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Abstract

Many systems comprised of interconnected sub-units exhibit coordinated behaviors; social groups,

networked computers, financial markets, and numerous biological systems come to mind. There

has been long-standing interest in developing a scientific understanding of coordination, both for ex-

planatory power in the natural and economic sciences, and also for constructive power in engineering

and applied sciences. This thesis is an abstract study of coordination, focused on developing a sys-

tematic “design theory” for producing interconnected systems with specifiable coordinated behavior;

this is in contrast to the bulk of previous work on this subject, in which any design component has

been primarily ad-hoc.

The main theoretical contribution of this work is a geometric formalism in which to cast dis-

tributed systems. This has numerous advantages and “naturally” parametrizes a wide class of

distributed interaction mechanisms in a uniform way. We make use of this framework to present

a model for distributed optimization, and we introduce the distributed gradient as a general design

tool for synthesizing dynamics for distributed systems. The distributed optimization model is a

useful abstraction in its own right and motivates a definition for a distributed extremum. As one

might expect, the distributed gradient is zero at a distributed extremum, and the dynamics of a

distributed gradient flow must converge to a distributed extremum. This forms the basis for a wide

variety of designs, and we are in fact able to recover a widely studied distributed averaging algorithm

as a very special case.

We also make use of our geometric model to introduce the notion of coordination capacity ;

intuitively, this is an upper bound on the “complexity” of coordination that is feasible given a

particular distributed interaction structure. This gives intuitive results for local, distributed, and

global control architectures, and allows formal statements to be made regarding the possibility of

“solving” certain optimization problems under a particular distributed interaction model.

Finally, we present a number of applications to illustrate the theoretical approach presented;

these range from “standard” distributed systems tasks (leader election and clock synchronization)

to more exotic tasks like graph coloring, distributed account balancing, and distributed statistical

computations.
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Chapter 1

Introduction and Background

Imagine a group of friends, each owing some of the others some amount of money. It is common in

these situations for “cyclic” debt relationships to arise, in which A owes B, B owes C, and C owes

A some equal amount of money:

A → B → C → A

As no one enjoys having to pay off debts, it is desirable for the group of friends to find some

rearrangement of the debt so that the minimum amount of “paying up” has to be done among

the group. Small groups of people solve this problem every day; the solution usually amounts to

someone realizing that if they were to coordinate their debts, then everyone would still receive the

same net payment, and no one would have to pay anyone anything; this is clearly an improvement

over the status quo. A larger group of friends may not have such a clear solution to this problem; in

the absence of a central accountant who can observe all the debts, it is possible that the “cycle” of

debts may spread over so many people that none of them can individually determine that the total

outstanding debt can be reduced, as below:

A → B → C → . . . → Z → A

While the large social group may not accomplish what a central accountant would, they can perhaps

make some local improvements in which “close friends” resolve their debts as well as possible; they

can locally coordinate their actions in such a way as to improve the overall welfare of the group

(measured by total outstanding debt), while simultaneously respecting the global rule that no one

should be required to pay more than they owe or receive less than they are owed.

The “distributed accounting” scenario presented above touches the heart of a fairly complex

set of questions, which we will collectively label distributed coordination. This work is a study

of distributed coordination: how it can be formulated mathematically, when these problems are

tractable without global control, and dynamic mechanisms for achieving whatever coordination is

possible subject to the constraints imposed by the “locality” of interaction.
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1.1 Scope and Overview

This thesis is a study of coordination among multiple, spatially separated, but interconnected agents

or systems. In simple terms, we are interested in designing “protocols” for members of some network

that allow them to achieve some kind of global coordination, despite the fact that they are constrained

by locality of information and the lack of a central planning agent.

The main theme of this work is systematic design of distributed coordination mechanisms; we

would like to have a general language for specifying coordination tasks, as well as a set of tools for

converting that specification into dynamics. We wish to have a sensible model for what it means

to be “distributed” that is both natural to intuition and useful from an analysis perspective; there

are many different types of distributed systems, and we wish to make as few a priori assumptions

as possible regarding the way the interconnection network influences the system’s dynamics. Given

such a modeling framework, we would like to know whether certain coordination tasks are possible

whereas others are not for a particular interconnection model.

“Coordination” is a word that has taken on many meanings in the literature; it is frequently used

in lieu of, or in concert with, the idea of “cooperation”. It is our view that cooperation is a semantic

notion, and that it is more appropriate for describing situations in which agents have a priori

motivations or incentives; our work is strictly aimed at abstract entities without individual goals

and so, although one might view the emergence of a useful global behavior as “cooperation”, we view

it simply as coordinated implementation of a global objective. In this sense, the view we will present

is about abstract properties of dynamic coordination as opposed to modeling specific behaviors or

interactions; nonetheless, the technical tools we will present will be relevant to “practical” modeling

situations, and in particular we will address our motivational “distributed accounting” problem.

Thus, although our viewpoint is abstract, the tools developed from this viewpoint will be more

broadly applicable than one might expect given their formal origins.

In this work we will ultimately take a somewhat reductionist view of coordination, and approach

it as a special variant of optimization. While optimization-based formalisms for coordinated control

are abundant, the framework presented herein addresses questions previously unanswered and in-

deed unformulated in existing work. In the language of this work it is possible to understand, in a

geometric setting, fundamental limitations of various network structures in solving various optimiza-

tion problems. We are also able to give rigorous meaning to the idea of “distributed optimality”,

which roughly corresponds to a configuration upon which no improvement can be made given the

information constraints of some interconnection structure. Skipping ahead to some technical details,

a large part of our modeling approach will be the view that distributed interaction over a network

imposes certain “tangent space constraints” on the evolution of the system; this abstraction will

provide a useful and flexible language for describing our main technical tools.
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Uncoordinated 

Coordinated 

Figure 1.1: Schematic illustration of distributed coordination. Several interconnected units commu-
nicate with each other in order to reach some globally organized state.

Chapter 2 collects the basic mathematical requirements for understanding this work and provides

a case study that will motivate the approach we take throughout the text. The bulk of the technical

contribution of the work is presented in Chapter 3, whereas Chapter 4 presents a number of examples

in which the tools from Chapter 3 find useful application. Within Chapter 3, the presentation is

organized around four main lines of thought:

• Section 3.1 presents a standard approach to the design of distributed systems: potential func-

tions. Although this is a useful and long-standing tool in the dynamics community, it suffers

from some limitations from a design perspective; this will motivate the development of the

remaining text.

• Section 3.2 introduces an alternative viewpoint in which we explicitly seek to address some of

the limitations of potential-based methods; it introduces all the main abstractions of the work,

which allow general and flexible modeling of distributed systems.

• Section 3.3 utilizes the abstract tools developed in Section 3.2 and casts them as components of

a basic design framework for distributed systems; it introduces distributed gradient dynamics

as a general design tool for this purpose.

• Finally, Section 3.4 provides analysis for a useful special case of problems in which we require

various extended notions of coordination (tracking, robustness, and reconfiguration).
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1.2 Background and Previous Work

Our subject touches the research of many diverse communities, and here we will attempt to provide

a short account of previous developments that have informed our work and set the background for

the discussion to come.

Perhaps the most relevant community with which to begin our discussion is Computer Science

researchers working on parallel and networked computational architectures. Considerable effort

was devoted in the 1980s to the development of robust parallel architectures for which systematic

proof methodologies could be developed; the need for formal methods (as opposed to ad hoc proof

techniques) was motivated by the great complexity arising from multiple asynchronously interacting

computational units. Much of this style of work is encapsulated in the book of Chandy and Misra

[3], which remains an authoritative reference on the design of parallel systems. This branch of

computer science, and this body of research in particular, has had a significant influence on our

work in that it has strongly motivated the need for separation of functional specification from system

implementation. We will revisit this theme repeatedly.

Somewhat later work in the field of parallel and distributed computing addressed problems

of coordination under various assumptions regarding reliability of the hardware implementing the

parallel algorithms. A large part of this branch of work focused on the need for robustness to network

imperfections, and the need to quantify the implications of such imperfections on the performance of

a distributed algorithm. Perhaps most importantly, this body of work addressed numerous practical

aspects of coordination on a network and established a set of “benchmark” applications (for example,

the Byzantine Generals problem) of distributed systems. A representative text providing a thorough

treatment of this area is that of Lynch [16]; this has provided motivation for some of our coordination

applications in Chapter 4 (clock synchronization and leader election), although it should be noted

that our framework is considerably more abstract and so one should not attempt to interpret the

connection too literally.

With the rapid spread of the Internet, significant efforts in Computer Science have been devoted

not only to understanding parallel algorithms implemented on networks, but the performance of

distributed mechanisms on networks themselves; the fundamental objects of study in this field of

research have been communication protocols. A representative treatment of this complex branch of

computer networking technology can be found in the work of Floyd [7]. Interestingly, much recent

effort has examined the role of distributed optimization as a model for routing and congestion control

protocols on the Internet, as is seen in the works of Kelly, Maulloo, and Tan [13] and of Low and

Lapsley [15]. This idea of optimization as a model and not merely as a tool has been fundamental

in our own work and pervades this entire text.

Similar developments have been seen in the field of computational optimization, which has ex-
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hibited considerable interest in parallel and distributed mechanisms in the last twenty years. Again,

problems of communication unreliability, delay, and asynchronous operation have been fundamen-

tal in this field of research. Much of our view of this area is informed by the classic textbook of

Bertsekas and Tsitsiklis [2], which also provides an instance of a “consensus” algorithm we will later

denote ΦL; this branch of research has provided many useful tools for analyzing distributed com-

putational techniques for optimization, many of which have been fundamentally dynamic analysis

tools, mimicking the structure of Lyapunov theory.

The area of distributed computation for optimization has seen a tremendous resurgence of inter-

est in the last few years, motivated primarily by the increasing availability of networking hardware.

Problems that were largely academic when they were first developed are now prime for applica-

tion with modern communications technology. With this new technological development has come

corresponding attention among academic researchers; the number of groups working on this area

is too large to account for systematically, but representative studies can be found in the works of

Schouwenaars, How, and Ferron [24], Raffard, Tomlin, and Boyd [21], and references therein. Most

of these studies have focused on imposing distributed solution methodologies on “classical” opti-

mization; this is a very powerful class of techniques, but we note that it is largely distinct from the

view of distributed optimization we will present here, in which we explicitly model the underlying

distributed architecture and include this within our formalism for optimization.

The technological boom that has rekindled the interest in distributed optimization has also rekin-

dled interest in another “forgotten” field: distributed control systems. This area saw considerable

interest in the 1970s, of which the works of Wang and Davison [28] and Corfmat and Morse [4] are

representative. Until recently, interest in this field has waned due to the lack of widely available

hardware platforms; now it is one of the most active areas of contemporary research in dynamics

and control. The “prototypical” problem in this area is that of cooperative formation maintenance;

this is a subject of significant research even today, but much progress has been made in developing

useful tools for analyzing such systems. A large body of research has stemmed from earlier works

such as Swaroop and Hedrick [27], and somewhat more recent interest has developed from works

such as Leonard and Fiorelli [14], Jadbabaie, Lin, and Morse [12], and Fax and Murray [6].

In parallel to the developments within computation and communication, and the resulting impli-

cations for optimization and control research, similar progress has been made in the development of

cheap reliable sensing devices; within the computer science community this has spurred much inter-

est in sensor networks and a slew of associated research topics. Representative works can be found in

Estrin, Govindan, Heidemann, and Kumar [5], Akyildiz, Su, Sankarsubramnian, and Cayirci [1], and

Heinzelmann, Kulikc, and Balakrishnan [10]. Similar work, although from a systems-oriented per-

spective, was carried out regarding sensor fusion over networks; a classical reference on this subject

which provides a now-standard distributed Kalman filter, is the work of Rao and Durrant-Whyte
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[22]. Such applications have motivated our examination data processing in Chapter 4.

The final topic we wish to examine in presenting the background for our work is a flurry of

recent interest in a very special system; this has gone by many names and has been studied in many

ways, but for most purposes is identical to the aforementioned “agreement” algorithm presented in

Bertsekas and Tsitsiklis [2]. Most of the current interest in this subject has been motivated by the

works of Fax and Murray [6], and Olfati-Saber and Murray [19]; the former utilized an “agreement-

like” algorithm to achieve cooperative control of vehicle formations, whereas the latter studied

“consensus” problems on networks. All of these works have made use of an amazing property of

the algorithm, that it is extremely robust to changes in the underlying network topology; moreover,

recent analytical and experimental work of Mehyar, Spanos, Ponsajapan, Low, and Murray [17],

and parallel theoretical developments of Xiao, Boyd, and Lall [30] have shown that this algorithm

in fact works very robustly in a realistic distributed asynchronous setting. Much of the motivation

for our work lies in a desire to unravel the structure enabling this property, and using that structure

to synthesize new systems that execute other useful operations.

There are numerous ongoing developments in the study of these “consensus” algorithms, both

in terms of theoretical analysis and design of applications. From the theoretical side, there has

been interest in its behavior on “directed” networks, which are networks on which communication

links do not provide bidirectional data exchange. This subject was examined in Olfati-Saber and

Murray [19], and also in related versions in the works of Moreau [18], and Hatano and Mesbahi [8].

All of these have examined various convergence properties under various assumptions regarding the

underlying communications model. Similarly, there has been interesting recent work by Xiao and

Boyd [29] on optimal design of certain parameters of this algorithm in order to ensure maximally

fast convergence properties. The speed of convergence was also of primary concern in the recent

work of Olfati-Saber [23], which examined the behavior of this algorithm on “small-world” networks;

a very interesting transition was shown in worst-case convergence rate as a function of connection

density and “re-wiring probability” (a measure of how well-mixed the network connections are).

In parallel, there has been rapid development of applications using these techniques as an algo-

rithmic base: Xiao, Boyd, and Lall [30] and Spanos and Murray [25] have presented independent

but very similar mechanisms for sensor fusion using this scheme. The former is differentiated by

a novel analysis of asynchronous behavior, whereas the latter is differentiated by the presence of a

dynamic mechanism to provide an approximate Kalman Filter (as opposed to a static sensor fusion

algorithm). This dynamic mechanism was introduced in Spanos, Olfati-Saber, and Murray [26] and

provided a novel treatment of time-varying coordination, as well as a mechanism for robust design

and for adaptation to splitting and merging of networks. Though simple, this analysis provided

the first steps toward the work that constitutes this thesis; in particular, it was the first (indirect)

presentation of what we will later describe as the “Stability—Invariance—Equilibrium” architecture.
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1.3 Summary of Contributions

Before proceeding with our exposition, we summarize here the specific technical contributions pro-

vided in each of the main theoretical sections of the thesis:

Section 3.1

This section examines potential-based design methods, and provides a characterization of the

coordination powers of pairwise quadratic potentials; we show that all such systems accomplish

“reflection alignment”.

