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Abstract

The study of the cooling of neutron stars has been undertaken by many re-
searchers in the past twenty-five years, but this study has been made difficult by
Lhe inherent theoretic'al and observational uncertainties; most observations of their
thermal X-ray flux have yielded only upper limits. More sensitive satellites such as
ROSAT and AXAF may provide more positive flux information, and it is important
to know how to interpret these data in terms of surface temperature. One of the
most important factors in this interpretation is the effect of the surface magnetic
field.

Young neutron stars are believed to have extremely strong magnetic fields, on
the order of 1012G. These fields dominate the physics of the atmosphere. In partic-
ular, atoms in the atmospheres of neutron stars have much greater binding energies
than in the zero-field case, and they are constrained to move along the field lines.
We use a multiconfigurational Hartree-Fock code, modified for very strong magnetic
ficlds, to calculate wavefunctions, energies and oscillator strengths for several atoms
in representative values of the magnetic field.

We then use these simulations to construct model atmospheres for neutron
stars. Because of the low mass necessary for optical depth unity in the soft X-rays
(typically ~ 1014g ~ 10~ 19My)) and because of the short time scale for gravitational
separation (~ 1 — 100s), the photosphere is likely to consist of a pure elemeént.
Numerous processes coﬁld cause many elements to be important, so we investigate
atmospheres consisting of pure hydrogen, helium, carbon, nitrogen and silicon in
magnetic fields of 9.4 x 1011G, 2.35 < 1012G, and 4.7 x 1012G.

We also use the high-field energies to investigate soft X-ray lines in gamma-
ray bursts. Highly ionized elements could create absorption lines in the 1-15keV

range, and the identification of such lines in conjunction with cyclotron lines would
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determine the magnetic field and gravitational redshift on the surface of the star,
which would provide clues to the equation of state on the interior. We conclude

with a discussion of the prospect of identifying these lines with future satellites.
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Introduction

This thesis deals with some aspects of stars with magnetic fields high enough to
modify the atomic physics in their atmospheres, which is to say white dwarfs and
neutron stars. In order to give motivation for this work, it is appropriate to review

the relevant properties of these objects, starting with a summary of their history.

1.1 History of compact objects

In 1915 W. S. Adams made the discovery that though Sirius B has very low
luminosity, it has a color temperature of about T' = 8000K, or roughly the same as
Sirius A. This led him to the conclusion that since luminosity goes as L ~ R2T?, the
radius of Sirius B must be R < 20000km! Since its mass had already been deduced
to be about 0.75—0.95M.:,, where M; is a solar mass, this meant that its density was
orders of magnitude greater than anything before observed. Because of their small
size and high surface temperature, stars like Sirius B were called “white dwarfs.”
The puzzle of what was holding the star up against gravity was solved by Fowler
(1926) with the development of Fermi-Dirac statisfics; white dwarfs are supported
by electron degeneracy pressure. In 1931 Chandrasekhar made the discovery that
according to the laws of quantum mechanics, there existed a maximum mass for
stable white dwarfs, which he calculated to be about 1.4Ms. When the neutron
was discovered, it was realized by Landau and others that conceivably another
class of compact objects could exist, supported by neutron degeneracy pressure.
These “neutron stars” would ha\}e radii of only 10km and densities of 10 1*g/cm!
In 1934 Baade and Zwicky made the suggestion that supernovae represented the
transition from normal stars to neutron stars, and in 1939 Oppenheimer and Volkoff

inade calculations of neutron star models, but in general there was little theoretical

interest in neutron stars for thirty years after their conceptual discovery.
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The discovery of quasars in 1963 generated some interest in neutron stars as
a possible source of the high redshift, but it became apparent that the redshifts
were too large to be accounted for in this way. There was also a flurry of activity
caused by the observation of non-solar cosmic X-ray sources, but the real frenzy was
initiated by the Bell’s discovery of pulsars in 1967 (Hewish et al. 1968). It quickly
hecame obvious that the only known objects that could account for the properties
of pulsars were rotating neutron stars (see Section 1.3). X-ray and gamma-ray
bursters are also most easily explained by neutron star models, and in the past
20+ years there have been innumerable papers written about the observational and
theoretical aspects of neutron stars. The launches of GRO, ROSAT and AXAF will

continue to help us understand the properties of matter in this bizarre state.

1.2 The structure of neutron stars

Because of experimental and theoretical uncertainty of the equation of state
ol matter at post-nuclear densities, the maximum xﬂaés of a neutron star, how
their radius varies with mass, and so on, 'aré still matters of debate. However,
the general structure is illustrated by Figure 1, which is taken from Shapiro and
Teukolsky (1983) and shows two representative equations of state. We may say
with fair confidence that the maximum mass of a neutron star is in the range
Mmax ~ 1 — 3M, the radius is between 6km< R <20km, the magnetic field goes
between < 108G and 103G, and the rotation period has a minimum of ~ 10 ~3s.
We will now look at the qualitative structure of neutron stars.

The surface of neutron stars, which is where this thesis has relevance, is at a
density of p < 1g/cm?® and is gaseous. It was thought that perhaps the matter
might be arranged in linear chains along the magnetic field, but recent calculations
(Jones 1986; Neuhauser, Langanke and Koonin 1987) have demonstrated that the

gaseous phase was energetically favorable. Because the surface gravity is so high



3
(9 ~ 3 x 1014 cm/s?), the atoms on the surface are quickly stratified by density to
form layers of very pure elements.

Farther down in the neutron star, at 10%g/cm3 < p < 4.3x10!1g/cm3, the crust
is solid. Here the star is held up by electron degeneracy pressure, which becomes
relativistic at a fewx108g/cm®. Because the nuclei are in B-equilibrium with the
electrons, the equilibrium nucleus changes as a function of pressure. Though the
calculations of this quantity are uncertain, it is clear that as the pressure increases,
so does the equilibrium value of % Thus, for example, the crust may be domi-
nated by %6Fe at low pressures. Moving deeper, to higher pressures, heavier nuclei
dominate, 2Ni, 94Ni and so onAto soﬁlething like 118Kr near p = 4.3 x 1011g/cm?.
At this density, neutrons in the nucleus and free neutrons exist in equilibrium with
each other, and the star is said to have reached the neutron drip point.

In the inner crust, where 4.3 x 10!lg/cm? < p < 2 x 10!4g/cm3, neutron-
rich nuclei exist together with an electron gas and a superfluid neutron gas. The
superfluid transition temperature for the neutron gas is thought to be around 10 °K,
~so the gas settles into a superfluid state very soon after the creation of the neutron
star (see Section 1.7). At densities higher than p =~ 4 x 1012g/cm3, the neutrons
provide more pressure than the electrons, and the star may be considered to be a
giant nucleus in the limit of very high density.

In the outer core, at 2 x 1014g/cm3 < p < Ppcore, Where pcore is the density at
the center of the star, superconducting protons exist along with superfluid neutrons
and normal electrons. In some models, this state extends all the way to the core.

The composition of the core is model-dependent. For “stiff” equations of state,
where the pressure is a strong function of density, thé maximum mass is higher,
the radius is larger, the crust is thicker, and the central density is lower than for a
nentron star with a “soft” equation of state. If the central density is much larger

than nuclear density, where ppye = 2.8 x 1014g/cm3, there may be a transition to
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a different state of matter. Some possible candidates are a neutron solid, quark
matter, pion condensates, or strange matter. This would have observable effects;
for example, pion condensates would contract neutron stars and lower M max, and
the presence of a different type of matter could speed up the cooling of the star (see
Section 1.7). The true equation of state may be difficult to determine, because the

interior composition may be determined only indirectly.

1.3 Evidence for the existence of neutron stars

Because neutron stars are so small, they have extremely low luminosities and
any observation of their thermal emission is difficult (though X-ray observations of
them may be possible with satellites such as ROSAT or AXAF). For example, only
about ~ 4 x 1073 counts/s are observed from the supernova remnant RCW 103 in
the HRI detector of Einstein (Tuohy and Garmire 1980). Thus the observational
cvidence for neutron stars is based on non-thermal phenomena such as pulsars (radio
and X-ray) and gamma-ray bursts.

In 1967 Pacini realized that a neutron star which had its magnetic field mis-
aligned with its rotation axis would emit substantial radiation. Later that same
year, but completely independently, Bell observed sources of regular radio pulses
and the study of pulsars was born. The properties of pulsars that point to their
neutron star origin are as 'follows:

They have periods between 1.6ms and 4.3s.

Their periods increase slowly with time, except for sharp decreases in period
called “glitches.”

They are stable, so much so that over long periods some pulsars are better
clocks than the best atomic clocks.

Three mechanisms suggest themselves for periodic emission: rotation, pulsation,

and binary orbits. Since a light travel time of 1.6ms indicates a distance of 500km,
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this is the limit on the size of the emitting region. This is far too small for a main-
sequence star, so it must be a white dwarf, neutron star or black hole. It is difficult
to imagine how a black hole would have sufficient structure in its magnetosphere
(or whatever was doing the radiating) to produce the regular, well-defined pulses
seen from pulsars. We therefore turn our attention to white dwarfs and neutron
stars.

A rotating sphere will break up when the centrifugal acceleration at the surface

is roughly equal to the gravitational acceleration:

GM
VR~ 7, (1)

2~ /G (2)

Since the maximum density of a white dwarf is about 108g/cm3, this gives a period
of P = —2& ~1s. This is too long to account for the shorter-period pulsars. An
estimate for pulsating white dwarfs gives roughly the same value, and since white
dwarfs in a binary system must have K > Rwp, this cannot explain the short
periods either. Pulsating neutron stars have periods of order 10 —3s, but this does
not explain the longer-period pulsars. Also, the pulsations will not be stable enough
to account for the observations. Neutron stars in binary systems may have their
parameters adjusted to give periods between 10 ~3s and 4s, but the system’s lifetime
against gravitational radiation would be

p\8/3
7~ 10 3yr (T) (3)
S

(which is obviously far too short), and the period would decrease as a function of

time. We are therefore left with a rotating neutron star model, which can account

for all observations.
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Given this hypothesis, we may deduce some properties of neutron stars. If the
pulsar spins down by magnetic dipole torque, then the surface magnetic field is

given by
Bia~ (PP_15)71/%G, ' (4)

(Ctunn and Ostriker 1970), where P is expressed in units of 10~ 1%ss~! and B15 is the
magnetic field measured in units of 1012G. Using this formula, we find that many
pulsars have fields in excess of B = 1012G, and this has received some confirmation
by the observation of what appear to be cyclotron lines in X-ray pulsars. The
mass of binary pulsars such as 1913416 (which is probably two neutron stars) may
he estimated from Doppler shifts, and turns out to be about 1.4M, each, which
means that the equation of state cannot be too soft. Further information may
e gleaned from the properties of pulses (such as their angular diameter, energy,
spectral characteristics, etc.), which then give clues about the neutron star and its
magnetic field and magnetosphere.

Another class of objects that is probably related to neutron stars is the X-ray
pulsars. These have periods between 0.1s and 1000s and have spectral features in the
2-20keV range, and two of them have cyclotron lines at about 10keV, corresponding
to a magnetic field of about 1012G. These objects, along with X-ray bursters, are
fairly well modeled by a neutron star in a binary orbit around a main-sequence
companion or a dwarf. However, there is still much theoretical uncertainty about
the exact process of accretion and how it translates into the observed spectrum.

tamma-ray bursts have several characteristics that make an association with
nentron stars natural, if not unequivocal:

Their rise times are short, as little as <lms. This requires an emission area
- 300km, which is consistent with neutron star dimensions.

Though diligent searches have been made, no unambiguous quiescent counter-

parts for the sources have been found. Thus, the non-burst luminosity is low. This
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does not provide any difficulties for neutron star models, but it does put constraints
on other possibilities.

Within observational error, the distribution of gamma-ray bursts on the sky
has been found to be isotropic. This means that either the sources are near-galactic
sources with a small scale height, or they are cosmologically distant. When GRO
goes up it should resolve this by detecting a slight anisotropy, which there should
be if GRB’s are galactic neutron stars.

Several of the bursts have had emission features at 400-450keV (see, e.g., Golenet-
skii et al. 1986 or Mazets et al. 1981). These have been interpreted as redshifted
electron-positron annihilation lines. This is consistent with the predicted neutron
star gravitational redshift, but some people have expressed doubt about this inter-
pretation of the lines.

Russian researchers have claimed to see cyclotron features from as much as
~-20% of gamma-ray bursts at energies indicative of ~fewx 102G fields (Mazets et
al. 1981). While these results have been questioned, the recent Ginga data, which
show lines at 19.5keV and 39keV, seem much more solid (Murakami et al. 1988).
However, it is somewhat worrisome that lines at the same energies have been seen
in two supposedly sepafate bursts.

Though not all of the data afe uncontroversial, on balance they appear to sup-

port the conclusion that GRB’s come from neutron stars.

1.4 Supernovae as progenitors of neutron stars

Ever since Baade and Zwicky made the suggestion in 1934 that supernovae
represent the transition from normal stars to neutron stars, the two objects have
heen considered to be closely related. However, the association may not be as
intimate as was once thought. Some relatively recent observations (Helfand 1983)

have indicated that although all compact X-ray sources in supernova remnants
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(SNRs) are associated with observable pulsars, only about 20% of SNRs have a
compact X-ray source. If it is assumed that about 50% of supernovae are Type
 (accretion- induced nuclear runaway on a white dwarf, which should leave no
remnant), then only 40% of Type IIs produce neutron stars. If the birth rate of
pnlsars is the same as the rate of supernovae, this may mean that another, quiescent
mechanism exists for the production of neutron stars.

Regardless of this, a supernova origin for neutron stars would explain some of
their properties, and in the rest of this introduction we will implicitly assume that
neutron stars are produced by supernovae. One hypothesis about the origin of the
spin rate of a neutron star starts from the observation that many of the stars that
hecome Type II supernovae (O and B stars) are rotating near break-up velocity.

For typical masses and radii of O and B stars this gives a period of

2T 27 (5)

P=— ~ —— ~ hours.

& VGp

It is believed that just before the supernova occurs, the star consists of a white
~ dwarf core and a hydrogen envelope extenvding out to several astronomical units.
Since the core is primarily heavy elements such as iron, it has a much higher mean
molecular weight than the envelope, and this may make it difficult for the core to
transfer angular momentum to the envelope. If this is true, then the core rotates
with the original period of the star, on the order of hours. When the core collapses

to form a neutron star, if angular momentum is conserved, the neutron star will

have a period of

10km

2
——=__ ) ~0.001s — 0.01s. 6
~10000km> s TS (6)

P ~ hours x <

This estimate must be taken with a grain of salt, because it neglects possibly im-
portant effects. For example, magnetic braking has been ignored, and this could

cause the initial period to be substantially higher than a few milliseconds. The
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observationally deduced initial spin rate of neutron stars is somewhat uncertain.
Vivekanand and Narayan (1981) suggested, on the basis of statistical analysis, that
the majority of pulsars may be born with periods of a few hundred milliseconds.
lHowever, the evidence for this is by no means overwhelming and the data may be
lit by initial periods less than 0.1s (Emmering and Chevalier 1989). Nonetheless,
the association of neutron stars with supernovae received a boost when neutrinos
were detected from SN 1987A. If a black hole had been created, no neutrinos would
have been detected, so it is very likely that this event created a neutron star. We
can look forward to learning a great deal about the properties of young neutron

stars when the remnant clears away enough to observe this object.

1.5 The surface layers of neutron stars

This thesis deals with the thermal spectra of neutron stars, so it is important to
know what the composition of the surface is. This is fairly uncertain becausé there
are a variety of effects that may be important.

The pre-supernova structure of the progenitor star is schematically shown in
Figure 2. Because of thermonuclear burning and density stratification, the core
is expected to be primarily iron. We define the mass cut to be the boundary
between the material that is pushed outward and that which is pushed inward in the
supernova explosion. From numerical simulations we expect the mass cut to occur
in the iron core (Woosley and Weaver 1986), so we might expect that the surface
of neutron stars would be primarily iron. However, there are several complicating
factors. There might be fall-back from the outer shells of the star, which from
the cdiagram we see could mean that silicon, aluminum, magnesium, neon, oxygen,
nitrogen, carbon, helium or hydrogen could contribute significantly. This is further
wuddied by the probability that there is significant mixing of the shells because

of a Rayleigh-Taylor instability at the shell boundaries. Additionally, elements
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with lower atomic number might be created by spallation, since the gravitational
potential at the surface of a neutron star is on the order of 100MeV per nucleon.

Once the neutron star is clear of the supernova remnant, it will start to accrete
from the interstellar medium (ISM). Since the ISM is primarily hydrogen, it might
seemn that after sufficient time hydrogen would dominate the surface. However, if
neutron stars have magnetic fields in the 1012G range, the accretion will be funneled
to the magnetic polar caps. This material may be prevented from diffusing across
field lines to the rest of the star’s surface. However, if the magnetic field is initially
small, then this would not be as strong an effect, and even if the star were born
with very high fields, it is possible that the material could fall “between the field
lines” and thus spread out over the surface of the star (see, e.g., Arons and Lea
1980).

If a sufficiently thick layer of hydrogen is built up on the surface, then low-
temperature or “pycnonuclear” fusion might transform the hydrogen into helium,
so that helium would be the dominant element. This could also be true of the
lielium—carbon reaction, or any of the other reactions in the fusion progression, or
it could be that the heat generated would cause the hydrogen to fuse through to
iron and we would end up with iron as the primary element again. In any case, the
surface gravity of a neutron star is so large that density stratification will take place
i ~ 1 —100s. In addition, for the energy range considered in my papers, 10eV-
10keV, only ~ 1014g= 10~ 190 of matter is necessary for optical depth unity.
Therefore, the thermal X-ray spectrum will be that of a pure element, and in my
simulations I have produced model atmospheres of pure hydrogen, helium, carbon,

nitrogen and silicon.

1.6 The magnetic fields of neutron stars



11

As was indicated before, the determination of the surface magnetic fields of
neutron stars from cyclotron lines and By = 1/ PP_ 5 gives fields between 103G
and 1013G. Old pulsars (determined by scale height in the galaxy) tend to have
weaker Helds than young pulsars, and there seems to be fairly good evidence that
the magnetic field de.cays on a timescale of 107yr. However, it seems that during
the time when the star might be detected as a thermal X-ray source (~ 1V04yr—see
Section 1.7) its magnetic field will still be fairly high. There have also been a few
white dwarfs detected with fields in excess of 108G, so it is interesting to consider
the effects of very strong magnetic fields, and in particular the effect of strong fields
on atoms.

In weak fields, such as those that can be generated in laboratories, atoms may be
considered to be spherical, and the magnetic field may be considered a perturbation.

In this limit, energy levels of atoms are split by the Zeeman effect, so the change

fromn the zero-field energy is
ehB

2me’

AE = gM (7)

where M is the magnetic quantum number and

J(J+1) = L(L+1)+ S(S+1) )
27(J +1)

g=1+

is the Landé g factor, with J being the total angular momentum, S being the spin
angular momentum and L being the orbital angular momentum. This effect has
heen used to measure the magnetic fields of white dwarfs, where it is useful down
fo a minimum of about 104G.

