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Abstract

Several aspects of the theory and design of FIR digital filter banks for analysis/synthesis
systems are studied in this thesis. In particular, we focus on filter banks satisfying
the perfect reconstruction (PR) property. We present a new approach to design PR
filter banks wherein the filter bank is obtained by cosine-modulation of a linear-phase
prototype filter of length N = 2mM, m > 1 (where M is the number of channels).
The PR property is satisfied because the polyphase component matrix of the modu-
lated filter bank is lossless. This is achieved by satisfying the necessary and sufficient
condition ~ a pairwise power complementary property between the 2M polyphase
components of the prototype. In this approach, regardless of the number of channels,
we still design only the prototype. The design procedure involves the two-channel
lossless lattice. This approach compares favorably (in terms of the number of param-
eters to be optimized and the ease of design) with other design techniques. Design
examples and detailed comparisons are presented.

The existing approaches for designing PR filter banks include the lattice based
methods, which structurally force the polyphase component matrix to be lossless.
New initialization procedures, which can be used to initialize the values of all the
lattice parameters (prior to optimization), are presented. The main advantage is
that we can get ‘good’ initializations by using conventional Quadrature Mirror Filter
(QMF) banks and pseudo-QMF banks (which can be readily designed, but do not
satisfy PR). It is shown that these filter banks have polyphase component matrices
that are ‘approximately’ lossless. The initialization also enables the design of a family
of PR filter banks.

In conventional approaches to pseudo-QMF design, the prototype filter is obtained
by optimization, wherein lies the main computational effort. We present a new ap-

proach in which the prototype of a M-channel filter bank is obtained by spectral



ABSTRACT vii

factorization (of a 2M*™ band filter), thereby eliminating the need for optimization.
The overall transfer function 7'(z) has linear-phase and an approximate ‘flat’ mag-
nitude response in the region € < w < (7 — €) where ¢ depends on the transition
bandwidth of the prototype 0 < € < 33;. A new spectral factorization algorithm
(non-iterative) which is based on the Inverse Linear Predictive Coding (LPC) tech-
nique is presented. Design examples for the above method are obtained by using this
algorithm.

Finally, we consider a dual of the QMF circuit - the transmultiplexer (TMUX).
Traditional TMUX designs suppress the undesirable crosstalk. The crosstalk-free
transmultiplexer (CF-TMUX) focuses on crosstalk cancellation, rather that suppres-
sion. It is shown that the filters of a CF-TMUX are the same as the filters of a
1-skewed AF-QMF bank. In addition, if the QMF bank satisfies PR, then the TMUX

also achieves PR.
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Chapter 1

Introduction

There has been a tremendous growth in digital technology in recent years and the
current trend is towards increasing use of digital techniques. With the improvements
in VLSI technology (the ability to build high speed circuits) and with the advent of
digital signal processor chips, the scope and applications of digital signal processing
(DSP) have been tremendously broadened. The key areas of DSP applications are in
telecommunications, speech and image processing, and a host of related fields. Even
with the increasing speeds of operation, the search for faster, more efficient algorithms
is always present, particularly in view of real-time applications.

A multirate system [Cro83] is a discrete-time system in which the sampling rate
(and hence the spacing between samples) can vary from point to point. This results
in more efficient processing of signals because the sampling rate at the various nodes
can be chosen to be as small as possible. In recent years, there has been tremen-
dous progress and research in this field of multirate systems. An excellent tutorial
article on the applications of multirate systems appeared in [Vai90]. Many current
applications like digital audio systems, sub-band coding techniques (for speech and
image compression),and analog voice privacy systems are mentioned. Further ap-
plications include new techniques for adaptive filtering in sub-bands, derivation of
new sampling theorems for efficient compression of signals and design of filters with

adjustable multilevel responses.
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x) —= Hy@ iMp=+ee =M Fy(2)

~ H,@ Mp= s ~IM— F,(d) [~
L HM-I(Z) **M_’ cee —.*M > FM-I(Z) —"_L i(n)

Fig. 1.1. The M-channel, maximally decimated QMF circuit
(also known as the sub-band coding circuit.)

One of the topics in multirate DSP that has been extensively studied is that of
digital filter banks, primarily because it finds application in a wide spectrum of areas
viz., speech compression, voice privacy, radar and sonar signal processing and spectral
estimation. In these applications the input signal z(n) is split into frequency sub-
bands and then the sub-band signals are processed separately. Finally, the sub-band
signals are then re-combined to obtain Z(n) which is called the reconstructed signal.
Fig 1.1 shows the schematic of the circuit for this application. The signal is split into
M-channels, where M is arbitrary. The filters [Ho(z), Hi(2) .-+ Hum-1(2)] are called
the analysis filters and the filters [Fo(2), Fi(z) --- Fup-1(z)] are called the synthesis
filters. Together, they are referred to as the analysis and synthesis filter banks. In
Fig 1.1, the other two types of building blocks are the decimator (down-sampler) and
the interpolator (up-sampler). These are a part of every multirate system and their
description/operation is discussed in Chapter 2.

The M-channel analysis filter bank splits the input signal z(n) into the sub-band
signals each of which is down-sampled by a factor of M. Hence it is called maximally
decimated. After the decimated sub-band signals are processed (which could typically

involve transmitting from one end and receiving at the other end or storage retrieval),
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they are up-sampled and combined using the synthesis filter bank. The decimation
(down-sampling) introduces aliasing. So, the analysis and synthesis filter bank must
be designed such that the effect of aliasing is canceled or minimized.

It was first shown in [Croi76] that for two-channel sub-band coding circuit, the
analysis filters Ho(z), Hi(2) and synthesis filters Fy(2), Fy(z) can be chosen such
that the aliasing is completely canceled. This is referred to as the Quadrature Mirror
Filter (QMF) solution, because of the symmetry of the filters with respect to the
quadrature frequency Z. Since then, the two-channel sub-band coding circuit has
also been called the ‘QMF circuit.” In the case of M-channel case, it is called ‘M-
channel QMF circuit’ (though the term QMF circuit is clearly a misnomer in this
casel).

The extension of the QMF technique for aliasing cancellation (AC) to the M-
channel] has been done by several researchers. This is commonly referred to as Pseudo-
QMF theory [Nus81,Roth83,Nus84,Mas85,Chu85,Cox86]. In the above-mentioned
approaches, the aliasing is either canceled or minimized, so we can write a trans-
fer function between the input X(z) and the output X| (z). Depending on the nature
of the transfer function, X (2) could have magnitude and/or phase distortion. So, in
general, in the QMF circuit, the three errors are :

1. Aliasing
2. Magnitude distortion

3. Phase distortion
(Note that we are assuming that processing (channel transmission, etc.) of the dec-
imated sub-band signals does not introduce any errors). If aliasing is completely
canceled, it is called an alias-free QMF circuit (AF-QMF). If all three errors are re-
moved, then it is called a perfect reconstruction QMF bank (PR-QMF) circuit. The

condition for perfect reconstruction (PR) is that the output must be just a delayed
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version of the input, i.e. Z(n) = z(n — no), where ng is a positive integer.

In [Vai87a,Vet87] it was shown that PR can be achieved in the M-channel case
also - thus throwing open an interesting field of study. Researchers have published ex-
tensively on the topic of PR-QMF banks [Prin86,Vai88a,Ngu88b,Vai89,Vet89,Nay90,
Ko0i90,Mal90b].

The work in this thesis deals with the diverse issues in the design of multirate digi-
tal filter banks, and in particular M-channel QMF banks where M > 2. Before giving
a detailed outline of the research work presented in this thesis, a list of commonly
used abbreviations is given.

Abbreviations :

DSP - Digital Signal Processing

QMF - Quadrature Mirror Filter (used synonymously with sub-band coding)
AC - Aliasing Cancellation

PR - Perfect Reconstruction

PR-QMF bank - Filter bank that satisfies the PR property

AF-QMF bank - Filter bank that achieves AC

FIR - Finite Impulse Response

IIR - Infinite Impulse Response

Outline of Thesis

In Chapter 2, we review a number of results from earlier work in QMF theory
and multirate digital filter banks. These results serve as a foundation for the research
work presented in the subsequent chapters of this thesis. The reviewed results include
the input/output relations of the decimator and the interpolator (which are the basic

building blocks of multirate systems), the noble identities in multirate DSP, and the
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two types of polyphase decomposition. Using these results, we obtain an equivalent
representation to the QMF circuit (Fig. 1.1) in terms of the polyphase component
matrices of the analysis and synthesis filter banks. Following that, we summarize
the results pertaining to FIR filter banks that satisfy the PR property and that have
lossless polyphase component matrices. The characterization of FIR lossless transfer
matrices and real unitary matrices are given in detail. These results yield lattice
structures for the design of PR-QMF banks.

The lattice structure, which in addition to the PR property also forces the pairwise
symmetry between the filters, is also discussed. Finally, the main results from pseudo-
QMF theory are summarized. This widely used technique deals with the design and
implementation of cosine-modulated filter banks (derived from a single prototype
filter). In pseudo-QMF banks the phase distortion is eliminated whereas the aliasing
and magnitude distortions can be made very small (but are present, nevertheless).

Chapter 3 deals with new initialization techniques for the design of PR-QMF
banks? based on the optimization of the parameters of the lattice structures men-
tioned above. In all cases, we use other designs (like pseudo-QMF designs, which
do not satisfy PR but yet have ‘good’ filters) to obtain an initialization of all the
lattice parameters. This enables quicker convergence of the optimization routines.
These lattice based approaches for the design of M-channel PR-QMF banks are at-
tractive when the number of channels is small, i.e., for M < 7. For a higher number
of channels, the design becomes increasingly difficult owing to the large number of
parameters being optimized. This is due to the fact that optimizing the polyphase
component matrix is equivalent to optimizing all the individual filters of the PR-QMF
bank.

This leads us to the question - “Is it possible to design PR-QMF banks in which

the filters are obtained by the modulation of a single prototype (as in pseudo-QMF
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designs)” ? The motivation is the fact that designing only the prototype filter will
involve much fewer parameters than designing the entire filter bank. The answer to
this question is in the affirmative and the details are discussed in Chapter 4. Here, we
assume the prototype filter to be a linear phase filter of length N = 2mM where M
is the number of channels and m is any positive integer. First we derive the necessary
and sufficient condition on the polyphase component matrix of a cosine-modulated
filter bank to satisfy the lossless property. Based on this, we obtain a design procedure
(also based on a lattice structure). The many advantages of modulated PR filter banks
over pseudo-QMF and existing PR-QMF designs are mentioned. Design examples and
comparisons are included to highlight these advantages. Efficient implementation of
modulated PR banks and their computational complexity are discussed.

The conventional approach to design pseudo-QMF banks is based on the opti-
mization of the impulse response coefficients of the prototype filter. The optimization
involves the minimization of a non-linear, multivariable objective function, and this
constitutes the main computational effort in the design process. In Chapter 5, we
present a new approach to the design of pseudo-QMF banks, which does not involve
any optimization. In this approach, the prototype filter of an M-channel filter bank
is obtained as a spectral factor of a 2M* band filter. The aliasing cancellation (AC)
constraint is derived such that all the signiﬁcaﬁt aliasing terms are canceled. The
overall transfer function 7'(z) of the analysis/synthesis system has linear-phase and
an approximately ‘flat’ magnitude response in the frequency region € < w < (7 —¢),
where € depends on the transition bandwidth of the prototype filter and 0 < € < A7
Design examples based on this spectral factorization approach are included.

In Chapter 6, the transmultiplexer (TMUX) circuit is studied as a dual of the QMF
circuit. The problem of crosstalk poses severe constraints in conventional TMUX

designs, since they focus on crosstalk suppression. In QMF theory, conditions for
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aliasing cancellation can be obtained. In the same manner, the conditions under
which crosstalk in transmultiplexers can be completely canceled are obtained. This is
done by using the results from QMF theory (owing to the duality between the two).
This study of TMUX, based on polyphase component matrices, brings out the close
relation between the TMUX and QMF circuits and also gives a design procedure for
crosstalk-free transmultiplexers. The improved performance of crosstalk cancellation
over crosstalk suppression is shown by design examples.

The design techniques, discussed in Chapter 3 (for two-channel PR-QMF design)
and in Chapter 5 (for the design of the prototype filter of an M-channel pseudo-
QMF bank), are based on Spectral Factorization. In Appendix A, we present a
new algorithm for spectral factorization. This efficient, non-iterative algorithm uses
the well-known Inverse Linear Predictive Coding technique, based on the ‘inverse
autocorrelations.” This algorithm can be used to compute the minimum phase spectral
factor of any moving average (MA) autocorrelation sequence. Comparisons of this
method with other spectral factorization techniques are included.

Notations used in the Thesis

The variable w is used to denote frequency. The frequency response of a discrete-
time transfer function (a digital filter) H(z) is expressed as H(e!) = |H(e/)|e/*),
where |H(e/¥)| is the magnitude response and ¢(w) is the phase response. In all the
plots, we use the ‘normalized frequency’ which is f = 7. Unless mentioned otherwise,
the impulse response coefficients of the filter H(z) can be assumed to be real. If H(z)
has real coefficients, then |H(e’)| is always plotted for 0 < f < 0.5 (because the
magnitude response is symmetric with respect to w = 0).

In this thesis, our primary focus is on FIR filter banks. An FIR transfer function
(with real coefficients) H(z) = >N h(n)2~" is said to have linear phase if its phase

response ¢(w) has the form ko — kyw. In the time domain, this property is reflected
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as a symmetry in the impulse response coefficients of H(z), i.e., they satisfy h(k) =

ch(N -1 —k), c¢= =1 [Rab75]. Bold-faced letters v, R, h(z), etc. denote vectors

and matrices. Ips stands for the M x M identity matrix and Jps is the M x M “reverse
001

010/{.

1 00

The quantities RT, RT, R* denote the transpose, the transpose-conjugate and

operator.” For example, J3 =

the complex conjugate respectively of the matrix R. The tilde accent on the function
U(z) is defined such that ﬁ(z) = UT(z7!), Vz, where the subscript asterisk (%)
denotes conjugation of the coefficients. For example, if H(z) = hy + hy271, then
H.(z) = hfy + hiz"t.

An M xM constant matrix R is said to be unitary (orthogonal if R is real) if
RiR = cIy, ¢ # 0. The McMillan degree of U(z), a M xM matrix of transfer
function is defined as the minimum number of scalar delays (i.e., 2! blocks) required
to implement it. We define the complex constant Wy = ™7 27:5, where k is an integer.
This constant is used in a number of places in the thesis. The subscript k is omitted

only if it is obvious from the context. The Discrete Fourier Transform (DFT) [Opp75,
Rab75] of an M-point sequence [z(0),z(1), -+ z(M —1)] is defined as

M-1
X(k)= Y z(rn)Wif, 0<k<M-1. (1.1)
n=0

The inverse DFT (IDFT) is defined as

1 M-1
2(n) = 37 SN X)Wy, 0<n<M-1. (1.2)
k=0

An important property of W, that is often used is

MX_:I Wk — { M, if nis a multiple of M,

= 0, otherwise.



Chapter 2

Review of Results in Digital Filter Banks

In this chapter, we review a number of results that will be used in the subsequent
chapters. First, the basic building blocks in multirate DSP — the decimator and
the interpolator, are mentioned along with the two noble identities of multirate DSP.
Next, we introduce polyphase decomposition [Bel76], which is widely used in studying
digital filter banks. Using this tool, we can obtain an equivalent representation of
the QMF circuit (Fig. 1.1) in terms of the polyphase component matrices of the
analysis and synthesis filters, then the results from earlier work in PR-QMF theory
are reviewed. Our focus is on the class of perfect reconstruction (PR) filter banks
whose polyphase component matrices are lossless. Hence, the characterization of FIR
transfer matrices that satisfy the losslessness property is also mentioned. Finally,
the results from pseudo-QMF theory, which deal with the design of QMF banks in
which the aliasing error and the amplitude distortion can be made very small (but
are present, nevertheless) are summarized. The results reviewéd in this chapter serve

as a foundation for the research work presented in this thesis.
2.1 Decimator and Interpolator

These are the basic building blocks of any multirate digital system. The representation
of an M-fold decimator (or down-sampler) and an L-fold interpolator (or up-sampler)

are shown in Fig. 2.1(a),(b) respectively. The input-output relations of these two
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@  xm—=yM —y @

(b) x(n) —— fL — Y, (n)

Fig. 2.1 (a) The M-fold decimator
(b) The L-fold interpolator

building blocks are :
yp(n) = z(Mn),
Yp(2) = 3 Tl X(zwWiy),

where W)y is the complex constant defined in Chapter 1,

Decimator { (2.1)

(n) = z(}), if nis a multiple of L
Interpolator mrr = o, otherwise, (2.2)
Yi(z) = X(21).

In the time domain, decimation by a factor of M corresponds to retaining one out
of evefy M samples (i.e., by discarding (M — 1) samples) as given by (2.1). This
compression in the time-domain results in a ‘stretching’ in the frequency domain and
also produces shifted versions (in frequency) of the input. So if the input is not
suitably band-limited, then decimation causes an overlap of the stretched, shifted
versions which is called aliasing. On the other hand, interpolation by a factor of.
L corresponds to inserting (L — 1) zero-valued samples between every two samples
of the input, thereby increasing the sample rate by a factor of L. This results in
a ‘compression’ in the frequency domain, as given by (2.2) along with the creation
of (L — 1) images. The basic difference between aliasing (due to decimation) and -
imaging (due to interpolation) is that the former can result in the loss of information -
while in the latter, there is no loss of information. Decimators and interpolators are

both linear systems but are time-varying.
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Ml— = —\M(~ G(z) |—

@ — G(zM)

Y

L —

Y

® —L [~ Gzl = — G(2)

Fig.2.2. Noble identities for multirate systems.

Two Noble Identities : In multirate systems, we often encounter interconnections
of decimators and interpolators with filters and other transfer function blocks. The
two identities (called the noble identities) given in Fig. 2.2(a),(b) play an important
role in the efficient implementation of these interconnections. The two identities hold
if G(z) is a rational transfer function, i.e., a ratio of two polynomials in z=!. They

can be readily verified by using (2.1) and (2.2) respectively.
2.2 Polyphase Decomposition

This fundamental tool, which is widely used in multirate DSP, was originally intro-
duced in [Bel76]. There are two types of polyphase decomposition — Type 1 and
Type 2, as defined in [Vai90]. Let H(z) = Y52 _. h(n)z™" be a digital transfer

n=-oo

function. Then H(z) can always be expressed as

M-1
H(z) = Z: 2 Ey(2M), (Type 1) (2.3)
and
M-1
H(z)= z 2~ M-1=0 R, (M), (Type 2) (2.4)

where Ey(z) and R,(z) are the Type 1 and Type 2 polyphase components respectively
of the transfer function H(z), and M is an integer. The value of M is chosen depending

on the decimation/interpolation factor involved in the circuit.
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In our application, we are dealing solely with FIR filters. So in all cases, the
polyphase components can be obtained by inspection. Consider {Hi(z), Fi(z)}, the
M-channel QMF bank (FIR) shown in Fig. 1.1. Using polyphase decomposition of

Type 1 for the analysis filters and of Type 2 for the synthesis filters, we can write

M-1

Hi(z) = > 27'Ei(z™), 0<k<M-1, (2.5)
£=0
M-1

Fi(z) = Y W™2-9R,,(z™), 0<k<M-1 (2.6)
{=0

Hence, the analysis and synthesis filter banks can be expressed as

Ho(Z) Eoyo(ZM) o EO’M_I(ZM) 1
Hpro1(2) EM—l,O(zM) B EM~1,M—1(ZM) z=(M-1)
Ro,o(ZM) T RO,M—-I(ZM)
(Fo(z) -+ Fua(a)] = [0 ] s : z
RM—l,o(ZM) ce RM—l,M—l(ZM)
(2.8)
Equations (2.7) and (2.8) can also be expressed as

h(z) = [Ho(2) - Hu-a(2)] = E(M)en(2), (2.9)
f7(z) = [Fo(2) -+ Fya(2)] = 7MYy (2)R(zM), (2.10)

where e},(z) = [1 27t .. z‘(M‘l)}. The M xM matrices E(z) and R(z) are called
the polyphase component matrices of the analysis and synthesis filter banks respec-

tively and are defined as
(E(2)];, £ Eio(z) and R(2)];, Z Rie(2), 0<kl<M-1. (2.11)

Since all the analysis and synthesis filters are FIR, all the elements of E(z) and R(z)
are also FIR transfer functions.

We now obtain an equivalent representation of the QMF circuit in Fig. 1.1 in terms
of the polyphase component matrices E(z) and R(z). Using the results in (2.9) and

(2.10) in Fig. 1.1, we get Fig. 2.3. Further, using the noble identities, the decimators
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13

Y

R (zM)

The representation of the QMF circuit of Fig.1 in terms

of the polyphase component matrices E(zM) and R(zM).

E(z)

—

p—t

o

x(n)
Z—l
. |[E@zM)
z-IL
Fig. 2.3.

x(n) - M
yAR M-
Z_ILW{_.

Fig. 24.

L N —

cse _—p

L N J —-

R(z)

Y

Y

Y

L X(n)

M

An equivalent representation of the QMF circuit of Fig.l in

terms of the polyphase component matrices E(z) and R(z).
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and interpolators in Fig. 2.3 can be appropriately moved in order to give Fig. 2.4. In
the subsequent chapters, we will repeatedly refer to this representation of the QMF
circuit (Fig. 2.4).

2.3 Results from PR-QMF Theory

The results in Lemma 3.1 and Property 3.4 [Vai87a] can be summarized as follows
Lemma 2.1 : Consider the maximally decimated QMF bank with FIR analysis
filters. Let E(z) be the polyphase component matrix of the analysis filters. Then any
two of the following three statements imply the remaining statement :

1. E(z) is lossless,

2. The analysis and synthesis filters are related as
Fi(z) = cHy(2), 0<k<M -1, (2.12)
where ¢ is a constant,

3. The analysis/synthesis system satisfies the PR property. O
Definition : A pxr matrix of transfer functions, U(z), is said to be lossless if it is

stable and it satisfies the property
U(2)U(z) = dIL,, (2.13)

where Iy is the identity matrix and d is a real, positive constant. O

From the above Lemma, we see that if E(z) is lossless, then we can always obtain
a PR-QMF system by choosing the synthesis filters as in (2.12). In other words,
the losslessness of E(z) is a sufficient condition for obtaining a PR-QMF system. So
we focus on the class of FIR filter banks whose polyphase component matrices are
lossless. Next, we present the results pertaining to the characterization of lossless
transfer matrices, which structurally ensures that the lossless property is satisfied.

From [Vai89], we have the following result.
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— U, = V@ == =V, O— (@)

A

T
—
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7 (b

Fig. 2.5. (a). Characterization of a FIR lossless matrix U, (z)
(b). Structure of the degree-one factor Vk(z)

Lemma 2.2 : Let Uy_4(z) be any MxM causal, FIR transfer matrix. Then,
Uy_1(2) is lossless of McMillan degree (L — 1) if and only if it can be written in the
form
Ur_1(2) = Vi-1(2)ViL-2(2) - - - V1(2) Uy, (2.14)
where Uy is constant M xM unitary matrix and Vi(z) is a degree-one FIR lossless
matrix of the form
Vi(z) = [IM - vka + z‘lkaZ] , (2.15)
where v is a M x1 column vector with unit norm. $.
This result is shown pictorially in Fig. 2.5(a),(b). The implementation in Fig. 2.5(a)
is referred to as the lossless lattice since any M x M FIR transfer matrix that is lossless
can be realized in this form and conversely, every transfer matrix realized in this form

1s necessarily lossless. In particular, any polyphase component matrix E(z) obtained
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by using the lossless lattice is guaranteed to satisfy the lossless property.

2.3.1 Parametrization of Unitary Matrices

The implementation of (2.14) involves the M x M unitary matrix U,. We now con-
sider two parametrizations of the unitary matrix Uy, satisfying Ug Up = Iy,

1. Using Givens rotations [Mur62,Doga88] : This is the well known parametriza-
tion of a real, M x M unitary matrix by using M—Ig—'l) Givens rotations. An M xM

Givens rotation that operates in the 5** plane has the form

0 1 =+ & sev j e (M)
0 [ 1
1 1
i Cij —Sij ..
;= . i , 0<7,5<M-1,
j 8ij Cij
™M1 | 1

(2.16)
where ¢;; = cosf;; and s;; = sinf;;. Clearly ©;; is a unitary matrix. By proper

choice of the rotation angles 6; ;, we can express the unitary matrix Uy as

Up = AI®M—2,M~lll@M—3,M—1@M—B,M—21 o [@om1@om—g - @p4],  (2.17)

s

~

Tars Tar—2 T
where A is an M xM diagonal matrix whose entries are [A];; = £1. This implemen-
tation of Uy is shown in Fig. 2.6. |
2. Using the Householder Factorization : This is another parametrization of

unitary matrices, which is very convenient.

Definition : An M xM Householder matrix G has the form
G= [IM - 2uuT] , (2.18)

where u is an M x1 vector with unit norm. O
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— - 90 —- e
— b — - ——
. |T . . . A |
M-1 Ty
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2 T1
— - -0 0 ¢ —p - - f——
~ UO >

Y

(b)

(c)

Lj

Fig.2.6. Factorization of the matrix U, in terms of Givens rotations
(a) U, represented in terms of T,
(b) The typical structure for the matrix T, (for m=3)
(c) Details of each 'criss-cross’ used in T,
c..=cos@.. and s, . =sin@. .
iLj Lj ij Lj

17

(a)
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> A GM_1:>---:> G1 >

i

U, —

Fig.2.7. Householder factorization of a unitary matrix U,

Fact 2.1 : Letv = [vpv; --- vM_l]T be some M x1 non-zero vector with real
entries. Define the vector w as w = v + s||v||e;, where el = [1 0 --- 0] and s = +1.
Then
[IM - 2uut] v = —s||v]ley, (2.19)
= W
where u = Wl o

By successively using Fact 2.1, we get

Fact 2.2 : Any M xM real unitary matrix Ug can be represented in the form
Uo - G1G2 e G'M_IA, (220)

where A is an M x M diagonal matrix whose entries are [A]; ; = £1, and the matrices
G; are Householder matrices. &

This implementation of Ug is shown in Fig. 2.7. Let u; be the unit norm vectors
associated with the corresponding Householder matrix G;. The vectors u; have the

structure shown below.