Section 3.2

This section introduces the dual ideas of interactions and coordinations. These are tangent

bundle objects that model the ability of local interactions to influence global state as well as

global requirements for coordinated action. We characterize interaction and coordination in

terms of dimensionality properties, and introduce the notion of coordination capacity. We

also introduce the distribution operator, which is an algebraic representation of a distributed

interconnection structure. We show that we naturally recover the Laplacian as the distribution

operator for a pairwise coordinated interaction. Interactions also provide a natural mechanism

for examining distributed optimization, and coordination capacity allows us to characterize

whether certain optimizations can be implemented according to a given distributed interaction.

We introduce the concepts of distributed extrema and distributed gradients, and show that

they are naturally related in the same way that the classical gradient is related to extrema of

a function.

Section 3.3

This section presents our overall design procedure, in which we specify coordination tasks as

optimization problems and synthesize implementations based on distributed gradient dynam-

ics. We characterize the convergence of distributed gradient dynamics as well as its equilibrium

structure; this naturally provides a complete implementation of an architecture we will call

“Stability—Invariance—Equilibrium”. Finally, we briefly examine the notion of “distributed

efficiency”, which in the special case of the Laplacian distribution operator corresponds directly

with existing work on spectral properties of graphs.

Section 3.4

This section introduces some extensions to the basic coordination framework in a special

framework, which we call “linear coordination”. We are able to treat dynamic tracking of

coordinated states, robustness of the coordination dynamics, and adaptability to dynamic

reconfiguration of a network.
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Chapter 2

Mathematical Preliminaries

This chapter covers a variety of mathematical tools that will be used throughout the text, and also

sets the notation for the upcoming discussion. The treatment is intended to be minimal, and focused

on the concepts necessary to an understanding of the definitions and tools provided in Chapter 3.

Section 2.1 introduces basic ideas from Graph Theory, which will provide a unified abstraction

for objects interconnected in some network-like structure. Such structures will form the heart of

our discussion throughout the text, and we will be particularly interested in the role played by this

interconnection structure in the dynamic behavior of the network.

Section 2.2 covers relevant aspects of Differential Geometry, which provides an analytical frame-

work for representing states and dynamics of distributed systems. We will only make use of very

simple concepts that should be accessible to anyone with an understanding of linear algebra and mul-

tivariable calculus. The tools of Differential Geometry will provide concise and elegant abstractions

for presenting the main results of Chapter 3.

Section 2.3 ties the previous two sections together in order to define two organizational ab-

stractions we will use repeatedly: distributed manifolds and distributed dynamical systems. These

objects allow us to formally define the idea of dynamics induced by an interconnection pattern; in

subsequent chapters we will provide analysis tools for examining the behaviors of such systems, and

various applications where such systems exhibit useful behaviors.

Finally, Section 2.4 presents a case-study of a well known distributed-averaging system. This

serves two purposes: first, it presents an archetypical instance of a distributed dynamical system

with coordinated behavior; most of the ideas in the remainder of the work amount to generalizing

various properties exhibited by this system. Second, we will later revisit this example and cast it in

the novel formalism of Chapter 3, and show how its behavior can be cast in a language that permits

natural generalization to a wide variety of other coordination tasks.
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2.1 Basic Graph Theory

Graphs will form our primary abstraction for systems with interconnection structure. We will only

require a small portion of graph theory, and readers with a passing familiarity can easily skip this

section; specifically, we will only deal with finite graphs and will only require the standard notions

of connectedness.

Definition 1 (Graph). Let V be a finite set of N elements, labeled by i ∈ {1, 2, . . . , N}. A

graph is a pair G = (V,E), where E is a set of elements of the form (i, j), with i, j ∈ V . If

(i, j) ∈ E ⇔ (j, i) ∈ E we will call such a graph undirected; otherwise, we will refer to it as a

directed graph.

Thus, a graph is some finite set of objects along with a list of connections between the elements.

An undirected graph has the property that the connection relationship is symmetric; if i is connected

to j, then j is connected to i.

We will refer to elements of V as nodes, and elements of E as edges or links. When there is no

danger of confusion, we will make use of notations such as i ∈ G or (i, j) ∈ G (as opposed to i ∈ V

and (i, j) ∈ E).

For the moment, we do not attach any a priori significance to the nodes or edges of a graph;

we will eventually discuss a objects that will associate state spaces and dynamics to the nodes of a

graph, and we will relate properties of the dynamics to the edge structure.

One particular property of the edge structure that will appear repeatedly in our discussion is the

neighbhorhood of a node: the set of all other nodes to which it is connected by edges.

Definition 2 (Neighborhood). Let G = (V, E) be a graph. For any node i ∈ V , we define the set

Ni = {j | (i, j) ∈ E}, the neighbhorhood of i.

We will need two more elementary concepts from graph theory, paths and connectedness.

Definition 3 (Path). Let G = (V,E) be graph. A path in G is a finite sequence {vk}m
k=0 of nodes

in V , with the property that for all k < m, (vk, vk+1) ∈ E. We will say that this is a path from v0

to vm, and that it has length m.

Interpreting the graph as a discrete surface, the above definition of a path provides a discrete

notion of a continuous path on the surface. This now allows us to define the notion of connectedness

for a graph:

Definition 4 (Connectedness). Let G = (V,E) be a graph. We will say that the graph is con-

nected if, for each i and j in V , there exists a path from i to j.

One can associate various matrices to graphs; the study of these matrices and associated linear

algebraic properties is known as algebraic graph theory. For our purposes, we will only require a few

concepts from algebraic graph theory, in order to define the Laplacian matrix of a graph.
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Figure 2.1: A connected undirected graph with four nodes.

Definition 5 (Adjacency Matrix). Let G = (V, E) be a graph, with |V | = n. We define the

adjacency matrix Aij ∈ Rn×n as follows:

Aij =





1 ⇔ (i, j) ∈ E

0 else

Clearly, Aij is symmetric if and only if G is an undirected graph.

Definition 6 (Degree Matrix). Let G = (V, E) be a graph, with |V | = n. We define the degree

matrix Dij:

Dij =





∑
j Aij ⇔ i = j

0 else

We will occasionally need to explicitly discuss the dependence of A and D on the underlying

graph, and in such cases will write A(G) and D(G) respectively.

Definition 7 (Laplacian Matrix). Let G = (V, E) be a graph, with |V | = n. We define the

Laplacian Matrix of the graph, L
.= D −A.

As an example, consider the graph of Figure 2.1. The edges of this graph are (1, 2), (2, 1), (2, 3),
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(3, 2), (3, 1), (1, 3), (3, 4), (4, 3). This yields the following adjacency, degree, and Laplacian matrices:

A =




0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0




D =




2 0 0 0

0 2 0 0

0 0 3 0

0 0 0 1




L =




2 −1 −1 0

−1 2 −1 0

−1 −1 3 −1

0 0 −1 1




The Laplacian matrix is a graph-theoretic version of the classical Laplacian or diffusion operator

∇2; we will return to this parallel later. For now, we collect a few results that will be of use

throughout our discussion, but before doing so we introduce a few linear algebraic notations that

will enable us to make our presentation compact.

Definition 8 (Some Notation).

1. We define ei ∈ Rn to be the vector with a 1 in the i-th component, and 0 elsewhere.

2. For any two vectors x,y ∈ Rn, we define x⊗y to be the matrix defined by (x⊗ y)v = 〈y,v〉x,

where 〈·, ·〉 denotes the standard Euclidean inner product. If all elements of Rn are taken to

be column vectors, then (x⊗ y) = xyT .

3. We define 1n and 0n in Rn to be the vectors of all ones and all zeros, respectively.

Proposition 1 (Fundamental Properties of the Laplacian Matrix). Let G = (V, E) be a

connected graph with |V | = n, and let L be the associated Laplacian matrix; then, we have:

1. L is positive semidefinite.

2. L has a one-dimensional nullspace, along 1n

3. There exists a one-dimensional subspace of vectors along q ∈ Rn such that qT L = 0n; if G is

undirected, q can be taken to be 1n.

Proof. To see the first point, observe that L can be written as a sum of rank one matrices, each

corresponding to an edge in G:

L =
∑

(i,j)∈E

ei ⊗ ei − ei ⊗ ej .

The vectors ei + ej and ei are eigenvectors of the matrix associated with the edge (i, j), with

eigenvalues 0 and 1 respectively. Thus each such matrix is positive semidefinite, and the sum of

positive semidefinite matrices is also positive semidefinite.

The annihilation of 1n follows directly from the definition of the Laplacian matrix as D − A;

simply note that L1n = D1n −A1n and the i-th component of this vector is Dii −
∑

j Aij = 0.
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To show that this is the only such subspace, recall the decomposition above of L into a sum of

matrices associated with edges, and consider the quadratic form vT Lv. Note that for any nullspace

vector, this quadratic form must evaluate to 0. However, since each term in the sum is positive

semidefinite, any nullspace vector must be annihilated by each term; this implies that for each edge

(i, j) ∈ E, the i and j components of any nullspace vector must be equal. Now, recall that G is a

connected graph, and that there exists a path between any two nodes; this implies that in fact every

pair of components i and j in any nullspace vector must be equal (thus, it must be parallel to 1n).

The final point is a standard result from linear algebra; since L has a one-dimensional nullspace,

so does LT . When G is undirected, L is symmetric, and so the left nullspace is the same as the right

nullspace.

These properties will be utilized in Section 2.4 in discussing the behavior of a prototypical

distributed coordination mechanism. We will also revisit the Laplacian in Chapter 3, and show the

above properties as natural consequences of the Laplacian being a distributed gradient.

2.2 Elements of Differential Geometry

In this section we will introduce basic concepts from differential geometry, but a few comments are

in order before proceeding. General differential geometry is quite dense, both conceptually and in its

notation; despite its power and elegance, the aesthetic benefit of the abstract differential geometric

formalism seems, in our case, vastly outweighed by the amount of machinery necessary to cast our

work in that language. As a consequence, we will present a highly simplified version that should be

accessible with standard multivariable calculus and linear algebra in Rn. In particular:

1. We will not be using any index conventions, either pertaining to summation or to subscripts

and superscripts.

2. We will only work with subsets of Rn, and so will never need to introduce charts; we will also

exploit the Euclidean inner-product associated with Rn, but we will not make any reference

to general Riemmanian manifolds.

3. We will not deal with exterior calculus, tensors, or with cotangent-space objects, even though

some of the concepts herein are more compactly represented in that language. In particular,

we will frequently see things like ∇f instead of df .

With these caveats in mind, we can now proceed to define the concepts relevant to our development;

we begin with the notion of a smooth manifold. In order to make this definition, we recall a bit of

notation: for a mapping f from Rn to Rm, we define Df(x), to be the matrix of partial derivatives

of f evaluated at x, Df(x)ij = ∂fi
∂xi

(x).
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Definition 9 (Smooth Manifold). A smooth manifold, M , is a subset of Rn defined by an

equation f(x) = 0m, where f is a smooth mapping from Rn to Rm for some m, with the property

that rank(Df) = m ∀ x ∈ M . We will call say that M has dimension n−m, and codimension m.

Thus a manifold is a surface in Rn with the property that at each point x, it is approximated by

a n −m dimensional vector space (the space defined by the linear equations Df(x)v = 0m). This

naturally motivates the definition of the tangent space of M at x, denoted TxM .

Definition 10 (Tangent Space at a Point). Let M be a smooth manifold defined by an equation

f(x) = 0m. We define the Tangent Space at x, TxM to be the set of elements (x,v), with v ∈ Rn,

such that: Df(x)v = 0m.

This has a natural vector space structure defined by (x,v) + (x,w) = (x,v + w), and from our

above discussion, it is clear that the dimension of this space is n−m; we have thus formalized our

concept of a manifold being a surface which is locally approximated by a n−m dimensional vector

space. We can now piece together all such local approximations to obtain a fundamental concept of

differential geometry, the Tangent Bundle:

Definition 11 (Tangent Bundle of a Manifold). Let M be a smooth manifold. We define the

Tangent Bundle of M , TM to be the set of all elements (x,v) with x ∈ M and (x,v) ∈ TxM .

With the notions of Tangent Spaces and the Tangent Bundle in hand, we can define vector fields

and tangent subbundles.

Definition 12 (Vector Field). Let M be a smooth manifold. By a vector field on M , we mean a

mapping X : x ∈ M → (x,v(x)) ∈ TxM .

A vector field simply attaches a tangent vector to every point on the manifold M ; in the following

section we will view this as imposition of dynamics on M . In addition to vector fields, which

assign individual tangent vectors at each point of the manifold, we will also need to discuss tangent

subbundles which assign a subspace of tangent vectors to each point of the manifold.

Definition 13 (Tangent Subbundle). Let M be a manifold of dimension n, and let TM be its

tangent bundle. A Tangent Subbundle Bx of dimension m assigns to each point in the manifold

a set of elements of the form (x,v) such that, for each x, the set Bx is a subspace of TxM with

dimension m. We will say that Bx has dimension m and codimension n−m.

Tangent Subbundles will provide a unified language in which to describe the two main abstrac-

tions of Chapter 3, interactions and coordinations.
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Figure 2.2: A Manifold, a Tangent Vector, and a Tangent Space

2.3 Distributed Manifolds and Dynamical Systems

In this section we present some unifying notation and terminology, in order to be able to discuss

distributed dynamics in a systematic way. The underlying motivation lies in the necessity to talk

about distributed dynamics for a family of graphs simultaneously, and while it is possible (and in fact,

frequently done in the literature) to specify such systems piecemeal, it becomes very cumbersome

when one must assign differing state-spaces and dynamics to each node in the graph. The terminology

presented below is an attempt to provide a general framework in which to discuss all such systems.

We begin, then, with the notion of a distributed manifold, which one can think of as a mapping

from all possible interconnection structures to a set of states associated with each node.

Definition 14. A distributed manifold is a mapping from a set of graphs Γ to a set of manifolds

of the form

M(G) =
∏

i∈G

Mi

where each Mi is a manifold, and
∏

denotes the Cartesian product.

Thus, a distributed manifold assigns, for each a graph, a manifold to each node in the graph; we

will frequently refer to this manifold as the local state space of the node, and we will denote it as
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above by Mi or Mi(G) when we wish to make the graph dependence explicit. We will denote the

local state by x(i) ∈ Mi(G); note the use of the parenthetical notation (as opposed to a subscripted

notation), which is somewhat unorthodox in the distributed systems literature. When referring to

the distributed manifold itself, rather than the image of a specific graph M(G), we will use the

notation M(·). Clearly, if M(·) is a distributed manifold, M(G) is a manifold for each G.

