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ABSTRACT

We discuss the origins, in meson theory, of & nuclear poten-
tial vhich will adequately describe the interactions of nucleons up to
energies of approximately 150 Mﬁ#. Our Hamiltonian is obtalned from
& non-relativistic reduction of the relastivistic pseudo-scalar theory.
The coefficients of all terms in the Hamiltonian are treated as pars-
meters whose values are determined from experiment, In compubing the
actual potential we follow precisely the philosophy of Breuckner and
Watson and Oartenhaus, The resulting potential is an expansion in
powers of the coupling constanit and the ratio of the velocity of the
nucleons to that af light., Only the second and fourth order terms in
the coupling constant and the zeroth and first order term in (V/c)nucle0ﬁ
will be retained, All pieces of the potentisl are evaluated numeri-
cally with s swooth momentum space cutoff, We also consider a modified
type of relativistic theory where pair terms are supressed, A crude
comparison is wmade with experiment, It is found that the potential
is in qualitative agreement with the eyperimental data on nucleon-
nucleon scattering, the splitting of the levels in Eag, and the ob~

served magnetic moment of the deuteron.
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I. INTRODUCTION

In this thesis we propose to discuss the origins in meson
theory, of a nuclear potential, which will adequately describe the
interactions of nucleons up to energiés of approximately 150 Mev,

A complete understanding of the nucleon-nucleon potential depends upon
& correct description‘of the interaction of nucleons with T-mesons and
with the host of recently discovered metastable hyperons and K particles,
Such a description is of course not available, Our attitude will be

to forget the heavier mesons and consider, within the framework of the
Yukawa theory, only the T-meson nucleon interaction, The Yukawa theory
itself was originally conceived to explain the force between nucleons,
the meson playing a role with respect to the nucleon which is analogous
to that played by the photon with respect to the electron, The exchange
of photons gives rise to the electromagnetic forces between charged
particles while the exchange of mescns gives rise to the shorter range
nuclear force,

The low energy (up to about 20 Mev) properties of the two
nucleon potential have been adequately described in terms of a fixed
source meson theory, (We will only touch on these lightly and refer
the reader to the numerous articles on the subject,) The potential
at moderate energies is not so easily understood, The fine structure
splittings of the levels in the nucleus have prompted many people to
propose that a velocity dependent spin orbit term be included in the
two nucleon potential, Recently Signell and Marshdkl have shown that

a good fit of the unpolarized and polarized two nucleon elastic



..

scattering data up to 150 Mev may be obitained by adding an empirical
charge independent short range attractive spin orbit potential to the
Gartenhaus potential,z The so-called Gartenhsus potential has s
plausible meson theoretic basis, More precisely Gartenhaus used the
non-relativistic, P wave extended source Hamiltonian, He calculated
in perturbation theory keeping terms to fourth order in the coupling
constant, However, he omitted the so-called "ladder corrections"
dropping them with the aid of "Bruckner and Watson's" argument.3
These terms lead, as is well known, to an unbound deuteron,

The Gartenhaus meson theoretic potential gives a good fit
to all of the low energy two nucleon data, This is both encouraging
and surprising since the use of perturbation theory in meson theory
calculations has dubious validity, Presumably the inclusion of a
renormalized coupling constant fgaf 0.09 and a cutoff energy
w % 6u,h which are determined from real meson nucleon scattering
and photoproduction at low energies, takes into account certain higher
order effects, The hope, of course, is that the higher order effects
which are not included in this manner modify only the high energy,
short range, behavior of the potential, The higher the order of the
graph the shorter the range of the resulting potential, In so far
as we are concerned with large distances, the order of the meson compton
wavelength, the fourth order potential should be a reascnable approxi-
mation to the actual potential,

It is interesting to investigate the (firét order) nucleon
velocity dependent terms, in meson theory to see if a plausible ex-

planation for the spin orbit term can be given., We will follow
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precisely the philosophy of Brueckner and Watson (B.W,) and Gartenhaus
(G) in deriving these terms, Our Heamiltonian will be a non-relativistic
reduction of the (PS) (PS) theory, The potential itself will then be
computed, using non-relativistic perturbation theory., As in the case

of G we drop all so-called "ladder terms.," The (PS) (PS) theory in

this manner leads to a spin orbit potential of the type postulated by
Signell and Marshak (S.M.), Our results will be an expansion in powers
of the coupling constant and the ratio of the velocity of the nucleons

to that of light, We shall assume that (v/c) u/M. We shall

nucleon
keep only the second and fourth order terms in the coupling constant,
Only the zeroth order term in H/M for the instantaneous potential and
the first order term in u/M for the L»S potential will be retained,

Other treatments of this problem have been given: Ssto,
Ttabashi and Sato,5 Klein,6 and Marshak and Okuboa7 All have used a
modified type of (PS) (PV) theory, These treatments only include a
computation of the L+5 pleces of the potential generated by the additionsal
terms in the coupling Hamiltonian, 3By additional we mean terms other
than the usual 0.V ¢ coupling used by Gertenhaus, In addition it may
be pointed out that these earlier trestments concerned themselves only
with cutoff independent Hamiltonians, As a result the final potentials
in position space“are extremely singular at the origin., In order to
avold this singularity the potentials are crudely cut to zero at an
arbitrary cutoff distance,

We have, in addition to computing the L*S pieces of the poten-
tial, computed the correctlons to the Gartenhaus static potential,

We have done this for both the cutoff independent and cutoff
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dependent Hamiltonians., For the case of the cutoff independent results
our analytic forms for the potential are consistent with the results
of the previous investigators, |

In sections I we give a precise definition of the potential
“in terms of the S matrix scattering element for free particle scat-
tering., In section II, we reduce the relativistic YS theory to non-~
relativistic form, In section III, we compute the actual matrix
glements, and potentials predicted by the non-relativistic theory,
Section IV contains a brief discussion of a modified relativistic
theory and section V concludes with a discussion of the relationship

of the computed potentials to the avallable experimental data.
o P
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II, DEFINITION OF A POTENTIAL

We begin by mentioning first a few of the conventions to
be used in this thesis, We use the natural system of units: F=c=1,
The dot product of two four vectors ,ku is Jz”-Jeu' = -kok!' +kl+'£iz»’

The Dirac ¥ matrices are given by

= _f 00 =f{1 © - ol
Al (-G o) Ty (o -l) 75 - i(l o)
Slashed four vectors are defined by B Y, = d,

In order to define a potential we begin with the formal

relation for the S matrix,

Spy = Bpy - 2NiB(E; - Ep)Rey (2.1)
Rfi = <¢f' Vl g._)i+> (2’2)
V."=¢, + YEnu, + ie) VT | (2.3)

where V in field theory is an integral over space of annihilation and
creation operators, For the case of the relativistic YS form of meson
theory, V = gS @ ‘sr5lll-¢d3x. For the fi;ced source meson theory
V = (f/p,)S oov¢ﬁ(<r)d3r,4 where & = Z‘ ¥.¢;. Formula 2,2 allows us
ie

to define an equivalent non-relativistic potential for any order in
the coupling constant via a direct comparison with the R matrix as
derived from field theoretic considerations. The potential is expanded
as a power series in the coupling constant:

v =v2) 4 y(®) o . (2.4)

and similarly R may be expanded

rR==R2 L5, (2.5)
since
Pelvig Yy 1VIgsD
Rpy = <Pplvig> + = E_d¢? E:?ni?% + - (2.6)



then to fourth order

R§,§) - (flv(z)\iv (2.7)
(2) (2) 4
Rﬁ)z (flv()*)\ﬂ L L8 Eljn>;n\v )|1> (2.8)
1 T *h

‘This means that the two diagrams (first and second Born Approximation
(B.A.)) (fig, 1) must correspond to the fourth order R matrix.,
Equation 2,8 allows us to trivially define the so-called fourth order
potential, V(z) is calculated in second order and is precisely de-
fined only on the energy shell, However, it is possible from this
point of view to include in V(z) certain non-static pieces which de-
pend on the nucleon velocities and which vanish on the energy shell,
In so far as we are concerned only with the scattering of two real
free nucleons on the energy shell, the S matrix is still unambiguously
duplicated, However if the potential is to be included in a
Schroedinger equation where higher order effects are implicitly taken
into account, the treatment of these off energy shell pieces of the
matrix elements is important, In either case iteration of the second
order potential must be subtracted from the fourth order R matrix.

We calculate in momentum space, Since V is defined conven-
tionally in position space, we need only transform to coordinate space
by superposing solutions in momentum space, There is some difficulty
here, It is connected to our original hypothesis that we use only
matrix elements on the energy shell, In so far as the potential is
used to analyze real free particle scattering, there is no difficulty,
We are merely inverting the process of superposition and going back

to momentum space, This process will pick out those fourier components
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of ¥(r) which correspond to scattering on the energy shell., In the
general case we fix the energy at some value and sum over all momenta
to obtain the position space V(r), This is the situstion which exists
in a bound state, As long as we satisfy the free particle conserva-
tion laws our potential is exact, However in integrating over all
mowentum transfers for a fixed energy we go off the shell, This in-
troduces an error for a bound state roughly of the order of the
binding energy/nucleon mass,

With this in mind we consider the scattering process

) L
AP

In the C,M, there are two independent three momenta p = Py = ~Py,
Q = p3 - Dy Let us call the matrix in position space,'??fi,
‘ Il
. - i Aptapd 2 o 1
T £4 = 1/(2‘]-{)3 } ¢f%(ri) e 1‘62/2 ( / elp {I’ .‘;ar)
B(Q,p)d3Qd3p¢i(r) adr a3p’ (2.9)
where
{B()ig ()7 = 1.
If R is only a function of the momentum transfer  then V(r) is seen
to be simply
3 410
Vir) = 1/(2n)” g iAo R(Q)a’q {(2.10)
From this potential must, of course, be subtracted the iterated second
order contributions, For velocity dependent potentials the extension

is trivial sand will be considered in the specific case,
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ITI, FOLDY WOUTHUYSEN TRANSFORMATION OF (PS}PS) THECRY

The so—called Foldy Wouthuysen (F.W.) Transformation serves
as a convenient starting point for the reduction of the Dirac equation
to a non-relativistic two component form, The transformation has the
advaﬁtage that it may be carried out to an arbitrary order in MT the
mass of the nucleén, always keeping the transformed wave functions
normalized to unity,8

| In order to apply the Foldy-Wouthuysen transformation to
the Dirac equation we write it as
HY = (gMc® + 0+ )¢ = 1 1(dYW /2 t) (3.1)
where the odd operator O and the even operator € are explicitly sepa-
rated, By odd operator we mean an operator which couples the upper
and lower components of the four component spinor ¥ , The new
Hamiltonian H' is defined as
H' = o8 ge-i8 _ 118 ('a/D t)e=18 (3.2)
where we choose § = -1/2M B0,
Expanding 3.2 in powers of l/M we easily find that
eiSHe-iS = H+ i[S-,§_1_7+ j‘2/‘2: 5:5:.&7_7 + i3/3: [g:[g)[s-:y_]"' o= (303)
and
el81(2/2 t)e™ 38 = (8/2t) + (1/2)/5,5 + (15/30)[B/5,S7 T + -- (3.4)
For the case of the relativistic pseudo-scalar theory with pseudo-
scalar coupling
H= ®ep+ BN+ gBys Y¢ (3.5)
and