In very strong fields, atoms are cylindrical and the Coulomb force is a pertur-
hation to the magnetic field. In this limit, the electrons are in Landau levels, and
the major effect of the nucleus is along the field, where the field exerts no force. To

get an idea of when these limits apply, we consider scaling arguments.



12
The cyclotron {requency is defined as the frequency of (circular) motion of a
charged particle in a uniform magnetic field of magnitude B. The expression for
the cyclotron frequency may be derived by considering the classical force balance

equation

eBv
? . Muw?p, | (9)

C

where e is the electric charge, vy is the azimuthal velocity, c is the speed of light,
M is the mass of the electron, w is the frequency and p is the radius of the circular
motion. Since vy = wp, this gives the cyclotron frequency as

eB. B

Another interesting quantity is the scale length across the field. This may be cal-

culated using the Bohr-Sommerfeld quantization rule
L = Mwp® ~ mh, (11)

where m = 0,+1,%2,... is the azimuthal quantum number. Therefore, it follows

that the radius of the mth orbital is
o~ 53/, (12)
where ﬁ'is the Landau radius,

he\ 12 -
p= <£> =25x 10718 %cm (13)

and Big = -I—O%a A more exact expression, given by the maxima of the Landau
functions, is

pm=pV2Zm+1. (14)
We may now get an idea of the critical field at which magnetic and Coulomb eftects
are comparable. This occurs when the two forces are equal, so

2
Ze _ evm B _ ewcme. (15)

P%n_ c c
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Solving for B gives the critical field as

Z2
B; = —— =By, 16
where By, the critical field for hydrogen, is
M?ce® 9
By = 3 ~ 2.35 x 10°G. (17)

The high-field cylindrical approximation is strictly valid for B > B¢, but may
be used with reasonable accuracy whenever B > B.. This means that for young
neutron stars with B > 1012G this approximation is applicable for elements up to
iron (Z=26). It also means that for states with m > 0 and magnetic fields typical
of the most magnetic white dwarfs, B > 108G, hydrogen must be treated in this
limit.

The coordinate system used in the high-field limit is cylindrical, with the coor-
dinates being p for the radial direction, ¢ for the azimuthal direction, and z along
the field. The quantum numbers for these coordinates are, respectively, n, m and
-u. Since n > 0 states have large energies, £ = nhw, ~ 11.5keVnBj;, we will
assume that at a typical surface temperature T = 10°K — 109K =~ 10eV — 100eV
(see Section 1.7), these levels are not excited, and n = 0. However, n > 0 states
must be considered when B is smaller. For hydrogen, the ground state (m=0, v=0)
wavefunction may be modeled by a cylinder of radius g and length [, where [ is to
be determined. In this limit, the Coulomb functions have energy

h2 2 !
E 2, <—> (18)

ToMR 5

Minimization with respect to [ gives

'~ (o)’ o



and
E~z2 12<—°‘-‘l>
Iag Zp
1/2 (20)
g2 1 | 2 [ 20B13
A'Ia% Z

where ag = 5.1 x 107%cm is the Bohr radius. For a hydrogenic atom in a state
m = 0,v > 0 it can be shown (Landau and Lifshitz 1977) that in the limit of large

B3, the energy of these excited states is almost constant, with

13.6eV

Y —— 2———
O TPyl

(21)

While this approximation and the approximation for the ground state energy are
strictly valid only for hydrogenic atoms, they are fairly close to the ground and
excited state energies of the outer electron of a many-electron atom (because the
magnetic field breaks the degeneracy between atoms in the same orbital, there will
be a unique outer electron). However, the inner electrons are subject to interelec-
lronic forceé, and in order to compute their wavefunctions and energy spectra, one
needs a more complicated treatment. In the first paper of this thesis, I apply the
Hartree-Fock method, modified for very strong magnetic fields, to determine the
wavefunctions, energies and cross sectioﬁs of interaction with photons for hydrogen,
helium and carbon in the expected field strengths of neutron stars. In the second
paper, I continue this work by generating energies and cross sections for hydrogen,
helium, carbon, nitrogen and silicon and their ions in three magnetic fields, and in
the fourth paper I investigate some of the properties of highly ionized elements in

strong fields, as might be found in the polar caps of neutron stars during gamma-

ray bursts.

1.7 The cooling of neutron stars
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The third paper in this thesis deals with the atmospheres of neutron stars and
their relevance to cooling curves of neutron stars. In order to get an idea of why
it is important to consider the impact of atmospheres, it is worthwhile to outline
briefly some of the theory of cooling neutron stars. The following is largely taken
from Shapiro and Teukolsky (1983).

Immediately after a supernova, a neutron star will have an interior temperature
in excess of 1011K. It will cool down very rapidly by emission of neutrinos via the

“URCA” processes:
n—opte +U, e +p—on+ve. (22)

These processes cool the star down to about 10°K very quickly. However, when the

nucleons become degenerate at 109K, the URCA reactions are suppressed because

they turn out not to conserve momentum. The dominant processes then become

the “modified” URCA reactions |
n+n—-on+p+e + D

(23)
n+p+e —n+n+ve.

For a uniform density star with no muons, the modified URCA processes give a

luminosity of

M 1/3
LURCA _ (5.3 5 10%%rgs~!)— (222 ) 18, (24)
Mg \ p

where ppyc = 2.8 % 1()14g/crn3 is the nuclear density, and Ty is the temperature
measured in units of 10°K. This may be compared with the blackbody photon

hwminosity for a neutron star with radius R and effective surface temperature Te:

R 2
Ly = 471'11220Té1 =7 x 1036ergs_1 (m> Te4,7, (25)

where o is the Stefan-Boltzmann constant and T, 7 is the temperature in units

~f 107"K. We see by comparing the neutrino luminosity to the photon luminosity
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that neutrino emission dominates the cooling for high temperatures, while photon
radiation takes over at lower temperatures. We can get an idea of the boundary

lcmperature by substituting in the relation
T ~ 9 x 1056 025TOF, (26)

where T; g is the interior temperature in units of 108K, g14 is the surface gravity
in units of 101%cm/s?, and this expression is a fit to the calculation of Gudmunds-
son, Pethick and Epstein (1983). It should be noted that the relation of interior
temperature to effective temperature is one that strongly depends on the conduc-
tive opacities in the transition region. Substituting this in and equating the two
luminosities, one finds that photon cooling is more important for T'; < 108K.

The assumption that the URCA and modified URCA processes and photon
radiation are the only important effects in the cooling of neutron stars is called the
standard cooling model. If the central density of neutron stars is not much beyond
nuclear, this has a good chance of being correct. However, if at the core of neutron
stars different types of matter exist, the cooling rate may be drastically modified.

[or example, if pion condensates exist, then there will be cooling by the decay of

[ree pions:
" 4+n—on+e + e, (27)
T 4+n—ontp 4 by, (28)
and the inverse processes
n+e —n+nwT 4 v, (29)
n+p” —mn+n vy (30)

The luminosity for these reactions has been calculated as

M
Lz = (15 X 104661‘g8_1)92Fpl;ucT96) (31)
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where 6 ~ 0.3 is an angle measuring the degree of pion condensation. Since this
is much larger than the modified URCA rates, if there is a substantial amount of
pion condensate in the interior, the star will cool much faster than in the standard

model. Another possible effect is quark beta decay involving relativistic quarks:

d—u+e” + e,
(32)
u+e —d+ve.

The luminosity for a uniform density star composed of quark matter works out to

be

M
L3k (1.3 x 10%%ergs—1)—T§, (33)
Mo,

so if quark matter is a significant fraction of the mass of neutron stars, the cooling
rate will be greatly enhanced.

Standard cooling models predict that the sﬁrface temperatures of neutron stars
should remain at T > 10%K for 10%yrs (Nomoto and Tsuruta 1981). X-ray ob-
servations of hot neutron stars in supernova remnants have not provided any un-
ambiguous detections of thermal flux, so at the present we have only upper limits
on the temperatures of neutron stars. In order to interpret these negative results,
it is important to consider the effects of the atmosphere of neutron stars. While
an atmosphere will not significantly affect the total luminosity of the star (Hern-
quist 1985), it may modify the star’s emission in the sensitivity ranges of X-ray
detectors. In 1987 Romani generated spectra from model atmospheres using cross
section data for B = 0 and compared them with what could be seen by the Einstein
X-ray satellite in the energy range 0.5keV to 5keV. He found that if the surface
were dominated by low-Z elements, the temperature inferred from the count rate
in the Einstein band would be much higher than.its effective surface temperature.
This meant that the upper limits on surface temperature were much more stringent

than previously thought, and cooling would have to take place very rapidly. In the
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second paper of this thesis, model atmospheres are generated using cross sections
- calculated for high magnetic fields. The result is that in the sensitivity ranges of
Finstein and ROSAT, the inferred blackbody temperature is roughly equal to the
elfective surface temperature. Therefore, we will have to wait until more sensitive
X-ray satellites such as ROSAT and AXAF are launched before we can make any

definitive statements about neutron star cooling.
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Abstract. The X-ray spectra of neutron stars are expected to be determined
by the opacities of atoms with Z > 2 in strong magnetic fields. We calculate
the energy levels, wavefunctions and transition rates of hydrogen, helium and
carbon in the very strong (B > 4.7 x 10°Z2G) magnetic fields expected in neu-
tron stars. The wavefunctions are represented in terms of Landau states, and
are calculated with a high-field multiconfigurational Hartree-Fock code. We
compare our results for hydrogen with previous work and use our wavefunc-
tions to compute bound-bound and bound-free oscillator strengths for heavier
elements. The techniques developed here can be extended to elements heavier

than carbon.
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1.v Introduction

The existence of sensitive, imaging X-ray satellites has made the detecti_oﬁ of thermal
flux from neutron stars a realistic possibility. Recent research (see Tsuruta 1986 for a
.review) has indicated that the effective surface temperature of neutron stars should remain
above & 10°K=10eV for 10° yrs, barring the presence of pion condensates or other exotic
matter. The star should remain a detectéble X-ray source during that period. While
white dwarfs have magnetic fields B small enough (B < 5 X 108G) that energy levels may
be computed by .perturbation theory (Zéema,n splittings) with errors of <2%, observed
neutron stars typically have fields in the range of 10° to 5 x 102G (Taylor and Stinebring
1986, Joss and Rappaport 1984), so that the magnetic interaction may no longer be treated
~ as a perturbation, and atomic structure is drastically changed, modifying the opacity. -
While the changes in the opacity will not change the total energy radiated (Hernquist
1985), they will result in a redistribution of the emergent power among frequencies (see,
e.g., Mihalas 1978). This redistribution affects the flux in the bandpasses of different
detectors differently, and may give rise to detectable spectral features. Work has been
done (Romani 1987) on radiative transfer in neutron star atmospheres, but this work has

used opacity tables computed for B = 0.

A prerequisite to further work on predictions and interpretations of X-ray speétra
of neutron stars is accurate atomic data for atoms in strong magnetic fields. In recent
years, much researgh has been done (Simola and Virtamo 1978; O’Connell 1979; Kara and
McDowell 1980; Wunner et al. 1981; Rosner ét val. 1983; Rosner et al. 1984; Forster
et al. 1984; Ruder et al. 1985; Wunner 1986; Wunner and Ruder 1987; Wunner et al.
1987) on the properties of hydrogen in very large magnetic fields. However, comparatively
little has been done on helium or other elements, which could be important in determining
the spectrum. .Current models of supernovae indicate that the mass cut should occur

within the iron layer. However, it is possible that significant amounts of nickel or other
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heavy eleménts ‘could be produced by the shock wave, and in thé event of an asymmetrical
explosion, the lneutro-ﬁ star could accrete large amounts of any of the elements in the fusion
cycle. An optical depth of unify in X-rays occurs at a depth of only &1 cm, which at a
density of 1g/ cm? is only ~ 1013g §'10_2OM@ over the surface of the neutron star, so the
very top layer of the atmosphere will dominate the opacity.. Since the surface gravity is
so high, gravitational separation will be very rapid, on the order of ~1-100s for a helium
photosphere of typical temperature and density (Alcock and Illarionov 1980), and the
lightest elefnent present will rise to the top. A similar situation occurs in white dwarfs
(Liebert 1980), where stars with virtually pure hydrogen and helium atmospheres have
been detected. Another factof is that if the column depth of, e.g., hydrogen becomes large
enough, nuclear reactions may convert it to helium, and so on. For an overviev&} of these

processes, see Shapiro and Teukolsky 1983 Chapter 3 Section 7.

The conclusion is that since the surface of observable neutron stars could have almost
any composition (elements heavier than helium being perhaps t-he most likely in isolated .
neutron stars), Wé should investigate many possibilities. Astrophysical calculations ulti-
mately need X-ray opacity tables ‘similar to the zero-field tables in Saloman et al. 1988,
but as a function of B from 0 to 1013 Gauss. Thi;.s paper is a first step in the production of
such opacity tables. We use a multiconfigurational Hartree-Fock code as a general method
for determining the energy levels and wavefunctions of ‘any atom in very high fields, and
also compute the bound-bound and bound—freé transition strengths for such atoms. In
~ Section 2, v;fe diécuss the physics of atoms in high magﬁetic fields and the Hartree-Fock
method, and also derive the bound—bc;und and bound-free cross sections in a high field. In
Section 3, we describe the convergence tests of our program and compare our results with
previous results for hydrogen and helium. In Section 4 we presvent our new results for the

energy levels and transition probabilities for helium and carbon.
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2. Method

2.1. Generation of the wavefunctions

In the following sections we will use the convention that the length scale will be the

Landau scale

. hc —10 p—1/2
p=1/=5 =25 x 10708 em, (1)

‘where B1g = B/ 1012G, and the magnetic field will be measured in terms of the reference

field

_ 2a2mgc2

— 9
By=——=47x10 G‘, (2)

which is the field at which the Coulomb and magnetic energies are equal for hydrogen.

The Hamiltonian of a neutral atom in a uniform magnetic field is
H=H B+ Ven + Vee

1 € . \2 € 9 1 9 1 (3)
=3 (p; + A, °B.S;— 225 = —~
zi:zM(pz'*'cAz) +;mc 7 € ;Ti‘l'e ;Tz’j, .

where
p; is the ﬁomentum of the ith electron,
A is the vector potential of a constant magnetic field, A = %B XT
S is the spin,
Z is the atpmic number,
r; is the positioﬁ of the ith electron,
ri; is the éeparation between the sth and jth electrons,
Hp is the single-particle magnetic Hamiltonian,
Ven is the electron-nucleus potential and

Vee is the electron-electron potential.
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Since we are dealing with very strong magnetic fields (B > Z2B0), a cylindrical

expansion

‘I’mu(z, P ¢) = Z fnmu(z)q)nm(Pa ¢) : ’ (4)

will be uséd, where v, m and n are, respectively, the z, ¢ (azimuthal) and p (radial)

quantum numbers, and the ®,,, are the Landau states

. . 5
@nm(ﬂ, $) = \/27r(n\:_?7'|ml)|ﬁ2 (\/gﬁ) |m|e—p2/4ﬁ2LLm| <§;) e—z'md", (5)
where LlnmI are the associated Laguerre polynomials. In this paper we will deal only with
ﬁzO stateé, because n #0 states have much higher energy, on the order of the cyclotron
energy hwe = 7}‘2—}2 ~ 11.5Bj9keV. Strictly speaking, this expansion is valid only for B >
A 230, but in practi‘ce (Roésner et al. 1984) accurate energy values may be generated for
' 7% = 1, though near the critical field more terms (n > 0) need to bé kept. At the critical

field and below, a spherical expansion
1
U(r) =) ~fi(r)Yim(6, ¢)
T

should be used, and the combination of the two regimes allows the structure of atoms to be
calculated in arbitrary fields. For additional comments on the validity of these methods,

see Rosner et al. 1984.

The technique that we have chosen for determining the wavefunctions is the Hartree-

Fock method, which is equivalent to solving the variational equation

i(iﬂﬂﬁz):m

Sx\ < ¥[¥ > (6)

where x is the total wavefunction

X = \IJISZ >,

|Sz > is the spin wavefunction, and the wavefunction ¥ is approximated by a one-particle

Slater determinant.
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In strong fields, the wavefunctions are approximately separable into components per-
pendicular to the B-field (p, qg) and the component parailel to the field (%), with the only -
unknowns bei‘ng the one-dimensional functiéns fomy(2), so the Hartree-Fock equations

. reduce to the one-dimensional coupled equations

6§ (<VUH[E >\
5f0mu(2)( <0 > )—0' (7)

For further details about the behavior of the Hartree-Fock equations, see Froese Fischer

1977.

There has been a debate about whether a renormalizdtion of the wavefunctions should
be applied to compensate fbr screening effects for B =0 and Z < 55 (Pratt 1960; Pratt
and Tseng 1972). This renormalization is done by replacing the nuclear charge Z in the
wavefunction with an effective chafge Zegy, where Zopp = Z — S, and S is a screening
pafametef (e.g. S=0..3 for the K shell, $=4.15 for the L shell). This procedure would
most greatiy affect the outer shells, and would typically alter the cross section by less than
10%. However, comparisons with experimental results (Saloman et al. 1988) indicate that
the unrenormalized wavefunctions give better agreement. Besides errors that are due to
truncation of the configuration space (which can be eliminated by using more powerful
© computers), most of the error in zero-field Hartree-Fock calculations is caused by the
symmetrization of the spatial wavefunction of electrons in a spin-singlet state. In the full
wavefunction, the electron—electron repulsion causes a depletion of the wavefunction for
small relative distances (Coulomb hole); naive symmetrization of the orbitals causes the
opposite effect. For electrons in a spin-triplet étate, the antisymmetrization of the spatial
wavefunction creates a hole that imitates the Coulomb. hole. In strong fields, the spins
are all alignéd antiparallel to the field; all electron-pairs are in a spin-triplet state, and
the Slater determinant reduces to a totally antisymmetric spatial determinant. The error
‘is therefore significantly smaller than the 1% error associated with zero-field calculations

(Weissbluth 1978, Atoms and Molecules, p. 400). In our program, the main source of error
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is the assumption that n = 0; for a comparison with the multiterm expansion of Résner et

al., (see Section 3.2).

Treating the nucleus as infinitely massive, the expectation value of the Hamiltonian is
E=<H>=<Hp>+ < Vepn >+ < Vee >, - (8)

where o
2
< Hp >=< H, >= -2%4—2/ If;n,,(z)|2dz
< Ven > = ———Z/Vm(z)lfm,,(z)l dz N
Ve =% S ([ Dtz = D Pl i P

mm(z — z,)me(z)fm'l/’(Zl)f:z’y'(z)f;w(z,)) dz dz’,

with the nuclear, direct and exchange kernels

2 P /2 2m-+1
V= [ 12y [

2Mml/p? + 22

e——(p +p’2)/2p2m+1p/2m'+1

D /‘Z—ZI ZF/
=)= | St o~ B G 7

e )= [[[] LT e ) i
2m+m mIm!l/(p — p')2 + (2 — 2/)? 2w 2m

!
2dpdp

and we used the fact that for the n=0 orbitals, < H, >= — < H| >. The Hartree-Fock

equations (6) for the ground-state orbitals are equivalent to

6<\IJ|HI\I/>_6 6< Ul > (10)
Sfa(2) T 8f(2)

where the Lagrange multipliers, {emy }, ensuring the orthogonality relations, are the single

particle energies. It can be shown that these equations are

52 2 762 2 ’ G2
[_2M dz2 5 Vin(2) + %Km(z) - fmv} fmy(2) = 7Jmu(z), (11)
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where
Km(z) = Z /Dmm/(z — 2| frrr|2d2’
v | (12)
Z fm’u’(?)/Emm’(z - Z,)f,:;l/V/(Z’)me(Z,)dZ,.

m'v/

Jmv(2) =

The initial wavefunctions, taken from restricted variational studies (Flowers et al 197T;
Lee 1976), were of the form

Jrw e~ amvlellp, (13)

In this equation, the coefficients ay, =~ 1 (see Lee 1976 for a table of values), but the
final solution is insensitivé to wide variation in the parameters. These Wavefunctions
are generated for all of the states of interest, then Equation (11) is solved for the new
Wavefuﬁctions, which are orthonormalized, and the procedure is repeated until the total

energy (8) converges. The orthonormalization property,

/// \Il;kzmu(zam ¢)\I’n'm'l/’(z, P qb)pdpdgbdz = bpn'Omm' O 5 ‘ (14)

is gﬁaranteed for states of different n or m by the properties of the Landau function (5),
while for states of different v the Gram-Schmidt procedure is used.