As a canonical example of a distributed manifold, consider the assignment Mi(G) = R, which

assigns a real-valued state to each node in the graph; for a given G = (V, E), M(G) is then the space

of all real-valued functions over V . Similarly, one can consider a distributed manifold of the form

Mi(G) = S1, which assigns an element of the unit circle to each node of the graph; such systems

arise, for example, in the study of distributed oscillator synchronization such as in the Kuramoto

equation.

The examples presented above are straightforward, and in some sense do not justify the intro-

duction of additional terminology and notation; however, we will have occasion to discuss systems

in which the state spaces at each node can be quite different (and in fact, possibly varying in time),

so it is necessary to have an abstraction sufficiently general to be able to deal with all such systems

in a uniform fashion.

We now introduce the notion of a distributed dynamical system, which associates dynamics to a

distributed manifold. In order to obtain some perspective, one can imagine a distributed dynamical

system as some kind of “high level” abstraction of temporal behavior that is spread over some kind

of spatial structure; continuous analogues would include diffusion, wave propagation, fluid flow,

and a variety of other continuum theories which associate spatiotemporal dynamics to surfaces.

A distributed dynamical system, then, can be considered a discrete analogue of these continuum

theories.

Definition 15. A distributed dynamical system Φ is a mapping from a set of graphs Γ to a set of

pairs (M(G), X(G)), where M(·) is a distributed manifold, and X(G) is a vector-field over M(G)

for each G ∈ Γ.

Again, we will use the notation Φ(·) when referring to the distributed dynamical system, as

opposed to the image of a particular graph Φ(G). For a particular choice of G, Φ(G) is a pairing

of a manifold and a vector field on that manifold, which implies an associated dynamical system,

or flow. When we wish to refer to the time evolution of some particular local state, we will use the

notation x(i, t).

Thus, a distributed dynamical system is simply an organizational mechanism for describing states

and dynamics associated with a variety of graph structures. In Chapter 4, we will describe several

applications which will involve the interplay of a variety of distributed dynamical systems, and so it

will be useful to be able to refer to them compactly, while simultaneously parametrizing our results
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over a family of interconnection patterns.

As a trivial example of a distributed dynamical system, one can consider

Mi(G) = R

ẋ(i) = f(x(i))

for some fixed function f ; this is a distributed dynamical system which associates to each node

a real-valued state-space and dynamics completely decoupled from that of every other node. The

remainder of our work will focus on distributed dynamical systems exploiting coupling between

nodes to effect some kind of spatiotemporal coordination.

2.4 Case Study: A Distributed Averaging Protocol

In this section we examine a commonly studied distributed dynamical system (see Olfati-Saber and

Murray [19] for an extensive treatment) with the interesting property that it asymptotically carries

out an averaging operation. This system, and numerous variants, have motivated a renewed interest

in the theory of distributed systems among the dynamics community, both because of its simplicity

and elegance, but also because it seems to offer the promise of a robust distributed computational

tool which can naturally be treated as part of a larger, spatially distributed dynamical process.

Consider then, the following distributed dynamical system: for a graph G = (V, E), we assign

a real valued local state space Mi = R to each node, and impose the following dynamics for each

node:

ẋ(i) =
∑

j∈Ni

(x(j)− x(i)) .

We denote this system ΦL(·), for reasons that will soon become apparent.

Let us consider, for the moment, the particular dynamical system ΦL(G) for some fixed, con-

nected, and undirected G with n nodes. Let us denote the concatenated state vector by x ∈ Rn

(i.e. xi(t) = x(i, t)). From the above specification for the dynamics of x(i), we obtain the following

dynamics for x:

ẋ = −L(G)x.

Now, we recall from Section 2.1 that L is a positive semidefinite matrix (and so −L has non-positive

real eigenvalues); this implies that for arbitrary initial conditions x(0), x converges to some limiting

value x(∞). Now, recalling that 1n is a basis for the nullspace of L, we know that x(∞) = λ1n for
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some λ ∈ R. Finally, we note that

1T
n ẋ = −1T

nL(G)x

= 0T
nx

= 0.

This in turn implies:

1T
nx(0) = 1T

nx(∞)

= λ1T
n1n

= λn

From the above equation, we see that for each i,

x(i, t) → 1
n

∑

i∈G

x(i, 0),

i.e. the average of the initial values. This system has, in essence, performed a distributed computa-

tion, with inputs specified by the initial conditions, and an identical output that is asymptotically

reached by every node. Further, this system has the interesting property that it is robust to dy-

namic switches in the topology. To see this, let us suppose that the graph G(t) = (V, E(t)) has a

time-varying edge structure, but that it is always connected; then we have

d

dt

1
2

∥∥∥∥x−
1n1T

n

1T
n1n

x
∥∥∥∥

2

= −xT L(G(t))x

≤ −λ2(t)
∥∥∥∥x−

1n1T
n

1T
n1n

x
∥∥∥∥ ,

where λ2(t) is the smallest non-zero eigenvalue of L(t). While different edge structures will imply

different values for λ2, for a finite number of nodes there are only finitely many possibilities and so

there is some minimum value. Since this minimum value is positive, we see that the function above

is in fact a Lyapunov-like function for this system; wherever it is nonzero, it decreases. We thus

see that the system robustly executes the averaging operation for an arbitrary time-varying edge

structure, provided that the network remains connected.

While the above properties are interesting in themselves, the more important point is that these

are not properties of the specific differential equations associated with a particular G, but rather

properties of the distributed dynamical system ΦL(·) on undirected graphs. It is, in fact, very like
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Figure 2.3: Convergence behavior of the distributed averaging system ΦL(·)
.

the classical diffusion equation:

∂f(x, t)
∂t

= −∇2f(x, t).

There is more to this analogy than mere formal similarity, or the fact that the Laplacian matrix L

is frequently used as a discrete approximation to the diffusion operator. The real power of classical

diffusion theory (and that which we seem to have recovered here) is that its qualitative dynamics

does not depend on the surface over which the diffusion process occurs; the asymptotic flattening

of gradients is a robust feature that is independent of the underlying surface. Indeed, this kind of

structure is prevalent in physical theories: the minimization of certain functions (potentials), and

the conservation of certain quantities (energy, heat, mass, momentum).

The fundamental question, then, is whether we can build a “coordination design theory” that

provides the robust qualitative dynamics observed for ΦL(·), while giving us the power to specify

other kinds of coordination criteria. In order to get a better idea for how we might conceive of

a theory that generalizes the behavior of ΦL(·), we observe three fundamental facts that drive its

coordinating behavior:

Stability

The system provably converges to some limiting value, because some bounded function of

the states decreases monotonically.
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Figure 2.4: Illustration of the interplay between stability, invariance, and equilibrium structure.

A Structured Equilibrium Set

The limiting value is constrained to be in some submanifold of the overall state space.

An Invariant Manifold

The states evolve in some smaller-dimensional submanifold of the overall state space (cor-

responding to a dynamically conserved quantity).

These properties suffice to prove that the system must converge to a point in the intersection of the

equilibrium manifold and the invariant manifold. This analysis is deceiving in its simplicity; note

that we have only made use of very abstract properties of the system, and have not at any time

made use of details such as the linearity of the dynamics, or the structure of the graph.

The “Stability—Invariance—Equilibrium” architecture suggests a very powerful and general for-

malism for designing mechanisms for distributed coordination: if one can control the equilibrium and

invariant manifolds of some distributed dynamical system, while ensuring that the system is stable

(in the sense described above), one effectively has a language for specifying coordination dynamics.

The remainder of the thesis will show how one can in fact accomplish these goals for a wide variety

of systems; the resulting formalism provides techniques for synthesizing distributed coordination, as

well as a systematic language for proving what kinds of coordination are possible under different

models for distributed interaction.
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Chapter 3

Dynamic Coordination: Principles

This chapter examines in detail the underpinnings of distributed dynamic coordination, and intro-

duces the main theoretical contributions of the thesis.

Section 3.1 presents what one might call the “classical” approach to designing the dynamics of

distributed systems. This approach associates an interaction potential between adjacent members

of the network, and the resulting dynamics is simply the gradient flow of the sum of the potentials

(or the Hamiltonian flow derived from the generalized forces implied by the potential). This is a

well-studied approach, and has a long history in the physical sciences; however, it suffers from some

rather serious drawbacks from a design perspective, mostly stemming from the fact that it imposes

an a priori coupling between the coordination to be achieved and the interaction structure on which

it is implemented.

Sections 3.2 and 3.3 present a new viewpoint based on a differential geometric formalism, and in-

troduce the dual notions of interaction and coordination. This abstraction will allow us to rigorously

examine the idea of distributed optimality, and also to introduce a concept that will be fundamental

tool for design, the distributed gradient. We will revisit the distributed averaging system ΦL(·) intro-

duced in Chapter 2 and show that it is in fact a distributed gradient flow for a natural optimization

problem that is independent of the underlying network structure; this allows us to achieve the de-

sired goal of separating overall coordination functionality from the details of the implementation on

the network. Further, this mechanism will allow us to parametrize coordinated behavior across an

arbitrary distributed interaction pattern, as opposed to being confined to pair-wise interactions.

Finally, Section 3.4 shows how to robustly achieve “dynamic” and “reconfigurable” coordination”

for linear systems, in which a quadratic global objective is optimized subject to linear constraints.

The “dynamic” component allows tracking of time-varying coordinated states, and reconfigurability

allows the nodes to adapt to dynamic network structure.
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3.1 The “Classical” Viewpoint: Potential Functions

In this section we briefly examine the use of potential functions as a mechanism for designing

distributed coordination mechanisms. We begin by discussing the motivation for potential-based

designs, and by casting the distributed averaging system ΦL(·) as a potential-based system stemming

from a one-variable quadratic potential. We then examine the class of all multi-variable quadratic

potentials, and characterize their coordinating abilities; unfortunately, these systems only achieve a

relatively small class of coordinated behaviors. Finally, we discuss some limitations of the potential

based approach; the remainder of the chapter proposes an alternative viewpoint which addresses

these weaknesses, and provides a fairly general framework for designing distributed systems through

a combination of distributed optimization and differential geometry.

3.1.1 Potentials as a Source of Distributed Systems

Potential-based interactions present an attractive formalism for distributed systems, in part because

of their basis in the physical sciences, but also because they give a systematic way to “distribute”

dynamics over a large number of interacting components. Although the idea underlying potential-

based systems is common currency in many scientific fields, we will explore it here in a context that

will motivate our upcoming work.

At the heart of potential-based designs is the idea of a gradient flow, dynamics which follows the

gradient of some function defined over all the possible configurations of some set of variables. The

power of this formalism is in its “additivity”; one can simply add up potential functions and obtain

new gradient flows. This enables one to specify the dynamics of some large interconnected system

by, for example, associating a potential function to each edge and then adding together all such local

potentials. One then obtains a global potential function that couples the states of all the members

of the network, and induces global dynamics for these states. If the local potentials are chosen so as

to depend only on local variables, this naturally provides a mechanism for distributed dynamics, in

which each node in the network updates its state according to information that is locally observable.

This situation is illustrated in Figure 3.1.

Local potential functions thus provide a flexible framework in which to define distributed dy-

namical systems; one can certainly imagine a wide variety of candidates for local potential functions,

and each one induces an associated distributed dynamical system of the form:

ẋ(i) = −
∑

j∈Ni

∂

∂x(i)
f(x(i),x(j)),

where f is the local potential function, and the notation ∂
∂x(i) means the vector of partial derivatives

with respect to the components of x(i). Potential systems also have the advantage of providing
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Figure 3.1: Illustration of a distributed system with a local potential function on each link; the
aggregate potential is the sum of all the local potentials.

straightforward convergence analysis; since the global potential function decreases monotonically,

then an a priori lower bound on the function suffices to prove that the system will converge to an

equilibrium (or a family of equilibria).

One can interpret the distributed averaging system ΦL(·) as arising from a local potential func-

tion:

f(x, y) =
1
2
(x− y)2.

Associating such a function to each edge in some graph G, and computing the associated partial

derivatives, we obtain

ẋ(i) = −
∑

j∈Ni

∂

∂x(i)
(x(i)− x(j))2

2

=
∑

j∈Ni

(x(j)− x(i)) ,

which is precisely the dynamics we introduced for ΦL(G) in Chapter 2. With this view in mind, the

previous comments regarding the use of potentials as a framework for describing distributed systems

naturally motivates two fundamental questions about this design paradigm:

• The system ΦL(·) provides one kind of distributed coordination, and is induced by an appro-
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priate choice of a local potential; what other kinds of coordination capabilities can one achieve

by choosing different potential functions?

• The coordinating and computational powers of ΦL(·) are not particularly transparent when

viewed from the “local potential” viewpoint; how can one provide a design formalism that

allows more explicit specification of the desired coordination, and which systematically syn-

thesizes an appropriate distributed dynamical system?

We will partially address the first question in the following section; in the remainder of the

chapter, we will return to the “Stability—Invariance—Equilbrium” viewpoint presented in Chapter

2, and combine it with ideas from differential geometry and distributed optimization to obtain a

basic theory addressing the second point.

3.1.2 Characterization of Pairwise Quadratic Potentials

In this section we present a complete characterization of the coordinating power of pairwise quadratic

potentials. The main result we will show is that such systems all accomplish a type of coordination

we call “reflection alignment”: the states converge to a subspace in which every pair of neighbors is

related by a reflection, according to

x(i) = Rx(j)

R2 = In×n

x(i) ∈ Rn.

Let us begin, then, by formally stating our assumptions:

Dynamics Structure

We will be considering a family of distributed dynamical systems parametrized by a sym-

metric matrix P ∈ R2n×2n for some positive integer n; we will denote these systems by ΦP (·).
For a graph G = (V, E), the local state space for each i ∈ V will be Rn, and we will denote

each local state by x(i) ∈ Rn.

Symmetric Interaction Potential

We will assume that the matrix P defines a positive-semidefinite quadratic form on R2n;

partitioning P into n× n blocks as

P =


 A B

C D



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the requirement that this define a quadratic form implies that A and D must be symmetric,

and B = CT . The positive-semidefiniteness requirement implies that A and D are positive-

semidefinite.

We will interpret this matrix as defining an interaction potential between every pair of neigh-

bors i and j, according to:


 x(i)

x(j)




T 
 A B

BT D





 x(i)

x(j)


 .

Identity Independence

We assume that the above quadratic form is invariant under relabeling of i, and j, i.e.:


 A B

BT D


 =


 0 I

I 0





 A B

BT D





 0 I

I 0


 =


 D BT

B A


 ,

where we have exploited the previous requirement that C = BT . This implies that B must be

a symmetric matrix, and also that A = D.

Unambiguous Coordination

We will assume that for any specific choice of x(i), there exists a unique choice of x(j) that

achieves the global minimum of the quadratic form. Using some standard linear algebraic

arguments, this can be shown to imply that A and B must be full-rank matrices.

