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eckle Noise Images. 

In the previous section, we examined the general information-theoretic characteris­

tics of radar images. However, we did not address the actual information content 

of each individual resolution cell or pixel. We assumed that each resolution cell dis-

played an intensity that was quantized to one of levels, and we determined that 

the maximum amount of information that could be obtained per resolution cell was 

log K, but we did not actually investigate the information that could be expected 

from a radar measurement of a resolution cell. this section, we will examine the 

information per resolution cell when making measurements of the radar reflectivity 

of a surface. vVe will do this not only for the case of an image generated by a single 

look at the resolution cell, but also for an image in which each resolution cell is 

made up of the arithmetic mean of multiple measurements of the reflected power 

from a resolution cell, a technique used to reduce "speckle noise" in radar images. 

Much of what is presented in this section is the result of an investigation by Frost 

and Shanmugan [7.16]. 

Consider an imaging radar, with either real or synthetic aperture, making mea­

surements of a homogeneous diffuse surface. By homogeneous, we mean that the 

radar reflectivity Z of the surface is a wide-sense-stationary, 2-dimensional random 

process. diffuse, we mean that the scattering characteristics of the surface at 

the wavelength of the radar radiation satisfiy the characteristics of diffuse scatterers 

as outlined in Section 4.4. That is, the surface area within a radar resolution cell 

is assumed to be made up of a large number of independent scatterers, none of 
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which are dominant terms of the total scattered power. addition, they are 

assumed to be spatially distributed such that the surface is rough in the Rayleigh 

sense, as described Section 4.1. Such a surface would be a Category 1 surface in 

the nomenclature of Section 4.4. 

The radar reflectivity of the surface is a random variable Z, which we will 

assume to be uniformly distributed over the interval [,81 , /32]. This assumption 

is more than a mathematical convenience. In Reference [7.15], this assumption 

is shown to be in good agreement with synthetic-aperture radar-measurements of 

terrain. 

We will now assume that a radar reflectivity measurement is made by measuring 

the received power from the surface by using one of m "waveforms" from the set 

A = { a 1 , ... , am}. Here, the term "waveform" has a special meaning. We will 

assume that the actual waveform transmitted by the target is of any of a number of 

typical forms used in imaging radar, such as a chirp or pulsed sinusoid waveforms. 

However when we say that a "waveform" ak is used to make a measurement of 

the radar reflectivity of the surface, we mean that k independent measurements of 

the reflected power from a homogeneous region of the surface are made, and that 

their as the output of the radar receiver. In terms of 

the model presented Chapter 3 for the Radar/Information Theory Problem for 

continuous target channels, we are using the target channel only one time (N = 1), 

but the proper definition of the "waveform" ak allows us to average the results of 

k independent observations of the received power reflected from the surface in the 
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use of a single "waveform." So the homogeneous region of the surface is assumed 

to have a reflectivity and when a waveform = ak is used to measure this 

reflectivity, the resulting output Y is the arithmetic mean of the received 

power from each of the k independent measurements of received power scattered 

from the surface. 

We are interested in determining the mutual information J(Y; ZIX = ak) in 

order to determine how much information is obtained about the surface reflectivity 

Z by observation of Y. Y and Z are parameters of primary interest in radar 

imaging. Y, as previously defined, represents the radar measurement of the surface 

reflectivity, whereas Z represents the mean reflectivity of the region ( which is 

unknown and modeled as a random variable). As was discussed in Chapter 4, 

the radar reflectivity of an object is both a function of its material composition and 

geometric or spatial structure. As we will see, Z corresponds to the surface material 

characteristics, but Y includes the effects of a multiplicative noise called "speckle," 

resulting from the constructive and destructive interference occurring at the radar 

receiver that is due to the roughness of the surface being imaged. 