Fx 0 0 OW
x x 0 0
X X X 0
[wywp cuyaf=| 1 0t} (2.21)
X x x --- 0
X X X -+ X
| x x x -+ x ]

where ‘x’ represents a non-zero entry. Each u; has (M + 1 — ¢) non-zero entries, but

owing to the unit norm constraint, it has only (M —¢) degrees of freedom. Hence the
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Householder factorization (2.20) of unitary matrices involves a total of M—Ag_—ll degrees
of freedom, which is the same as in the case of the Givens rotation parametrization.

However, since the Householder factorization preserves the unitariness of U, even
under coefficient quantization and since it has a simple structure, it is more convenient

to use this factorization for M-channel PR-QMF designs (particularly for large M).

2.3.2 Lattice Structure for PR-QMF Banks with Pairwise Symmetry

In [Ngu88b], lattice structures have been derived for M-channel filter banks which
in addition to satisfying the PR property, also satisfy a pairwise symmetry property
between the filters. The main advantage in forcing the pairwise symmetry is that
the number of parameters involved in the design of the PR-QMF bank is reduced
by nearly a factor of two. Our focus will be on the design of PR-QMF banks where
M is prime, because for other values of M, we can obtain the PR-QMF bank by a
tree-structured implementation. For example, for M = 6, the PR-QMF bank can
be obtained by cascading a 2-channel and a 3-channel PR-QMF bank. Hence, we
consider the pairwise symmetric lattice derived in [Ngu88b] for odd values of M.
Let [Ho(z) Hi(z) --- Ha-1(2)] be an M-channel analysis filter bank. (M is as-
sumed to be odd). The pairwise symmetry constraint forces the following relation

between pairs of filters

Hyak(2) = Hi(—2), 0<k<M-1. (2.22)
This also gives HM{_l (z) = H]\_lf_l(—Z), which forces the filter Hy_z._l(z) to be a function
of z2. We will obtain the pairwise symmetric PR-QMTF lattice structure for the special

case M = 3, and then generalize the result for arbitrary M (which is odd). For 3-

channel designs, the pairwise symmetry constraint is

Hz(z) = HQ(—Z), (223)
Hy(z) = a function of 2°. (2.24)
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Hence the analysis filters can be expressed as

Hox)] | [1 \3_ 11 [1 ao(?)
h(z)=| Hi(2) |=—= |0 +v2 0 1 a;(2?) 2.25
o-[a]-ml e [ ][58] e

R, ()

Expressing the o;(z) in terms of their Type 1 polyphase components A; ;,

ap(2) 1
a(z) | = A(Z%) z:: . (2.26)
as(z) z
e3(z)
Substituting (2.26) in (2.25), we get
h(z) = —=R,T(*)A (z%)es(22). (2.27)

V2
For general M (where M is odd), we get
1
V2

In (2.28), if A(z) is lossless, then we can always find a synthesis filter bank, as shown

h(z) = —=RuT(zM)A(2M)ep(22). (2.28)

below, such that the overall system satisfies PR. The synthesis filter bank can be
expressed as

Z—S

£7(2) = [Fo(z) -+ Fu-1(2)] = \/i'éM(zz)X(zw)f‘(zM)RL, (2.29)

where s is a positive integer which is chosen such that the synthesis filters Fi(z) are
causal. The implementation of the analysis filters of a pairwise symmetric PR-QMF
bank (2.28), is shown in Fig. 2.8. This figure is referred to as the pairwise symmetric
PR-QMF lattice structure.

The main advantage of using the pairwise symmetric lattice is that there is a
savings in the number of parameters being optimized. In this approach, we design the
lossless matrix A(z) (given in (2.28)) whereas in the approach presented in [Vai87a],
the lossless matrix E(z) (defined in (2.9)) is optimized. Both A(z) and E(z) are FIR

transfer matrices but the order of the former is approximately half of the order of
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- - -—»Ho(z)
Z—-Z
] —- —>H1(Z)
- [AEM)|,ITEM)|,| Ry .
-2
Z L 4 — —= H (2)

M-1

Fig.2.8. Implementation of the analysis filters of a
pairwise symmetric PR-QMF bank.
the latter. This directly results in the savings in terms of the number of parameters
[Doga88]. Another advantage of imposing the pairwise symmetry is that the objective
function to be minimized is simpler, i.e., for a 3-channel PR-QMF design with analysis

filters {Ho(2), Hi(z), Ha(z)}, the approach in [Vai87a] uses the objective function

ks . T—e ) - ' 33’—"—5 A
¢ = /%H_€ IHO(eJW)|2dw+/O lffl(eJW)|2d¢,‘;+‘/231r_+'s |H1(eyw)|2dw+/0 |H2(6]w)|2dw,
(2.30)

whereas with the pairwise symmetric lattice, the objective function used is
6= / | Ho(e?) [2dw + / S Hy () Pduw. (2.31)
%-}-c 0

The other two terms are not required because of the symmetry forced on the mag-

nitude responses of the filters. This advantage becomes significant when designing

PR-QMF banks for large M (the number of channels).
2.4 Pseudo-QMF Theory - A Brief Review

Pseudo-QMF theory is well known [Roth83,Mas85,Nus81,Nus84,Chu85,Cox86] and is
widely used. It deals with the extension of the two-channel QMF solution [Croi76] to

M channels, where M is arbitrary. Two primary assumptions, upon which pseudo-
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QMF designs are based, are listed below.
1. The desired analysis and synthesis filters are “good” filters, i.e., they have nar-
row transition bands and high stopband attenuation — which implies that the

overlap between non-adjacent filters is negligible.

2. With the previous assumption being satisfied, the significant aliasing terms are
those due to the overlap of filters in adjacent channels. These terms will be
canceled by the aliasing cancellation (AC) constraint imposed on the analysis
and synthesis filters.

The main results are summarized below (refer to [Roth83,Mas85,Cox86] for details) :

1. The first step is the design of the prototype filter H(z) = ¥N=1 h(n)z~", which
is a linear-phase lowpass filter. The typical response of an M-channel prototype
is shown in Fig. 5.1. In the design of H(z), the following two constraints are
imposed: (a) the minimization of the stopband energy of H(z) and (b) the

flatness constraint, to minimize the magnitude distortion (the reconstruction

error) between the output and the input.

2. Hi(z) and Fy(z), the analysis and synthesis filters respectively of the pseudo-

QMF bank are obtained by modulation of the prototype H(z) as shown below.

Hi(z) = [akckH(ze'j(zkH)iﬂﬁ) + aZcZH(zej(zkH)ﬁ)] , 0<kE<M-1, (2.32)
Fi(z) = [a;ck H(ze=i0H0Fr) 4 a,cc,;H(zeﬂ?k“)ﬁ)] , 0<k<M-—1, (233

. : N m (N=1
where a; and ¢, are complex constants given by a; = e/%, ¢, = e~ Ik (F)

and N is the length of the prototype. hx(n) and fir(n), the impulse responses
of Hi(z) and Fi(2) respectively are given by

he(n) = 2h(n) cos ((2k + 1)52-(n - N2‘1

T (n N -1
2M 2

J+0:), 0Sn<N-1, (234)

fuln) = 2h(n)cos ((2k +1) ) — 0k) L 0<n<N -1 (2.35)
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From (2.34) and (2.35), we can verify that the analysis and synthesis filters are

related as
fin)=h(N =1=n) and Fi(z) = 2~ V-DH(z7Y), (2.36)
for0<k<M-1.

3. The 8, are chosen to satisfy the AC constraint which ensures that all the signif-
icant aliasing terms are canceled. Hence, the overall system is ‘approximately’

alias-free. The condition on 8y is

Orsr = Or + -’25 0<k<M-—1. (2.37)

Further, in order to ensure a ‘flat’ response at all frequencies (including w = 0

and w = ), we require

00 = i(z

™ ™ T
1 + Z—z—) and Oy, = i(z + m——), (238)

2

where £, m are integers. Each choice of sign in (2.37), (2.38) and the values of
£, m can be made entirely independent of other choices. In this thesis, we will
use the choice

0<k<M—1, (2.39)
which satisfies both (2.37) and (2.38). It must be noted that several other
choices are possible [Roth83,Vet89).

4. T(z), the overall transfer function of the analysis/synthesis system is given by

1 M-1 -(N—-l)M -1
T(z = M— kz Hk Z)Fk( E Hk ) (2.40)

Hence, T'(z) has linear-phase and the analysis/synthesis system is free from
phase distortion.

A complete pseudo-QMF design example is given in Appendix B.
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Chapter 3

Initialization Techniques for PR-QMF Design

In this chapter, initialization procedures for the lattice-based PR-QMF design tech-
niques are presented. These design approaches can be used for the design of M-
channel PR-QMF banks, where M > 2. The theory of PR-QMF banks has been
widely studied [Smi84,Vai87a,Vet87]. In [Smi84], it was first established that for the
two-channel QMF circuit, the analysis and synthesis filters can be designed such that
perfect reconstruction (PR) of the input can be achieved, i.e, Z(n) = z(n — no),
where ng is a positive integer. It was then shown in [Vai87a,Vet87] that PR can be
achieved for the M-channel QMF circuits (Fig. 1.1). In particular, in [Vai87a], the
relation between PR-QMF banks and the lossless property of their polyphase compo-
nent matrices was established. This also showed that it is possible to obtain PR-QMF
banks in which both the analysis and synthesis filters are FIR filters. Our focus is
on this class of FIR PR-QMF designs, i.e, the design techniques based on forcing the
polyphase component matrix of the filter bank to be lossless.

The design procedures, both in the two-channel case [Vai88a] as well as the M-
channel case [Vai87a,Ngu88b,Vai89], are based on lattice structures which structurally
ensure the PR property. These lattice structures are characterized by lattiée param-
eters. The above methods involve optimization, i.e., the minimization of a non-linear
objective function of the lattice parameters. As with all design methods involving

optimization, obtaining ‘good’ initializing values (for the variables being optimized
g8 g€ op
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plays an important role in getting good results and in reducing the time required for
the optimization to converge. The main objective of this chapter is to present pro-
cedures for obtaining suitable initialization of the lattice parameters for the different
design approaches. For the two-channel PR-QMF design, the initialization is obtained
from conventional QMF designs [Jon80,Cro83]. The details are given in Section 3.1.
For the case of M-channel PR-QMF designs (M > 3), the initialization is obtained
from Pseudo-QMF designs [Roth83,Nus81,Mas85] and the details are presented in
Section 3.2.

Notation : In order to improve the clarity of the presentation, we introduce the
following notation (just for this chapter) : the filters, polyphase components etc.,
belonging to QMF banks that do not satisfy the PR property, will have a prime
notation (as in H{(z)) in order to distinguish them from their counterparts in the

PR-QMF case, which will be denoted as usual.

3.1 Initialization for Two-Channel PR-QMF Design

We now consider the two-channel PR-QMF design procedure presented in [Vai88a].
Two filters Ho(z) = Y N1 ho(n)z" and Hi(z) = SNt hy(n)z™ are said to be a

Power Complementary Image (PCI) pair if
[Ho(e)* + | Hy(e™)[ = d, Vo, (3.1)
where d is a non-zero constant, and
Hy(z) = 2= W=D Hy(—27Y). (3.2)

It is shown in [Vai88a] that every PCI pair of transfer functions (FIR) can be im-
plemented by the lattice in Fig. 3.1. This lattice structure, which is referred to as
the QMF lattice, is a cascade of lattice sections (normalized or denormalized). In

Fig. 3.1, we have the representation in terms of the denormalized lattice sections,
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H,(2)

H,(2)

Fig. 3.1. Denormalized implementation of the QMF lattice

which requires the scaling multiplier 8 which is given by 8 =IT,, 7——1-=-

3
14+ mt1

It is shown in Section III [Vai88a] that any filter bank {Hy(z), H;(z)} obtained
by optimizing the parameters of the QMF lattice has the property that its polyphase
component matrix E(2) is lossless. From Lemma 2.1, we know that the losslessness
of E(z) is sufficient to ensure PR. Using Type 1 polyphase decomposition [Vai90], we

can express the analysis filter bank as

Ho(z) ]

E00(22) E01(22)
hlz) = [ Hy(2)

- [ Eyo(2?) En(z?) ] [ ;1 ] ' (33)

~ /

E?z)
(N —1), the order of Hy(z) (and hence that of H;(z)) is odd [Vai87a]. Owing to (3.2),

the polyphase components of Ho(z) and H,(2) are related as
Elo(z2) = —Z~(N_2)E‘01(22), E11(22) = Z-(N_z)Eoo(Z2). (3.4)

Substituting (3.4) in (3.3) and using the fact that the polyphase component matrix

E(z) (for the lattice implementation) is lossless, we get the condition
2[Eoo(2%) Eoo(2%) + Er(2%) Bt (2%)] = 1. (3.5)

Our aim is to initialize the parameters (y;s) of the QMF lattice such that we can
design 2-channel PR-QMF banks.

Initialization : In [Jon80,Cro83], the conventional two-channel QMF bank design
is given. These QMF banks {Hy(z), Hj(z)} do not satisfy the PR property since
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there is reconstruction error in the signal Z(n). The conditions that are imposed on

the design are
(a) QMF constraint :
Hi(z) = Ho(—2). (3.6)

(b) Flatness constraint :

[H(e)? + [Hy(e)[ > 1,  Ve. (3.7)

Since both Hy(z) and H{(z) are designed to have linear phase, we know from [Vai85]
that the flatness constraint (3.7) cannot be satisfied with strict equality (but is sat-
isfied to within a certain deviation, which is minimized during optimization). This is
the reason for the reconstruction error. Writing the Type 1 polyphase decomposition
for {Hg(z), Hy(2)} and using the QMF constraint (3.6), we get

¥ o) =[ae me ][] e

Since both filters are linear phase, (3.8) can be expressed as

Ey(z2) 2~ W-DE1(22) [;1]‘ (3.9)

h'(z) = ~
W= By ey
Using (3.7) and (3.9), it can be shown that 4 Ef(z2)E}(z?) ~ 1. This is true for all

conventional QMF designs.

Since conventional QMF banks can be readily designed, E}(z) (the ipolyphase
component of H{(z)) is easily obtained. We now use EJ(z) to initialize the parameters
of the QMF lattice (to design PR-QMF banks). The proposed initialization procedure
is given below :

(a) Choose Eooz) = E{(z).

(b) Using the spectral factorization method given in [Mia82], compute Eq1(2) such

that it satisfies (3.5). The spectral factorization algorithm given in Appendix A
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works equally well. Since both methods yield the the minimum phase spectral

factor, Eo1(z) will be denoted as Eq min(2)-

(c) Using the same method, compute Egmin(z) as the minimum phase spectral

factor of Eoo(2)Eoo(z). It can be verified that
2(Eo min(2) Bomin(2) + B min (2) B min(2)] = 1. (3.10)
Let H{”(z) be the initialized filter, which is obtained as
HO(2) = Eomin(2?) + 27 By min(22), (3.11)

where >both Eo,min(z) and Ej ;,in(2) have been obtained by spectral factorization, as
explained above. Using Héo)(z), we can synthesize the QMF lattice, thus obtaining
an initialization of the lattice parameters (7s).

Spectral Factorization : The method presented in [Mia82] computes the minimum
phase spectral factor by Cepstral techniques, whereas the algorithm in Appendix A
uses the inverse Linear Predictive Coding (LPC) technique. Ejin(2) and Ej jpin(2)
are obtained by two separate spectral factor computations. Each of these computa-
tions involves spectral factorization of a sequence of length (N — 1), where N is the
length of the filter Ho(2). In comparison, the PR-QMF design method in [Smi84]
involves the spectral factorization of a half-band filter of length (2N — 1) to obtain
Ho(z). Further, the zeros of the half-band filter, which lie on the unit circle, pose a
serious difficulty in spectral factorization. On the other hand, neither E ,,,(2) nor
Ey min(2) have zeros on the unit circle (or close to it). Hence, there is no difficulty in
the spectral factor computation.

Optimization : The objective function that is minimized is the stopband energy
¢s = 1 [7 |Ho(e’)[*dw. The optimization of the lattice parameters is done by using

e04jaf [NAG], which is a quasi-Newton algorithm. Several design examples were

done, one of which is documented below as design example 3.1. In all the examples,
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it was observed that the above initialization scheme worked well and led to quicker
convergence than if the lattice parameters were initialized by arbitrary choice.
Design Steps : We can summarize the above method for the design of 2-channel
PR-QMF banks as follows :

1. Design a conventional QMF bank {H|(z), H;(2)}.

2. Obtain Egmin and Ej ,,in by spectral factor computations.

3. Synthesize the lattice using H((,O)(z) and hence obtain an initial estimate of the

lattice parameters (s).

4. Use optimization to obtain the desired PR-QMF bank {Hy(z), H;(z)}.
Design Example 3.1 : Consider a conventional QMF bank {H{(z), H}(z)} designed
by the method in [Jon80,Cro83]. H{(z) is a linear phase filter of length 32 with
stopband edge w, = 0.6227 radians and stopband attenuation A, = 53.4 dB. Its
magnitude response is shown in Fig. 3.2(a). In this two-channel QMF bank, the
aliasing is completely canceled but the peak-to-peak reconstruction error E,_, (the
deviation in satisfying the flatness constraint) is E,_, = 2.97 E-03. Eg.;.(z) and
E\ min(2) are computed individually by the spectral factorization algorithm in [Mia82).
Then using (3.11), we get H(go)(z), from which we obtain an initialization of the
parameters of the QMF lattice, y2m4+1, 0 < m < 15. These initial values are shown
in Table 3.1. The same table also includes the values of the same parameters after
optimization. The optimization required 2244 objective function evaluations.! The
optimized filter Ho(z) has A, = 53.44 dB and w, = 0.6167 radians. Its magnitude
response is shown in Fig. 3.2(b). Since {Ho(z), H1(2)} is a PR-QMF bank, there is

no reconstruction error and so it performs better than the filter bank {Hj(z), Hi(z)}.

tIn each iteration step of the optimization, several objective function evaluations are required —
to estimate the gradient, to bracket the minimum, to compute the optimum step size etc. In all the
design examples presented in this chapter, the number of objective function evaluations required for
the optimization to converge is also given. This number gives a rough idea of the typical amount of
computation involved in these designs (and hence, the amount of time taken to do them).
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(a) Magnitude response of the conventional QMF filter,
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Table 3.1 : Design example 3.1. The values of the parameters of the

QMF lattice — initial and optimized

m Y2m+1 (initial) Y2m+1 (optimized)

0 | -1.0003428707521840 E 00 | -4.3917013718020950 E 00
1 || -1.56757869444709961 E-04 | 1.4390985796019320 E 00
2 5.8764055933039594 E-05 | -0.8346483944576103 E 00
3 || -1.0152571826719751 E-04 | 0.5663583875653382 E 00
4 2.9285603444370026 E-05 | -0.4106025790146088 E 00
5 4.1862550465248009 E-05 | 0.3064482892951790 E 00
6 | -1.1982619264486099 E-04 | -0.2306183763629460 E 00
7 1.4291838513335176 E-05 | 0.1724706358377301 E 00
8 || -7.0048131733623905 E-05 | -0.1266158573353771 E 00
9 | -1.0516281571665291 E-04 | 9.0159165781343906 E-02
10 | 2.6237145302113543 E-04 | -6.1461835143995266 E-02
11 || -2.1470812917944522 E-04 | 3.9487419177623329 E-02
12 | 1.2675853637729456 E-04 | -2.3414945636680114 E-02
13 || -5.8559563855515047 E-05 | 1.2414851571670356 E-02
14 || 2.0400702073522024 E-05 | -5.5553078133802171 E-03
15 || -4.4435566156077461 E-06 | 1.8178975775898513 E-03

31

A further advantage is that the QMF lattice ensures the PR property even in the

presence of coefficient quantization.

3.2 Initialization for M-Channel PR-QMF design

In this section, we deal with the design of PR-QMF banks for M > 3 (in particular,
for M prime). Two well-known design approaches are presented in [Vai87a,Ngu88b].
Both these approaches to PR-QMF design are based on forcing the polyphase com-
ponent matrix E(z) to satisfy the lossless property (by using lattice structures). It is
shown in Section 4.2 that in pseudo-QMF designs [Roth83,Nus81,Mas85], it is possible
to obtain designs such that the polyphase component matrix E’(2) is approzimately

lossless, i.e., satisfying E(z)E'(z) ~ I5;. The objective of this section is to present a
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procedure for extracting an initial estimate of the lattice parameters involved in the

PR-QMF design from the matrix E’(z). The details are presented as follows :
1. The design of PR-QMF banks, using the lattice structure (2.14) to obtain loss-
less E(2), is given in [Vai87a]. An initialization procedure for this design ap-

proach is discussed in Section 3.2.1.

2. The design of PR-QMF banks, using the pairwise symmetric lattice structure
(2.28), is given in [Ngu88b,Vai89]. An initialization procedure for this design
approach is discussed in Section 3.2.2.

The main results in [Vai87a,Ngu88b,Vai89] pertaining to these design approaches have
been summarized in Section 2.3. Design examples, obtained by using the proposed

initialization scheme, are given for both approaches.

3.2.1 PR-QMF Design based on the Lossless Lattice

As outlined in Lemma 2.1, if E(z), the polyphase component matrix of the analysis
filter bank, is lossless, then we can always find the matrix R(z) (and hence, all the
synthesis filters) such that the analysis/synthesis system achieves perfect reconstruc-

tion (PR). Specifically, if E(z) is lossless, we choose
R(z) = 2 ™E(2), (3.12)
and this gives the following relation between the analysis and synthesis filters
Fi(z) =2z"™Hp(z), 0<k<M -1, (3.13)

where n; and n, are positive constants that ensure causality. This result is presented
in [Vai87a] and is used therein to obtain a design procedure for FIR PR-QMF banks
based on the design of lossless E(z). Since we are dealing solely with FIR filter banks,

all the entries of the M x M matrix E(z) are FIR transfer functions.
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Using Lemma 2.2, the lossless matrix E(z) can be represented as
E(z) = V;(2) V;_1(2) -+ V(2) Ey, (3.14)

where Eo is a constant M x M unitary matrix, j is the McMillan degree of E(z), and

Vi (2) is a degree-one FIR lossless matrix of the form
Vi) = [y —vivl + ]|, 1<k <5, (3.15)

where vj is a M x1 column vector with unit norm.

The characterization of E(z) given in (3.14) is such that the lossless property of
E(z) is preserved as long as each of the vectors (v;) has unit norm and Ey is a unitary
matrix. The vectors are forced to have unit norm by using a normalizing constraint,
while the unitariness of E, is ensured by using one of the parametrizations given in
Chapter 2.

Suppose Eq is parametrized using Givens rotations as in (2.17). Then in the
design process, the degrees of freedom are the components of the v, vectors and the
MQ@ rotation (fs) from Eg. Together these variables are referred to as the lattice
parameters, since they characterize the lossless lattice (Fig.2.5(a)) which is used to

obtain E(z). The total number of degrees of freedom in the design is j(M — 1) +

M(M-1
2 .

The task before us is to design the matrix E(z) such that it yields ‘good’ filters.
In general, Ho(z) is a lowpass filter, H1(z) --- Hp-2(2) are bandpass filters and
Hpr-1(z) is a highpass filter. Since E(z) is lossless, perfect reconstruction of the
input is guaranteed even if the analysis/synthesis filters are not good filters, but such
designs are not of much practical value. In order to obtain good filters, we optimize

the lattice parameters to minimize the following objective function

62 Z / | Hi(e7) 2 dow. (3.16)

topband

Several optimization routines such as e04jaf [NAG] and zxmin [IMSL] are readily



CHAPTER 3 INITIALIZATION TECHNIQUES 34

available and can be used for the design. All the examples presented in this section
were obtained by using e4jaf, which is a quasi-Newton algorithm.

Initialization : We will now obtain a procedure to initialize all the lattice pa-
rameters, by using a suitable pseudo-QMF design. Any pseudo-QMF bank can be

expressed in the form given in (2.9), i.e,
h'(2) = E'(zM)ep(2), (3.17)

where E’(z) is the polyphase component matrix. We will use the order reduction
method given in [Doga88,Vai89], which consists of successively obtaining the degree-
one factors of the form in (3.15) in order to express E’(z) as in (3.14). The number
of degree-one factors is equal to the McMillan degree of E'(z). However, there are
two issues that must be mentioned. The first is that, given any matrix E'(z), it is
not possible to know by inspection its McMillan degree (which is typically greater
than the order E'(z)). So we do not know a priori the number of degree-one factors.
Secondly, since E'(z) is only approzimately lossless, there is some error/approximation
involved in the order reduction process (which is discussed next).