The program may be represented in algorithm form as follows:

(2) Take a set of quantum numbers, {muv},large enough to include those of all occupied

states.
(#7) Guess the wavefunctions, f, and guess which states are occupied.

(417) From (12) and the wavefunctions of the occupied states, obtain the integrals
{Km, Jmv}-

(w) Calculate the total energy (9). =~

(v) Calculate the single particle eneré;ies by taking the scalar products of Equation (11)

with the wavefunctions fmy. The Z states with the lowest energy will be the occupied

states.
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(vi) With the kernels and the single-particle energies, solve (11) for the new wavefunc-
tions. With K and J , the equations are uncoupled and .inhomogeneous; they are easily

solved by the Green’s function method (Koonin 1986, p. 49).
(viz) Orthonormalize the new wavefunctions.
(vist) Iterate i—viz until the total energy converges.

This algorithm will produce the ground state of the atom; it is also possible to generate

any excited state by specifying that state as occupied.

In addition to the initial wavefunction, the program accepts as input the length of the

integration box L (in units of p) and the number of integration points N.

The ground state orbitals are the Z states with the lowest energy, and as a general rule
states with (m=0,...,Z — 1;v=0) will be occupied. For example, for Big = 1 and Z < 12,
there are no occupied states with v > 0, though for iron (Z = 26), m =0 through m =5
with v = 1 are all occupied. For B19=5, and Z < 19,v > 0 states are unoccupied, while
for Z =26, m = 0 and 1 with v = 1 are oc'cupiedv. We can understand this preference
for v = 0 states qualitatively by replacing the probability distribution of the electrons
with that of a long cylinder with radius p and length ! (Ruderman 1971), so the energy is
roughly S | |
E = —2—;;[—2— — g—?—log(é) ' (15)
and minimization with respect to [ yields

N a /Z“ .
=10~ (igteas22))? 1

for the ground state, where ag is the Bohr radius, ap = 0.5 x 10~8¢m. For a state v > 0,
the typical distance from the nucleus to the electron is greater than Ij, so the binding

energy is |E] < Zl—ez. For a state with m > 0, the dependence of E on p is logarithmic, so
g N .
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the energy is almost unchanged and m > 0 states have lower energy than v > 0 states.

Further details are contained in Neuhauser (1986).
2.2. Transition strengths and cross sections

~ The radiative transitions of hydrogen have been treated in great detail in, e.g., Forster
et al. 1984, and a good discussion of the fundamental quantum mechanics may be found

in Clayton 1983. The bound-bound cross section as a function of frequency is

4nla : W
< k|exp(1—=2
Moy, | p(_

o(w) = n-r)r-els > 2£(w — Wks)s (20)

c

where
hwpyg is the energy difference between the k and s states,
s is the initial state
k is the final state
« is the fine structure constant, a ~ -1-%)-7 :

n is the unit vector in the propagation direction of the photon,

€ is the polarisation vector of the photon, and

L is the Lorentz proﬁle,

r/2n

L(w — = 21
=) = T @ )
where A
2e202
_ ks
= 3m03 fksa (22)

and f},¢ is the oscillator strength.

For the frequencies that dominate the opacities of cool neutron stars (T< 106K), it

is a good approximation to assume exp(i“itn-r) =~ 1. For the hydrogen ground state
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at B /By = 1000, the frequenc& of a bound-bound transition is less than w ~ 250eVa
1.3 x 107cm™1, while the wavefunction has a scale length of r ~ 155 ~ 1.7 x 10 %m,
so that el 20T y ¢i(0.02) 1. The dipole approximation will be worse for helium and
carbon, since the frequencies involved are higher, but even for carbon at B/By = 1000,
the exponent is only 0.05, so the dipole approximation is valid to within 5% over the entire

range of parameters considered.

Substituting exp(i®42n - r) = 1 in (20), using the identity

2 .
s 7 _ ,
™= [55p s (23)
and simplifying, we find that the integral of the cross section over the line width T is
/ o(w)dw = dnlawps Y |< klr-eils >, | (24)
r .
1=—+,—,z ‘

where +; is the fraction of the light polarised in direction .

To get an idea of the selection rules for polarization, we will look at the case of righf,
circular polarization, ¢; = €. Here we are déﬁning “right circular” with respect to the
magnetic field, not n. Thus, if the photon is ﬁropagating parallel to the field, the convention
is as usﬁal, whereas if‘the two are antiparallel, the convention is opposite to the one

normally used.

<m/V|r epmy >= /fm,,fm:,,/dzI, - (25)
Wheré ‘
Pew %
ZZ - \/-2— CPOm(Pa ¢)@Om’(p, ¢)pdpd¢ | (26)
Substituting in (5) and integrating, we find that |
I=—mé(m' +1—m)p, | (27)

(6 is the Dirac delta) so that the right circular polarization gives transitions with Am =
—1, Av =even. Similarly, the — (left circular) polarization gives transitions with Am =

+1, Av =even and the z polarization has Am = 0, Av =odd.

Therefore, the explicit expression for the bound-bound cross section is
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O'(W) = 47r2aw Z [7+£(€mu +w - e(m—l)u’)mﬁ2l/ fmyf(m_l)uldz|2

mvy’

2

+y-L(emy + @ — €(ppi) ) (m + 1)ﬁ2| / Jrw (1) d2

) -
e Llemy +0 = em)| [ S frurada] | (28)

where €y, is the energy of the mv orbital. The bound-free, or ionization, cross section is

- similar, except that the cross section is -
An |
= 4naw|< klr - ¢|s >|2— 29
o(w) = draw|< k|r - €|s >| o ‘ (29)

where An is the number of eigenstates in a frequency interval Aw about the kinetic energy
Er = hw — emy. For a particle in a one-dimensional box of length L (appropriate for

photon energies hw < hwe, so the electron remains in the n = 0 Landau state), we have

Amm=%? | (30)

or, using p = V2EM and dE = hdw, we get

An  L\2M
Aw  oan/E'

(31)

In fhis box the normalized free wavefunction is 5—7—(\1/7—’17;2-2, where g(p, z) is the free wavefunction
for momentum p, determined from the Schrédinger equation

h2

_ N g2 —
2‘MVg-i—Vg Eg,

2 ipz
where V is the atomic potential, £ = 2% and ¢(p,z) = e at infinity. Therefore, the

bound-free cross section becomes
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o(w) =2mraw Z O(w + em,,)\/%f-‘[y_,_m[’ﬂ‘/ Frwg(p, z)dz 2

2

+y—(m + 1)ﬁ2|/fmvg(Pa z)dz

+7z / fmvy(p, 2)zdz

2] . . (32)

where O is the step function,
O(z) =0 for z < 0,
(33)
=1 for z > 0,

M is the mass of the electron, and E is the kinetic energy of the electron.

3. Tests of the program
9.1 Convergence

As indicated in section 2.1, the program integrates using an integration box of length
L and a number of grid points N. We have tested the program to determine if the
value of the energy cohverges in a small number of iterations; if in the limit of large
N thé energy converges; and if in the limit of large L the energy converges. Figure 1
shows that for hydrogen, given L and N, the energy coﬁverges rapidly. In all of the cases
tested, the energy varies by less than 0.01eV after the third iteration. vNext, in Figure
2, the dependence of final energy on N with L constant is shown. Because of systematic
integration error, the magnitude of the energy decreases with decreasing N for v=0 or
2, while for v=1 it increases with decreasing N. Finally, in Figure 3, the energy as a
functién of L with N constant is shown. Since for v # 0 the wavefunction can extend past
L = 100p, there is signiﬁcaﬁt error in the v=1 and 2 energies, especially for high B. In all
of the graphs, the ground state 000 is shown, since it is most perturbed by the Coulomb

attraction; the excited states converge even more rapidly.

3.2. Comparison with previous results



Using a highly accurate multiconfigurational Hartree-Fock code, Rosner et al. (1984)
a.nd Forster et al. (1984) produced energies and transition strengths for hydrogen in
arbitrary magnetic fields. The difference in the calculatjons of that paper and ours is that
While they considered mixing of states with n > 0, we restricted n to be 0. We did this in
the interest of simplicity, as the inclusion of n # 0 states would considerably increase the
difﬁculty-bf evaluating equations (9). More accurate computations will, however, have to
take the mixing into account. Liu and Staréce (1987) produced upper and lower bounds on
the energy levels of hydrogen using a single-configuration method. While this is an excellent
method for estimating the energies of hydrogenic elements, it is unfortuﬁately difficult to
generalize to Z > 1 because of the effects of electron-electron interactions. The results for
hydrogen below were generated by a simplified method for comparison purposes, to give
an idea of the magnitude of errors expected for elements with Z > 1. Table 1 shows the
comparison between the high-field energy values of R('isner et al. 1984 and the values found
in this paper. The Iargesﬁ difference in E, 3.4%, occurs for the 000 state at B/By = 10, as
might be expected, since the lower the field and the more centrally condensed about the
spherical nuclear potential the state, the less accurate is the (cyliﬁdrical) assumption that
n=0. Table 2 gives the oscillator strengths for different transitions. 'The accuracy of the
strengths of the transitions in which Am=1 is less than the accuracy of those for which
Am=0, but even for Am=1 there are only two transitions for which the discrepancy in A
is greater than 20%. AS was showﬁ in Wunner et al. 1980, transitions with Am=1 will
be éﬂ'ected by finite proton mass, which affects the energy levels of states with different
m. However, since this effect is proportional to the cyclotron frequency of the nucleus, it
will be less important for helium and carbon. In Table 3, our results for the ground-state
binding energies of helium in fields ranging from 2 x 1010 to 5 x 1013 Gauss are compared
with those of Proschel et al. (1982). Here again we see a close correspondence, with by far
the greatest difference (1.9%) coming at B=5x10'3 Gauss. The reason for this difference

is that (as we can see from (16) combined with (1)), the higher B is, the greater [ is in
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units of p, so that the contribution from the ends of the grid becomes more important.
Table 4 shows the bound-free oscillator strengths A from the ground state of hydrogen. It
is apparent that the higher the field, the more important are bound-free transitions. This
is because as the field increases, the grouﬁd-state enérgy decreases logarithmically, while
the energies of the other states stay roughly constant, so that the boundfboﬁnd transition
energies become more nearly equal to each other and to the ionization energy, and as a
result they become closer in transition strength as well. Therefore, transitions to highly
excited states and bound-free transitions become relatively more important. Another test
is that the oscillator strengths should obey the Thomés—Rieche-Kuhn sum rule: From a

given initial state s of an electron, _
D frs=1 S (36),
k o

where the sum is over all final states. Therefore, for an atom with Z electrons, the sum
of the oscillator strengths of one-electron transitions will be Z. In Table 5 we see a list of
the sum of the bound-free and the first few bound-bound oscillator strengths for hydrogen.
Clearly, while individual transition strengths to highly excited states might be small, their

contribution as a whole is important, especially for high fields.

3.8. Error Analysis for Z > 1

We find empirically that most of the differences between our comput a’fions for hydrogen
and helium and previous adiabatic calculations can be removed by increasing the resolution
and size of the grid. A determination of the scaling of these two types of error with Z will
allow us to predict the errors in helium, carbon, etc. from those in hydrogen. The errors
that are due to grid resolution can be estimated as follows. The integrations in (9) can be

thought of as performed using Simpson’s rule, so that the error in an integral of the form

[ s,
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with N steps, is -
. (b—a)
§ ~ (_N‘l—)_h(4)(£)’

where £ is some value between a aﬁd b. In an atom with Z > 1, most of t.he error in energy
will come from computing the energy of the innermost electron, as for this electron the
Coulomb force has greater effect and consequently, the wave function is most concentrafed
.at the origin and the effective gria resolution loWest. For this electron, the fourth derivative

of the function A(z) is of order

h(€)
(z/ é)4’

evaluated at a characteristic value of z, z = I, whefe lis giVen by (16). Thérefore, the
verror.depends only on the ratio I/p, not Z. Since for atomic number Z at magnetic field
B this ratio is equal to that for hydrogen at magnetic field B/Z2, we may estimate the
error for higher atoms from the error for hydrogen at corresponding values of B /Z2. For
instance, for hydrogen at 2.35 x 101G, the ground-state energy estimate is 100.1eV with
1024 grid pointé and an integration box of length 800p5. With 2048 grid points and the
same integration box, the estimate is 101.5¢V, for a difference of 1.4%. For helium at
2.35 x 1011 x 22 = 9.4 x 101G, the corresponding difference is 5.4eV/561.4eV, or about
1.0%. As another example, hydrogen at 1.41 x 101G has a diﬁerencé of 0.4eV out of a
total of 85.5eV (or about 0.5%) between N = 2048, L = 800p and N = 4096, L = 800p. '
Carbon at 1.41 x 10! x 62 ~ 4.7 x 1012G has a difference of 10eV/1712eV~0.6% between
calculations on those same grids. For excited states, the wavefunction is not as concentrated
at the érigin, so that it is not as important to have a finely spaced grid. In addition, for
a neutral atom, excited states are influenced by an effective charge of Z, fF=1 (because
they are far away from the nucleus), so that excited state errors ére roughly the same as
the errors for the equivalent hydrogen states at the same magnetic field. We conclude that

the technique of scaling from hydrogen allows us to make accurate estimates of the errors
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that are due to grid resolution for atoms with Z > 1. Exactly the same argument may be
applied to transition probabilities.

The magnitude of the second type of error, truncation of the integration box, may be
estimated from (9) by noting that the size of the potential terms (which dominate over the -
kinetic term) is proportional to |fmy(2z)|2. We find from experience that for states with
v= 0, it is necessary to extend the integration to L =100p for an accuracy of 0.1%, while
for excited states (v > 0), L = 8005 may be réquired. This can necessitate a compromise,
as in carbon in the (00, 10, 20, 30, 40, 51) state, where it is necessary to have both an
extended integration box and a fine grid at the origin. Perhaps in future calculations an
adaptive step size may take care of this problem.

The adiabatic calculations are exact only in the B — oo limit, so it is also important to
estimate the error that is due to assuming that n = 0. This error is related to the ratio of
Coulomb force to magnetic force, so that we may estimaté the correction by comparing an
atom with Z > 1 at magnetic field B to the exact calculations of Résner et al. for hydrogen
at a field strength of B/Z2. We have placed error estimates based on the above effects
in the tables for helium and carbon. In general, the integration box is large enough that

truncation errors contribute a neghglble amount to the total error, while below 'ZB;BO = 50,

non—ad1abat1c effects dominate and above ‘Z—BW = 50, grid resolution errors are the most
important.

4. Results

The binding energies for a variety of states of helium in several field strengths are
presented in Table 6. Also listed are the binding energies for the first and second orbitals.
It can be seen that while the v = 0 orbitals of hydrogen and helium are quite different
in energy, the binding energies of the excited states are asymptotically equal (this is also
true for the non—magnetic case, since the fafther the electron is from the nucleus, the more

the nucleus and inner Z — 1 electrons look like a point charge of Z=1). Figure 4 also
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illustrates this; when the state is tightly bound, the wavefunctions of hydrogen and helium
differ significantly near the nucleus, while for loosely bound orbitals the wavefunctions
are essentially identical. Table 7 gives the oscillator strengths from the helium ground
state to several excited states. It can be seen that as with hydrogen, transitions to highly
excited states become relatively more important for higher B. In Table 8 we give thé
binding energies of orbitals for carbon in magnetic fields of B = 200B(, B = 5008, and
B =1000By. In each case the ground—state energy of the whole atom is listed, along with
the binding energies of various states. For the excited (v # 0) states, all electrons other
than the excited electron are assumed to be in their ground states. Again we see (Figure
4) that while for the ground state the binding energies of carbon and hydrogen orbitals
are radically different, for excited states they are very close. In Table 9 bound-bound
oscillator strengths are listed, and in Table 10 bound-free oscillator strengths are given.‘,
It can be seen that while bound-free transitions become weaker with increased field, the
relative importance of the ioﬁization process increases. In order to éstimate the magnitude
- of errors in these computations, we calculated a few of the energies and oscillator strengths
for helium and carbon with greater accuracy‘ (i.e., more integration points). The result was
that none of the energies changed by more than ~ 1%, aﬁd none of the oscillator strengths

changed by more than ~ 2%.

These values are a step toward the construction of realistic model atmospheres for
neutron stars. We are constructing opacity tables with various temperatures and éurface
compositions, and following Romani 1987 we are using (e.g.,Mihalas 1978) techniques
to calculate model atmospheres and spectra of emerging radiation. We hope that these
calculations will be accurate enough that for the first time if will be possible to deduce,
reliably, parameters such as magnetic field, surface temperature and surface composition

from X-ray observations of neutron stars.
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Table 1. Energies for hydrogen in several magnetic fields, in units of eV. The states are
listed by their m and v quantum numbers, with n = 0 assumed. The energies in parentheses
are from Rosner et ol The number of grid points is N=2048, and the integration box

extends out to L=800p.

Table 2. Oscillator strengths for hydrogen. The values in parentheses are from Forster

et al. 1984. In the columns, the initial state is on the left and the final state is on the

right.

Table 3. Ground state energies for helium. The values in parentheses are from
Proschel et al. 1982. The number of grid points is N=1024, and the integration box -
extends out to L=800p. The magnetic field is measured in Gauss, and the energy is given

in electron volts.
Table 4. Bound-free oscillator strengths, fi,¢, for hydrogen.

Table 5. Sum of oscillator strengths, > f, for hydrogen. This table lists the sum of
the transition strengths from the ground state, 00, to the excited states 01, 03, 10, 12 and

the bound-free oscillator strength.

Tabie 6. Energy values for helium. The magnitude of the total energy is listed, as
well as fhe energies of the individual orbitals, where el is the energy of the first orbital
listed and e2 is the energy of the second orbital. Energies are given in electron volts. The
eétimated errors are in brackets, and are measured in eV. The number of grid points is

'N=1024, and the integration box extends out to L=8005.