Gradient Dynamics

For a given graph G = (V, E) the dynamical system system ΦP (G) assigns a state x(i) ∈ Rn to

each i ∈ V , and the resulting dynamics is the gradient flow for the following potential function:

∑

(i,j)∈E


 x(i)

x(j)




T 
 A B

B A





 x(i)

x(j)


 .

Specifically, we have:

ẋ(i) = −
∑

j∈Ni

(Ax(i) + Bx(j)) .

As can be seen from the final equation above, these assumptions in fact highly constrain the types

of dynamics that can arise, and so some commentary is in order to justify these choices. We have

associated a real multivariable state to each member of the network, and defined an interaction

potential between every pair of neighbors, which induces an associated gradient flow; this portion

of the assumptions is standard. We have further assumed that the interaction potential is agnostic
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of the specific identity of the nodes, which requires that the potential structure depend only on

the interconnection pattern. The only non-standard assumption is the requirement that minimizing

the potential while holding one neighbor’s value fixed yield a one-to-one mapping between neighbor

states, which is essentially a well-posedness condition; for a network involving only two nodes, we

require that specification of one’s state uniquely specify the coordinated state of the pair.

We have already seen one system of the form above, the distributed averaging system ΦL(·); one

can recover ΦL(·) with the choice A = 1 and B = −1. We now proceed to analyze the possible

coordinated states imposed by this entire family of distributed dynamical systems; we begin with a

technical lemma.

Lemma 1 (Idempotence of A−1B). Consider an instance of ΦP (·) for some choice of P , and let

A and B be the matrices specifying P as above; then, we have

(
A−1B

)2
= I.

Proof. From the “unambiguous coordination” assumption, we have that for every x there is a unique

y such that the expression 
 x

y




T 
 A B

B A





 x

y




is globally minimized; computing the gradient of the above expression, we have the following set of

linear equations: 
 Ax

Bx


 =


 −By

−Ay


 .

Exploiting the invertibility of A and B, we have:

x = −A−1By

=
(−A−1B

) (−A−1Bx
)

=
(
A−1B

)2
x

for all x; this implies that
(
A−1B

)2 = I as desired.

With this result in hand, we can prove the main result of this section.

Proposition 2 (Reflection Alignment). Consider an instance of ΦP (·) as specified above. Then,

there exists a fixed reflection matrix R(P ) ∈ Rn×n such that, for every connected graph G = (V,E),

ΦP (G) has the following property:

lim
t→∞

x(i, t) = lim
t→∞

Rx(j, t) for all j ∈ Ni
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for all i ∈ G. If P is expressed as matrices A and B as above, then R = −A−1B.

Proof. First recall that for each G, ΦP (G) is a gradient flow for a positive-semidefinite potential

function, and so the x(i) vectors must converge to a limiting value. Let us consider any node

i∗ whose limiting value limt→∞ x(i∗, t) has maximal Euclidean norm among all the nodes in the

network. Then, in the limit we have:

|Ni∗ |x(i∗) =
∑

j∈Ni∗

−A−1Bx(j)

where we have dropped the explicit t dependence, and |Ni∗ | denotes the number of elements of Ni∗ .

Now, since A−1B is idempotent, it is unitary, and so the norm of each term in the sum on the

right-hand size is bounded above by the norm of x(i∗). Since the norm of the right-hand side must

equal the norm of the left-hand side, and there are exactly |Ni∗ | terms in the sum, we must have

x(i∗) = −A−1Bx(j) for all j ∈ Ni∗ .

Now, each member of Ni∗ must have a state vector x(j) with norm equal to that of x(i∗) (i.e. they

are also maximal vectors in the Euclidean norm). This allows us to repeat the preceding argument

for all members of Ni∗ , extending the above relation to all nodes within two hops of i∗; applying

this recursively, and exploiting the connectedness of G, we now have that

x(i) = −A−1Bx(j) for all (i, j) ∈ E.

This situation is depicted in Figure 3.2. Finally, the fact that −A−1B is a reflection follows from

the fact that it is its own inverse; this completes the proof.

This proposition achieves the goal of characterizing the coordinating power of an arbitrary dis-

tributed dynamical system arising from pairwise quadratic interaction potential; however, this is

only part of the picture. We know that ΦL(·) is one such system, and we also know that this system

not only drives each member of the network to the same state, but it also carries out an averag-

ing computation. While we have characterized the coordinated states as a particular subspace, we

have not yet discussed which point in this space is selected; unfortunately, except in the case where

−A−1B = I, the answer depends critically on the underlying graph structure. We will return to

answer this question (and exploit this sensitivity) in Section 4.3, where we discuss applications of

distributed dynamical systems to graph coloring.
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Uncoordinated

Coordinated 

Figure 3.2: All systems defined by pairwise quadratic interaction potentials achieve a coordinated
state called “reflection alignment”; every pair of neighbors is related by a reflection across some fixed
subspace of their common local state space.

3.1.3 Limitations and Lessons of Potential-based Systems

Despite their long history and popularity, potential-based methods suffer from a number of draw-

backs from a design perspective.

We have shown in the previous section that regardless of the dimension of the local state, pair-

wise quadratic potentials can only accomplish a very special kind of coordination, in which every

pair of neighbors is asymptotically related by a reflection. While these systems will find applications

in Chapter 4, it is hardly the entire scope of what one might hope from a design theory for dis-

tributed coordination. Furthermore, one can certainly imagine distributed interaction mechanisms

that are not confined to pairwise interactions; however, these are hardly the only problems present

in potential-based interpretations.

Perhaps the most severe problem in potential-based design is that it fundamentally conflates the

coordination task to be performed with the specific dynamics that will implement that coordination.

The coordination task is encoded in the global sum of the potentials, whereas the individual node

dynamics is encoded in the potential functions themselves. Let us examine this once again in the

context of ΦL(·).
The distributed averaging behavior of ΦL(·) is independent of the underlying graph on which it
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is carried out; indeed, as pointed out before, the averaging behavior is fundamentally a property of

ΦL(·) and not of any particular ΦL(G). However, when one examines this system from a potential-

based viewpoint, one is confronted with the rather displeasing fact that the global potential to be

minimized does not share this invariance; indeed, one has a different global potential function for

each G. Nonetheless, all these potentials achieve the same asymptotic coordinating behavior, so the

global potential function is clearly encoding much more than simply the coordination task. From a

design perspective, one would like a representational formalism that allows one to formally separate

the coordination task from the dynamics which will implement that task.

A secondary drawback of potential-based interpretations is that it is not immediately clear, given

a set of potential functions, what coordinating task they will execute (if any); one must carry out an

analysis of the dynamics induced by each global potential function. This task is further complicated

by the possibility of graph dependence, as we discussed in the previous section.

One should also consider the “converse” of the above statement regarding non-transparency:

just as it is not immediately clear what coordinating task a local potential function will accomplish,

there is also no clear way to systematically obtain local potential functions that implement a given

coordination task. As a consequence, there is a significant ad hoc component to any potential-based

design.

In the upcoming sections, we will present a novel formalism that will address all of these concerns;

however, a bit of motivation based on our understanding of potentials is in order.

As stated at the beginning of this section, the primary power of potentials from a design viewpoint

is that they provide a naturally distributed mechanism for synthesizing dynamics (given a choice of

a potential function). One simply adds up potentials and obtains a composite gradient flow; let us

pause to consider what is actually happening from a geometric perspective. The global potential

function is simply the sum of all the local potential functions, and the gradient of this global potential

is simply the sum of all the local gradients. Geometrically, each pair of interacting nodes contributes

a tangent vector to the overall sum; this situation is depicted in Figure 3.3.

One can also see another significant limitation of potential methods, which only becomes clear

in a geometric interpretation: the tangent vectors introduced by each local potential function are

each “exact differentials”, in the sense that they are each the gradient of some function defined on

the global state manifold; there is no particular reason to impose this constraint.

It is also worth noting that the tangent vectors produced by each pair of neighbors are not

necessarily descent directions for the global potential; only their sum is guaranteed to be a descent

direction. Thus, under this interpretation, the individual nodes do not have any “distributed proof”

that the vectors they contribute “make progress” towards the global goal; we point this out to

highlight the contrast with the view we will present in the following sections.

In summary, in order to address the drawbacks we have discussed in our treatment of potential
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Global State 

Aggregated      
  Tangent Vector

Local            
  Tangent Vectors

Figure 3.3: Tangent vectors are generated by each local potential, and the overall tangent vector
describing the dynamics of the global state is the sum of all these tangent vectors.

systems, our goals for the upcoming discussion are as follows:

• The formalism presented must clearly separate the coordination task to be accomplished from

the details of the dynamics that will implement the coordination; insofar as is possible, the

specification of coordination tasks should not intrinsically hinge on the underlying network

structure.

• The formalism should systematically convert the specification for the coordination task into

an appropriate distributed dynamical system; this “compilation” of the dynamics should not

depend on particular properties of the network on which it is implemented, and should also

allow the freedom to parametrize over different kinds of distributed interaction (i.e. other than

purely pairwise computation of tangent vectors).

• The distributed dynamical system should be such that each node produces a local guarantee

that its actions directly contribute to the progress of the global coordination task, and that

its actions respect any global state constraints; in the language of tangent vectors, there must

be distributed proof that each tangent vector is both a descent direction, and also in some set

of allowable directions.
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3.2 A Novel Viewpoint: Geometry, Dynamics, and

Optimization

In this section we introduce some new abstractions that will be of use in designing dynamics for

distributed coordination, but first we will briefly give some perspective on how we will approach the

problem.

It is a somewhat standard viewpoint to interpret stable dynamical systems as mappings from

initial values to limiting values, and hence to view them as “function evaluators”; these systems take

inputs as initial values and provide outputs in the final values, executing the computation through

the evolution of the dynamical variables (See Figure 3.4). Indeed, in Chapter 2, our “Stability -

Invariance - Equilibrium” architecture provides a systematic way to understand this computational

mechanism for a certain class of systems, and suggests the possibility of building a design formalism

around these three properties.

Initial Condition

Computed Value

(Input) 

Dynamic
Evolution 

Figure 3.4: A stable dynamical system can execute a computation with inputs specified in the initial
values of its states, and outputs defined by the limiting values of the states.

A somewhat less standard, but conceptually similar viewpoint applies to optimization problems.
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Consider the following optimization:

min
x,y

ax2 + by2

s.t. cx + dy = e.

The optimal solution to this problem (assuming a, b > 0 for well-posedness) is :

x∗ =
ec

a
(

c2

a + d2

b

)

y∗ =
ed

b
(

c2

a + d2

b

) .

Here we plainly see that the optimal solution is parametrized by the values a and b entering the

objective function, and the values c, d, and e entering the constraint equation. We thus see that

one can also view optimization problems as inducing some function evaluation, mapping parameters

from the objective and constraints to the optimal solution; this situation is illustrated in Figure 3.5.

Decreasing Level
  Curves of Objective

Computed Value 

Constraint 
   Surface

Inputs 

Figure 3.5: An optimization problem with a unique minimum can encode a computation; inputs
are specified as parameters of the objective function and the constraint equation, and outputs are
specified by the optimal solution.

So, we have presented an interpretation in which both dynamical systems and optimization
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problems can induce function evaluation; if we can encode our notion of coordination as a function

mapping local inputs to a global coordinated state, then these tools provide a natural language

for coordination. The view we wish to advance, then, is that of using dynamical systems to im-

plement coordination as specified by optimization problems; this approach will allow us to achieve

the separation of implementation from functionality as desired. The question, of course, is how to

combine these disparate mechanisms; an answer is naturally available in our “Stability - Invariance

- Equilibrium” architecture, which we will now reiterate in light of the current discussion:

Stability

One can use a dynamical system under whose flow the value of some global objective function

decreases monotonically; this allows us to ensure convergence.

Invariance

An invariant quantity in the dynamics allows one to enforce a global constraint on the state

variables; this allows us to encode inputs from the constraints of an optimization problem in

the initial values and the invariant manifold.

Equilibrium

One can design a dynamical system such that an equilibrium can only occur when the (pro-

jected) gradient is zero; this allows one to encode information from the objective function of

an optimization problem into the asymptotic behavior of the dynamical system.

To notationally represent the idea of a dynamical system implementing a computation specified by

an optimization, we will use the following pattern:

min limt→∞ f(x(t))

s.t. g(x(t)) = g(x(0))

The statements made above merely relate dynamical systems to optimization problems as a

mechanism for evaluating a specified function, or achieving a certain coordinated state; there is no

connection yet to design of distributed systems. This is evident in our notation; while we have

notated the fact that a function is to be optimized, and that the constraint is to be respected as

a dynamically invariant manifold, we have not yet added any representation of the fact that this

must respect some distributed interconnection structure. The remainder of this section will present

some geometric tools that will allow us to represent this structure, and to systematically implement

the design architecture proposed above. We will first introduce the notions of interaction and

coordination, which are geometric abstractions for local computational powers and local enforcement

of global constraints. We will then discuss how interactions naturally induce a mechanism for

distributing “global goals” (represented by a global tangent vector) over local interactions while
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preserving global constraints. Finally, we will use these ideas to present a simple theory of distributed

optimization.

3.2.1 Interactions and Coordinations

In this section we introduce two fundamental geometric notions that will be central to our work;

interactions and coordinations. We will begin with some motivational discussion for our modeling

formalism.

In thinking about the dynamics of distributed systems, we need some basic language in which to

describe the fact that the dynamic evolution of the global state is induced by the superposition of

numerous “local behaviors”. Let us consider, for example, the canonical distributed manifold M(·)
which assigns to each member of a network a real-valued state x(i) ∈ R. Now, let us consider a few

possibilities for “decision making” in this network:

• An obvious possibility is one in which each node makes decisions entirely independently, and

produces a tangent vector modifying only its own state.

• Another extreme scenario is fully centralized control, in which a single decision-making entity

selects a tangent vector that updates every node’s state.

• Yet another situation is one in which tangent vectors are produced pairwise: each pair of

neighbors “confers” and produces a tangent vector that modifies both of their states.

Clearly, there are many variations on this type of modeling, and we will shortly present a unified

abstraction for representing these differing scenarios.

Before presenting our formal definition for distributed interactions, it is important to note a

a subtle but fundamental deviation in the above reasoning from typical models for distributed

systems: we have explicitly separated how choices are made from what choices are made. Indeed,

we can capture the essence of a distributed system in the following observations:

• Multiple decision-making units make choices that affect the dynamic evolution of the system;

each unit selects a tangent vector, and the overall dynamics is induced by the sum of these

tangent vectors.

• Decision-making authority is localized, and no single unit can impose its choices on the entire

network; thus, no unit can select vectors from the entire tangent space.

