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ABSTRACT

Undesirable sound generation in the combustion chamber
of segmented solid propellant rocket motors has been attri-
buted to vortex shedding from obstructions that are
uncovered as the propellant burns back. This phenomenon
has been investigated experimentally and the mechanism

explained.

A pair of aluminum baffles within a lucite duct
through which air is drawn models the important aspects
which enable the sound generation mechanism to operate.
The baffles form an edgetone system which interacts with
the longitudinal acoustic modes of the chamber. Acoustic
tones occur spontaneously, at frequencies determined by the
acoustic resonances, when the spacing between the baffles

satisfies certain criteria.

Flow visualization using smoke and a strobe 1light
triggered by the pressure oscillations indicate that vortex
shedding occurs at the first baffle in phase with the
acoustic velocity oscillations there. The interaction of
these vortices with the downstream baffle drives the acous-—
tic resonance which, in turn, triggers the formation of new

vortices at the upstream separation point.

The phase relations for this feedback to operate
require that there be close to an integral number of
wavelengths, or vortices, from the separation point to the

impingement point.



A model has been developed which predicts the experi-
mentally observed behaviour well. Pressure amplitudes are
predicted within an order of magnitude. Mean flow rates
and baffle spacings yielding maximum response are deter-

mined correctly by the model.
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Chapter 1
INTRODUCTION

Undesirable spontaneous acoustic oscillations have
been observed in segmented solid propellant rocket motors
at frequencies egqual to the longitudinal acoustic organ
pipe modes of the combustion chambers. Since the cause was
not known, limiting amplitudes could not be predicted.
Such oscillations occurred in the space shuttle boosters at
15H=. While it is unlikely <that the pressure amplitude
could grow to a level that could cause failure of the motor
case, previous experience has shown that vibrations of this
sort could cause other structural damage or failure of
egquipment with a mechanical resonance at a nearby fre-
guency. This frequency is also close to the resonant fre-
quency of the human eyeball and although the amplitudes
have never reached sufficiently high levels to impair read-
ing of instruments, the vibrations have been noticeable to
the astronauts. Further increases in the amplitude could

cause difficulties.

These oscillations occur in a class of rockets which
are constructed with the solid propellant in large segments
which are loaded into the case individually. This pro-
cedure is mainly for ease of casting and handling the large
blocks of propellant. A large retaining ring is installed
between each segment and bonded to the ends of the propel-
lant grain segments to inhibit burning other than on the
lateral surfaces. This configuration is depicted schemati-
cally in Figure 1.1 on page 5. These inhibitors are made
of a material that burns more slowly than the propellant

and thus they protrude into the mean flow as the propellant



burns back.

In 1975, Flandro and Jacobs (1) first suggested that
vortex shedding from these protrusions may be driving the
acoustic resonances to produce the unwanted oscillations.
This finding now appears correct but the actual mechanism
by which the vortex shedding interacts with the acoustic

resonances was not well understood at that time.

The aim of the present investigation has been to
understand this interaction mechanism by performing labora-
tory experiments. Based on the understanding gained from
these experiments and from the work of others, a mechanism
has been proposed and is described below. From the postu-
lated mechanism, a model has been developed which predicts

the behaviour observed experimentally.

i.1. Postulated Mechanism.

The postulated mechanism is as follows. The protrud-
ing inhibitors act as separation points resulting in the
formation of shear layers. In such a shear layer, vortices
grow due to the instability of the flow as investigated by
Freymuth (2) and Michalke (3,4,5). The vortices initially
grow exponentially in the streamwise direction, but eventu-
ally their strengths reach a saturated value. This satura-
tion process is the amplitude limiting aspect of the entire
interaction. As the vortices are convected downstream by
the mean flow, they pass another protruding inhibitor
resulting in a fluctuation of the drag force acting on this
obstacle. By Newton's second law, since the fluid is
applyving a fluctuating force on the obstacle, the obstacle

applies an equal and opposite force on the fluid. This



oscillating force drives the acoustic resonance of the
chamber at a frequency equal to that of the passage of the
vortices. The acoustic wvelocity at the location of the
separation point acts as a perturbation which triggers the
formation of new vortices in phase with the acoustic
response. Thus, there is a closed feedback loop and the
whole process can be self-excited. This is the main idea
to be investigated and has not been advanced in previous

investigations of oscillations in rocket motors.

Since the proposed mechanism does not involve the
burning processes, a cold flow apparatus is used. Diffi-
culties associated with instrumenting hot flows are thus
avoided. Other experimental investigations of this type of
oscillation confirm that the mechanism operates in the

absence of burning (6,7,8,9,10,11).

1.2. Examples of Self-Excited Oscillations.

In their book, "Theory of Oscillations," Andronow and
Chaikin (12) define a self-oscillatory system as one that
generates a periodic process from a non-periodic source.
Stoker, in his book, "Nonlinear Vibrations," (13) includes
the oscillations of the Tacoma bridge and flutter of air-
craft wings in the class of self-excited oscillations since
the vibration results through partial conversion of energy
from a steady flow (in these cases the wind) into oscilla-
tions. Both books include clocks and electronic oscilla-
tors as examples. Such autonomous systems spontanecusly
undergo oscillations at frequencies and amplitudes deter-
mined by their physical characteristics. In the rocket
motors, the energy of oscillation comes from the free

stream and ultimately from the chemical energy  of



combustion.

A few examples of self-excited systems which are more
closely related to the combustion chamber type of oscilla-
tion are presented in Figure 1.1. It will be recognized
that the cavity flow, which is a type of edgetone, consti-
tutes part of the system that contributes to the self-
sustained oscillation in the combustion chamber. in an
edgetone, as the vortices in the shear layer interact with
the downstream obstacle, they induce a velocity at the
separation point upstream, which triggers the further for-
mation of vortices. iIn one version of a tea-kettle whis-
tle, this phenomenon is put to good use. Escaping steam is
made to pass through two consecutive concentric disks form-
ing a hole-tone. A tube-like shear laver forms in which
ring vortices grow, much like smoke rings, before colliding
with the second disk. In addition to triggering the con-
tinued formation of vortices, the disturbances due to the
passage of the ring vortices through the hole in the second
disk are also heard as the tone announcing that the water

is boiling.

1.3. Shear Layer Instability.

A shear layer forms when there is a region in which
two streams of fluid moving parallel to one another have
different velocities. Shear layers are unstable to distur-
bances in a range of frequencies dependent upon the thin-
ness of the layer and the velocity difference across the
laver. This instability has been investigated extensively
(2,3,4,5) and remarkable agreement has been found between
theory and experiment. In order to make the fregquency

dimensionless, a Strouhal number is formed based on
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appropriate parameters describing the shear layer: its

momentum thickness, 6, and the velocity difference across

the shear layer, AU = U, - U,:
fe
So = au (1.1)
o - © E=U1 U,-u 4
J Tau Tau Y (1.2)

where U1 and 02 are the velocities on either side of the
layer. The instability properties of the shear laver are
found to depend only on S, to a good approximation. If a
wavy disturbance is present with a frequency in the ampli-
fied range then this disturbance will grow and form vor-
tices at the same frequency. Since the shear layer selec-
tively amplifies velocity fluctuations, in the absence of
any significant disturbance, vortices will tend to grow at
the frequency with the largest growth rate for the particu-
lar conditions of the shear laver. Experiment and theory
agree that this corresponds to a Strouhal number of about

0.017 (5).

The vortices grow exponentially in the streamwise
direction according to the growth rate, «, corresponding to
the Strouhal number. Eventually, non-linearity not
included in the theory limits the growth and the amplitude
saturates at a value which can be determined experimentally
as a function of Strouhal number. Although Freymuth (2)
concentrates on the growth region, his data indicate the
saturation values. This saturation of the strengths of the
vortices is the amplitude limiting process in the self-

excited mechanism being investigated here.



1.4. The Edgetone.

An edgetone is created when an edge is placed in the
path of a shear layer. As the vortices are convected past
the edge, velocity fluctuations are induced at the origin
of the shear laver resulting in the formation of subsequent
vortices. This is part of the overall mechanism being
investigated and several extensive reviews (8,14,15) have

been written describing the edgetone in detail.

Although no tone is generated, an edgetone can operate
in water. Such a flow has been investigated in detail by
Ziada and Rockwell (18) with a shear layer in a water chan-
nel impinging on a wedge downstream. For flows with mean
velocities much smaller than the speed of sound, as in the
experiments of Ziada and Rockwell, the time for the vortex
to travel from the separation point to the impingement
point is much greater than the time for the acoustic signal
to travel back to the separation point to induce the next
vortex. Thus the time between successive vortices is equal
to the time of flight from separation to impingement. The
fregquency is therefore proportional to the velocity and
inversely proportional to the spacing between the separa-
tion and impingement points. This frequency can be made
non-dimensional by multiplving it by the spacing, Ax, and
dividing by the mean velocity, U. The resultant number is

also a Strouhal number:

S = === {1.3)

For an edgetone, this Strouhal number remains constant as

the spacing and velocity are changed.