Table 7. Oscillator strengths for helium. In each case, the transition is from the

ground state (00,10) to the state listed. The estimated errors are in brackets.
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Table 8. Energies for carbon. The magnetic field is measured in units of By =
4.7 x 109G, and when an excited state is listed, it is assﬁmed that the other electrons
- are in their ground state (i.e., v = 0). The number of grid points is N = 1024, and the
integration box extends out to L = 8005, except for the ground state, which has N = 512
and L = 100j. Energies are given in electron volts. The estimated errors are in brackets,

and are measured in eV.

Table 9. Bound-bound oscillator strengths for carbon. Magnetic field is in units of
BQ = 4.7x 109G, and all transitions have their m-value listed in Column 1. The estimated

errors are in brackets.

Table 10. Bound-free oscillator strengths for carbon. Magnetic field is given in units

of By = 4.7x 109G.
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Figure 1. Convergence of hydrogen ground-state energy as a function of the number
of iterations of the Hartree-Fock algorithm. The number of grid points is N=2048, and the

integration box extends out to L=8004. The magnetic field is in units of By = 4.7 x 10°G.

Figure 2. Final energy (after five iterations) of hydrogen ground state, with the
number of grid points N varying and the size of the integration box held constant at 4004

The magnetic field is in units of By = 4.7 x 10%9G.

Figure 3. Final energy (after five iterations) of hydrogen ground state, with the size
of the integration box L varying and the number of grid points held constant at 1024. The

magnetic field is in units of By = 4.7 x 10°G, and L is in units of p= eﬁcg.

Figure 4a. Comparison of the z-component of the wavefunction, Fmu(z), for hydrogen,
helium and carbon in a magnetic field of B = 2008 = 9.4x10!1G. The solid line represents
hydrogen, the short dashes represent helium, and the long dashes represent carbon. The

graphs are labelled with the z quantum number, v.

Figure 4b. Comparison of the z-component of the wavefunction, fmy(z), for hydrogen,
helium and carbon in a magnetic field of B = 50089 = 2.35 x 10!2G. The solid line
“represents hydrogen, the short dashes represent helium, and the long dashes represent

carbon. The graphs are labelled with the z quantum number, v.

Figure 4c. Comparison of the z-component of the wavefunction, fm,(z), for hydrogen,
helium and carbon in a magnetic field of B = 10008y = 4.7 x 1012G. The solid line
represents hydrogen, the short dashes represent helium, and the long dashes represent

carbon. The graphs are labelled with the z quantum number, v.
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Figure 5. Energy levels and sample allowed transitions of carbon in a B = 2008 0=
9.4 x 10''G magnetic field. In this diagram, m and v are taken to have the same meaning
as in hydrogen, and where an excited state is drawn it is assumed that the other electrons

are in their ground state (i.e., v = 0). The selection rule for transitions is that Am + Ay

must be odd.
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Table 1
B/ Bo

o 10 20 30 50 100 200 500 1000
0o 58.2 74.3 85.5 101.5 127.2 157.9 207.2 251.9

(60.26)  (76.19)  (87.18)  (103.0)  (128.6)  (159.2)  (208.4)  (253.1)
01 11.24 11.93 12.27 12.61 12.96 13.18 13.34 13.35

(11.25)  (11.93)  (12.27)  (12.61)  (12.96)  (13.21)  (13.40)  (13.48)
02 6.03 6.44 6.66 6.93 7.28 7.59 7.93 8.12

(6.09) (6.47) (6.70) (6.96) (7.32) (7.64) (8.05) (8.32)
1o 39.5 51.3 59.5 71.4 90.8 1145 153.3 189.0

(39.7) (51.6) (59.8) (71.7) (91.0) (114.7)  (153.4)  (189.1)
" 10.23 11.11 11.56 12.04 12.55 12.91 13.18 13.26

(10.23)  (11.12)  (11.56)  (12.05)  (12.56)  (12.93)  (13.25)  (13.39)
12 5.39 5.83 6.07 6.37 6.74 7.09 7.48 7.69

(5.41) (5.84) (6.09) (6.39) (6.77) (7.14) (7.59) (7.90)
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Table 2

B/ 1 00 — 01 01 — 02 10 — 00 12 — 00

o 0.553 (0.560) 1.426 (1.477) 6.706(—2) (6.876(—2)) 8.757(—4) (8.206(—4))
20 0.488 (0.499) 1.387 (1.435) 4.137(—2) (4.328(-2)) 4.132(—4) (4.010(-4))
30 0.449 (0.461) 1.365 (1.409) 3.123(~2) (3.284(-2))  2.645(—4) (2.604(—4))
50 0.402 (0.413) 1.331 (1.376) 2.174(-2) (2.317(-2)) 1.491(—4) (1.496(—4))
100 0.340 (0.351) 1.284 (1.327) 1.318(-2) (1.444(-2)) 6.790(—5) (6.949(—5))
200 0.284 (0.293) 1.234 (1.274) 7.871(—3) (9.062(—3)) 3.052(—5) (3.196(-5))
500 0.219 (0.227) 1.173 (1.201) 3.919(-3) (5.055(-3)) 1.047(-5) (1.142(-5))
LOO0 0.179 (0.186) 1.126 (1.144) 2.290(—3) (3.398(-3)) 4.613(—6) (5.295(—6))
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Table 3

B E

2 x 1010 137.42 (137.61)
5 x 1010 196.47 (196. 74)
1 x 104! 255.23 (255.59)
2% 10! 328.97 (329.45)
5 x 1011 454.28 (455.05)
1 x 1012 575.14 (575.30)
2 x 1012 719.27 (721.04)
5 x 1042 955.74 (958.80)
1 x 1013 1173.6 (1177.5)
2 x 1013 1433.0 (1433.4)
5 x 1013 1870.1 (1834.8)




B/ By fot

10 0.150
20 0.184
30 0.199
50 0.224
100 0.264
200 0.293
500 0.341
1000 0.374
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Table 4



B/By X f
10 0.770
20 0.673
30 0.679
50 0.648
100 0.617
200 0.585
500 0.564
1000 0.555
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Table 5



54

Table 6

B3/ Bn myvy, maly Etot By E;

50 00,10 343.0 [20] 173.4 [10] 95.69 [0.5]
00,11 258.8 [16] 225.7 [14] 11.40 [0.01]
00,12 254.1 [15] 236.0 [14] 6.64 [0.01]
01,10 183.7 [0.9] 12.19 [0.01] 147.8 [0.7]
02,10 178.8 [0.9] 7.26 [0.01] 158.8 [0.8]
00,01 260.9 [16] 225.1 [14] 13.49 [0.01]
00,02 255.1 [15] 235.0 [14] 7.65 [0.01]
10,11 184.9 [1.0] 150.8 [0.8] 13.40 [0.01)
10,12 178.6 [0.9] 160.4 [0.8] 7.06 [0.01]

200 00,10 556.0 [16] 274.7 (8] 156.2 [0.6]
00,11 412.2 [12] 376.8 [11] 11.83 [0.01]
00,12 407.8 [13] 387.3 [12] 7.39 [0.01]
01,10 297.0 [1] -11.80 [0.01] 261.1[1]
02,10 293.1 [1] 7.92 [0.01] 271.0 [1]
00,01 413.7 [12) 377.1 [11] 13.34 [0.01]
00,02 408.8 [13] 386.5 [12) 8.41 [0.01]
10,11 298.6 [1] 262.6 [1] 13.39 [0.01)
10,12 293.1 [1] 272.5 (1] 7.87 [0.01]

1000 00,10 931.2 [19] 447.3 [9] 264.5 [0.5]
00,11 680.4 [14] 643.9 [13] 11.97 [0.01)
00,12 676.5 [14] 653.6 [13] 8.04 [0.01]
01,10 503.5 [1.0] 11.65 [0.01] 467.6 [0.9]
02,10 500.4 [1.0] 8.51 [0.01] 476.1 [0.9]
00,01 681.5 [14] 644.7 [13] 13.08 [0.01]
00,02 677.5 [14] 653.0 [13] 9.05 [0.01]
10,11 504.9 [10] 468.5 9] 13.09 [0.01]
10,12 500.5 [11] 477.4 [10] 8.60[0.01]
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Table 7
B/ Ba 01,10 00,11 03,10 00,13 00,02 10,12
50 0.206[5(-3)]  0.381[1(-2)]  2.74(-2)[5(-4)] 4.27(-2)[8(-4)] 8.56(-4)[2(-5)] 1.36(-3)[1(-4)]
200 0.113(3(-3)]  0.235[6(-3)]  1.51(-2)[4(-4)] 2.80(-2)[7(-4)] L1.66(-4)(4(-6)] 2.94(-4)[1(-6)]
1000 5.58(-2)[2(-3)] 0.125[5(-3)]  1.07(-2)[3(-4)] 1.99(-2)[6(-4)] 2.42(-5)[1(-6)] 4.84(-5)[3(-6)]
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TR W NS e

Table 8
R/ 1121_) = 200
gronpd 4087.2
m v=20 v=1 v=2 v=3
0 1011 [35] 11.522 [0.01] 8.047 [0.01] 3.101 [0.01]
1} 499 [4] 10.575 [0.01] 7.652 [0.01] 2.945 [0.01]
2 331 [1] 10.361 [0.01] 7.414 [0.01] 2.907 [0.01]
3 247 [1] 10.316 [0.01] 7.236 [0.01] 2.897 [0.01]
4 193 [1] 10.290 [0.01] 7.074 [0.01] 2.891 [0.01]
5 144 {1] 10.089 [0.01) 6.858 [0.01] 2.854 [0.01]
B/l - 500
ground 5783.7
m v=20 v=1 v=2 v=13
] 1373 [40] 9.952 [0.01] 8.348 {0.01] 2.695 [0.01]
693 (3] 9.875 [0.01] 8.054 [0.01] 2.945 [0.01]
466 [1] 9.936 {0.01] 7.858 [0.01] 2.691 [0.01]
350 [1] 10.036 [0.01] 7.705 [0.01) 2.707 [0.01]
275 [1] 10.129 [0.01] 7.562 [0.01] 2.721 [0.01]
208 [1] 10.099 [0.01) 7.363 [0.01] 2.715 [0.01]
B/B. - 1000
ground 7448.4
m v=20 v=1 v=2 v=3
0 1712 [35] 9.741 [0.01] 8.593 [0.01] 2.508 [0.01]
! 880 (3] 9.783 [0.01] 8.335 [0.01] 2.517 [0.01]
2 597 [1] 9.885 [0.01] 8.115 [0.01] 2.533 [0.01]
3 452 [1] 10.005 {0.01] 8.010 [0.01] 2.552 [0.01]
4 357 (1] 10.119 [0.01] 7.873 [0.01] 2.569 [0.01]
5 272 [1] 10.147 [0.01] 7.684 [0.01] 2.573 {0.01]
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Table 9
B/ B. = 200
m m0 — ml m0 — m3 ml - m2
0 3.969(-2)[1(-3)] 6.19(-3)[2(-4)] 0.94295[0.03]
1 5.672(-2)[2(-3)] 9.16(-3)[3(-4)] 0.94519[0.03)
2 7.996(-2)[2(-3)] 1.283(-2)[4(-4)] 1.01724[0.03]
3 0.10893(3(-3)] 1.716(-2)[6(-4)] 1.09588(0.03]
4 0.14450[3(-3)] 2.216(-2)[7(-4)] 1.15936[0.04]
5 0.19306[5(-3)] 2.817(-2)[9(-4)] 1.17476[0.04]
B/ - 500
m m0 — ml m0 — m3 ml — m2
0 1.108(-2)[2(-4)] 1.79(-3)[6(-5)] 0.52859[0.02]
1 2.307(-2)[4(-4)] 3.68(-3){1(-4)] 0.62992{0.02)
2 3.804(-2)[8(-4)] 5.97(-3)[2(-4)] 0.73442[0.02]
3 5.646(-2)[1(-3)] 8.68(-3)[3(-4)] 0.83148(0.03]
4 7.943(-2)[2(-3)] 1.191(-2)[4(-4)] 0.91552[0.03]
5 0.11250[2(-3)] 1.622(-2)[6(-4)] 0.97148[0.03]
B/B. - 1000
m md — ml m0 — m3 ml — m2
0 5.71(-3)[2(-4)] 8.9(-4)[4(-5)] 0.37876{0.01]
t 1.353(-2)[3(-4)] 2.08(-3)[{1(-4)] 0.49172[0.02]
2 2.362(-2)[6(-4)] 3.56(-3)[2(-4)] 0.59544[0.02]
3 3.619(-2)[9(-4)] 5.36(-3){3(-4)] 0.69025{0.02)
4 5.205(-2)[1(-3)] 7.55(-3)(4(-4)] 0.77605[0.03]
5 7.553(-2)[2(-3)] 1.061(-2)[5(-4)] 0.84587[0.03]
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Table 10
B/Bp = 200
muv A
00 0.485
10 0.463
20 0.453
30 0.447
40 0.481
50 0.478
B/ By = 500
my A
00 0.429
10 0.419
20 0.423
30 0.427
40 0.431
50 0.411
B/Bqy = 1000
mv A
00 0.399
10 0.400
20 0.399
30 0.397
40 0.403

50 0.405
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Chapter 2: Atomic Data for Neutron Star Model Atmospheres

M. C. Millert

fTheoretical Astrophysics, California Institute of Technology, Pasadena, Cali-
fornia 91125 USA
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Abstract. In order to construct model atmospheres for neutron stars and
predict their thermal X-ray spectra, it is necessary to generate high magnetic field
atomic data for several atoms. We calculate the energy levels, wavefunctions and
transition rates of hydrogen, helium and carbon, nitrogen and silicon and their
ions in three representative magnetic fields (B = 9.4 x 101G, B = 2.35 x 1012@Q
and B = 4.7 x 1012G), as might be expected in neutron stars. The wavefunctions
are represented in terms of Landau states, and are calculated with a high-feld
nulticonfigurational Hartree-Fock code as described in Miller and Neuhauser 1990.
We compare our results for hydrogen with previous work and use our wavefunctions
to compute bound-free oscillator strengths for heavier elements. These data will be

nsed to compute model atmospheres in a future paper.
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1. Introduction

Ever since it was derived from magnetic dipole models that many pulsars have
magnetic field strengths in excess of 1012@, it has been realized that very strong
magnetlic fields are of astrophysical importance. This impression has been strength-
- ened by the recent detection of cyclotron lines indicative of ~ 2 x 102G fields in
two gamma-ray bursts (Murakami et al 1988), whiéh are believed to be associated
with neutron stars. One question which has been raised is what effect fields of this
strength have-on the atmoéphere of neutron stars. This question is of some impor-
tance in constructing cooling curves, because though the presence of an atmosphére
will not significantly modify the total emission from a neutron star (Hernquist 1985),
it may affect the emission in the sensitivity baﬁds’ of satellites such as Einstein or
ROSAT (Romani 1987). A ﬁfst step is to consider the effect of high fields on atoms.

In the past decade é good deal of study has been done on the behavior of
atoms in strong magnetic fields. Most of this work has concentrated on hydrogen,
with semianalytic and numerical work being done by Simola and Virtamo 1978,
O’Connel_l 1979, Kara and McDowell 1980, Wunner et al 1981,' Rosner et al 1983,
Résher ei al 1984, Forster et al 1984, Rudef et al 1985, Wunner 1986, Wunner
‘and Ruder 1987, and Wunner et a! 1987 among others. However, hydrogen is -
not the bnly element which may be present on a neutron star’s surface. Because
. of thermonuclear bﬁrning and density stratification, the core of the pre-supernova
star is expected to be primarily iron. The mass cut is defined to be the boundary
between the material which is pushed outward and that which is pushed inward in
the supernova explosion. From numerical simulations we expect the mass cut to
occur in the iron core, so we might éxpect that the surface of neutron stars would
be primarily iron. However, there are several complicating factors. There might
be fall-back from the shells of the star, which could mean that silicon, aluminum,

magnesium, neon, oxygen, nitrogen, carbon, helium or hydrogen could contribute
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significantly. This is further muddied by the probability that there is significant
mixing of the shells due to a Rayleigh-Taylor instability at the shell boundaries.
Additionally, elements with higher atomic number might be. created by spallation,
since the gravitational potential at the surface of a neutron star is on the order of
100MeV per nucleon. |

Once the neutron star is clear of the supernova remnant, it will start to accrete _ |
from the interstellar medium (ISM). Since the ISM is primarily hydrogen, it might
seem that afi;er sufficient time hydrogen would dominate the surface. However, if
neutron stars have magnetic fields in the 1012G range, the accretion will be funneled
to the magnetic polar caps. This material will be prevented from diffusing across
field lines to the rest of the star’s surface, and some. simulations have shown that
the cap would be stable even against thermonuclear explosions. However, if the
magnetic field is initially small then this would not be as strong an effect, and even
if the star were born with very high fields it is possible thiat the material could fall
“between the field lines” and thus spread out over the surface of the star.

If a sufficiently thick layer of hydrogen is built up on the surface, then low-
temperature or “pycnonuclear” fusion might transform the hydrogen into helium,
so.that helium would be the dominant element. This could also be .true of the
helium—carbon reaction, or any of the other reactions in the fusion progression,
or it could be that the heat generated would cause the hydrogen to fuse through
to iron and we would en(i up with iron as the primary element again. In any
case, the surface gravity of a neutron star is so large that density stratification
will take placevin ~ 1 —100s. In addition, for the energy range considered in this
_papef, 1eV-10keV, only ~ 1014g= 10“19M@ of matter is necessary for optical depth
unity. Therefore the surfaée composition of a neutron star will be a pure élement,
and ‘highv-ﬁeld étomic data must be computed for many elements to simulate the

range of possible neutron star surfaces. A first step in this direction was taken by
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Miller and Neuhauser (hereafter MN), who calculated wavefunctions, energies and‘
radiative cross sections for hydrogen, helium and carbon in a variety of magnetic
fields.

Because the ionization potential of atoms in strong magnetic fields is signifi-
cantly greater than that at B = 0, one might expect that the number density of
ions would be much smaller. However, Khersonskij 1987 showed that while for a
surface temperature T < 5 x 10%K, the increase of magnetic field strength induces
the decrease of the degree of ionization; for T > 5x 105K, the increase of field causes
the increase of ionization. It is therefore important to consider all the ionization
states of an atom when producing model atmospheres.

This paper extends the work of MN by calculating energies and bound-free
cross sections for hydrogen, helium, carbon, nitrogen, silicon and their ions i:ﬁ fields
typical of young neutron stérs. In Section 2, I give a brief summary of the scaling _
arguments for hydrogen in strong magnetic fields. In Section 3, I discuss the method
used for, and the resﬁlts of, the calculations presented in this paper, including some

rough error estimates. Finally, in Section 4, I present the conclusions.

2. Parameters in strong fields

In a very strong uniform magnetic field, the wavefunction of an atom may be
approximated. by a thin cylinder, with the long axis along the field. Accordingly, a
cylindrical coordinate system is set up, with p being the radial coordinate, ¢ being
the azimuthal coordinate, and z being the coérdinate along the field. The quantum
numbers for these coordinates are, respectively, n, m and v.