This motivates our basic philosophical viewpoint, from which the remainder of our mathematical

abstractions will stem:

A distributed interaction structure is essentially a tangent space constraint.
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Global Tangent Space 
Local Interaction 

Figure 3.6: Schematic representation of a local interaction; a centralized planner would have access
to all the tangent vectors in the tangent space, but a local interaction can only utilize some subspace
of tangent vectors.

We will now proceed with our formal development of these ideas.

Definition 16 (Interaction). Let M be a manifold. By an interaction P on M , we mean a

mapping associating to each vector field X another vector field P (X), with the property that at each

x in M , P defines an orthogonal projection on the tangent space TxM .

This definition states that P , at each point x in M , projects vectors in TxM orthogonally onto

some subspace of TxM ; as a consequence, we will identify P with an associated tangent subbundle

Px, and will use the notation for the linear operator and the tangent subbundle interchangeably.

We will systematically abuse notation and write PxX for the vector field defined by the action of P

on a vector field X.

The identification of an interaction with a tangent subbundle conforms with our previous claim a

local interaction should be somehow interpreted as a tangent space constraint; however, we have not

yet motivated the technical requirement that led to this identification. To do so, let us imagine some

vector field X defined on a manifold M , and let us consider an interaction Px; let us suppose for

the moment that X represents some kind of global “command” or “instruction” for the distributed
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Tangent Vector: v

Interaction: P
x

P
x
v

Tangent Space: T
x
M

Figure 3.7: An Interaction acting on a vector field; at each point on a manifold, an interaction
projects a tangent vector onto some subspace of tangent vectors. The vector field obtained by
projecting onto an interaction thus makes a non-negative inner product with the input vector field.

system. Now, consider the following quantity:

〈X(x), PxX(x)〉

where the notation X(x) indicates the tangent vector defined by the vector field X at the point x.

Since PxX is an orthogonal projection on the tangent space TxM , we then have

〈X(x), PxX(x)〉 ≥ 0

for all x ∈ M . The implication of this inequality is that the new vector field produced by the inter-

action makes non-negative progress toward the global goal encoded in the input vector field. Thus,

an interaction is simply a specification for converting a global objective into a locally implementable

tangent vector which makes progress towards the global goal.

With our definition of interactions in place, we can now discuss coordination of interactions.

Intuitively, we would like a coordination to be an object that produces “coordinated interactions”;

we would also like this to have a natural distributed structure, in the sense that it respect the local

constraints of any given interaction. This motivates the following abstract definition.
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Definition 17 (Coordination). Let M be a manifold. By a coordination C on M we mean a

mapping associating to each interaction Px on M another interaction C(Px), with the following

properties:

C(Px) ⊂ Px,

Px ∩ C(Qx) ⊂ C(Px),

Px ⊂ Qx ⇒ C(Px) ⊂ C(Qx),

where the ⊂ notation is to be understood pointwise at each x in M .

One should think of the action of a coordination C on an interaction Px as “organizing” the

interaction so as to respect some constraint. The first requirement above states that coordinating

an interaction does not produce any vectors that were not available to the uncoordinated interaction.

The second requirement states that for any two interactions Px and Qx, any direction in Px that

is a coordinated direction for Qx is also a coordinated direction for Px; intuitively, this means that

the property of being “coordinated” is a global one, and not specific to each interaction. Finally,

we require that coordinating two interactions maintain their relative standing in the containment

relationship; if Px is “weaker than” Qx, then C(Px) should be “weaker than” C(Qx).

As with interactions, we will identify coordinations with a tangent subbundle; however, the

connection is not as immediately clear as in the previous case. The following lemma will illustrate

this relationship.

Lemma 2 (Coordination as Subbundle). Let M be a manifold, and let C be a coordination on

M . Then, C is uniquely specified by its action on the tangent bundle, C(TM).

Proof. It is clear that given a coordination C, the tangent subbundle C(TM) is uniquely specified.

To show the converse, let C be a coordination, and let Px be an interaction on M . Since Px ⊂ TM ,

we have that C(Px) ⊂ C(TM). We also have C(Px) ⊂ Px, and so combining these we obtain:

C(Px) ⊂ Px ∩ C(TM).

Now, applying the third requirement for a coordination to the above, we find

C(Px) ⊂ Px ∩ C(TM) ⊂ C(Px),

which implies

C(Px) = Px ∩ C(TM).
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Interaction 

Coordination 
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Figure 3.8: A Coordination acting on an Interaction; a Coordination defines a global constraint on
allowable tangent directions, and it maps input interactions to output interactions that respect the
global constraint.

Corollary 1. Any coordination C is idempotent, i.e. C(C(Px)) = C(Px).

The preceding corollary shows another intuitive property of coordination: once an interaction

Px has been coordinated by C, any further application of C has no additional effect.

So, we see that a coordination can be identified with a particular interaction C(TM), which

is itself a tangent subbundle. We will thus treat coordinations as subbundles, and will hereafter

employ the notation Cx to maintain consistency with our previous notation.

Below, we collect some notational conventions we will employ in the rest of our discussion.

• Both interactions and coordinations have been identified with tangent subbundles; both will

be notated with the Px (or Cx) notation for conceptual consistency, and to distinguish them

from general linear operators.

• When applying an interaction to a vector field X, we will always use the notation PxX; when

applying a coordination to an interaction, we will always use the notation Cx(Px).

• We will employ the notions of dimension and codimension for interactions and coordinations,

by which we mean the dimension (codimension) of the associated tangent subbundles; we will

write these as dim Px or codimCx.

So, we now have a formal definition for coordination; we associate to every interaction (set of
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available directions) some other interaction which is “coordinated”. This operation was shown above

to be equivalent to intersecting the directions available in the interaction with some global set of

coordinated directions, which again conforms with our original philosophical claim that the essence

of a distributed system is in tangent space constraints.

One central question we can now begin to address is that of feasibility. Broadly, there is a general

question to be answered pertaining to what kinds of coordinated behaviors can be achieved for a

particular distributed system; this is beyond our scope for the moment, but we will return to it

in the following section. Presently, we would like to know whether a particular interaction can be

coordinated in a particular way; this motivates the following definition:

Definition 18 (Feasible Coordination). Suppose M is a manifold, Px is an interaction on M ,

and Cx is a coordination on M ; we will say that Cx is feasible for Px if

dim Cx(Px) > 0,

otherwise, we call Cx infeasible for Px.

Thus, we call a coordination feasible for a given interaction if, when applied to the interaction,

it yields a non-zero set of available directions. Below, we give a dimensional characterization of

feasibility, but first we need a definition to specify that an interaction is not already “partially

coordinated”. This is merely a technical requirement, and is not an issue “in practice”; all the

interactions and coordinations we will discuss in the remainder of the work will satisfy this condition.

Definition 19 (Independence). We will say that an interaction Px and a coordination Cx are

independent if

dim Cx(Px) = dim Px − codim Cx

As an example where independence breaks down, consider Cx(Px). Clearly, the above equation

does not hold, as Cx(Cx(Px)) = Cx(Px). This captures the essence of the requirement; intuitively,

if a coordination Cx is viewed as a collection of global constraints, then it is independent of an

interaction Px if and only if the interaction contains vectors which violate each of the constraints.

Proposition 3 (Interaction/Coordination Inequality). Suppose M is a manifold, Px is an

interaction on M , Cx is a coordination on M that is feasible for and independent of Px. Then,

dim Px > codim Cx.

Proof. From the hypotheses, we have

dim Cx(Px) = dim Px − codim Cx > 0,
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which immediately proves the desired result.

Corollary 2. If Cx and Px are independent, and codim Cx ≥ dim Px then Cx is not feasible for

Px.

Corollary 3. For arbitrary Cx and Px, if dimPx > codim Cx, then Cx is feasible for Px.

This proposition, though simple, gives a fundamental relationship between the “power” of an in-

teraction (measured by its dimension) and the “complexity” of some desired coordination (measured

by its codimension). The linear algebraic intuition which applies here is the following:

Two subspaces of dimensions k and m in a vector space of dimension n generically

have a zero-dimensional intersection if k + m ≤ n.

This statement only applies to “generic” intersections, and so in the proposition above we had to

require independence to make a categorical statement.

Having introduced our formal abstractions for interactions and coordinations, let us give a few

concrete examples to make these ideas clear. In particular, we wish to reinforce the idea that the

“power” of an interaction is related to its dimension, and that the “complexity” of a coordination

is related to its codimension; let us begin by discussing interactions.

We now revisit the three examples for “network decision making” we presented at the beginning

of this section, and cast them as interactions. For the sake of concreteness, let us suppose again that

we are dealing with a network in which each member has a real state x(i) ∈ R, and so the global

state vector x ∈ Rn is the concatenated vector, xi = x(i).

• Purely local control at a node i can be expressed by the interaction ei ⊗ ei, which is just the

projection onto the ith component.

• Global control can be cast as an interaction, which is simply the entire tangent bundle TM ;

every tangent vector in every tangent space is available to a global controller.

• Pairwise control can be expressed by the interaction ei⊗ei +ej⊗ej for some pair of neighbors

i and j. This interaction includes any vector which modifies only the states x(i) or x(j).

Now, let us consider a prototypical coordination, one which preserves the sum of the components of

the global state vector. Denoting this coordination Sx, we see that the associated tangent subbundle

(in this case just a subspace of Rn) is the collection of all tangent vectors whose components sum

to zero. We will consider the effect of this coordination on each of the interactions presented above.

• This coordination is infeasible for the purely local interaction ei ⊗ ei, as every tangent vector

in its range violates the constraint; thus Sx(ei ⊗ ei) = {0}.
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• Applying Sx to the global controller, TM , we simply obtain the set of tangent vectors whose

components sum to zero. We can write the coordinated interaction as:

Sx(TM) = I − 1n1T
n

1T
n1n

.

• Sx is feasible for the pairwise interaction ei ⊗ ei + ej ⊗ ej , and applying it yields:

Sx(ei ⊗ ei + ej ⊗ ej) =
1
2

(ei ⊗ ei + ej ⊗ ej − ei ⊗ ej − ej ⊗ ei) .

To make this more transparent, we will consider this in the basis {ei, ej}, where the associated

matrix representation is:

1
2


 1 −1

−1 1


 .

This matrix should look very familiar given our previous discussion of Laplacian matrices

in Chapter 2, and our presentation of the distributed averaging system ΦL(·) as a pairwise

potential-based system in Section 3.1. We will return to this connection in Section 3.2.3.

Here we begin to see the relationship between interactions and coordinations, as well as hints of our

previous assertion that the “power” of an interaction is related to its dimension, whereas the “com-

plexity” of a coordination is related to its codimension. The “weakest” interaction we discussed,

purely local control, did not contain any vectors satisfying the constraints of the coordination Sx.

The coordination was feasible for the pairwise interaction, and resulted in a one-dimensional coor-

dinated interaction. Had we added an additional linear constraint on the states, then the resulting

coordination would have had codimension two, and would have been infeasible for the pairwise inter-

action as well. Applying the coordination to the “global controller” resulted in the largest possible

set of allowable directions, the coordination subbundle itself.

Having established properties of individual interactions, we would now like to answer questions

about multiple interactions; this will be carried out in the following section.

3.2.2 Distributing Vector Fields and Distributed Interactions

In this section we will consider properties associated with collections of interactions; this will form

the center of our model for general distributed systems. We will introduce the notion of distributing

a vector field, and relate properties of the distributed vector field to properties of sets of interactions;

we begin with some definitions.

Definition 20 (Interaction Set). Let M be a manifold. An Interaction Set I on M is a set of

interactions on M .
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Interaction Set 

Global Tangent Space 

Figure 3.9: An Interaction Set is a collection of interactions; each defines some subspace of tangent
vectors associated with a particular local interaction.

Definition 21 (Distributing a Vector Field). Suppose M is a manifold, I is an interaction set

on M , and V is a vector field on M . We define VI , as follows:

VI =
∑

Px∈I
PxV.

Lemma 3 (Properties of Distribution). Suppose M is a manifold and I is an interaction set

on M . Then, we have the following properties:

1. At each x in M , there exists a linear operator on the tangent space TxM , call it DI(x), such

that for every vector field V on M

VI(x) = DI(x)V (x).

2. At each x, DI(x) is self-adjoint and positive-semidefinite.

3. If for some x and some V , VI(x) = 0, then we have for all Px in I

PxV (x) = 0

Proof. From the definition, VI =
∑

Px∈I PxV . At each point x, each interaction Px defines an
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orthogonal projection onto some subspace of TxM . Each such term is clearly a positive semidefinite

and self-adjoint linear operator, and thus the sum is also positive-semidefinite and self-adjoint. To

prove the final claim, consider the following quadratic form:

〈V (x), VI(x)〉 =
∑

Px∈I
〈V (x), PxV (x)〉 = 0.

Each term in the sum must be non-negative because each Px defines an orthogonal projection onto

some subspace; thus, each term must be zero.

Note that although VI(x) must make a non-negative inner product with V (x) at each x, DI does

not define an interaction, because it is not (in general) idempotent.

Having obtained an algebraic representation of an interaction set, it is natural to examine al-

gebraic properties of these objects, and to see how these properties relate to our interpretation of

interaction sets as models of distributed systems. This motivates the following definition:

Definition 22 (Rank of an Interaction Set). Let M be a manifold, and let I be an interaction

set on that manifold. We will say that the rank of I at a point x in M is

rank(I)x = rank(DI(x)).

The rank of an interaction set naturally generalizes the notion of dimension for an interaction.

Just as we can coordinate an interaction, we can coordinate an interaction set in the obvious way:

Definition 23 (Coordinating an Interaction Set). Let M be a manifold, Cx be a coordination

on M , and I be an interaction set on M . We define

Cx(I) = {Cx(Px) | Px ∈ I}.

It is natural to ask what level of coordination is feasible for an interaction set; this property will

in fact prove to be much more informative than the rank of the interaction set. We thus introduce

the notion of capacity:

Definition 24 (Coordination Capacity). Let M be a manifold, and let I be an interaction set

on M . We define the coordination capacity of I at x, denoted cap(I)x to be

max
k∈Z+

k

s.t. codim Cx ≤ k ⇒
rank (Cx(I))x > 0
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This definition is quite dense, but provides a very powerful abstraction for analyzing distributed

systems; to clarify the situation let us state it informally:

We intuitively think that a distributed system with communication capabilities has

some power to coordinate its action across the various local interactions that comprise it.

Each time a coordination is implemented, global constraints are enforced, and the system

may lose some of its power for additional coordination. The coordination capacity is

simply the maximum “complexity” of coordination that the system can support and still

have some remaining power for additional coordination.

Clearly, we can obtain some trivial bounds on cap(I)x:

0 ≤ cap(Cx(I))x ≤ cap(I)x ≤ rank(I)x.

We will shortly demonstrate capacities and the distribution operator for a few systems, but before

doing so, we will present one final concept: the notion of a distributed interaction.