The mutual information I(Y; ZIX = ak) can be written as 

IX= ak) = h(YIX = 0:1;) h(YjZ,X = a;r.). (7.32) 

Here, the entropies h(Y IX °'k) and h(Y IZ, X a;,) (in nats) are 

given by 
00 

h(YIX=cq)=- j /(ylX=a;.)ln/(yjX=ak)dy, (7.33) 
-oo 
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00 00 

h(YIZ, =a;.)= - j j f(y,zJX = a;.)ln/(ylz, = a1;)dydz. (7.34) 

-00-00 

Thus, order to evaluate I(Y; ZIX = a,1;), we must determine the density functions 

/(ylX = ak), f(y,zjX = ak), and /(yjz,X = ak). We will now determine these 

density functions. 

Assume that the radar is illuminating the homogeneous diffuse surface as previ-

ously described and that the transmitter and receiver have fixed (although possibly 

different) antenna polarizations. We will assume that the received signal has suffi-

cient energy such that it is reasonable to ignore the effects of additive noise. This 

assumption is reasonable, since multiplicative "speckle" noise, not additive noise, is 

most often the limiting factor in imaging radars [7.3, §8-7, 9-8]. Then, as we deter-

mined in Section 4.4, the received power P from a single observation is exponentially 

distributed, and its probability density function (PDF), given by Eq. ( 4.42), is 

(p) = { ~ 1 / µ) exp ( -p / µ) , for p 2:: O; 
, elsewhere. 

(7.35)) 

Here µis the mean value of The characteristic function '11 p ( w) corresponding to 

this PDF is 
00 

(w) = J fp(p)eiwp dp 

-oo (7.36) 
1 

- 1 - iwµ · 

When X = a,1;, Y is defined as the arithmetic means of k independent, iden-

tically distributed random variables Pj, each with a density function given by 
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(7.35). So we have for X = 01,1;, 

order to the distribution of Y, we define the random variable W as 

k 

w~fkY=L 
j=l 

(7.37) 

(7.38) 

Then, since the are independent and identically distributed, we have that \fl w ( w), 

the characteristic function of W, is 

But since 

we have that 

and thus we have 

\f!w(w) = [\f!p(w)]k 

1 
- k. 

(1 - i.wµ) 

1 
Y=-·W, 

k 

fy(y) = kfw(ky), 

Hence, we have that the characteristic function of Y is 

1 
(w) = (1 - iwµ/k)k. 

(7.39) 

(7.40) 

(7.41) 

This is the characteristic function of the gamma distribution with mean µ/ k and k 

degrees of freedom (7. p.104-6]. Thus, we have that the density function /(y!X = 

/(I X= )=yk-1µ-kexp(-yk/µ) for">_O. 
Y ak r(k)k-k ' J 

(7.42) 
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f(k) is the gamma function. For integer k, f(k) (k - 1)!. 

imaging of terrain, we are primarily interested in finding the mean 

value µ. We note that what is typically done radar images to determine µ at 

a given point on the surface is to average several independent observations of the 

received power from a resolution cell. This is done in order to reduce the effects 

of "speckle" or "fading" in the radar image [7.3, pp. 586-90]. But we note that in 

averaging k observations to obtain Y as described in Eq. (7.37), we obtain a random 

variable with mean 

E{Y} = µ (7.43) 

and variance 

E{(Y (7.44) 

So as many independent looks are averaged to reduce speckle, Y converges toµ with 

high probability. Thus, we are interested in determining µ. As we have previously 

noted, however, this mean value µ is itself a random variable, the random variable 

Z, which we have assumed to be uniformly distributed on the non-negative interval 

[;31, .B2]. Thus, we have that the density of Y conditioned on Z is given by 

/( I X - ) - yk-lz-k exp(-yk/z) for y 2 O, 
y z, - a.1; - f(k)k-k ' - (7.45) 

and the joint density of and Z is 

_ _ y"- 1z-k exp(-yk/z) 
/(y,zlX - a;i;) - f(k)k-"(.Bz -.Bi) , for y,z;?: 0. (7.46) 

The density function f (y IX = a,1;) is found by integrating Eq. (7.46) with respect 
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to z over 

fi l 

J y k - 1 z - k exp ( -y k / z) 
f(ylX=ak)= f(k)k-k(!h-/31) dz. (7.47) 

fi 1 

For k = 1, this integral is given by (see Chapter 7, Appendix) 

(7.48) 

where Ei(x) is the exponential integral, given by 

ii: 

Ei(x) = j ±ea da. 

