne solution of &
in (4.3). Here we do not knowm which solution of (2.3) we should take in
order to solve (£.4). The complexity of the situation is further enhanced
by the uncertainty of the boundary conditions of v in the uv—coordinates.

kn alternative procedure to get a solution for the origiahl physical
problen from (4. 5) and (4.8) is to choose a solution v of (4.5) in terazs
of the canorical coordinates first ana then try to 1hterpret it in the
\x,,xg,w,t) systew by a transformation (1.4). The g v 's thus obtained
‘must satisfy tne criginal bounaary conditions iu terms cof (xi,x2,¢,t)
given initially. Ine question whether this procedure will leaa to a uni—
que transformation (1. 2) needs further investigation. It appears net to
nave been considered in the literature.
Focllowing Weyl and Levi-Civita's investigatious, several authors¥®
have given sclutions of provlems in which distribq&}pn of-Eii?es in

v A \IJ&}’Z, A'm dsv VM M 54 J)'M Ung), Wé MQAA:):J’M/ ' |
(cﬁ 3T Gpubuigz TN rxkgj'LQ) Vol 1.

M.zvc (m%)).
SV (YN W O o honad gusﬁwu IO SLIGE R
R, M, Cheoct] . kacl.” | BDLI g le 19225
9 "Swl'_iA% B4 33, pp. V3 (1925,




terms of the cancnical coordinates is given. The corresponding mass dis—
tribution in our space—time manifcld has been never discussed. Hence
these solutions are academic and without physical significance.

1T FISLDS OF SFHERE, PLANE AND CYLINDER

5. 3cnwarzschila's solution. As the {irst application of the results in

¢z let us ccnsider 3chwarzschila's solution. The arc element in the gra—
vitational fiela outside of a body with spherical symmetry is

(6.1) ds® = - e*Mdr® - ®W(r?d6® + r®sin®6ag®) + ¢*Vat®

where (r,6,9) dencte spherical pclar coordinates ana A,k,v are functions
of r only. (6.1) may be put in the form of (1.4),

(8.2) ds? = —e®8[gu? + qv?i - e2"dg? + e?Vdt®, where
(5.3) du = r-’ek'“dr, | v =26, ef =rek, e" = rsinbek,
m,A,v being then functions of u. &= e"*Y = Rsinv (say). Then (2.3) is
(5.4) ﬁ; - R =C.
au

Integrating (5.4), we obtain

(5.5) R = re¥*V = c,sinb(utue) = cisinbu (by fixing u properly in
(6.3)).
Hence A= iog® = logc, + logsinhu + logsinv.
. , a®v dav _ ,
Then (Z.4) becomes = cothu = = C. Hence
av
(5.€) —- = c¢,cschu,
du
(5.7) exp(v/cg) = cglcothu - cschul.

Tliminating u between (5.5) and (.7) we obtain



S o~ ) - -— — - ( l/
(5.8) exp(v/cs) = car” e (“*V)[(c;’ + r2e2lutv)y® cil.
B - . ) - -

¥ using the boundary condition on b and v that both of them tend toward

4ero as r increases indefinitely we get Cs = 1. Solving v from (5.€) we
get

(]

exp(2v/cy) = 1 - 201r°‘e‘(“*”)exp(v/cg), or

(5.9)
sinh(v/cy) = = ¢,r~ e~ (p*v) = _ ¢schu.

From (6.83) we see that m is a function of u only. In (2.€) we must

have t, = U which gives

(5.10) coth®u - 1 - v ? = C.
Relations (5.6) and (5.10) determine
(6.11) ce = £ 1.
Take ¢, = 1. Then from (5.9) we have
(5.12) e?V =1~ ==¢7%  or sinhv = - fle'(“+v>.

tliminating u tetween (5.3) and (5.6) we obtain
; av
(5.13) e™ = - reschv — ek,
dar

The second case c, == 1 only changes ¢y t0 = Cq.

Relations (5.12) and (5.18) connect the three unknown functicns,
A,i,v. Congequently an infinite number of solutions arises. To obtain

‘Schwarzschild's solution we set W= U, Then (5.12) becomes

(5.14) Bas = %V =1 - —=,

where ¢, may be identified as the mass of the body from Newton's theory.
From (5.12) and (5.13) it follows that A = - v. The same result can be
also obtained by assuming that gss is 1-2V to start with where V is
the Newtonian potential of the boay.