As derived in, e.g., Ruderman 1971, a hydrogenic electron in its gfound state

n=m = v =0 in the limit B — oo has radial extent

1/2
p= (g%) =25x 1071057/ 2em (1)
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where ag = 5.1 x 10~ %m is the Bohr radius and Z is the atomic number of the

and longitudinal extent

atom. The energy of this ground-state configuration is approximately

h2 ap v
E~-72"_1p2 (—) : 3

A state with » > 0 has roughly constant energy (Landau and Lifshitz 1977), so that,
for example, the energy of a v = 1 state of hydrogen is about 10-13eV regardless of
magnetic field, once the critical field is exceeded. -

The critical field is defined as the field at which thé magnetic force and Coulomb
force are equal. This depends on the state that the electron is in, and is given by

Z2

Bm~—2____B 4
™ 2m+1)37¢ (4)

where B = 2.35 x 109G is the critical field for the ground state of hydrogen. The
cylindrical approximation is truly valid only for‘ B > By, but in practice it gives
fair accuracy for B >‘ l_?m. The scaling of this formula means thaf for Rydberg
states m > 1, the high-field approximation is valid even for magnetic white dwarfs,
B ~ 108G. It also means that for B = 5 x 1012G, Which is the field strength inferred
from some cyclotron lines from X-ray pulsars, even iron (Z = 26) may be treated
in the high-field limit. For the rest of this paper I shall té,ke as my reference field

- By=4.7%x109%G= 2Bg, to be consistent with tradition.

3. Results and error analysis

3.1 Wavefunctions and energies
The wavefunctions and energies for ions with more than one electron are gen-

erated by a multiconfigurational Hartree-Fock method, modified for a cylindrical
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coordinate system. This means that the wavefunction of the electron is expanded

- as

‘va(Z, py$) = Z Jrnmu(2)@nm(p, é), | (5)

where the ®,,, are the Landau states,

; | \/’? p A\l a5 im| ﬁ —imé
@nm(p,¢)— \/27r(n+|m|)!,62 (\/2_,5) € Ln (2/3)6 ’ (6)

where LLmI are the associated Laguerre polynomials. T‘he_z wavefunctions fpmy
are integrated over an integration box of length L with a number of grid points
N, where the results presented in this paper were generated with- N = 512 and
L = 400p. See MN for an analysis of truncation and grid size errors.

In this code, a simplifying assumption is made, that the p quantum number
n = 0. This is because at the field strengths considered here, B > 1012G; the energy
required to raise an electron to an excited cyclotron state n > 0is E ~ 11.5keVn B9y,
Where B9y = 10—132(-;—, and this energy is much larger than the thermal energy expected |
of a young neutron star, T' ~ 105K ~ 100eV. See MN for a discussion of the details
of the Hartree-Fock method and of some of the errors involved.

The important parameter for error estimation is 8 = "B% When 8 ~ 1 the
n = 0 approximation may be accurate only to 10%, while for 8 > 100 it is accurate
to better than 1%. Since B = 5 for silicon (Z = 14) at B = 4.7 x 102G | the
innermost electron (m = v = 0) is not calculated with great accuracy. However, it
can be shown (e.g., in MN) that in the limit B — oo an atom of atomic number Z
in the ground state will have electrons in the states m = 0...Z — 1,v = 0. Thus,
the other electrons have m > 0, and since By, ~ m, the calculation is much
Better. Furthermore, for the purpose of constructing model atmospheres, the outer
electrons are more important, since in a thermal bath at 7 ~ 106K=1006V, it is

much more likely that an electron with a binding energy of a few hundred eV will
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be ionized than an electron with Ej ~ 5500eV. Andther way of saying this is that
the cylindrical approximation is good for model atmosphere construction when the
cyclotroﬁ energy is much greater than the typical thermal energy.
To get a better quantitative idea of the magnitude of errors in my calculation,
in the first part of Table 1 I corﬁpare my results for the energies of the ground state
and the first excited state of hydrogen-like ions with the results of Rosner et al.,

scaled appropriately. This scaling is given by
Ez(B) = Z°Ey(B/2%), (7).

where Ez(B) is the energy of the hydrogenic atom with atomic number Z at mag-
netic field B and Eg(B/Z?) is the energy of hydrogen at magnetic field B/Z2
(Rosner et al. 1984). In all cases the ground-state energies agree to within < 10%,
and the excited-state energies agree within < 1%. This is enough accuracy to do
model atmosphere calculations for neutron stars, because the input parameters such
as magnetic field and surface temperature are more than 10% uncertain. In the first
parts of Tables 2 through 14, I present my results for ioﬁs with Z > 1. In these
tables, it is understood that the energy given for an electron in a state (mv) is the

energy that that electron has when all other electrons are in their ground state.
3.2 Bound-free cross sections

From MN; the bound-free cross section at a frequency w is

| o(w) = 27rawz O(w + em,,)\/%[y_,_mﬁ?l/fmyg(p, z)dz 9

2

1+ 07| [ fwsp,2)dz ®)

2],

[ et

+2

where
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o is the fine structure constant
© is the step function,
O(z) =0 for z < 0,
(9)
| =1forz>0
M is the mass of the electron

E is the kinetic energy of the electron

9(p, z) is the free wavefunction of the electron with momentum p = vV2ME at.
position z.

Y+, 7~ and 7, are polarization coefficients, which are defined as the fractions of
light interacting with the atom that are polarized in the right circular, left circular,“
and z directions, where “circular” is defined with respect to the mégnetic field. In
these calculations we fake T+ =7- =7 = %,- See Miller 1990 for a discussion of
polarization effects across fhe surface of a neutron star.

In the second paft of Table 1 I give the values of the bound-free oscillator

strengths from the ground states of hydrogenic ions and compare them with the

extrapolation of values given in MN. From Rdsner et al. 1984 this scaling is
f(B,2)=2°f(B/Z%1), (10)

where the oscillator strength f is defined to be

2.2 |
/a(w)dw e, ' (11)

mc

The integral is evaluated at 100 values of frequency, logarithmically spaced from 1eV
to 10keV, and increasing the number of frequencies to 1000 was found to change
the oscillator strengths by less than 10%. Notice that Table 1b shows that the
oscillator strengths are consistent to within 20% of what was given in MN. As with
the energies, this error is acceptable because it is overwhelmgd by the errors in the
input parameters. Tables 2b through 14b give the oscillator strengths from the

ground states of atoms with Z > 1.



75

4. Conclusions

Because neutron stars have extremely large magnetic ﬁélds, the prediction of
the thermal spectra of these objects requires‘the generation of high-field atomic
data, including energies and cross sections. The results presented in this paper
provide the basis for the modeling of the atmospheres of neutron stars, which can
significantly modify their thermal emission of soft X-rays. A future paper will
present the predictions of these model atmdspheres, with a particular emphasis on
how they affect the interpretation of soft X-ray data from satellites such as Einstein,

ROSAT and AXAF.
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Table 1

Binding energies and bound-free oscillator strengths for hydrogenic
ions. The reference field is B0=4.7E9G. The energies in
parentheses are the extrapolated values of Rosner et al. 1984,

and the oscillator strengths in parentheses are the extrapolated
values ©f Miller and Neuhauser 1990.

Energies

R/BO=200

A m nu=0 nu=1

| 0 158 (159) 13(13)

2 0 - 408(412) 52(50)

) 0 , 1653(1773) 382 (378)

7 N 2050(2162) 496 (494)

R/B0O=500 |

o m nu=0 nu=1l

1 ) 208 (208) 13(13)

2 0 546 (545) 52(52)

s i 2313(2393) 419(415)

7 0 2871(2968) 552 (552)

B/BO=1000

A m nu=0 : nu=1l

1 0 252 (253) 13(13)

2 & 676(670) 53(53)

) 0 2850(3051) 439(439)

7 0 3669(3754) 586 (585)

14 " 8714(9367) 2060(2038)
tscillator strengths

B/B0=200

7 m nu=0

1 0 0.28(0.29)

2 0 0.19(0.22)

A 0 0.10

7 0 0.11

B/B0=500

7 m nu=0

f 0 0.33(0.34)

2 & 0.25(0.27)

A 0N 0.13(0.16)

7 SN 0.13(0.15)

B/BO=1nnn

P m nu=0

1 0 0.37(0.37)

2 0 0.30(0.30)

f 0 0.17(0.20)

7 0 0.14(0.18)

14 0 0.03
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Table 2

Rinding ~nergies and bound-free oscillator strengths for helium-like
ions. The reference field is B0=4.7E9G, and all energies are
given in eV.

B/B0O=200
Energies Oscillator strengths
VA m nu=_ nu=1 nu=0
2 no- 271 12 0.49
1 156 12 0.37
A 0 1500 290 0.12
3 962 246 0.09
7 0 1870 - 380 0.13
1 1194 338 0.09
R/BO=500
Energies Oscillator strengths
7 m nu=0 nu=1 nu=0
2 n 365 12 0.47
1 212 13 0.37
. b " 2060 290 0.20
' 1 1366 275 0.12
7 n 2622 420 0.16
| 1701 382 0.12
B/BO=1000
Energies Oscillator strengths
o m nu=0 nu=1 nu=0
2 0 447 12 0.55
1 265 14 0.45
3 0 © 2580 310 0.21
1 1800 240 0.15
7 0 3363 460 0.17
1 2202 408 0.14
14 0 8312 1800 0.03
1 5570 1601 0.06
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Table 3

Binding energies and bound-free oscillator strengths for lithjium-like
ions. The reference field is B0=4.7E9G, and all energies are

given in eV.

B/B0=200
Energies
7Z m nu=0 nu=1
6 0 1335 200
1 838 170
2 637 157
7 0 1686 290
1 1073 260
2 816 232
B/B0=500
Energies
Z m nu=0 nu=1
6 0 1949 200
1 1182 180
2 909 173
7 0 2374 290
L 1517 280
2 1170 261
B/B0=1000
Energies
Z m nu=0 nu=1
6 0 2400 200
1 1500 180
2 1150 180
7 0 3034 310
1 1954 290
2 1523 278
14 0 8022 1650
1 5225 1350
2 4200 1298

Oscillator strengths
nu=0
.15
.11
.09
.16
.11
.08

QOO O OO

Oscillator strengths
nu=0
0.23
0.20
.18
.19
.15
.12

QO OO

Oscillator strengths
nu=0
0.25
.22
.19
.20
.17
.15
.05
.06
.06

QOO OO OCOO
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Table 4

Binding energies and bound-free oscillator strengths for beryllium-like
ions. The reference field is B0=4.7E9G, and all energies are
given in eV.

B/B0=200
Energies Oscillator strengths
Z m nu=0 nu=1 nu=0
6 0 : 1287 115 0.22
1 715 105 0.17
2 534 95 0.14
3 425 91 0.13
7 0 1568 200 0.20
1 939 180 0.13
2 - 713 165 0.11
3 574 151 0.10
B/B0=500
Energies Oscillator strengths
7 m nu=0 nu=1 nu=0
6 0 1637 105 0.28
1 1003 105 ¢ 0.22
2 765 105 0.19
3 609 98 0.18
7 0 2176 200 0.23
L 1319 180 0.18
2 1020 180 0.15
3 827 168 0.17
B/B0=1000
Energies Oscillator strengths
Z m nu=0 nu=1 nu=0
6 0 2005 105 0.40
1 1255 105 0.31
2 955 105 0.27
3 800 100 0.22
7 0 2757 200 0.25
] 1696 180 0.24
2 1316 180 0.18
K 1080 173 0.18
14 0 7601 1350 0.05
1 5013 1250 0.08
2 3979 1150 0.07
2 3354 1065 0.05
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Table 5

Binding energies and bound-free oscillator strengths for boron-like
ions. The reference field is B0=4.7E9G, and all energies are
given in eV.

B/B0=200
Energies Oscillator strengths
7 m nu=0 nu=1 nu=0
6 0 1064 53 0.30
592 45 0.26
2 427 44 0.26
3 338 44 0.21
1 - 268 42 0.20
7 0 1442 125 0.20
] 810 105 0.20
2 595 95 0.17
3 485 95 0.14
4 397 89 0.13
B/B0=500
Energies Oscillator strengths
7 m nu=0 nu=1 nu=0
6 0 1460 45 0.36
1 831 45 0.33
2 604 45 0.34
3 479 43 0.28
4 385 45 0.27
7 0 1987 115 0.29
1 1144 105 0.26
2 855 105 0.22
3 692 98 0.19
1 573 97 0.23
B/B0=1000
Energies Oscillator strengths
pA m nu=0 nu=1 nu=0
6 0 1850 43 0.49
1 1050 43 0.46
2 810 42 0.38
3 600 42 0.42
4 500 40 0.32
7 0 2503 105 0.31
1 1470 105 0.30
2 1106 105 0.26
3 897 95 0.26
1 749 99 0.23
14 0 7396 1250 0.08
1 4707 1050 0.11
: 3683 950 0.08
3 3178- 950 0.07
4 2746 872 0.08



83
. Table 6

Binding energies and bound~free oscillator strengths for carbon-like
ions. The reference field is B0=4.7E9G, and all energies are
given in evVv.

B/B0=200
Energies Oscillator strengths
z m nu=0 nu=1 nu=_
6 0 1011 12 0.42
1 499 11 0.48
2 331 10 0.60
3 247 10 0.46
4 193 10 0.44
5 144 10 0.44
7 N 1278 60 0.28
1 697 50 0.24
2 490 45 0.25
3 386 45 0.25
4 316 42 0.23
5 256 41 0.19
B/B0=500
Energies Oscillator strengths
Z m nu=0 nu=1 nu=0
6 0 1373 10 0.58
. 1 693 10 0.63
2 466 10 0.60
3 350 10 0.57
4 275 10 0.54
5 208 10 0.51
7 0 1760 45 0.34
1 977 45 0.40
2 695 43 0.32
3 549 43 0.33
4 454 43 0.30
5 371 44 0.25
B/B0=1000
Energies Oscillator strengths
Z m nu=0 nu=1 nu=0
6 0 1712 10 0.74
1 880 10 0.74
2 597 10 0.70
3 452 10 0.68
il 357 10 0.62
5 272 10 0.56
1 0 2222 43 0.51
1 1247 42 0.44
2 896 42 0.48
, 713 43 0.38
4 592 43 0.35
5 487 45 0.30
14 0 7106 1050 0.08
L 4429 870 0.10
2 3417 780 0.10
3 2913 770 0.08
4 2550 730 0.07
5 2272 706 0.08
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Table 7

Binding energies and bound-free oscillator strengths for nitrogen-like
ions. The reference field is B0=4.7E9G, and all energies are
given in eV.

B/B0=200
Energies Oscillator strengths
Z m nu=0 nu=1 nu=0
7 ] 1190 10 0.45
1 603 10 0.43
2 398 10 0.46
3 295 10 0.50
4 232 10 0.42
5 186 10 0.47
f 142 10 0.41
B/B0=500
Energies Oscillator strengths
Z m nu=0 nu=1 nu=90
7 0 1635 10 0.48
1 843 10 0.53
2 562 10 0.66
3 420 10 0.62
4 332 10 0.51
5 269 10 0.57
6 207 10 0.59
B/B0=1000
Energies Oscillator strengths
7 m nu=0 nu=1 nu=0
0 2055 10 0.81
1 1075 10 0.84
2 724 10 0.72
3 543 10 0.67
4 433 10 0.69
5 352 10 0.65
6 273 10 0.59
14 0 6843 870 0.11
1 4188 720 0.12
2 3204 660 0.12
3 2703 650 0.11
4 2351 610 0.09
5 2115 600 0.07
A 1885 564 0.07
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Table 8

Binding energies and bound-free oscillator strengths for oxygen-like
silicon. The reference field is B0=4.7E9G, and all energies are
given in eV.

Energies

B/B0=1000

Ground energy=30298
m nu=0 nu=1
0 6629 730
1 3984 600
2 3006 550
3 2464 500
4 2155 500
5 1895 455
6 1727 455
7 1557 439

Oscillator strengths

B/B0=1000

m nu=0

0 0.12

1 0.13

2 0.17

3 0.13

4 0.11

5 0.093

6 0.093

7 0.086
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Table 9

Binding energies and bound-free oscillator strengths for fluorine-like
silicon. The reference field is B0=4.7E9G, and all energies are
given in eV,

Energies

B/B0=1000

Ground energy=31571
m nu=0 nu=1
0 6381 550
1 3760 455
2 2791 420
3 2267 390
4 1949 . 380
5 1707 350
6 1540 340
7 1410 340
8 1273 330

Oscillator strengths

B/B0=1000

m nu=0

0 0.12

1 0.16

2 0.14

3 0.15

4 0.13

5 0.13

6 0.14

7 0.12

8 0.098
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Table 10 .

Binding energies and bound-free oscillator strengths for neon-like
gilicon. The reference field is B0=4.7E9G, and all energies are
given in eV.

Energies
B/B0=1000
Ground energy=32595
m nu=0 nu=1
0 5186 420
1 3568 340
2 2598 310
3 2070 280
4 1741 260
5 1531 260
6 1377 260
7 1238 240
8 1135 240
9 1024 236
Oscillator strengths
B/B0=1000
m nu=0
0 0.16
1 0.20
2 0.18
3 0.20
4 0.16
5 0.17
6 0.16
7 0.15
8 0.14
9 n.12
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Table 11

Binding energies and bound-free oscillator strengths for sodium-like
silicon. The reference field is B0=4.7E9G, and all energies are
given in eV,

Energies
B/B0=1000
Ground energy=33396
m nu=0 nu=1
0 5994 290
1 3372 220
2 2405 200
3 1882 180
4 1572 180
5 1351 170
6 1200 170
7 1085 170
8 991 170
9 893 155
10 801 155
Oscillator strengths
B/B0=1000
m nu=0
0 0.17
1 0.20
2 0.23
3 0.30
4 0.28
5 0.20
6 0.18
7 0.20
8 0.19
9 0.18
10 0.17
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Table 12

Binding energies and bound-free oscillator strengths for magnesium-like
silicon. The reference field is B0=4.7E9G, and all energies are
given in eV.

== O~ W~ O3

Energies

B/B0=1000

Ground energy=33998
nu=0 nu=1
5822 180
3198 125
2232 115
1715 105
1394 98
1180 95
1030 95
912 90
823 90
749 90

0 680 90

1 602 20
Oscillator strengths

B/B0=1000

m nu=0

0 0.17

1 0.28

2 0.30

3 0.31

4 0.32

5 0.31

6 0.28

7 0.25

8 0.42

9 0.31

10 0.24

11 0.22
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Table 13

Binding energies and bound-free oscillator strengths for aluminum-like
silicon. The reference field is B0=4.7E9G, and all energies are
given in eV,

Energies
B/B0=1000
Ground energy=34421
m nu=0 nu=1
0 5656 80
1 3037 51
2 2065 45
3 1549 43
4 1235 43
5 1019 39
6 869 39
7 757 39
8 672 39
9 503 39
10 544 39
11 488 39
12 423 39
Ogcillator strengths
B/B0=1000
m nu=0
0 0.28
1 0.28
2 0.38
3 0.43
4 0.40
5 0.40
6 0.43
7 0.37
8 0.47
9 0.40
Lo 0.39
11 .35

1_.
o
oo
w
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Table 14

pinding energies and bound-free oscillator strengths for silicon-like
silicon. The reference field is B0=4.7E9G, and all energies are
given in eV.