It is possible to have more than one vortex between
separation and impingement. Each vortex still triggers a
new vortex, but there are now other vortices in between the
two. The number of vortices is referred to as the stage of
operation. Transitions from one stage to another occur
abruptly as either the velocity or the spacing is gradually
changed. Accompanying the transition, there is a jump in
the Strouhal number to a new value that remains essentially

constant throughout the new stage.

Experimentally, it has been observed that the spacing,
Ax, corresponds to approximatelvy an integral number of
wavelengths (the distance from one vortex to the next) and
that the vortices convect at a speed close to the mean of
the two freestreams of fluid flowing past the edgetone sys-
tem. Since the freguency multiplied by the wavelength is
defined as the convection velocity, these results suggest a
value for S of approximately n/2, where n is the stage
number. Experimentally measured values generally fall in
the range of about 0.2 - 2.0 for edgetones in a variety of

configurations (6,7,8,9,10,11,14,15,16,17).

Since the shear laver responds with different growth
rates to different frequencies (or wavelengths) there is
usually one stage which has the largest growth rate. If
one considers slowly increasing the edgetone distance, Ax,
cne expects the wavelength to increase proportionately.
Eventually a point 1is reached at which the next stage is
preferred. The operating stage continues, however, since
it has a much stronger perturbation than the new freguency.
As Ax is increased further, the ampliification of the exist-
ing stage reduces to the point that random fluctuations at
the frequency corresponding to the next stage can grow to a

sufficient 1level that the o0ld stage of operation is



replaced by the new frequency. The transition occurs

rapidly and the number of vortices increases by one.

If the Ax is now reduced, the new stage will remain
dominant for some distance until the old stage becomes suf-
ficiently strong that random fluctuations at its freguency
permit it to overcome the existing stage. Thus there is a
range of spacing over which either of two stages can
operate, depending upon the direction of approach. This
behaviour is referred to as "hysteresis” and is common in
systems with edgetones. Why the existence of vortices at
one freguency inhibits the formation of vortices at another
is not understood; the description above is simply an
explanation of how this inhibition results in hysteresis in

edgetones.

1.5. Coupled Edgetone and Resonator.

If an edgetone is placed inside an acoustic resonator,
it may interact with the acoustic oscillations as mentioned
above. In the absence of a resonator an edgetone can
oscillate over a range of freguencies. When a resonator is
coupled with the edgetone, it is observed that the fre-
quency remains nearly constant and equal to the natural
frequency of +the resonator. Thus, it is reasonable to
assume that the perturbations to which the shear laver is
responding are due to the resonator instead of due to the
hydrodynamically-induced velocity of the vortices passing
the downstream point. The formation of each vortex is
triggered by the response of the resonator rather than

directly by the motion of the previous vortices downstream.



The oscillation occurs at any one of a series of
discrete natural fregquencies (that 1is, harmonics) of the
resonator. Since the formation of vortices is triggered by
the resonator, each vortex is initiated at the same point
in the cycle. The frequency remains essentially constant
so changing the velocity or spacing must cause the vortices
to arrive at the downstream impingement point at different
phases in the cycle of the oscillator. Thus, there must be
a phase difference between the forcing and the response of
the oscillator which changes with flowrate or separation
distance. For a simple damped linear oscillator treated in
many elementary texts (19) it is well known that there is
such a phase difference which depends upon the driving fre-
guency. For a lightly damped system, the phase varies con-
siderably for a small change in the driving frequency in
the neighbourhood of resonance. Thus, if a phase differ-
ence is imposed, the frequency will differ very little from

the natural freguency.

1.6. Edgetones in Combustion Chambers - Previous Work.

From investigations made during the past decade, it is
now known that the phenomenon termed the edgetone is one
source of acoustic oscillations in solid rocket motors.
Although edgetones have been observed for more than a cen-
tury, their connection with unexpected oscillations in
combustion chambers was not made until gquite recently. As
previously mentioned, the first suggestion that vortex
shedding from discontinuities within the chamber could cou-
ple with acoustic resonances came from Flandro and Jacobs
{1) in 1975. They d4id not make the direct association with
the edgetone at that time, however. In their paper, a

model is suggested in which vortices form at geometric



disturbances and then interact with the acoustic resonances
of the chamber. In their formulation, there is no down-
stream impingement point critical to the operation of an
edgetone system. We gquote from reference (1), "acoustic
waves are produced in a manner analogous to the well-known
Aecolian tone resulting from a Karman vortex street." This
implies that the resultant acoustic disturbances are due to
reaction forces on the body from which the vortices are
shed rather than from some other body that the vortices
pass later. Their model correctly assumes, based on exper-—
imental results, that the shedding of vortices is dominated
by the acoustic waves present and therefore that they form
at the same freguency. It incorrectly assumes that the
strength of the wvortical disturbance is proportional to the
amplitude of the acoustic pressure. This leads to the con-
clusion that greater growth rates will occur 1if the
geometric discontinuity is near a pressure antinode. This
has since been shown to be incorrect by the experiments of
Dunlap and Brown (10) described below, and also in the
present work. In fact the strongest response occurs when
the edges are near a velocity antinode, the point at which

the pressure amplitude is minimum.

It was first demonstrated by Culick and Magiawala (6)
that two discontinuities are necessary for the existence of
spontaneous oscillations with any significant amplitude.
For a very restricted range of baffle location near the
midpoint of the duct they observed weak oscillations with a
single baffle. Their apparatus consisted of a lucite tube
containing a pair of annular baffles through which air was
forced by a blower. Only freguencies at resonant modes of
the +tube were observed and the corresponding Strouhal
numbers ranged from 0.4 to 1. They found that the location

of the baffle pair within the duct was important in



determining whether or not oscillations would occur but it
seems they did not recognize that the strongest response
would occur 1if the baffles were placed at a velocity

antinode.

In response to the findings of Culick and Magiawala
(6), a more realistic cold-flow scale model of a solid
rocket motor was studied theoretically and experimentally
by Brown et al. (8,9). Spontaneous oscillations occurred
only at freguencies corresponding to longitudinal resonant
modes of the combustion chamber of the Titan rocket
modeled, confirming that coincidence between vortex shed-
ding and resonant frequencies is required. Strouhal
numbers in the range of 0.5 to 2 were measured, Conven-
tional stability calculations for the configuration modeled
predicted strongly negative growth rates (o« < -10 for most
of the burn) implying that the observed oscillations should
not have arisen. Brown et al. (9) report without reference
that similar discrepancies between predicted and actual
behavior have been observed for the Space Shuttle Booster
and by ONERA in one of their large solid propellant motors.
They concluded that vortex shedding is indeed a significant
source of acoustic energy not included in the stability
prediction. While they conciude that feedback from the
acoustic field to the Jgrowing vortices occurs, the effect
of feedback is ignored 1in the analysis developed. They
confirmed experimentally that at least two restrictors are
necessary for sustained oscillations and assume that the
effect of the downstream baffle is to disrupt the vortices
in the shear laver, preventing their driving the acoustic
field further. The same assumption is made by Flandro and
Finlayson (20). While it is very unlikely for vortices to
collide with a so0lid object and not be disrupted, it seems

that the interaction itself will produce a much Ilarger



driving force than the weak interaction of the growing vor-

tices upstream with the acoustic field.

In a much simpler apparatus, Dunlap and Brown (10)
then demonstrated that with nitrogen flowing past a pair of
restrictors within a tube, only acoustic modes with velo-
city antinodes (pressure nodes) near the location of the
restrictor pair were excited. Modes with a pressure
antinode there did not respond at all. Their apparatus
consisted of a tube with a small inlet and an exhaust port
at the ends which otherwise were closed. Restrictors made
of two washers mounted close together, near the midpoint of
the tube, constituted the edgetone part of the system.
Both the fundamental resconance and the third mode have
acoustic wvelocity antinodes at that point, but the second
mode has a node there. They were unable to excite the
second mode at all, but could easily observe the first and
third modes at appropriate mean velocities. In order to
cause the third mode to oscillate spontaneously they had to
triple the mean velocity at which the first mode was
excited. This is consistent with the idea that, since the
period of a cycle of the third mode is one third of the
period of the fundamental, the vortices must travel with
three times the speed to cover the distance between the
baffles.

The apparatus used in the present investigation was
first designed by Nomoto in order to perform experiments
for his Engineer's thesis (7). His results are discussed
in a more readily available article by Nomoto and Culick
(11). By synchronizing a strobe light to flash at the same
frequency as the oscillation, Nomoto was able to take pho-
tographs of the vortices, made visible using smoke, which

clearly demonstrate that vortex shedding is associated with



the oscillation. The frequencies of operation were
observed to be almost constant over large velocity ranges

and were dictated by the organ-pipe resonances of the duct.