4 second solution of interest is the one in isotropic coordinates
where the velocity of light is independent of direction. Putting A = 4
in (6.13) and integrating, we get

(5.15) sinhv = Zeerlr? - ¢ 2172,

o determine the constant of integration, c., we use (5.12) and let r
tend toward infinity. This gives

(.1€) ZCa = = Cqe

Solving fer eV ana rejecting the negative roct of eV which is essen~
tially positive from (5.15), we get

(6-17) eZV = g44 = (Zr had 01)2/(2,[' + c1)2 and ezp’ = (1 + 01/2!‘)‘.

This result was also obtained by a transtormation ¢f r in Schwarzschild's
solution?.

6. Infinite plane. Let the xy-plane be the given plane. From symmeiry

considerations around any line parallel to the z-axis the most generadl
fundamental quadratic differential form appears to be

(8.1) ds® = - e (ap? + p7a9%) - e%hdz® + eVdt”

where A,.,v are functions of z oniy. (6.1) can te put in the form (1.4),
(6.2) ds? = ~ e*Ufdu? + av®] - e?"dg? + e2Vdt?, where

(€.3) du = e“’Adz, p=v, @m=A, € = pe.

in the present case P= pe*V = pR and (2.3) becomes

d%F
(€.4 ——— =, Hence
(6.4) -3
(6.5) R= eMV = cq(u + W) = cau (by setting Uo = DN

Ther (%.4) becownes

S W QIJUMﬁtﬁu, Lo, o, )23,



(€.€) — + 28 2§ Lhicn i
- ieh |
du2 u du glves
A _ ‘ o
(€.7) v = loges + cologu  (ca,cs = constants of integration),

From (€,3) and n =~ v, we find
(6.8) A = (I-cp)logu + logcs, where c, = ci/Ca.
By (2.6), m, = A, =0, we get

v

(6‘9> Cs = i }.-

Consider c, 1. It we choose the unit of length properly, ca = c4

3

and
(€.10) é‘ = 1.

Then (8.&5) tbecomes

(6.11) e¥ = cyu.

Differentiating (€.11) and on using (€.3) we find
(6.12) eV = = caeh

Here we have an in&finite number of solutions of v and p. To avoid

this indeterminateness we use hewton's theory. By setting
(€.13) Sae 2 €2V = 1 - 2V =1+ 4nog

and identifying ¢, as Zt0 where O is the surface density of matter on
the given plane, we get u *+ v = U and the {inal form of (8.1) is

(6.14) ds? = - [1 +4nozl™'dz? - (dp? + p%dp?®) + [1 + 4noz]dt?,

The additive constant in (€.13) is chosen to be unity. Here we are
dealing with a body whose mass extends to an infinite distance and ds®
is not Galilean at infinity. The latter condition, however, can be re—

placed by the ones that space surrounding the pliane is flat if the den-
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sity of matter on the plane vanisnes. This is satisfied by (6.14).

The solution (€.14) can be regarded as the limiting case of Scawarz-
scnild's solution of a spherical shell when the radius of the snell be-
comes infinitely great (neglecting the infinite constant obtained in
this limiting precess). In fact Whittaker¥ uses this method to obtain his
"quasi=-uniform" gravitational field which, ®s we see in the present dis~
cussion, is tne field ocutside an infinite material plane. The case cy = =1
and hence e’ =c,u?  has been treated by levi=Civita? and the result ex-
ténded to the gravitational field of a chargeu plane by Kar?,

7. Infinite cylinder. Take z as the axis arcund which the mass of the cy-

linder is symmetrically distributed. The most possibie fundamental qua-
dratic differential form of such a field in rectandgular coordinates is

2 R
(7.1) ds? = - e?W(dx? + dy?) - e*"dz® - E;(xdx + ydy)? + e?V4t?

where u,n,h,v are all functions of p. By using polar coordinates (¢, 9)
in the xy-plaae, (7.1) becoumes “

(7.2) ds? = — ¢2Mgp? - p2e?rap? - e2"az® + e?Vit?

where e?h = e®® + n%. (7.2) can be put in the form,

(7.3) ds® = - e2W{du® + av®] - e®"dxs® + e®Vdt®  with
du = p~tetMdp, v =9, efD = p2e?, x, = z,

Now m,n,v in (7.3) are functions of u ouly. In the present case (2.8) is

2
(7.4) %-% = { ana
u
(7.5) i-': Cl(u + uo) = Cgals

Then (Z.4) becomes

(7.6) —— = ===, Hence

y E.T W—&MN " e R.m?[ Sec.” (A), Vel e, p 922 (1927).
¥ T del G, Ahvend A Liees " V0 29, i, pp 2o NG
7

S. C. KRav, ' “@L#_akkf . Vol 29. g 205 (J924),
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(7.7) v = lpgc3 + cylogu.
From (2.€) we have dm = dp + p~dp = - cou” *(1-c,)du and hence
(7.8) b+ logp = loges + colce=1)logu.
From (7.5), (7.7), (7.8) ana du = oM kdp  we can eliminate the
auxiliary variable u and obtain three relations between the four fune-

tions, A,k,n,v. Consider the case n = C. Then comparing (7.5) and (7.7)
we have

(7.8) C1 ¥ Cs, Cp» =1 and from (7.8) pel = c,.