8 = (-i/2M B/ -p + gpys T4/ (3.6)
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We find, to order gg/M3, that the transformed Hamiltonian becomes:
H' = M+ p2/2M + g/2M 0o9 ¢ + (P2 /oM) + (e24P/8M3) + 2/

To(§ x §)-+ 6/8PR[5ep 8T - 1/ Toup - 1af)(owp + 166) T

Most of the terms in equation 3.7 may be given simple inter-

(3.7)

pretations, The first two terms in H' are, respectively, the mass and
kinetic energy of the non-relativistic nucleon, The third term is

the usual pseudo-vector coupling term of the static model, where g/2M
is tﬁ be identified‘with f/p, f béing the pseudo vector coupling con-
stant, (f2/4ﬁ ¥ 0,09). The fourth term gives rise to an extremely
strong S wave scattering, This term is in sharp disagreement with
experiment and its presence has been noted for a long time, The pres-
ence of the ¢2 term in the reduction is a manifestation of the fact
that the matrix Y5 has large matrix elements, the order‘of 1, between
nucleon anti-nucleon states, Thus in higher order than the lowest the
anti-nucleon intermediate states completel& dominate the pseudo-scalar

theory.g’lo

It has been argued that a more exact solution of the field
equations results in a self damping of the S wave pions, In some cases
this S wave damping is so strong that S wave effects may be neglected
altogether, If the only term in the static interaction Hamiltonian

is of the form ¢2 then it is possible to solve exactly for the normal
modes of the meson field variables, The scattering is reduced, in

this case, from its value in Born Approximation (B.A,) by spproximately
a factor of one hundred.ll B.A. does not take into account properly

the diminuation of the wave function near the origin due to the re-

pulsive potential simulated by the ¢2 term,
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The £ifth term is also an 8 wave term but s much smaller
one, The sixth term is an effective charge exchange § wave scat-
tering term, The seventh term is a rather interesting one, Com-
bined with the second one it gives an effective vertex of the form

o (¢ -7 /2). The reduced theory must be Galilean

/ v
Cmeson meson nucleon

invariant, As a result one might expect a term of the form

o2 3 . :
oo (v -V to appear at the vertex, This statement has
( meson nucleon) PP : o
. S C s . .
been made previously, However this is not the case, It is possible

cd

to sl that t efficiler v ay be any number at al
to show that the coefficient of Vhucleon T2Y be any number at all,

(See appendix L4,) and still leave this theory Galilean invariant.
The last term in the Hamiltonian may be broken down into
. . . . e L, ~
six pieces, all of which, owing to the factor ~/M5, are rather small

and will not be coneidered in this thesis, However we 1list them and

categorize them briefly. The six terms are:

(2) p*

(0) P52 + F0F = (p,2 + p.2)
(c) J[S'V J i¢i*""7[‘5‘ v 3’i¢i-7
(@) #

(e) vPoev+ (o-v@)p?

(£) Po-vd + (0w h)eR

(2) is a simple kinetic energy correction, (b) couples

S-wave mesons and in fourth order is non-velocity dependent, (c) is
a non-velocity dependent term which couples S, P, and D wave mesons,

(d) is a four meson-vertex term, {e) is a ve/c2 correction to the
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static potential and (f) is a term which will not contribute until
at least sixth order,

Since in the calculation of the potential, we shall use low
order perturbation theory, we must regard the coefficients of all the
terms in the reduced Hamiltonian as subject to an effective renormali-
zation by higher order interactions, We cannot calculate the relative
renormalization, (for the various terms of H'), but we shall adjust
the coefficients so that they agree with the experimental pion-nucleon
scattering, Thus, the coefficients of the terms in H' are regarded
as experimentally measured quantities,

There has been and still is some question as to the exist-
ence of a direct meson-meson interaction term in the Hamiltonian,
Apparently the relativistic Y5 meson theory contains only the masses
of the partiéles and the coupling constant as parameters, The ad-
justed coefficients in the reduced Hamiltonian are, we feel, manifes-
tations of higher order corrections to perturbation theory and should
in principle be calculable, However, some people believe that there
is still another arbitrary parameter in the pseudo-~scalar meson theory.
When the renormalization program was first carried through for guantum
electrodynamics, it was shown'? that after remormalization of the mass
and charge, everything waé finite in perturbation theory, Immediately,
people began to look at all other theories of the coupling of particles
to find out whether they possessed the same remarkable property., It
was found however that almost all theories were violently unrenormaliz-
able, Gradient theories, or non-linear coupling schemes, or even the

simple point Beta-Decay interaction are all unrenormalizable, Only a
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very limited number of theories lead to cutoff independent resulis:
among these electrodynamics and the coupling of a pseudo-scalar meson
to nucleons via a direct coupling, The feeling was and still is thst
perhaps the criterion of renormalizability acts as a selector on pos-
sible theories, FPerhaps nature has chosen to use only theories which
admit to renormslization and give finite answers in this egpecially
simple manner, Of course even z gradient theory 1z finite if we put
a cutoff on it and then say that the cutoff is real in the sense that
our whole theory breaks down at small distances and must be replaced
by something new, However, it is not necessary to take this point of
view, For this reason it is interesting to investigeste the consequences
of the pseudo-scalar theory,which is precisely what we are attempting
to do,

It must be pointed out that even after the renormalization
program was carried out, the so-called "renormalizable" theories still
contained oneiprimitiVe divergence, The divergence arose from a fourth
order diagram conbributing to the meson-meson scattering and to the

scattering of light off light,

For the case of electrodynamics this divergence may be eliminsted,
For the case of meson theory however, it exists and is cutoff depen-
dent, If we believe firmly in the renormalization program we would

then say that there is a direct meson meson term of the form A ¢h in
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the coupling Hamiltonian, Thus the divergent diagram would Just re-
normalize this parameter and theory would again be finite, This ¢h
term if it exists would alsc contribute to the nuclear force and
possibly, if it were strong enough, to the LeS force, However, we
omit entirely any such term in the Hamilbtonian,

We stress again the fact that the importance of the F.W,
transformation lies in the fact that it sllows us to start with a nop-
relativistic (PS) (PS) theory and modify it, in what we consider a
reasonable way to fit experiment, TIn addition it permits us to con-
struct a potential in complete analogy with the B,W, and G, potential,
There of course remains the question of how well the modified non-
relativistic (PS) (PS) theéry reflects the character of the Y5 theory,
We have Iinvestigated this central queétion by computing a potential
with & modified relstivistic theo:y, and comparing the results with
those of the non-relativistic theory., By "modified relativistic
theory" we mean that we take the V5 theory and modify it by relativ-
istically suppressing pair terms, This is more difficult in a covari-
ant theory since nucleons and anti-nucleons are treated on an equsl
footing, '

In section V we will discuss this "modified relativistic
theory,” and give the potential computed within its framework, By
comparing these results with those of the non-relativistic theory it
will be possible to show. that in the fourth order nuclear f@%ce
problem, except for the explicit suppression of pair terms, the two

theories are identical with each other and with the Yﬁ theory, More

explicitly we outline the procedure to be followed, For the purposes

P
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» . o . gy
of comparison we suppress pair terms completely by dropping 2Mg=(
from the reduced Hamiltonian and then compute the second and fourth
order, energy shell, scatltering matrix elements for two nucleons, We
then expand the answer in power of g/M and retain the term of relative
order one {velocity independent) and p/M (velocity dependent), We
then compute the same matrixz element using the "modified” relativistic

" " 2 | |
theory with the "pair term” dropped (if the ¢° term is included the

"modified” theory is precisely the Y5 theory). The relativistic matrix

element wag integrated over the Fourth component of the free virtusl

/

meson's romentum, and expanded to the appropriate order in u/M, In
both cases the coefficient of 3:1 J, as the same although the total

snewer was different, Since the palr terms in both cases can.only lead
to terms proportional to a constant in iso-spin space (the separation
into constant and 7Y 1«fyﬁ is unigue), this comparison will indicate
4
that except for the expliclt suppression of pair terms the non-
relativistic approach is the same as the Y5 theory,
1
VWe therefore write in place of equation 3.7
o x,_ w (
U M+ po/aM + oMa(2/u) 2B 4 (/p)or B+ v(2/w)P TP XG4
; ’ 2% ; .
B (/M) [Gop,0 7, + €/2m(£/u) % - 5/8¥0[(owp - 1gd)(owp + 1g¢17
where « , B, v, &, and € , are empirical damping factors to be deter-
mined and we have used (f/@) = g/EM, the static coupling constant
2 ~

f /’}—4«72 ™~ 05090
] : : . 13 I s
Drell, Friedman and Zachariasen ™ do a fixed source analysis
of the S-wave pion nucleon interaction, This analysis iz constructed

along the lines of the usual Chew-lLow formalism, They assume only a

bilinear S-wave interaction of the form A @@ + A ¥.¢ x ¢, which is
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added to the usual (f/u)o-v#. They then determine the values for
the rencrmalized coupling parameters }\O and A , so that their theo-
retical expressions give agreement with the S-wave pion nucleon phase
shifts up to 100 Mev pion kinetic energy. They find that the S-wave
scattering data give 20,02 and ¥ ¢ 0.5. The term 3 is not toé
well known experimentally, However it is known that 8 % 1 is not in
violent disagreement with the S-wave pion production cross sections
in nucleon-nucleon collisions, Gell-Mann %rii}.rRosenfeldlAL have made
a very crude estimate g? the coefficlent 8, They consider the ratio
of S-wave to P-wave mesbn production in the reaction

p+ p-T+ D,
If one coﬁsiders this process as taking place‘omly in lowesgt order
perturbation theory then the only term in the Hamiltonian (equation 3,8)
contributing to the S wave crosg section is

ple/mn) [5o0,8 7,
A comparison of the experimental and theoretical values for the S-~wave
to P-wave ratio indicates that B ~ 1. Since the terms ¢ and § do
not give any significant contributions unless € and & are,signifiu
'cantly larger than one we shall neglect them,% In addition we should
of course include rescattering effects for P wave mesons Jjust as the