Order reduction : Let p be the McMillan degree of E'(z). Expressing E'(2) in

terms of its matrix impulse response coefficients, we have
E'(z)=) e(k)z™, q¢<p, (3.18)
where ¢ is the order of E'(z). Then, we can write
E'(z) >~ V(z2) E}(2), (3.19)

where V(z) is a degree-one factor of the form (3.15) and E{(z) has McMillan degree

(p —1). Since V(z) is lossless, (3.19) can be written as

E\(z) ~ V(2)E(z), (3.20)

~ Ly —vvl 4 zva] [e’(O) +e(1)z7 4.+ e'(q)z‘q] . (3.21)
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If the following two conditions
Wte’(O) =0 and [I - vvf] e'(q) = 0, (3.22)

are satisfied, then Ej(z) is causal, with order (¢—1). As mentioned earlier, since E(z)
is approximately lossless, the conditions in (3.22) are only approximately satisfied.
A reduction in order will not always happen at every step, although the McMillan
degree will decrease at every step (3.20). The order reduction process is repeated to

get all the degree-one factors. Then, E'(z) can be expressed as
E'(z) ~ V,(2)Vpa1(2) - - - V1 (2) E, (3.23)

where Ej is an approximately orthogonal matrix, satisfying E’g E; ~ I. This
is due to the approximations involved in the order reduction process. Using these
vectors v (obtained from Vi(z)) and the Givens rotations 6;; (obtained from the
parametrization of Ej), all the lattice parameters can be initialized. Then the design
of E(z), the polyphase component matrix of the PR-QMF bank, is done by minimizing
the objective function in (3.16).

Design example 3.2 : This example demonstrates the design of a 3-channel PR-
QMF bank using the initialization scheme described above. First, we design the
prototype filter of a 3-channel pseudo-QMF bank as outlined in Appendix B. The
length of the prototype is 18. Its stopband edge w, = 0.3217 radians and its stopband
attenuation A, = 40.91 dB. The magnitude responses of the analysis filters are shown
in Fig 3.3(a). The overall transfer function of the analysis/synthesis system and its
total aliasing error are plotted in Fig. 3.3(b),(c) respectively. The values of the aliasing
error E, and the peak-to-peak reconstruction error E,_, (both of which are defined in
Section 4.5) are E, = 1.962 E-03 and E,_, = 2.137 E-02. It was verified that E'(2),
the polyphase component matrix of this pseudo-QMF bank is approximately lossless.

Using the order reduction procedure, the degree-one factors Vi(z) (of the form in
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Design example 3.2.

(a) Responses of the filters of the pseudo-QMF bank,

(b) Plot of the reconstruction error of the overall
analysis/synthesis system,

(c) Plot of the total aliasing error.
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(3.15)) are successively obtained. Each vector vi is a 3 x 1 column vector with unit
norm. For this example, the number of degree-one factors required is 7. So we have

a factorization of the form in (3.14), as given below :
E'(z) ~ V1(2)Vg(2) --- V1(2)E;,. (3.24)

The 3x3 matrix Ej is parametrized by 3 Givens rotations (8;, 62, 63). The values of
the components of the vectors (v;) and the Givens rotations are shown in Table 3.2.
These are the initial values of the 24 lattice para,metérs. We now optimize the lattice
parameters using the objective function given in (2.30) (which is the same as the
one in (3.16)), with € = 0.0834r radians. The optimization took ~ 33,000 objective
function evaluations to reach convergence. The values of the lattice parameters, on
completion of the optimization, are given in Table 3.3. The magnitude responses of
the filters of the optimized PR-QMF bank are plotted in Fig. 3.4(a) and their impulse
response coefficients are shown in Table 3.4.

An important advantage of this initialization scheme is that by varying the param-
eter € in the objective function (2.30), a family of PR-QMF banks can be designed (all
using the same initialization). To illustrate this, the PR-QMF design was repeated
for two other values of e. The magnitude responses of the filter banks obtained in
these designs are plotted in Fig. 3.4(b),(c) and the characteristics of the filter Ho(z)

in the three designs are compared below.

€ Hy(z)
(radians) | A, dB | w, (rads.)
0.0834x 30.39 | 0.4306x
0.12707 40.85 0.4698m
0.14707 42.89 0.49027

There is however one drawback in this approach. The length of the filters of the
pseudo-QMF bank (used to obtain the initialization) is 18, but the length of the
filters of the PR-QMF bank is higher, i.e., it is 24. This is typically the case, with the
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Table 3.2 : Design example 3.2. Initial estimates of the lattice

parameters, obtained from a pseudo-QMF design

m Um,1 Um,2 Um,3

1 0.5773502691896260 | -0.5773502691896262 | -0.5773502691896251
2 0.4324535288279615 | 0.8160083572068758 | -0.3835548283789152
3 0.5773502691896253 | -0.5773502691896261 | -0.5773502691896257
4 0.4324535288279615 | 0.8160083572068758 | -0.3835548283789151
5 |-0.5505320312517256 | 0.2469273029108523 | -0.7974593341625775
6 | -0.5505320312517251 | 0.2469273029108518 | -0.7974593341625779
7 0.4082482904638632 | 0.8164965809277258 | -0.4082482904638632

o 61 02
-0.8236602888260015 | -0.6009059143758730 | -0.2090635984302468

Table 3.3 : Design example 3.2. Final values of the lattice parameters

m Um,1 Um,2 Um,3

1 0.3368076614231423 | 0.9216509182457436 | -0.1926659910400688
2 1-0.3006410452846464 | -0.9421456864549457 | 0.1482446200861748
3 1-0.5545157817682095 | 0.4997508089535401 | -0.6654031685529260
4 0.3845065939607754 | -0.1240761338655100 | -0.9147457527672219
5 0.3413774834607199 | -0.1832664857042431 | -0.9218865488787883
6 | -0.4826676305021870 | 0.4231124742712617 | -0.7668166616483078
7 0.3033122476669819 | 0.9033274637661588 | -0.3033169524128225

00 01 02
-0.7832580899461068 | -0.5943706750376255 | -0.5953809812513522

38
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Fig. 3.4. Design example 3.2.
Magnitude responses of the PR-QMF banks for

different values of € (as multiples of m)
(a) 0.0834 (b) 0.1270 (c) 0.1470
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40

Table 3.4 : Design example 3.2. The impulse response coefficients of the

analysis filters of the PR-QMF bank (after optimization)

hi(n)

ha(n)

3.8814637115525130 E-08

4.9462342291861514 E-02

-6.6331630579525680 E-02

-9.8773720034830675 E-02

6.3494367358307713 E-07

0.1235028585888483 E 00

5.5682886637826140 E-02

-0.1345877809427378 E 00

-3.2188220193407613 E-07

0.1886645460056310 E 00

0.1499034730891619 E 00

-0.3198643357761491 E 00

-1.4403888064506987 E-06

0.4697696725304774 E 00

-0.4764125826730772 E 00

-0.5017866263418652 E 00

3.4414793318449100 E-06

0.3273568328563814 E 00

0.6587300231592239 E 00

-8.3439947397166842E-03

-3.5737571111027489 E-06

-0.2610105097035103 E 00

-0.5131226199532311 E 00

0.3143313504330736 E 00

1.7864947939733034 E-06

-0.1560754184628922 E 00

0.1792545961240279 E 00

-5.4542368186644805 E-02

3.2304209215960888 E-07

0.1576789774518040 E 00

6.7917873597733103 E-02

-0.1088345802685564 E 00

-8.2749318000368242 E-07

2.3647175342638911 E-03

-9.1657654266537589 E-02

6.5230829395399717 E-02

7.8603267322091552 E-08

-3.6024002146398088E-02

-1.6011605750543437 E-03

5.3775056856027615 E-04

1.7872224989182173 E-07

1.4427474693207895 E-02

2.4397741486878843 E-02

-8.1922103449648329 E-03

-7.9256361520537074 E-08

2.6612495468156476 E-08

n ho(n)

0 4.9462993915470467 E-02
1 9.8774250330729021 E-02
2 0.1235028832746365 E 00
3 0.1345876166028245 E 00
4 0.1886651893199945 E 00
5 0.3198660916296569 E 00
6 0.4697712625341564 E 00
7 0.5017862605914835 E 00
8 0.3273539918370653 E 00
9 8.3402994192643999 E-03
10 || -0.2610123836864501 E 00
11 || -0.3143303364195794 E 00
12 || -0.1560727810294523 E 00
13 || 5.4544296922768007 E-02
14 || 0.1576788797132729 E 00
15 || 0.1088331375349715 E 00
16 || 2.3635725633640819 E-03
17 || -6.5230536614374016 E-02
18 || -3.6023487094694551 E-02
19 || -5.3750818218272205 E-04
20 || 1.4427409577514129 E-02
21 || 8.1920832756822298 E-03
22 || -2.6612082682038321 E-08
23 || -3.2809139826357097 E-03

-9.7712496925717492 E-03

3.2809648736449957 E-03

Table 3.5 : Design example 3.2. Comparison between Modulated PR-Banks

and Pseudo-QMF Banks — 3 Channel

(filter length = 24)

Prototype Reconstruction | Aliasing

A, (dB) | w, (rads.) | Error (E,_,) | Error (E,)
Pseudo- 29.02 0.21467 1.194 E-03 1.550 E-02
QMF 29.91 0.21527 1.157 E-03 3.605 E-02
bank 30.51 0.2152x 9.038 E-04 5.901 E-02
34.02 0.21467 4.348 E-04 2.141 E-01

PR-QMF
bank 30.39 0.21537 6.865 E-16 1.998 E-15
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increase in the length being controlled by the number of degree-one factors obtained
in (3.23). However, once the initialization is obtained, the PR-QMF banks can be
designed quite easily, as demonstrated in this example.

In order to make this design example complete, we compare the PR-QMF bank
(filter length = 24) with pseudo-QMF banks with the same filter length and transition
bandwidths. The designs are compared in terms of their performance as measured by
the aliasing error (E,) and the peak-to-peak reconstruction error (E,—p). The results
are compiled in Table 3.5. From this comparison, it can be seen that in pseudo-QMF

designs, we can tradeoff between the errors F, and E,_,, but cannot achieve the

performance of the PR-QMF banks.

3.2.2 PR-QMF Design based on the Pairwise Symmetric Lattice

The details of the pairwise symmetric lattice are given in Section 2.3.2. Along with
that, the advantages of using this structure are also discussed. In this section, we focus
on obtaining an initialization procedure for the parameters of the pairwise symmetric
lattice (2.28) from a suitable pseudo-QMF design.
In Section 2.3.2, it is shown that for the pairwise symmetric lattice, the analysis
filter bank of an M-channel PR-QMF bank is expressed as
1

V2

A sufficient condition for ensuring PR is that the matrix A(z) is lossless. In order to

h(z) = —=RuT(zM)A(2™M)ep (22). (3.25)

ensure its losslessness, A(z) is characterized in a manner identical to the characteri-
zation of E(z) in the previous section, as given by (3.14). So we will avoid repeating
the same details and will directly use a design example to outline the initialization
scheme.

Initialization : Consider the design of a 5-channel PR-QMF bank {Hy(z), --- Hy(2)}

(satisfying pairwise symmetry) with the initialization being obtained from a 5-channel
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pseudo-QMF bank {H{(z), --- Hy(z)}. Using (2.34) and (2.39), we have

hi(n) = 20'(n) cos ( (28 + 1)e(n — 22) 4 (-1

), 0<k<4. (3.26)
Assume that the length of the prototype filter, N, is even. Then the following sym-

metry relations can be verified :

Hi(-z), if & isodd,

Hi(z) = 2
(%) { —H{(—2), if & is even. (3:27)
A similar relation holds between Hj(z) and Hj(z). The filter H}(z) satisfies
ah(2?) if & is odd
Hy(z)=4¢ 277 2 ’ .
2(2) { z7'ah(2?), if ¥ is even. (3:28)

From (3.27) and (3.28), it can be seen that this pseudo-QMF bank indeed satisfies
the pairwise symmetry condition (2.22) (to within a scale factor, £1).

Design example 3.3 : Consider a pseudo-QMF bank with a prototype filter of
length 46, designed as in Appendix B. The prototype filter has stopband attenuation
A, = 53.52 dB and stopband edge w, = 0.18387 radians. The aliasing and reconstruc-
tion errors for the overall analysis/synthesis system using this pseudo-QMF bank are
E, = 1.977 E-04 and E,_, = 7.828 E-02 respectively. The pseudo-QMF bank can be

expressed as follows :

H(2) 10 0 0 1 1 ap(2?)
Hj(z) ] 01 0 1 O 1 o} (2%)
hW(z)=| Hy(z) |=—=]0 0 +v2 0 0 1 oy (2?)
Hi(2) 2101 0 =1 0 21 ol (2?)
Hi(z) 10 0 0 -1 271 | | eq(2?)
(3.29)

Using (3.29), z~*h/(z) can be expressed in the form of (2.28), with M = 5, where A’(2)
is the polyphase component matrix of [z~2a}(z), 2~%a}(z), 2~2c}(z), d4(z), a(2)] .

Since the length of the filters of the pseudo-QMF bank is 46, it can be verified that
z72a}(z) is a polynomial of length 25. So each of the elements of A’(z) is a polynomial

of length < 5. Next, we do the order reduction (as explained in the previous section)

to get the degree-one factors of A’(z). In this example, the number of degree-one



CHAPTER 3 INITIALIZATION TECHNIQUES 43

factors required is 4. So we can express A’(z) (as in (3.23))
A'(2) ~ V4(2)V3(2) Vo (2) Vi (2)Af, (3.30)

where Ajg is a 5 X 5 constant matrix that is approximately orthogonal. The approxi-
mations in the above equation are due to the fact that A’(z) is not ezactly lossless.
For this example, we characterize the constant matrix A} by using the Householder
factorization (2.20), and obtain the vectors {u;, u;,us,us}. These vectors along with
{Vv1,Vv2,V3,Vv4} give the initialization of all the lattice parameters (total = 34) of the
pairwise symmetric lattice (2.28). These initial values are shown in Table 3.6.

The optimization is done to minimize the following objective function,

= /_ ’; | Ho(6) [Pduw + /0 Sy () P+ /_+ | Hy (67) Pduw + /0 T ()
(3.31)
As explained in Section 2.3, the other stopband energy terms are not included because
of the pairwise symmetry satisfied by the filters. The optimization required ~ 14,000
objective function evaluations to reach convergence. The magnitude responses of
the filters of the PR-QMF bank Hy(z), H;(z) and H,(z) are shown in Fig. 3.5 (but
Hj(z) and Hy(z) are not shown since they can be obtained from H;(z) and Hy(z)
respectively). The length of the PR-QMF filters is 54, whereas the length of the
initializing filters (pseudo-QMF) is 46. This increase in the length of the PR-QMF
filters is due to the specific form forced by the pairwise symmetric lattice. The filter
Hy(z) has stopband attenuation A, = 46.81 dB and stopband edge w, = 0.3167
radians. The values of all the lattice parameters on completion of the optimization
are shown in Table 3.7.
This completes this design example, which illustrates the initialization procedure
for PR-QMF design using the pairwise symmetric lattice. In this case also, once
the initialization is obtained, we can design a family of PR-QMF banks by choosing

different values of the parameter € in (3.31).
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Fig. 3.5. Design example 3.3.
Magnitude responses of three of the filters
of the 5-channel PR-QMF bank (filter length = 54).

3.3 Summary

In this chapter, the lattice-based approaches to PR-QMF design are considered. Since
these design methods are based on optimization, obtaining ‘good’ initialization values
for the parameters being optimized plays an important role in yielding good results
and in reducing the time for the optimization to converge. Initialization procedures
for these PR-QMF design approaches are presented. In the case of two-channel PR-
QMF designs, the initialization is obtained from a conventional QMF design whereas
in the case of M-channel PR-QMF design (M > 3), the initialization is obtained from
a pseudo-QMF design. Detailed design examples are given to highlight the features
of the initialization procedures. Using these design approaches, we are able to design
PR-QMF banks very efliciently for M < 7 channels. For higher values of M, the
number of lattice parameters (which must be optimized) becomes large (as shown in
Table 4.1) and hence the optimization becomes increasingly difficult. This, in fact,
served as a strong motivation to seek alternate methods for PR-QMF design and led

to the work presented in the next chapter.
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Table 3.6 : Design example 3.3. Initial values of the lattice parameters

obtained from a pseudo-QMF design

(Vi — degree-one factors and u; — Householder vectors)

Vi

V2

V3

V4

-0.1735048524411 E 00

-0.1338269310171 E 00

-0.2532635023066 E 00

-0.2759948489917 E 00

-0.4542416009039 E 00

-0.3503634540130 E 00

-0.6630524571487 E 00

-0.7225638953802 E 00

0.3970217171326 E 00

0.3062288875698 E 00

0.5795290976483 E 00

0.6315440019386 E 00

-0.4092384958578 E 00

-0.4599950967059 E 00

0.2105322140169 E 00

-2.8215818040862 E-02

0.6621617958028 E 00

0.7442877011284 E 00

-0.3406482780061 E 00

4.5654152610496 E-02

u

u2

us

uy

-0.7511760585052 E 00

0.0000000000000 E 00

0.0000000000000 E 00

0.0000000000000 E 00

-0.2239810296659 E 00

0.7175943237066 E 00

0.0000000000000 E 00

0.0000000000000 E 00

0.1957665982731 E 00

0.2819519608259 E 00

0.7211826482947 E 00

0.0000000000000 E 00

-0.3097990595004 E 00

0.4132397080508 E 00

0.1469618531728 E 00

-0.9619383577839 E 00

0.5012654079544 E 00

0.4845559018942 E 00

0.6769769578875 E 00

-0.2732665289127 E 00

Table 3.7 : Design example 3.3. Final values of the lattice parameters

Vi l

V2 l

V3 l

Vg4

0.8032886818602 E 00

0.2013587888479 E 00

-0.3565441866836 E 00

-4.7239858816182 E-02

-6.1573629416919 E-02

2.1108235452691 E-02

-0.7970815490657 E 00

-0.9950069529785 E 00

0.5040796613860 E 00

0.1713044776047 E 00

0.4646884300500 E 00

3.5730249840755 E-02

-0.1829367521508 E 00

-0.9626577524765 E 00

-1.7606324303927 E-02

8.0246315637822 E-02

-0.2517415767117 E 00

-5.4349867518901 E-02

0.1459175363117 E 00

3.6656972664466 E-03

|

u; |

u2 l

us l

g

-0.3471964227661 E 00

0.0000000000000 E 00

0.0000000000000 E 00

0.0000000000000 E 00

-0.2431409534533 E 00

0.8861538861356 E 00

0.0000000000000 E 00

0.0000000000000 E 00

0.7845023826808 E 00

0.3650854659091 E 00

0.6137856407383 E 00

0.0000000000000 E 00

-0.4140705134653 E 00

-0.2849813516361 E 00

-0.4989552054597 E 00

9.4053042734044 E-02

-0.1828626321012 E 00

1.5149979813155 E-02

0.6118095211487 E 00

-0.9955671876636 E 00
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Chapter 4

Modulated FIR Filter Banks Satisfying Perfect

Reconstruction

Two familiar approaches to M-channel QMF design are the perfect reconstruction
QMF banks [Smi84,Vai87a,Vet87,Ngu88b,K0i90] and the pseudo-QMF banks [Roth83,
Nus81,Mas85,Cox86]. The tradeoffs between the two are that the latter has an effi-
cient design procedure (only the prototype filter is designed) while the former achieves
perfect reconstruction (PR) of the input (i.e., without aliasing, magnitude or phase
distortions). Owing to their attractive features, PR-QMF banks are of particular in-
terest. However, the existing approaches for PR-QMF design (which were discussed
in the previous chapter) require the optimization of a non-linear objective function
of a large number of parameters (particularly for large values of M). In this chapter,
we present a method, which while retaining all the attractive features of modulated
filter banks (e.g., only the prototype filter is designed), also satisfies the PR property.
The analysis and synthesis filters are of equal length (an arbitrary multiple of 2M).
It is a known result [Prin86,Vet89,Mal90a] that FIR filter banks satisfying PR can
be obtained by the modulation of a linear-phase prototype of length N = 2M, when
certain constraints are imposed on the prototype. In this chapter, we consider linear-
phase prototype filters of length N = 2mM, where m>1. A necessary and sufficient
condition for E(z), the polyphase component matrix of the modulated filter bank,

to be lossless, is presented. The losslessness of E(z) is sufficient to ensure that the
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analysis /synthesis system satisfies PR.} Our approach throws additional light on the

problem and places in evidence its relation to lossless QMF banks [Vai87a]. It also

yields an efficient design method, where pairs of polyphase components are designed

using the two-channel lossless lattice structure [Vai86b]. This enables the design of a

large class of FIR-PR modulated filter banks (with N = 2mM). The main advantages

of the proposed method are summarized below.

1.

7.

These filter banks satisfy the perfect reconstruction (PR) conditions.

. The method can be used to design filter banks for an arbitrary number of

channels.
The analysis and synthesis filters are of equal length (NV).

The analysis and synthesis filters are obtained by cosine modulation of the

prototype filter. Hence they can be implemented very efficiently.

This method requires half as many parameters to be optimized as compared to
the pseudo-QMF method. This is much fewer than the number of parameters

optimized in lattice-based PR-QMF designs.

The objective function used in the optimization is very simple and it involves
only the stopband energy of the prototype. In comparison, the objective func-
tion in pseudo-QMF designs, includes the stopband energy of the prototype
and a ‘flatness constraint’ while in lattice-based designs, it includes the stop-
band energies of all the M filters in the filterbank. Hence, the evaluation of the
objective function (which is required at every iteration of the optimization) is

simpler.

The new scheme is such that the 2M polyphase components of the prototype

IWhile this work was well under way, Malvar’s work [Mal90b] was brought to the author’s atten-
tion. In [Mal90b], a necessary and sufficient condition for PR is obtained in the time domain, for
prototypes of length N = 2mM.
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H(z) can be grouped into M power complementary pairs. If each pair is imple-
mented in a structurally power complementary manner, then the PR property
is retained even in the presence of coefficient quantization. This is achieved by

implementing each power complementary pair by a two-channel lossless lattice.

8. The optimization (to obtain the prototype filter) is done directly on the lattice
parameters. This enables us to optimize the prototype response (while it is
guaranteed that the modulated filter bank will satisfy the PR property).

Losslessness and cosine-modulation

It has been verified by explicit computation that good pseudo-QMF designs [Roth83,
Nus81,Mas85,Cox86] are such that the polyphase component matrix E(z) of the anal-
ysis filter bank is ‘almost’ lossless. This is consistent with the ‘almost’ perfect recon-
struction property of these cosine-modulated filter banks (see Section 4.1.1). We can
summarize by saying that this paper incorporates ‘exact’ losslessness into pseudo-
QMTF techniques and thereby enables the PR property to be satisfied, while retaining
all the attractive features of modulated filter banks.
QOutline of the Chapter

In Section 4.1, a brief overview of results in modulated filter banks is given. In Sec-
tion 4.1.1, a new observation pertaining to pseudo-QMF banks is presented. This re-
sult motivates the work presented in the later sections. In Section 4.1.2, the polyphase
implementation of modulated filter banks is derived. This also serves to introduce the
notation related to the polyphase component matrices and the modulation matrix.

In Section 4.2, we consider the modulated filter banks that satisfy the PR property.

In this section, it is shown that for E(z) (the polyphase component matrix of the
modulated filter bank) to be lossless, it is necessary and sufficient that appropriate
pairs of polyphase components of the prototype H(z) are power complementary. The

losslessness of E(2) is sufficient to ensure that the analysis/synthesis system satisfies



CHAPTER 4 MODULATED PR BANKS 49

the perfect reconstruction (PR) property.

The design of prototype filters of modulated PR banks is considered next. Sec-
tion 4.3.1 contains a description of the two-channel lossless lattice. In Section 4.3.2, it
is shown how the two-channel lossless lattice can be used to ensure that the prototype
filter satisfies the condition for PR obtained in Section 4.2. Sections 4.3.3-4.3.5 deal
with the design procedure (for the prototype filter) based on the two-channel lossless
lattice. The advantages of this design approach are discussed in detail. In Sec-
tion 4.3.6, an efficient implementation of the modulated PR filter banks is presented
along with a comparison of its implementation complexity with that of pseudo-QMF
banks. Section 4.4 includes design examples to demonstrate the various aspects of
the design procedure and a detailed comparison between modulated PR filter banks
(designed by the approach proposed in this chapter) and pseudo-QMF banks.

Appendix 4.A contain the proofs of some identities (pertaining to the properties of
the cosine-modulation matrix) which are essential in the derivation of the necessary
and sufficient conditions in Sections 4.2. In Appendix 4.B, the properties of the two-
channel modulated PR filter banks are discussed. It is shown that these filters satisfy
the same conditions as the ones in the well-known two-channel PR-QMF designs

(presented by Smith-Barnwell).

4.1 Modulated Filter Banks — An Overview

4.1.1 A Key Observation about Pseudo-QMF Banks

Pseudo-QMF banks belong to the family of modulated filter banks. The main results

from Pseudo-QMF theory are presented in Chapter 2. Let h(z) = [Ho(2) Hi(2) --- Hpr—1(2)]7
be the analysis filters of a pseudo-QMF bank. Using Type 1 polyphase decomposition
[Vai90], h(z) can be expressed as

h(z) = E(z")eum(2), (4.1)



CHAPTER 4 MODULATED PR BANKS 50

where E(z) is the polyphase component matrix of the filter bank and el (z) =
[1 27! +.. z=M-1]. The new observation is a property of the matrix E(z) of pseudo-
QMF banks. We have the following result from [Vai87a].