Following the analysis of Rossiter (16) dealing with
flow over cavities, Nomoto (7) assumed that the acoustic
disturbance generated by the collision of a vortex with the
downstream baffle travels upstream and directly triggers
the formation of another vortex as in an isolated edgetone.
He was thus unable to explain why oscillations occur over
ranges of velocity and baffle spacing rather than just at
the intersections of lines of constant Strouhal number for
the edgetone with 1lines of constant frequency for the
acoustic resonator, as depicted in Figure 1.2. He sug-
gested that some interaction between the two systems was
occurring and that the location of the baffles with respect
to the acoustic modes may be important, but was not more

specific than that.

A similar flow was investigated by Schachenmann and
Rockwell (21,22,23). In their apparatus, air is Dblown
through a long tube terminated by a hole-tone cavity which
interacts with the organ pipe resonances of the tube. The
mean flow rate and distance from separation to the edge are
variable. As in Nomoto's apparatus (aliso used in the
present work) the oscillations occur predominantly at the
resonant frequencies of the resonator. They find that the
resonance is strongest when there is a phase difference of
2nnt between the fluctuating velocities at separation and
impingement, meaning that there is an integral number of
wavelengths or vortices between the two points. As the
mean velocity or spacing is changed, this phase difference
varies up to 50° according to the results reported (22).

This is in agreement with the model postulated here.
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1.7. Summary.

a mechanism is postulated which explains the
occurrence of self-excited oscillations at resonant fre-
guencies in a duct. This mechanism is probably applicable
in the combustion chambers of segmented solid propellant
rocket motors. Based on this physical explanation, a model
is developed which correctly predicts the behaviour
observed in the apparatus and gives amplitudes with the

correct order of magnitude.

In the next chapter, the apparatus and instrumentation
will be described. Following that, in Chapter 3, the phy-
sical model postulated will be guantitatively analyzed. In
Chapter 4, the results of the experiments and the analyses
will be presented and compared, with final conclusions sum-

marized in Chapter 5.



Chapter 2
EXPERIMENTAL APPARATUS

The main part of the experimental apparatus is a rec-
tangular lucite duct through which air flows. This chamber
models the aspects of a rocket combustion chamber that are
important to the operation of the sound generation mechan-
ism being studied. The duct and various attachments are
mounted on a framework of Ames angle iron to raise it to a

convenient height above the floor of the laboratory.

Two pairs of baffles can be placed at almost any loca-
tion inside the duct and are connected by rectangular brass
bars which fit in four grooves in the walls of the duct.
The baffles act as the separation and impingement points
necessary to form an edgetone system. They are modeled
after the geometry that occurs in the combustion chamber of
a solid propellant rocket when inhibitors protrude into the
flowfield as the propellant burns back. A diagram of the

apparatus is given in Figure 2.1.

2.1. The Flow System.

The duct is 50cm long and has a rectangular cross-
section, 5cm X 15cm, which makes flow visualization easier.
Air is drawn through the duct by a blower located down-
stream and driven by a 1.5 HP Gould Century DC motor whose
speed can be adjusted using a Minirik Blue Chip II constant
speed motor controller. Since the air enters directly from
the room, the outlet of the central air conditioning is

sealed using a large canvas sheet in order to reduce
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disturbances. An inlet nozzle constructed from wooden
half-round dowels 1is used to round the otherwise sharp
inlet. This short nozzle does not significantly affect the

acoustic response of the duct.

Immediately downstream of the duct, the air discharges
into a wooden cubic box 50cm on a side which acts as an
acoustic isolator. Originally, the blower was connected
directly to this box. Since this arrangement allowed
vibrations to be transmitted to the test section, the
blower was moved into the hallway outside the room, the air
being carried in a flexible hose 20cm in diameter and about
m long. This has the added advantage of eliminating the
disturbance due to the exhaust of the blower being in the

same room as the inlet.

2.2. Baffles.

The aluminum baffles are all 0.635cm (0.25in}) thick
and 15cm long to span the width of the duct. Four sets are
used with the following heights: 0.635cm, 1.04cm, 1.27cm,
and 1.524cm (0.25in, 0.41in, 0.5in, 0.6in). Another set of
baffles was machined from aluminum stock 2.54cm (1.0in) in
diameter to form an almost semi-circular cross-section.
The mounting screw is in the center of the rod so the flat
gurface, which rests against the wall, is off-center by
0.317cm (0.125%in). A single pair of baffles 2.54cm (1.0in)
tall demonstrate that the resonance being investigated
operates with just one set of baffles. A few sets of baf-
fles were crudely made from balsa wood to try ideas before
having them machined from aluminum. Generally, no signifi-
cant differences in the behaviour of the s§stem were

detected using the balsa baffles.



2.3. Velocity Measurement.

Velocity measurements within the test section are made
using a TSI 1210 hotwire in the constant temperature mode
with a Matilde bridge anemometer. This combination is used
to measure both mean velocity profiles and fluctuating

velocities in the wvicinity of the baffles.

Mean velocity measurements are alsoc made based on the
relationship between the periodic shedding of vortices from
cylinders and the wind speed. A box containing flow
straighteners and turbulence screens is installed between
the acoustic isolator and the hose leading to the blower.
The downstream portion of this box contains three
cylinders, of different diameters, perpendicular to the
flow. A constant current hotwire, which can be positioned
behind the desired cylinder from outside the box, is used
to measure the velocity fluctuations due to the passage of
successive vortices. After amplification and filtering,
the fregquency of this signal is measured using a Fluke
8060A multimeter. The output of this measurement system
was calibrated against the velocity in the test section as
measured by a pitot-static tube, the pressure difference
being measured by a Barocel 5§70 strain gauge pressure
transducer. The shedding frequency was found to be very
linear in velocity but was reliably so for a relatively
small range (corresponding to cylinder Reynolds numbers in
the range 50 - 100). Thus the cylinder diameters were
chosen to double successively, vielding an overall range of
test section velocities from 1 m/s to 8 m/s. The advan-
tages of this method of measuring the velocity are that no
probe is required in the test section and that there is no
dependence on the hotwire calibration, which tends to drift

with time. Furthermore, disturbances due to changes in the
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geometry within the test section do not affect the reading
since it is the average flowrate that is measured. Any air
that passes through the duct must also pass through the box

containing this instrumentation.

2.4. Pressure Measurements.

Acoustic pressures are measured using Bruel & Kjaer
half inch diameter type 4133 and 4134 capacitance nicro-
phones. Microphone mounting ports are located at the mid-
point and at the three gquarter point of the duct. Acoustic
pressure distributions are taken using a B&K type 4002
trolley containing a microphone with a tube extension so
that the fluctuating pressure can be measured at any point

within the duct.

2.5. Flow Visualization.

In order to make the vortices visible, a smoke genera-
tor and a General Radio type 1531-A Strobotac strobe light
are used. The smoke is generated by dripping mineral oil
over a pair of soldering iron elements within a Pyrex jar.
The smoke is then blown through a 2cm diameter tube to a
contraction made of copper which 1is positioned in the
vicinity of the duct entrance. Zero-crossings of the out-
put of the pressure signal are used to trigger a variable
delay which, in turn, triggers the flashes of the strobe
light. This results in an image which appears stationary.
By changing the time delay, different times in the cycle
can be viewed. Since it is difficult to obtain good photo-
graphic exposures, the technique is most useful for visual-

ization in real time.



2.6. Loudspeaker.

To measure the acoustic response and to investigate
external forcing of the vortex shedding, a 100 Watt Phil-
lips AD12250/W loudspeaker is mounted on the acoustic iso-
later. In order to sweep the frequency through a range to
determine Q for the duct, the output from a Wavetek model
185 sweep function generator, amplified by a 75 Watt McIn-
tosh MI-75 power amplifier having excellent linearity, is
used to drive the speaker. When a specific frequency is
desired, a Waketek model 171 function generator, whose fre-
quency can be set digitally, is used instead of the model
185.



Chapter 3
MATHEMATICAL MODELS

A mathematical model has been developed based on the
mechanism postulated in the introduction. Since the
mathematical model vields results consistent with the
behaviour observed in the experiments, it is felt that
model is a reasonable (and therefore useful) approximation

to reality.

A simpler mathematical model has also been developed,
which describes some of the gross features of the mechanism
rather well. The analysis associated with the simple model
was originally performed to verify that the behaviour of
the more complicated model would be as expected. The
results of the simple model are so useful for such little
investment that it has been decided to include it. Fur-
thermore, it serves as an introduction to the analysis
associated with the more detailed model to follow. First
the elements of the models will be related to the physical

ideas on which they are based.