Low equation does, We shall neglect all rescatterings éxcept in so

* Klein has included & = M/u in an attempt to include the ef-
fective rescattering from the (3/2, 3/2) resonance, We ignore this,
We also do not complete our Hamiltonian so as to make it relativis-
tically covarient because we feel that all the empirical corrections
made to the F, W, result reflect only the fallure of periturbation
theory to treat the YS theory correctly,
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far as they are included in the rencrmalized coupling counstant, It

is therefore té be expected that there will be rescattering correc-
tiong to our results, Breuckner and Watson have investigated this
P-wave rescattering for the static potential and find that its effects
are small, A more sophisticated treatment of the nuclear force problem,
perhaps from the peint of view of dispersion theory would of course,

in gome approximate way, include these effects,



18-
IV, THE NON-RELATIVISTIC POTENTIALS

We now write the second and fourth order poteniisis on

v = (£2/um) /2w w3 7w (£B/um) &+ £/ (am)2

[K(m + /M g+ uMF LegT (4,1)
where A, B, and F are function of the relative distance between the
two nucleons and where we have anticipated the result that the spin
orbit term is at least fourth order in f and first order in u/M, The
fact that the general second order vertex cannot contribute to the
velocity dependent force may be understood rather simply., Consider

the most general relativistic second order vertex,

0 son

£

¥ s

The matrix element under consideration summed to all orders
in the radiative corrections must, for the case of pseudoscalar mesons
with pseudo-scalar coupling, be a pseudo-scalar, With this in mind
we first recall that whenever p; or ﬁB occurs in one of our matrix
elements, it is possible, using the commutation relations, to slide
them over to the right or to the left side respectively of the entire
group of Dirac matrices, so that they operate on the free nucleon
spinors, Here theyyield a factor M, The only invariant for the single

)2

= qi. Thus the only form our matrix element can

vertex is (p, - P,
take is
Mp; = F(qi)Y5

The matrix element of YS’ as may easily be shown by direct substitution,
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depends only on the three momentum transfer, never on the sum of the
two momenta, This implies (see section II) that the resulting poten-
tial is, in position space, a function of the relative coordinate only,

(4)

The term B will be neglected since it is a correction to the static
‘potential of order fa/hﬁ.u/M. We feel that there are encugh uncer-

%
tainties in the static peotential itself to Justify the neglect of B(z’“a
(2)

Since fg/hﬂ % /M, we would expect to include B in the final result,

Corrections of this form can come only from the term (0~p5éﬂ+ in the
Hamiltonian, It will become evident that B(z) will vanish because of
the symmetry properties of the diagrams, In the same spirit we keep
only the largest velocity-dependent pilece, As we have shown in the
appendix, the only form such a potential {linear in the nucleon vel-
ocity and not vanishing for real free particle scattering) can have

is LeS, The term fa/hﬁlﬁ, on the other hand, depends on the nucleon
velocities as well as<their positions, It is the term which gives
rise to the controversial "ladder terms,” whose origins and properties
we will discuss in some detail in what follows,

As we have already pointed out, iterations of the second
order energy shell potential must be subtracted from the fourth crder
matrizx in defining an appropriate V(h). In addition, If one calculates
and includes in V(EE certain non-static pieces which depend on the
nucleon velocities and which vanish on the energy shell {these are
designated by fz/hﬁf4\ in equation 4,1) then, of course, the itera-
tion of these terms must be subtracted from the fourth order potentials,
The momentum dependence of A iz Just such as to cancel the usual pole

present as E; -« Ey In equation 2,8 and yield a non-singular function,
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These iterated terms are the so-called "ladder terms.” B,W, have
already noticed that if these terms are grouped with the "ordinary"

fourth order pileces then the resulting static p@tentiél gives an un-
bound deuteron and in/general disagrees with experiment, On the

other hand, ifvthe term fg/MKJQ is kept in second order, then for
wave function of the potential V- A with a phenomenological hard core,
the addition of &4 shifts things so slightly that it may be neglected,
Their conclusion is} that the retention of this term in fourth order
seriously’overeséimates it, since its origin in the fourth order poten-
tial may be traced to the predominence of high momentum components in
the wave function for the twe nucleons, These high momentum compon-
ents are in turn a conseguence of the singularity'in'v<g} static which
in caordiﬁate space goes like 1/r3, These iterated terms are for these
reasons onmitted from the Gartenhaus potential, The same situation pre-
valils withvthe L8 pieces, fg/kﬁ f when iterated leads to a fourth
crder LS potentisl, To be’consistent with the B,W. approach we ghall
drop this L+S piece from the fourth order potential and neglect the
effect of fz/hﬁ on the scattering since it vanishes on the energy
shell and is presumably a small correction for a wave function satis-
fying the Schreedinger equation for V - fg/knix. At energies of about
150 Mev the neglect of~fe/hﬂ A should be reinvestigated since the
previous results hold only for the deuteron, However the actual quan-
titative effect of f%/hﬁ i on the 150 Mev scattering will be much
more sensitive to the inner parts of the potential than the low energy
results were, As a result such an estimate would have little real

significance, However as we shall see, this method of treating the
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iterated pieces of A leads to certain definite predictions about the
shape of the L-8 potential which would be invalidated if we neglected
to treat them in the prescribed manuer,

We now evaluate V of equation 4,1, Figure 2 is the only
dizgram arising in the calculation of the second order potentials,
Figures 3 and 4 contain all the diagrams which are included in our
calculation of the complete fourth order potentizls, A number of
things should be p@iated cut aboubt these diagrams, In the first place
they are non-relativistic diagréms 50 that the time ordering of in-
ternal events is important, The arrows always point in the direction
of increasing time, To the disgrams listed must be added all the
diagrams which are Qﬁtained by interchanging the role of the two nu-
cleons, the so-called reflected diagrams, These may be obtained from
the ones written by means of the simple substitution,

J 1‘%’272

0y 0,

k = =k

k' ek’
Thirdly all diagrams are multi-representational, By this we mean that
at each single meson vertex we can place a (o V4) or s (G°Pi¢S+°
Similarly at all double vertices we may place a (%4 +f x é) or a2,

Let us considér first the static limit of these disgrams,

The two diagrams for the second order nuclear potential (fig, 1) and
its reflection yield the same contribution to the énergy, They give

for the pgﬁential using the conventional rules for the static

Hamiltonian
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Non-relativistic second order nucleon force diagrams, Arrows point

in the direction of increasing time,
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Figure 3

"Single action" fourth order non-relativistic nutlear force diagram,

All vertices may contain a ¢V or a [5°p,¢_7+ interaction,
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Figure 4

"Double action" fourth order non-relativistic nuclear force diagraus,

A1l vertices may contain a or a J°@ x interaction,
y
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e2/im 4(2) = v(2) = ~(e/0)2 1/(20)]

For the sake of clarity we have in this case and will in future for-

Lo, k)T /W P (x) (4.2)
mula rename the pileces of the potential, The subnames will indicate
whers the separate pleces come from, By B.W, we indicate the pleces
already written down by Brueckner and Wetson, The cutoff factor
vg(k) appears In all calculations in the stetic model and is defined
as the transform of the nuclear source distribution, That is to say

v3(k) = S Pr)eteT a3 (4.3)
where P{(r) is the distribution in space of the nucleon, It is to be
pointed out that this cutoff is important even 1if the integral con-
verges without it, Although the lowest order relativistic matrix
element does not contain this same cutoff explicitly, it contains one
implicitliy, ‘The dynamics of the nuclear recoil produces an effective
cutoff in the relativistic theory, In the static theory where the
nucleons are treated as bolted down we put the cutoff inm by hand,
This cutoff is of the order of one for k ® M and zerc for k > M,
and preventis the transfer of mesons of wmomentum the corder of the comp-
ton wavelength of the nucleon., We regard a smooth momentum space cutoff
as a necessary, if unexplained, part of the theory and therefore a
careful comparison with experiment reguires the use of such 2 smooth
cutoff, In analogy with the Chew theory the results, (of using such
a cutoff in k space), should not depend strongly on the form of the

) )

cutoff but may depend on the meximum momentum allowed by it, This

was Gartenhaus’s contribution, He evalusted the static potentisl
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second, and fourth order, (which we shall write down shortly) using
a gaussian cutoff, The integrals cannot be done analytically, but
must be done numerically,

Continuing with the evaluation of the potentials we find

for the sum of all diagrams of figures 3 and 4 plus their reflected

disgrams
(£ /34"7{)2 W) . = V ij% + V(g} (;g (4.4)
where
V(L}) - —{f/p)& .3“/(2(}{)6 S d3k dBk.' el(k+k ) r gik)v (k!) %

B.W

%Z‘?(kaok)g + D @3’1.‘:’]’2 @»le(kzvxk)gg.(ksxk;ﬂ/wgm,ﬁ +

39T (k'k)® + 30, (k'xk)o,*(k'zk Jureot (e ) (k.5)
1 2 1 2 :
and

(kMg Yor

v 2(k§vg(k’) X

L= e 27,7 e | e
§ Bri i) = o' (wra') + ot § (h.6)

¢ 3 3 k)
Ve = a%(fi!mu 1/(2m)” Sd*’k B TR (R x

¢
Ei@QMWK’°§7/’&?@3’2 + Lgi@MEd i?/(ﬂ‘@‘(aﬁm’) § (L.7)
These integmls are the results of straightforward application of
perturbation theory, We have used a number of identities of the
matrices to simplify the expressions, BSince Q'jg = 1, and
?153 =17 ¥ (i, j, k in cyclic order) it is clear that

TTTT o =3+2370 (k.8)
SRS R T

3-27-7" {&.9)

i

EFR IR
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We have also made use of the fact that the integrals are symmetric
under the interchange of k and k' to drop terms of the form
i{k'*k)(ql+aa)«(k'xk) in the integrand,

Wow let us consider in somewhat more detail the first order
nucleon velocity dependent corrections to the complete fourth order
potentials, Consider for the moment the two second order diagrams,
If the scattering takes place for two nucleons off the energy shell
{i.e, pfg 4 pie), then there is a correction to equation 4,2 which
has been designated as ¢ /4w O and is 3

Cod (FPlum) Blogy = -(2/)7 [y 4,/ (em)T

¢ ' LK
Sﬁsk(gl’k}{ﬁg'k)/ﬁ7 [/ +n/20) - 17 e’ (410
where
2 2
We expand the denominators and hold on to terms up to order (l/Ma),
This implies that
o (Fm) oty 3 £ (a8 y) (4.11)
where
(£2/um) B, = +(2/u)? [5+ 8,/(e0)3]
, Ll 1
%Ek(ﬁlok Gg.k)/m?j (n/ovmw) € (4,12)
‘ i
(£2 /iim) 6, = (f/mgjffsl-ﬁg/(e?z)?’j

X 3 LK
\@“ k(o *k)(0,+k) /67 ( W/2w)® e (1.13)
Tt is true that we hope to ulbimately retain only terms of

order p/M relative to the stetic plece, However it is also true that



=28

iterations of these terms, in the fourth order diagram, will have
denominators of the form W/2M, Thus terms of order 1/M2 in the
low order potentials will contribute to the required order of magnil-
tude, £ course, in keeping with our previous arguments, we are going
to drop these terms, However we give the results of these iterations
for the sake of completeness, Since other methods for handling the
so-called ladder terms may in the future prove fruitful.