Definition 25 (Distributed Interaction). A distributed interaction P is a mapping from a set

of graphs Γ to a set of pairs of the form (M(G), I(G)), where M(·) is a distributed manifold, and

I(G) is an interaction set on M(G) for each G. We will say that P(·) is a distributed interaction

on the distributed manifold M(·).

We will use our standard pattern of P(·) to refer to the distributed interaction, and P(G) to refer

to the image of a particular graph. When there is no danger of confusion, we will abuse notation and

make statements like “Px ∈ P(G)”, when we really mean that the interaction Px is in the associated

interaction set I(G) specified by P(G).

A distributed interaction is a fairly complex object, but it provides a general model for the

components of any distributed system. In particular, it specifies for each graph G:

• A local state space for each i ∈ G.

• A collection of available tangent vectors arising from local interactions.

We would like to examine the coordination capacity of various distributed interactions P(·) on various

graphs; in particular, we are interested in establishing capacity properties that are independent of the

underlying graph structure. We will now proceed to give some examples of distributed interactions

on the canonical distributed manifold MR(·); in the interest of legibility, we will commit the usual

abuse of identifying all the tangent spaces of Rn with a single copy of Rn, and will thus be able to

use linear algebraic notation.
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PV (·): This is the purely local interaction, defined by the interaction set

I(G) = {ei ⊗ ei | i ∈ G}.

For each G, this interaction set is a collection of |V | linearly independent orthogonal projec-

tions, and so has rank |V |. The distribution operator is constant as a function of the global

state x ∈ Rn, and is given by

DI(x) = In×n.

However, despite the fact that the distribution operator has full rank, this is clearly a very

weak interaction. In particular,

cap(I(G))x = 0

for every G. To see this, consider the coordination Sx defined by the codimension-1 subspace

vT 1n = 0; none of the interactions in I contain non-zero vectors in this subspace.

PE(·): This is the distributed interaction associated with pairwise interactions across edges in the

graph G, and is defined by the interaction set

I(G) = {ei ⊗ ei + ej ⊗ ej | (i, j) ∈ G}.

The associated distribution operator is the degree matrix of the graph,

DI(x) = D(G)

and this is clearly full rank for any graph in which every node has at least one neighbor. This

distributed interaction has non-zero coordination capacity, specifically:

cap(I(G))x = 1.

Let us again consider the coordination Sx specified by vT 1n = 0; the coordinated interaction

set is

Sx(I(G)) =
{

1
2

(ei ⊗ ei + ej ⊗ ej − ei ⊗ ej − ej ⊗ ei)
∣∣∣∣ (i, j) ∈ G

}
.

and the associated distribution operator is just a scaled Laplacian matrix

DI(x) =
1
2
L(G).
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This interaction set has rank n− 1 whenever G is connected, and coordination capacity

cap(Sx(I(G)))x = 0.

To see that the coordinated interaction set has zero capacity, one need only consider a codimension-

1 coordination of the form vT b = 0, where all of the elements of b are distinct; none of the

coordinated interactions contain vectors satisfying this constraint.

PC(·): This distributed interaction models the action of a global coordinator, and is defined by the

interaction set

I(G) = {In×n};

the associated distribution operator is clearly just the identity operator

DI(x) = In×n.

The coordination capacity of the global controller is

cap(I(G))x = n− 1,

one less than the dimension of the global state space; the global controller has access to all

possible tangent vectors and so can implement any constraint that does not eliminate all

possible tangent directions.

Applying the same coordination Sx specified above, we obtain:

Sx(I(G)) =
{

In×n − 1n1T
n

1T
n1n

}

and the distribution operator is just the orthogonal projection onto the subspace satisfying

the constraint vT 1n = 0. The capacity of the coordinated interaction is now n− 2.
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PN (·): This distributed interaction models situations in which every node coordinates all actions

inside its neighborhood; intuitively, each node produces a tangent vector for itself and for its

neighbors which respects the global constraint. This is specified by:

I(G) =



ei ⊗ ei +

∑

j∈Ni

ej ⊗ ej

∣∣∣∣∣∣
i ∈ G



 .

The associated distribution operator is again related to the degree matrix,

DI(x) = In×n + D(G),

which is clearly full rank, irrespective of the connectedness of G.

The coordination capacity of this distributed interaction is bounded below by 1, and increases

with increasing connection density; if G is the complete graph, then this in fact reproduces

the global controller, and its coordination capacity is n − 1. The coordinated interaction set

for Sx can be calculated to be

Sx(I(G)) =





1
1 + di


ei ⊗ ei +

∑

j∈Ni

(ej ⊗ ej − ej ⊗ ei − ei ⊗ ej)




∣∣∣∣∣∣
i ∈ G



 ,

where di is the degree of node i.

The expression for the coordinated distribution operator is fairly complex and we will omit

it; we will say, however, that it has rank n − 1 if and only if G is connected, and that the

coordination capacity of the coordinated interaction satisfies

cap(Sx(I(G)))x ≥ min
i

di − 1.

Again, for a complete G, this distributed interaction reproduces centralized control, and has

coordination capacity n− 2.

We thus see that although many patterns for distributed interaction can have similar distribution

operators and rank, they can have vastly differing coordination capacities. These four possibilities

are illustrated in Figure 3.10, and the following table summarizes the above results:

Type of Interaction Symbol Distribution Operator Coordination Capacity

Local Control PV (·) In×n 0

Pairwise Interaction PE(·) D(G) 1

Central Control PC(·) In×n n

Neighborhood Interaction PN (·) D(G) + In×n ≥ mini∈G di
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Figure 3.10: Four examples of distributed interactions for a graph: clockwise from the top left, these
are the local, pairwise, “neighborhood”, and global distributed interactions (not all interactions
of each type are shown in the figures); groups of solid-filled nodes linked by solid edges indicate
individual interactions in the overall interaction set. Each of these distributed interactions has an
associated distribution operator DI and coordination capacity cap(I); they are organized clockwise
in ascending coordination capacity (0, 1, 5, and 8 respectively).
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We thus see that a vector can be distributed in a number of ways, for a variety of different

interaction structures. Each interaction pattern defines an associated distribution operator, which

in turn produces a “distributed version” of an input vector field specifying a global objective. This

vector field is highly structured; in particular it is a sum of vector fields, each with the following two

very special properties:

• Distributed Proof of Improvement

Each vector field is locally defined by orthogonal projection onto some locally available tangent

vectors; thus, it must make a non-negative inner-product with the input vector field. The

members participating in the interaction that contributes this tangent vector can collectively

prove that this tangent vector makes non-negative progress.

• Distributed Proof that Constraints are Respected

Each vector field a priori satisfies any constraints imposed by a coordination, and the members

of the local interaction contributing the tangent vector can collectively verify this.

These points are essential to our overall view on distributed coordination. Many general questions

(such as whether certain optimization problems can be solved in some distributed fashion) become

very clear when one asks whether there can exist distributed proof of the desired property; the addi-

tional structure imposed by requiring distributed proof is frequently sufficient to provide meaningful

answers. Our notion of coordination capacity will provide a useful tool for answering some such

questions.

Having identified the above properties as invariant across distributed interactions, we have also

seen two properties that vary significantly for different interaction structures: the rank of the dis-

tribution operator, and the manner in which the vector is “skewed” in the distribution process. We

will make use of the former property in the following section, where we will use it to characterize

distributed extrema; we will revisit the latter idea in Section 3.3, when we discuss efficiency.

3.2.3 Distributed Optimization

We will now utilize the tools of the preceding section to present a simple model for distributed

optimization; once these concepts are in place, we will be able to return to our overall goal of

providing a general mechanism for distributed coordination.

We should make it clear from the beginning that we mean something quite special by “distributed

optimization”; while the commonplace usage of this phrase tends to center around producing algo-

rithms for solving optimization problems that have some kind of distributed architecture, we mean

to propose a model for optimization in a distributed setting. Specifically, we want to provide a

meaningful characterization of “distributed optimality” that allows us to make statements about

the power of locally interacting agents to optimize some global function.



49

The main idea we wish to convey in this section is the following:

Smooth equality-constrained optimization characterizes local extrema in terms of

tangent-space properties. At a candidate optimum, the gradient of the objective func-

tion must be orthogonal to all the allowable tangent directions; if it is not, then there is

local (in the sense of calculus) proof that the candidate point is not optimal.

Distributed systems naturally have a special class of tangent space constraints encoded

by their local interaction structure; it is thus natural to ask when there is distributed

proof that a candidate configuration of a distributed system is suboptimal.

With this idea in mind, we make the following definition:

Definition 26 (Distributed Extremum). Let f(x) be a smooth real-valued function on Rn and

let I be an interaction set on Rn. We will say that a point x∗ is a distributed extrememum of f

relative to I if for every interaction Px ∈ I, and every tangent vector v in Px at x,

d

dt

∣∣∣∣
t=0

f(x∗ + tv) = 0.

Definition 27 (Distributed Gradient). Let f(x) be a smooth real-valued function on Rn and let

I be an interaction set on Rn. We define the distributed gradient of f relative to I at x as follows:

∇If(x) = DI(x)∇f(x).

Lemma 4 (Differential Characterization of Distributed Extrema). Let f(x) be a smooth

real-valued function on Rn and let I be an interaction set on Rn. Then, a point x∗ is a distributed

extremum relative to I if and only if:

∇If(x) = 0.

Proof. ⇒ Suppose ∇If(x∗) = 0. Then, from Lemma 3 on the properties of the distribution

operator, we have that ∇f(x∗) is annihilated by each Px in I at x∗. Since each Px defines

an orthogonal projection onto its range, every vector v in Px is orthogonal to ∇f(x∗); thus,

there is no direction available in any of the interactions that locally changes the value of f(x).

⇐ Suppose there is no direction v in any of the interactions Px that makes a non-zero inner-

product with ∇f(x∗). Since Px is an orthogonal projection, its range is orthogonal to its nullspace;

thus, Px must annihilate every vector that makes a non-zero inner product with ∇f(x∗), includ-

ing ∇f(x∗) itself if it is nonzero. Since the distribution operator DI is a sum of these orthogonal

projections, it too must annihilate ∇f(x∗), and thus we have that ∇If(x∗) = 0.

Corollary 4. Every extremum of f is a distributed extremum of f for arbitrary I.
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Figure 3.11: Illustration of a distributed extremum. Every tangent vector available to an interaction
set (encoded in the range of the associated distribution operator DI) is orthogonal to the gradient
of the function to be optimized.

The preceding corollary is obvious; clearly no distributed solution to an optimization will be

better than a centralized solution. Our real goal is to answer the converse question we wish to know

conditions under which a distributed extremum is also an extremum in the classical sense.

Definition 28 (Distributed Solution of Optimization Problems). Let f be a smooth real-

valued function on Rn, and let g(x) be a smooth mapping from Rn to Rm. We will say that an

interaction set I on Rn weakly solves the following optimization problem:

O(f,g) :

min
x∈Rn

f(x)

s.t. g(x) = 0

if there exists a coordination Cx with the following properties:

• g(x) = 0 ⇒ Dg(x)DCx(I) = 0.

• g(x) = 0 ⇒ rank(Cx(I))x > 0,

We will say that I strongly solves O(f,g) if there exists a coordination Cx with the above properties,

which also satisfies the following:

• Every distributed extremum of f relative to Cx(I) satisfying g(x) = 0 is an extremum of

O(f,g).
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This is another dense definition, so let us attempt to give some intuition. To do so, let us suppose

that one has a nominal solution x0 satisfying the constraints, and would like to improve the value

of the objective function if possible under a given interaction structure.

The first part of the definition requires that there exist a coordination which respects the con-

straint; if one only utilizes tangent vectors available under the coordinated interaction, then this

guarantees that a feasible solution remains feasible. The second part of the definition requires that

the rank of the coordinated interaction set be positive; this means that there are at least some avail-

able tangent directions on which to test the improvement of the objective function. Each interaction

that is annihilated by the derivative of f is distributed proof that the nominal solution is locally

optimal relative to some subspace of perturbations. Thus, this means that if I weakly solves an

optimization problem, then every distributed extremum is at least optimal relative to some non-zero

subspace of tangent directions. Strong solvability, then, simply means that this distributed proof is

sufficient to recover the performance of a global controller.

We thus see that weak solvability guarantees that an optimization problem can be at least

“partially” optimized relative to the tangent-space constraints of the interaction set. We would

naturally like to know when an optimization is weakly solvable for a class of interactions; the

following two lemmas provide such a characterization in terms of coordination capacity.

Lemma 5 (Sufficient Condition for Weak Solvability). Let M be a manifold, and I be an

interaction set on M with coordination capacity cap(I)x ≥ k for all x. Consider an optimization

problem O(f,g), where rank(Dg(x)) = m ≤ k for all x; then I weakly solves O(f,g).

Proof. To prove this, we must exhibit a suitable coordination Cx. Consider, at each x the projection

onto the nullspace of Dg(x); this defines a subspace of tangent vectors at each x, and so an associated

tangent subbundle Cx. The rank constraint on Dg implies that codim Cx = m ≤ cap(I)x; applying

the definition of coordination capacity, this implies implies that rank(Cx(I))x > 0. This completes

the proof.

This lemma shows that the coordination capacity gives a natural guarantee on a class of opti-

mization problems that can be weakly solved; intuitively, one should interpret this as saying that

any optimization problem with fewer constraints than the coordination capacity can be at least par-

tially optimized using the available local interactions. The next lemma shows that the coordination

capacity also constrains the class of optimization problems that one can expect to be able to solve

“generically”.

Lemma 6 (Necessary Condition for Universal Weak Solvability). Let M be a manifold, and

I be an interaction set on M with coordination capacity cap(I)x < k for all x. Then, there exists

an optimization problem O(f,g) with rank(Dg(x)) ≤ k for all x that is not weakly solvable by I.
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Proof. Consider the parametrized family of optimization problems O(‖x‖, A) specified by:

min
x∈Rn

‖x‖
s.t. g(x) = Ax = 0

A ∈ Rk×n

where A is an arbitrary rank k matrix. The constraint function g(x) defines a codimension-k

subbundle of tangent vectors Ax. Let us consider a specific point x; by choosing an appropriate

A, one can specify an arbitrary codimension-k subspace of TxM . Since cap(I)x < k, there exists

some choice of codimension-k subspace in TxM such that rank(Ax(I))x = 0 (else cap(I)x would be

greater than or equal to k). Denoting the matrix specifying this subspace A∗, we then have that

O(f,A∗) is not weakly solvable, which proves the desired result.

Strong solvability, unfortunately, is considerably more difficult to characterize in general; in order

to get meaningful results, one must make fairly restrictive assumptions on the allowable objective

and constraint functions, and the allowable interaction sets. We will later present a few such special

cases: Section 4.3.1 will show an example of an optimization associated with a graph where strong

solvability cannot generally be achieved on any non-complete graph, and Section 3.4.1 will show

that a very weak restriction on the parameters of the constraint equation implies strong solvability

for a special class of problems.