-oo 

Fork 2:: 2, this integral is given by (see Chapter 7, Appendix) 

k { ( k Y ) k - 2 [ ( k Y //32) k - r - 2] 
1)(/32 - {Ji) exp - /32 ~ (k - r - 2)! 

_ (- ky) k-2 [(kyj{Ji)k-r-2]} 
exp /31 ~ ( k - r - 2) ! · (7.49) 

The mean and variance of Y are given by [7.16] 

(7.50) 

and 

2 (/32 - /31 )2 
(f = ----

y 12 (7.51) 

now the necessary density function to evaluate the mutual information 

I(Y;ZIX = ak)· however, we will examine the relationship between the 

density function /(ylz,X = o:k) and speckle noise. From Eq. ("f.45), we have that 

the density function f (y lz, X = ak) of Y conditioned on Z = z and X = O:k is 
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16], if we define the random variable V for a fixed z by 

def 2kY v = --, 
z 

(7.52) 

then is a standard chi-square random variable with 2K degrees of freedom [7.18, 

§4.32]. Hence, it follows that for a fixed Z = z, the random variable Y can be 

written as 

y = (~) ·Z. (7.53) 

Thus, we have that the observed Y is the product of the mean reflectivity 

Z = z of interest and the multiplicative noise term V /2k. This multiplicative 

noise term is a function of the surface roughness on a length scale the order of the 

wavelength of the transmitted radiation. It has mean value 1 and variance 1/2K. 

Because it is a function of small-scale variations within a resolution cell, its value 

varies from resolution cell to resolution cell and gives the radar image a speckled 

appearance. Hence, this multiplicative noise is given the name "speckle." The 

speckle phenomenon is known and has been studied extensively in the field 

of coherent optical systems [7.19]. effects of speckle on the interpretability· of 

radar images has been investigated (7.20, 7.21]. 

Having determined the necessary density functions, we now calculate the dif-

ferential entropies of Eqs. (7.33) and (7.34) needed to determine I(Y; ZIX = O:'k ). 

Substituting the density functions of Eqs. (7.45) and (7.46) into Eq. (7.34), we 
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obtain (see Chapter 7 Appendix): 

h(YIZ, [
yk-lz-k exp(-yk/z)] d d 

f(k)k-k y z 

[

k 1 1 l = ln r ( k) - k k - ( k - 1) ~ ;- - r 

/32 - /31 /31 - /32 + f3i] . 

(7.54) 

Here, r is Euler's constant ( r = 0.577 ... ). 

Next, we evaluate the differential entropy h(Y IX = O:'k). Substitution of the 

density of Eq. (7.45) into Eq. (7.33) we have 

f3 2 

h(YIX = ak) = j f(y!X = ak)log/(y!X = ak)dz 

/31 

dz. 

(7.55) 

closed-form solution for Eq. (7.55) has not been found. Thus, we will use two 

approximations order to characterize its . The first approximation we 

will consider is an upper bound on h(Y IX = a,1;). It makes use of the fact that of all 

continuous random variables with finite variance u 2 , a Gaussian random variable 

has the largest differential entropy, and this differential entropy, for any Gaussian 
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random variable with fixed variance o- 2 , is 1/2 log 2~eo-2 [7.11, p. 39). Using this 

fact and the result of Eq. (7.51) giving the variance of Y when X = a,1;, we have 

the follwing upper bound h~\Y) on h(YjX = a,1;): 

(7.56) 

Asymptotically, as k becomes large, we have 

where 

(7.57) 

= ln (.82 - .Bi)+ 0.1765 (nats). 