The iteration of £ /hi 01_, leads to the famous "ladder"
pilece of B.W, As we shall see, when we evaluate the piece in coordin-

/

ate space, it is repulsive in the isotopic singlet state, enough re-
pulsive so as to change the slightly attractive 33, well to a‘repulsion
and thus forego the possibility of a bound deuteron, The iteration of
Ay, (see fig, 3, diagrams e, ¢ ) leads to

v =t 1/en® 2Ty S [P a¥r SHEHEDTT
1 &

= . \ 2 . ,
[TZGL’K)(QQ‘K)(Gl'k’)(02°k’} ﬁwgm’§7 vgik)vgik’} (4,14}
Tterations of the piece 132 leads in the same manner to & veloclty '

dependent potential which is of the form

VIA-,.,VL.S = +(f/y»)4 1/(&1)6 (3«—2”.!5:?]'2 /2M)

g[ﬁﬁk d"?}k'eﬂl(k’%‘w)"r vgik}vg{k’i7 m&m’a X

ﬁ(ol + gz)o{k' x k)pek x (20" + @)/murm’m? (4,15)

]

The basic second order diagram (fig. 2) may alsoc be medified
by placing the anti-commatator Zaop,gz at one of the two vertices

where a {o-¥ ) now operates, The result of this is a term which is
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anti~-symmetric under the interchange of the two nuclecons and as a
result vanishes when the reflected diagram is added,

We redefine as in the case of the static potential the sum
of all the L-S pieces.

¥

(4,16)
L.S \,ol);

(F74w) m/M F LTS,. =Vt Vgt VgtV

A11 uncrossed fourth order diasgrams which have two nucleons in the
intermediate state'are to be neglected, since they are iterations of
the lower order dlagrams, As a result we need to consider only the
single uncrossed diagram (fig. 3, diagram A ). As will always be the
case all velocity depen&enﬁ pleces can come from only one of two places,
That is to say, they can be generated by placing a (G’p,@)+ at any

one of the four vertices or by expanding the denominators which contain
the nucleon kinetic energiles, For the case of figure 3, diagram A the
anti-commutator plece vanishes because of its reflection symmetries,

The recoil piece however is‘perfectly'finite and gives

vO = (g/w)" 1/(20)® (3-27,-3 ) /(am) | &dk B
ws = (FTY (27,3 /(2 | T )

vz{k}vg(x’§ ei(k%kq}’r X LE(Gl+gg)o(k’ X k){pnk)(k’ak)/m3w‘§7
A word of explanation should be added here, Actually the integral for
VE*S contains three terms. If we consider the numerator algne then
these are of the form
(2) (k') (p+k)
(b) (op-k' x k) (o,-k" x k) pek
(¢) (k'+k) (o + op) (k" x k) (p-k)
If we keep in mind the fact that (ﬁi + ﬁ%)@(f& - ;}) = 0 the sngular

integration eliminates the velocity dependent parts arising from (a)
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and (b)., Of course the integration over the momentum transfer for the
cage (c) should be performed while retaining the subsidiary condition
p-a=0

wnere
p = p, + pf

G =

i
3
f
ke

However, the integrals cannot be done analytically if we impose this
condition, Thus for the case of (c¢) where the answer is finite we
assume ﬁhat we can integrate over all values of Q, the momentum trans-
fer, This is in keeping with the»discussion at the end of section I,
and re-emphasizes the fact that off the energy shell the potential is
not explicitly defined.

Let us now consider the L°S pieces arising from the six crossed
diagrams (fig, 3) and their reflections, The pieces from the recoil
denominators give nothing since they have the wrong symmetry. Unlike
the uncrossed diagrams however, the Galilean piece gives a finite
contribution, The sum of these three diagrams yields

Vig = +(£/) 1/(2?{)6 [8(3+2 3‘19@?)/(2@7 §d3k S vE)vE(k)
' ~ (4.18)

ei(k+k')er % L§<@l+ge).(kt % k}(p'k’) + i(gl+§2).(p ¥ k'){k"k}/mgw'%7

We still have to consider all the diagrams with a double action at
each vertex, Figure 4, diagram D , does not contribute to the L-8
potential sincé it is not possible to expand any dencminators cr to
add a "Galilean" vertex, Thus we lock only at the remaining diagrams
of figure 4,

Initially we place a (Y ¢ x ¢) at the double vertex in



question, and add a "Galilean” vertex at one of the other two vertices,

The sum of these three diagrams plus their reflections yields

gg _ 6 - L " e 3 235,
Vicar) (n.s) = M7 (A0 (£ “"-”71‘725 ek

FI{kFR ) e 2, 4 24, - ;
e (k! ) ex ve(k)v(k') x Ai(cl+aé)(ﬁ‘ X p)/m’2m7 (4.19)

This term has a & function behavior In the relative coordinate, These
5 function pieces are peculiar for a number of reasons, For the case
of no cutoff in momentum space it is certainly legitimate to neglect
these terms since they contribute to the potential only at one point
and would presumably, in this way of looking at things, be lumped in
with a phenomenological hard core, When a smooth momentum space cubtoff
is used this is not the case, These terms are spread out and presumably
contribute to the potential, However two things should be pointed out
about them, On the one hand the dependence of the potentials generated
by these delta function pileces is extremely sensitive to the maximum
cutoff momentum allowed., By increasing the value slightly above the
value we shall set it at later on, we can make this term have no effect
in the region of interest, However it is also true that by decreasing
the value of the cutoff slightly these terms become very important.
Thus there is a serious guestion here., We believe that they should be
omitted for the yeason that they do not appear in the relativistic YS
form of the theory., We suspect although we cannot prove it, that these
terms reflect the inadequacies of the Foldy Transformation in treating
precisely the very singular parts of the interaction energy of two
nucleons, It must be remembered that in performing the reduction of

the Hamiltonian the meson field variable ¢ was treated as a classical
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potential and not as a second quantized operator, Since the delta func-
tion pieces are all proportional to Tfl-ffz they must appear in the
modified relativistic squared theory, Here we know that the fields ¢
are being treated exactly correctly, The sbsence of such terms leads
‘us to the conclusion that these terms should be omitted even if a smooth
momentum space cuboff is used,
The expansion of the denominators yilelds

o
V¢

L+S(Recoil)

(k‘j") T [ +g Yo k' x k) (p- k)/oo w' ___7 (k.20)

| I . 6 3 2 o o
= +(f/pu)§ 1/M LETW'TQY/(QK) ‘(d;}k Ak v (k)v (k")

The ¢2 terms for this problem, have only academic interest
in so far as our actual numerical results are concerned, since we have
chosen the parameter so small, However since it is a parameter we
do include the results, In this case both the "Galilean" vertex and
the recoil terms contribute to the resulting potential, We have

2 , D
3 i{k+k')er 2,
Vi =/t 1en® |t ade HEEDT 2B
®i>

!

[E(@l+02)e(k' X k)(p~k)6¢x(m2+m‘2+mm')/wam’S(m+m'l7 -
16“ G +o, Ye(kt x p)/mm'(m+@'l7 (4,213

The parameter 3 leg included to show the separation into
Galilean and recoill parts of this piece of the potential,
Tf we now assume that v2(k) = 1, the evalustion of all the

integrals using the identities in appendix II is quite straightforward



and yields

(2 2, ; N 2, o N R
Vé;’; = (£ ) 31'3245‘1»02 + (3+3x+x /Xﬁ)slguj{e */x)  (h.22)

i

véii = (P a1/ /) [T’ fz) - e K () +

(2roxes)K (x)e FT(3-2 7,7 ) + [(23ehd®)K (2x) + (23+12x2/x)K, (22)7
(Y1 Tp - 200300, [BK (2%) + (6rhx" /x)EK; (2x)] +
2/3(01°0,)(3-2F .+ T ) [Bo(x)e ™ (1rx) + (2+2xra® fx)Ky (x)e ™7 +
1/3 slgﬁé\z{o{zzx) + »(i+‘f§+12x2/x)K1(2X} -(3-2 T.-T2)
(LK (e ™ + (5+5w0° /x)K, (x)e )] (1.23)
v = R T (st Tiom)x, (ex)8:x (ox) (oser ekl (20)]
V{;‘;Qﬁ; = 12M o (£2/) 2 >§+1)g/xi7em2xa(348M2xg/g)(f’g/&’n}zﬁl(EX)/:}fo] (4.25)

e

Ta, = -a-M{:f‘g/EJ;:)z)‘? l/’x“?’/ 2/n (3;-2 ql-gkg)[‘éﬁoix}emx(l+z+xg) -

[T1x) /27K (x)e ™ + 2/3 oy -0, /K (x)e ™ (1x) + (2r2x0x%/x)K, (x)e™] T (4.26)

= -Bu(3+2 ¥, Y 2)m/M:s(fg/ucz)gfgj‘(m)h%gﬁe)»(xﬂ)i?/xi?e“gx (4.27)

v
L*S
V= u(32 0T ) (2% B 1k e (x) + 2Ky (2x)7R (4.28)
L-5 : 1 2 - N o) J 1 ¥ N
Vi.g = b YT, wle/m) (PP e Te1)? /x0T (4.29)
-
Vi,q = (2hu « /m) (16 /2) (£ /40)° (3K, (2%) + 2xK_(2x) /x'T (4.30)

1ée - -
V2= (32T Y ) (/) (£5 k) e 22 1) (xP4320) /] (4.31)

L-S L

where S, = 3(e;-r @;.;\n/rz)_ o7 0% | and K= A
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The terms labeled B,W, have been computed by B.W, and are included
here for reference purposes only, These potentials have also beén. in-
tegrated by G, numerically, using a smooth momentum space cutoff,

It is to be pointed cut that some of the additional terms
in the Hamilbonlan contribute to the static potential as well as to
the L*S potential, With the present cholce of o all terms involving
it could Jjust as well be set equal to zero, There remain however
three terms, arising from the (Y0 x é) in the interaction Hamiltonian
which do comtribgte\significantly to the &, potential, These terms
were not included by G, These additional pieces should of course be
included in a more detailed investigation of the actusl effect of this
par{icular potential on the scattering, Such an inveétigati@n'would
amount to a solution bf the coupled Schroedinger equations,

Both the static and the LeS piece coming from the T°¢ x é
interaction have a term which has a delta function singularity in the
relative cocordinate, Owing to their extremely simgular behavior and
to the fact that they dc not occcur in the relativistic maetrix element
we shall omit them {for the case of a unity cutoff and for the case
of & smooth momentum space cutoff),

Since we regerd a smooth momenbum~space cutoff as a neces-
sary part of the theory, a careful comparison with experiment reguires
recalculation of the potential in configuration space with such a
cutoff, For this reason we have programed all the additional pieces
of the potential for numerical evaluation on a computer, using a
smooth cutoff in momentum space, These pieces include all of the

L*8 potential for &K = 0 and B8 and v equal to one, They also include
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the V. pieces of the fourth order static potential, Using a sguare
cutofi Gartenhaus found oscillations in the potential arising from the
discontinucus nature of the cutoff, He eventually used a cutoff of
the form

v(k) = exp(-k"/i,%) (4.32)
with

1/2
REEET (4.33)

ay = (g +

For thi§ reason ﬁe‘have used the same cutoff function in evaluating
all additional pérts of the two nucleon potential,