3.1. Features of the Mathematical Model.

The mathematical model is based on a physical explana-
tion of the mechanism that has grown from exploratory
experiments and from results reported by other investiga-
tors. The model consists of several blocks which can be
considered separately, but which, when linked together,

explain the behaviour observed experimentally.



One major component is the acoustic duct resonator.
Its response can be modeled gquite well using one-
dimensional acoustics, which neglects any variation across
the width of the duct. Its response to a localized
sinusocidal forcing at an arbitrary location in the duct
(corresponding to the location of the downstream baffle) is

calculated.

The other major component is the edgetone system, but
its components are also treated separately: the shear layer
which forms at the first baffle, the subseguent dgrowth of
vortices due to the shear layer instability, and the resul-
tant force on the second baffle due to the passage of the

vortices.

Shear layers are known to be susceptible velocity dis-
turbances that may be present in the mean flow (2). In the
present case, acoustic waves are present due to the acous-
tic resonator. It is simply assumed that vortices form in
phase with these disturbances. The growth of the vortices
is then determined from the growth rate data of Freymuth
(2), using a Strouhal number, S,, based on the acoustic
frequency, the freestream velocity between the baffles and
the experimentally measured momentum thickness just down-
stream of first baffle. Freymuth finds that the momentum
thickness remains essentially constant in the region of
exponential growth of the wvelocity fluctuations, so the
actual location at which the measurement is made is not too
critical. Since the measurement of this gquantity is not
very accurate, it is assumed to vary with the inverse of
the square root of the mean velocity between the baffles.
A single measurement of the momentum thickness which was

felt to be reliable is used as a reference:



& = 0.5mm «x (l§¢%-ﬁ£§)1/2

o (3.1)

At some downstream point, the amplitude saturates due to
non-linearity and the momentum thickness starts to grow at
that point. The mean velocity 1is assumed to be known a
priori. The same Strouhal number used to determine the
growth rate is used to find the saturation level of the

velocity fluctuations from Freymuth's data (2).

The final part involves the calculation of the force
on the second baffle due to passage of the vortices. This
is done using nonsteady potential flow with point vortices
of strength determined by the saturated velocity fluctua-
tions mentioned above. The details of this calculation are
in Appendix E. As each vortex travels past the second baf-
fle, it induces pressures on the surface which then drive

the acoustic response of the duct.

Each of the contributions mentioned is treated
independently, but when they are Joined together and
allowed to interact they result in the type of behaviour
observed in the experiments: spontaneous acoustic standing
waves at frequencies near the resonant fregquencies of the
oscilliator and vortex formation with exponential growth to
saturated constant amplitudes which depend on the mean
velocity and on the baffles spacing and location within the
duct. The 1loop is closed by assuming that the acoustic
response velocity measured at the location of the first
baffle is egqual to the initial perturbation in the shear

layver that triggers the formation of vortices.



3.2. Simple Mathematical Model.

The simple model simulates some of the behaviour of
the more complicated analysis but the results are far more
easily interpreted to vield general conclusions. This
model is based on the idea that in the vicinity of one of
its resonances, an acoustic resonator behaves in a manner
which is very analogous to a damped linear oscillator. The
spontaneous growth of the amplitude occurs when feedback is

added.

When a damped linear oscillator is driven by a con-
stant amplitude sinusoidal driving force, after the initial
transients have decayed the response is also sinusoidal and
at the same frequency as the driving force. The amplitude
of the response is greatest when the frequency of driving

is very nearly egual to £ the resonant frequency of the

Ol
oscillator. It is the sinuscidal velocity which has a max-
imum exactly at this freguency. The displacement has its
maximum at fo(l - —15)1/2.
2Q

Typical response curves, for systems with different
guality factors, Q, are plotted in Figure 3.1. The quality
factor is high for systems with low damping and is defined
as Af/f_, where Af is the width of the peak at half the
maximum power. For the duct used in the experiments, the

value of Q is about 20, as described in Chapter 4.

A resonator can be made into a self-excited oscillator
by adding appropriate feedback. Instead of using a forcing
function such as F cos wt, one might use a force propor-
tional to the displacement at an earlier phase in the

cycle, for example. This can result in growing
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oscillations depending upon the time lag and the constant
of proporticnality. The time lag is important since
without the time lag, forcing proportional to displacement
is equivalent to modifving the spring constant, possibly
making it negative. The effect is to change the natural
frequency if the effective spring constant is positive or
else to produce exponential growth of the displacement
without oscillation 1if the effective spring constant is

negative.

In modeling the duct as a simple damped oscillator,
the forcing is due to the interaction of the vortices with
the downstream baffie. The vortices are assumed to be ini-
tiated when the acoustic response velocity of the duct is
maximum at the upstream baffle. The forcing occurs at a
later time equal to the time of flight of the vortices from
the point of initiation at the first baffle to impingement
on the second baffle. The idea central +to the simple
model, then, is that the forcing function is dependent on
the velocity of the resonator at an earlier time, v. It is
the response velocity which is important since the shear
layer reacts to fluctuating velocities, as will be dis-
cussed in Section 4.5. It is anticipated that the greatest
response will occur when v is close to an integral number
of periods at the natural frequency of the resonator since
then the force is in phase with the velocity and the max-
imum amount of energy is being added to the system in unit
time. Since the time lag, 7, corresponds to the time of
flight of a vortex from the first baffle to the second,
increasing the baffle spacing while keeping everything else
fixed, corresponds to increasing 7 proportionately. The
assumption is made that the convection velocity of the vor-

tex does not change as the spacing is varied.



There are two phases of operation that it is desired
to model. The first is the period during which the
response amplitude grows from a small level. The second is
the region of saturated amplitude during which the oscilla-

tion persists at constant amplitude and fregquency.

The forcing is due to the passage of vortices past the
second baffle. These vortices are initiated at the first

baffle with an initial strength proportional to the

response velocity at that time. As they convect down-
stream, they grow exponentially until they reach a
saturated level dependent on the Strouhal number, Se, For

low enough initial levels, the vortices do not reach their
saturated value before arriving at the second baffle and

the force on the baffle is proportional to the initial

level. Exponential growth of p' and u' with time is then
expected. This is the first phase of interest mentioned
above.

If the initial amplitude of the vortices, as deter-
mined by the response of the resonator, is large enough,
then the vortices do reach a saturated level before imping-
ing upon the downstream baffle. In this case the force has
a constant amplitude, but its phase with respect to the
response cycle is still determined by the time lag. A key
element, then, is the freguency-dependent phase difference
between the driving force and the response for a resonator.
The response is similar to that of an oscillator driven by
a constant amplitude driving force in that the amplitude
exponentially approaches a constant value. The frequency,
however, is determined by the time lag imposed by the sys-
tem. The fregquency adjusts itself to produce a phase
difference between driving and response egqual to the phase

difference imposed. This is the second phase of operation



for which the response characteristics are wanted. The
calculations for the above two phases are shown in detail
in Appendix B which makes use of the method of time averag-
ing developed by Kryloff and Bogoliuboff (24) and presented
in Appendix A.

The simple model describes some of the essential
features of the self-excited resonance under investigation.
In particular, for the steady-state case, the relative
amplitude and frequency behaviour is predicted correctly
for different baffle spacing near the peak response condi-
tion. The model predicts the exponential growth antici-
pated for the first case but comparison with experiment is
not feasible since the experimental time records do not
have well defined, repeatable, growth periods. The transi-

tion period between the two cases is not modeled.

3.3. Details of Shear Laver Development.

An investigation of shear layers was not undertaken in
the present work. Instead the results of other workers are
used. The model of the shear laver development in based
heavily on the experimental results of Freymuth (2) which
seem to have been measured carefully and completelv. The
assumptions that have been made in order to couple with the

other sections of the model will be presented here.

The first assumption is that the initial perturbation
is equal to the acoustic velocity present at the location
of the upstream baffle. Any effects of an acoustic bound-
ary layer in the transmission of the oscillating velocity
to the sensitive separation point are ignored. That the

separation point is the correct location to apply the



matching is justified since elsewhere the acoustic field is
irrotational. That is, the fluid moves back and forth with
the acoustic wave equally in the neighbourhood of any
point, thus no vorticity is generated. At the separation
point, however, the velocity fluctuation is felt on the
high speed side of the shear layer above the sharp lip of
the baffle, whereas the low speed side is shielded from
oscillations by the physical presence of the baffle. The
fluctuating vorticity is superimposed on the mean vorticity
being shed there and is amplified downstream by the shear

laver instability.