Fact 4.1 : In any perfect reconstruction QMF bank, if the analysis and synthesis

filters are related as
Fi(z) = cz'(N'l)Ek(z), 0<k<M-1, (4.2)

where ¢ is a non-zero constant, then E(z), the polyphase component matrix of the
analysis filter bank is necessarily lossless. ¢

Based on existing pseudo-QMF design techniques, it is possible to obtain designs
that satisfy (4.2). Further, by proper choice of 6, the aliasing error and the re-
construction error can be made very small. The overall transfer function T'(z) has
approximately unit gain at all frequencies. Hence, it is intuitively expected (by using
Fact 4.1) that the matrix E(z) of the pseudo-QMF bank will be ‘approximately’ loss-
less, i.e., E(2) satisfies the condition E(z)E(z) ~ I, with the non-diagonal terms
of the LHS being small, but not necessarily zero. This result was verified using a
number of design examples, one of which is shown next as an illustration.
Example : Consider a 3-channel pseudo-QMF design. The prototype filter, which is
a linear-phase filter of length N = 36, is obtained by optimization. It has stopband
attenuation A, = 51.1dB and its stopband edge w, = 0.2967 radians. Each entry
of the 3x3 matrix E(z) is a polynomial of length 12. The product E(z)E(z) was
computed, which is also a 3x3 matrix whose elements are polynomials of length 23.
The entries of the first row of this product are shown in Table 4.1. (In order to save
space, the second and third rows are not shown). Hence, it can be verified that the
matrix E(z) of this pseudo-QMF design is approximately lossless.

Two other related results are :

1. If the matrix E(z) of a pseudo-QMF bank is lossless, then the pseudo-QMF



CHAPTER 4

MODULATED PR BANKS

Table 4.1. Example in Section 4.1.1. The first row of
E(z)E(z2) of a 3-channel pseudo-QMF design

[ B(2)E(2) ]0’0

[ E(2)E(2) ]O,1

| E()E(z) ],

0.93968 D-21
-0.69590 D-05
0.15585 D-18
0.21736 D-03
0.82399 D-17
0.60492 D-04
0.85869 D-16
-0.70648 D-04
0.11102 D-15
0.68909 D-04
-0.27756 D-16
0.99994 D+00
-0.27756 D-16
0.68909 D-04
0.11102 D-15
-0.70648 D-04
0.85869 D-16
0.60492 D-04
0.82399 D-17
0.21736 D-03
0.15585 D-18
-0.69590 D-05
0.93968 D-21

-0.13235 D-22
-0.23399 D-19
-0.63951 D-19
0.69457 D-18
-0.27376 D-17
0.56921 D-17
-0.35020 D-16
0.43368 D-16
-0.29490 D-16
0.20470 D-15
0.31225 D-16
0.19429 D-15
-0.83267 D-16
0.18041 D-15
-0.48572 D-16
0.58981 D-16
-0.79797 D-16
0.47705 D-17
-0.10734 D-16
-0.40658 D-19
-0.76572 D-18
-0.34305 D-19
0.38066 D-21

-0.89997 D-21
0.59822 D-20
0.81315 D-19

-0.77927 D-19
-0.67593 D-18
-0.35779 D-17
0.19516 D-17

-0.36429 D-16

-0.46838 D-16

-0.79797 D-16
0.11796 D-15

0.00000 D400
0.22204 D-15
-0.15266 D-15
-0.58981 D-16
-0.69389 D-16
0.14745 D-16

-0.32960 D-16
0.43368 D-17
-0.20600 D-17
0.93512 D-18
0.10164 D-18
-0.13764 D-20

51
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bank (whose filters satisfy (4.2)) will necessarily satisfy the PR property (by

using Lemma 3.1 [Vai87al).

2. In [Prin86,Vet89,Mal90a], it is shown that M channel pseudo-QMF banks can
satisfy the PR property, when the length of the linear-phase prototype filter,
N, is constrained to be N = 2M. For this case, the necessary and sufficient

condition for PR is
R+ (M -1—-i)=¢, 0<i<M-1, (4.3)

where ¢ is a non-zero constant.
The former result gives the condition that must be satisfied in order for pseudo-QMF
banks to satisfy PR and raises the question — “Is it possible for the matrix E(z) of a
pseudo-QMF bank to be lossless ?” The latter result shows that this is possible for
the special case when the prototype length N = 2M, thus leading to the following
questions.
Q1. It has been verified that the matrix E(z) of any pseudo-QMF bank is ‘approx-
imately’ lossless. Can we find appropriate constraints on the prototype such

that E(z) is ‘exactly’ lossless ?
Q2. If such constraints can be found, can they be easily satisfied ?

Q3. Can we design modulated filter banks (satisfying PR property) with the same
ease of design as pseudo-QMF banks ? Will they be comparable in perfor-
mance ?

The answers to all the above questions is in the affirmative and they will be elab-

orated in the following sections. The first step is to obtain a polyphase component

representation of the cosine-modulated filter banks.
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4.1.2 Polyphase Implementation of Modulated Filter Banks

As mentioned earlier, we choose the values of 8, for the cosine-modulated filter bank
as in (2.39). If we denote cx, = 2cos ((Qk + 1) (0 — =21 + (—-1)"%), then, using

the periodicity of the cosine modulation, we get the relation

Ck,t+2pM) = (—1)cre. (4.4)

From this point onwards, the length of the prototype filter (N) will be assumed to be

an even multiple of M, i.e., N = 2mM, where m is any positive integer (because in this

chapter, we will be dealing solely with prototypes satisfying this length constraint).
We shall now obtain a polyphase structure for the analysis filter bank. For this,

first we express the prototype H(z) as

2M—1m—1 2M -1
H(z) = Z Z h(q+2pM)z'(q+2pM)= Z z"qu(zzM), (4.5)
g=0 p=0 g=0

where G,(z) are the Type 1 polyphase components [Vai90] of H(z). Using (2.34), the

analysis filters can then be expressed as

. N-1 2mM-1 2M—-1m-1
Hi(z) = Y ha(n)z™ = Y h(n)eknz ™™= 3. 3 h(q+2pM)c grapnnyz~ 0+2PM),
n=0 n=0 g=0 p=0
(4.6)
Using (4.4), we can simplify (4.6) as
2M-1 m
Hi(z) = D> 2% ciyq > (=1)Ph(q + 2pM)z~2PM
q=0 p=0
2M-1
= Y Chg? UG, (=M. (4.7)
g=0
The analysis filter bank can be expressed in matrix form as
Ho(z) Go(—2*M)
Hy(z ~ 271G (=M
h(z) = 1.( ) =C 1(: ) ) (4.8)
HM—l(Z) z—(2M—1)G2M_1(_z2M)

where C is a Mx2M cosine-modulation matrix and [@]H = ¢y, 0 < k <

¥

M -1, 0< ¢ <2M — 1. This implementation of the analysis filter bank (4.8) is
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2 —= H.(2)
- G, (z™) s .

: : D |MxX2Mm—=H_ (2)
Z-l
GzM_1 (_Z2M) -

Fig. 4.1. Polyphase implementation of the cosine-
modulated analysis filter bank.

shown in Fig. 4.1. An efficient implementation of C will be derived in Section 4.3.6.
Using the relationship in (2.36), a similar implementation can be obtained for the

synthesis filter bank. Equation (4.8) can be compactly expressed as

_al 8((*") 0 em(z)
h(z) =C 0 gl(zzM) } [ 2 Mep(z) J ) (4.9)
where ef(z) = [1 27! .- z~M-V] and g (z), g,(z) are M x M matrices defined
go(z) é dla‘g [Go(-—-Z), Gl(_z)7 e GM—I(_Z)] ’
g,(z) £ diag [Gu(—2), Gumir(—2), -+ Gam-1(—2)]. (4.10)

The results in this section will be used in later sections, where we derive perfect re-
construction filter banks (using the same modulation as pseudo-QMF banks). It must
be mentioned that, in pseudo-QMF banks, the AC constraint ensures the cancellation
of the significant aliasing terms, but there will always be a residual aliasing error due to
the uncanceled aliasing terms. In the same manner, the flatness constraint minimizes

the overall distortion (between the output and the input), but does not eliminate it.
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On the other hand, in PR filter banks, both these errors are completely eliminated.
These facts, while highlighting the differences between pseudo-QMF banks and PR

filter banks, also motivate the interest in PR filter banks.

4.2 Modulated PR Filter Banks with N =2mM, m>1

In this section, we derive the conditions on a linear-phase prototype H(z) (length N =
2mM, where m is an arbitrary positive integer) such that the M-channel modulated
filter bank satisfies the PR property. Substituting N = 2mM in the expression for

¢k, (defined in Section 4.1.2), we get

Cee = 2cos ((2k+1)-”—(z-mM+-1-)+(_1)k1). (4.11)

2M 2 4
The matrix C (in equation (4.8)) can be expressed as C = [Af A7l], where Al, A}

are given by
[Aa]k,l = Ck, and [All]k,l = Ck,(l+M), 0 S k,€ S_ M —1. (412)
The analysis filter bank (4.9) can then be written in terms of Aj and A/ as

h(z) = [Age(2?™) + ™M AL g, (:™M)] em(2), (4.13)

~ /

E(zM)
where E(z) is the polyphase component matrix of the analysis filter bank.

Note that Aj and A] depend on the value of m. In Appendix 4.A it has been

proved that these matrices satisfy the following properties (for all values of m) :

AYTAY = oM [Ly + (-1, (4.14)
ATTAL = oM [y - ()3, (4.15)
Atar = artar—o, (4.16)

where I is the identity matrix and J is the ‘reverse operator,’ defined in Chapter 1.
From Lemma 3.1 [Vai87a], we know that if E(z), the polyphase component ma-

trix of the analysis bank is lossless, i.e., E(z)E(z) = Iy, then we can always find



CHAPTER 4 MODULATED PR BANKS 56

a synthesis bank such that the overall analysis/synthesis system satisfies perfect re-
construction (PR). So our aim is to obtain the conditions under which E(z), the
polyphase component matrix of the modulated filter bank, is lossless. We will now
prove the following Lemma.

Lemma 4.1 : Let h(z) be the analysis filter bank (4.8) obtained from H(z), a real
coefficient, linear-phase prototype filter of length N = 2mM (where m > 1). Then,

E(z), the polyphase component matrix of h(z) is lossless if and only if

~ ~ 1
Gr(2)Gi(2) + Gr+x(2)Gumai(2) = oM 0<k<M-1. (4.17)
where Gi(z) are the Type 1 polyphase components [Vai90] of H(z). O
Proof : From (4.13) and (4.16), we can write
B(2)B(z) = Bo(+)As Argo(+) + B (DA AIg (). (419)

Since the prototype H(z) is linear-phase and its length is N = 2mM, we have the

following relation [Vai87d] between the polyphase components of H(z)
Ge(z) = 27" VGop1-k(z), 0<E<M—1. (4.19)

Using (4.19), we get Iy g.(2?) = (—1)("“1)2‘2("“‘1)@(1_1-)(zz)JM, ¢ = 0,1, which in
turn yields the result

8o(z")Ino(2?) = (-1)" VM Vg (27)8, (%) = 81 (2)Tm gy (27).  (4.20)
Substituting (4.14), (4.15) in (4.18) and using (4.20), we get
E(:)E(z) = 2M [g(s")go(s") + &i(2)8u(2)] +

(=1 2M [Bo(=")Ingol(s") ~ & (") I ()],

~

=0

= 2M [E(<")8o()) + Ba(z)8(=7)] - (4.21)

From (4.21) we get

E(z) is lossless & 2M [go(z2)g0(z2) + gl(zz)gl(z2)] =Iy. (4.22)
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The matrix equation (4.22) can be re-written as M scalar equations (and since (4.22)
holds for all values of z, we can replace —22 by z), which are precisely the conditions
in (4.17). Thus, the lossless property of E(z) has been shown to be equivalent to the
much simpler, power-complementary condition in (4.17). This result can be summa-
rized as, “E(z) is lossless if and only if appropriate pairs of polyphase components of
H(z) are power complementary.”
\VAYAY/
The above lemma covers all cosine-modulated filter banks that are derived from
a linear-phase prototype of length N = 2mM. Owing to the linear-phase symmetry
of H(z), approximately half of the M constraints given in (4.17) are redundant. For
example, using (4.19) it can be verified that the condition in (4.17) for k = k;, where
0 <k < (M —1), is the same as the condition for k = M — 1 — k;. Removing the
redundant constraints, (4.17) can be expressed as :

1. for M even

~ ~ 1 M
Gk(z)Gk(z) + GM+k(Z)GM+k(Z) = .27‘_4-, 0 S k S 7 —1. (423)
2. for M odd
~ ~ 1 M
Gk(z)Gk(z) + GM+k(Z)GM+k(Z) = W, 0<k< I_—2-J - 1.
2011 (2)Gma (=) = -2—11‘4— (4.24)

From (4.24), we see that for M odd, the polyphase component G M= (2) is forced to
be a pure delay. By symmetry, the polyphase component G,, M1 (z) is also a pure
delay. The conditions in (4.23) and (4.24) are equivalent to the conditions in (4.17).
The total number of independent constraints is L%J, for M even/odd.

Further, for the special case with N = 2M, all the 2M polyphase components are
constants, i.e., Gx(2) = h(k), 0 < k <2M — 1. If H(z) has real coefficients, the
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linear-phase symmetry yields h(k) = h(2M —1 — k). So we can express (4.17) as

R2(k) + R3(M + k) = h2(k) + h2(M — 1 — k) = 2_11\Z 0<k<M-—1, (4.25)

which is exactly the condition obtained in [Prin86,Vet89,Mal90a). If H(z) has complex
coefficients satisfying h(n) = h*(2M — 1 —n), V n, then (4.17) becomes

]h(k)|2+|h(M—1—k)|2=§1M, 0<k<M-1. (4.26)

For the rest of this chapter, we will consider prototypes with real coefficients only.
The following result, which can be readily verified, will be used later.
Fact 4.2 : Consider a linear-phase prototype of length N = 2mM whose impulse

response coefficients are

e - <k< -
hky = { v (MM = M) Sk < (mM 4 M -1), (4.27)
0, otherwise.
This prototype satisfies the conditions given in (4.23), (4.24). o

4.3 Design of Prototype (N = 2mM)

In this section we focus on the design of the prototype (length N = 2mM) for
modulated filter banks satisfying the PR property. The approach is to obtain a
prototype satisfying the conditions in (4.23), and (4.24) which, by Lemma 4.1, are
sufficient to ensure PR for the overall system. Further, the prototype filter H (2)
should have high stopband attenuation and a narrow transition bandwidth. So, H(z2)
must be obtained by optimization.

One way of satisfying the conditions in (4.23), and (4.24) during the optimization
1s via spectral factorization. Suppose Gi(z), one of the polyphase components of
each power complementary pair {Gi(z), Gap4r(z)} is optimized, then Gasypi(z) can
be computed by spectral factorization. This must be done for each of the power
complementary pairs, and the same process must be repeated in every iteration. This

would then amount to |_%’I-J spectral factor computations per iteration. However, there
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is another way which completely avoids this extensive amount of computation. This
is achieved by using the two-channel lossless lattice [Vai86b] which is discussed next.

We will fully exploit the advantages of these lattices in our design approach.

4.3.1 Two-Channel Lossless Lattice

We have the following result from [Vai86b], which introduces the two-channel lossless
lattice.
Fact 4.3 : A stable digital filter transfer function P(z) with real coefficients is said
to be bounded real (BR) if [P(e’*)| <1, Vw. And any FIR BR pair {P(z), Q(2)}
satisfying
P(z)P(z)+Q(2)Q(z) = 1, Vz, (4.28)

can always be realized as a non-recursive, cascaded, two-channel lossless lattice struc-
ture shown in Fig. 4.2(a),(b). o

In Fig. 4.2(a), the two channel lossless lattice is made up of a cascade of the nor-
malized, four-multiplier lattice sections. Each lattice section is characterized by one
parameter 6;, where the index j refers to the particular lattice section. In Fig. 4.2(b),
the lattice is made up of a cascade of the denormalized, two-multiplier lattice sections

characterized by the parameter 3; and the overall scaling multiplier a which is defined

2 114 1
as & = Hj=0 71_'——[33

In this chapter, we use the structure of Fig. 4.2(a) in obtaining the design proce-
dure. However, since the two structures are equivalent [Vai86b], the design procedure
can be readily translated to the structure of Fig. 4.2(b). Both lattices have the same
number of parameters, but the latter is used in the implementation of the filter bank

since it requires approximately half the number of multipliers as the former.
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one lattice section

L X N J

Fig. 4.2(a). The two-channel lossless lattice with
four-multiplier lattice sections.
C, = cos 6, and sj= sinej.

Fig. 4.2(b). The two-channel lossless lattice with
two-multiplier lattice sections.

o is the scaling multiplier.

C
k,p
-1 @
67 @ D=6, ©
Skp
>k,
&Y e, DD G (@
e — —c, M+k
WP

Fig. 4.2(c). Typical four-multiplier implementation of the
pth lattice section of the k™ lattice.
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4.3.2 Satisfying the Pairwise Power Complementary Constraint

From Lemma 4.1, we have the conditions that require pairs of polyphase components
to satisfy the power complementary (PC) property. From Fact 4.3, we see that each
of these pairs {Gi(z), Gum4r(2)}, can be designed (to within a scale factor) by using
a separate two-channel lossless lattice. During the optimization of the prototype re-
sponse, we work directly with the lattice parameters. Hence the polyphase component
pairs are guaranteed to satisfy the pairwise PC property which, in turn, ensures PR.
The same is true even in the presence of coefficient quantization. So, in other words,
the advantage of using the two-channel lossless lattices is that the PR condition is
inherently satisfied and hence, it need not be included as one of the constraints in the
design of H(z).

For M even (refer equation (4.23)), we design —1;,1 pairs of polyphase components,
with the rest being determined by symmetry. For M odd (refer equation (4.24)),
we design |¥| pairs of polyphase components, with G Mo (2), Gy pM=1 (z) being
forced to be pure delays and the remaining I_—A,‘,ij pairs of polyphase components being
determined by symmetry. So, for any M, the number of two-channel lossless lattices
needed for design of the prototype is [—]‘21] .

In Fig. 4.2(d), we have a block diagram representation of the [-Azij two-channel
lattices. The k* lattice yields the PC pair {Gi(z), Gar4r(z)}. Its parameters are
denoted as 6y ;, where the index j refers to the particular lattice section. The transfer
function between the input of the lattice and the output of the p** lattice section is

denoted by a superscript p. The lattice transfer functions are initialized as
. M
GO(z) = cosbro and G\, (z) = sin by, 0<k<|5)-1  (429)

In Fig. 4.2(c), we have a typical four-multiplier implementation of the p* lattice sec-
tion of the k" lattice. Let {Ggf _1)(2), Gg’}:_lk)(z)} be the transfer functions from the in-

put to the output of the (p—1)® section. We can then write down {Gip)(z), Gg’,’,)_,_k(z)}
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of an M-channel prototype H(z). The total number
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as
GPI(z)

sinfy, —cosby, Z_ngff;lk)(z)

Gip)(z) |: cos by, sinfy, ]
Giter(2)

}, p21,0<k< |21

(4.30)
Hence, we get a recursive relation for the transfer function when a new lattice section
is added. From (4.30), it can also be seen that the addition of each lattice section
increases the order of the transfer functions by one.
Number of parameters to be optimized

From the preceding discussion, we know that ]_%_] two-channel lattices are used
in the design of the prototype H(z) for an M-channel modulated PR filter bank. If
the length of the prototype is N = 2mM, then each of 2M polyphase components
has length m (and hence, order (m — 1)). This implies that each lattice has (m — 1)
sections, involving a total of m unknown parameters [0, 051, --- Ok,(m-1)]. Hence
the total number of parameters to be optimized is m [A;—J .

On the other hand, a pseudo-QMF design (same length prototype) involves mM
parameters while the lossless lattice approach to PR-QMF design [Vai87a,Vai89,
Koi90] requires many more, viz., [(2m — 1)(M — 1) + M%;Q] parameters. A com-
parison of the number of parameters to be optimized in each of the three design ap-
proaches — the modulated PR bank, pseudo-QMF and lattice-based PR-QMF banks,
is shown in Table 4.2. From Table 4.2, we see that the rnodulatéd PR filter bank ap-
proach requires approximately half the number of parameters as in the pseudo-QMF
design and much fewer parameters when compared with the lattice-based PR-QMF
approach. This advantage becomes significant, particularly for large M. In the next
section (in design example 4.2), we will present design comparisons between the pro-

totypes of modulated PR banks and pseudo-QMF banks.
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Table 4.2. Comparison of the number of parameters optimized in the design of
Modulated PR banks, Pseudo-QMF banks and traditional PR-QMF banks

# of parameters optimized
# channels | length | Modulated | pseudo- | traditional
M N PR bank QMF PR-QMF
3-channels 48 8 24 33
60 10 30 41
5-channels 40 8 20 38
60 12 30 54
7-channels 42 9 21 51
84 18 42 87
16-channels 64 16 32 165
96 24 48 195
17-channels 68 16 34 184
102 24 51 216

4.3.3 Design Steps

The procedure for designing the M-channel prototype filter (length N = 2mM)
involves the initialization of the parameters of the I_%’I—_I lattices and the optimization
of these parameters. We discuss each aspect separately.

I. Initialization : The following is a simple initialization scheme for the pa-
rameters of all the |#| two-channel lattices (each two-channel lattice has (m — 1)

sections),

T p=0, 0<k< Y- 1,
Ok = { : L (4.31)
29

1<p<(m-1), 0<k< ¥ -1
It can be verified that this initialization corresponds to a prototype H(z) satisfying

h(k)___{ 1, (mM—-M)<k<(mM+M-1), (4.32)

0, otherwise.
With appropriate scaling, this prototype satisfies (4.23), (4.24) (as mentioned earlier

in Fact 4.2). This prototype H(z) has stopband attenuation A, ~ 13 dB and stop-
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band edge w, < 47 radians. This approach is independent of the value of m (i.e.,
independent of N) and from (4.32) we see that exactly 2M coeflicients of H(z) are
initialized to be non-zero while the remaining (2mM — 2M) coeflicients are set to
zero. As a result, this scheme works well for smaller values of m whereas for larger
values of m, a different approach (which is described in Section 4.3.5) works better.

IT. Optimization : Having initialized all m[%—] parameters, they are then
optimized using standard optimization routines (e.g., e04jaf [NAG], based on the
quasi-Newton algorithm) to minimize the objective function - either ®, or @, given

below

o = / T HE)E do,  ® = max |H(e¥)), (4.33)

5w +6 we[ 357 +6,7)

where 6 < 33;. Using ®;, the problem involves the minimization of the stopband
energy (yielding a minimum energy solution) while with ®,, it involves the mini-
mization of the maximum of the filter response in the stopband (yielding a minimax
solution). In all the examples, it was observed that using ®; produces quicker conver-
gence whereas using @, gives a prototype with lower stopband attenuation A, (nearly
equiripple solution). In order to combine the advantages of both objective functions
®,, ®,, the following scheme works well.
Step 1 : After initialization, optimize using ®; and obtain the minimum energy
solution.
Step 2 : Using the prototype obtained in Step 1 as the starting point, run the
optimization using ®, and obtain the minimax solution.

For Step 2, it was observed that the optimization can be terminated after approx-
imately 100 xm [%J iterations. (Note : m ]_—Azf[—J = total number of parameters being
optimized.) Doing Step 2 is optional. However, in most cases the prototype obtained
by doing Step 2 after Step 1 had higher stopband attenuation than the prototype at

the end of Step 1. All the above-mentioned features are demonstrated in the design
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examples in Section 4.4.

4.3.4 Increasing the Length of the Prototype

Another attractive feature of this design approach is the ease with which a prototype
H(z) of a particular length N = 2mM can be used to obtain a prototype H'(z) of
longer length (increments in length are in multiples of 2M). Let the length of H'(z)
be 2mM +2M. The increase in the length of the prototype by 2M directly translates
into a unit increase in the lengths of each of the 2M polyphase components. This
implies that precisely one lattice section must be added to each of the L%’I—-J two-channel
lattices (which are used in the design of the prototype). In this sense, the structure
has a hierarchical property. This is shown schematically in Fig. 4.2(c). The procedure
to obtain H'(z) is as follows. First, the values of all the m[—"?i | lattice parameters
used to obtain H(z) are retained. Then, for the newly added lattice sections, we set
Orm = %, Vk. Finally, all the (m+1) L%J parameters are optimized to yield the new

prototype H'(z).

4.3.5 Two-Stage Design for Long Length Prototypes

The above feature, which allows the length of the prototype to be increased, also
gives an approach to design prototypes of long length (i.e, large values of m). Let the
desired length of the prototype be Ny = 2m; M, where m; > 3. The design steps are
summarized below.

(a) Design a prototype for m = 2 or 3 by doing Step 1 of the optimization. Use

this as an initialization for the next design.

(b) Add (m; —m) additional sections to each of the [%L| lattices used in the design
2 g

and initialize the parameters of these added sections by setting them to Z.

(c) Optimize (using Step 1) to obtain the desired prototype filter.
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(d) Re-run the optimization (using Step 2), if needed.
The reason for using the above two-stage approach is that the initialization given in
(4.31) gives a prototype with A, ~ 13 dB as the starting point. This initialization
works well for the design of prototypes with m < 3, but is not quite satisfactory for
longer length prototypes. The two-stage approach has been found to work well in

most cases.

4.3.6 Implementation and Complexity of Modulated PR Banks

We will now obtain an efficient implementation that is applicable to cosine-modulated
filter banks satisfying (2.34) obtained from a linear-phase prototype of length N =
2mM. (There are no restrictions on M or m.)

The modulation matrix C is expressed as C = [Af Al] and using the relations in
Table 4.8 along with the results in (4A.10) and (4A.11), we have

& { VM (-1)™ C[I-J) —(I+13)], for m even (i.e., m = 2m,),

VM (-1)™ C[I+J) (I-1J)], formodd (ie,m=2m;+1),
(4.34)

where C is the Type IV Discrete Cosine Transform [Yip87] whose definition is given
in (4A.6). Using (4.34) in (4.8), we get the implementation in Fig. 4.3(a) (where
the constant scale factor v/M(—1)™ has been omitted). For the special case when
M is even and m is even, Fig. 4.3(a) can be further simplified to obtain the im-
plementation in [Mas85]. The complexity of the entire modulation section is 3M
adders along with the complexity of the DCT. Since the modulation part is iden-
tical for modulated PR banks and pseudo-QMF banks, in the following compari-
son, we will consider only the complexity of implementing the polyphase components
[Go(=2?), G1(=2%) -+ Gam-1(=2%)].