This concludes our treatment of distributed optimization, and indeed, the bulk of the theoretical

development of our work; however, at this point the utility of the above tools may not yet be

apparent. Let us summarize what we have presented, and how it will play into the remainder of the

work:

• We have presented a geometric framework for modeling local interactions, and coordination

of those interactions. This abstraction allows us to provide distributed proof that vectors

contributed by local interactions make positive progress towards a global goal, and also that

they respect global constraints.

• We have introduced a notion of capacity for coordination, and shown its connection to solv-

ability of distributed optimization problems under different interaction patterns.

• We have proposed a formal approach for separating functionality from implementation; in the

upcoming sections, we will use distributed optimization as a specification of functionality, and

we will use distributed gradients as a tool for implementation which provides distributed proof

that the specified functionality is being carried out.
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3.3 A Novel Design Formalism: Specification,

Implementation, and Performance

Here we will apply the tools of Section 3.2 to present a general design mechanism for distributed

coordination with the following properties:

• Functionality will be separated from implementation.

• Functional specifications will be systematically converted into distributed dynamics.

• Convergence and Performance of the distributed system will be systematically analyzable in a

way that is largely independent of the functional specification, or the network that implements

the dynamics.

The goal of this section is primarily to convey a viewpoint, rather than to enumerate a collection

of technical results; as a consequence, our development will center around casting the distributed

averaging system ΦL(·) in our new language.

3.3.1 Specification: Optimization Problems

We introduced the idea of an optimization problem encoding a function in Section 3.2; we will now

revisit this in some more detail. Our main goal is to present a simple input-output relationship

encoded by an optimization problem; to this end we will make some simplifications for the sake of

clarity.

Let us now present an optimization problem which encodes the distributed averaging behavior of

ΦL(·). Let us suppose we have a vector u ∈ Rn, with each component ui representing the local input

of some node in a network. We would like each member of the network to compute the average of

all the local inputs in the network; we will represent their computed values by a global state vector

x ∈ Rn. Thus, the specification we desire is:

xi =
1
n

∑

j

uj .

Now, consider the following optimization problem:

min ‖x‖2

s.t. 1T
nx = 1T

nu

This problem has a unique local minimum, and this optimal solution is given by:

x∗ =
1n1T

n

1T
n1n

u.
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Figure 3.12: An illustration showing the encoding of averaging as an optimization problem. Circles
indicate level sets of ‖x‖2, which is to be minimized, and the dashed line indicates the constraint on
the sum of the components (required to equal the sum of some local inputs). The optimal solution
sets all the components of the vector x equal to the average of the local inputs.

Evaluating each component of xi, we see that it is indeed the desired average value; we have thus

encoded a function (averaging the components of a vector) in an optimization problem, parametrized

by inputs in the constraint equation.

Note that the above optimization problem specifies the desired averaging behavior, but makes no

reference to graphs or dynamics. It is thus truly a representation of functionality that is independent

of implementation; we will now present a systematic mechanism for generating implementations,

which will naturally recover the Laplacian-based distributed averaging system ΦL(·).

3.3.2 Implementation: Distributed Gradient Dynamics

Optimization-based models naturally motivate the examination of gradient dynamics; gradient sys-

tems are highly structured, and have a long history of study associated to them. Traditionally,

gradient systems have been associated with potential-function models; there are many reasons for

this, but a primary reason from a design perspective is that potentials naturally produce distributed

dynamics. To see the complication that arises in problems not specified by potentials, consider the
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gradient of the “averaging” optimization problem:

∇‖x‖2 = 2x.

Note that this vector field does not respect the constraint; given a nominal feasible solution, this

vector field is not tangent to the constraint surface. Naturally, the quantity one desires here is the

projected gradient

2
(

In×n − 1n1T
n

1T
n1n

)
x

which is simply the gradient projected onto the tangent space of the constraint surface at the point

x. Unfortunately, determining this vector requires globally computed quantities; indeed, this is the

fundamental tension arising in attempting to constrain the dynamics of distributed systems. If one

wishes to enforce a global constraint, then the standard methods lead to computations which are

intractable in the sense that they require global control.

Further, let us consider the question of how one might obtain “proof” that the projected gradient

algorithm actually implements the specified computation. Note that the projected gradient is defined

by a globally computed projection; although it satisfies the constraint, one needs access to all

components of the distributed gradient vector to have proof that it does so. No node can local

information and obtain a guarantee that the dynamics respects the constraint equation. Similarly,

the projected gradient provides no distributed guarantee that progress is made; one needs access to

the entire vector to verify that its inner product with the gradient is non-negative.

The distributed gradient, introduced in Section 3.2.3, naturally solves all of these problems, and

motivates the use of dynamics with the following structure:

ẋ = −∇If(x)

where I is some interaction set. Let us review the relevant properties of the distributed gradient

that make this dynamics interesting:

• The individual interactions comprising the distributed gradient provide distributed proof that

the objective function improves, and that the constraint equation is satisfied.

• One need only compute the gradient of the objective function, not the projected gradient ; in

many practical situations, this simplification is sufficient to turn an intractable problem into

a tractable one.

• The distributed gradient allows us to systematically discuss this type of dynamics for all dis-

tributed systems simultaneously, as it is parametrized explicitly by I, and the above properties

are independent of the specific choice of I.
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Before applying the distributed gradient dynamics to our averaging problem, let us prove a small

technical lemma that will make analysis of distributed gradient systems very simple.

Lemma 7 (Convergence of Distributed Gradient Flow). Let f(x) be a smooth real-valued

function on Rn which is bounded below by some constant. Then, for any interaction set I, the

dynamics

ẋ = ∇If(x)

has the following properties:

1. x(∞) = limt→∞ x(t) exists for arbitrary initial values x(0).

2. x(∞) is a distributed extremum of f relative to I.

Proof. Recall that the distributed gradient makes a non-negative inner product with the gradient of

f ; thus,
d

dt
f(x(t)) = 〈∇f(x),∇If(x)〉 ≤ 0.

Since f is assumed bounded below by a constant, we have that x(t) must converge to a submanifold

in which
d

dt
f(x(t)) = 〈∇f(x),∇If(x)〉 = 0.

Now, at any point x on this submanifold, the tangent vector ẋ must be orthogonal to the gradient of

f at x. However, ∇If(x) is defined by a sum of orthogonal projections of the gradient onto various

subspaces; each of these terms must make a non-negative inner product with the gradient vector.

Since the overall inner product with the gradient is zero, each of these projection terms must be

zero. Thus, ẋ = 0 on the submanifold on which f is invariant; applying the smoothness requirement,

and the fact that x converges to this submanifold, this proves the first claim (that the limit exists).

Now, from Lemma 4, we know that ∇If(x) = 0 if and only if x is a distributed extremum of f ,

which proves the second claim.

Corollary 5 (Characterization of Equilibrium of Distributed Gradient Dynamics). For

each interaction Px ∈ I, we have Px∇f(x) = 0 at equilibrium.

The preceding statements, though simple, are actually quite powerful. In fact, they precisely

embody the “stability - invariance - equilibrium” architecture we have sought throughout this work.

Let us examine these three points explicitly.

Stability

The distributed gradient flow provably converges to a limit; this property is independent

of the functional specification, or of the interaction pattern that implements the flow.
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Invariance

The constraint function is a priori invariant if one applies the appropriate coordination to

the interaction set; thus, a solution that is initially feasible remains feasible throughout time.

Equilibrium

Every equilibrium is a distributed extremum of f relative to the interaction set I; this gives a

collection of constraints for each interaction Px ∈ I that must be satisfied at an equilibrium.

We have thus recovered, from “first principles”, the design architecture that we had envisioned at the

end of Chapter 2. Further, we have done so in a way that separates the functionality of coordination

from the implementation of coordination, as per our desires in the early sections of Chapter 3. Now,

let us conclude our exposition of this design mechanism by deriving ΦL(·) with our new tools.

We have already presented an optimization problem encoding an averaging computation. We

wish to couple this functional specification with a dynamical system which will implement it; to do

so, we will synthesize a dynamical system according to the following specification:

min limt→∞ ‖x(t)‖2

s.t. 1T
nx(t) = 1T

nx(0)

We will carry out this design on a connected graph G, and we will assume the pairwise interaction

set I = PE(G), which we recall is defined by:

I = {ei ⊗ ei + ej ⊗ ej | (i, j) ∈ G}.

Now, we wish to enforce the invariance constraint on this interaction set, so we will apply the

coordination Cx specified by 1T
nv = 0; from our discussion in Section 3.2.2, we know that the

distribution operator for PE(G) coordinated by Cx is given by:

DCx(I)(x) =
1
2
L(G).

The distributed gradient relative to the coordinated interaction set I ′ is given by:

∇I′‖x‖2 = DI′(x)∇‖x‖2

= L(G)x.

Finally, the distributed gradient dynamics is

ẋ = −L(G)x.
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Figure 3.13: Distributed gradient dynamics arising from local interactions; the system continues to
evolve until all local interactions produce zero tangent vectors.

So, we have precisely recovered the dynamics specified by ΦL(G). With our new tools in hand, we

can immediately prove all of its desirable properties.

• From the properties of a distributed gradient flow, we have that x must go to some equilibrium.

• The invariance of 1T
nx(t) is guaranteed by the construction of the distributed gradient.

• From the characterization in Corollary 5, we have that each interaction must annihilate the

gradient; thus,
1
2

(ei ⊗ ei + ej ⊗ ej − ei ⊗ ej − ej ⊗ ei)x = 0

for all (i, j) in G, which evaluates to: x(i) = x(j) for every edge (i, j). Since G is connected,

this implies that x is along the subspace spanned by 1n.

This collection of results is quite satisfying, in the sense that we have indeed recovered all of the

properties of ΦL(·) without using any specific details of its specification; the distributed gradient

design formalism provides all the relevant results as desired.
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3.3.3 Interlude: Summary of Main Technical Results

We have now introduced most of the technical machinery necessary to understand the bulk of this

work. Before continuing with analysis of some special cases and particular properties of the overall

mechanism, we collect here a brief summary of what we have accomplished thus far.

Theorem 1 (Characterization of Solvability with Capacity and Distribution). Let f be

a real-valued function defined on some manifold M of dimension n, and consider the optimization

problem O:

min
x∈N

f(x),

where N is a submanifold of M and has codimension k. Let I be an interaction set on M with coor-

dination capacity cap(I)x. Let DI(x) denote the distribution operator associated with the interaction

set. Then, the following properties hold:

1. cap(I)x < k ⇒ I does not weakly solve O for all choices of f and N .

2. TxN ⊂ rangeDI(x) for all x ∈ N ⇒ Ix strongly solves O.

Proof. The first property is a restatement of Lemma 6, and the latter follows directly from the fact

that every direction in the range of the distribution operator does not annihilate any directions in

the tangent bundle of the constraint manifold.

Theorem 2 (Solution by Distributed Gradient Flow). Let f be a real-valued function defined

on some manifold M of dimension n, and consider the optimization problem O:

min
x∈N

f(x),

where N is a submanifold of M and has codimension k. Let I be an interaction set on M that

weakly solves O. Consider the following dynamics, from an arbitrary initial point in N :

ẋ = −∇If(x).

This dynamics has the following properties:

1. The flow converges to an equilibrium point.

2. The equilibrium is a distributed extremum of f relative to I.

3. If the interaction set I strongly solves the optimization problem O, then any equilibrium point

of the dynamics is a locally optimal solution of O.

Proof. This is a combination of Lemmas 6 and 7, and the definition of a distributed extremum.
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3.3.4 Performance: Efficiency of Distribution

Since we regard each interaction set I as inducing a distribution operator which converts a global

specification into a distributed implementation, it is natural to ask how well this distributed imple-

mentation performs relative to a centralized implementation.

A natural performance metric for distributed gradient systems is the differential reduction in the

objective function normalized by the magnitude of the tangent vector; more generally, we would like

to know the extent to which the distributed implementation “points in the same direction” as the

tangent vector that would have been produced by a centralized implementation. We thus define the

following efficiency function associating to a vector field V , interaction set I, and point x in some

manifold the following value:

ΨI(V,x) =
〈V (x), VI(x)〉
‖V (x)‖‖VI(x)‖

where VI(x) = DI(x)V (x) is the distributed version of the vector field V . We will only discuss

efficiency for situations where the tangent vector is non-zero and in the range of the distribution

operator so the ratio will always be well defined. From the properties of the distribution operator,

we have the following a priori bounds for the efficiency function:

0 < ΨI(V,x) ≤ 1.

Now, if one considers the “global control” interaction, with the associated distribution operator

DI(x) = ITxM , it is clear that a centralized controller achieves unit efficiency (as one would expect).

For general interactions, we can obtain a simple bound on Ψ, which intuitively tells us that the

efficiency of a distributed interaction is inversely related to how strongly its action “skews” the

tangent space. In order to quantify this, we will need the following linear algebraic notion:

Definition 29 (Projected Condition Number). Let T be a linear operator on Rn, and let v

and w be arbitrary vectors in range(T ) with unit norm. We define the projected condition number

of T to be

κP (T ) =
maxv ‖Tv‖
minw ‖Tw‖ .

For a self-adjoint T , this is just the ratio of the largest eigenvalue of T (in absolute value) to the

smallest non-zero eigenvalue; clearly, κP (T ) ≥ 1. We can now state our bounding lemma.

Lemma 8 (Characterization of Efficiency). Let M be a manifold, x be a point in M , I be an

interaction set on M , and V be a vector field such that V (x) is in range(DI(x)). Then, we have the

following bound:

ΨI(V,x) ≥ 1
κP (DI(x))

.

Proof. The efficiency is invariant under scaling of the vector V (x); we can thus assume that this
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Figure 3.14: Distributed efficiency measures the extent to which the performance of a global con-
troller is lost due to the distributed implementation; it is characterized geometrically by the angle
between the input vector field and the distributed vector field, and algebraically by the condition
number of the distribution operator.

vector has unit norm. Then, we have the following expression:

〈V (x),DI(x)V (x)〉√
〈V (x),D2

I(x)V (x)〉

Now, let λmin(x) and λmax(x) denote the smallest and largest (in absolute value) non-zero eigenvalues

of DI(x); since we have assumed that V (x) is in the range of DI(x), the numerator is bounded

below by λmin(x)‖V (x)‖2, and the denominator is bounded above by λmax(x)‖V (x)‖; since we have

assumed ‖V (x)‖ = 1, we now have

ΨI(V,x) ≥ 1
κP (DI(x))

as desired.