There is still one degree of arbitrariness in the present solution.
To avoid this difficulty we resort to Newton's theory once more. lLet

(7.1C) $ae = €%V = 1 - 4V =1+ dnlogp = c,%u®,

where m is the mass per unit length of the cylinder. Identify c4 as Zm.
Then from (7.3) and (7.10)

(7.11) e = ¢, 2p77(1 + dmlogel™?.

The final form of ds® in the gravitational field outside an infinite
cylinder is consequently
(7.12) ds® = ~ p %, ®((1 + 4mlogp) *dp® + p2%de?] - dz?
+ (1 + 4mlogp)dt?,
Aside {rom the indeterminate coustant cs the above solution is quite

similar to that of an infinite plare, or of a body with spherical sym—

zetry.

IV GENERAL SOLUTICN OF THE PROBLEM

5. Transformation of the fundamental quadratic differential form. The
foregoing tnree special cases are solvable from (2.3), (%.4) and (2.6).




17

This is because (2.3) degenerates into an ordinary aifferential equa-
tion in all these cases. In reality when @ is a general function of

u and v, on account of the uncertainty of the boundary ccnditions of &
in the (u,v,y,t) wanifold as we have pointed out in §4, tne prcblem
cau be hardly solvable. In tne following section we shall avoid this
difficulty by introducing tre Newtonian potential intc tne present
prooiem. As wezd sha.l see presently, the protien of the general static
gravitational field cof a finite vody with rctational symmetry can be
solved provided we can solve a non—linear partial differential equa~—
tion of the second order.

Te start with the cylinarical coordinates (p,z,9), the z—axis be-
ing the axis of symmetry of the given cody which is finite in extent.
Consider the merideonsl plane containing the z—axis. Choose in this piane
as in ordinary potential theory a more geueral set. (&,n) which is con~
forzally mapped upon (p,z) by

(8.1) z + ip = F(E + in)
where F(E+in) is a monogenic function of &+in, so that

dz? + dp? = h2(aE2 + dn?®), h* = F'(E+in)F'(&in).

e
(0 8]
*

AN
.

Let w(E,n) = const., 9(§,n) = const. be two orthogonal (in the
Duclidean sense) families of curves in the piane, to be determined. De-
note partial differentiations by subscripts as in §1. Then
(8.3) dy = ypdE + yeon, dO = 6zd& + byan  where
(8.4) ypop + wnén = (.

Choose the Jacotian ot transformation of (3.3) to be

“.1 6) 7 . _ V .

(8.5) J= gzz,n) = ygby = ¥nfg = ef(yg + vj), wnere
J
(8.6) et = o,

Solving ©g,6y from (8.4) and (3.5) simultaneously we obtain



Sincs d6 is an exact differential, (8.7) must satisfy thehnecessary.and
sufficient cendition,

(8.5) g%en = 5%65, giving
(8.8) YEE * ¥nn * feve * fnu = UL

By (8.1) and (8.6), f is a known function of £ and 1. Simple veri-
fication shows that (3.2) is Laplace's eguation in the (€,n,9) coordi-
nates independent of p.

Now solve (8.3) simultaneously for d& and dn in terms of dy and db
and put the results in (5.2) which then becomes

(8.10) dz® + dp® = h*(VE + )7 ldy® + 7 *a0%].

Congequently the fundamental quadratic differential form for a flat space-
time continum in the present (y,6,9,t) variables is

(8.11) as? = - hz(wg + wﬁ)“{dw”+ p~2d02] - p2de? + gt2,

¥hen matter is present, ds® is no more Calilean. Ve suppose that in
such cases (3.11) is replaced by

(8.12) ds? = = e~2H[e?Mgy? + p~2e24402] - pZe2Vdg? + e2Vit?
where we write
(8.13) e™® = n®(y} + w7,

and A,u,Y,v are functions of ¥ and & to be determined according to win=-
stein's law of gravitation, with the condition that at infinite distances
from the body all four approach zero as a limit.