In pseudo-QMF designs, the 2M polyphase components (each of length m) are im-

plemented in direct form requiring 2m M multipliers and 2M (m —1) adders. For mod-
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Table 4.7. Comparison of implementation complexity of
Modulated PR Banks and Pseudo-QMF Banks
MPU (APU) - Multiplications (Additions) per unit time

MPU APU

Modulated | M even || 2(m +1) | 2(m —1)
PR Banks { M odd | 2a(m + 1) | 2a(m — 1)
Pseudo-QMF Banks 2m 2(m —1)

M
where a = (%7—0 < 1.

ulated PR banks, the polyphase components are implemented as 2[%’—] two-channel
lossless lattices (Fig. 4.3(b)). Using two-multiplier lattice sections, each lattice re-
quires (2m+2) multipliers (including the two scaling multipliers) and 2(m —1) adders.
The multiplications per unit time (MPU) and additions per unit time (APU) are two
measures of implementation complexity. The corresponding MPU and APU values

for modulated PR banks and pseudo-QMF banks are given in Table 4.7.

4.4 Examples of Modulated PR Filter Banks

Design Example 4.1 : This example demonstrates the different aspects of the new
approach to design the prototype filter H(z) of a modulated PR filter bank. We will
consider the case M = 17 channels. (As M is a prime number, the filter bank cannot
be implemented as a tree-structure.) Since |¥| = 8, we require 8 two-channel lossless
lattices in order to design the eight pairs of PC polyphase components (which satisfy
(4.24)). Table 4.3 shows the particular polyphase components designed by each of
the eight lattices. Since M is odd, two of the polyphase components are forced to
be pure delays (as mentioned in Section 4.2). They are Gs(—z) and G5(—2). The
remaining eight pairs of polyphase components are obtained by symmetry relations,
(given in (4.19)) owing to the linear-phase property of the prototype.

The length of the prototype filter H(z) is N = 2mM. We present three designs -
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Table 4.3. Design example 4.1. Design of a 17-channel Modulated PR bank prototype

Lattice number
0 1 2 3 4 5 6 7
Polyphase | Go(2), | Gi(2), | G2(2), | G3(2), | Gu(2), | Gs(2), | Ge(2), | G+(2),
Components || Gi7(z) | Gis(2) | Gio(2) | G20(2) | G2 (2) | G(2) | Gas(2) | Gau(2)

Table 4.4. Design example 4.1. Comparison of the 17 channel Modulated
PR bank prototype after Step 1 and Step 2 of the optimization

Length | Step 1 (Min. energy) || Step 2 (Minimax)
N A, (dB) | w, (rads.) | A, (dB) [ w, (rads.)
68 30.51 0.0644~ 32.45 0.06447
102 35.72 0.06207 42.16 0.0644~
136 37.22 0.06147 44.51 0.06447

for prototypes of length N = 68, N = 102 and N = 136. The corresponding values
of m are 2,3 and 4 respectively. The total number of parameters to be optimized in
each design is 8m (= m|%]). First we design the prototype with N = 68. In this
design, the parameters are initialized as in (4.31). After optimization, we obtain the
desired prototype filter. Then we increase the length (as explained in Section 4.3.4)
to obtain prototypes of length N = 102 and 136. In each case, after initialization of
the lattice parameters, Step 1 of the optimization was done. Using this design as a
starting point, Step 2 of the optimization was also done. For each of the three designs,
the magnitude responses of the prototype at the end of Step 1 (Minimum energy
solution) and at the end of Step 2 (Minimax solution) are plotted in Fig. 4.4(a)-(c).
To facilitate comparison, minimum energy solution is shown by a broken line while
the minimax solution is shown by a solid line. The corresponding values of stopband

attenuation (A,) and the stopband edge (w, ) for each design are presented in Table 4.4.
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Hence it can be readily seen that in each instance, doing Step 2 of the optimization
(i.e, re-running the optimization with ®, as the objective function) improved the
A, of the prototype. The impulse response coefficients of the prototype filter (with
N = 102) are given in Table 4.5. It’s frequency response is shown in Fig. 4.5(a) and
the responses of all the filters in PR bank, obtained by the cosine-modulation of H(z)
as in equation (2.34), are plotted in Fig. 4.5(b).
Design Example 4.2 : In this example, we present a comparison between the mod-
ulated PR filter banks and pseudo-QMF banks. One of the differences between the
two approaches must be mentioned at the outset. That is, in pseudo-QMF banks,
an assumption is made that filters belonging to non-adjacent channels do not over-
lap (i.e., in a seven channel pseudo-QMF bank, Hs(e’) has overlaps with H,(e’)
and Hy(e?). The passbands of all the other filters lie in the stopband of Hs(e/*)).
This places a constraint on the transition bandwidth of the prototype filter. Such
a constraint is not necessary in the case of modulated PR-banks. But for purposes
of comparison, we will look at prototypes (of both methods) with same transition
bandwidth.

The performance of a QMF bank is measured by following two quantitative crite-
ria.
1. The peak-to-peak Reconstruction Error (E,-,) : The transfer function of
the overall analysis/synthesis system is given by T(z) = & SA " Hi(2) Fi(2). Using

filters whose responses are normalized to unity, we get
(1-8) < M|T(e)| < (14 62), (4.35)

and E,_, is defined as E,_, £ 8, + 6,.

2. The Aliasing Error (E,) : The output of the analysis/synthesis system can
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Table 4.5. Design example 4.1. Impulse response coefficients of

prototype (N = 102) of a 17-channel modulated PR filter bank

n h(n) n h(n) n h(n)

0 -4.272049E-04 34 || 1.376675E-02 68 1.316380E-02
1 | -4.853395E-04 35| 1.633310E-02 69 1.082142E-02
2 || -4.997748E-04 36 || 1.759948E-02 70 9.552895E-03
3 -5.129669E-04 37 || 2.034467E-02 71 7.256847E-03
4 || -5.288108E-04 38 | 2.191992E-02 72 6.355320E-03
5 | -3.490611 E-04 39 || 2.431080 E-02 73 3.784142 E-03
6 || -3.878599 E-04 40 | 2.595075 E-02 74 || 3.757966 E-03
7 || -2.579029 E-04 41 || 2.742702 E-02 75 3.160015 E-03
8 1.105338 E-34 42 || 2.948043 E-02 76 | -1.805155 E-18
9 | -2.180628 E-03 43 || 3.116092 E-02 77 | -3.737350 E-04
10 || -1.960596 E-03 44 | 3.234317 E-02 78 | -7.434289 E-04
11 || -1.714884 E-03 45 | 3.360359 E-02 79 | -7.702541 E-04
12 || -1.928333 E-03 46 || 3.478912 E-02 80 | -1.742832 E-03
13 || -1.959910 E-03 47 || 3.555154 E-02 81 | -1.899333 E-03
14 | -2.102945 E-03 48 | 3.643303 E-02 82 | -2.270290 E-03
15 |[ -2.075392 E-03 49 | 3.665203 E-02 83 | -2.530636 E-03
16 | -2.265407 E-03 50 || 3.693109 E-02 84 | -2.482397 E-03
17 || -2.482397 E-03 51 || 3.693109 E-02 85 | -2.265407 E-03
18 || -2.530636 E-03 52 || 3.665203 E-02 86 | -2.075392 E-03
19 || -2.270290 E-03 53 | 3.643303 E-02 87 | -2.102945 E-03
20 |} -1.899333 E-03 54 || 3.555154 E-02 88 | -1.959910 E-03
21 |t -1.742832 E-03 55 || 3.478912 E-02 89 | -1.928333 E-03
22 || -7.702541 E-04 56 || 3.360359 E-02 90 | -1.714884 E-03
23 || -7.434289 E-04 57 || 3.234317 E-02 91 | -1.960596 E-03
24 || -3.737350 E-04 98 || 3.116092 E-02 92 | -2.180628 E-03
25 || -1.805155 E-18 59 || 2.948043 E-02 93 1.105338 E-34
26 || 3.160015 E-03 60 || 2.742702 E-02 94 | -2.579029 E-04
27 || 3.757966 E-03 61 || 2.595075 E-02 95 | -3.878599 E-04
28 || 3.784142 E-03 62 | 2.431080 E-02 96 | -3.490611 E-04
29 || 6.355320 E-03 63 || 2.191992 E-02 97 | -5.288108 E-04
30 || 7.256847 E-03 64 || 2.034467 E-02 98 | -5.129669 E-04
31 || 9.552895 E-03 65 || 1.759948 E-02 99 I -4.997748 E-04
32 || 1.082142 E-02 66 {| 1.633310 E-02 100 { -4.853395 E-04
33 | 1.316380 E-02 67 || 1.376675 E-02 101 | -4.272049 E-04
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be expressed in terms of the input as

M-1 M-
X(2) Z Hy(2)Fi(z) + 7\4— > X(2WH Z Hy(zW*Fi(2),  (4.36)
t=1 k=0
Alias terms

and the total aliasing error is given by

Bw) = [MZ IAz<ef°')|2] R (4.37)

where Ay(z) = LM Hy(:W9)Fy(2) and E, £ max, E(w). In the design com-
parisons, the stopband attenuation (A,) and stopband edge (w,) of each prototype
(modulated-PR and pseudo-QMF) are tabulated along with their respective E,_, and
E, values. This is done for a 7-channel design and also for a 17-channel design.

In the 7-channel design, the length of the prototype is N = 42 (the corresponding
value of m is 3). For the design of the modulated PR prototype, 3 two-channel lossless
lattices are used. The lattice parameters (total = 9) are initialized as in (4.31) and
the prototype is obtained by doing both Step 1 and Step 2 of the optimization. The
resulting prototype filter has stopband attenuation A, = 34.13 dB and stopband
edge Qs = 0.14267 rads. The values of E,_, and E, are 1.998 E-15 and 8.517 E-
16 respectively. In pseudo-QMF designs, relative weighting is used in the objective
function to trade off between the flatness constraint (affecting E,_,) and the prototype
filter stopband energy (affecting E,). The three designs are obtained with different
values of the relative weights. The parameters of the different designs are shown in
Table 4.6(a).

In the 17-channel comparison, the modulated PR prototype has N = 102 with
A, = 35.72 dB and w, = 0.05867 rads. Its values of E,_, and E, are 8.216 E-15 and
1.041 E-15 respectively. As in the previous comparison, the modulated PR prototype
is compared with three different pseudo-QMF prototypes and the results are given in
Table 4.6(b). In both of the above design examples, we see that approximately 5 dB

(in stopband attenuation) is the price paid to obtain PR. It must also be mentioned
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Table 4.6(a). Design example 4.2. Comparison between Modulated PR-Banks

and Pseudo-QMF Banks — 7 Channel (N = 42)
Prototype Reconstruction | Aliasing

A, (dB) | w, (rads.)| Error (E,_,) | Error (E,)

Pseudo- 39.03 0.1424~ 1.296 E-03 8.848 E-04

QMF 38.85 0.14207 2.095 E-04 9.198 E-04

bank 38.14 0.1414~ 9.459 E-05 1.022 E-03
modulated

PR bank 34.13 0.14267 1.998 E-15 8.517 E-16

Table 4.6(b). Design example 4.2. Comparison between Modulated PR-Banks

and Pseudo-QMF Banks - 17 Channel (N = 102)
Prototype Reconstruction | Aliasing

A, (dB) | w, (rads.)| Error (E,_,) | Error (E,)

Pseudo- 40.65 0.05907 6.790 E-03 3.794 E-04

QMF 38.68 0.05857 2.139 E-04 3.193 E-04

bank 38.42 0.05817 8.749 E-05 8.113 E-04
modulated

PR bank 35.72 0.05867 8.216 E-15 1.041 E-15

that it is not possible to choose the relative weights (for the objective function) in
pseudo-QMF designs such that either E,_, or E, can be made arbitrarily small or

comparable to the corresponding values in the modulated PR designs.
4.5 Summary

In this chapter, we have presented a derivation of the necessary and sufficient con-
dition on the polyphase components of a linear-phase prototype filter H(z) (length
N = 2mM, where m > 1) such that E(z), the polyphase component matrix of
the cosine-modulated filter bank, is lossless. The losslessness of E(z), in turn, en-

sures that the analysis/synthesis system (using modulated filter banks for analysis
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and synthesis) satisfies the perfect reconstruction (PR) property. An efficient proce-
dure to design the prototype (satisfying the above necessary and sufficient condition)
is presented. This design procedure, based on the two-channel lossless lattice, in-
volves fewer parameters to be optimized than pseudo-QMF designs and much fewer
than lattice-based PR-QMF designs. This advantage becomes significant for large M
(number of channels) and for long length prototypes. Using this approach, PR filter
banks (FIR) can be designed for an arbitrary number of channels. Further, since both
the analysis aﬁd synthesis filter banks are obtained by cosine modulation, an efficient
is derived implementation using the 2M polyphase components of the prototype filter
and the Discrete Cosine Transform (DCT) matrix. The details of design procedure
and complexity of implementation are discussed and all the above-mentioned aspects

are demonstrated by the examples and the detailed comparisons.
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Appendix 4.A
Properties of Modulated PR Filter Banks

In this appendix, we present a proof for the results in equations (4.14), (4.15) and
(4.16). The proof is given in two parts.

Part I : Let Ao and A, be equal to Aj and A] respectively, for the particular case
when m = 1. Hence, using (4.11) and (4.12) we get

(Aol = 2c0s ((2k+ 1) (£~ M+ 5) + (1)), 0<ke<M -1,

2 2
(4A.1)

L ) 0<ke<M—1. (4A2)

(Al = 2005 (26 + D50 (04 2) + (217

4

Now, we prove the following results

AlAy = 2M [y + Ju, (4A.3)
AfA, = oMLy - 3u), (4A.4)
AlA, = Ala, =0 (4A.5)

Proof of (4A.3), (4A.4) and (4A.5) :
Let C and S be the Type IV Discrete Cosine Transform (DCT) and Type IV

Discrete Sine Transform (DST) [Yip87] respectively, whose definitions are given below.

fl>

[Cli. c(k,b) = \/% cos ({Z(k + %)(( + %)) , 0<k < M~—1,(4A.6)

>

S, 2 s(k,0) = \/% sin (7-(k + 3)(¢ + %)) L 0<kL<M—1. (4A7)

From [Yip87], we have the following identities (stating the Unitary and Hermitian
properties of C and S),
€7 = ¢ = [c], (4A.8)

s = s = [s)f. (4A.9)
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The matrices Ag and A; can be expressed in terms of C and S as given below :

Ay, = VM [C+AS], (4A.10)

A, = VM [C-AS], (4A.11)
where A is an M x M diagonal matrix whose diagonal elements are given by [A] kg =
(=1)*, 0 < k < M — 1. For example, for M = 4, A = diag[l,—1, 1,—1]. Using
(4A.8) - (4A.11), we get

AfAo = M[PI+CAS+SAC], (4A.12)
AfA, = MPI-cAs-sAC], (4A.13)
AJA, = M[-CAS+SAC]=-AlA, (4A.14)

From the definitions of C, S, A and J, we can write

[AST], = (-1)F[SI]ie = (-1)"[Sleqaron—gys O <k €< M1, (4A.15)
= \/——]-\—2;— cos (%(k + -;—)(@ + -;—)) = [Cli,- (4A.16)

Thus we get ASJ = C, which can also be expressed as (by using the Hermitian
property)
AS=CJ and SA =1JC, (4A.17)
Substituting (4A.17) in (4A.12) - (4A.14), and using the unitary property of C and
S (given in equations (4A.8), (4A.9)), we get (4A.3) - (4A.5). VVV
Part II : Proof of (4.14), (4.15) and (4.16)
In this proof, we will use the results proved in part I. Table 4.8 is obtained from
the definitions of {Aj, A} and {Ao, A;}. Using the relations in Table 4.8 along
with (4A.3)-(4A.5), the results in equations (4.14), (4.15) and (4.16) can be readily

verified. \YAVAV/
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Table 4.8. Appendix 4.A. Relation between
the matrices {Aj, A1} and {Ag, A}

m even A =(-1)™A,
(m = 2m1) A’I = (_1)(m1—1)A0
m odd Ap=(-1)™A,
(m=2m;+1) | A] =(-1)™A,

Appendix 4.B
Two-channel Modulated PR Filter Banks

In this appendix, we consider the cosine-modulated filter banks satisfying the PR
property, for the special case M = 2, i.e., two-channel designs. We will show that
these filters satisfy the same relations/properties as the filters of the two-channel
PR-QMEF solution given by Smith-Barnwell [Smi84].

As mentioned in Section 4.2, the constraint on the length of the linear-phase
prototype filter is N = 2mM, where m > 0. In this case, it becomes N = 4m. From

(2.34) and (2.39), we obtain the modulation equations for the analysis filters,

ho(n) = 2h(n)cos (%(n - %) + %) , 0<n<N-1,  (4B.1)

hi(n) = 2h(n)cos (%(n - iv—?;:—l) - %) , 0<n<N-1.  (4B.2)

Using (4B.1) and (4B.2) it can be verified that
Hy(z) = —z~ W=D Hy(-2). (4B.3)
As given in (2.36), the synthesis filters are related to the analysis filters by
Fo(z) = z~W-DHy(2), (4B.4)
Fi(2) = z=WN-VH(2). (4B.5)

Further, since the modulated PR bank prototype is designed to satisfy (4.17), then by

Lemma 4.1, the polyphase component matrix E(z) is lossless. We have the following
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result from [Vai89].
Fact 4B.1: Let E(2) be the polyphase component matrix of the analysis filter bank
{Ho(2), Hy(2), -++ Hp_1(2)}. If E(2) is lossless, then each of the filters H,(z), 0 <

k < M —1, is a spectral factor of an Mt band filter and satisfies

M-1

S Hy(2Wi)Hi(:Wi) =¢, Vz, (4B.6)
£=0
where c is a nonzero constant and Wy, = e™? . O

Using Fact 4B.1, it can be concluded that the filter Ho(z), of a two-channel mod-

ulated PR bank, is a spectral factor of a half-band filter. Hence, it satisfies
Ho(2)Ho(z) + Ho(—2)Ho(~2) = ¢, Ve. (4B.7)

From (4B.3)-(4B.5) and (4B.7), it can be verified that the filters of a two-channel
modulated PR bank satisfy the same conditions as the designs in [Smi84]. However,
owing to the constraints imposed on the prototype, the two-channel cosine-modulated

PR banks are only a subset of all the possible two-channel Smith-Barnwell designs

(with filter length N = 4m).
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Chapter 5

A Spectral Factorization Approach to
Pseudo-QMF Design

The main results from pseudo-QMF theory [Roth83,Nus81,Mas85,Cox86] are sum-
marized in Chapter 2. These results are well known and pseudo-QMF designs have
been widely used in subband coding of speech and other applications like analog voice
privacy systems [Cro83,Vai90]. Pseudo-QMF banks can be designed for an arbitrary
number of channels, as shown in Appendix B. In conventional pseudo-QMF designs
[Roth83,Cox86), we first design a linear-phase prototype filter H(z) by optimization.
The objective function used in the optimization is a weighted sum of the stopband en-
ergy and a ‘flatness constraint’ (which must be computed by numerical integration).
Once the prototype is obtained, the analysis and synthesis filters are obtained by
suitable cosine-modulation (incorporating the aliasing cancellation (AC) constraint),
as given in (2.34) and (2.35). So, the main computational effort in conventional
pseudo-QMF designs lies in the optimization of the prototype.

In this chapter we present a new approach to pseudo-QMF design which does not
involve any optimization. In this approach, the prototype filter of an M channel filter
bank is obtained as a spectral factor of a 2M** band filter. The AC constraint is
derived such that all the significant aliasing terms are canceled. The new approach to
pseudo-QMF design and the conventional one are similar in regard to the derivation

of the AC condition but are different in the way that the analysis and synthesis filters
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are obtained from the prototype filter. The main features of the proposed method
are :

1. The prototype filter H(z) is obtained, without need for any optimization, by
the spectral factorization of G(z), a 2M™ band filter. G(z) can be designed
by using the standard filter design techniques such as (a) window-based filter
design [Vai8T7a], or (b) the method in [Min82] which uses the McClellan-Parks
design program [Mcc73] or (c) the eigenfilter approach [Vai87b]. Hence, the

coeflicients of G(z) are readily obtained.

2. As in conventional pseudo-QMF designs, the prototype is designed such that

non-adjacent filters of the filter bank do not overlap.

3. The aliasing cancellation (AC) constraint is obtained by using a similar approach
as in conventional pseudo-QMF designs. The AC constraint ensures that all the

significant aliasing terms are canceled.

4. The overall transfer function T'(z) of the analysis/synthesis system has linear
phase. Hence, the QMF circuit is free from phase distortion. However, the

prototype filter H(z) does not have linear phase.

5. The magnitude response |T'(e’“)] is ‘flat’ in the frequency region e < w < (7 —e¢),
where the value of € depends on the transition bandwidth of the prototype filter,
and we always have 0 < € < 3%;. In this region, the extent of amplitude distor-
tion (i.e., the deviation from flatness) depends on the stopband attenuation of
the prototype. The flat response is due to the fact that H(z) is a spectral factor
of a 2M*™ band filter. Consequently, there is no need for a separate flatness
constraint. Around w = 0 and w = , the response |T(e’*)| has dips/bumps.

So, except in these frequency regions, the amplitude distortion is very small.

6. The M analysis and synthesis filters are of equal length. We will assume that
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(N —1), the order of the prototype is a multiple of M (the number of channels)
i.e., (N —1) = mM. This assumption is made in order to simplify the derivation
of the AC constraint.
Conventional pseudo-QMF designs : The expressions for the impulse responses of
the analysis and synthesis filters are given in (2.34) and (2.35). As mentioned in
Section 2.4, the choice of ;s (in these equations) is made such that the AC condition
is satisfied. One possible choice is 6; = (=1)¥%, 0 < k < M — 1, which yields an
overall transfer function T'(2) with a ‘flat’ magnitude response (i.e., close to unity

gain) at all frequencies. Another possible choice is

0, — 0, for k even,
= z, for k odd.

x (5.1)
5

In [Roth83], it has been shown that this particular choice of ;s yields a T'(z) with
a magnitude response that is close to unity at all frequencies except around w = 0
and w = 7, where it may have a dip or a bump. Such filter banks find use in
applications where the regions around w = 0 and w = = are treated as don’t care
bands [Roth83,Rab78].
Qutline of the Chapter

In Section 5.1, the spectral factorization approach to pseudo-QMF bank design is
introduced. The modulation by which the analysis and synthesis filters are derived
from the prototype filter is given. Along with that, the relations between the analysis
and synthesis filters are stated. Based on this, we get expressions for the channel
signals in each of the M branches of the QMF circuit (using approximations to retain
only the significant terms). The approximations, that are used, are explained. Then
we derive the AC condition that ensures that all the significant aliasing terms are
canceled. After that, the expression for T(z), the overall transfer function of the

analysis/synthesis system, is obtained. It is shown that 7'(z) has an approximately

flat response in the region € < w < (7 — €) due to the fact that H(z) is a spectral
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factor of a 2M** band filter.

Section 5.2 deals with the design details of the prototype filter that involves spec-
tral factorization. Two design examples are presented. Both designs were obtained
by using a new spectral factorization algorithm which is based on the inverse Lin-
ear Predictive Coding (LPC) technique. The details of this algorithm are given in

Appendix A.

s2m

Notations : As given in Chapter 1, the complex constant Wy is defined as Wy, £ =%
for any k. In this chapter, if W is unsubscripted, then W = W, = e‘j%vfl, where M

is the number of channels.
5.1 Spectral Factorization Approach

Let H(z) = TN-1h(n)z~" be the prototype filter (with real coefficients). In this
approach, since H(z) is obtained by spectral factorization, it does not have linear-
phase symmetry. Assume that (N — 1), the order of H(z), is a multiple of M, the

number of channels, i.e., (N —1) = mM. (There are no restrictions on M or m.) Let

Sk(z) be defined as follows
Si(2) 2 G HEWE N L ar HEWLEY), 0<k<M -1, (5.2)

where a;, are complex constants of unit magnitude and Wayy is a complex constant as
specified in Chapter 1. H(z) and Fi(z), the analysis and synthesis filter respectively

of the pseudo-QMF bank are obtained as shown next.

] Sk(2), for k even,
Hi(z) = { ~WDE(2), forkodd, CSFSM=L (53)
Fi(z) = zWVH(z), 0<k<M-1. (5.4)

As will become evident later on, the above choices for the analysis/synthesis filters

are essential in the derivation of the AC constraint. Letting a; = €', we can write
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(5.2) (in time domain) as

o 1
s(n) = 2h(n) cos (H(k 30+ ak) , (5.5)
and hence, we get
_J sk(n), for k even,
hu(n) = { ss(N —1—n), forkodd, OSk=M-1L (56
fk(n) = hk(N -1- n), 0 S k S M-1. (57)

Next, we define Uy(z) and Vi(z), which are complex-modulated versions of the pro-

totype H(z). For 0 <k <M —1,

fi>

Us(z) & HEWSETD)  and Vi) 2 HEWRED), (5.8)
Using (5.8) in (5.2), Sk(z) can be expressed as
Sk(z) = arUi(2) + ajVi(2), 0<k< M —1. (5.9)

The signals Y;(z), which are the output of the synthesis filters in Fig. 5.1(a) can be

expressed as

. M-1
Yi(z) = %Fk(z) Y B (zWOX(WE), 0<k<M-—1,
£=0

{ 5 (2) T ak U (2Wh) + ap Vi (zWH X (2 W), if k even,
(5.10)

U B (2) T e Tk (zWY) + ax Vi (zWOX (:W?), i k odd.
Note : (N — 1) is assumed to be a multiple of M.