We include here, in figure 5 a plot of the V, piece of the
potentials in the iso-triplet state, For the purpose of comparison
we plot the L°S potential simultaneocusly with and without a smoothi
momentum space cutoff (figs. 6 and 7). In msking these plots with
and without cutoffs oL was set equal to zero and 3 and y were set
equal to one, As we had expecﬁed the cutoff consiﬁerably modified
the behavior of the potentials at small distsnces, Tablé?l and II
are numerical tabulations of the L-5 potentisls for two separate values
of the maximum momentum squared, Tables III and IV are the correspond-
ing tabulations for the Vé potentials,

Before going on to a brief discussion of the relativistic
theory and then a comparison with the avallable experimental data,
we stress again the extreme simplicity of this calculation, Our
Hamiltonian was chosen on the basis of a non-relativistic reduction
of the (PS) (PS) theory. The S-wave interactions were then suppressed

in the non-relativistic theory and the potential calculated with this

Hamiltonian as the starting point, V has been chosen to duplicate the



Figure 5

Plot in the isotopic triplet state ('71.’]2 = +1)of the
static potential coming from the Tf x é term in the Hamiltonian.
The dotted curve shown for comparison purposes is a plot of the
Gartenhaus static potential in the spin triplet orbital odd states,
(For example the 3'PO state,) If ¥ = 1 the resulting potential is the
sum of these two curves, The fact that these two terms tend to cancel

3

one snother ig an important feature since the PO Gartenhsus phase

shift is much too large to agree with experiment (see section VI),



- —200

T

200

li

150

=

S0

|00F

-37-

1770 Mev

-100

T

- =250

v 1.5 Bev

o



~35-

Figure 6

Plot in the iso-singlet state (S’l'j’g = -3} of the static
potential coming from the T ¢ x é term in the Hamiltonian, The dotted
curve markxed G is the Gartenhaus static potential in the spin-triplet
orbital even states, (qu example thevBSl éﬁate.) If v = 1 the resul-
ting poteﬁﬁial is the sum of these two curves, The curve marked GT
is the cofresponding phenomenological potential of Gamel and Thaler,

The sum of the two curves 1doks similar to the GT curve, However with

the present choice of ¥ it would appear that the potential would be
attractive all thé wayy which 1is no doubt undesirable, Ir on the bther hand
curve might indeed give reasonable answers for the deuteron ground

state,
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Figure 7

Plot of the coefficient of L*S in the iso-triplet state,
The unlabeled dotted curve is a plot of "units cutoff” (vg(k) = 1)
and the sclid curve for & gaussian cutoff, The ordinate is invMeviand
fz/nﬂ was chosen as O,l., The curve labeled S,M, is a plot of the
phenomenological Signell and Marshak L°3 potentisl in the iso-triplet

state,
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Figure 8

Plot of the coefficient of L»8 in the iso-singlet state,
mh et b 3 PR Ao 1t RN TR W5 § | 2 ], — ¢
The dotted curve is a plot for "unity cutoff” (vo(k) = 1) and the
solid curve for s gaussian cutoff, The ordinate is in Mev and fg/hﬁ

was chosen as 0,1,
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Teble I
Triplet Singlet J
0.4204E 03 0.43248 03 1
0.3253E 03 0.41398 03 2
0.1560E €3 0,35958 03 3
0.305LE 02 0.2709E 07 L
-0, LU3LE Og 0.1745E 03 5
-0,2447E 02 0.9817E 02 6
-0,1509E 02 0.5026E 02 7
-0,8468E 01 0.2458E 02 8
-0, 41678 01 0,1198E 02 9
-0,2047E 0L 0.,5980E 01 10
-0,1039E 01 0,3097E OL 11
-0,5508E 00 0.1667E 01 12
-0, 3045800 0,9310E 00 13
=0, LTL7E-00 0.5366E 00 14
-0, 1033E~00 0,3181E-C0 15
-0,6280E-01 0,1932E-00 16
-0,3905E-01 0,1198E-00 17
-0,2LT7E~0L " 0.7570E~-01 18
-0, 1599E-01 0,486LE-01 19
-0, 1048E-01 0,317CE-0OL 20
-0,6958E-02 0,2094E~01 21
-0, 46788~-02 0,1399E-01 22
-0,3181E-02 0,9456E-02 23
-0,2182E-02 0,6LLYE-02 2k
-0,1512E-02 0. 4439E-02 25

where x = ur = 0.02 + (J-1) x 0,1, and the cutoff momentum squared
is fixed at ky® = 35u°. The B indicates the power of ten multiplying

the number preceding it,



0.6933E 03
0,5600E 03
0.55928 03
0.3995E 03
CL2377E 03
0.1221E 03
0.5766E 02
6698 02
STE 02
30E 01
o1
01
00
00
-oo
E-00
@5P oo
.?f36
0, 48258~ 01
0,3181E-01
0,2105E-01
0,1391E-01
0,92625-02
0,63808-02
0,4397E-02
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Table II

Triplet

0,6885E 03
0,5008E 03
0.2106E 03
0.1871E o2
-0,4003E 02
-0.3452E 02

-0,1905E 02 .

-0,9176E 01
-0,4302E 01
-0,2040E 01
-0,1015E 01
~0. 54478 00

. =0,20508-00

=0, 1716E-00
mO 1002E-00

0,6256E-01
u0k3948pn01
-0,24215-01

=0,1539E-01

=0,1053E-01
=0, T109E~02
0, 4616E-02
~0,2969E~02
=0,2123E-02
-0, 1500802

where x = ur = 0,02 + (J 1) % 0,1, and the cutoff moment

is fixed at KM

um sguared



Triglet

0.7693E 03
0,6992E 03
0,5487E 03
0.36T4E 03
0,2113E 03
0,1077E 03
0,5123E 02
0,2402E 02
0,11598 02
0.5881E 01
0.3149E 01
0,1769E 01
0.,1035E 01
0,6250E 00
0.,3878E-00
0.2461E-C0
© 0,1591E-00
0, 1045E-00
0,6953E-01
0.,4675E-01
0.3167E-0L
0,2157E-01
0.,1472E-0L
0,1002E-01
0,6766E-02

Table 111

Singlet

-0,2308E 04
-0,2096E Ok
-0, 1646E O4
-0,1102E O4
-0.6339E 03

~-0,32328 03

-0,1537E 03
-0, 72058 02
-0, 3476E 02
-0, L7648 02
-0, 9448E 01
-0,5308E 01
-0,3104E O1
-0,1875E 01
-0,1163E 01
-0,7383E 00
-0, L T7TLE-00
-0,3135E-00
-0,2086E-00
-0, 1403E-00
-0,9502E-01
-0,64T1E-01
-0, 4L416E-01
-0,3006E-01
-0.2030E-01

R gg

e

e
AR e OO o] OV

-

b b e e
O

D) b gt bl
DO o=l

o
[

22
23
2k
25

= 0,02 + {J-1) x 0.1, and the cutoff wmomentum squared



Triplet

0,1145E Ok
0.,102LE Ob
0,7710E 03
0,4620E 03
0.2543F 03
0.1189E 03
- 0,5283E 02
0.,2376E 02
0.1128E 02
0,57TL2E 01
0,20658 0L
0,1727E 01
0,1013E 01
0,6128E 00
0,3806E-00
0,2418E-00
0,1564E~-00

0.1027E-00 -

0,6830E-01
0.4588E-01
0,3100E-0L
0,2104E-QL
0,1430E-01
0.9651E-02
0,643TE-02

—

ig fixed ab kME = #1@2,

Lo

Table IV

Singlet

-0,34368 04
-0,30738 Ob
-0,2313E Ok
=0, LHLEE Ol
-0,76288 03
-0,35688 03
-0,1585% 03
-0, 71338 02
-0,3385E 02
-0, 171L4E 02
-0,91968 01
-0,5181E 01
-0,30388 01
-0,1838E 01
-0, 11428 01
-0, 72558 Q0
-0, 4693E-00
~0,3080E-00
-0,2049E-00
-0,1376E-00
-0, 5300E-01
-0,63128-01
-0, 4289E-01
-0,28958-01
~-0,1031E-01

éa

w0 e

ped oo el
VT O O 0] Ghun

16

=t g
O o=

58]
<

2L
22
23
2l
25

where x = ur = 0,02 + (J-1) x 0.1, and the cubtoff momentum squared
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fourth order S matrix, (except for the "ladder" terms) for real free
nucleons, All higher order rescattering effects were neglected, A
“number of fourth crder velocity dependent non L-S pileces of order
(vfc}g were not included since they vanish on the energy shell and
thus would not appear in our definition of the potential until order

X3
.
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v, THE RELATIVISTiC SQUARED APPROXIMATION

We intend to calculate all matrix elements in this section

o4

within the framework of a modified relativistic theory, first suggested
to ug by Dr, M, Gell-Mann, By doing this we hope to show that except

2

for the explicit suppregélon of pair terms the reduced "Foldy Hemiltonisn”
(equation 3.7) is an accurate reflection of the local Y5 theory, The
local s theory of course must be changed radically in order that it
look like the static model or like experiment, Presumably the higher
order effects in the relativistic theory may do this for you so that
in modifying the reletivistic theory we hope that we are in some way .
simulating higher order effects in the perturbation theory,
vThe nucleon field operator satisfies the eguation
(1@ - M - dgvsf) =0 (5.1)
and the meson fielé gsatisfies the usual Klelin Gordon equation
[o -8 s¥ys¥ /g =0 (5.2)
We multiply 5.1 on the left by
(1P - M+ gy f)
This leads to the equation
[a® -1 - EF a2 = 0 (

The ¢2 term in the pseudo-scalar theory is the embarassing

.3)

1

one, This term we believe damps itself out. In the case of the static
model we have slready stated that the problem of a ¢2 coupling may be

soived exactiy and shown ©oO damp out, In the relativistic theory the
recoil of the nucleon couples S-waves to P waves, P-waves o D waves,

etc,, and makes the problem insolvable, Therefore it is only 2



.,.SO' .

supposition that the relativistic theory behaves like the non-relative
istic theory does. In any case we throw out the ¢2 term and calculate
with the following chopped up equation for the nucleon field operator
[6° - - e, gy =0 (5.4)
The Feynman rules for this approximate theory are given by using a
igyﬁﬁgat each vertex and a boson propagator for each nucleon, A slight
guestion of normelization arises which may be resolved in the following
menner, - Consider the matrix element for the transition of a nucleon
under the action of a potential, gv5~¢-; Then
Ry = 4O \ersB Y] 7 (5.5)
Now
+ . +
: (gﬂrg«?)l}’ L= -y
This implies that
R, = L91GF - mlp? > (5.6)

o
i1

If we novw assume that (¢f‘¢1> = O then it follows that

o~
A
®
-
-

R, = 1/2M 4¢ ] g'rgﬁﬁf'wg 7

In the relativistic calculation we consider only the two Feynman

diagrams

B A £
P i ] A ﬂ-\M. I 4 ) J\ 4 b
,ﬁaéﬁb”” R
M
A A A
™ F;u, ﬁu. s

The matrix element for these two diagrams may be written down, using

the rules for the diagrams
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RE = - if(em¥ g/(2m)2 M2/ 2 (-