9. Introduction of the Newtonian potential. Next transform (Z.3), (2.4),
(2.8) into the (y,6,9,t) system. Consider the following expressions from
(8.12),
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(2.1) dy® + pT2e" A 240 = gy? + 728407 = (dy + 1e™€d6) (ay-ie~£d0)

where we put €2 = pe*”H. Let (a+if)™' # { wiere both & aud 8 are real

be an integrating factor of dy + ie”8d6, so that

(2.2) dy + ie78d6 = (« + i8)(du + idv), and (8.12) becomes
(8.3) ds? = - e”2He?M(a24B2) (du? + dv®) - p2eVdp® + e2Vqt2.

Comparing (2.3) and (1.4) we obtain
(g.4) e2M = g=2Hg2A (g2 & 3%2).
Cquating real and imaginary parts in ($.2) we get

.5) dy = adu - 8dv, d6 = e2(3du + adv),

[{3]

from which the conditicns of integrability for dy and dY give

(€.6) a, + 3, =0, a, =3, =3¢, - ag,, and furthermore
( ) WU = a, WV = - 3;' wuu = au: WVV = - BV;
.7 )
‘u = eg;si 8V = ega; euu = eg(;‘))u*..e’gu)) evv = eg(“v"’“gv)-

Hence by (£.6) and (2.7)

- 2,p2)%8

(5.8) Yuu * Yey = L0 )Bw’
Ve . -’ag
= (o2+32),.2858
Guu + GVV = (a +3 )e ae-

By (8.5), (£.7) and (9.3), equation (2.3) becoues

2 ~2 , 3
(5.5) 22, peelf . 2, g
oy? 36% 3y oy b ot

In the like wmanner we get (Z.4) in the fornm,

Pt =i

(9.10) 0%V, BTV _ DTV, g2 2y OV 2L 0¥ 3L o
v oy 362 By oy 36 86 oy oy 30 86



Save the intrduction of A,u,y,v into (3.12) the foregoing dicus-
sions in 85 and 8% have been purely mathematical. We now use Newton's
potential function. 3ilberstein?¥ has shown that

(£.11) = =1 - ZNy

S44 = €
where ¥ is tne mass of the tody
mass, holds rigorousliy in local
in all other coordinats systems
dimensions of the gravitational

and Y the Newtonien poteviisl per unit

or geodesic ccorainates and approximately
at distances large when compared with the
body under investigation. Here we assume

that (2.11) holds rigorously not only for geodesic coordinates but alsc
for all otner systems of reference. (£.10) then becomes

A 4 <h cg oV oo
(g.12) _—— =R - ===, giving
cy oy oy
(5.13) e = eVYE-Q(0), or e = VYN Q(8)
where QU6) is an arcvitrary fuunction. At infinity when y =0, A=y =y

¢ ftor all values of 6. Hence we have O(6) = 1 and (8.13) can be

- -

v
rewritten in the form,

(.14) A+ V=Y +ou,

This condition is evidently satisfied by 3chwarzschild's solution
and by those of the infinite plane (6.14) and the cylinder (7.12).

By (8.11) and (€.12) and since &= e"*V, (¢.8) becomes
. . e%n sven 1 _,y % Ln _ .
g.18 et D e m= + =T T Ve—ee®" = {  oOr
¢ ) oy2 oy By 2 362
3 ., \on 3% .n
(¢.1€) s —{({1 - ZMW):-] + ==——g = (.
o ob

Equation (2.15) is also obtainable by transforming (1.1%2), as we did with
(1.13) in (9.10), and utilizing (¢.11).

consider (2.6). By (2.2), the exact differential

(6.17) do = mydu + mgdv

can be integrated into the form,

v & Sk, "?E“A?T"K W

4
7

a2nhk 4. Gazd), pr312



(2.18) 2o = log( s +A%) + A+ 2 [ Pau + Gdv, where
(8.18) P= X0+ ALD, ¢ =AC =% and

Co= Ixg * Agi™ (nyny + vyvy),

> = iz e gz v - g -

bxpression (9.18) containds only first partial derivatives and is simpler
than (2.6). By (2.5) and the inverse relations, (9.18) becomes

(¢.21) 2u = log(a® + 3%) + log(Ay + e®8NE) + AL+ 2 [ P'ay + Q'e™%ap

where we define

P' = ef7¢C' + A,0', &' =0 - e¥lgd's
(.22) C' o= (1§ + e®BYE1 B nyng + vyve),
o o= % [1; + ezglé]-l(n; + v\i - e®2[nf + vil).