The growth of the fluctuating velocity in the shear
layer is exponential in the streamwise direction, with a
growth rate determined from the Strouhal number based on
the initial momentum thickness. The growth rate as a func-
tion of Strouhal number is approximated by a sixth order
polynomial fit to the spatial growth curve below Se = 0.010
and the temporal growth curve above that value. These are
theoretical curves predicted by Michalke (3,4) and reported
along with measured growth rates by Freymuth (2). The tem-
poral theory is a calculation of the timewise development
of instability waves on the interface between two infinite
bodies of fluid moving in opposite directions. The spatial
theory is similar, but accounts for variations in the
streamwise direction and is more representative of shear
flows that can be generated in the laboratory. Below Se =
0.010, Freymuth's growth rate data (2) fit the spatial

curve best, and above that they follow the temporal theory

well. The choice of using a polynomial fit is simply for
computational ease. The actual curve used is plotted in
Figure 3.2 along with Michalke's predictions. The agree-

ment 1is at least as good as with the experimental data and

is considered adequate for the present purposes.
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From Figure 15 in Freymuth's report (2) it can be seen
that after the region with exponential growth the fluctuat-
ing velocity reaches a saturated value downstream. The
peak values were measured from the graphs and replotted
versus Strouhal number. These data are presented in Figure
3.3 along with another least squares fit polynomial. In
this case, the fit was performed using the logarithm of the
experimental points, so the antilog must be taken of the
polynomial evaluation in order to determine the actual
saturation wvalue of the velocity oscillation. In the
model, the amplitude of the fluctuating wvelocity in the
shear lavyer is permitted to grow with the appropriate
growth rate until it reaches the value determined by this
second polynomial. From that point onward, the velocity is

assumed to remain saturated at that value.

3.4. Vortex Strength.

In order to calculate the changing drag on the down-
stream baffle due to the passage of this shear layer with
superimposed velocity fluctuations, point vortices are used
at the streamwise locations with the greatest velocity
fluctuation. Once a strength is assigned to these vor-
tices, the oscillating drag on the second baffle is calcu-

lated using potential flow, as shown in Appendix E.

The oscillating drag on the downstream bafflie is due
to the oscillating component of the vorticity in the shear
laver. The magnitude of this vorticity fluctuation is
guite small in comparison with the mean vorticity in the
shear laver. In order to use the point vortex drag calcu-
lation (Appendix E), it 1is necessary to replace the

sinusoidally wvarying vorticity with point vortices of



JaAeT]

34

Jesys 40 apts pasadg ybiH U0 apniltrduwy A3ITO0TIBA palednies g£°g aJnbid

oro-

og

0EO” 020’ Or0~ 0

314 1eTWOUATOd
gleq s, UylInwiadg (o]

=lo}

oV

gt -’

0c”

Ge’

U’/ Uy



appropriate strength and location. The natural choice is
to place a vortex once each wavelength at the point with
maximum positive vorticity. An alternative approach is to
place an additional vortex with opposite strength at the
points with maximum negative wvorticity. In that case, it
is clear that the strength for each vortex should be set
equal to the integral of the vorticity over the correspond-
ing half-wavelength. Since the negative vortex would pro-
duce an equal but opposite force 180° out of phase, the
same effect can be produced using a single positive vortex
with twice the strength. Thus, a vortex with circulation
2umA/ﬂ is released each cycle at the lip of the upstream
baffle at the time of greatest positive acoustic velocity.
The vortex strength, ', used in Appendix E is normalized by
dividing the circulation by 2n to eliminate repeated fac-
tors of 27 in the analysis. Therefore, the value for I' is
umx/nz. The wavelength, A, is found using the freguency
and the convection velocity, Uc‘ Freymuth's data show that
the peak velocity on the upper and lower sides of his shear
laver, which are 180° out of phase, are of unegqual magni-
tudes. On the low speed side, he finds the peak velocity
to be lower than on the high speed side by a factor depend-
ing on Strouhal number once again. In the current model, a
third polynomial fit (Figure 3.4} is used to calculate the
ratio of these two velocities from which the wvalue of the
peak velocity on the low speed side can be evaluated once
the value on the high speed side is known. The velocity,
um' used in the expression for ' above is taken to be the
arithmetic mean of the amplitudes of these two fluctuating

velocities.
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3.5. Drag Calculation.

Experimental measurements indicate that pressure
amplitudes differ by factors of at most two when half-round
baffles or rectangular baffles are used. The assumption is
therefore made that the drag can be calculated on a semi-
circular baffles rather than on a rectangular baffle. This
is a matter of convenience. The calculation is easier with
the semi-circular geometry since no transformations are
necessary. Since any potential flow approximation to such
a separated unsteady flow can only be expected to vield
forces with the correct order of magnitude, this approxima-
tion is deemed acceptable. Similar calculations of the
interaction of point vortices with downstream obstacles

have been made by Holger et al. (25,26) and Panaras (27).

In the potential flow calculation of the drag on the
downstream baffle (Appendix E), the upstream baffle does
not exist, as can be seen in Figure 3.5 which shows the
geometry used for the calculation. Naturally, this leads
to some lack of reality in the model. The results of the
potential flow calculation indicate that vortices with
strengths determined by the technigque described in the pre-
vious section are so small that the vortices follow trajec-
tories very close to the path that would be traversed by a
point of fluid with no circulation. This is because the
induced velocity due to the 1image wvortices is negligible
compared with the freestream velocity. In the real flow,
due to the large body of essentially stationary fluid
behind the first baffle and below the shear layer, the vor-
tices actually travel at a convection velocity close to one
half of the free steam velocity measured above the baffles.
To account for this discrepancy, the free stream value used

in the potential flow calculation of the drag is set equal
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to the convection velocity as determined below. The speed
of the vortices should then correspond to the experimental
situation with the same flowrate above the baffles. Part
of the effect of the wake o0f the first baffle is, <thus,
accounted for by artificially using the convection velocity
in place of the free stream velocity in the calculation of
the drag on the downstream baffle. The point of release of
the vortices is taken to coincide with the location of the
separation point on the upstream baffle which is not

modeled in the potential flow calculation.

Freymuth's data, as reported by Michalke (4), indicate
a dependence of the convection velocity on Strouhal number
as plotted in Figure 3.6. A fourth and final polynomial
fit is used to include this effect in the model. In order
to avoid spurious behaviour in the Strouhal number range
with no data, three points were used corresponding to the
theoretical prediction of Michalke, towards which the data
clearly tend. This procedure has minimal effect on the fit

in the region with data.

Once the fluctuating drag is found, it is used as the
driving force for the acoustic field. As each vortex moves
past the baffle, the fliuid exerts a force on the baffle.
By Newton's second law, the baffle must therefore exert an
equal force on the fluid, but in the opposite direction.
There is thus a drop in the pressure across the baffle from
the upstream side to the downstream side egqual to the drag
force divided by the duct area. When the "drag" is nega-
tive, the sign of the pressure drop is also negative. It
is the oscillating component of the drag and the resultant
pressure difference that is important; the mean drag is not
considered and does not contribute to the acoustic

response. The oscillating pressure difference across the
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baffle is used as the driving force in the acoustic nmodel
by imposing it as a boundary condition at x2, the location

of the downstream baffle.

3.6. Calculation Algorithm.

The calculations associated with the various parts of
the model are performed in a Fortran program. A descrip-
tion will be given here of how the various parts of the
model are treated in the computer code. Originally, it was
intended to use the model to predict the duasi-steady
behaviour of the system during the growth or decay phases
of operation. Results obtained during the development of
the program indicated that the assumption of quasi-steady
behaviour 1is grossly violated except very close to the
final saturated amplitude. Therefore, the program was
developed to calculate only the steady-state behaviour.
This restricted goal permitted some simplification in the

the further development of the program.

In the algorithm used, an initial frequency and per-
turbation velocity at separation are assumed. Iteration is
performed alternately on each of these two quantities until
either a solution is obtained or else divergence occurs,
indicating that no solution exists. The convergence cri-
teria will be described in the next section along with a
description of the actual iteration scheme used. In this
section, the way in which the model is implemented as code
will be described. The algorithm described is essentially

what happens each time through the iteration loop.



Using the initial values of freguency and the pertur-
bation velocity at separation, along with other input, such
as mean velocity and baffle locations, a vortex is ini-
tiated at the separation point. As the vortex is followed
in the streamwise direction, its strength is determined
using the polynomial approximations to Freymuth's data, as
described in Sections 3.3 and 3.4. At each position, the
resulting instantaneous drag on the downstream baffle is
found using the results of the potential flow calculation.
As the vortex moves downstream, the drag decreases gradu-
ally from zero (the force is upstream) and then rises very
abruptly as the vortex passes over the baffle. The force
reverses sign and continues to rise to a maximum positive
drag, then gradually approaches zero again. If the vortex
had constant strength throughout, the shape would be
antisymmetric as in Figure E.1. This is not gquite the case
since the vortex strength is allowed to change here, but
the wvariation is quite similar even so. Clearly, the vari-
ation in force is not sinusoidal. The acoustic model,
which uses this result, assumes the forcing function is
sinusoidal. It is necessary, therefore, to determine the
amplitude of a sinewave which would be equivalent to the
sum of an infinite succession of such plots, each separated
from the next by a period at the assumed frequency of
operation. In other words, the first term is required in
each of the Fourier sine and cosine series of the function
representing the drag. This operation is performed by mul-
tiplying the instantaneous drag at each time step by ie—iwt
and integrating over the 1lifetime of the vortex. This
lifetime is chosen to be two periods of the oscillation.
Since the vortex traverses the distance between the two
baffles in approximately one period, the vortex is
extinguished at a location roughly as far downstream of the

second baffle as the release point is upstream. The use of



complex notation is convenient for keeping track of the
phase information which is important in this formulation.
Finding the Fourier components is thus accomplished in one
operation. The phase angle is measured with respect to the
time of release of the vortex at the upstream baffle, which

occurs at the instant of maximum acoustic velocity.