93‘3’

o~
g7
o
e

L{“"Z{'(E;,;_;‘H};KW"S i”@u o, )7 / 7‘2

Ejﬂz%; ¢ -

(5.9)
k, k7, 2, and p are defined to be resvect ively the three momentum parts of
Jk and.& , The momentum transfer and the momentum of particle one in the
i1 1
H s ‘
C.M,

In order to take the static limit we perform the inbesgration over

and hold on to terms of order g”/ oMy

}

. /. o - s
/(M) = (£/W)Y. IT we then multiply

by ' integrate over d70 and change variables to & and &' in place
of @ and k we {ind for the fourth order static potentials

I, ! Z ) = S it Yoy
g f2(am) 1/(29::)‘5 {33-%23’1@,3’9} {d‘)k gyt ilkrk!)er

e o _— 7 . o oo
@1’(}5‘ x k) Oge (k" x k) + (k'ek) _,,71:1/03”)(,0’({.\%(.0’} + 1 m{(va)"/m/

, _[v;co* - 2k'ek/ / ; (5,10
0

I e | 3.3, i{ktk ) oy
v, =+ g /2(eM)” 1/(27) 3-2¥,-Y) SC*"JK e HEE) T

L

, ) s 2 .7
/{0 { SIEETS IR ’)l % ‘}{u <t x k)/ JTjw’e (orot) + 1/a%e

!C:_._-,'? En
foot =~ 2kt [ (ot ) (e (5.11)
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The potential from the ﬁncrassed diagram has had the iterated
second energy shell order potential taken out of it. (See section II},
Tt is easy to see that the sum of these two terms agrees with the static
potential derived from the non-relativistic Hamiltonian if e =0, p = 1
4 = 1, Of course, this potential agrees with the terums from the non-
relativistic Hamiltonian including the pieces'vla which we have dis-

1
carded using the B.W. srgument,

We now consider the (v/c) corrections to the static potential
which come from the crossed and the uncrossed diagrams, The crossed
diagram in practice is less difficult to handle., It containg no itera-
tions of the lower order potential, and none of the denominators vanish
in the limit of infinitely heavy nucleons, Since this is true it is
necessary to hold on to terms of order (g/M). In the uncrossed dia-
gram this is not the case, since we must take into consideration the
fact that some denominators are of order p/M,

Upon reduction to two component spinors the (v/c) corvrections

to the numerailor becomes

S W (RO CRS Y S/ GG R CRDIENCRDICRS T
[o,-6)(0,-0) -4 FT[To -0)(0,+p) - (o -(pa)lo; Q) (5.11)

The entire LS piece will,for the crossed diagram come from
this correction to the numerator, Although it is true that recoll
c@frestians to the propagator do modify the fourth order static poten-
‘tial, these modifications depend only on the momentum transfer and
not on the total velocity, As a result they are not considered here.

When considering the {v/c) correction t6 the numerator the mass of
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the nucleon in the propagators may be assumed to be infinite., Addi-
tional corrections to the propagators, owing to the finite mass of
the nuclecns will givé higher order corrections in {v/c) and are of
1o interest here,

We close the contour in the upper half plane and pick up
residues at k) = O, k& =) k& = ~', The result of these integra~

tions for the matrix element is

RX = 1/(zm)3 {f/p,) (%2'] ] )/?i\’iS a’k

.ﬂ’l
i1

\ . :
i(@l+62)’(Q X p}(Kﬁ’k}ﬂm%w’a {5.12)
The potential follows directly and is

. : A
= 1/en® e/ (3+29 -7 p)/au Sc‘ﬁa M) r ) B2 o
YAdw] i

i{o, 0, )*é(Q x p) (k' k) (5.13)
The uncrossed dlagram is slightly more difficult t@ handle

but nevertheless straightforward, We must hold on to all terms of
order {Vg/cz}g since the denominators will wanlsh to 0O (V/c}, On the
one hand we keep in find the fact that u'u = E/M, This means that

u{p) = EM/2M) (OW@/E+M‘) {(5.14)
Which implies that

ulp) ®  (1+pP/8M°) (o%p/aiva o (5.19)
T&e total numerator after some algebra becomes,

© = (1-02/21) % po, + /20 K, Py + (0 Fra T

+ Jo B ume 8A - 1/@42[51324« Blagj g (5.16)

where
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Al - E{:}lapgl}{gleﬂxﬁ - ((51;°Q>(@1.p1l7

B

sk

= 4K&1ep3}(ﬁlek')(ﬁl-9117
C, = 1?61~p3>(61~Pll7
Dl = i?glek’)(clokl7

The corresponding quantities with p

fod

> P, P “"?i@’ Q- <&, and g, - T

1 2 73 1 2
we call Asy By CQ, and Dg' If we now integrate over the fourth cowm-
ponent and close our contour in the upper half plane we pick up residues
- e g B 2 2 2 M
a = - | = - l. + - Wi and o

t /Aia_; : ‘jK My /R’@ \ k By ’Abr x & 1 “1 i/“:*aﬂd 4&4:
éEM,a(WQeré/Cli = ZzpiXKYM);d:(kZ/2Ml7ﬁﬁg The resulting potential in

momentun space is found easily to be

6 = | 2 .2
vo = 1/(2n) (f/u>u (3-27 .7 )/aM g.dSK Frt v (K)v (k') e
» 12

e

1{k+k? =1} i
i :

245(51+Qé)’Q X ?(k"k)/@mgm'§7 - 12(01+Gg)”(k‘ X K}(p'K)/w2@‘§7 +

~

i(ﬁl+ﬁ Yok x k(@g4w’2§/whm°% +
2 ‘

)
[

(07K (0. k" ) (0, k) (0,067 ) (1 = 3/2 02 /M2 / [ 2(k2+2p»k/gmz7} (5.17)

Two points are guickly ascertsined, The term which blows
up like E,; - E,, agrees precisely with the iterated second order energy

‘ ; o ' .
shell potential as was to be expected since the neglect of ¢ﬁ

contributes
nothing to the pole term in fourth, Corbining this potential with the
term from the uncrossed diagram, it is easily shown that the coeffilcilent

of the 3’1m3'2 term agrees with the result of the non-relativistic

theory.
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VI, DISCUSSION AND COMPARISON WITH EXPERIMENT
' '

Nucleon scattering data up to 150 Mev give a reasonable in-
dication of the type of L3 potential needed to it the data, The
dats have been fitted quite well by 8.M, They nave asdded to the
Gartenhaus potential th@‘fﬁllawing isotopic spin independent, pheno-

menological potential,

VLag(r§

-#

(v,) ez, afalefr e o s v > T

-

rLr, 6,1)

i

VL’Sir)l? =7

N -13 ¢
with r, = 1,07 x 10 s

r.c = 1/M, and V_ = 30 Mev,

The experimental data st these moderate energies indicate
quite canclusiveiy that the potential for the triplet odd stetes should
be gttractive, The situation with respect to triplet even states is

L
not conclusive, The addition of & spin orbit potential to the straight
Gartenhaus potential immensely improves the asgreement with experiment,
The major reason for this lmprovement 1s that the very large Gartenhsus
3?@ phase shift has been brought down from 5?.30 to 1§,§G, This is
due to the fact that the spin orbit potential supplies a large repul-
sive core in the SPQ state which wipes out the effect of the otherwlse
deep attractive well in that statle (Ref., 2, fig, 1}). S.M, finds on
thelather hand that they could Jjust as well have chosen zero for the
potemﬁﬁal‘in the triplet even staﬁ@.>

The theoretical iso-triplet potential in agreement with S.M,
is attractive except at short distences where the cutoff adds a repul-
sive core, However the theoretical potential is considerably smaller

than the phenomenological potentlal of S.M.(fig. 7).. However, it is possible,
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by changing the coupling constant slightly (from O.40 to 0.12)
and increasing the maximum cutoff slightly, to considerably im-
prove the apparent overall agreement, The question of agreement
though is not a simple one, In the first place it is evident that
the spin orbit potential is not unique. Definite predictions can
be made only on the basis of a numerical solution of the c@u@léd
Schroedinger equation, Thus one potential mey be as acceptable
as another one which looks gquite different., In suypmrﬁ of this
statement we point out that any LS potential derived from meson
theory will involve the exchange of at least two mesons, As a
result it will aiways have the asymptotic form of an algebrailc

2ur

‘function times e ¥, The original S,M, potential did not have

this behavior, However in a recent issue’of Phys., Rev, Letgi@)g
Signell et al, have shown that a change in the range of their
Oﬁiginal potential to agree with the thecoretical range of 1f2g,
results in an lmproved agreement with the P-P gcattering data,

Secondly there remains the open guestlon of how sen-
gitive the predictions at these energles are to change in the
static potential presented here,

otsuki’l?) nas argued that it is possible by modifye
ing the core of the B,W, and G, potential, to get agreement
with the observed data on nucleon-nucleon scattering wiﬁhout the
use of a spin orbit potentisl., The pleces of the static poten-

tial arising from the ¥+ ¢ x § term in the Hamiltonian (3.8),

(%iguresig @considefablyawmédify 4 the Gartenhaus potential
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&

and as & result present a nuwber of interesting possibilities
in connection with the point we have made, In the iso-triplet
state these extra pleces provide a repulsive potential which

3 o A
automatically cuts down on the Po phase. Thus the L8 poten-

tial, for the purpose of cubtting down the "P phase shift does
o]

not, aprioril, have to be as big as the phencmenological L9

potential of S,M, The iso-triplet state is not of interest in

w

the deuteron since only the 380 and 3@ states are involved,

0

However the additionmal iso-singlet does modify the central poten-
tial for the deu£ér@n@ In this state it is‘attraétive and may
actually improve the predictions of the low energy part of the
nuclear potential, G, was forced to increase his coupling
constant slightly to get agreement with the observed binding
energy of the deuteron,

’ The L°S pilece in the isotopic singlet state, on the
other hand, is strongly repulsiﬁe in contrast with the results

of S.,M, This is a definite prediction of the particular way in

N

o

hich we have chosen the pleces of the fourth order potential,

4

If the B,W, argument has been ignored, then the potential
would have been attractive in both isctopic states, The fact
thet it is repulsive, at present, does not seem to be in obvi-
ous contradiction with the experimental results on two nucleon
scgtterimg,

Another and more qualitative comparison with experiment msy be

found in the shell model theory of spin orbit splitting in the nucleus,



Caiculations to date in this area are very approximate since the nucleon
wave functions are not well known, If we write the potential energy of

interaction

as
-2
palir

Then the [irst order energy splitting for 2 single particle cutside

s 1, Vpeglry=r Mopro ) (ry-r )x(ps-p,) /4 (6.2)

e closed shell is

DE ﬂ §<(¢(l) W‘{Z}, _ y/(l)¢(2}\ VL‘g(rl»fg)‘(Olﬂjg}~{r1~=1~2}/,4

x(p,-p,) |HIY(2) (6.3)

4

The ¢ ave the wave functions of the particles within the closed shell,
The sum over ¢ includes the sum over all the distinct possibilities
for ¢, That is to say, spin up, spin down, neutron, proton, and vari-
ous orbital states, Yjﬁﬁ the wave function of the single particle
outside the closed shell, In writing equation 6.3 down we have assumed
that the spin orbit force acts only betweeﬁ the single particle ocutside
the shell and other particles Iinterior to the ghell., We omit all shell-
shell interactions, assuming that they’do not affect the splitiing of
the single particle level,

The integral is commoniy broken down into a so-called direct

integral and an exchange term,

VIS e = & IOTENT () x oW ¥(@)7 KRRNCRY

LEIVILy =.§_(¢(1) W(E)\VLOS(M r x pW(E}W(l)}-E (6.5)

exchange

The term proporticonal to 3 1’q'“ in the direct integration sums to
£
zero if we assume that the closed shell has no net isotopic spin.