Between (9.4) ana (£.21) we can eliminate the auxiliary functions m
and o%+3%, 4 recapitulation of results gives

(8.23) 2\ = log(Lg + e®€18) + 2H + A+ 2 [ P'dy + Q'e7Ed,
(5.11) g44 = 62\1' = 1 - ZEV.l{\P,

(5.9) Vy =0,

(€.14) A+v=Ey 4y,

.1€) =211 - ZE-:W)E-’-‘E + aze"‘ =

v “ov Yy o6? ’

e = pe¥, 7.=n+v, ef-= peh b = peYTV,

(8.12) as® = e~ e gy? + p~%ego?] - p2e®Vdp® + e®Vdt?,

1

(8.13) el = n2(yg + w7



From the aobve list we see immediately tnat the solution of the

whole problem depends upon tune solution of the non-linear equation ($.16)

and a quadrature.

Instead of using A in (9.23) it is sometimes more convenient to deal
with its differential forms corresponding to (Z.6). The following expres—
sions are obtained from differentiating (9.23) and further simplified by
(& o):

Ve

o .« + (2 + ezglé)-x[egxeix' -AB'1,
) dy By ¥ A ,
(9.24) N where
O BE 24 o28x2)=1e=E[y AT + e€XaB']
5 = 56 (xw "e XE) " e Xy e€lgB'],
o
A = eg[Xwg + gilé * nyng + vae]:
9.25 . ! 23 ) 2
(9.25) B! = é[ —X\W - %M*‘ e"’g\XBg +§§7[9) - n.; - w2+ ezg(ng '”}8)]'

¥ FIELDS OF SPHERCIDAL HCHOZOIDS

10. Otlate spheroidal homoeoid. Let the equation of the homoeocia be

2 2
0 2= 2 _ 2 2 2 2
(16.1) Pl 1, where p%=x% +y?  a®>c?

Use spheroidal cocrdinates, &,n, defined by

(10.2) p + iz = xcos(& + in) or p = xcosEcoshn, =z = xsin&sinhn,

Then 1n = cosnt. represents a family of oblate spheroids confocal with
(10.1), which is «coshn = a 1in the family and & = const.,- a family
of hyperboloids of one sheeb confocal with and orthogounal to the sphe-
roids.

The Newtonian potential for an oblate spheroidal homoeoid with unit

mass is
(10.3)- ¥ = k" 'cot™*(sinnn); hence sinhn = cotwy.

The function, ©, defined by (5.7) may be taken as

2
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o

(1C.4) & = sink.
From (10.2), (10.3) and (10.4),
(15.5) p? = x2(1 -~ 6%)cscny,

In the present case (8.1%) is

2 .

(10.¢) ds® = - e'zH[ezAdw2 * pT%e®Hib?) - p2e2V4g? 4 e®Vat?,

. - D -
where e~2H = x4o0sn? nisinh®n + sin®E),

ana A, M, Y are to ve deterzinea, v teing given bty (&.11).
lne equation (£.16) that Y must satisfy becomes

. . .d \
[(1- IW)\°1 - xcotky) ] = kZ%e?Tcse?ny = §

(18.7).
dy

-E

in whici: we assume that Y is a function of ¥ alcne, If we write

y = KechcKW, and a0 = (1 - Z¥y)” *ay

| 2

a’y ay BIPRY
p - ( ) + e 2 Nﬁy_a ,
a0 ¥y do

(10.7) bvecomes

which is a particular case of one of Painlevé's irreducible types¥. But
(10.7) is solvable in the present case by tne foliowing changes of va- .

riatles,
(10.5) R=¢el(l~ meﬁJcscKW, du = ~ csowyr el (1 - zhy) xay,

where the negative sign in du is chosen to make u tend toward positive
infinity as y approaches pesitive zero. (1C.7) then becomes

iR .. . :
(15.8) vt R =0, giving the solution
(15.10) R = cysinh{u + uw) = cysinbu, (ue = U)o

By (10.8)- and (1U.10), we have

L ¢ L. Anee. "Qnﬁivamgix&%v¢;ﬁﬂQ Q%vkia?d," (1927), ¢.335"$m*.3ﬂgl.




(15.,11) Cesinhu = e¥(1 - 2MWf%cscKW

fromw which, and by the cncice of du in (1C.8), we see that ci1 must be a
positive constant. Eliminating eY between du in (10.8) and (10.11) we get

(10.12) = c1k(1 ~ ZUY)" Wy = cschu'du, which gives
I 2, cik 1 .
(1G.13) -ﬁ-;og(l - Ziy) = log(cothu - cschu) + c,.
i

Eliminating u tetween (1C.11) and (10.13) we find
(1C.14) Yy = = (= + 1)log(1l - 2My) + logi[ezY(I—Zﬁw) + cissinzuwf%
- clsinxw} + Co,

the general solution of (10.7), involving the two arcitrary constants, ¢,
and cp. [o determine c. let v approach zero. Then Yy tends toward zero and
ce2 = U. The constant ¢ can ve identified with M/K, which is also a

constant of integration in Newton's theory. Putting
(10.15) ¢y, = WK

in (10.14) and solving for eY, we cobtain

(10.18) el = x" 'y sinxy.