An approximation, derived by Frost and Shanmugan [7.16), will now be pre-

sented. The density function f (y IX = °"k) can be written in terms of the density 

functions f (y jz, X = ak) and f z ( z) as 

fi 2 

/(yjX = ak) = j f(yjz,X = ak)fz(z)dz. (7.58) 

fi l 

We note that as k increases, the conditional distribution f (y lz, X = ak) becomes 

narrower, centered around z. This can be seen by recalling that 

µy = z 

and 
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ask becomes , we have 

f(ylz, 

where 5(-) is the Dirac delta function. 

For even moderate values of k, the density becomes sufficiently narrow such 

that it is reasonable to assume that the integral of (7.58), 

f(ylz,X = ak) ~ 5(y - z). 

Using this approximation in Eq. (7.58), we obtain 
00 

f(yJX = ak) ~ j 5(y - z)fz(z) dz 
-oo 

, for y E [81,/12]; 
, elsewhere. 

This being the case, we have that as k becomes large, we have 

/32 

h(ylX=ak)~-1(/12 /1i)- 1 ln(/12 J1i)- 1 dz 

jJ l 

= In (/12 - J1i). 

(7 .59) 

(7.60) 

(7.61) 

Note that the approximation of Eq. (7.61) is actually a lower bound on h(y IX = ak ), 

since it is equal to h( Z), but always has greater uncertainty than Z, since Y is 

the product of a random variable V. This V is a standard chi-square random 

variable of freedom, and is statistically independent of Z, as was 

noted (7 .52). Thus, we have the lower bound hL (y) on h(Y IX = ak) given 

by 

(7.62) 
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and Shanmugan [7.16] note that Eq. (7.62) is a good approximation of 

h(Y JX = a:;.), with an error of less than 5 percent for k greater than 4. 

We can now develop an upper bound Iu(Y;ZIX = O:',!,) on I(Y;ZIX = a:k) 

based on the results of Eqs. (7.54) and (7.56). vVe can also develop a lower bound 

h(Y; IX a:k) on I(Y;ZI - a:k) based on Eqs.(7.54) and (7.62). The lower 

bound h (Y; ZIX = 0:1;) is given by 

h(Y;ZIX a:;J = h.i(Y)-h(YIZ,X =a:;;) 

_ ln (P, - .81 ) - ln f ( k) + ln k k + ( k - 1) [~ ~ - 1'] 
1 

f3 f3 LB2 In.B2 - .81 ln.81 - .82 + .81]. 
2 - l 

(7.63) 

The upper bound Iu (Y; ZIX = 0:,1;) is given by 

Iu(Y;ZIX =a:;.)= h~)(Y) -h(YIZ,X = a:k) 

= ~ ln [ 21re ( ~f 1 

2 

+ .Br+ .8~~2 + .85) J - In f(k) +Ink - k 

[

k- l 1 l 1 
+ (k - 1) ~-;: - r - .8

2 
_ .8

1 
LB2 In.B2 - .81 In.81 - .82 +.Bi]. 

(7.64) 

We now plot these upper and lower bounds on the mutual information as a 

function of k for various intervals [81 ,{32]. In order to do this, we define the dynamic 

range 

For the cases we will consider, we will set ,81 = 1 and vary ,82 to obtain various 

values of D. bounds (Y; IX = °"k) and Iu (Y; ZIX = ak) were evaluated 

numerically for k ranging from 1 to 50 and for D equal to 4, 8, 10, 20, 50, and 100. 
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through 11. 

the plots of (YIZ,X =a.It) and Iu(YIZ,X = ak), we see that 

the mutual information per pixel of the radar image is very small. order to see 

this, consider Table which shows the minimum required mutual information 

I min (Y; Z) needed to classify Z into one of J equiprobable classes by observation of 

Y with statistical reliability. Recalling that the lower bound h (Y IZ, X = ak) is a 

good approximation for k > 4 (an error of less than 5 percent), we see that for all 

of the dynamic ranges D analyzed, there is not sufficient information provided by a 

single pixel in order to place it reliably in one of two classes until k is approximately 

10. As a result, it would appear that any algorithm or procedure that would be used 

to characterize a region of a radar image would require the use of multiple pixels. 