The drag, manipulated as a complex guantity, is then
converted intc an average pressure acting on the cross-
section of the duct and used as the forcing function in the
acoustic model of Appendix C. The location of this forcing
is equal to the 1location of the downstream baffle, x2,
Using this drag force acting at X,, the acoustic response
velocity at x,, the location of the upstream baffle, is
then calculated using the results of the acoustic model.
This velocity fluctuation at x, is assumed to be the per-
turbation which triggers the formation of the next vortex.
For a steady state to exist, this value must be exactly
equal to the guess which was used at the start of the
current iteration. This egquality includes the phase angle
as well as the magnitude. Since the various guantities are
maintained in complex form in the progran, this is
equivalent to requiring that the two complex wvalues be
equal. When this criterion is satisfied, within some pre-
selected tolerance, then the iteration scheme has converged
to a stationary value. That is, the assumed freguency and
initial wvelocity perturbation are such that oscillation is

self-sustaining at a steady amplitude and freguency.



3.7. Iteration Scheme.

At this point some iteration scheme is necessary to
select the values of the variable parameters for the next
pass through the loop described in the previous section.
There are two variables to adjust: the frequency and the
initial perturbation velocity and two criteria to satisfy:
equality of the magnitude and the phase of the input and
cutput perturbation velocity. Since the phase reference is
the input velocity, it automatically has zero phase angle.
The second criterion is, thus, that the phase of the output

velocity be zero.

The results of the simple model are used to help
select an appropriate way to pick new values based on the
results of the previous iteration. The simple model indi-
cates that the phase relations are strongly dependent on
freguency. Therefore, the amplitude of the initial pertur-
bation wvelocity is held fixed for several iterations while
the frequency 1is adjusted using the secant method (28)
until the phase of the response velocity 1is zero. The
secant method is a standard two-point iteration scheme to
solve the =zero-crossing point of a single function of a
single wvariable. At this point, it is unlikely that the
amplitude 1is correct and so it is necessary to make some

kind of change in the perturbation velocity magnitude.

The simple model assumes constant forcing regardless
of the amplitude of the initial forcing. If this assump-
tion were exactly true, then simply setting the new value
egqual to the o0ld would not change the output and the solu-
tion would then be converged. This exact behaviour is not
expected from the full model, however, the output amplitude

is likely change only a small amount for large changes in



the input. This is due to the saturation nature of the
shear layer. The approach of just setting the new ampli-
tude equal to the old, while keeping the frequency fixed,

works gquite well, and is the method used.

As an alternative approach, one is tempted to keep the
frequency fixed and use the secant method again to adjust
the amplitude until the magnitude of the input and output
velocities are the sane. In fact this was tried and con-
vergence was obtained, but the process was fairly slow in

comparison.

If the magnitude of the new perturbation velocity is
set equal to the magnitude of the calculated response, as
described above, then one might expect to obtain a guasi-
steady growth or decay until the amplitude naturally
reaches a constant value. However, from one cycle to the
next, the amplitude sometimes increases by an order of mag-
nitude, or more. In the acoustic model, the response has
been calculated assuming steady-state driving. The ampli-
tude of the oscillator would require more time than a sin-
gle cycle for its amplitude to increase by a factor of ten
or a hundred. Thus, the quasi-steady approximation is

violated.

An alternative approach involved fixing the freguency
and letting the freestream velocity vary (again using the
secant method) to satisfy the phase criterion. It was
found that the phase is too sensitive a function of this
parameter and divergence was often a problem. When a solu-
tion was obtained using this approach, it gave results con-

sistent with the method used above.



An evaluation of the model will be made in the next
chapter in which its predictions are compared with results

of the experiments.
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Chapter 4
RESULTS AND DISCUSSION

In this chapter, the results of the experiments are
presented and compared with the predictions of the

mathematical models discussed in the previous chapter.

4.1. Acoustic Properties of the Duct.

The measured natural frequency of the duct is 295Hz.
When baffles are installed, this resonant freguency is
reduced about 20Hz depending upon the location of the baf-
fles with respect to the velocity antinodes. This effect
of an obstacle on the acoustic resonances of a duct is
investigated theoretically by El-Raheb and Wagner (29).
They conclude that for a given size obstruction the fre-
guency 1is reduced most when that object is near the velo-
city antinode. If the object is placed near a velocity
node instead, there is a slight increase in the natural
frequency, but the variation is much 1less than for the

former case.

The section of the model that deals with the acoustic
properties of the duct does not account for the baffles in
any way. It gives a natural frequency of 295Hz in excel-
lent agreement with the measured value without baffles.
This suggests that the end conditions are correctly modeled

by the piston function approach discussed in Appendix D.



If the duct resonator is assumed to behave 1like a
damped linear oscillator, one can determine the associated
quality factor, Q, a measure of how strongly an oscillator
responds to excitation at its resonant freguency. This
guantity, measured using three different technigues, is
found to be on the order of 20 for each case. The Q meas-
ured for the fundamental frequency of the response curve
predicted by the acoustic section also yields a value just
slightly (greater than 20, confirming that the end
impedances correctly account for the energy radiated from

the ends of the duct.

The first method of nmeasuring Q is simply to use a
loudspeaker driven by a sweep signal generator to pick off
the frequencies at which the amplitude is 2—1/2 multiplied

by the peak value. The definition of Q is then used:

Q=g (4.1)

The measurement was made with and without flow. With no
baffles in the duct, Q gradually decreases from about 22
with no flow to about 18 for the maximum velocity of 40
m/s, thus the end conditions do not significantly change
with mean flow. With baffles instalied, Q was found to be
about 20 with no flow. With flow, selif-excited resonance
occurred, as usual, so a fairly high speed had to be used
to eliminate it. The background noise level due to the
fiow past the baffles was then sufficiently high that the
speaker power was insufficient to produce a well defined
peak as the freqguency was swept through resonance. The
second technigue for measuring Q involves using a random
noise generator to excite the loudspeaker rather than the

sinewave used above. The width of the spectral peak can



then be used to infer Q. The third method makes use of a
result of the simple model described in Appendix B. Equa-
tion B.12 contains Q as a factor which can be determined
from the slope of the plot of freguency versus baffle spac-
ing, or 7, at the point of greatest response. That this
last method vyvields the same wvalue for Q is evidence that

the the simple model is realistic.

The Q used above is for the response of the oscillator
to an external driving force at different fregquencies. The
peak of the selif-excited resonance curves which occur when
the mean velocity or baffle spacing are varied bear some
resemblance, but measuring the analogous guantity has no
meaning. In fact the width of the response peak versus
baffle spacing is essentially independent of Q. This is

discussed further in Section 4.4.

The time records of the pressure oscillations during
self-excited resonance appear very sinusoidal when
displayed on an oscilloscope, although the amplitude does
not remain completely steady. Frequency spectra of the
same signals vyield very sharp peaks up to 1004dB above the
background noise. The content in the harmonics 1s guite
low. The first harmonic is typically 60dB below the funda-
mental although the location of the microphone is at the
duct midpoint, which is a pressure antinode for this fre-

quency, so it will be somewhat higher than indicated.

The measured distribution of acoustic pressure within
the duct is plotted in Figure 4.1. The mode shape is very
similar to a sinewave as predicted by classical acoustics.
From the corresponding theoretical curve in the same fig-
ure, it can be seen that the ends are well represented in

the Acoustic Model of Appendix C.
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The effect of the baffles is seen to be small in Fig-
ure 4.2 which graphs the measured mode shape for four dif-
ferent baffle sizes, the greatest difference being caused
by the largest baffles (15.2mm, 0.6in). That these acous-
tic distributions are measured during self-excited reso-
nance demonstrates that the mode shape is largely unaf-
fected by the presence of the mean velocity and the vor-
tices. This is not surprising since changes should be on
the order 1 - M2, where M is the Mach number of the mean
flow. Mean velocities in the duct are on the order of 5 to
10 m/s and perhaps three times that between the baffles;
thus the Mach number is certainly less than 0.1 everywhere

in the duct.