A key assumption in all pseudo-QMF designs is that filters belonging to non-
adjacent channels do not overlap. For example, in a seven channel pseudo-QMF
bank, |H3(e’*)| has an overlap only with |H,(e’)| and |Hy(e’*)|. The passbands of
all the other filters lie in the stopband of H3(z). In this section, we will repeatedly
use this assumption. The following brief discussion will help to clarify the notation
and the approximations used in this section. The magnitude response of a typical

prototype filter is given in Fig. 5.1(b).
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Fig. 5.1(b). The desired response of the prototype H(z)

of an M-channel pseudo-QMF bank.
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Consider for example, the case when M = 4. In Fig. 5.2(a),(b) we have the
typical magnitude responses of the analysis and synthesis filters of a four-channel
pseudo-QMF bank (which satisfies the above assumption). In the above figure, Uy(z)
and Vi(z), the modulated versions of the prototype filter, have also been shown. For
this case,

Yi(z) = %Fk(z) S HGWAXGWS,  0<k<3. (5.11)

£=0
In particular, for £ = 2,

Ya(2) = $Fa(2) Slaalla(sWf) + Va(WIX (W5) (512)

=0

Fig. 5.3(a),(b) show Uy(z), V,(z) and their respective frequency shifted versions. In
Fig. 5.3(c), we have the magnitude response of Fy(z). From these figures, it can be
seen that V5(z) and U,(z) overlap with F3(2). Also, the modulated versions V; (:W})
and U, (zW4‘2) overlap with the low frequency edges of the filter F,(z) while V, (:W3)
and U, (:W}3) overlap with the high frequency edges of F(z). So, Ys(z) has a total

of six significant terms, as shown in Fig. 5.3(d).
1
Y(z) = $Fal2) |a202(2) X (2) + a3Va(2) X (2) + a3Va(e W) X (= W2)+
aUa (W)X (2W2) + a5Va(e W) X (2W3) + axUn(z W) X (:W2)] . (5.13)
Using similar reasoning, the expressions in (5.10) can be simplified as shown next.
Neglecting those terms that do not have significant overlap with Fj(z), we obtain :
(a) for 1 <k<M-—2and k even :
1
Yi(z) = -M—Fk(z) [arUk(2) X (2) + afVi(2) X (2)
+aiVi(zWH*) X (2W*) 4+ aUp (W 5) X (W F) +
+a; Vi(zWED) X (W k4D 4 akUk(zW‘("“))X(zW'(k“H))] . (5.14)

(b) for1<k<M-—2and k odd :
z_(N"'l)

Yk(Z) = M

Fi(2) [a10x(2) X (2) + axVa(2) X (2)
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+a Un(zW ) X 2WF) + Vi (zWH*) X (:WF)
+afUp(zW =D X (- (k1)) 4 aka(zW(k“))X(zW("“))] . (5.15)

It can be readily verified that for the special case when M = 4 and k = 2, equa-
tion (5.14) reduces to (5.13). From (5.14) and (5.15), we see that the expressions for
Yi(2) have four aliasing terms. Of the four terms, two are due to overlap of modulated
versions of the input (called images) with the low frequency edge of Fi(z) and two
are due to overlap of images with the high frequency‘ edge of Fj(z). Let them be
denoted as Agiow(z) and A pigh(2) respectively (as demonstrated in Fig. 5.3(d)). For
1 <k < (M —2) we can write :

For k even :
Arion(2) = Fi(2) [aiVa(zWh) X (zW¥) + axUn(zW ) X (zWH)] (5.16)
Aehigh(2) = Fiu(2) [ Va(zWHED)X (WED) 4 0, U (zW =) X (zW=*+D)] | (5.17)
For k odd :

Akjow(2) = 2NV F(2) [a;ﬁk(zw-k)X(zw-k) + aka(sz)X(sz)] : (5.18)

Ap pigh(2) = 2~V "V Fi(z2) [a;ﬁk(zw-(k+1>)X(zw-<’=+l)) + V(WD) X W *+D)]
(5.19)

So we can express Yi(z) as
1

Vi(2) = 22 Fu(a) Ha(2) X (2) + =

M
Yo(2) has aliasing terms only due to the overlap of images with the high frequency edge

Ak,zow(z) + -——]‘1—4—Akyh,-gh(z), 1< k < M -2, (520)

of Fy(z), which are denoted as Agrign(z). On the other hand, Yps_y(z) has aliasing
terms only due to the overlap of images with the low frequency edge of Fas_;(z),
which are denoted as Aps_110,(2). Hence we get the expressions

Yo(z) = —]%l—Fo(z)Ho(z)X(z)-{—%Ao,high(z), (5.21)

Yioi(z) = -A%Fk(z)HM_l(z)X(zH—AI-J-AM_l,,ow(z). (5.22)
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Aliasing Cancellation

In the new design approach, we will derive the aliasing cancellation (AC) condition
(which ensures that all the significant aliasing terms are canceled) in a manner similar
to the conventional pseudo-QMF designs [Roth83], and we will obtain the conditions
that ensure that all the significant aliasing terms are canceled. From the definitions
in (5.16) and (5.17), we can verify that the magnitude responses of Ay 4;,4(2) and

Akt1,10w(2) overlap each other. Hence the condition
Ak+1,low(z) = "'Ak,high(z)a 0 S k S M — 2, (523)

achieves the cancellation of the aliasing terms between the signals in adjacent chan-
nels. If (5.23) is satisfied, the analysis/synthesis system is said to be ‘approximately’
alias-free, since all the significant aliasing terms have been eliminated. We now derive
the conditions under which (5.23) can be satisfied.

Consider the range 0 < k < M — 2. Without loss of generality, assume that k is
even. The expression for A nign(2) is given in (5.17). Since (k + 1) is odd, we get

(from (5.18))
Ak+1,low(z) = z‘(N_l)Fk-{-l(z) [a;+1[7k+1(ZW—(k+1))X(zW"(k+1))+
ak+1‘~/k+1(ZW(k+1))X(zW(k+l))] . (5.24)

Substituting for Ak higr(2) and Ay 10u(2) in (5.23), we obtain the following two

conditions :

ax Fi(2)Up(zW= ) = = N-Dgx By (2) g (zW 4D, (5.25)
and

ayFi(2)Vi(zWHED)Y = oWV, Frya (2) Vi (zWED)), (5.26)

In other words, (5.23) holds if (5.25) and (5.26) are satisfied. Substituting for F(z),
the LHS of (5.25) becomes

arF(2)Up(zW k1)) = = (N=1) [a};ﬁk(z) + akvk(z)] Up(2W =441y (5.97)
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o~ z"(N_l)azf;}:(z)Uk(zW'(k'H)), (5.28)

which is obtained by retaining only the significant term (the omitted term is a product
whose components do not have significant overlap with each other). In the same

manner, substituting for Fj,,(2) in the RHS of (5.25) and simplifying, we get
N7 B ()T (W 040) = V002 Vi ()T (sWE+) . (5.29)
Substituting (5.28) and (5.29) in (5.25), it becomes
2NV P () U (2 D) = —-z'(N'l)a*ZHVkH(z)Iij(zW"(kH)). (5.30)
From the definitions of Ui(z) and Vi(z) (from (5.8)) we have
Vi(2) = U1 (WE)  and  Up(zW-3HD) = Vi (2). (5.31)
Hence, (5.30) reduces to
ay + a5, =0, 0<k<(M-2). (5.32)

The above condition is obtained by starting with equation (5.25). It can be verified
that if we start with equation (5.26), we obtain the same condition as in (5.32). This
result is summarized as follows.

Fact 5.1 : In the proposed approach to pseudo-QMF design, wherein the prototype
is a spectral factor of a 2M*™ band filter with analysis and synthesis filters being
obtained by the modulation of the prototype given in (5.3) and (5.4) respectively, the
condition in (5.32) is sufficient to ensure that all the significant aliasing terms are

canceled. Since a; = e’ the same condition can be expressed in terms of s as
Orsr = +(2 + 1).’21 6, 0<k<M-2, (5.33)

where 7 is an integer. ¢

Choice of 6, : Two of the several possible choices that satisfy (5.33) are

b =—, VEk, (5.34)

T
4
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and

£k
6, = { 0, if k is even, (5.35)

Z if kis odd.

The Overall Transfer Function
With the 6 chosen to satisfy (5.33), the analysis/synthesis system is ‘approxi-

mately’ alias-free and the input-output equation is given by

M-1 1 M-1
= > Yi(z) ~ =X(2) 3 Fi(2)Hi(2). (5.36)
k=0 M k=0
Hence the overall transfer function T'(z) can be expressed as
X\(z) z_(N‘l) M-1
X(Z) ~ T(z) Z Hk(z)Hk(z) (537)
Substituting in (5.37) from (5.3) and (5.4), we get
~(N=-1) M1 " _
T(z) = 2 PICAOREACOQI CUADESAAC) RNCED

Retaining only the significant terms in (5.38),

2~(N=-1) M=1

27— 2 [Uk(2)0k(2) + V() Ta(2)]

k=0

~ v

T;Ez)
[ a5Uo()Vo(2) + a5*Vo(2) Ui (2)
Pl‘('z)
+ a3y Unr1(2) Va1 (2) + @iy 1 Va1 (2) O (2) | (5.39)
Pa(z)

Substituting for Ux(z) and Vi(z) (from(5.8)), in the expression for T}(z), we obtain,

T(z) =

z"(N_l)
M

z~(N-1) M-1 +1 k41 ket k
T(:) = T 2 [HEWa O TEWLD) + HEw D) HEwR D),
k=0
,—~(N-1) 2M~1 (k+1) (k+1)
= Y HEWEDHEWSD). (5.40)
k=0
Fact 5.2 : Let G(z) be a zero-phase, 2M** band filter. Then it satisfies
2M-1
Yo G(eWhy) =¢, Vg, (5.41)
=0

where c is a constant. o
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The prototype filter H(z) is obtained as a spectral factor of G(z), i.e., satisfying
G(z) = H(z)if(z). So we have the following property (by Fact 5.2),

2M-1
Z H(:WENH(WE,) = ¢, V2. (5.42)

Using (5.42) in (5.40), we obtain

2_(N’1)
Ti(z) = e (5.43)
Substituting (5.43) in (5.39), we get
;- m(N-y
T(2) ~ * C + [Pi(2) + P:(2)], (5.44)

M
where P;(z) are the cross terms (defined in (5.39)), which cannot be eliminated for
any choice of of §;. The magnitude response of Py(z) is significant only in the region
lw| < € while that of Py(2) is significant only in the region (7 —¢) < |w| < (7 + €),
where ¢ depends on the transition bandwidth of H(z) and its value lies in the range

(0, 557). As a direct consequence, we see that
IT ()| ~ constant, e <w < (r—e¢). (5.45)

In the regions around w = 0 and w = =, |T(e/*)| can have bumps/dips. The response
in these regions depends on the two crossterms. So the main results are
* The ‘flat’ response, mentioned in (5.45), is an inherent feature of the proposed
design due to the fact that the prototype H(z) is a spectral factor of a 2Mth
band filter.

* No optimization is involved in the design of H(z), which is the main advantage

of this method over conventional pseudo-QMF designs.

* The overall transfer function of the analysis/synthesis system, T(z), has linear

phase and hence it does not have phase distortion. This can be verified from

(5.37) and (5.44).



CHAPTER 5 SPECTRAL FACTORIZATION APPROACH 97

5.2 Design of the Prototype Filter

In this approach, the prototype H(z) = 2! h(n)z~" is obtained by the spectral
factorization of G(z), a 2M* band filter, i.e., H(2) satisfies G(z) = H(z)H(z). Hence,
it does not involve any optimization. The order of H(z) is (N — 1), ie., H(z) =
YNt h(n)z~". The design involves the following three steps.

1. Design of G'(z) : Let G'(2) = Efﬁ:l&v_l) g'(n)z™", be a zero-phase, FIR low

pass filter (non-causal) which is a 2M** band filter, i.e., it satisfies

2M-1
> G'(zWyy) = constant. (5.46)
k=0

This condition can be expressed in the time domain as

J@pp)={ 70 P=0, (5.47)
0, p#o. '

The filter G'(2), (satisfying the above conditions), can be readily designed by
the standard window-based filter design techniques [Vai87a)]. In our design, we
will use the Kaiser window [Vai87a]. The coefficients of G’(z) are obtained as
follows :

g'(n) = hi(n)uw(n), -(N-1)<n<(N-1), (5.48)
where k;(n) are the impulse response coefficients of an ideal lowpass filter (with
cutoff frequency = 377 rads.), which are given by h;(n) = L. sin(53:n), and w(n)
are the coefficients of a Kaiser window of length 2N — 1. The values of w(n)

depend on the value of the parameter 3. The main considerations in the choice

of B are

(a) If A, is the desired stopband attenuation (in dB) of the prototype filter,

then the stopband attenuation of G’(2) must be > (24, + 6) dB.

(b) G'(z) should have the same transition bandwidth as H(z).
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Having chosen the value of 3, the coefficients of the Kaiser window are easily

computed.

2. Design of G(z) : Let §; be the stopband ripple of G'(z).Then G(z) is obtained
as G(z) = G'(z) + 62 + 6, where § is a positive, real constant which ‘lifts’ the
zeros of the spectrum which are on the unit circle (as required by the spectral

factorization algorithm in Appendix B). G(2) can also be expressed as

9(0) = 4(0)+é2+5,
g(n) = 4'(n), n#0. (5.49)
Since G'(z) is a 2M* band filter, G(z) is also a 2M* band filter.

3. Design of H(z) by Spectral Factorization : From its definition in (5.49),
G(e*) has a real, non-negative spectrum, i.e., G(e’*) > 0. Hence its spectral
factor can be computed by the algorithm given in Appendix A or by one of the
other spectral factorization methods [Mia82,Fri83]. Thus we obtain the desired
prototype H(z) satisfying G(z) = H(2)H(z).

Design example 5.1 :  Using the proposed method, a design example for an 8-
channel pseudo-QMF bank is presented here. Consider a prototype of length N = 97.
(Its order is 96, which is a multiple of M.) First, we obtain the 2M™ band filter G'(z),
whose length N; = 193. G’(z) is designed as a Kaiser-window based lowpass filter
(LPF) in which the cutoff frequency of the ideal LPF is % radians and the Kaiser
window parameter 8 = 15.56. The resultant filter G'(2) has stopband attenuation =
147.91 dB and stopband edge = 0.11387 radians. The value of the peak stopband
ripple of G'(z) is 6, = 4.023 E-08. Using § = % in (5.49), we obtain the impulse
response coefficients of G(z). Hence, the spectrum G(e’*) does not have any zeros on

the unit circle.
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The prototype filter H(z) is then obtained as a spectral factor of G(z), by using
the Inverse LPC-based spectral factorization technique (outlined in Appendix B). The
resultant prototype H(z) has stopband attenuation A, = 70.94 dB and the stopband
edge w, = 0.1138~ rads. Its magnitude response is shown in Fig. 5.4(a). The analysis
filter bank is obtained by the cosine modulation given in (5.3), (5.6) with 6 chosen
as in (5.34). The responses of all the analysis filters are shown in Fig. 5.4(b).

For this choice of analysis and synthesis filters, T'(z), the overall transfer function
of the analysis/synthesis system is obtained using (5.37). Its magnitude response,
|T(e#*)|, is plotted in Fig. 5.4(c), with an expanded view of the ‘Aat’ portion shown
in (d). For this example, [T'(e’*)| has an approximately flat response in the frequency
region ¢ < w < (7 — ¢€), where € = 0.057 radians. In this region, the peak-to-peak
error E,_,=2.288 E-02 dB. From Fig. 5.4(c), it can be seen that |T'(e’*)| has a dip
around w = 0 and a bump around w = 7. The total aliasing error is defined as
E(w) = ﬁ[ M {Ag(ej“’)|2}% where Ay(z) = S M1 Hy(:W¥,)F(z). This error is
plotted in Fig. 5.4(e). Its peak value is E, = 1.543 E-04, which confirms that all the
signiﬁéant aliasing terms are indeed canceled.

As mentioned in Section 5.1, the value of € (and hence, the extent of the region of
flat response of |T'(e*)| ) depends on the transition bandwidth of the prototype filter.
On the other hand, the errors E,_, and E, depend on the A, of the prototype (i.e.,
the higher the stopband attenuation, the lower the values of E,_, and E,). So for
a given length of the prototype filter, the tradeoff between the transition bandwidth
and A, is reflected as a tradeoff (for the overall analysis/synthesis system) between ¢
and the errors E,_,, E,. To illustrate this fact, we present another design example.
Design example 5.2 : This is also an 8-channel pseudo-QMF bank designed
in an identical manner to the previous example, using the same filter length but

the prototype filter in this example has a narrower transition bandwidth and lower
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Response of the prototype filter H(z),
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Expanded view of (c),

Plot of aliasing error.
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stopband attenuation (when compared with the prototype of example 5.1). G'(z),
of length N = 193, is designed by using a Kaiser widow parameter # = 10.5. It
has stopband attenuation = 104.19 dB and stopband edge = 0.0976 = radians. The
value of 6; = 6.174 E-06 and the impulse response coefficients of G(z) are obtained by
using § = £ in (5.49). Using the same spectral factorization algorithm, we obtain the
prototype H(z) which has A, = 48.82 dB and w, = 0.09767 radians. Its magnitude
response is shown in Fig. 5.5(a). Comparing this prototype with that of the previous
example, the tradeoff between the transition bandwidth and A, is evident. The
responses of all the analysis/synthesis filters are shown in Fig. 5.5(b). The magnitude
response |T(e/“)| is plotted in Fig. 5.5(c),(d) and the total aliasing error is given in
Fig. 5.5(e). For this example, ¢ = 0.03487 radians, while E,_, = 0.1407 dB and
E, = 2.77 E-03. So, in this example |T'(e’*)| has an approximately flat response over
a wider region than in the previous example, but the errors E,_,, E, are noticeably
bigger. In general, it has been observed that choosing the prototype with the higher

stopband attenuation yields a better pseudo-QMF design.
5.3 Summary

In this chapter, a new approach to pseudo-QMF design, based on spectral factoriza-
tion, is presented. The main advantage of this approach over conventional pseudo-
QMF designs is that no optimization is involved in the design of the prototype. The
AC constraint ensures that all the significant aliasing terms are canceled. The overall
transfer function of the analysis/synthesis system has a ‘flat’ response in the frequency
region ¢ <w < (7 —¢) where € depends on the transition bandwidth of the prototype
filter and 0 < € < 35;. Examples of pseudo-QMF banks, designed by the spectral

factorization approach, are included.
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Chapter 6

New Results on Crosstalk-free Transmultiplexers

Transmultiplexers are used for interconversion between the Time Division Multiplex-
ing (TDM) format and the Frequency Division Multiplexing (FDM) format. This
topic has received widespread attention and hence, there exists a considerable amount
of literature [Sch81,Fre80,Vet86,Com78,Com82,Bel82] covering the theory, design and
implementation details of transmultiplexers. The main problem in transmultiplexers
is the leakage of signal from one channel to another in the TDM — FDM — TDM con-
version, which is known as Crosstalk [Sch81]. The focus of transmultiplexer designs
is to minimize the crosstalk.

A schematic of the digital transmultiplexer system is presented in Fig. 6.1. The
M input signals are [zo(n),z1(n), -+ za-1(n)] (which are also the M components
of the TDM signal). [Fy(z2), F1(z), -+ Far-1(2)] are the filters used in TDM — FDM
conversion and will be called synthesis filters. The M input signals are interpolated
and passed through the synthesis filter bank and combined to produce the FDM
signal. At the other end, [Ho(z), H1(z), - -+ Hpr-1(2)] are the filters used in FDM —
TDM conversion and will be called analysis filters. The FDM signal y(n) is passed
through the analysis filter bank and then decimated to get back the TDM signals,
Zi(n), 0<i<M-1.

Fig. 6.2(a),(b) show the frequency spectra of a typical input z;(n) and the FDM

signal y(n) respectively. The voiceband channels are placed adjacent to one another
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and hence the bandwidth of the FDM signal is equal to the sum of the bandwidths of
the component signals. Since the synthesis and analysis filters are non-ideal, crosstalk
occurs between the different channels of the transmultiplexer. The crosstalk decreases
as the transition bandwidth (Af) of the channel filters decreases and as their stopband
attenuation (A,) increases. These are the only handles on the crosstalk that are
available in the traditional transmultiplexer design approaches.

The aim of this chapter is to present new results on crosstalk-free transmultiplex-
ers. This novel method, originally presented in [Vet86,Vet87], focuses on Crosstalk
Cancellation (CC) rather than suppressing it. Using this approach, the crosstalk can
be reduced to very low values (in some cases, crosstalk can be completely eliminated)
even with filters having nominal values of Af and A,. This will be elaborated more
qualitatively in the later sections. As an illustration, consider design #4 in Table 6.1.
For filters having the same specifications (and same length), the crosstalk error (de-
fined in Section 6.3) using the traditional design approach is 1.932 E-03 (54.3 dB)
whereas with the crosstalk cancellation (CC) approach, it is 3.338 E-08 (149.5 dB),
which is an improvement of 95.2 dB. In concept the CC approach may be compared
to the QMF solution to the subband coding problem, which focuses on Aliasing Can-
cellation rather than on suppressing it.

In [Vet87], a necessary and sufficient condition for Crosstalk-free transmultiplexers
was presented. The condition was obtained in terms of the analysis and synthesis fil-
ters of the transmultiplexer. In this chapter we present the derivation of an equivalent
necessary and sufficient condition, based on the polyphase component matrices of the
analysis and synthesis filters. This approach will throw additional light on the under-
standing of the problem. It also provides a direct method of designing crosstalk-free
transmultiplexer filters by starting from an arbitrary, alias-free QMF bank. We will

also show that approzimately crosstalk-free transmultiplexer filters can be obtained
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from a QMF bank in which the alias cancellation condition is only approximately
satisfied.

The main focus of this approach to the transmultiplexer problem is

1. Crosstalk Cancellation (CC).

2. Elimination of amplitude and phase distortions, i.e., exact recovery of the
signals in

TDM — FDM — TDM conversion.

Terminology : If both the above conditions are satisfied, it will be called Perfect
Reconstruction Transmultiplexer (PR-TMUX). If only the first condition is satisfied,
then it will be called Crosstalk-free Transmultiplexer (CF-TMUX). In both of the
above cases, crosstalk is canceled completely. This should however be contrasted
with the traditional approaches to transmultiplexer design, which aim to suppress
crosstalk and hence, there is always residual crosstalk. We will often refer to the
following QMF abbreviations viz., PR-QMF for Perfect Reconstruction QMF and
AF-QMF for Alias-free QMF. Since both the transmultiplexer circuit and the QMF
circuit involve their respective analysis and synthesis filters, the filters and matrices
associated with the QMF circuit always have a prime notation associated with them
(as in H'(z)), while the filters and matrices associated with the transmultiplexer do
not. Further, {H;(z), F;(2)} is an abbreviation for “transmultiplexer with M analysis
filters H;(z) and M synthesis filters Fi(z), 0 <i¢ < M —1.” Similarly, {H!(z2), F!(2)}
refer to the analysis and synthesis filters of the QMF circuit of Fig. 1.1.
QOutline of the Chapter

In Section 6.1, an analysis of the transmultiplexer circuit, based on the polyphase
component matrices of the analysis (FDM — TDM) and synthesis (TDM — FDM)
filters, is presented. This formulafion and subsequent simplifications help to bring

out the fact that the above transmultiplexer circuit, if considered as a MIMO system,
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is Linear Time Invariant (LTI), even though there are time-varying components such
as decimators and interpolators in the circuit. Based on this framework, Lemma 6.1,
which gives a necessary and sufficient condition for CC, is presented in Section 6.1.2.
In the next subsection, it is shown in Lemma 6.2 that we can always obtain a CF-
TMUX from a 1-skewed AF-QMF bank. This gives a design procedure for CF-TMUX
filters based on the design of AF-QMF banks, thereby utilizing the extensive results
available in the areas of AF-QMF and PR-QMF designs. Then, the main result of this
section is presented in Lemma 6.3, which establishes the relation between CF-TMUX
filters and 1-skewed AF-QMF banks, and hence is a stronger result than Lemma 6.2.

Section 6.1.4 contains a brief derivation of the necessary and sufficient condition
for CC obtained in [Vet87]. Then, in Section 6.1.5, Fact 6.3 is used to show the
equivalence between this result and the necessary and sufficient condition given in
Lemma 6.3. Further, in [Vet86] it was observed that filters (designed by using the
pseudo-QMF theory) that satisfy the AC condition approximately, can be used in
the design of a TMUX that is approximately crosstalk-free. A formal justification
for the exact condition under which this result holds is presented in Section 6.2. It
is also shown that we can obtain approximately CF-TMUX filters from any approx-
imately AF-QMF bank. In Section 6.3, a detailed comparison of the performance of
transmultiplexers (designed by both methods — the CC approach and the traditional

method) is given.
6.1 Transmultiplexer Analysis

6.1.1 Simplified Equivalent of the Transmultiplexer

A schematic of the digital transmultiplexer is given in Fig. 6.1. Using the polyphase

decompositions of Types 1 and 2 [Vai90], we can express the analysis and synthesis
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filter of the transmultiplexer circuit as

M-1

Hi(z) = Y 27t Ere(2M), 0<k,t<M-1, (6.1)
£=0
M-1

Fi(z) = Y z=WM-1-9R, (M), 0<kL<M-1. (6.2)

=0

Let E(z) and R(z) be the polyphase component matrices of the analysis and synthesis
filter banks respectively. The elements of the M x M matrices E(z) and R(z) are given
by [E(2)]k,e = Ex(2) and [R(2)]x,e = Ri¢(z), where 0 <k, < M —1. Representing
the analysis and synthesis filter banks in terms of their respective polyphase compo-
nent matrices, we get Fig. 6.3. Then, applying the standard identities of multirate
signal processing [Vai87c], the interpolators and decimators can be moved appropri-
ately to yield Fig. 6.4. This structure can be further simplified in view of the readily
verifiable fact given below.