The sum over wave functions in iso-space, if all states of isotople
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spin ave equally probable, merely fakes the trace of *f which is zero,

(18)

Blanchard and Avery give an explicit expression for the

splitting due to this spin orbit perturbation. For a single particle

outside a closed shell they find in a straightforward manner that

1] ] -7 $
£y " By =[7,(2A-B) - v (3 38)7 [ (6.5)

Where V. . is written as

W

(r) = ﬁ’l + V @Le‘jg 75(1‘) (6.7)

7
L°g 2

and

= [2(2 h+1)(2g +1)7 /()" )/f » )T Jj;gu, 7 a(x)

= . 7 3. 3.
[ - (11fr2) w/ a * ar, (6,3)

i

ek @ /2 ()07 26y) ate,) 30

? KA +1) [Telzy /3 2)&/13 (M x Py (p) + (1-p2)(1 m(‘rlffg}u.wk’(;x} Pe "{u) -
| ry /2, (lwgﬁwk(z«a} Py "(p) + rlrg(l»ug}?k(@) P, "(p) x
[0fe)(Rfay) - (1/e)(P /22,07 § 23,) elry)  (6:9)

where k and R are the crbitél guantum numbers associated-&ith the
radial wave functions for f and g respectively and p is the cosine
of the angle ﬁetween ry and rg.
We choose to evaluate these integrals numerically for only
the simplest case, This of course would be Hes, The splitting of

the single P state neutron is known to be 3,5 Mev, with the 3/2 state

lying lower than the 1/2 state, The properties of the alpha particle
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are fairly well known, A cenﬁral harmonic oscillator polential of known
strength can be used to describe the average interaction of the parti-
cles within the shells, In the heavier nuclel the concept of a
definite single particle state is no longer valid and the shell model
itseltr loses some of its wvalidity,

In any case we re-emphasize the fact that our computation
was undertaken to ascertain only gqualitative results, We hoped to
see if the splitting could be reconciled with our potential with &
reasonable zero cutoff in coordinate space and a reascnable radius
of the alpha particle. We chose harmonic oscillator wave functions

for the nucleus taking

2 - 2.2
£ o= an%JJ/E dhm e’ “‘r‘/g' (6.10)

for the nucleons in the closed -ghell and

) : 22
g=(g¢ryﬁ”}um¢zre <L7/2

(6.11)

for the nucleons in the P state, For the purpose of this crude esti-
\ .

mate we approximated our two nucleon spin orbit potential by

= . -epr 5
Vig = (Vy + Y, 9, 3,0 e /() for r>r,
‘ (6.12)
V.. = for r
Leg 0 or ¢ c
The resultant splitting is, since B = -A,
E , -8 = [V, + V] 0.75% (6,13

where

vV, + ¥V, % 20 Mev



A is plotted in figure 8. for various values of the cuteff radius,
1

r., and the sgize of the nucleus ﬁx. It is encouraging, although not
terridbly significant, that agreement with the observed splitting of
3,5 Mev corresponds to the choice 1/%12 1.3/ and r, = 0.3/, a re-
sult not incompatible with the approximately known radius of the alpha
particle tfot % 1,2/u and the cutoff which 8.M. used in their calcula-
tiong of the two nucleon data,

Tt is well known that the introduction of such a spin orbit

potential into the two nucleon potential will change the magnetic

moment of the deuteron, The spin orbit potential

VLQS:: Vi{r)(s x r}'(plmpé)/‘g (6.1&)

-
introduces an additionsl coupling to an externally applied electro-
magnetic field, Taking particle one as the proton and coupling in

the E,M, field by making the usual replacement P - p - eA we find that

the additional electromagnetic energy introduced by VL°S is

AE%E.M, = - e/2 V(r){s x v)°A (6.15)

The contribution of this term to the magnetic moment of the

deuteron is the component of
(QEI)LQ% = - e/ V(ir)(s x r)x ¥ (6.16)

—
in the direction of J the total angulay momentum of the deuteron and

is
P

(QM)L.S = - 8/16 éiV(f)LTS'T)Z ” 1‘12(5032:7%‘ > (6.17)
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If we now agsume that the De-state part of the deuteron wave function
is small in the region where 2V is most important, Feshback{igé shows

that
(ap) = e/12¢slrfV1e > (6.18)

Since we are considering the deuteron the appropriate L°S
potential is the isotopic singlet, The intrinsically negative poten-
tial proposed by S.M, causes a shift in the deuterons magnetic moment

of approximately

(’Qg@}jLOSx~mO.O56 Nuclear magnetons (6.19)

This is an undesirable shift since it precludes the possibility of
matching the experiﬁental results even if the probability for finding
the deuteron in a D state were reduced to zero {see Feshback),

. Detailed calculations taking into account explicit meson
and relativistic effects. indicate that these corrections are of the
wrong sign to compensate for the excessive negative shift, On the
other hand our potential in the state 1s strongly repulsive and gives
a shift of the opposite sign. Approximating our potential as in the
nuclear force case and performing the integral 6,15, we find a posi-
tive shift (le}L’S.(QEi)LaS is plotted in figure 10 as a function -
of the zero cutoff in momentum space. To get a raésunable value of
the shift one should pick a value of r, of about 0.5/ which is rather
large., However so many effects remain uncalculated and are apparently
of the right sign to compensate for this apparent discrepancy thatl we
do not consider this as an objection to the potential, We do however

consider it interesting that a positive potential in the iso-singlet
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te seems to be more in line with the observed magnetic moment of

deuteron, a very accurately measured auantity,
P 1 J



APPENDIX I

Posgible Forms of Interaction

In this discussion we follow closely the procedure outlined

T

by Marshek and Okubo' in their recent article, We inquire into the

most general form of the two nucleon potentials, If we believe that
our system ’as certain symmetrieé under transformation in space and
isotopic spin spéée, then our potential is severely limited. As a
result we can show that there are, neglecting the isotoplc dependence,
only five independent forms that the potential can take,

Fi:sﬁ We note that the strong interactions are charge inde~-

pendenﬁ,‘ This implies that the potential is a scalar under rotations

tuds

n isotopic spin space; and thus can be expressed as a linear coubina-

tion of L and ¥ 1“1T2- One and two refer to the two nucleons, This

»

determines the form in isospin space and we need not consider this

dependence further,

Tt is certainly true that space is isotropic, This implies

s

‘ o e . g
that the vectors rq and rp can enter only in the combination r, - Toe

F

Tf the votential is to be Galilean invariant the and p. must ap-
] P 92 S

pear in the form (p

= - P

2), Thus we can congider scattering in
momentum space in the C,M, systen..

If we consider the event

'3\ /‘P;

i -P
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There exist. two indevendent momenta

Q=p, -0, (AT,1)
p'= p, + g (41.2)

Wow we know that V must be 2 scalar under reflections asnd

rotetions, in 5pace,sinc& our interaction presumably conserveSvarity

and sngular momentum, Our interaction is also invariant under time
revergal, This implies that
T 0B = T 0 AT 2
V(Qlyﬁgydap) = ¥ {“615"693%3“?) (AWOJ}
3. . s . - «1 " v 4 , ol
Since 0y — 015 02~% Qgg pi > pf, by = -P, under time reversal,

T means reverse all the operators lnvolved, Continuing we point out

that the two nucleons are identical, This implies that the potential

mast be symmetric under the interchange of 1 » 2, This implies

' ’ . .
V(619623Q9A> = Vigggglj“Q;“p> (AL,#}
Owing to the character of the ¢ operators it is always possible to

write the potential as a2 term which is independent of Oy and 6?3 plus

o

another term linear in o

1 ,nd'ﬁg, and plus & third term bilinear in
© T LS ::. e T °A ® Py
oy and o, of the form (Gl )(gg B)
The term independent of ay and @2 we call Vle V1 is a func~

2 e 12 e 5 ' o . N .
tion of Q@ and p—, (@ x p)* and Q*p. However, if we are interested
in determining the potential only on the energy shell, then Qep =

v 2. pﬂg = 0 and (0 x‘ﬁ)g = Qgég. For calculations involving the

3

=0

matrix element of the potential off the energy shell the (Q x p}2
and Q-p dependence should be considered, This qu@sﬁiom of on and
off energy shell potential essentially reflects the arbitrariness in
“determining a'potential for use in a Schroedingey equation. For our

v . . . .
present purposes we consider all functions to be functions of Q" and
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p? only.

The term linear in o1 and Op must be symmetric and thus must
‘ ' ‘

- be of the form (Gl+g?}~(Q xp) if it is to satisfy all our requirements,

The term bilinear in oy ahd Op can be one of the following

Tour forms,

(01-0)(0,'p) Oy 40 ~
p){o, 1 ,
| | ' = (ans)
 (oya){oya) {0y-0 x p)(opeq x p)
Howéver-cn the energy shell Qep = 0, Hence
\‘ ‘ T2 e -2
010, = [0)+8)(0,+0)//8° + [{01.0)(0,+Q)7/a" + |
- ! ) Xt 2.z - / P
45? (9 x p) Ggs(Q,x )// Q%% (AL.6)

since p, Q and § x p form an orthogonal coordinate system, Thus we

£

may get rid of one of cur four forms and the potential must be of the

1

form

sy 2 1@ 2 12 2' )
V= (BT %) + V(a5 + v (0o o, ¢

V(0509 (0 -8 (0,08) + V(€50 (020 (0,07 | (aLT)



,.69“.,;

APPENDIX IX

Useful Integrals

We consider the evaluation of certain integrals which appear
in the body of the thesis,

1. For the functions

(ATI.1)

Mn(l“} - Sei(k+k}~r (k'-k)2 d'n"k dﬁ'k'

we have, using the fact that,

KT ng (~37" (28 12)pq (cos O)(1/e D fom) sin kr/kr (AIL.2)

and ‘ ﬁ?
o 1 4 o] - E 14 1L n
Pm(x) = Pm(cos @)Pm(cos e') + e 2(m=n)!/{mn)? P (cos ©)
Pmn(cos 0') cos (n@-ng') {AII,3)

where x ig the cosine of the angle between © and €', In addition

(k"k)n may be expanded as a seriles of Legendre polynomials
(k) = £ a B (x) (ATT.4)
From this it Immediately follows that
E < - m
Mn(r) = (hﬂ)g 2 a [Te/x)" (1 afar)™ sin kr/kx/
m
m mo :
[x/e")” (1/r a/ar)” sin k'r/k'x/ (A1I.5)
2. For integrals of the form
(bl Yo
el(k k')er

N(z) = g op+(k" x k) oy.(k" x k) afl, &l (a11.6)



It is easy to perform the integration by differentiation with respect
to r and subseguent contraction of the indices, Taking N{r) as an

example we Tind

i J | iker
= o/ /D5 -
m{r) o, 9, Ei;k eq Imf/ X5 / x ge adl k/

- il T
[2/ex, ?/ox Selk Tan, L/ (411,7)

3. For integrals over the magnitudes of k the following

relations are useful -

K (ur) = r‘(n-»;-:a.,/é)/-31'3‘"/2 (2n/r)" %cos kr ak/(k2m2)RtL/2 (AT1.8)

(-]
where Kh(@r) are the Hankel functions of imaginary arguments, In addi-

tion the following integral is useful,

; . 2 : . X
F(kpr} = SSAH.Klr/(kl —kgg}kldkl = /2 cos kgr for r» o (AIL,9)

Using this didentity and the K function integral it is possible to evalu-

ate, for example, integrals of the form
5 & 2 ” 2

A dlr) = sin k. r sin k v/ o (o _+o k k dk. dk ATTI, 10
1(7) S 1 grloolopte )k, akdk 0)
A {r) = sin k,r sin k,r/w 2 2(@ .} kik, dk, dk {(ATI.1L)
S St B 11780y B R0qTW, ) KKy ARy dig, RALLL L
/

For the Al case we multiply numerator and denominator by (mlumg),

. : — oy ] il 2 3 2yan .