In order to illustrate this, consider the radar image shown in Fig. 7.3. This image is 

made up of approximately 267, 000 pixels, each of which is hard-limited such that 

it is either black or white. Each pixel thus has the potential of conveying one bit or 

0.6931 nats of information, although as our results indicate, each probably conveys 

significantly less (recall that here k = 4). Yet several features of the San Francisco 

Bay area can be distinguished from this image. In particular, note the Golden Gate 

Bridge appearing as a vertical white line the upper right-hand corner. 

When examining the image as a whole, or even when examining smaller multi­

pixel regions of the image, it becomes possible to pick out features and characterize 

regions in the image. Examining only a single pixel or a small number of pixels, it 

is difficult to characterize the pixel or a small neighborhood of pixels under consid-
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Table 7-2: Minimum Required Mutual Information for 
Classification into One of J Equiprobable Classes. 

J Required Imin(Y; Z) ( nats) 

2 0.6931 
3 1.0986 
4 1.3863 
5 1.6094 

eration. This corresponds to the results of our analysis of the information content 

of radar images, which shows that the information content of a single pixel is small. 

In addition, as a result of the analysis in Section 7.1, we know that the information 

contained in a group of pixels is less than or equal to (and most often much less 

than) the sum of the individual, mutual informations conveyed individually by the 

pixels. As a result, the classification and characterization of image regions by either 

human or machine will generally have to be done on an extensive region of pixels, 

with the extent of the region growing as the number of classes involved increases. 
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er 1 

Eq. (7.48). 

(7.48) states that for k = 1, 

Ei(x) is 'p.93] 
$ 

J e" 
Ei(x)= -;;da. 

-oo 

order to see that this is true, we note from Eq. (7.47) that for k = 1, 

/J2 - 1 

/( Ix = ) = J z exp(-y/z) d 
y ai (/32-/31) z. 

fJ 1 

Making the change of variable z = l/w, Eq. (A-7.2) becomes 

1/fJ2 

!(IX= )=- J wexp(-yw) dw 
y ai (/32 - /31) w2 

1 / fJ l 

1/fJ1 
= J exp (-yw) dw. 

w(/32 - /31) 
1/fJ2 

Now by a change of variable in Eq. (A-7.1), we have 

l
s eb" 

--;;- da - Ei(bx). 
-oo 

Applying the relation given by Eq. (A-7.4) to Eq. (A-7.3), we get 

1 / fJ l 
1 J exp -y 

/(ylX = a1) = (/32 _ /3
1
) w dw 

1/fJ2 

1 11//Ji 
= (/3 _ /3 ) Ei( -yw) 

2 l 1//Ja 

= [Ei(-y//31)- Ei(-y//32)]. 
/32 - /31 

(7.48) 

(A-7.1) 

(A-7.2) 

(A-7.3) 

(A-7.4) 

(A-7.5) 
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(7.49) states that k ~ 2, 

k { ( ky) k-
2 

[(kyjfJ2)k-r-2] - a.1;) - exp --
- - (k - l)(/32 - /Ji) /32 r=O (k - r - 2)! 

_ (- ky) k.-
2 

[(ky//Ji)'"-r-2]} 
exp /31 ~ (k - r - 2)! · 

(7.49) 

order to see that this is true, we note from Eq. (7.47) that 

fi 2 

J y k - 1 z - k exp ( -y k / z) 
f(y!X=a,1;)= f(k)k-"(/32-/Ji) dz. (A-7.6) 

fi l 

Making the change of variable z = l/w, we have 

(A-7.7) 