4.2. Velocity Profiles.

Velocity profiles measured well downstream of the baf-
fle set show a distinct bistable asymmetry. The profile
plotted in Figure 4.3 and its mirror image occur with equal
likelihood depending upon disturbances present in the air
entering the duct. Deflecting the flow near the inlet can
cause the flow to switch from one side to the other. The
explanation is that the jet issuing from between the baf-
fles attaches to one wall or the other due to the Coanda
effect. The negative wvalues in the plot indicate reverse
fiow, but their magnitudes are meaningless since pitot

probes cannot measure reverse flow.

Similar profiles taken with baffles of different sizes
indicate that the flipping of the mean flow from side to
side, described above, occurs only with the taller baffles.
With short baffles (6.4mm, .25in), a symmetric velocity

profile is obtained as shown in Figure 4.4. The acoustic
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pressure distributions for the different size baffles (Fig-

ure 4.2) show no influence of this mean flow asvmmetry.

With the set of baffles 10.4mm {0.411in) tall
installed, for which the mean flow appears symmetric, a
velocity profile taken just downstream of the first baffle
indicates some evidence of asymmetry nonetheless. This
profile, measured using a hotwire anemometer in order to
determine the shear layer thickness, &, is plotted in Fig-
ure 4.5. In the plot, two profiles appear to be superim-
posed with a slight offset. While the measurements were
being made, it seemed that at any particular point in the
shear layer, the anemometer output would assume one of two
values on the average and would randomly switch from one to
the other. Perhaps the fluctuations from one value to the
other are due to a minor form of the gross asymmetry which
occurs with the larger baffles and simply does not make
itself evident in the mean velocity profiles taken using
the pitot probe with its longer time constant. Due to the
double value phenomenon, integration of +the shear laver
profiles to determine momentum thicknesses leads to values

with too much scatter to be useful.

In order to solve this problem, profiles are taken
with baffles on only one side of the duct rather than with
two pairs symmetrically placed. A significant amplitude is
obtained with this configuration only for tall baffles. A
set 25.4mm (1in) tall extending half way across the duct
gives satisfactory results. Profiles with these bafflies
are shown in Figures 4.6, 4.7 and 4.8. The momentum thick-
ness calculation based on these measurements will be dis-
cussed in the next section. The profile in Figure 4.6 is
for a single baffle one inch tall installed in the duct,

therefore any effects due to acoustic oscillations and due
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to the physical presence of the second baffle are absent.
In Figure 4.7, a second baffle 1is installed at the down-
stream location vielding the strongest oscillation using
the same velocity. The profile measured at the same loca-~
tion just downstream of the first baffle shows considerable
influence due to recirculation associated with <the down-
stream baffle. However, the shear laver itself is rela-

tively unaffected by the additional baffle.

With substantial acoustic driving using the
loudspeaker, it 1is possible to affect the mean properties
of the shear layer, although for levels edquivalent to those
occurring naturally, such effects are negligible. This is
illustrated in Figure 4.8 which shows the effect of dif-
ferent levels of driving using the loudspeaker with a sin-
gle baffle installed. With the speaker power egual to 0.15
Watts, the acoustic pressure in the duct is the same as for
the self-excited resonance occurring when the profile in
Figure 4.7 was measured. There is no appreciable differ-
ence between the curves with driving at this level and with
no driving. Even when the maximum power of the amplifier
is used, the thickening of the shear lavyer is barely per-

ceptible.

4.3. Momentum Thickness Measurements.

The momentum thickness is defined as

w (u_Ul) (Uz—u)
& = 7 5 dy
o (U,-u,) (4.2)
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This is calculated by numerically integrating the experi-
mentally measured data. The momentum thickness calculation
depends guite strongly on which points are used as the real
limits of integration in calculating the momentum thick-
ness. If the lower limit is taken well behind the baffle,
then the velocity is substantially increased from its
minimum near the lip of the baffle due to recirculation and
it is possible to obtain a negative momentum thickness,
which has no physical meaning. Furthermore, it is likely
that the increased velocity behind the baffle is not paral-
lel to the freestream, but is rather directed up the rear
face of the baffle since a single hotwire anemometer cannot

distinguish directions.

Due to the acceleration of the flow in the neighbor-
hood of the baffle tip, there is a reduction in the mean
velocity far out in the freestream. If this point were
used as the upper 1limit of integration, unrealistically
high values would be obtained for the parameter being cal-

culated.

Generally, the minimum and maximum velocity points are
used, although judgement is exercised when such a point is
unrepresentative of the velocity in the vicinity. Using
this approach, the momentum thickness for the case with two
baffles is found to be 0.470mm (0.0185in) compared with
0.434mm (0.0171in) for the single baffle. Considering the
amount of variation that can be obtained from a single set
of measurements by changing just the limits of integration,
the agreement bétween the two cases is very good, indicat-
ing that the mean properties of the shear layer are largely
unaffected by the resonance. For the case with self-
excited resonance the frequency is 273Hz and the velocity

difference across the layer is 12.3 m/s. Thus the Strouhal
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number is Se = 0.010 which is close to the Strouhal number

with the greatest saturated amplitude (Figure 3.3).

4.4, Effect of Baffle Spacing at Constant Mean Velocity.

If the freestream velocity is held constant and the
baffle spacing is varied, it is found that the amplitude of
the self-excited resocnance varies as indicated in Figure
4.9, For some baffle spacing the maximum acoustic pressure
is obtained and the amplitude falls off as the spacing is
increased or decreased from this point. Also plotted in
Figure 4.9 is the predicted response due to the simple
model of Appendix B. The curve is adjusted toc match only
at the maximum point, showing that the trend is well

predicted by this cosine.

The same cosine-shaped response to changes in the baf-
fle spacing as the predicted by the simple model can be
found using the following result: If the response velocity
for any damped linear oscillator is cross-plotted against
the phase difference, ¢, between the constant forcing func-
tion and the response velocity, the result is proportional
to cos¢ regardless of Q. Assume the shear layer can
amplify an infinitesimal disturbance enough that it
saturates before reaching the downstream baffle. The forc-
ing amplitude is thus constant regardless of the response
amplitude. Rockwell and Schachenmann (22), using a long
tube terminated with a hole-tone, find that for maximum
response there is a phase difference of 2nm between the
centerline velocity fluctuations at separation and impinge-
ment. If the convection velocity is constant, then chang-
ing the baffle spacing will change the phase difference

proportionally. The response velocity plotted versus
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baffle spacing must, then, also have a cosine shape since

the baffle spacing is proportional to the phase difference.

The phase difference between the response velocity and
the driving force must be in the range -90° to +490° in
order for energy to be added to the system. This implies
that the variation from the tuned condition mentioned above
can be up to 90°. The corresponding baffle spacing must
therefore be in the range (n - O.25)Axm to (n + 0.25)ax,,
where n is the stage number, the integer closest to the
number of wavelengths from separation to impingement and

Axm is the spacing that vyields maximum response for the

first stage of operation, n = 1. Naturally, for a real
shear laver the initial disturbance must be of some finite
value in order for saturation to occur before the second
baffle is reached. For a resonator with a high Q, this
reduces the theoretical limits given above only slightly.
As can be seen in Figure 4.9, the agreement between these
predicted 1limits and those observed experimentally is

excellent.

The more detailed model (Appendix C) is able to
predict amplitudes (Figure 4.9), although it does not
predict the variation quite as well as the simple model.
The shape of the curve near the peak is correct, but the
inflection points on either side are not evident in the
measured data and indicate a deficiency in some part of the
model. Nonetheless, the amplitude is within a factor of
two and the peak occurs at a baffle spacing very near to
the experimental wvalue. With the assumptions made in the

model this is considered to be excellent agreement.
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The associated response frequency, while remaining
close to the resonant frequency, does increase with
decreasing baffle spacing as depicted in Figure 4.10. Once
again, the simple model does a remarkable job in predicting
the wvariation. Since the simple model assumes that a
natural frequency is given, the curve is matched to the
data at the point used in the previous figure. Further-
more, it is also necessary to fit the slope of the tangent
to the data here. From the value of this slope, the qual-
ity factor of the resonator can be inferred using equation
B.12, and is found to be about 20, the same as the value
measured experimentally for the first acoustic mode of the

duct.

The acoustic model in the full theory overpredicts the
natural frequency of the duct since it does not account for
the effect of the baffles. The shift between the freguency
curve and the measured data in Figure 4.10 corresponds
exactly to the difference between the natural freguencies

measured with and without the baffles installed.

4.5, Effect of Baffle Location within the Duct.