Al(r} = S 8(1/@2 1/@13 {sin k,r sin kgr}/(kl kg )dkl dkz

e e

it

[ 3 ]{

2 % sin kgr/mz F(Azr) k dk,

‘ sin b = MM TN AII, 12
7 S‘s1n k,r cos kgr/mg k,dk, _%E_Kl(g@”} (AI1,12)

(-]

i



On the other hand, Ap, the integral which appears in the LS plece
<y

s s ; < 5
arising from the ¢ term, is easily evaluated

Ag(r} = gg sin kr sin k’r/mgm‘g(c&m’} kk® dk dk!' (ATI,13)
Now the integral
g k' sin k'r dk’/w’g(kgmk’g} = /2 L?éos kr/mg + e”“r/m§7 (ATT, 1)

This implies using the K function ldentities that

AE(T} = /24 ({3/3 *hx Kl(ax} + e/ ZD/DX;}X@‘E/;}X)KJ(ZQX} (AI1,15)

where
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APPENDIX IIT

Comparison of Complete Sguared Theory and Linear Y5 Theory

With the rules given in sécti@ﬂ IIZ,‘it is possible to cal-
culate the matrix element for any given process using the complete
squared theory, The question. may obtrude itself on the reader’s mind
a8 to the complete equivalence of the theory and the local y% form of
the theory, Since we are dealing, in ﬁhe foimer caseywith a second
order equatlon, and since we are still using free four component Dirac
spinors as our unperturbed wave functions it would seem that we have
doubled the degrees of freedom in the problem, Although it 1s indeed
true that all solutions of the linear Dirac eguation are solubtions of
the squared equatiocon the reverse is of céurse not true, There will
undoubtedly be solutions gf the second order equations which are not
solutions of the first order one, Evidently some sort of subsidiary
condition will be needed in the calculation of the most general matrix
element, It is not our desired aim to understand the nature of these
conditions nor the intricacies of defining a consistent fileld theory
using the complete sqguared egquation, However we will indsed be able
to show that for the case of the nuclear force problem, at least o
sixth order, the two theories are explicitly equivalent, As a matter
of fact it will become almost evident that as long as the diagram under
consideration does not involve a completely closed nucleown loop that
there is no ambiguity, The fact that the nucleon 1ine ig at one point
free provides a sort of initlal condition which gives us the correct

solution,
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For the purpose of comparison we will deal exclusively with
one half of the nuclear force diagrams, That is to say we cut {ha
diagrams down the middle {see fig, 2 ) and lock at a single nucleon
line, ,Thus;firﬁt order for the single nucleon line céntribuﬁes 1o
the second order nuclear force; second order to the fourth order force
and third order to the sixth order force,

We denote the quantity proportional to the linear . theory

5

matrix element by {PS} and the gquantity proporiticnal to the squared
- 2

theory by {FS)",

The Tirst order single nucleon line is trivial

Fam.
ki
P
S u | : AITT
(PS) » %»u(:@}%)vﬁ u(pm)j‘i (LITT.L)
s _ o
(PS)" ~ (g/att) ulog Iy & wlpy ) gy (ATTI.2)
gince
k= I (ATII.3)
by anti-commuting ﬁa Through the VB and notiug that
P ulp) = M ulp) (ATIT N
we find that ‘ . >
(;98)1 = {st)f (ATII.5)

he demonstration of the eguivalence of pseudo-scalar

b=
e
o
e
&3]
(o}
4
(B
[}
e
n
[
ot
<
ot

and pseudo-vector in lowest order, The second order diagrem is slightly
more difficult but nonetheless reduces trivially. For the {P8) theory

we have the diagram
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fin ke
MJ
WWAM .
P
fiw

and the corrvesponding matrix element

i) 35

g (L/ G+ R-10)vs uley,) 75 7,

S-Sy oy 2
= g u Y fulp, YAR vep. - ATTLLG

EPN

This implies that

u 2 2 o F S 2 P
(es), ~ (g/am) / u(pgi‘i) (- £ B AL +2§31%*}FQ+ 1}u{plg}j T, 7y (a1In7)

since i
=&

and
d=13y-#

We find using some simple v algebra that
2
-5 + + Pp. e = +2M
R+ & Py k. i

This ilmplies that

2 2 ‘ 1, 4P TN .
{ P.,’ 17 { o 0y e oy P
{ S)z ~ g U<p3§i) j;‘ {‘p]g >/ | 23_312 \ ,ﬁ?’i gjg) e § S

1 e

(ATII,8)

(AITI,9



Of course there is a corresponding series of diasgrams foyr the crossed
case, The third order disgram is much the same, We outline it here
briefly, We consider only one given time ordering for the emission
and absorption of the three mesons, The time orderings are givem a

unigue Iisctopic dependence and thus must agree one for one in both

theories,
We consider for the YS theory the diagram
j‘au}}} th,«.)i )J*k.u) L
o ) < P,
uloy Ive K2 ¥ K, vl ) :
(Ps), ~ g CURMEMAME TSR St ™D T M55 (w1110

-2 - - D B}
+2p - / +2p -/
MEM« 3 'k?auf‘” Mm 1 A T

For the squared theory we consider the three diagranms

WioOAY Y

{1}

We label the matrix elemeunts in the sguared theory for this case by

their figure numbers

(1)~ & wley o Ry g Ky /ey uley ) [T

(2) ~ -8/ oy s K g 8y (M/aga) uep ) B L W

o~ 3 3 S . N
(3) v oM 3,1(93@}"(5 A Ay WA@:%) u(%) Ve K W (ATTI.11)

where



~THw

2, .

Py sy

and noting that

Yo Ks¥skipts By = LAg(y by o by kU vt T

i

oM ,{5\{5 A?{;z, + Al“\{g) j% “ Asyg /fg (ATTI.12)

Using this fact and combining (1)+(2)+(3) we find

2 3 | 3 = ATTT 172
(Be); o~ & u(p:gu}j;g%gl (1/*’%3%} ulpy )Yy s = (B8),  (AIILI3)
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APPENDIX IV

Galilean Invariance

In this appendix we give a brief discussion of the lack of
restrictions imposed on the coefficients of the Hemiltonian 3.7 by the
requirement that the theory be Galilesn invariant, We use in this
section a number of arguments suggested by several discussions with
Dr, R, P. Feynman,

| Our Foldy reduced theory to a given order in (v/c) _
\ nucleon

nust be a Galilean invariant since it originates from a relativistically

invariant theory. This implies that under the transformation;

x' = x - vl (ATV1)
tto= t (ATV2)
qy’ =Y x exp(imvx' - imv2/2 ) (ATV3)

and the requirement that c¢ be allowed to approach to infinity that the
Hamilton equations of motion are the same in the new system as in the
0ld, We assume that the meson field operator ¢ transforms like & scalar,

Suppose we now rewrite the Hamiltonian 3,7 with the c's and
4A's reingtated., It is:

m o= Mc? + @2/oM) + (g/olc) o V@ + (54 /21cR) + mPeE /andel)

P 36, 2 |
LA (-9 x §/ufcty - (1/arcT) [lop - 1g§)(ovp + igf)]  (AIVL)

Suppose We now scale the guantity ¢, We relabel the quantity gf/c as

+

g. ¢ now has the dimensions of momentum and no more scaling can be
done, If ¢ ie now allowed to go to infinity only the first four terms

remain, The fact that Mc2 is infinite merely readjusts our zero of
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energy. Under the transformation AIVLI - AIV 3

(9/2x") iy =(?/2x) , (ATVS)

¥

(R/29 _=(9/2t7) | - v (?/2x") . (ATV6)

]

B¢

and the first four terms may easily be shown to be Galilean invariant,
The argument that the theory be Gililean invariant does not give us a
simple relation between the Ag-p}‘éZ'term and the (o°v#) term,

The essenﬁial physical opoint involved here is that we are

| )
coupling relativistic mesons to static nucleons, The Zflpj §7F term

ig always a small correction to the entire Hamiltonlan, If the mesons

energy ¢ is the order of Mc® then the term Lg'p, @9; is the order of

a .

v However the term 0*V# is of the order of c¢ and is still

nucleon”

L
dominant. At low meson energies the Zg-p, ﬁ?; term is the order of

u,z/l\/l2 ~ (v/c)2

nucleon’ and Galilean invariance can not give us infor-
VC.Leon

matlon about this term,
We can see all this in a second way, Our mesons can be

relativistic, Therefore our coupling should be of the form

2 — — s N N )
o* (v -V Y1 -+~ v /CQ) since we must use the
meson nucleon meson  nucleon
velativistic addition of velocities, Now (V/C)nucle§; 1., Therefore

the coupling may be expanded and approximated by

/v -V e e A \
9L Vmeson T "nucleon (L -w m.son/c )/ (ATVT)

Thus within, the framework of this simple physical picture the coef-

ficlent of the v term may have any value between zero and one,

nucleon

Only in the limit of non-relativistic nucleons is the constant one,

We can tie this argument down in still:d third wey. Suppose



_,79...

we consider the relativistic invariant theory
Lo + oM+ ey T e + DY v cag? - v 3¢ =0 g¥ -
w Y v p'

i(d /o) Y (ATV8)
Lorentz covariance of course pubs no restrictions at all on the magni-
tudes of the coefficients a, b, ¢, d, With theory as a starting point
it is then possible to show that after Foldy reduction, that the four
arbitrery parameters &, b, ¢, 4, introduce encugh flexibility into the

coefficients of the four terms o-V4, 4, (¥+¢ x ¢) and /Gp, 4/,

[N

n
the reduced Hamiltonian so as to allow fixing them at perfectly arbi-

trary values,
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