From Reference [7.22, p. 92], we have that for any integer n ~ 0, 

J x"e" dx = e" ( x: + ,:, !)' n(n - l)(n -a:~·,·. (n - r + 1) ,,,•-•) . (A-7.8) 
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for k 2:: 2, (A-7.7) can be as 

k-l(k 

f(ylX = ak) = (k- l)!(/J
2 

-Pi) exp(-kyw) 

x 
wk-2 k-2 l + -1 r -'---------'-Wk - r - 2 

r=l 

yk-lkk 

(/J2 - P1 exp ( -kyw) 

[ 

wk -
2 ~ ( k - 2) · · · ( k - r - 1) k - 7 - 2] 

X -k- + L.J (k )r+l W 
Y r=l Y 

k-lkk [ k-2 k-2 k-r-2 l l/fi 2 

= (k - ~)(!J2 - Pi) exp (-kyw) ky~k - 2)! + ~1 (ky)r+~(k - r - 2)! 
, i I fJ i 

k - i kk [k -2 k - r - 2 l 1IfJ 2 

= (k - ~)(fi2 - fii) exp (-kyw) Lr=O (ky)r+~(k - r - 2)! 
i I fJ i 

k [,1; - 2 ( k y w) k - r - 2 l 1IfJ2 

= (k - l)(fi2 - Pi) exp (-kyw) ~ (k - r - 2)! 
r-0 1/ /J1 

k { ( ky) k- 2 
[(ky/IJ2)k-r-2] 

= (k - l)(P2 - Pi) exp - P2 ~ (k r 2)! 

_ (- ky) ~ [(ky//Ji)k-r-2]} 
exp P1 ~ (k r 2)! · 

(A-7.9) 

This is the result stated Eq. (7.49). 
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( ). 

Eq. (7.54) states that 

[

k-1 l 
= ln r ( k) - ln k + k - ( k - 1) ~ ~ - 'Y 

1 
f3 f3 [/32 ln /32 - /31 In /31 - /32 + f3i] · 

2 - 1 

(7.54) 

Here r is Euler's constant ( r = 0.577 ... ). In order to verify that Eq. (7.54) is true, 

we note that 

/J2 OQ 

ff yk-lz-k exp(-yk/z) [yk-lz-k exp(-yk/z)] 
h(YIZ,X=ak)=- f(k)k-k(f3

2
-f3i) ln f(k)k,. dydz 

/31 0 

/J2 OQ __ f f y k - l z - k exp ( y k / z) { ( k - 1) ln y - k In z } d dz 
- f(k)k-k(f32 -f3i) yk/z-lnf(k)+klnk y 

fJ 1 0 

/J2 OQ 

f f y k - 1 z - k exp ( -y k / z) 
= lnf(k)-klnk- f(k)k-k(/3

2 
-/3i) (k- l)lnydydz 

fJ l 0 

(A-7.10) 

As we can see from Eq. (A-7.10), we must evaluate three integrals in order to 
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obtain Eq. (7.54) of these is evaluated as follows: 

y dy 

0 

(A-7.11) 

From [7.22, §4.352.2], we have that forµ> 0 

00 

J 11 -p.!;!;l d n! [ 1 1 1 1 ] x e nx x=-- 1+-+-+···+--r- nµ. 
µ 11 +1 2 3 n 

(A-7.12) 

0 

Here 'Y is Euler's constant. Applying this result to Eq. (A-7.11), we have 

fi2 k 00 

(k 1) J z- J k-1 [ (k) ] = (/3
2 

/Ji)f(k) k-k y exp - -; y lny dy dz 
fl l 0 

= (/3
2 
= f3

1
J {~; -'Y - Ink+ lnz} dz 

fi1 r-1 

= ( k - 1) [~ ; - 'Y - In k] + (/3
2 
= /3

1
) Jin z dz 

[~ ; - 'Y - Ink] + (/32 = /31) [ z In { -1 dz] 

= (k - 1) [~ ;- 'Y - k] + (/32 = /3l) [/32 ln/32 {31 ln/31 - /32 + /31] 