Energies
B/B0=1000
Ground energy=34683
m nu=0 nu=1
0 5502 13
1 2885 10
2 1911 9
3 1397 9
1 1080 9
5 268 "9
6 718 9
7 509 9
8 525 9
9 460 9
10 407 9
11 360 9
12 314 9
13 262 9

scillator strengths
B/B0=1000

nu=0
0.28
0.45
0.44
0.71
0.53
n.73
0.74
n.85
N.66
n.81
1.69
V.60
.69
.60
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Chapter 3: Model Atmospheres for Neutron Stars

M C Millert

fTheoretical Astrophysics, California Institute of Technology, Pasadena, Cali-
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Abstract. While the presence of an atmosphere on a neutron star will not sig-
nificantly modify its total thermal emission, it may change the emission in the
sensitivity bands of detectors such as Einstein or ROSAT so that the inferred
surface temperature (from a blackbody curve) may be quite different from the
actual surface temperature. This in turn may affect deduced cooling curves.
Previous calculations of model atmospheres of neutron stars have used atomic
data calculated for zero magnetic field. However, many neutron stars are ex-
pected to have extremely high magnetic fields, on the order of B > 1012G, and
it is important to take this into account. This paper uses atomic data in high
magnetic fields computed using a multiconfigurational Hartree-Fock code, and
the data was presented in Miller 1990. The effects of ionization and polariza-
tion in strong magnetic fields are discussed, and the prospects for observation

by satellites are investigated.
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1. Introduction

SN1987A is now more tilan three years old, and as the expanding gas. shell that
- surrounds it becomes optically thin, there is the possibility that a central neutron
star will be observed. Because of its youth, this object would have a relatively high
surface temperature, so that its thermal flux might be observable. The planned
ROSAT and AXAF missions may be able to detect such an object, and they have
great enough sensitivity that they may be able to detect thermal radiation from
other sources, such as the Crab or Vela pulsars. The determination of surface
temperatures from X;ray observations will set constraints on the cooling curves of
neutron stars, and thus will give valuable clues to the interior structure of these
~ objects (see e.g. Tsuruta 1986). Preliminary models of neutron star atmospheres
(Romani 1987) indicate that even more stringent limits may be placed on the cool-
ing curves, because the surface temperature inferred from the flux in the Einstein
semsitivity band is much greater than the actual surface temperature. However,
these models have not included the effect of magnetic fields. |
Ginga observations of the gamma-ray bursts GB870303 and GB880205 show
(Murakami et al. 1988) absorption featureé at ~20keV and ~40keV, which may be
interpreted as being du‘evto cyclotron absorption in a magnetic field B > 1012@G.
This is more convincing than previous claims of cyclotron resonance in gamma-ray
bursts (which had only one harmvonic), though it is somewhat suspicious that the
same energies are observed in two éeparate bursts. Fields of this strength dominate
the physies of the surface, and in particular they shift the energy levels of the atoms.
A great deal of work has been done to compute the wavefunctions, energy levels
and radiative cross sections for hydrogen in high fields (e.g. Simola and Virtamo
1978, O’Connel 1979, Kara and McDowell 1980, Wunner et dl. 1980, Rosner et al.
1983, Roésner et al. 1984, Forster et al. 1984, Ruder et al. 1985, Wunner 1986,

 Wunner and Ruder 1987), and similar calculations have been done for helium and
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carbon (Milier and Neuhauser). The need to consider many different compositions
is due to the large variety of processes that can contribute to the makeup of the
surface. For example, iron could be the dominant element because current models
predict that the mass cut of the supernova occurs in the iron layer. Hydrogeﬁ could
be important because it is the most abundan‘p element accreted once the neutron
star starts intéracting with the interstellar medium.. Other elements such as helium
or carbon could contribute, either because the neutron star might accrete from
the supernova shells or because fusion may take place on the star’s surface. The
situation is somewhat simplified because the lightest element present will dominate

0l4g of

the opacity. An optical depth of unity in X-rays requires only about ‘1
material (Romani 1987), and the surface gravity is high enough that gravitational
| separation will take place in only ~ 1 — 100s (Alcock and Illarionov 1980), so only
pure element surface compositions need be considered.

In this paper, we use cross sections computed from the wavefunctions of atoms
and ions in high fields to construct model atmospheres for neutron stars. We con-
sider relatively low témperatures, T = 10° to 105K, consistent with the upper limits
derived from X-ray observations. In Section 2, we descfibe our method for produc-
ing local thermodynamic eqﬁilibrium (LTE) models, including the Khersonskij 1987
high-field modification of the Saha ionization equation. In Section 3, we produce

- spectra for several combinations of parameters and discuss the effect on observable

lines of the variation of the magnetic field over the surface of the star, and in Section

4 we consider the effect of these results on color temperatures and cooling curves.
2. Model Atmospheres

2.1 Iteration procedure and temperature correction

The calculation of our LTE model atmospheres follows the standard treatment

given by Mihalas (1978) for plane pdrallel atmospheres. The assumption that the
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atmosphere is plane parallel is much better for neutron stars than for main sequence
‘stars, because for soft X-rays at optical depth unity, the atmosphere has a thickneés
< lcm, small compared to the neutron‘star radius of ~ 108 cm. The computation
works on a grid of 100 zones, arranged logarithmically in Rosseland optical depth
from 103 to 102. The iteration towards the tempefature profile starts with an

initial guess, taken as that of gray opacity,
T = To(rg + )4, (1)

where Tg is the Rosseland optical depth and ¢ & 0.71044 to ensure agreement with
the exact gray solution at large depth. The photon frequencies are also arranged
logarithmically, with 100 levels from 1eV to 10keV. Hydrostatic equilibrium is im-

posed by
dP g

drg  sp(tg)’

(2)

where g5 is the surface gravity, P is the pressure and xp is the Rosseland opacity.
The equation of state is used to determine tﬁe density from the pressure. It is
demonstrated in Section 2.3 below that on the surface an ideal gas equation of state
holds, so that

P = nkT. (3)

Following Mihalas (1978), the flux is cémputed at each level of the atmosphere from

Fy(r) =2 ﬁ " BT Byt — )dt — 2 /0 BJT@)Eo(r — i, (&)

where B[T'(t)] is the Planck function and E3(t — 7) is the second exponential func-
tion. Note that this assumes that the source function is equal to the Planck function.
This is réasonably vaccurate, because in the frequency range considered, absorption
dominates scéttering.

The number density of neutral atoms, singly ionized atoms, ete. in each level of v

the atmosphere is determined by solving the ionization equation, and when the flux
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is calculated, the Lucy-Unsold procedure is used to impose flux constancy. This

method estimates the temperature correction at a given level by

LT (hp [ TR  kRdAF(r)
AT~ 160R (ﬂP [3/0 KR(T')AF( ) +2AF(O)} kp dtR )’ 5)

where kg, K, kK pand kj are the Rosseland, flux, Planck and absorption mean opac-
ities. The approximation ky = xp was found to give sufﬁc_ient accuracy. After the
new temperature profile is found, hydrostbatic equilibrium is reestablished, the ion-
ization equations dre solved again, a new flux table is computed, and the process is
iterated. Five iterétions are usually sufficient to produce flux constancy to within

< 1% throughout the atmosphere.
2.2 Line broadening in strong magnetic fields

In th‘e high-density, high-temperature environment of a neutron star’s atmo-
sphere, spectral lines will be substantially broadened. Because of the complexities
involved in an accurate calculation of broadening, this effect will be ignored in this
paper. However, in this section some rough estimates are made to determine when
line opacity is important;

Because the Rosseland mean opacity is weighted by the derivative of the Planck
function with respect to temperature, %, the greatest weight is put on frequencies
near hw = 4kT. We consider transitions from the ground state to the first excited
state, so the line center is at about 150eV to 250eV if the magnetic field is between
B = 10'2G and B = 5 x 1012G. If the temperature is between T = 10°K and
T = 105K, the greatest weight is put on fiw = 4kT ~306V to 350eV, which is
~ 10 — 100eV away from the center of the linev, so collisional broadening is most
important. The opacity at this frequency from bound-bound transitions will be
compared to the opacity from bound-free transitions, so that an order-of-magnitude

estimate of the importance of bound-bound transitions may be made.
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The assumption is made that the change in frequency that is due to an encounter

may be described by the Weisskopf approximation

Aw = -Ci,
. rP

(6)

where r is the distance between the atom and perturber, and for example p =
2 is appropriate for the linear Stark effect, whereas p = 3 répresents resonance
broadening. It is assumed that when the frequency is within some critical frequency

of the line center, 7
Aw < Awy, ‘ : (7)
the cross section has a Lorentz form,

1/2n7
T Be? ¥ a2n?

(8)

where 7 is the mean time between collisions. The critical frequency Awy is assumed

to be the Weisskopf frequency

oP 1/p «
Awg & Awy = , 9

 where Yp is a phase shift: ¢9 = m, ¥3 = 2. Outside of this frequency, Aw >
Awy, it is assumed that statisticai ‘broadening theory is applicable. The frequency
dependence isvdiﬁ'erer'lt in a neutron star atmosphere than in laboratories, because
the strong magnetic field constrains the atoms, ions and electrons to move in one
dimension. It is therefore necessary to rederive o(Aw) in one dimeﬁsion, and this is
now done using the approximation that the nearest neighbor is‘ responsible for the
frequency shift. |

The probability W (r) that the nearest neighbor lies at a distance r is

CW(r) =nie” ™™, | (10)
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Here nj is the linear number density of the perturbers along the field line, so that if
the number density is ncm ™3 and the area of the magnetic flux tube is Acm?, then

n1 = nAcm™L. Here A is roughly given by
A=mnp,

where

~ . he —-10 B ' -
p= (E) =25x10" " —moem , (11)

is the radius of the first Landau level. Defining the normal phase shift Awg by

Awg = gg, (12)-
"o

where r( is the mean interparticle distance rg = h'l"l" we see that

(A“’)”pzﬁg.' | 1)

Awg r

Setting g = %m"‘; and substituting, we find that

R
- This compares with the three-dimensional value of
W(B)dg = Sp71Sre g, (15)

so in the presence of a strong magnetic field, the line opacity drops off less sharply.

The cross section integrated over all frequencies is

fo'e] 2.2 :
/ odw = 2r e £, (16)
0

mc

where the oscillator strength f ~ 1. Using this and the assumptions above, the line

cross section for AE >1eV and ny < 1, where AE is the “distance” from the line

center and n; = 10" nyem™1 is
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Stark broadening

' AE -3/2
o5~ 3 x 10718n; 0L/ <1ev) em?, (17)
| Résonance broadening
| —4/3
ORp R 10*15n7C§/ 3 (‘1%‘2‘) cm?. (18)

In three dimensions, Cy ~ lcm?/s and C3 &~ 5 x 10~ 0¢m3 /s.

" To compare the bound-bound cross secf,ion to the bound-free cross section, we
take as an example hydrogen at B = 1012G. Here og and op are respectively the
Stark and resonance cross sections of the transition (m =0, v = 0) to (m = 0;' v=
1) at the frequency fiw = 4kT. This is compared to the combined ionization cross
secf,ions opt from the (m = 0, v = 0) and (m = 0, v = 1) states. The densities
that are used to calculate os and op are the densities at unit Rosseland optical
depfh, which were calculated without including the line opacities. At B = 1012G,
the excitation energy of the (m = 0, v = 1) state is 145V, so this state is assumed

to have e~ 145eV/ET f the population of the ground state, and AE = |145¢V —4kT|.

At T = 10°K=> 4kT = 34.6eV,
p =120g/cm® = ny=2.4
os ~ 6 x 10721em?
or ~ 4 x 107 2em?

Opf 2 4 X 10“21(;m2

At T =3 x 109K=> 4kT = 104eV,
p=0.4g/cm® = n;=0.008
g &9 X 10~ 23¢m?
or & 4 x 10723cm?

opf ~® 1x 10'22cm2
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At T = 105K=> 4kT = 3466V,
p= 0..2g/cm3 #.'n7=0.004
os ~ 4 x 10724cm?
or ~ 3 x 10~ 24cm?

Oht & 4 x 10_20cm2

From this, it is apparent that lines may have a very significant effect at low
temperatures (because of the lack of other opacity sources), but that at high tem-

peratures they may be ignored.
2.3 Equation of state in the atmosphere

In thié paper the equation of state is assumed to be that of an ideal gas. In this
section this assumption is justified by showing that in the photosphere the contri-
butions to the pressure from electron degeneracy and ion corrections is negligible.

For a degenerate electron gasin one dimension, the number of states in a volume

V and a range of z momenta Ap, is given by

GBVAPZ ‘

(Landau and Lifshitz 1977), so the density and pressure are given by

‘ eB. [
Ne = h—g‘c‘/_oofdpz ’ (20)
and
eB [°
P=_ d : 21
o _oopvf Pz, (21)

and for complete degeneracy the occupation number f is

f=1for |p| <pp
(22)

f=0for |p|>pp
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where pp is the Fermi momentum. Therefore, -

2eB
hlc

ne:

PF- (23)

The energies considered are much less than the electron rest mass m, so v & p/m
and

2eB -9 .
P Wp?;, ~.7x 10 B2, (24)

where B = 1012312(} and ne = 1027n27cm_3. The pressure of an ideal gas is
P = nkT ~ 10 ny; Ty, ' (25)

.whereb the temperature is T' = 106T6K, so the two are équal at about ng7 = 0.4 and
degeneracy pressure may be ignored when n%{ < 1.

The interactions between atoms become importént when the mean distance
between atoms is comparable to the size of the ions. The outer electron of a neutral

atom of atomic number Z in a strong magnetic field has an orbital radius of
p=+(2Z-1)p

and a length along the field of (Miller and Neuhauser 1990)
ag/p ) )
I~ | ———=)p, 26
(wrs)? 9
where ag is the Bohr radius, ag = 5x 10~ 9%cm. The average distance between atoms
is
1

PR ——
nA’

(27)

where A = np? = 7(27 — 1)p%. The condition r > [ then yields no7 < ﬁ‘r’_—l
In order to determine whether these conditions are satisfied, it is necessary
to estimate the number density in the photospheré. This may be done from the

equation of hydrostatic equilibrium (2), which can be written in the form K

dP  gs

T (28)
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where o is some average cross section and y is the mass of an atom. This may be
directly integrated, and if an ideal gas equation of state P = nkT is assumed, the

number density is

_ _Ys . _
n= kTa/,uT' : (29)

For typical values g5 = 3 % 1014cm/32, T= 105K, o =10"21cm? and /2.= 10_23g,
the number density at the lower extreme of the atm(;sphere, 7 = 100, is n =
2 x 10%cm™3. Therefore, the conditions above are satisfied, and to a good ap-
proximation the equation of state is that of an ideal gas. Figure 1 compares the
pressures given by various equations of state at a variety of values of the elec-
tron density. From this diagram, it is evident that the strong magnetic field plays
an iinportant part in the non-degeneracy of the atmosphere, and if the magnetic
field were to decay away, the pressure would be dominated by electron degeneracy.
Furthermore, at a frequéncy which has very low cross sectién (such as the higher
frequencies in our model, w ~10keV), the density at optical depfh unity may be

high enough that degenerate pressure is important at the 10% level.
2.4 High-field ionization

For a general multielectron atom, it is necessary to determine the number den-
sities of all of the various ions of the atom. Khersonskij (1987) derived a high-field

lonization equation to replace the Saha equation for hydrogen.

For a hydrogen atom, the neutral hydrogen density ny at temperature 7' and

magnetic field B is determined by

3/2 .
. ng 1( 27h2 smhnp cothne g KT
2 — e B,T
NpNe 2 (mekT 771) Ne € fH( ’ ), (30)

where

np is the proton density,
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ne is the electron densify,

me is the mass of the electron,

Mp = 37‘0%, where wp is the cyclotron energy, wp = —',%fc,
o
e = 35t

E, is the magnitude of the ground state energy, and the partition function fu

is

> Egqgtes+mhw
fu(B,T)=Y e~ (31)
s=0 :

where €5 is the energy of the sth excited state, €5 < 0

and

mhwp is the correction for finite proton mass, Where m is the azimuthal quantum
number.

For Z > 1, the natural generalization (corresponding to the Saha equation) is

to replace my, with mp, the mass of the nucleus and replace

ng V
2
with
ny
) 33

where n, is the number density of the r-times ionized ion.

For hydrogen, one can calculate the ionized fraction,

n
:c,;:-é:l—:c}[, . (34)

where ny is the total density of baryons, from

1 1 1
= \/4(Knt)2 * K T 2Ky (35),

where



105
K = n—’;%:.
For example, for B = 102G and T = 10%K, zp = 0.058, whereas for B = 1013G
and T = 10%K, zTp = 2.2 X 1079, all assuming a total number density of n; =
1021em—3.

For an atom with atomic number Z, the ionization equations are of the form

ny

Np41Ne

= K,, | (36)

where Ky is a constant given by the equations above. The total number density is

ng=nog+n +...+nz, (37)

and charge conservation gives
ne=n1+2n9+...+Zny. (38)

We solve thesé, equations by an iterative averaging method, which ﬁrovides cénver—
gence at a level of 10_5 in less than ten steps. |
Numerically, it is found that for hydrogen ét p = lg/cm? (appropriate for TR =
1) and T < 6 x 109K, an increase in magnetic field causes a‘ decrease in ionization,
While. for T > 6 x 105K, an increase in B causes an increase in ionization. This
is because as the field increases, the binding energy increases but the phase space
| decreases, and at T = 6 x 10°K the two effects balance. However, for atoms with
Z >1at T < 10K, an increase in magnetic field causes a decrease in ionization.
Figures 2a, 2b, 2c and 2d show the fractions of neutral atoms at Varioﬁs values of
the magnetic field and temperature for hydrogeﬁ, helium, carBon and nitrogen.
Thereforé, for a given magnetic field, temperature, and total number density,

the number densities of the ions may be calculal,ted.v For a given ion, it is assumed
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that the ground state and excited states are distributed according to a Boltzmann

law,

noce BT | (39)

3. Spectra

Model atmospheres have been calculated for surface compositions of pure hy-
drogen, puré helium, pure carbon, and pure nitrogen at equatorial magnetic ﬁeids
of 9.4 x 1011(}, 2.35 x 1012G and 4.7 x 1012@ (these values for B are multiples of
the critical field at which magnetic effects dominate). Because the magnetic field
varies over the surfa,cé of the star, it is important to account for this effect. It is also
interesting to investigate the importaﬁce of polarization; these eﬁ'ecté are considered

in the following sections.
3.1 Interpolation of model atmospheres

If we assume that neutron stars have. roughly dipolar magnetic fields, then
the strength of the field varies by a factor of two from the magnetic equator to
the magnetic pole. The presence of higher multipoles would create an even larger
variation in the magnetic field. Since for our calculations we assume that the field is
of such a strength that it dominates the energetics of the atom, the energy levels of
atéms will be shifted dramatically between the equator a»nd>the poles. In order to
account for this, it would seem reasonable to calculate cross section vs. frequency
tables for many intermediate field strengths, then sum these over fhe surface of the -
star, appropriately weighted by projecfed area. However, the (;alculation of cross
section tables for a given magnetic field B and atomic number Z is a process that
takes several hours, and would be computationally more intensive than desirable.