Obvicusly (10.18) approaches unity as ¢ tends toward zero.

A’ -~ N Y
Last, we must obtain, Knowing A we can get w by (9.14) and (1C.18).
In order to avcid cumberscme differentiations in integrating (£.23)
directly we use the transformation of y in (1C.€), and furthermore set

(1¢.17) dv = d&.

By (9.14), (10.3), (i0.5), (10.€) and (10.1€), (10.€) can be written in

the form

(10.13) ds? = - v 2e"2Hg2hgin2nyldu? + dv®] - v Z%cos®vap® + e?Vat?,



which has the same .form as (1.4), provided
(10.18). e®l = x%e?¥{cot®xy + sinlv).

By (10.8) and (10.16), we see that ¥ can be expressed as an explicit
function of u, and (2.6), that must be satisfied by ®, can be computed
With the aid of R in (10.10). The quadrature in terms of the u,v vari-
ables is quite simple. Coupled with the condition that at infinite dis-
tances from the body ¢ must vanish, u is found to be

(1C.20) eV = xT2y" % (sinh®n + sin®s)"?,
From (5.14) and (10.20), A is given by
(10.21) e® = x~*y"*(sinn®n + sin®E) " *sech®™ (1 - Zky)~ 2,
Again, ds? in (10.€) becomes
(1. 22) ds® = = k7T 2y #(1-2iy) T 'secn®ndn® + x%a€® + x%cos?Edg?]
+ (1-2ly)dt®.
Solving for sinbr and sing from (10.2) we get

%

x?sinh?n = r? - k2 + [r* - 2x%(p2-22) + x*]
(10.23) ‘
2x%sin®E = = (r?-x2?) + [r* - 2«®(p®-27) + K‘]éﬂ

where r? = p? + 22, Then ¥ is small, these expressions can be expanded

in the following forums:

p? . (1-w2)

®?sinn®n = r2(1 - ;;nz LA R P

4r*
-4 2 { 2
z 1w w(l-9?2)
G.2 in2F = e 4 K2 4 ————pt e
(10.24) sin®g 3 e e

w = (p2 - 22)/(p? + 27).

It is interesting to observe from (10.23) that when % approaches
zero, namely, when the spneroidal nomoecid teuds toward a spherical



shell as a limit, the line element (10.22) becomes Schwarzschild's solu-
tion. Furthermore, (1C.22) is also the solution of an infinitely thin
material disc with mass N and radius x.

11. Prolate spheroidal nomoeoid. The treatment of the proklate spheroidal
homoeoid is analogous to the preceding protlem. Here the equation of the

surface of the kody is given by

. p2 Z2
(11.1) -5 + =2 =1, with c¢* > a%.
: a c

The spheroidal coordinates £,n used are aefined Ly
z + ip = wcos(& + in), giving

(11.2) : (k2 = c? = &%)
z = xcos&coshn, p = wsinésinhn.

The Newtonian potential for (11.1) with unit mass is

(11.3) y o=

Solving for n in terms of v from (11.3) we get

(11.4) sinhn = cschxy.

The t tion, © fined by (5.7) tecomes

The turction, Y, adefined by (o.7/

) € = - cosék

c¢n

(11.
and as? given in (£.12) is then
(11.€) is? = e-2H[ePdy? + pT2e?Md6] - pZe®Yde® + e*Vdtr®
where 2P = x4ginn®n(sinh®n + sin®),

e2?V = 1 - 2y, M= mass of (11.1),

and Y is. assumed to be a function of ¥ alone while both A and y are func—

3 j 2 e relati ¢.14), namely
tions of ¥ and 6. Between A,u,Y,v we have the relation, (£.14), Y,



(11.7) )\ + v .= Y + IL.

the equation ($.1€) for Y in the present case is similar to (1C.7)
. . . . -+ . - ) ’
S0 the remainimg anslysis will be similar. Hence (11.€) is

(11.8) ds® = ~ k*(sinn®n + sin®E)[e®Mdn? + e?hgE2) - p2e2Y4p?
+ e2Vqt?,
where e?" = x4y *csch®n(l-2iiy) " Yisinn®n + sin?E]7?,

e2p, = K"2W"2[sinn‘..’.r,i + Sin2£]-1,

2Y _ . =2.,=n .
e?’ = «" %y %cseh®n.