Fact 6.1 : If an input signal u(n) is passed through an interpolator, a delay of k units
and a decimator as shown in Fig. 6.5, then in the Z-transform domain the output can

be expressed in terms of the input as

V(z) = 0, if k£ # multiple of M,
= MU (2), if ks a multiple of M.

(6.3)

Applying this result in Fig. 6.4, we obtain Fig. 6.6 which is a simplified equivalent
representation of the transmultiplexer system. It is important to note that this is
a Linear Time Invariant (but multi-input, multi-output) system, even though time-
varying components such as decimators and interpolators are present in the original
representation (Fig. 6.1). This equivalent circuit will be used throughout this chapter.
It adds insight to note that the FDM signal y(n) can be considered as a ‘time-
multiplexed version’ of the signals y;(n) in Fig. 6.4, since the interpolators and the
delay chain on the synthesis side implement a time domain multiplexer. On the other

hand, the delay chain and decimators on the analysis side implement a time domain

demultiplexer.
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X, () =AM~ - IM[~ X, (n)
X (n)——}M* Lol M b= X (n)
1 R(zM) E@M) * !
X M—1 (ﬂ) - *M = *M - )’2 M—l(n)
Synthesis Analysis
TDM bank FDM bank TDM

Fig. 6.3. The polyphase representation of the transmultiplexer system

in Fig. 6.1.
(n) N
X, (n) ] ATy - %, ()
y, @™ L
X, (n) > ~ M X, (n)
R(z)| . E@z)| .
X (n)- hui® M X, @
M y(@) )

Fig. 6.4. Equivalent structure for the transmultiplexer
system in Fig. 6.3.
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u@) —{dM~ Z KM= v(@)

Fig. 6.5. A circuit with an interpolator, a delay and a decimator.

X,(m) —
x, (@) —

X,(n) —

= X_(n)
R@) E(z) 2

XM—Z(n) ™

X vt (n) —

Fig. 6. 6. The simplified equivalent representation of
the transmultiplexer system in Fig. 6.1.

6.1.2 Necessary and Sufficient Condition for CC

From Fig. 6.6, we can write

2(:0(2) Xo(2)
XIE(Z) — E(2) [ 0 1 ] R(z) XI:(Z)

1, 0 (6.4)
Xn-1(z)

Xnr_1(2)

To cancel crosstalk, it is evidently necessary and sufficient that

E(z) [ z-‘fM_l : ] R(z) = CT(z), (6.5)

where T(z) = diag [To(2),T1(2), Trm-1(2)] (with Ti(2), 0 < i< M -1,

being stable transfer functions) and C is an arbitrary permutation matrix. If (6.5) is

satisfied, we get a CF-TMUX. To simplify the notation, we shall restrict our attention



CHAPTER 6 CF TRANSMULTIPLEXERS 111

to the case when C = Iy, the identity matrix.
A special case of CF-TMUX (which has all T;(z) equal) is obtained when T(z) =
S(z)Ips. In this case (6.5) becomes

0 1

E(z) [ . ] R(z) = §(2)In. (6.6)

The condition on R(z) in terms of E(2) in order to achieve CC is

0 ZIM—I

R(z):S(z)[l ! ]E'l(z), (6.7)

provided that E~!(z) is stable. From (6.7) we see that the elements of R(z) may
not be FIR even if the elements of E(z) are FIR, unless the determinant of E(z) is

a delay.I Multiplying both sides of (6.7) by E(z), we get a necessary and sufficient
condition for a CF-TMUX (which has all T;(z) equal)

P(z) £ R(2)E(z) = §(2) [ (1’ ZIg—l ] = 25(2) [ 291 I‘g‘l ] : (6.8)

If S(z) is a pure delay, then the CF-TMUX achieves perfect reconstruction (PR). So

from (6.8) we can write the necessary and sufficient condition for a PR-TMUX as

P(z) = z~* [ (1) zI]g_l ] = ,—(k-1) [ z(-)l I]\([)—l } _ (6.9)

where k is a non-negative integer. We can summarize these results in the following
lemma.

Lemma 6.1 : Let E(z) and R(z) represent the polyphase component matrices of the
transmultiplexer filters {H;(z), F;(z)} (obtained by using (6.1), (6.2)). The necessary
and sufficient condition for {H;(z), Fi(z)} to yield a CF-TMUX, with all T;(z) equal,

A special case of this type of polynomial matrix (which has been extensively studied in the QMF

context [Vai87a,Vai89]) is when E(z) satisfies the property E(z)E(z) = cIp;, where ¢ > 0. Then,
E(z) is called lossless and we can express (6.7) as

R()=156) || T B
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is that the matrix P(z) [= R(z)E(z)] should satisfy (6.8) for some stable, scalar
system S(z). The same filters yield a PR-TMUX if S(z) in (6.8) is a pure delay.

6.1.3 Relation between CF-TMUX filters and AF-QMF banks

Let E'(z) and R/(z) be the polyphase component matrices of the analysis and synthe-
sis filter banks of an M-channel, maximally decimated QMF circuit {H](z), F!(z)},
shown in Fig. 1.1. From the results in [Vai88b,Vai90], we know that the QMF circuit
is alias free (AF) if and only if the matrix P’(2), defined as P’(z) = R'(2)E'(z), is
a pseudo-circulant matrix. A special case of a pseudo-circulant matrix is obtained if
P’'(z) has the following form

P'(2) = 8'(2) [ z"?In Iﬂ’a"" ] , 0<n<M, (6.10)

where S’(z) is a stable, scalar system. The overall transfer function 7T'(2) (also called

the distortion function) of the AF-QMF bank {H](z), F{(z)} is given by
T(z) = z~ M- g/(;M), (6.11)

If S’(2) in (6.11) is a pure delay, then the AF-QMF bank satisfies perfect reconstruc-
tion (PR). In that case it is called a PR-QMF bank. This result is also contained

in Lemma 3.2 [Vai87a)], which states that the necessary and sufficient condition for a

PR-QMF bank is that the matrix P’(z) should have the form

, Wl 0 Ty,
P(z):zk[z_lln e ] (6.12)

where k; is a non-negative integer and 0 <n < M — 1.

I a QMF bank satisfies (6.10) with n = 0, it will be called a standard AF-QMF
bank, whereas if it satisfies (6.10) with n # 0, it will be called an n-skewed AF-QMF
bank. From (6.11), the distortion function of a standard AF-QMF bank is given
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by T'(z) = z=M-15"(2M). The following fact relates standard AF-QMF banks and
n-skewed AF-QMF banks.

Fact 6.2 : An n-skewed AF-QMF bank {H/'(z), F!'(z)} is always obtainable from a
standard AF-QMF bank {H[(z), Fj(z)} by choosing the filters as H!(z) = H}(z) and
F/(z)=2z""F/(z), 0<i<M-1. O

Proof : Since {H|(z), F{(z)} is a standard AF-QMF bank, we know that P'(z) =
R'(2)E'(z) = S'(2)Im. We want to obtain {H/(z), F!"(z)} such that

P"(z) = R"(2)E"(z) = §'(2) [ Z_?In IJ‘{;" ] : (6.13)

Since H'(z) = H(z), V i, we have E”(z) = E'(z). Comparing the expressions for
R'(z) and R"(z), we get

R"(z):[z_?In I"{)'” R/(z). (6.14)

The synthesis filter bank f'(z) corresponding to R'(z) is
/ ! / T
£(z) £ [F(s) Fi(e) - Figo] = R7(M)e(z), (6.15)

Z~(M=1) —~(M-2)

T
where e(z) = [ 1] . Similarly we can write

f(z) = R (M)e(2), (6.16)

_ T, M 0 Z_MIn
= R (z )[IM-—n o

proving that F(z) = z~"F!(z).

]e(z) = z‘”R’T(zM)e(z) = z7"f'(z), (6.17)

\YAVAY
Note : To obtain the above result, we used the choice H(z) = H/(z), F/(z) =

27" F}(z). It can be readily verified that the choice H{'(z) = 2™ "H!(2), F!(z) = F!(2)
will also enable us to obtain an n-skewed AF-QMF bank from a standard AF-QMF
bank.

Comparing (6.8) and (6.10), we see that the CF-TMUX filters and the filters of a
1-skewed AF-QMF bank satisfy the same condition. This enables us to establish the

relation between them, as summarized in the following lemma.
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Lemma 6.2 : Let {H[(z), F](z)} represent a 1-skewed AF-QMF bank. Choose the
filters H;(z) and Fi(z) as Hi(z) = Hl(z), Fi(z) = F{(z), Vi Then {Hi(2), Fi(2)}
represents a CF-TMUX. ¢

Proof: By definition, the matrix P’'(z) of the 1-skewed AF-QMF bank {H/(z), F/(z)}

satisfies,

0
So, for the TMUX filters, the matrix P(z) satisfies P(z) = R(z)E(z) = P'(z). Hence,

P = REEG) =56 | % B |, (6.18)

from (6.18), we can write

R(z) = S'(2) [ z(‘)l I]V(!)"l ] E7(2). (6.19)

Using (6.19) in (6.4), we get X;(z) = z718'(2)Xi(z), V i. Thus, {Hi(2), Fi(2)} rep-
resents a CF-TMUX in which all the T;(z) are equal and are given by Ti(z) =
z7158'(2), V.
\VAVAY)
Design procedure for CF-TMUX filters : The above result highlights the close
relation between CF-TMUX filters and the filters of 1-skewed AF-QMTF banks. Hence,
it yields a design procedure fof CF-TMUZX filters, starting with an arbitrary AF-QMF
bank. This is an advantage because the design of AF-QMF banks is well known. The

design steps are
1. Design an AF-QMF bank {H!(z), F!(2)}.
2. Using Fact 6.2, obtain a 1-skewed AF-QMF bank (by inserting appropriate
delays).

3. Choose the CF-TMUX filters to be the same as the 1-skewed AF-QMF bank
(as given in Lemma 6.2).
Since PR-QMF banks are a subset of the class of AF-QMF banks, the above results

are valid for PR-QMF banks also. In particular, if we start the design with a PR-
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QMF bank, then we obtain a PR-TMUX. Extensive work has been done in the area
of designing PR-QMF banks [Vai87a,Ngu88b,Vai89] and these results can be fully
used in the design of PR-TMUX filters.

Comment on IIR Designs : From Lemma 6.2 we see that if we start from a
1-skewed AF-QMF bank with distortion function T'(z) = 27M§'(2M), then we can
obtain the filters for a CF-TMUX such that the distortion function in each channel
is T;(2z) = 2718’(z), V1. In particular, this means that if the QMF bank is free from
amplitude distortion, then so is the transmultiplexer. For example, the techniques
described in [Swa86] and [Vai87b] show two methods of obtaining IIR. QMF banks
that are free from aliasing and amplitude distortions. (In both cases, T'(z) is an
allpass function.) By Lemma 6.2, we can obtain IIR analysis and synthesis filters for
a CF-TMUX with no amplitude distortion. This emphasizes the fact that the CC
results derived earlier are valid both in the FIR case and in the IIR case.

Lemma 6.2 shows that if we have a 1-skewed AF-QMF bank, then we can always
obtain a CF-TMUX. However, this result is further strengthened by the next lemma,
which establishes the relation between CF-TMUX filters and the filters of an AF-QMF
bank.

Lemma 6.3 : Let {H{(z), F!(z)} represent an AF-QMF bank. If the TMUX filters,
{H(z), Fi(z)}, are chosen such that H;(z) = H}(z) and F;(z) = F!(z), then the
TMUX is Crosstalk-free with all T;(2) equal if and only if {H!(z), F/(z)} is a 1-
skewed AF-QMF bank. O
Proof : Let E(z) and R(z) be the polyphase component matrices of the TMUX and
E'(z) and R/(z) be the polyphase components of the AF-QMF bank. By choice of
TMUX filters,

E(z) =E'(z) and R(z)=R'(2). (6.20)

From (6.8) we have



CHAPTER 6 CF TRANSMULTIPLEXERS 116

“TMUX is crosstalk free and all T;(z) are equal”

0

& P =REEE =56 % U],

& {Hj(z), F;(z)}is a 1-skewed AF-QMF bank, (from (6.10), by defn.) (6.23)

& P(2) = R(2)E(z) = S'(z)[ 0 In- 1], (6.21)

(by using (6.20)) (6.22)

\YAVAY

6.1.4 Alternate Derivation of the CC Condition (Vetterli)

The main result on transmultiplexers in [Vet86,Vet87] is the necessary and sufficient
condition under which a given set of filters can be used to obtain an AF-QMF bank
as well as a CF-TMUX (i.e., the filters will simultaneously satisfy AC and CC). This
result is derived in terms of the analysis and synthesis filters. In this subsection,
we re-derive the same result for two reasons — firstly, to prove (in Fact 6.3) the
equivalence between this result and the result of Lemma 6.3 and secondly, to develop
the framework based on the analysis/synthesis filters, which will be used to extend
the CC results to the case of approximate CC, which is presented in Section 6.2.
Let {H;(z), Fi(z)} be a set of TMUX filters. In Fig. 6.1, the FDM signal y(n) can

be expressed as

M-1
Y(z) = 3 F(2)Xi(M). (6.24)
1=0
After the FDM — TDM conversion, we have,
1 M-1
Xi(z) = =7 Z H(zm WY (2% W), 0<i<M-1, (6.25)
where W = e=73. Rewriting (6.25) in matrix form we get,
Xo(z) ' Ho(2%)  Ho(zMW) ... Hy(zMWM-1) Y(2%)
Xi(z) | 1| Hyiz¥)  H(zwW) .. Hy(zWWM-1) Y(zmW)
: M : : : :
Xn-1(z) Hyo1(2%) Hyoq(zWW) oo Hy_q(zHWM-Y) | | y(hwM-1)

(6.26)
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Expressing the FDM signal u(n) in terms of the inputs,

Xo(2) Xo(2)
X X
{(z) =%HT(zﬁ)FT(zi7) lz(z) : (6.27)
X\M_l(Z) XM—I(Z)
where
Ho(2%)  Ho(zMW) ...  Ho(zWM-1)
1 1
HT (2 %) Hy(z3) Hy(z%W) Hl(zﬁ.WM_l)
Hyoa(2%) Hpoy(zMW) oo Hpoy (2 WM-1)
and
Fo(z77) Fi(z%) oo Fpy_y(z%W)
FT(ZILI) _ Fo(Z.I'TW) Fl(zﬁW) :' . FM_I(ZII'TW)
Fo(2WM=1) F(zwWM-1) ... Fpy_, (23 WM-1)

In (6.27), for CC we need,
HT(z#)FT(2%) = diag [To(z) Ti(z) -+ Tw-1(2)], (6.28)

where Tj(z), 0 < i < M — 1, are stable transfer functions. Eqn. (6.28) can be

re-written as
F(z)H(z) = diag [To(z™) Tu(zM) .-+ Tm_i(zM)). (6.29)

This is the necessary and sufficient condition for CC [Vet86,Vet87] in terms of the
analysis and synthesis filters. From QMF theory [Vet87,Vai87a] we know that the
Aliasing Cancellation (AC) equations (for the choice H{(z) = H;(z) and F!(z) =

Fi(z), V t) can be written as

H(z)F(z) = H'(2)F'(z) = diag [T(2) T(zW) ... T(WM1)). (6.30)
So, from (6.29) and (6.30) AC and CC are simultaneously satisfied if and only if
To(=") T(2)
Ty (M T(=zW
F-1(z) (=) ) = W) ) F
TM_l(ZM) T(ZWM—I)
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i.e., if and only if
To(2M) T(z)
T, (zM) T(zW)

Tr-1(2M) i T(zWM-1)
(6.32)

Comparing the j™ column of LHS and RHS of (6.32), we get the equivalent condition
T:(zM)=T(z), 0<i<M—1, unless F;;(z)=0, Vj. (6.33)

where F;;(z) are the elements of F(z). In summary, “CC and AC simultaneously
satisfied iff Ty(2M) = T(z), Vi” This is the main result on transmultiplexers
that is presented in [Vet86,Vet87]. The equivalence between the above result and the

result of Lemma 6.3 is shown next.

6.1.5 Relation between Vetterli’s result and Lemma 6.3

Facf 6.3: Let {H](z), F!(z)} be an AF-QMF bank. Then the overall transfer function
T'(2) of the AF-QMTF system is a (rational) function of z™ if and only if {H|(z), F!(2)}
form a I-skewed AF-QMF bank. O

Proof : Since {H](z), F{(z)} is an AF-QMF bank, the corresponding P’(z) is neces-
sarily a pseudo-circulant matrix. From the results in [Vai88b,Vai90], we know that
the transfer function of the AF-QMF system (in terms of P/;(z), the elements of

P’(z)) is given by

>

(z

M-1
G =z~ M=D N mipy (M), (6.34)

§=0

T(z) =

S

From (6.34), see that

“T(z) is a function of z™ iff P};(z)=0, forallj#1,” and hence,

P'(z) = P;,(2) [ z91 1,%_1 J , (6.35)

which is of the form in equation (6.10) with n = 1, thereby proving that { H!(z), F!(z)}
is a 1-skewed AF-QMF bank. \VAVAV/



CHAPTER 6 CF TRANSMULTIPLEXERS 119

Hence, it can be readily seen that the necessary and sufficient condition in Lemma 6.3

is equivalent to the one presented in [Vet86,Vet87].
6.2 Approximate Crosstalk Cancellation

A number of papers [Roth83,Nus81,Mas85,Nus84,Cox86,Chu85] deal with the prob-
lem of approximate aliasing cancellation (AC) in the subband coding problem. In
Section 6.1.3, we presented the relation between AF-QMF banks and CF-TMUX fil-
ters. We will now show that there is a similar relation between filters that satisfy
approzimate aliasing cancellation and TMUX' filters that achieve approzimate CC.
First, we consider pseudo-QMF banks and then generalize the result to cover all
approximately AF-QMF banks.

For the pseudo-QMF bank {H}(z),F{(z)}, the approximate AC condition can be

expressed as

Hy:)  H2) - Hy(2) Fy(2) T(2)

HyzW)  H{(zW) - Hly_ (zW) Fz) | _| =0

YWY ) o o | | B | | o
(6.36)

The aliasing terms are small (~ 0) but not exactly zero. (6.36) can also be expressed
as

H'(2)F'(2) = diag [T(2) T(zW) -+ T(zWM-1)], (6.37)
where the non-diagonal entries in (6.37) are small but not necessarily zero and the
matrices H'(z), F'(z) are as defined in (6.27).
The main results from pseudo-QMF theory are given in Chapter 2. The pseudo-QMF
bank is derived from a lowpass prototype H'(z) (length=N) as given in (2.34) and

(2.35). T(z), the overall transfer function of the approximately alias-free system is



CHAPTER 6 CF TRANSMULTIPLEXERS 120

given by (as in (2.40))
M- L—(N=-1) M-1

T(z) = 2; Hy(2)Fy(z M Z-:o Hy(2)Hi(z7). (6.38)
It is shown in Appendix B that {z(N ‘I)T(z)} is approximately a function of z?M.
Let the constants po,p; be defined as po = (N = Dmoduto s and py = M — po. If
we choose Hy = H; and Fy = z7" F], then the overall transfer function Ty(z) =
& S HY(2)FY(2) ~ a function of z™. So the approzimate AC condition (6.37)
can be written as
H"(2)F"(z) ~ Ty(2)Ip, (6.39)
since Ty(z) is approximately a function of z™. Using Fact 6.3, we can conclude that
{H!(z),F/(2)} yield an ‘approximately’ I-skewed AF-QMF bank. The immediate
question that arises is : “Can we obtain an approximately crosstalk-free transmulti-
plexer by choosing H;(z) = H{'(z) and Fi(z) = F!'(2) 77
The answer is in the affirmative as shown next. The term approrimately crosstalk-free
is also’ made more quantitative.
Fact 6.4 : If H'(2)F"(z) ~ T1(2)In, then F'(z2)H"(z) ~ T1(2)1p.
Proof : We will prove this by a continuity argument for the inverse of complex
matrices. Let
H"(2)F"(2) = T1(2)In + A(2), (6.40)
F'(2)H"(2) = Ty(2)Ipr + T(2). (6.41)

Given any € > 0, however small, we will show how to find a § > 0 such that
if lAi,jl < (5, 4 i,j, then, lFi,jI < €, \4 Z,] (642)
From (6.40), we get

F'(z) = T1(z) [H"(2)] 7" + [H"(2)]" A(2). (6.43)
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Let 3(2) = [H"(z)]"". So we can write,

F'(2)H"(2) = T1(2)Im + J(2) A(2)H"(2). (6.44)
r(z)
From (6.44),
Ii;(z) = EJ;,k(z)Ak,g(z)H{fj(z), (6.45)
k.t
ITii(2)] < 6> |ix(2)| |Hp;(2)] (6.46)
k.t
So, given ¢, choose
€
6 < . 6.47
S Sl )] (647
Then, |I';;(2)| <€ V 1i,j, thereby proving the stated fact.
\VYAVAY,

In summary, the above fact shows that since the QMF bank {H[(z), F{/(z)} (ob-
tained from the pseudo-QMF bank {H(z), F(z)}) satisfies (6.39), then the trans-
multiplexer filters chosen as Hi(z) = H}(z), Fi(z) = F{(z), V k, satisfy the
condition

F(z)H(z) = F'(2)H"(2) ~ T(2)1p. (6.48)
We conclude that {H;(z), F;(z)} yield a transmultiplexer in which the crosstalk terms
are negligibly small. Therefore we say that the TMUX is approximately crosstalk-free.

The above result pertains to approximately AF-QMF banks desigped according
to pseudo-QMF theory. This can be generalized to cover all filter banks that satisfy
the approximate AC condition as follows: Let {H(z), F{(z)} be any approximately
AF-QMF bank in standard form, i.e., P/(z) = R'(2)E/(2) ~ $'(2)In. Then we can
get approximately CF-TMUX filters by choosing them according to design procedure

in Section 6.1.3.
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6.3 Design Comparison

In this section, we compare the performance of 24-channel transmutilplexers designed
by the new crosstalk cancellation (CC) method and the traditional approach. Let
{H;(z), F(2)} be a 24-channel pseudo-QMF bank derived from a prototype of length
N. From the definitions in Section 6.2, py = M — (N — 1)moduio a- And the choice of

transmultiplexer filters {Fy.(z), Hi(z)} given by
Hy(2) = Hi(z) and Fi(z) = 27" Fi(z), 0<k <23, (6.49)

yields an approximate CF-TMUX. On the other hand, in traditional TMUX designs
(where crosstalk is not canceled using multirate techniques), the analysis and synthesis

filters are chosen to have similar specifications. For example, in the choice
Hy(z) = Hy(2) and Fi(z) = Fi(2) = 2~ W-DH(2), 0<k <23, (6.50)

the analysis and synthesis filters of the TMUX have identical magnitude responses.
Here, the crosstalk depends only on the sharpness of the filters (the transition band-
width) and their stopband attenuation A,.

In order to do the comparison, we define a quantitative measure of the perfor-
mance of the transmultiplexer. Equation (6.27) relates the inputs and outputs of
the transmultiplexer. We define the transfer function matrix C(zM) = H7(2)F7(2)

where
Xk(zM)
Xz(ZM) ’

For £ # k, Cr(2M) gives the crosstalk transfer functions. The total crosstalk error

{C(zM)]k,l = Cho(zM) = 0<ke<M-1. (6.51)

for the k** channel is defined as

w M-1

e 2 /0 ” > |Ch (M) du. (6.52)
L#k

The integration is done in the interval [0, 77] since the transfer functions are functions
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of 2M. The maximum crosstalk error is

€k. (6.53)

a
Cmaz = OSI%%—I

Next, we design a 24-channel pseudo-QMF bank with prototype length N = 96.
Hence, p; = 24 —~ (95)smoduto 24 = 1 and the approximate CF-TMUX is obtained
by choosing the TMUX filters as in (6.49) (with p; = 1). For the traditional TMUX
approach, the filters are chosen as in (6.50). For both designs, the maximum crosstalk
error (6.53) is computed. The above steps are repeated with 24-channel TMUX
designs with filter lengths N = 48,144 and 192. The maximum crosstalk error for
each design (along with the stopband attenuation (A,) and the stopband edge (w,)
of the respective prototypes) is shown in Table 6.1. In these four design examples,
it can be seen that as the filter length increases, the A, of the filters increases while
the transition bandwidth (Af) remains approximately constant. In the traditional
method, enq, stays relatively the same (since it depends on Af) while with the CC
method, e,,,, decreases (since it depends mainly on A4,).

Next, we have another comparison of TMUX designs with filters of the same
length (N = 192) but whose prototypes had different A, and Af. These results are
shown in Table 6.2. In these design examples, as A, increases, Af also increases.
In the traditional method, as Af increases, emq, also increases (even though A, is
higher) while on the other hand, for the CC method, e, decreases. From these
two tables, it can be seen that the transmultiplexers designed by the CC approach
perform consistently better than those designed by the traditional method.