The baffles induce resonance effectively only when
they are positioned in the neighbourhood of a velocity
antinode. This is demonstrated experimentally in Figure
4.11 in which the maximum acoustic pressure is plotted
versus the location of the center of the baffle pair within
the duct. The height of the baffles is 15.2mm (0.6in) and
the spacing between them is 25.4mm (1.0in). The mean velo-
city, which is adjusted at each station to produce the
largest response, 1is nearly constant for all locations,

increasing from about 13.5 m/s at either extremity to about
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14.5 m/s towards the center. The frequency also increases
slightly, from 270Hz at the ends to 280Hz towards the inte-
rior. Although the amplitudes are not exactly the same at
each end, the basic characteristics are symmetric with

respect to the midpoint of the duct.

The mathematical model discussed in Appendix C gives
exactly symmetric results for the two ends. Here, the
velocity is equal to 14 m/s throughout. Again, the maximum
response occurs at the velocity antinodes and suggests that
the assumption that the acoustic response of the duct acts
as the initial perturbation to the shear layer is correct.
An important conclusion that can be drawn from this obser-
vation is that a shear layer responds to fluctuations in

the velocity and not in the pressure.

An argument counter to this claim is that perhaps the
shear laver does respond to pressure fluctuations but that
oscillation are not observed since the duct does not
respond strongly to forcing due to the impingement of vor-

tices on a baffle at its pressure antinodes.

The counter argument is shown to be incorrect using
smoke flow wvisualization and a strobe light triggered by
the output of a microphone at the pressure antinode. A
single baffle is placed in the duct at wvarious locations
and the resonance is driven by the loudspeaker. If the
formation of the vortices was being triggered by the pres-
sure oscillations, then the strength of the vortices would
be greatest with the baffle at the pressure antinode. In
fact, vortices form only with the baffle away from this
location and their strengths are greatest toward the pres-
sure nodes (velocity antinodes). In addition, for the fun-—

damental acoustic mode of the open/open duct, the
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oscillating pressure is essentially in phase at all points
along the duct, whereas the velocity is 180° out of phase
at opposite ends of the duct. Since the position of the
vortex 1is frozen with respect to the pressure signal, it
should appear at the same location relative to the baffle
for all points in the duct if vortex formation is triggered
by the pressure. Instead, the vortex location is seen to
be 180° out of phase when the baffles are located at oppo-
site ends of the duct, further demonstrating that the shear
layer responds to oscillations in the velocity and not in

the pressure.

Plotted in Figure 4.12 is the wvariation in frequency
as the baffles are moved along the duct. The model indi-
cates a very slight reduction in fregquency towards the
center, while the experimental points rise a little. This
is attributed to holding the velocity constant in the model
whereas in the experiments the velocity was increased some-
what to maintain maximum pressure amplitude as the baffles
were moved towards the center of duct. Also, the effect of
the blockage (29) due to baffles is to reduce the resonant
frequency when they are near velocity antinodes (at the
ends of the duct), an effect ignored in the model. Once
again the vertical offset is due to this same effect of the

baffles on the natural freguency.

4.6. Changes with Mean Velocity.

When the mean velocity flowing past an edgetone system
is varied, the fregquency varies proportionately. In the
present apparatus, this is not the case due to the effect
of the coupled resonator, the duct. When the speed is

increased, the freguency does rise slightly, but it remains
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very close to the resonant frequency of the duct, as
observed by Nomoto (7). The greatest response occurs for
the first acoustic mode and the first edgetone stage of
operation in the apparatus used. This condition occurs for
some speed depending mostly upon the baffle spacing. if
the speed is reduced gradually from this point, the ampli-
tude drops until resonance no longer occurs. As the speed
is reduced further, the second stage begins to operate,
peaking at roughly a half of the velocity at which the
first stage reached its peak. As the velocity is reduced
further, the second stage dies and is replaced by the third
at one third of the original speed, and then the fourth
stage appears and has its peak at a quarter of the speed of
the first stage maximum. This succession does not persist
indefinitely since reducing the velocity increases the
Strouhal number and eventually the shear layer can no

longer respond at the resonant frequency of the duct.

The progression of peaks with changing velocity is
shown in Figure 4.13. The ratios of the velocities of suc-
cessive peaks does not exactly follow the progression
described above due to the convection velocity's dependence
on Strouhal number. The amplitude calculated by the model
agrees quite well with the experimental results. More
important is the good agreement in the location of the peak
since the amplitude is only expected to agree within an
order of magnitude on account of the approximations made in
the model. For both the experimental and the theoretical
cases, the baffle spacing is held fixed at 26.7mm (1.5in).
The frequency variation is also modeled well, as shown in
Figure 4.14. Again, the vertical difference between the
prediction and measurements is attributed to the reduction
in the natural frequency of the duct by the physical pres-

ence of the baffles.



72

Gc

apn3TTdwy U0 A3TOOTSA UBBW 40 1098443 ET ¢ aJnbidg

{Ss/W) saIlileqd uaamiad AITDO0TOA UB3KW
oc Gy 0] G
A amamte o o < T > Abymu
&) o]
ooo
© Qo O
] o]
&)
O
O
Adoayl TInd
O JusuwtJadxy e}
oo

0s

007V

0G?

00c

(N/m?)

p 9



73

Ge

Aouanbadd U0 AJTOOTSA UBSBW 30 303343 T ¢ aJnbtd

(S/W) S914jeg ulamilag AJTOOIIA UBSW

o2 Sy (0] S 0
1 ¥ ¥ ¥
AJoayy 1TINd
I Juswt Jadx3y o] i
ooQooo o® o)
o ooooooo %ooo o ©

007

0107/

ooe

ooy

(Hz)

Freguency



The model agrees well with the measured data for vari-
ations in mean velocity, baffle spacing and baffle location
within the duct. This agreement confirms that the postu-

lated mechanism is correct.



Chapter &
CONCLUSIONS

Based on laboratory experiments and results quoted in
the literature, a mechanism has been postulated which
explains the interaction between an edgetone system and an
acoustic resonator. This mechanism is believed to be a
contributor to undesirable low frequency tones in segmented

solid propellant rockets.

Two key elements required for the mechanism to operate
are a shear laver in which vortices grow and an obstruction
downstream. The most important idea leading to an under-
standing of the edgetone and resonator system is that the
acoustic response velocity acts as the perturbation which
triggers the formation of the vortices in the shear laver.
These vortices, in turn, drive the acoustic resonance by
interacting with the obstacle downstrean. The hydro-
dynamically-induced velocity fluctuations due directly to
the interaction of the vortices with the obstruction, which
trigger the vortex growth in an isolated edgetone, are

negligible when compared with the acoustic velocity.

Since the vortices are initiated in phase with the
acoustic response, changing the distance from separation to
impingement or changing the mean velocity changes the phase
between the forcing and response of the acoustic resonance.
Due to rapid variations with frequency in the phase between
driving and response of any lightly damped resonator near
its natural frequency, the frequency remains essentially
constant and equal to one of the acoustic resonances of the

chamber for all operating conditions that produce



oscillations. The larger the gquality factor, Q, 1is, the
greater the amplitude will be and the less the frequency
will vary. Over large ranges of velocity and large ranges
of distance from separation to impingement, an edgetone and
resonator system produces significant spontaneous vibra-

tions.

The amplitude of oscillation is limited by the satura-
tion of the strength of the shear layer vortices; therefore
it is not possible for the sound level to increase without
bound. Generally, the level reached will be gquite low com-
pared, for example, with oscillations due to combustion
instabilities. Nonetheless, the energy associated with the
mechanism is concentrated in narrow freguency bands which
could 1lead to wvibration problems with components having

resonant frequencies in those bands.

An important parameter is the Strouhal number based on
the momentum thickness at separation. Oscillation will not
occur 1f the resonant freguencies correspond to Strouhal
numbers outside the amplified range (0 to 0.04). The
strongest fluctuations exist when the resonant peak
corresponds to the Strouhal number with the maximum

saturated amplitude (0.01).

Based on the phvsical description given above, a model
has been developed which behaves in a manner similar to
that of the experimental apparatus used to investigate
these self-excited oscillations. Amplitudes can only be
predicted within an order of magnitude with any degree of
confidence due to some coarse assumptions in the model.
Therefore, the actual agreement, which is within a factor
of two for most cases, is probably fortuitous. The good

agreement in the observed trends, however, is vwvery



important and confirms that the proposed mechanism is

correct.

Armed with an understanding of this mechanism,
designers should be able to anticipate the occurrence of
oscillations due to the phenomenon described and either
enhance or weaken them as desired by adjusting the geometry
or flow characteristics. The most obvious way to eliminate
these self-excited acoustic oscillation is to remove the
edgetone. Separation should be avoided so shear lavers
cannot form. When geometries which place obstacles in the
path of vortices are unavoidable, an effort to increase the
momentum thickness at separation may force the Strouhal
number bevond the value of 0.04, the upper limit for which

the shear layer is unstable.
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