We note that (11.8) is also the soluticn for a rod of length % and
mass b lying on the z—axis. 3imilarly when ihe prolate spheroidal ho—
moeoia approaches a spherical shell as a limit, (11.8) degenerates
to Ochwarzschila's solution.

12, Motion of a particle in the field of an oblate spheroidal hemoeocid.
The fundamental guadratic differential form (1C.22) for an oblate sphe-
roidal homoeoid also can be written in the form

(15.1) ds? = - ¢y *(1-2My) T Yay® - yTPAE® - yPcos®hde® + (1-2Ny)dtZ.
If, for convenience, we put
(12.2) y=1r, &=6-r/g,

where it must be remembered that r and © are not the r,0 used in pre—

vious sections, then (12.1) becomes

(12.3) ds? = - (1-2W/r)~*dr? - r2d6% - rsin®0de® + (1-2k/r)at?,

which has the shye form as 3chwarzschild's solution. The results worked
out in the latter case are immediately applicable to the present problem,
provided we interpret the symbols in (12.2) appropriately.

The four differential equatious,
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2
d52 R “3s ds -
defining the motion of an infinitesimal particle in the four dimensional

continum characterized by (12.3) are¥

¢ =\ d’r dr. 2 o 6
(12.5) 3ez * A'(" - ’A(g-)z- rsin® 2A( ) + g2v=2A, '(%E)2=C,
s
o d%6 % dr 46
ds? r ds 4ds sinfcos ( )
2 e s, d2 . r‘_'i “ 6
(12.7) -—-g + f SI g! + ot é— EE = O’
ds r ds as ds ds
d%t dt
(12.8) —— + 2v dr dt = ¢,
ds ds ds
where ezv = ] - 2}.1/1‘, A+ vy = {}’ y! = 22.
dr

Instead of using (12.Z) we can take (12.3), which can be written as

\ -y Ar, a6, ‘
(12.9) EDT + 2% 4 rrainte () - e2v@H® - - g,
ds ds ds ds

Dquations (12.7) and (12.8) are immediately integrable, giving res-

pectively
(12.15) r2sin®6 — = c,,
dt -
(12.11) — = Cxe 2\"
ds

Let the constants of integration c, and c, be positive.

o\

Bliminating d®/ds between (12.¢) and (12.10) we get

(12.12) -— t e ;fCOSecscsb = (, ¢giving
as
4 de‘z 2 20 2 In > ~S
(12.13) r (a—) + c2csc?6 = c3. (Take ca > 0)
s

Eliminating ds from (12.10) and (12.13) we find
4 y : 2 2 2 29“-‘/% 2ede
(12.14) g = = col(cd = c%) = c2cot®0i "tsc -

Ve choose the negative sign in (12.14) to make © decrease when ¢ in-
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creases. Put
, N ’
(12.15) p = (cs? - c,’)"”/c,.

By (12.13) since r,6,s are all real, we see that c2 2 o2
quently p is real. Integrating (12.14) we get

and conse—

(12.1¢6) cott = psin(y - &) (%= coust. of integration),

where S is the node, and © is taken to be n/2 when 9 =J. The geore=-
trical meaning of 6 = n/%Z is that z = { where the particle crosses
the equatorial plane of the oblate nomoeoid (cf.(12.2) and (130.2)).

By using (12.2), (12.10), (12.11), (12.13) and (1%.1€), we obtain
the following relation between ¥ (or r) and @,

- AN T 1—"/1 - . i i 1
(12.17) co izt (y)177ay = = call + p®sin®(p=&) 17 *ay, where
, R o ' 1 1 c2-i
(12.18) fQy) = v® = =Sy + =g + 223

& Cs <Cag

the negative sign in (12.17) will ve explained presently.

The right hana side of (12.17) is immediately integrable in terms of
circular functions. The rigorous integration of the left hand side in
terms of elliptic functions has been discussed by Forsyth¥ and subse-
quently by otners. Let &,3,Y (¢« > 3> y) be the three roots of f(y).
Then ¥ can lie only within the interval B 2 ¥ 2 Y. ¥hen ¥ =3, we
have the analogous "perinelion" and when y = Yy, the "aphelion". Let

¢ = 9o, when ¥ = 3. Integrating, we nhave
?

.4 ok
(12.18) c:2f(S [2uf (W)™ dy = - cs 4 (1

<+

p2sin®(9-&) 1™ *dy.

- 2
]

Here we see that since y decreases after ¥ = o,

but that ¢ continues to
increase after ¢ = ¢o, the negative sign in (12.17) wust be taken.