(A-7.13) 
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The second integral of Eq. (A-7.10) can be evaluated as follows: 

fi2 00 
= J klnz J yk-lz-k exp(-yk/z) d d 

(/32 - /31) f(k )k-k y z 
fi1 0 

fi 2 

= J k lnz dz 
(/32 - /3i) 

fi l (A-7.14) 

= (/3
2

: /3i) [z lnz p, - J dz] 
fi1 fi1 

= (f3, : /31) ~'In /32 - /31 ln /31 - /32 + /31] . 
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third integral of Eq. 10) can be evaluated as follows: 

/32 00 

J k J y k z - k exp -y k 
------dydz 

- z(/32 - j3i) f(k)k-
/31 0 

- J/32 k [Joo w" exp (-w) . z dw] dz 
- z(/32-/31) r(k) k 

/31 0 

/32 00 
(A-7 .15) 

= j (j32 -j3~)kf(k)J w"exp( w)dwdz 
/31 0 

j3 2 

= J (/32 - /31~f(k + 1) . r(k + 1) dz 
/31 

Substituting the results of Eqs. (A-7.13), (A-7.14), and (A-7.15) into 

Eq.(A-7.10), we have 

This is the result stated Eq. (7.54). 
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8 

ONCLUSIONS 

this thesis, we have investigated the use of information theory in the analysis 

and design of radar systems. Our motivation for such an investigation was taken 

from the similarities between radar systems and communications systems and the 

great success of information theory in the design and analysis of communications 

systems. 

We examined the use of the mutual information between the radar target and 

the received radar signal as a measure of radar performance. In particular, we 

considered that for problems in which the radar system was being used for target 

identification or target parameter measurement, mutual information was an appro­

priate measure of radar system performance, in addition to more common radar 

performance measures such as signal-to-noise ratio and probability of detection. 

This is due to the fact that the mutual information between the target and the 

received signal determines the maximum number of equiprobable classes N into 

which a radar target can be classified based on observation of the received radar 

signal.We showed that if this mutual information, in nats, is 10 , then 

In addition, we noted that the rate distortion function R( 5), which is defined in 

terms of mutual information and an average distortion measure, could be used to 
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determine the minimum required mutual information between the target and the 

received radar waveform in order to obtain an average error or distortion less than 

some specified value 8 in the radar measurement. 

We then defined and solved the Radar/Information. Theory Problem, which 

gave us a mathematical framework for the problem of waveform design for maxi­

mizing the mutual information between the target and the received radar waveform. 

Specifically, we looked at the problem of finding a distribution on an ensemble of 

transmitted waveforms that maximized the mutual information between the target 

and the received waveform. vVe solved the Radar/Information Theory Problem for a 

number of general target types, both discrete and continuous. vVe also showed that 

a deterministic solution also exists; that is, that from the family of distributions 

of transmitted waveforms which maximize the mutual information between target 

and received signal, there is a distribution that corresponds to sending a waveform 

or sequence of waveforms with certainty. 

Next, we examined statistical electromagnetic scattering models that would 

allow us to apply the results of the Radar/Information Theory Problem to practical 

radar problems. We also introduced the notion of target impulse response as a 

description of linear time-invariant electromagnetic scattering. 

Chap 5, we digressed from our information-theoretic analysis of radar 

systems to apply the target impulse response to the problem of designing realizable 

waveform/receiver .filter pairs that maximize the signal-to-noise ratio at the receiver 

output when a target is present under contstraints on bandwidth and waveform 
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energy. new result is an extension of North's matched filter, which provides 

the maximum signal-to-noise ratio for point targets but not for extended targets. 

The resulting waveform/ receiver-filter pair allows for optimal detection of time-

invariant, extended targets additive noise of arbitrary power spectral density. vVe 

developed the following procedure for designing a waveform/receiver-filter pair for 

a target of known impulse response h(i) in the presence of additive noise with noise 

power spectral density Snn (!), given the energy constraint that the total energy in 

the transmitted signal is £ and the constraint that the waveform is confined to the 

time interval [-T/2,T/2]: 

1. Compute 
00 

H(f) = j h(i)e- i'2'K" ft di. 