It is therefore worthwhile to search for approximations at intermediate fields.
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The approximation we will make is that the cross sections are shifted in fre-
quency by the amount that the ground state energy level changes, and in magnitude

such that the integrated cross section is constant,

/ o(By, )iy = / o(By,v)dv. (40)

Another way of saying this is that we assume that the oscillator strength of a given
transition, f = 7%:% J odv, is roughly constant with respect to magnetic field. For

example, we would assume that for hydrogen

_ 12¢ 203 208 o _ 12
o(B =4.7x 107G, 52v) = ~=0(B = 2.35 x 102G, ), (41)

where o(B,v) is the cross section as a function of magnetic field and frequency. In
order to make this approximation relevant to ions with Z > 1, we work from the
Ruderman scaling formula (1), where B, is the critical field, By = 2.35 x 109G, in
Ruderman’s derivation but in our case B, is determined from humerica,l simulations.
Between 2.35x 1012G and 4.7x 1012G, the best fit to hydrogen ground state energies
is given by B, = 2.8 x 109G. Therefore, the ratio of the binding energy at an
intermediate ﬁeld, Bint, to the binding energy at the low field, B, = 2.35 x 1012G,

is given approximately by

By _ In%(Bi/(Z22Bp))

~ 42
Eqow 1n2(Blow/(ZzB0)) ( )
and our estimate for the cross section at intermediate field is
. Eint _
U(Bmta __‘V) = U(Blow’ V)- (43)

Elow

This approximation assumes that the scaling of energies is hydrogenic. This is fairly
accurate for the outer electron of an atom,‘ but breaks down for the inner electrons.
However, this should not detract significantly from the computations because the

lonization energies of the inner electrons are in the several hundred eV range, which
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is substantially higher than the typical photon energy 7w ~ 10eV—100eV from a
thermal bath at T' ~ 105 — 106K.

3.2 Effects of polarization

Calculations of radiative cross sections iﬁ strong magnetic fields, as might be
found on the surface of a neutron star, have used the implicit assumption that if
the radiation field. is isotropic and unpolarized, then all polarization components
will make equal contributions to the cross section. However, as indicated below,
for bound-free interactibns the component of polarization that is linear and parallel
to the magnetic field axis (which we call the B polarization) is dominant. In this
section, we first give an estimate of the ratio of the cross sections due to B and
circular polarizations (where “circular” is defined with respect to the direction of
the field, not the propagation direction of the photon), then estimate the impact of
this ratio on the ionization process.

In a strong magnetic field, an atém is stretched along the field, with its length

scale across the field given by
p~25x 107108 2em, (44)

~ where Big = TFFBW and its length scale along the field givenv by

o _w/Zp \ .
P (1og<ao/zm) & (45)

where ag is the Bohr radius, ag ~ 5 x 10~ %cm, and Z is the atomic number of the
atom. For éxample, for Z =1and Big =1, 1 ~ Tp. Hencefor‘th we will consider
the hydrogen atom, Z = 1. We will use a cylindrical coordinate system, where z is
the coordinate for the cyliﬁdrica,l axis, p is the radial coordinate, ® is the azimuthal
coordinate, and v, n and m are their respective quantum numbers. We will assume

that n = 0.



109
It is intuitively reasonable that for bound-fre¢ absorption, the B polarization
should have a greater cross section than the circular polarization, because it is
1nteract1ng with the long axis of the atom. To get an idea of how great the dlﬂ'erence
is, we will look at Coulomb Wavefunctlons in the limit of low kinetic energy, F = ip_

~small. In a strong field, the Schroedinger equation along the field is

e
E
2m 92 z TV =59
Using the substitutions
2mE e2 [2m

_this becomes

where g(2) is the z-component of the wavefunction. This is the differential equation
for the Coulomb functions, and in the limit p — 0 and 7 — —oo this becomes (see

e.g. Abramowitz and Stegun 1972)

o)~ - (—0)2 | (46)

where ¢(z) is the unbound wavefunction of the electron (this approximation is valid
for z < ayp).

The circular cross section is given by

oo . 2
re o |b [ fmilo()ds

00 ‘ 2

A oo ) 22
...p_ . e—.l”l/l__dz
a0 J—o0 ap

2
| (47)
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where fmy(2) is the z component of the bound wavefunction of the electron. We

‘are considering only the ground state
v = foo = e~l#/, , 48
00 .
Similarly, the B polarization cross section is

0B |/_Oo zfmy(z)g(z)dz|2
o) . 2
=1 [ b (2)aep (49)

- I / ez,
—00 ag

N (93)2, | (50)

Therefore, the ratio is

o4 p
which has a value of about 400 for B = 1012G. This compares to a numerically
determined value of about 10000 at the absorption edge, where the greater value is
due ;co the increased binding energy in a strong magnetic field. The approximations

used above are valid for

EK Eground’ . (51)

where E is the kinetic energy of the free electron and Eground .is the ground-state
binding energy of the atom, about 160eV for B =1012G. In practice, the cross
section that vis due to B polarization remains much greater than that due to circular
‘polarizavtion even at higher energies, so that, for example, at B = 4.7 x 1012G,
E =1000eV, 0 = 5.4 x 10~ 2lem? and 04 = 3.4 x 10~%¢m?, A similar ratio holds
for ionization from excited states, so that it is a good approximation to assume that
op > o4 for all frequencies considered.

The total bound-free cross section has the form

Obf ~ Y+0+ +7-0— +vBop, (52)



111
where v4,7- and yp are the fractions of the light polarized in fhe right circular,
left circular and magnet_ic field directions, respectively. A calculation done for a
.dipolar field indicates (see Appendii{ I) that in a strong field y5 ~ 0.4, and since
forog > o4 |

Obf =~ YBOB,

~ the total cross section is about 20% greater than if the v ’s were equal.

We found that the surface gravity has a small eﬁ'ect on the unredshifted spec-
trum, as was also true in the nonmagnetic case (Romani 1986). In Figure 3 we see
that the emergent spectrum for helium is very similar for surface gravities bf 1014
and 10'%cm s72 for B = 4.7 x 102G and a surface temperature of 3 x 109K. As
in the nonmagnetic case, what change there is in the spectrum is probably due to
increased pressure ionization below fhe absorption edges in the high-gravity case.
In the other spectra presented below, a surface gravity of 3 x 1014cm s~2 is assumed.

In Figures 4, 5, 6 and 7 we show the unredshifted spectra from atmospheres with
varying compositions and magnetic fields at an effective temperature of T = 10°K.
In Figures 8, 9, 10 and 11 we show the temperature as a function of Rosseland
optical depth from these atmdspheres,' and in Figures 12, 13, 14 and 15 we show

the pressure as a function of Rosseland optical depth.

4. Color temperatures and cooling curves

In Table 1 we list the blackbody temperatures associated with the various mag-
netic field values and surface compositions of the model atmospheres. In this table,
T§, is defined as the temperature of the blackbody curve which gives the same num-
ber of counts as the model atmosphere in the sensitivity range of the Emnstein IPC
(0.5 to 5.0 keV), while TR is defined similarly for the ROSAT HRI (0.1 to 2.0 keV).

Here the response curve for the Einstein IPC is taken from Harnden et al. (1984)
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and the response curve for the ROSAT HRI is taken from the ROSAT Mission De-

scription, Table 4.4. We note that the ratio of blackbody vtemperature to effective
temperature is very close to 1, with a minimum of 0.73 and a maximum of 1.37.
This is in contrast to the results of Romani, who found that for B = 0 the tem-
perature of a blackbody with the same number of counts in the Einstein band as
the model atmosphere could be much higher than the effective temperature of the
star. This is due to two effects which increase the opacity. First, the presence of a
magnetic field shifts the energy levels of atoms upward so that the ionization edge is
closer to the observed frequencies, which means that the opacity is higher. Second,
in a strong field the bound-free cross section drops off as 1/"2, not »~3 as in the
non—magnetic case. Since the opaciﬁy is higher, the levels of the atmosphere which
contribute to the spectrum are higher up, and consequently are cooler. Therefore,
the flux is much closer to blackbody flux at the frequencies of interest.

Except in a few cases, X-ray observations of pulsars have provided only upper
limits to their thermal flux. Exceptions include RCW 103, with an estimated black-
body temperature of 2.7 x 106K (Tuohy and Garmire 1980); PSR 1929+10, with
Tgp ~ 2.0 x 10°K (Helfand 1983); and PSR 0656+14, with Tgp ~ 3 — 6 x 10°K
(Cordova et al. 1989). Non-magnetic calculations indicated that the presence of
an atmosphere could significantly affect the resultant surface temperature of these
objects. In particular, if the surface temperature is much less than the blackbody
temperat'ure the star will have-had to cool more quickly than is expected in the
standard cooling model (see Tsuruta 1986 for a review). This may mean that the
interior of neutron stars is composed of exotic states of matter such as pion con-
densates or quark matter, or it may just mean that effects in the standard model

~such as reheating of the star by differential superfluid rotation (see, e.g., Lamb and

Shibazaki 1989) have not been fully taken into account.
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Our results seem to indicate that the presence of an atmosphere does not signifi-
cantly modify the blackbody temperéture. This gives a reprieve to standard cooling
models, which now have until the launches of ROSAT and AXAF to explain why

neutron stars seem to cool faster than they ought.
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Appendix I. Calculation of the polarization coefficients

Assuming that the source of radiation is initially isotropic and unpolarized, what
fraction of the light that reaches the observer is ﬁght cifcular, left circular and B
polarized after interacti‘ng with the atom? Our coordinates are set up so that fhe z
axis is along the line of sight, and the magnetic field is in the y — z plane and makes
an émgle of ¢ with the z axis. As indicated in the figure, we assume that the initial
ray comes from a direction that makes an angle of € with the line of sight and ¢
with the  axis. Since the initial ray is unpolarized, it has equal components aloﬁg
both directions perpendicular to the initial direction. To determine the polarization
lcoefﬁcients YBs Y+, and y—, we integréte the projections of these components along
the &g, + and — directions, multiplied by a weight function and normalized.

If we assume that the magnetic field is given by
B = Byép, | (53)

where

ép = (0, sinty, cosy)), (54)

then the polarization unit vectors are given by.

épg = (0, siney, cosy), . (55)

&y = %(1, icosy, —isiny), | v (56)
é_ = \/ig-(l, —icost, ising). (57)

From the diagram, the initial direction of the fay is
é = (cos¢sind, singsind, cos0.), : ‘(58)
so the initial polarization will be composed of

€11 = Vl_g(sinqﬁ, —cosqﬁ,'O) (59)
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and
€19 = %(cos&cos@ cosfsing, —siné), (60)
so that

ler1f? 4 lesol? = 1.

Following Collins, we note that the electric field of the incoming wave will cause
the atom to oscillatev, and this motion coupled with the magnetic field will cause a
secondary oscillation. Thus, the atom may be considered to have a dipole moment »

consisting of two parts,

D = Dg + Dy, ' (61)
where
Dy x E | (62)
and .
Dy x E x x, (63)
where
eB OJC ~
X = mNc/w = —@p, (64)

and my is the mass of the nucleus. Since the gyrofrequency of the nucleus, we, is
only & 6eV at B = 1012G (and we will typically- consider frequencies higher than
that), we will expand only to first order in z = [x].

The new (unnormalized) components of polarization are

. 1 : R

&1 = —\/—5(@.1 +z(e11 X &B)) (65)
and

R 1 - :

&9 = \—/—E(eu +z(ej9 X €p))- | (66)

The normalization for both of these is roughly —\/-1%—5, which we will approximate

as 1.
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To get the polarization coefficients, we note that, e.g.,

27 T ' .
5= / / (1p-&11/* + (8 - 815" (b, 4, ¥)sindd8dg/N,  (67)
0 0

where N is the normalization factor and w(f,4,v) is a weight factor (such as
w(8,4,%) = 1 + cos28 for Thomson scattering). To check the validity of these

assumptions, we will first calculate the polarization coefficients for the isotropic

case, w(8, ¢, 1) =1.

27 T
1B = % / / (cos2¢sin21/) + cos29sin2¢sin27,b + sin?fcosZep
0 0 ,
—2sinfcosfsingsinipcost) )sinddfdp /4
1 9 ,
=3 + O(z?) ’ (68)
LT 202 2000526 4 cos2Bsin deo bt
Y4 = 7 (8in®@ + cos”pcos ) + cos“Ocos®p + cos“Psin’®pcos’yp+
0 0 A
sin293in2g/)'—|— 2sinfcosfsingsinicosyp + O(x))sinfdfdg /4

+ O(z?) | (69)

CO =

T+ =7—s (70)

so the ;:oefﬁcients are all equal, as they should be. Note that the terms of order z
integrate to 0.

As indicafed in the previous section, for bound-free absorption the cross section
that is due to B polarization is much greater than that due to circular polarization.
VThis is the case we will consider, but we note in passing that for bound-bound
absorption this assumption is decidedly incorrect, since transition rules may forbid -
absorption that is due to B polarization at certain frequencies. Thus, in a treatmeﬁt
of radiative transfer that includes energies less than the binding energy of the atom,

the full formula for polarization coefficients given below with r > 0 must be used.



117
The differential cross section for unpolarized light may be determined by adding
the differential cross sections that are due to the two polarization components (see

e.g. Rybicki and Lightman pg. 90 and following):

do

70 < (-l )1 ép)* +r(1— (811~ 6p))

: (71)
+(1- &, )(é1s-8p) 2 +r(1— (612 85)%)]

where r E'% and €1 , is the z-component of the first polarization vector. For an

isotropic cross section, r = 1, while for our case, r < 1. The weight function is
9 .
w(6,6,4) dg, @
and the normalization factor is
27 T T _ ‘
N = / / w(8, $,)sinfdod¢ = —1—5(36(1——r)sin2¢+8(1—-r)cost/)+80r). (73)
0 0 ) ’
The coefficients become
1 [27 . | »
=3 / / [c032¢sin2¢ + coszesin2¢sin2¢ + sin26c032¢
0 0 .

—2sin9cos9sin¢sin¢cos¢]w(9, ¢, )sinfdbd¢ /N

(1 -~r) + 2 (1 r)sin2¢ + (6 + Sin2¢) : )
2(1—r) + 7(1 — r)sin2¢p + 20r O(=), (74)
Y+ =7-= %(1 —YB)- . (75)

Notice that, miraculously, x only shows up in terms of order z2 or higher.

For example, for ¢ = 0 and r = 0, this gives

2 5 |
VB =% = V- = 1 (76)

and for ¢ = 7/2 and r = 0,

26 37
1B = 63,7+ 7- = T35 (77)
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The average value for yg over the surface of a neutron star with a dipolar field and
a rotation axis aligned with the magnetic axis is about 0.40. The total bound-free

cross section has the form
Obf ~ Y40+ + V=0 + 7202, (78)
so the cross sections are on average about 20% greater than in the isotropic case.

Appendix II. Projected area of the surface elements of the

star

In order to calculate the thermal spectrum of a neutron star properly, we need
to figure out how much of the projected surface area of the star has a magnetic
field strength in a range dB around B, calculate the spectrum from that area, and
integrate over the star. In this appendix, we use N ewtqnian straight-line optics. For
vareal neutron star, general relativity would have to be used, which would increase
the apparent area of the star. We work with coordinates set up so that the z—axié
- is lined up with the magnetic axis and the line of sight is defined to be in the x-z
plane. The projected area of a surface element at a direction (6, @) is its real area

times the dqt product of its normal vector with the vector of the line of sight. Let
7 = (sin @ cos ¢, sin O sin ¢, cos §) | (79)

be the normal vector of the surface element, and
§ = (sint, 0, cos ) . (80)

be the vector of the line of sight, where ¢ is the angle between the magnetic axis

and the line of sight. Then the contribution from the surface element is

7+ § = sinfcos ¢sin1) + cosf cosp. _ (81)



119
To determine the projected area of the surface with a given magnetic field, we
first need to determine how much is visible, since the star will block out its own

back side. For a given % and 6 the range of observable ¢’s is determined by the

solutions to # - g=20:

cos 8 cos 9

OS¢ =~ lemy (82)
so ¢ runs from —¢I1 to ¢1, where
_ . —1] cosfcost
$1 = cos [ sin Osin ¢ ] (83)

‘When the expression in brackets is less than -1, the allowed angles run from —= to
7, wheras when the expression is greater than +1, there are no allowed angles. For

a dipolar field, the magnetic field strength is given by
|B| = BeqV'1 + 3cos? 9, . (84)

where Beq is the equatorial field. Thus, if the field varies in strength from Bj to

By, the angle varies from

91=cos_1\/%(1§;1q)2—1) | ‘ (55)
8 = cos™ 1\/3 (]’Z) ~1). | (86)

The band from 7 — 61 to 7 — 63 also encompasses these fields, so the total projected

to

area is

A(B1,Bg) = / / (sin 6 cos ¢ sin p + cos  cos 1) sin fd¢pdl ,
7r—91 T ¢1 (87)
(sin @ cos ¢ sin ¢ + cos 8 cos 1)) sin Odpd6.

—02 1—7
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If 61 and 69 are close together, we may approximate this double integral by setting

0 = (61 + 62)/2, so that

¢ .
A(B1,Bg) = (69 — 91)sin9[/ ¢1 (sin 8 cos ¢ sin ¢ + cos O cos p)do
—¢1 ,

(88)
7T—¢1 : . .
—l—/ (sin 6 cos ¢ sinp — cos § cos 1/))d¢)] ,

' ¢r1—m .
where the minus sign in the second integral is because cos(m — §) = — cos(6). In

our simulations we use ten intermediate fields to approximate the surface, though

there was almost no difference between using ten and five.
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Table caption

Table 1: We list the blackbody temperatures associated with the various mag-
netic field values and surface corhpositions of the model atmospheres. In this table,
' Tg, is defined as the temperature of the blackbody curve which gives the same num-
ber of counts iﬁ the sensitivity range of thé FEinstein IPC (0.5vto 5.0 keV) as the
spectrum does, while TR is defined similarly for the ROSAT HRI (01 to 2.0 keV).
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Figure captions

Figure 1: We compare the pressures given by: an ideal gas; electron degeneracy
at a magnetic field B = 0; and electron degeneracy at a magnetic field B = 1012@G,

as a function of electron density ne.

. Figures 2: We show the fraction of neutral atoms at a density of p = 1g/cm3 for
hydrogen, helium, carbon and nitrogen at a variety of temperatures and magnetic

fields. The ionization fraction at B = 0 is included for comparison.

Figure 3: We comﬁare the unredshifted spectra of helium at surface gravitibes
of 101 and 101%cm/s? for B = 4.7 x 1012G and T = 3.0 x 10°K. This figure demon-
strates that the surface gravity does not have a significant effect on the unredshifted
spectrum, and as a result we have set g = 3 x 10Mem/s? in the ca,lgulations listed

in Table 1.

Figure 4: We graph the ratio of the unredshifted spectrum of hydrogen to the
spectrum of a blackbody at Tog = 1.0 x 106K and B = 94 x 101G, 2.35 x 1012G

and 4.7 x 1012G.

- Figure 5: We graph the ratio of the unredshifted spectrum of helium to the
spectrum of a blackbody at Teg = 1.0 x 105K and B = 9.4 x 1011G, 2.35 x 1012G

and 4.7 X 1012G.

Figure 6: We graph the ratio of the unredshifted spectrum of carbon to the
spectrum of a blackbody at Tog = 1.0 x 105K and B = 9.4 x 1011G, 2.35 x 1012@Q

and 4.7 x 1012G.