From (1£.18) we obtain

1+ cnp

E e [ = + 8 - -
(12.20) I B CES e

where u is defined by the equation,

Y AR Fyx&ﬂl “Cree, M Sev." (A Vo0 a9, gpores (1920),
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(12.21) n %tan {otan(p-8)) - tan™ 1[Utan(¢o-ﬂ)i?

. . _ et
in which 6 = calcy, P = [2M(a - y)] 4‘ and K = the complete ellip-

tic integral of the first kind with modulus h given by

'ﬂ‘h‘

(12.22) k? = (8 - v)/{a=-y).

From (1C.2), (10.3), (12.2), (12.1€), (12.20) and (12.21), we obtain
the equations of the orbit of the particle in the following forus,

x[1 + p2sin®(y-4) 1% Cschy,

©
1]

(12.2

C

) kpsin(e=f) [1 + pzsinz(w-ﬂ)]'zéotuw.

N
it

The equation © = const. (cf.(1%.2) and (10.2)) represents the fa-
mily of hyperboloids of one sheet orthogoamal to the family of spheroids
y = const. Then (1%Z.1€) shows that the maximum and minimum latitudes
of the particle in its orbit are invariable for given initial conditions.

The function, ¥, in (12.20) is a Jacobian elliptic function of ¢.
Hence ths analogous "line of apsides" of the orbit precesses about the
z~axis. The amount of this precession fer the particle to prescribe the
orbit once can be calculated in the foliowing manner?&ﬁn (12.20) we have
so chosen ¥,9 that at perihelion y = 8, 9 = 9. Then at aphelion y = v,
let ¢ = ¢,. From (12,%0) and (12.21),

\(12.24) tan~tlotan(g, —4db)] - tan~*[otan(ge - &)] = ZPK.

At the next perihelion let 9 = ¢,. The relation analogous to (12.24) is

(12.25) tan" *lotan({g, - &)] - tan"*[otan(9, = &)J = ZPL.
Ldding (12.24) and (12.25) we get
(12.2€) tan~tlotan{¢, - )] - tan"*lotan(9e - &)] = 4PE.

The precession is given by

(12.27) A= 9s = 9o = 2.

A@rmfﬂ foe. g
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Solving ¢, from (12.26) we get

PEK -
(12.28) A= tan_ _1[ tan4“R + Utan(q)o, JL)

o1 - otan(ge = &)tan4PK] - (9o = &) - zn.

It is interesting to note from (12.13), (12.15) and (12.23) that if
the particle lies initially in the equatorial plane of the homoecid, i.e.
d46/ds = U when 6 = n/2, then subsequently © = r/2 and the particle
will continually lie there. The approximate fcermula for A in this case
can be calculated as'f0110ws:ARegard (r,?) as configurational polar co~
ordinates of the particle. Then (12.3) shows that the motion of the par-
ticle in these coordinates is the same as the motion of a cooresponding
particle in Schwarzschild's solution. Hence the constants ¢, and c, in
(12.11) and (12.10) are given by¥

(12.25) 022 = I‘a;(l - ez)M, 012-1 = - M/ro, 02 = (1.02*..i Kﬁ)/rg:’

where M is the mass of the homoeolid, ro the semi-major axis, ri the
semi-minor axis, and e the eccentricity of the orbit in the configu-
rational coordinate system. The advance of the perihelion, 4, is given
approximately by

ey
S

DTC e o e o

ro(1 - e?)’

[}

[53

(12.30)

From (10.3), (10.23) with 2z =C, and (12.2), we obtain

1 1
y = lcot"[-(Pz - x2)”].
11 K

~ =

(12.31)

¥hen 2 - %2 > %%, which is obviously satisfied by large values of p,

we can expand (12.31) in ascending powers of »/p in the form

. . w2 ’ o]
(1z.32) "p; t = - .

e
il
ol SR
1
—

+

Squation (1Z.31) shows that p is a monctonic function of r, and Ny
consequently the value of 4 in (12.30), which is primarily for the oruit
in the (r,?) configurational coorainates, will hold also iu the (P,¢)‘
system. Enowing the nsepi-major" and "semi-minor” axesf Po, and Pi, Of,
the particle's orbit in the latter system we can coppute the corregpond-

ing values of ro and ra DYy (12.32). Then (12.30) shows that the oblate=

\ﬂ/A.R.FMaﬁ, bre. X pores:



W
Dy

ness of the central body causes a small increase in the advance of the
perihelion of the orbit predicted from Schwarzschild's solution. This
increases vanishes when % = {, namely, when the oblate spheroidal ho=-
moeoid degenerates into a spherical shell.

In conclusion I wish to thank Prof. E.T.Bell heartily whose in=-
terest in this problem and encouragement in the course of the inves-

tigation have made this paper presentable.
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