-oo 

Here, h(i) is the impulse response of the target and H(f) its Fourier trans-

form. 

2. Compute 

-oo 

Here, SnnU) is the two-sided power spectral density of the noise n(i), and 

L(i) is inverse Fourier transform of jH(/)12 
/ Snn (/). 

3. Solve for an eigenfunction x(t) corresponding to the maximum eigenvalue 

Amax of the integral equation 

T/'2 

,\maxi(i)= j x(r)L(i-r)dr. 

-T/'2 
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Scale x(t) so that it has energy £. This is the optimum radar detection 

waveform. 

4. Compute the spectrum X (f) corresponding to the optimum waveform x( t): 

00 

X(f) = j i(~)e-i2'K"ft d-t. 

-oo 

Implement a receiver filter of the form 

KX(f)H(f )e-i"2'K" fto 

R(f) = Snn (f) ' 

where K is any convenient complex constant and to is the time at which 

the receiver output is observed. 

6. The resulting signal-to-noise ratio for this design, which is the maximum 

obtainable under the specified constraints, is 

vVe noted that a waveform designed using this procedure in the presence of 

additive white noise puts as much of the energy as is possible into the mode of the 

target having the greatest response (largest eigenvalue). In the case of non-white 

noise, this solution takes into account the relative strength of the noise components 

in each mode and weights the distribution of energy among the target modes in 

order to obtain the largest signal-to-noise ratio. 

Next, we addressed the problem of designing radar waveforms that provide 

maximum mutual information between a random target and the received radar 

waveform in the presence of additive Gaussian noise of arbitrary power spectral 
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density. This was done by extending the concept of target impulse response to 

include random scattering. Random scattering was incorporated by considering 

finite-energy, random processes as random impulse responses and using them to 

describe the response from random scatterers. \Ve then considered the case of 

targets described by the finite-energy, Gaussian, random process g(i) with Fourier 

transform G(f) having spectral variance <J"b (!). We showed that the waveforms x(i) 

that have energy & and that maximize the mutual information l(y(i); g(i)Jx(t)) with 

bandwidth concentrated in a frequency interval Wand a time interval [-T /2, T /2] 

have a magnitude-squared spectrum 

I 1
2 [ Pnn (/)Tl 

X(f) =max O, A - 2<J"b(f) . 

Here, T is the receiver observation time, which for most waveforms of interest 

satisfies T ~ T; P1111 is the one-sided power spectral density of the additive Gaussian 

noise; and A is a constant found by solving the following relation for A: 

J [ Pnn(/)Tl 
£ = max 0, A - 2(jb (!) df. 

w 

resulting maximum mutual information lmax(y(i); g(i)lx(-t)) was found to be 

Im=(y(i);g(i)lx(i)) = T j max [a, In A - In ( ~:mn l df. 
w 

We the case of additive white Gaussian noise, these waveforms, in 

contrast to the waveforms of Chapter 5 for optimal detection, which attempt to put 

as much energy as possible into the largest target mode, distribute energy among 

the target modes order to maximize the mutual information between the target 
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and the received signal. It is not surprising, then, that the form of the solution is 

different from that for optimal detection, as modes besides the largest may carry 

significant information about the target. 

allotted to them for their measurement. 

a result, we would expect energy to be 

Finally, we examined some information-theoretic characteristics of radar im-

ages. vVe did by considering the general information-theoretic properties 

of images in general and radar images in particular, and then examining the infor­

mation per pixel of a radar image resulting from homogeneous diffuse terrain. vVe 

saw that on a per-pixel basis, a very small amount of information is provided in 

radar-imaging measurements for such a surface. As a result, we noted that multiple 

pixel regions have to be examined in order to classify or characterize such a surface 

based on its radar measurement. This was noted to be in agreement with heuristic 

results on surface characterization based on radar images. 