Figure 7: We graph the ratio of the unredshifted spectrum of nitrogen to the
spectrum of a blackbody at Teg = 1.0 x 10K and B = 9.4 x 101G, 2.35 x 1012G

and 4.7 x 1012G.
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Figure 8: We graph temperature vs. Rosseland optical depth for hydrogen
an effective temperature of T,y = 109K at equatorial magnetic field strengths

B =94 x 101G, B =2.35x 1012G and B = 4.7 x 1012G.

Figure 9: We graph temperature vs. Rosseland optical depth for helium
an effective temperature of Tog = 109K at equatorial magnetic field strengths

B =9.4x101G, B=2.35x 102G and B = 4.7 x 1012G.

Figure 10: We graph temperature vs. Rosseland optical depth for carbon
an effective temperature of Tog = 10K at equatorial magnetic field strengths

B =9.4x 101G, B = 2:35 x 10!2G and B = 4.7 x 10!2G.

Figure 11: We graph temperature vs. Rosseland optical depth for nitrogen
an effective temperature of Tog = 108K at equatorial magnetic field strengths

B =9.4x1011G, B =235 x 1012G and B = 4.7 x 1012C.

Figures 12: We graph pressure vs. Rosseland optical depth for hydrogén
an effective temperature of Tog = 109K, at equatorial magnetic field strengths

B =94x 101G, B = 2.35 x 1012G and B = 4.7 x 1012G.

Figurés 13: We graph pressure vs. Rosseland optical depth for helium
an effective temperature of Tog = 100K, at equatorial magnetic field strengths

B =94x 101G, B =2.35x 102G and B = 4.7.x 1012G.

Figures 14: We graph pressure vs. Rosseland optical depth for carbon
an effective temperature of T,y = 109K, at equatorial ma,gne"cic field strengths

B =94x 101G, B =2.35 x 101G and B = 4.7 x 1012G.

Figures 15: We graph pressure vs. Rosseland optical depth for nitrogen
an effective temperature of Tpg = 109K, at eqﬁatorial magnetic field strengths

B =94 x 101G, B=2.35x 102G and B = 4.7 x 1012G.
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TABLE 1

Temperatures of blackbodies giving the same count rates as model atmospheres

Surface

B(Gauss) T.x(K) Composition Einstein Rosat

9.4 x 101! 108 H 1.3 x 108 9.3 x 10°
He 8.7 x 108 1.1 x 106
C 7.8 x 108 1.1 x 108
N 7.8 x 105 1.1 x 108

2.35 x 1012 106 H 1.3 x 108 1.0 x 105
He 8.7 x 108 1.1 x 108
C 7.1 x 108 1.1 x 108
N 7.1 x 105 1.1 x 108

4.7 x 1012 108 H 1.0 x 108 1.1 x 108
He 8.3 x 10° 1.1 x 108
C 7.4 x 105 1.1 x 108

N 7.6 x 10° 1.1 x 108
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, Figure 1
Pressure vs. density for various eqgns. of state
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Figure 2a ;
Fraction of neutral hydrogen for p=1g/cm
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Figure 2d
Fraction of neutral nitrogen for p=1g/cm’
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Figure 3
Helium spectra for T=3.0e5K, B.,=
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Figure 4
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Figure 5
Flux relative to a blackbody for helium, T=1e6K
1 L T ] T T T T ]7 l:' Il j
: | ‘ 4
| _
Blackbody ' i 4
........................... B=9.4x10''G : | 1
————————— B=2.35x10'"C D .
—B=4.7x10"%G L T
. f ’ 7]
. ' i
S ==\ ! !
i — S \ A \/‘:/\] ; T ‘ ]
|t ]
T\ | 1
o
s
I -
“\ e i
\\\ fl I .
\ \\ /I ’ -
J
\\ N I} |
\ | :
\ | 1
_.‘
1 ! 1 l 1 { 1 | I \\I { I i 1 L
2 3 4

log,, Photon energy (eV)



135
Figure 6

Flux relative to a blackbody for carbon, T=
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Figure 7
Flux relative to a blackbody for nitrogen, T=1e6K
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Temperature vs. optical depth for hydrogen, T
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Figure 9

Temperature vs. optical depth for helium, T.,=1e6K
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Figure 10

Temperature vs. optical depth for carbon, T, =1e6K
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Figure 11
Temperature vs. optical depth for nitrogen, T.y=1e6K
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Figure 12
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Figure 13
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Figure 14
Pressure vs. optical depth for carbon, T=166K
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Figure 15
Pressure vs. optical depth for nitrogen, T=166K
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Abstract. The X-ray spectra of gamma-ray bursts in the energy range lkeV-
20keV may have identifiable lines from highly ionized elements, and the obser-
vation of these lines could help in the determination of the surface magnetic
field, gravitational redshift and composition of neutron stars. This paper at-
tempts to aid in the identification of such lines by calculating the energies of the
ground state and one or two excited states of hydrogen and helium-like atoms in
strong magnetic fields B > 1012G. The energies are calculated with a high-field
multiéonﬁgurational Hartree-Fock code, as described in Miller and Neuhauser
1990. The hydrogen-like atoms are compared with previbus results, and error

estimates are made for the helium-like energies.
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1. Introduction

Absorption features. a,f a few tens of keV have been seen in some observations
of gamma—réy bursts (Mazets et al. 1981,1982, Dennis et al. 1982, Hueter 1987).
These features. have usually been single, but recently the Ginga satellite observed
two gamma-ray bursts with lines at about 19.5keV and 39keV (Murakami et al.
1988). Though it is soméwhat suspicious that two events should produce the same
profiles, the natural interpretation of these features, given a neutron star model
of gamma-ray bursts, is that they are the fundamental and first harmonicb of a
cyclotron resonance. If this is true, it implies a surface magnetic field of B > 1012G.
However, it 'is difficult to ‘provide a better estimate of the field because the line
is gravitationally redshifted by an unknown amount. The precise détermination
of the surface field, as Weu as the gravitational redshift, would be aided by the
identification of another type of line.

Because gamma-ray bursts are very energetic events, vs}ith a typical energy flux
esi';imated to be ~ 1037 ('ﬂ%ﬁ) 2erg/s, where d is the distance to the source, it is
reasonable to expect that the emitting region will contain highly ionized atoms. If
the atomic number Z of these atoms is high enough, atomic absorption of photons
will produce absorption features in the 1-10keV range. Since the energies of these
featurés and the energies of cyclotron lines scale differently with magneti‘é field (see
Section 2), identification of these lines would uniquely determine the magnetic field
and gravitational redshift at the emitting region. This could, in turn, give valuable
clues about the equation of state and evolution of neutron stars. The determination
of lines in gamma-ray bursts would be similar to the attempted identification of the
4.1keV absorption feature in the X-ray burster MXB 1636-536 by Ebisuzaki (1987).
In this paper, Ebisuzaki attempted to fit helium—like iron, chromium and titanium

(calculated for zero magnetic field) to this feature, and thus deduce the gravitational
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redshiftb. However, in gamma-ray bursts and some X-ray bursters such as Her X-1,
the magnetic field will shift the lines énd thus complicate the identification process.

In order to assist with the deter'minatioﬁ of atomic absorption lines in events
such as gammd—ray bursts, this paper gives the energies of various states of several
highly ionized atoms in a few strong magnetic fields. While it may be likely that
iron, with Z = 26, will dominate the surface (because it is the equilibrium nucleus
at zero pressure), other values of Z have been considered for illustrative purposes.
In Section 2 the method used to generate these energieé is briefly stated and some
of the important parameters and scaling laws in very strong magnetic fields are
covered. In addition, the results are given and the errors are estimated. Finally,

Section 3 presents the conclusions.

2. Approximations and method
2.1 Sealing laws

In this paper, the magnetic field is assumed to be large, so the electrons move in
Landau orbits around the field, and the nucleus acts as a perturbation. Therefore,
the wavefunction of an atom may be approximated as a thin cylinder, with the
long axis along the field. Accordingly, a cylindrical coordinate system is set up,
with p being the ré,dial coordinate, ¢ being the azimuthal coordinate, and z beiﬁg
the coordinate along the field. The quantum numbers for these coordinates are,
réspectively, n, m and v. |

This approximation is valid when the magnetic field greatly exceeds a critical
field, with the critical field deﬁﬁed as the field at which the magnetic force and
Coulomb force are equal. This depends on the state that the electron is in, and is
given by (Miller and Neuhauser 1990)

ZQ

Bp~—=— B 1
™= 2m+ 13 ¢ (1)
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where B = 2.35 % 109G is the critical field for the ground state of hydrogen. The
cylindrical a,pproximation.is truly valid only for B > B,,, but in practice it gives
fair accuracy for B > Bp,. The scaling of this formula means that fof Rydberg
states m > 1 the high-field approximation is valid even for very magnetic white
dwarfs, B ~ 108G. It also means that for B = 5 x 102G, which is the field strength
inferred from some cyclotron lines from X-ray pulsars, even iron (Z = 26) may be
treated in the high-field limit. For the rest of this paper the reference shall be taken
to be By = 4.7 x 109G= 2B, in accordance with tradition.

A hydrogenic electron in its ground state n = m = v = 0 in the limit'B — 00
has a binding energy that is approximately given by (Ruderman 1970)

X aq A
E~-72 n? [ =% .
Ma " (Zp"> | @)

(Ruderman 1971) where

Z is the atomic number,

M is the mass of the electron,

ap is the Bohr radius, qg =~ 5 X 10~%cm; and

A R h 1/2 10 p—1/2

p is the length scale across the field, p = (é—) /R 2.5 X 107" By, ' “cm,
where B9 = -1—0]137@ A state with v > 0 has roughly constant energy (Landau and
Lifshitz 1977), so that, for example, the energy of a v = 1 state of hydrogen is about

10-13€V regardless of magnetic field, once the critical field is exceeded.
2.2 Method and results

The results in this paper were generated with a high-field multiconfigurational
Hartree-Fock method. This method was described in detail in Miller and Neuhauser
1990 (hereafter referred to as MN), and I will not repeat that analysis. However,
some of the basic points are worth reétating. The wavefunction of an atom is

expanded in a cylindrical basis:

Yrmu(z, p, 4) = anmV(Z)‘I’nm(Pa ), ' , (3)
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where the ®,,, are the Landau states,

B \/m P |m|e_p2/4ﬁ2 [m| P_2_ —imdé
@nm(p, ¢) = \/27T(n n lml)'ﬁ2 (\/i-ﬁ) Ly (Zﬁ)e (4)

(m|

and Ly ' are the associated Laguerre polynomials. In the limit g = PB: > 1, the
n > 0 states contribute little because the energy required to excite an atom to an
n > 0 state is 11.5keVnBjg, which is much greater than the binding energy for
B> 1 (Rosner et al. 1984). Thus, in MN and this paper;thé assumption has been
made that n = 0. However, for the atomic numbers and magnetic fields considered
in this pal'per, this assumption is not always good. For example, for Z = 28 and
B = 1012G, 8 =~ 0.2 for the m = v = 0 state of hydrogen. Therefore, mixing of
n > 0 states is important for m = v = 0.

Since it is difficult to g,et. an analytic estimate of the errors incurred using the
n = (0 approximation, an attempt has been made to estimate the error in the
energies of the m = v = 0 states of atoms by comparing my results for hydrogénic

atoms with those of Résner et al. 1984, which is done using the scaling formula
E(B,Z) = Z2E(B/Z21). (5)

Since Rosner et al. 1984 did full expansions with n > 0, their results are highly
‘accurate and may be taken as the standard against which all high-field hydrogenic
calculations must be tested. Since the maj 61' determinant of error in my calculativons
is the parameter 3 (see MN for a discussion), the errors for hydrogenic atoms are
the. errors one would expect for the m = v = 0 state of any a,tom‘. Similarly, the
values for the energy of the m = 0, v = 1 state of hydrogen have been compared
with Rosner et al. 1984. Because in this state the electron is, on the average, much
farther .from the nucleus than it is in the ground state (as it is for any m > 0 or
v > 0 state), the effective § is much higher, and the approximations used in this

paper are better.
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The energies were determined by an integratidn over a one- dimensional integra-
tion box of length L with a number of grid points N. The results presented here were
calculated with N = 1024, L =100p for the v = 0 states and N = 1024, L = 400p
for the v = 1 states. Table 1 gives the binding energies of the ground and first
excited states in several magnetic fields for‘hydrogemlike silicon, chromium, iron, |
~ cobalt and nickel. The numbers in parentheses are the extrapolated values of Rosner
et al. 1984, and linear inferpolation was used between the values given in their ta-
bles. It can be seen that for B = 102G the ground-state energies are accurate only
to within ~ 20%, while at 1013G they deviate from Rosner et al. 1984 by only
6%. Howevér, the excited state m =.0, v = 1 has much greater accuracy, with a
maximum differ’ence' < 4% and a typical agreemenﬁ better than 1%. Tables 2a, 2b
and 2c give the binding enérgies of the helium-like ground state and two excited
states of the same elements in the same fields, and hére the total‘énergy of the atom

(i.e. the energy necessary to ionize it completely) is also given.

3. Conclusions

If gamma-ray bursts are observed by detectors with good resolution in the en-
ergy range 1keV-100keV, it is possible that the detections of cyclotron lines and
atomic lines may allow reasonably accurate estimates of the magnetic field and
gravitational redshift .of the neutron star. This paper has presented the energies of
some highiy ionized states of atoms in various magnetic ﬁelds, and if the Iﬁagnetic
field is large (B > 5 x 1012G), these numbers will allow for a reasonably precise
(10%) determination of the parameters B and 1 + z. However, for smaller fields
(B ~1x 10'2G) and high atomic number (Z > 20) it is necessary to consider the
mixing of n > 0 states for accuracy better than 25%.

It may be quite difficult to determine the atomic number from the positions of

the lines, especially if only one or two atomic lines are detected. If cyclotron lines
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are also detected, it will be possible to set limits on theAmagnetic field, and thus the
atomic number. However, as is apparent from the tables, atoms with similar atomic
number have very similar line structures, and exceptional energy resolution would
be required to differentiate between, for example, iron (Z=26) and cobalt (Z=2T7).
Thus, it may be necessary to make assumptions about the su.rface composition to

determine the redshift and magnetic field.
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Table 1

Binding energies of hydrogen-like atoms in strong fields.
The states are labelled by their m-value, then their nu-
value. The energies in parentheses are the extrapolated
values of Rosner et al. 1984.

Energies (eV) Zero field values (eV)

Z B (G) 00 01 00 01
14 lel2 4955 (5579) 1596 (1606) 2666 666
2el2 6491 (6999) 1805(1809)
3el2 7576(8018) 1922 (1921)
5el2 9170(9562) 2059(2056)
lel3 11802 (12079) 2221 (2216)
24 lel2 9439 (11961) 3716(3801) 7834 1958
2el2 12496 (14568) 4340(4394)
3el2 14680 (16495) 4708 (4736)
5el2 © 17922 (19509) 5165(5183)
lel3 23346 (24522) 5750 (5731)
26 lel2 10373(13518) 4197 (4328) 9194 2298
2el2 13753(16293) 4923 (4994)
3el2 16172(18431) 5355(5402)
5el12 19767 (21725) 5895(5924)
lel3 25794 (27372) 6595 (6598)
27 lel?2 10844(14324) 4443 (4598) 9914 2479
2el2 14387(17183) 5222 (5304)
3el2 16925(19395) 5688 (5737)
5el2 206981(22858) 6272 (6306)
lel3 27031 (28807) 7033 (7044)
28 lel2 11317 (15130) 4692 (4862) 10662 2666
2el2 15025(18107) 5527(5625)
3el2 17682 (20396) 6027 (6085)
5el2 21636(23961) 6657 (6684)
lel3 28277 (30163) 7481(7483)
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Table 2a

Binding energies of the 00,10 state of helium=~-like atoms
in strong fields. The states are labelled by their m~value,
then their nu-value. The zero-field values for silicon and
chromium were taken from Bashkin and Stoner, "Atomic Energy
Levels and Grotrian Diagrams", 1975 (New York:Elsevier).

Energies (eV) Zero field values (eV)
A B (G) total 00 10 00 10
14 lel2 7946 4761 2991 2438 2438

2el2 10465 6229 3975
3el2 12254 7265 4678
5el2 14894 8785 5724
lel3 19276 11290 7475

24 lel2 15163 9233 5724 - 7482 7482
2el2 20182 12216 7686
3el2 23786 14345 9106
5el2 29159 17503 11237
lel3 38203 22783 14856

26 lel2 16661 10166 6288
2el2 22208 13470 8455
3el2 26198 15833 10026
5el2 32154 19343 12387
lel3 421098 25223 16405

27 lel2 17415 10636 6571
2el2 23230 14103 8842
3el2 27414 16584 10489
5el2 33665 20273 12966
lel3 44217 26458 17186

28 lel2 18173 11108 6856
2el2 24256 14740 9231
3el2 28636 17340 10954
5el2 35185 21209 13549
lel3 46249 27701 17972



156
Table 2b

Binding energies of the 01,10 state of helium-like atoms
in strong fields. The states are labelled by their m-value,
then their nu-value. The zero-field values for silicon and
chromium were taken from Bashkin and Stoner, "Atomic Energy
Levels and Grotrian Diagrams", 1975 (New York:Elsevier).

Energies (eV) Zero field values (eV)
Z B (G) total 01 10 01 10
14 lel2 4631 1446 3037 573 2100

2el2 5857 1621 4054
3el2 6705 1716 4786
5el2 7933 1824 5879
lel3 9935 1949 7720

24 lel2 9467 3538 5752 1793 6000
2el2 12079 4114 7740
3el2 13890 4450 9183
5el2 16517 4862 11354

lel3 20801 5384 15055

26 lel2 10509 4015 6313
2el2 13427 4690 8506
3el2 15452 5089 10099
5el2 18391 5583 12498
lel3 23187 6215 16595

27 lel2 11037 4259 6595
2el2 14112 4987 8891
3el2 16246 5419 10560
5el12 19345 5955 13075
lel3 24403 6646 17373

28 lel2 11570 4507 6879
2el2 14803 5289 9278
3el2 17049 5754 11023
5el2 20310 6335 13655
lel3 25632 7087 18155
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Table 2c¢

Binding energies of the 00,11 state of helium-like atoms
in strong fields. The states are labelled by their m-value,
then their nu=-value. The zero-field values for silicon and
chromium were taken from Bashkin and Stoner, "Atomic Energy
Levels and Grotrian Diagrams", 1975 (New York:Elsevier).

Energies (eV) Zero field wvalues (eV)
Z B (G) total 00 11 00 11
14 lel?2 6105 4782 1188 2100 573

2el2 7824 6282 1376
3el2 9013 7344 1485
5el2 10733 8908 1615
lel3 13518 11497 1776

24 lel2 12123 9185 2775 6000 1793
2el2 15726 12187 3333
3el2 18243 14333 3674

5el2 21910 17524 4111
lel3 27900 22872 4696

26 lel2 13396 10102 3127
2el2 17410 13423 3774
3el2 20218 15802 4173
5el2 24314 19342 4688
lel3 31016 25287 5384

27 lel2 14040 10564 3306
2el2 18262 14047 3999
3el2 21218 16544 4429
5el12 25533 20261 4984
lel3 32599 26508 5739

28 lel2 14687 11029 3488
2el2 19120 14674 4228
3el2 22227 17298 4688
5el12 26763 21185 5285
lel3 34197 27738 6101