Note : The traditional TMUX designs [Sch81,Bon78] differ from the approaches
discussed in this chapter. To elaborate this point, consider the TMUX design in
[Bon78]. For the 60-channel TMUX, the voice channels are each restricted to be in
the 0.3-3.6 KHz band (by bandpass filtering) and then multiplexed into frequency

slots which are 4 KHz wide as shown in Fig. 6.7 (and the spectral gaps are then
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utilized for transmitting the signaling information). This, however, differs from the
multiplexing scheme considered in Fig. 6.2(b). On account of this difference, a direct
comparison between the method in this chapter and the traditional designs is not

applicable.
6.4 Summary

In this chapter, we have presented new results in the theory of Crosstalk-Free Trans-
multiplexers (CF-TMUX). A necessary and sufficient condition for complete Crosstalk
Cancellation is derived. It is shown that the filters for a CF-TMUX are the same as
those for a 1-skewed AF-QMF bank. In addition, if the QMF bank satisfies the perfect
reconstruction (PR) property, the TMUX also satisfies PR. The relation between AF-
QMF banks and CF-TMUX filters yields a design procedure for CF-TMUX filters.It
is also shown that pseudo-QMF banks and other approximately AF-QMF banks can
be used to obtain approximately CF-TMUX filters. Lastly, examples to demonstrate
the improved performance of transmultiplexers designed by the CC method, over the

traditional TMUX designs, are included.
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signaling information . .
voice signal

#1 #2\ #3/ #59 #60
INILALNL i (IN[LA

L 1
" 83 116 123 156 H
8.0 KHz 12.0 16.0 20.0

2440 248.0 KHz

Fig. 6.7. Conventional 60-channel FDM signal with voice and
signaling information . (Refer to Bonnerot et al. [Bon78].)

Table 6.1. Comparison of performance of transmultiplexers designed by
the CC method and the traditional method (each design with different N, A,).
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24-Channel TMUX
Prototype €maz

Length | A, W, New CC | Traditional
N (dB) | (rads) method method
48 19.64 | 0.0448~x || 6.582 E-06 | 3.895 E-03
96 27.69 | 0.0430~7 || 1.329 E-06 | 2.846 E-03
144 | 38.87 | 0.0406~ || 1.115 E-07 | 2.114 E-03
192 | 47.00 | 0.0400~ || 3.338 E-08 | 1.932 E-03

Table 6.2. Comparison of performance of transmultiplexers designed by
the CC method and the traditional method (each design with different A,, Af).

24-Channel TMUX
Prototype €maz
Length | A, W New CC | Traditional
N (dB) | (rads) method method
192 [ 40.38 | 0.0374~x || 6.173 E-08 | 1.808 E-03
192 47.00 | 0.04007 || 3.338 E-08 { 1.932 E-03
192 50.32 | 0.0414~7 || 1.947 E-08 | 2.002 E-03
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Appendix A

Spectral Factorization using the Inverse LPC
Technique

A.1 Introduction

In this appendix, we present a new algorithm for spectral factorization. This efficient,
non-iterative algorithm is based on the Inverse Linear Predictive Coding (LPC) tech-
nique and can be used to compute the minimum phase spectral factor of any moving
average (MA) autocorrelation sequence. The moving average (MA) process is one of
the basic models of time-series analysis and stochastic modeling of linear systems. In
a Variéty of situations, we are interested in finding a spectral factor of an MA power
spectrum. The spectral factorization problem can be stated as follows : Given a real,
MA autocorrelation sequence r(k), satisfying r(k) = 0, |k| > N and r(—k) = r(k).
S(z), the Z-transform of r(k) is given by S(z) = Ny r(k)z~* and S(e?*) is the
power spectrum of r(k). Spectral factorization involves the computation of a poly-
nomial C(z) = L h_ge(n)z™, such that it satisfies S(z) = C(z)C(z"!). In order
to obtain a unique solution for C(z), we impose the constraint that C(z) should be
minimum phase (i.e., none of the zeros are outside the unit circle in the Z-plane).
An overview of the different metﬁods :

In [Fri83] and [Mul87], we find two approaches to solve the above-mentioned prob-

lem along with a comparison of the relative merits of some of the other methods. We

can classify the different approaches broadly into two categories - the iterative meth-
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ods and the non-iterative ones. In [Wil69], an iterative Newton-Raphson approach is
used to compute the spectral factor and [Mul87] contains an efficient algorithm for
the same. The main advantage of this method and other iterative algorithms is that
successive approximations can be made till the error becomes smaller than a specified
value. In [Fri83], an iterative, lattice-based approach is presented which computes
the spectral factor via Cholesky decomposition of a banded Toeplitz matrix. The
convergence of these methods [Fri83,Mul87,Wil69] is dependent on the data, i.e., on
how close the zeros of S(z) are to the unit circle.

A robust, non-iterative algorithm for spectral factorization is given in [Mia82].
This method is based on Cepstral techniques. It works successfully in most cases
(even when the zeros are on the unit circle) - with a suitable choice of the scaling
parameter p. The only drawback is the need for obtaining the unwrapped phase (this
computation may fail in some cases).

In parametric modeling [Kay88], given the autocorrelation sequence, the parame-
ters of the AR model can be determined by solving the Yule-Walker equations (which
are lin‘ear). On the other hand, computing the MA model parameters involves non-
linear equations and so, an indirect approach is to use AR modeling to do the desired
computation. Two such methods are given in [Dur59] and [Cle72] respectively. These
approaches can also be used in spectral factorization, which itself can be viewed as
the computation of an MA model of specific order.

The method in [Dur59] involves obtaining two AR models, the first one of order
L >> N, to fit the given autocorrelation sequence, and the second one of order N to
fit the autocorrelation of the parameters of the denominator part of the first model.
This is referred to as the ‘double inversion’ method and as pointed out in [Mul87],
the spectral factor obtained is, at best, an approximation.

We will now present a ‘one-pass’ algorithm (non-iterative) based on the method
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in [Cle72], where the MA parameters are obtained by evaluating the AR model pa-
rameters corresponding to the inverse autocorrelations. This is known as the ‘Inverse
LPC method’ [Schm83]. The underlying theory is simple and well understood. This
method works very well for most cases (it fails only if the zeros of S(z) are on the unit
circle) and compares favorably with the other iterative and non-iterative algorithms
in speed (computation time) and in the accuracy of the spectral factor. This will be

substantiated by the examples.
A.2 Linear Predictive Coding (LPC)

Let z(n) be a wide sense stationary (WSS) random process. We can express Z(n),
the predicted value of the current sample (based on an AR model of order N), as a

linear combination of the past N samples
Z(n) = —[a1z(n — 1) + azz(n — 2) + - - - + ayz(n — N)). (A.1)
The prediction error e(n) is given by
e(n) = z(n) — &(n) = z(n) + a1z(n — 1) + azz(n —2) + --- + ayz(n — N). (A.2)

The error sequence e(n) is also WSS and can be considered to be the output of a linear
system An(z) = 14 T3, axz™F, with z(n) as its input. Let S,,(e™) and S..(e/*)
be the power spectra of the input z(n) and the output e(n) respectively. They are
related as

See(e™) = |An ()" Szz(e™). (A-3)
If z(n) is an AR process and if A(z) is obtained by minimizing the expected value
E[e*(n)] (with the order of A(z) being appropriately chosen), then e(n) is ‘white
noise,’ so that

o2

Sex() = [ (A4)
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where G is a real constant. The coefficients of Ax(2) are estimated from the autocor-
relation sequence of z(n) by solving the Yule-Walker equations (using the Levinson-
Durbin recursion). It must be noted that Ax(z) is guaranteed to satisfy the minimum

phase property.
A.3 The Spectral Factorization Algorithm

This method of computing the minimum phase spectral factor (using the Inverse LPC
technique) involves the following steps :
1. Compute the samples of the power spectrum S(e’*) by evaluating the DFT

(using FFT) of the MA autocorrelation sequence r(n).

N

R(k) 2 5(e™)| = Y r)WJ, 0<k<M-1, (A.5)

=2k
V=M n=-~N

where Wy = e=i%. M , the number of DFT points, is typically chosen to
be much larger than (2N + 1), the length of the autocorrelation sequence (as

justified in step 3).

2. Obtain the DFT samples of the inverse power spectrum,

1

—_— <k < — .
mEpy OSkSM-1 (A.6)

S;nv(ejw)lw=%k = Rinv(k) :A:

where the inverse power spectrum Sin,(e?“) is defined as the reciprocal of the
original power spectrum S(e’), assuming that S(e’*) does not have any zeros

on the unit circle.

3. Obtain the inverse autocorrelation sequence (i.e., the autocorrelation sequence
associated with the inverse power spectrum) rin,(n) = IDFT [R;,,(k)]. Typ-
ically, riny(n) is a doubly infinite sequence. In order to avoid time-domain

aliasing (which is an artifact of DFT), we choose M >> (2N +1).
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4. Using riny(n), the coefficients of the AR model are obtained by using the

Levinson-Durbin recursion. This satisfies the equation (from (A.4))

1 G?
—S(e) T |An(e) P

The quantity S(z) is therefore gi\}en by S(z) = C(2)C(271), with C(z) = i‘g—l,

Sim)(ejw)

(A7)

where A(z) is guaranteed to be minimum phase. Once A(z) is computed, the
scale factor G can easily be evaluated and thus C(z), the desired minimum

phase spectral factor of the MA spectrum S(z), is obtained.

A.3.1 Computational Complexity

Using the inverse LPC method, the total computation involved is two M-point FFTs,
the reciprocation of the DFT samples S(k) and a Levinson-Durbin recursion of order
N. In the first step, while evaluating S(k), we have a real sequence r(n) of length
(2N + 1) << M. In the third step, in evaluating r;,,(n), we need only the values
in the range 0 < n < N. So additional savings in computation are possible in both
these sfeps. It must be noted that as the value of M is increased, the accuracy of the

spectral factor also increases.
A.4 Comparison

The inverse LPC method for computing the spectral factor has been tested with a
large number of examples that have different degrees of difficulty (depending on the
length of the autocorrelation sequence and on how close the zeros of S(z) are to
the unit circle). Here we will consider three specific examples, and in each case the
proposed method is compared with the iterative method (lattice based) in [Fri83] and
the non-iterative method (using Cepstral techniques) in [Mia82]. In order to obtain a
basis for comparison, we define a ‘computation error.” If §'(z) = ¥y r'(n)z~" =

C(2)C(z71), where C(z) is the computed spectral factor, the computation error e is
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defined as

e= io[r(n) —r'(n))?, (A.8)
which gives a measure of the accuz;cy of the spectral factor. The error and the
total computation time (on a VAX 11/750) measured in seconds are tabulated for the
three methods for each of the three examples. The column titled ‘FFT’ represents
‘M’ which is the number of points in the FFT.
Example A.1: Consider an autocorrelation sequence r(n) of length 17 and whose
‘ideal’ minimum phase spectral factor C(z) (order = 8) has complex conjugate zeros
at radii 0.995,0.99,0.975 and real zeros at radii 0.97,0.96. This is the same example
that is considered in [Fri83] and [Wil69]. The performance of the three methods are

compared below :

Lattice Method Cepstral Method Inverse LPC
Iter error Time || FFT error Time || FFT error Time
50 | 2.165e-02 | 0.6 64 | 1.773¢-02 | 0.5 64 | 2.337¢-02 | 0.4
100 | 3.797e-05 | 0.8 128 | 6.053e-05 | 0.7 128 | 9.192e¢-03 | 0.5
300 | 9.869e-07 | 1.5 256 | 1.665e-08 | 0.9 256 | 1.478e-04 | 0.6
500 | 4.414e-09 | 2.2 512 | 6.413e-13 | 1.4 512 | 1.828e-05 | 0.8
1000 | 1.904e-13 | 4.2 | 1024 | 8.284e-13 | 2.5 | 1024 | 5.663e-08 | 1.2
2048 | 1.558e-12 | 1.9

Example A.2 : Consider a linear phase FIR filter F(z) = "2V f(n)2z™" ( designed
using the McClellan-Parks Program [Mcc73]) with length 21 and w, = 0.57. The
resulting response has a stopband attenuation A, = 34.5 dB (i.e., the stopband

deviation 6, = 0.0188). A new filter F'(z) = ¥"2¥ f/(n)z™" is defined such that
fi(N) = f(N)+b6+e €20,
filn) = f(n), n#N.

The zero-phase response of F”(e’*) is non-negative (it is strictly positive if € > 0). In
this case, € = 0.001 was used. So F'(e’*) can be regarded as a power spectrum with

f'(n) as the autocorrelation sequence associated with it. The minimum phase spectral
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factor C(z2), satisfying F'(z) = C(z)C(z7'), was computed by the three methods and

the results are tabulated below :

Lattice Method Cepstral Method Inverse LPC
lter error Time {| FFT error Time || FFT error Time
25 [ 1.239e-05 | 0.5 64 | 2.238e-07 | 0.5 64 | 9.461e-04 | 0.4
50 | 4.025e-07 | 0.7 128 | 5.843e-09 | 0.7 128 | 4.548e-05 | 0.5
100 | 3.230e-09 | 0.9 256 1 1.479%-11 |1 0.9 256 | 3.024e-07 | 0.6
250 | 6.480e-14 | 1.6 5121 2.859%-16 | 1.4 512 |1 1.890e-11 | 0.8
500 | 4.324e-22 | 2.7 | 1024 | 7.608e-17 ] 2.5 || 1024 | 4.958e-20 | 1.2
2048 | 7.582e-31 | 1.9

Note : One of the applications of spectral factorization is in the design of two-channel
perfect reconstruction QMF (PR-QMF) banks [Smi84,Vai86b]. In this application,
F(z) is designed as a linear phase, half-band filter of order 2N, where N is odd. F'(z)
is obtained as in the above example by using an appropriate value of €. Using spectral
factorization, C(z) is obtained. With C(z) chosen as one of the analysis filters of the
two-channel PR-QMF circuit, the remaining filters can be derived from C(z) [Smi84].
Example 3 : Proceeding exactly as in the previous example, we design F(z), a
linear-phase filter of length 101, w, = 0.57 and A, = 94.59 dB (the corresponding
62 = 0.0000186). F'(z) is obtained by using € = 0.00001. As demonstrated in the
table below, the Inverse LPC method works well in this case, where F’(z) has a large
number of zeros very close to the unit circle. Fig. A.1 shows the magnitude responses

of (a) F'(e’) and (b) C(e’*) using 2048 FFT points respectively.

Lattice Method Cepstral Method Inverse LPC
Iter error Time || FFT error Time || FFT €error Time
100 | 5.102e-07 | 2.7 128 | 4.582¢-09 | 1.3 128 | 8.552e-04 | 1.3
250 | 1.973e-09 | 5.9 256 | 5.194e-10 | 1.5 256 | 2.604e-05 | 1.4
500 | 3.781e-12 | 11.3 512 [ 2.814e-12 | 2.0 512 | 8.293e-07 | 1.6
1024 | 2.540e-15 | 3.1 | 1024 | 4.595e-09 | 2.0
2048 | phase est. failed || 2048 | 2.047e-14 | 2.8
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A.5 Applications of Spectral Factorization

In examples A.2 and A.3, it was demonstrated that the inverse LPC approach to
spectral factorization works well even for cases when the zeros of S(z) are very close
to the unit circle (but not on it). So this method can be used in most applications,
including applications in QMF design and multistage design [Smi84,Ngu88a,Vaig9].
If the zeros of S(z) are on the unit circle, the spectrum can be raised by using
€ << 1, as explained in example A.2. The minimum phase spectral factor computed
by the inverse LPC approach does not have zeros on the unit circle, but they are very
close to it. This fact is demonstrated in Fig. A.2, where the solid curve is the spectral
factor obtained in example 3 (with € = 0.00001), while the dotted line is the response
of !F’(ej“’)l% (which would be the response of a spectral factor of F’(z) with € = 0).
In [Ngu88a), we find a procedure for obtaining a spectral factor G(z) of an M-
band filter G(z), satisfying G(z) = G’(z)@(z‘l). G(z) itself is designed as the cascade,
G(z) = Go(z)Gi(z), where G1(z) has all zeros on the unit circle and Gy(z) has no
zeros on the unit circle. The spéctral factor G(z) is obtained as G(z) = Go(2)G1(2).
This involves the computation of éo(z), a spectral factor of Go(z). Since Go(z) does
not have any zeros on the unit circle, the inverse LPC method can be directly used

for this application.
A.6 Summary

In this appendix, a non-iterative method of spectral factorization based on the Inverse
LPC technique is presented. The computations in this method involve two FFTs and
a Levinson-Durbin recursion of appropriate order. It works well for most cases, even
when the order of the spectral factor is high and the zeros of the spectrum are close
to the unit circle. The method fails only if some zeros of the spectrum are on the

unit circle. This method compares well with the other well known methods.
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Appendix B

A Pseudo-QMF Design Example

The main results from pseudo-QMF theory have been summarized in Section 2.4. In
this appendix, we present an example of a conventional pseudo-QMF design [Roth83,
Cox86). Pseudo-QMF designs have been widely used [Cro83,Cox86]. The analysis
filters Hi(z) and the synthesis filters Fy(z) are obtained by cosine modulation of the
prototype filter H(z) as given in (2.34) and (2.35). The conditions on 6 are given
in (2.37) - (2.39). T'(z), the overall transfer function of the analysis/synthesis system

can be expressed as (from (2.40))

1 M-1 4—(N-1) M-1
== Z Hi(2)Fi(z) = Z Hi(2)Hi(z7Y). (B.1)

We will first prove the following result :

Fact B.1 : Consider a pseudo-QMF design in which the analysis and synthesis
filters are obtained from a prototype filter H(z) of length N (with 6; chosen as in
(2.39), and T'(z) is the overall transfer function. Then zV~!T(z) is approximately a
(rational) function of z2M. o

Proof: Substituting in (B.1) for Hi(2) and Fi(z) from (2.32) and (2.33) respectively

and retaining only the significant terms, we get

L(N-1) M-1 ’ . ) .
- Z [cﬁHz (ze—1(2k+1)m) + 22 (26_1(2k+1)2—17)J ’ (B.2)

k=0

ZNIT(2) ~
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where ¢ = e/ (*F), Substituting Wyp = e~73% in (B.2),
M-1 1\ N—
JNDTG) o L e [( (k+§))N DE ( Wikt ’) + (B.3)
(walt) ™ e (wieed)],
2M-1 1,\ N—-1 1
~ 7\1? > (zwz‘}i;' 5’) H” <zW§§;‘2’) , (B.4)
since Wy, (k+z) _ j}f“"* 2) W(ZM—1 943 Define A(z) as shown below :
A 1 \N-1 1
A(z) = (z 22M) H' (z 22M) . (B.5)
Expressing (B.4) in terms of A(z) and using the property of Wy, we get
1 2M-1
PRl E (szfM) = a function of z2™ (B.6)
k=0
\VAVAY/

B.1 Design Considerations

The two important design criteria in pseudo-QMF banks are :

1. Aliasing Cancellation : The analysis and synthesis filters must be designed

with narrow transition bands and high stopband attenuation. This will force
the aliasing due to the overlap of non-adjacent bands to be negligible. The
significant aliasing terms are canceled by the phase quadrature (introduced by

the constants f;s) between filters in adjacent bands. The condition on the choice

of 0y is given in (2.37)-(2.39).

. Flatness Constraint : We want the overall transfer function T'(z) (given
in (2.40)) to have ‘flat’ (uniform) response at all frequencies. This ensures
that there are no spectral gaps or nulls and that the reconstructed signal (n)

resembles the original signal z(n).
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The prototype filter, H(z) = Y"N-1h(n)z™", is a linear phase filter. The above two

n=0
conditions translate into design requirements on the prototype filter as given below :

T

|H(e)| >0, | > 527

+ €, (B.7)
where € < A7 and
|H ()| + |[H( )| > 1. 0<|w| < ";Z (B.8)

The typical magnitude response of the prototype filter of an M-channel pseudo-QMF
bank is shown in Fig. B.1(a). The condition in (B.7) will ensures that the analysis
and synthesis filters are ‘good’ filters, while the condition in (B.8) ensures that the
magnitude squared responses of the prototype (Fig. B.1(a)) and its shifted version
(Fig. B.1(b)) , shifted by %, (which is the separation between the center frequencies
of filters in two adjacent bands), add to unity. This condition is known as the flatness
constraint and is shown pictorially in Fig. B.1(c).

Optimization : The lowpass prototype H(z) is an FIR linear phase filter (symmet-
ric impulse response). The design of H(z) is done by using the optimization routine

e04jaf [NAG]. The objective function for the optimization is formulated as follows :
E=0oF;+(1-0)E,, (B.9)
where Ey is the error in satisfying the flatness constraint and is given by
E = [1 . |H(ea'(w—f,—>)|2]2, (B.10)
and FE, is the stopband energy given by
E, = / [H ()] d, (B.11)
)74

and « is a positive, real constant in [0,1] and is used as a relative weighting factor
between Fy and E,.
Note : Evaluating (B.11) can be done by computing the DFT of h(n), followed

by numerical integration. This method yields only an approximate value and also it
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(a)
1.0
| H(ei®) |
(b)
1.0

| H(ei(@-nM) ) |

1.0
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Fig. B.1. Pseudo-QMF design

(a). The desired response of the prototype H(z),
(b). The response of the prototype shifted by /M,
(c). The "flatness constraint."
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involves a lot of computation. The following is a better approach to evaluate E,. We
observe that

B ()| = Hz)H () (B.12)

z=elw
and H(z)H(z7!) is the Z-transform of the autocorrelation sequence of A(n), denoted
by Rpn(n). Since all autocorrelation sequences are even order and symmetric, we can

write
N-1
E,=H(z)H(z™') = ) rycos(fw), (B.13)
£=0
where ro = Rpp(0) and ry = 2Rp,(¢€), 1 <€ < N —1. Then, E, can be expressed as

(in closed form)
x N=1

E,= | ()] do = [. 3 recos(tw)dw, (B.14)
7 M £=0
N-1 .
B —r <7r _ 1) e smﬁ( M), (B.15)

which can be easily evaluated.
Design example B.1 : This example involves the design of a linear phase prototype
filter H(z), for an 8-channel pseudo-QMF bank. The length of H(z) is N = 40. Hence,
the number of variables to be optimized is 20 (=Z). These variables are initialized by
using a lowpass filter based on a Hamming window (length = 40). After initialization,
the optimization is done to minimize the objective function in (B.9). The value of
o = 0.5. Fig. B.2(a) shows the magnitude response of the optimized prototype filter.
The impulse response coeflicients of the prototype are given in Table B.1.

In order to obtain the analysis and synthesis filters, we will use two sets of choices
for 0, (while using the same prototype filter).
Case 1 : The 6y are chosen as in (2.39)

6 = { o | :

The magnitude responses of all the analysis/synthesis

0,
1

3

2,
3

SN

:g: (B.16)

ESE!

b

=h

lters are shown in Fig. B.2(b).

With this choice of 0, the overall transfer function T(z) has a ‘flat’ frequency response
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as shown in Fig. B.3(a). The total aliasing error is plotted in Fig. B.3(c). The values
of the peak-to-peak reconstruction error E,_, and the aliasing error E, as defined in
Chapter 5 are E,_, = 1.081 E-02 and E, = 2.259 E-03. Hence, it can be verified
that all the significant aliasing terms are indeed canceled. It is shown in Fact B.1
that z2V=1T(z) ~ a function of z*M. Let T'(z) £ 2N-1T(z). (Note that T(z) is
non-causal.) For this example, the non-zero impulse response coefficients of T"(z) are
shown in Table B.2. Hence, it can be verified that in this 8-channel design, T"(2) is
approximately a function of z'€.

Case 2 : The 8, are chosen as

-

This choice of . satisfies (2.37) but not (2.38) and the overall transfer function 7'(z)

Owly

, k=0,2,4,6.
k=1.3.5.7. (B.17)

bt ]

)

has singularities at w = 0 and w = n, as shown in Fig. B.3(b).

Singularities : Since we have incorporated a flatness constraint in the design of the
prototype, the transfer function will not have singularities in the frequency region
< w < —A%’lr. The singularities, if any, will occur around w = 0 and w = 7. This
depends on the choice of 6y and fps_;. In order to avoid singularities in T(z), they

must be chosen as in (2.38).
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Fig. B.2. Design example B.1. 8-channel pseudo-QMF bank
(a). The magnitude response of the prototype (length = 40),
(b). The responses of the analysis/synthesis filters.
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Fig. B.3. Design example B.1
(a). Magnitude response of T(z) - case 1,
(b). Magnitude response of T(z) - case 2,
(c). Plot of the total aliasing error.
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Table B.1 : Design example B.1. Impulse response coefficients of the
linear phase prototype H(z) (length=40). Hence h(n) = h(39 — n).

h(n)

-2.9592102709470403 E-03

-4.0188526633265142 E-03

-4.9104756341462651 E-03

-5.4331752687432552 E-03

-5.3730961268726261 E-03

-4.5222384816740284 E-03

-2.6990817812652507 E-03

2.3096828893352886 E-04

4.3373152645501453 E-03

9.6099829886898726 E-03

= 3
O| OO~ DO B || DN ]| O

1.5951440304172473 E-02

[u—
[y

2.3175399970121024 E-02

(=
[ o]

3.1013019308541570 E-02

—
(2]

3.9127130100292250 E-02

[
1N

4.7132593992753699 E-02

[oen
(32}

5.4622061070010781 E-02

[
(=2}

6.1194772166336148 E-02

[
-3

6.6485873218751379 E-02

)
oo

7.0193888324294740 E-02

o)
<©

7.2103806603295031 E-02

Table B.2 : Design example B.1. Impulse response coefficients of T7(z)
(only the non-zero coefficients are shown)

n t'(n)
-32 |} 0.0022752
-16 || 0.0008191

0 || 0.9988325

16 || 0.0008191

32 || 0.0022752
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