So, we now have a systematic method by which to bound the efficiency of a distributed imple-

mentation; this characterization is quite interesting in that it is not coupled to the vector field to be

distributed. Admittedly, this is only a bound, but it provides us with some notion of “intrinsic effi-

ciency” associated with a particular interaction set I; indeed, as we saw before that interaction sets

have an associated coordination capacity, we see also that they have associated efficiency properties

that are, at least in terms of this bound, independent of the task they implement.
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3.4 Linear Dynamic Coordination

In the preceding sections, we have introduced a design mechanism for distributed coordination;

we specify coordination tasks as optimization problems independent of implementation, and then

systematically convert these specifications into implementations based on a given distributed inter-

action. One tacit assumption in this development was that the coordination task to be performed

was static; the specified task encoded in the optimization problem did not include a mechanism for

time dependence. In this section we will develop a special case of coordination dynamics which we

call “linear coordination” for reasons which will become obvious; this class of designs will naturally

generalize to tracking dynamically specified coordinated states. We begin by introducing linear

coordination problems in the static case.

3.4.1 The Linear Coordination Problem

Consider again the standard distributed manifold MR(·) assigning a real-valued state x(i) to each

node in a connected graph G. Linear coordination for this scenario is specified by the following

optimization problem:

min
x

xT Qx

s.t. bT x = bT u

where x,b,u ∈ Rn and Q is a positive-definite symmetric matrix in Rn×n. As before, we interpret

u as a vector of local inputs, and x as the concatenated state vector with xi = x(i). We will also

assume that each component of bi is non-zero; we make this assumption for well-posedness, but

it is a sensible requirement in that it couples the states of all the members of the network in the

constraint equation.

The mapping specified by this optimization problem can be calculated to be:

x∗ =
bT u

bT Q−1b
Q−1b.

Let us note two aspects of this structure. First, note that the coordinated state vector lies along

Q−1b; we can thus interpret this as solving a certain linear system of equations distributed over

the set of agents. For Q = I, this in fact effects a projection; the asymptotic state is precisely the

projection of the inputs u onto the subspace spanned by b. This brings us to the second aspect of

the mapping, the leading coefficient. Not only does the mapping specify a subspace of coordinated

states, but it also executes a computation; again, if Q = I then this leading coefficient is the

projection coefficient of the input vector on the span of b.

We refer to this specification as “linear coordination” for two reasons: its gradient 2Qx is a
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linear function of the state vector, and its constraint equation defines the “same” linear subspace of

the tangent space over all of Rn. Applying the associated coordination to the pairwise interaction

PE(G), we obtain the following coordinated interaction set:

{
1

b2
i + b2

j

(bjei ⊗ ei + biej ⊗ ej − bibjei ⊗ ej − bibjej ⊗ ei)

∣∣∣∣∣ (i, j) ∈ G

}
.

Now, assuming that each bi 6= 0 and that G is connected, we can show that the associated distribution

operator is has rank n − 1. To see this, note that each term in the interaction set above is an

orthogonal projection onto the span of vectors of the form:

−bjei + biej .

Since G is connected, it has a spanning tree with exactly n− 1 edges. Each edge in the tree induces

an independent vector field independent, and so the resulting distribution operator DI has rank

n − 1. This, in turn, implies that the coordinated interaction set strongly solves the optimization

problem specifying the coordination problem; this is because the constraint defines a codimension-1

affine subspace, and so one needs a set of n− 1 linearly independent vectors to span it.

So, we now know that pairwise interaction on a connected graph is sufficient to implement

linear coordination as described above. The distribution operator is in general complicated to write

explicitly, but for each choice of b it is a fixed matrix A(b); the resulting distributed gradient

dynamics is:

ẋ = −A(b)Qx.

For Q = I and b = 1n, we recover the distributed averaging dynamics ΦL(G) as a special case. One

should note an interesting point about this equation; depending on the nature of Q, the product

A(b)Q need not be symmetric. Nonetheless, we have a priori stability analysis for this equation,

because of the distributed gradient design mechanism.

As can be seen, linear coordination also yields particularly simple efficiency analysis; the efficiency

is globally determined by the projected condition number of the distribution operator A(b). Similar

relationships between performance and spectral properties of matrices associated with graphs have

been previously explored (see []) for the special case of the Laplacian dynamics.

3.4.2 Dynamic Coordination

We have now familiarized ourselves with the basic linear coordination problem, and shown the

associated distributed gradient dynamics. For fixed inputs u encoded in the initial values x(0), the

distributed gradient dynamics carries out the projection operation discussed in the previous section.
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It is natural to ask whether one can effect tracking of this coordinated state; that is, if instead of

a fixed input u we had a dynamic input u(t), we would like to design a mechanism which assures

that the system is “dynamically coordinated”. A natural answer to this question is available from

our “Stability - Invariance - Equilibrium” architecture.

Thus, let us consider the time-varying specification:

min
x

xT Qx

s.t. bT x = bT u(t).

It is not immediately clear what one should do to implement this kind of coordination, but our

notation in fact suggests a good candidate. Naively writing out the specification for the distributed

gradient dynamics as per our usual pattern (except explicitly writing the input u(t) in place of the

initial values which encode them)

min limt→∞ xT Qx

s.t. bT x(t) = bT u(t)

the solution becomes fairly clear: one needs to dynamically compensate for the evolution of the

desired invariant surface. Consider then, the following simple modification of our design:

ẋ = −A(b)Qx + u̇.

This equation is quite simple, but within it lie two important points. First, let us consider the

evolution of the constraint equation:

d

dt

(
bT x

)
= bT ẋ

= −bT A(b)Qx + bT u̇

= bT u̇,

where the second line follows from the fact that the distributed gradient dynamics leaves the static

constraint invariant. Clearly, if we ensure (as per our usual model) that the initial values of the

system encode the initial inputs, then we have that the constraint equation is satisfied for all t. Thus,

for example, if the inputs ever stopped changing and remained constant after some time T , the system

would track the appropriate invariant manifold and then asymptotically settle to the coordinated

state specified by u(T ). More generally, we now have an explicit input-output representation for

the tracking of this time-varying input; we can apply the standard sorts of analysis typical to linear

systems (transfer functions, frequency domain performance characterizations, and so on). We will
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Figure 3.15: Tracking the average of a slowly varying set of inputs. The top plot shows trajectories
of the local inputs u(i) on some connected graph G. The center plot shows the evolution of the state
variables x(i), and the bottom plot shows the evolution of the average of the u(i) terms. Clearly,
this slowly varying input is well tracked by all the members of the network.

not carry out this analysis, but we will return to it in Section 4.4, where it will provide a natural

interpretation for a distributed filtering mechanism. Some hints of this behavior can be seen in the

two Figures 3.15 and 3.16.

So, we have presented a mechanism that naturally accomodates dynamic tracking of coordinated

states. In closing, we should note that the principle of dynamically tracking the “right” invariant

manifold is one that, in principle, generalizes to nonlinear problems as well; the main difficulty in

these cases (and the reason for which these problems are not treated in this work) is that one may not

be able to effect tracking in general if the matrix Dg(x) (the derivative of the constraint equation)

loses rank over the course of the dynamics.

3.4.3 Robust Coordination

In this section we will present a simple mechanism for providing dynamic coordination in a way that

is robust, in the sense that it will reject isolated disturbances in the implementation of the dynamics.

Further, it will not require differentiation of the dynamic inputs, and so should be regarded as more

robust in that regard as well. Finally, it will make the system robust to any imprecision in the

initial values. Because we will have greater need to write explicit formulae in this section, we will

focus solely on the dynamic version of the distributed averaging system ΦL(·); there is nothing

special about this choice, and the following development can be carried out for an arbitrary linear
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Figure 3.16: Tracking the average of a rapidly varying set of inputs. Again, the top plot shows the
local inputs u(i), the center shows the local state variables, and the bottom shows the average of
the local inputs. Here we see that although the target quantity is tracked well averaged across the
nodes, individual nodes can have significantly larger transient errors than for the slower input.

coordination problem.

Let us consider the individual node dynamics for the distributed averaging system, with the

dynamic modification discussed in the previous section:

ẋ(i) =
∑

j∈Ni

(x(j)− x(i)) + u̇(i)

where the u(i) term denotes the local input at node i. Let us rewrite this in an alternative integral

form:

x(i, t) = u(i) +
∑

j∈Ni

δ(i, j, t)

δ̇(i, j) = (x(j)− x(i)).

It is important to note here that although the time-evolution of the x(i) variables has not been

changed, we have changed the underlying distributed dynamical system. Before exploring the impli-

cations of this change, let us make the specification of the new system clear.

The new distributed manifold will be denoted MR,E(·) indicating that the assigned states will

be induced by the edge structure. For each i in a graph G, we assign the local state space:

Mi = R×R|Ni|.
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Thus, each node is assigned a local state independent of its edge structure, which we will denote

x(i, t), and a state associated with each of its neighbors in the graph, which we denote δ(i, j, t). We

will refer to these quantities as “flux” terms; the reason for this naming will become clear in the

following section.

Now, returning to the integral formulation of the dynamics, we see that the local inputs are no

longer differentiated, nor are the x(i) variables subject to any imprecision in initial values; they are

not true “states”, and instead are induced by a static mapping from the flux terms and the current

value of the local input (we will modify this in a moment). For now, one only need worry about

perturbations or imprecisions in the evolution of the flux variables. As one might expect, one can

apply standard feedback concepts to this system, and we will present a simple solution:

x(i, t) = u(i) +
∑

j∈Ni

δ(i, j, t)

δ̇(i, j) = (x(j)− x(i))− (δ(i, j, t) + δ(j, i, t)).

Here we have added a “coordination feedback” term on the flux variables; let us examine what is

going on here in some detail. First, note that

δ̇(i, j) + δ̇(j, i) = −2 (δ(i, j) + δ(j, i))

and so the flux terms on each link exponentially converge to be equal and opposite. Now, summing

over the x(i) variables, we see that

∑

i∈G

x(i, t) =
∑

i∈G

u(i, t) +
∑

(i,j)∈G

δ(i, j, t) + δ(j, i, t)

where the flux terms in the latter sum decay to zero exponentially per our previous argument. This

implies that this coordination feedback rejects perturbations to the desired invariant manifold from

the coordination specification. We have thus made this system “robust” to a variety of imperfections

that may arise in implementation. The only possible misgiving one might have about the system we

have designed here is that it has secretly “violated causality”; in order to implement this system,

each node must be able to instantaneously deliver their value of u(i, t) to their neighbors, since the

neighbor’s dynamics depends directly on x(i, t), which in turn is specified by u(i, t). The following

specification remedies this problem:

ẋ(i) = u(i)− x(i) +
∑

j∈Ni

δ(i, j, t)

δ̇(i, j) = (x(j)− x(i))− (δ(i, j, t) + δ(j, i, t)).
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Here we have simply added a first-order lag between the local inputs and the local state x(i); this

is now a “strictly causal” system, in the sense that no node requires instantaneous access to its

neighbors states.

This linear system can be shown to be asymptotically stable, but the proof is uninformative so

we will not present it. The important point to note is that this system must go to equilibrium if the

u(i) terms go to equilibrium; thus asymptotically we must have:

∑

i∈G

x(i) =
∑

i∈G

u(i).

So, we see that the specification for the desired invariant manifold is upheld asymptotically. This

system thus provides an asymptotically stable and causal mechanism for robustly executing the

distributed averaging operation.

3.4.4 Reconfigurable Coordination

Throughout our discussion so far, we have tacitly assumed that a single group of nodes was attempt-

ing to coordinate its behavior; this was primarily to avoid clutter in the presentation, but one can

certainly imagine scenarios in which there are multiple groups coordinating their behavior, and that

membership in the groups is dynamic. One would like to have some mechanism by which to induce

coordination that respects this property; we call this property reconfigurability. In this section, we

will show a reconfigurable version of the distributed averaging system. Again, this development is

not intrinsically tied to the averaging specification, but making a concrete choice for the specification

significantly clarifies the exposition. The functionality we wish to accomplish is the same distributed

averaging behavior of ΦL(G), except we want to ensure this on every connected component of G.

This is simple enough for static graphs; since nodes which are not in the same subgroup do not

influence each others’ dynamics, this property is naturally accomplished. If, however, the group

membership varies over time, as depicted in Figure 3.17, the standard approach does not solve the

problem. In order to see this, consider beginning with two subgroups, which each execute their

averaging coordination, and are subsequently merged. Again, the dynamics will drive the nodes to

the coordinated state of the merged group. If the groups were to split again, then all the nodes would

be thereafter “contaminated” by the coordinated state of the merged subgroup.

Interestingly, we have already “accidentally” presented the solution to this problem. Consider

again the integral realization of the averaging system presented in the previous section (these results
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Figure 3.17: Reconfigurable coordination refers to the ability to adapt to dynamic changes in group
membership. In the case of the averaging system ΦL(·), we wish each connected component to track
its own average quantity, and for the dynamics to naturally adapt to merging and splitting of groups.

can be recovered for the “robust” versions):

x(i, t) = u(i) +
∑

j∈Ni

δ(i, j, t)

δ̇(i, j) = (x(j)− x(i)).

Now we will see the significance of the “flux” terminology. Considering the sum of the x(i) terms

as a conserved quantity corresponding to an invariant manifold, we see that each δ(i, j) term is

precisely the amount that has flowed from node i to node j; clearly, δ(i, j)+ δ(j, i) = 0. Upon losing

a neighbor in the time-evolution of the network, one can simply “undo” the flow of the conserved

quantity; this is accomplished by the following dynamics:

x(i, t) = u(i) +
∑

j∈Ni(t)

δ(i, j, t)

δ̇(i, j) =





(x(j)− x(i)) j ∈ Ni

0 else.
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Figure 3.18: Illustration of reconfiguration dynamics for the averaging system ΦL(·). The network
is initially a connected linear chain, with the local inputs u(i) listed next to the associated nodes.
The network splits, and then merges again; the dynamics of the x(i, t) variables is illustrated in the
lower plot. We see that the network first approaches the coordinated state of the merged network,
then undergoes a non-smooth jump to reach the coordinated states of the two sub-networks. Finally,
when the network merges again, it recovers the global coordinated state.

Summing over a connected component of G, say G′,

∑

i∈G′
x(i, t) =

∑

i∈G′
u(i, t) +

∑

(i,j)∈G′
δ(i, j, t) + δ(j, i, t) =

∑

i∈G′
u(i, t).

This equation shows that in each connected component, we have the desired invariant quantity.

We have essentially tracked the “transport” of a conserved quantity in our system, and reversed

this transport as necessary to ensure that we are only enforcing coordination relative to the desired

connected component. This is situation is depicted in Figure 3.18.

Note again the implications of the “Stability - Invariance Equilibrium” architecture; the stability

and equilibrium properties ensure that a coordinated state is achieved in each connected component,

and the invariance has provided a natural mechanism for selecting the desired coordinated state after

a splitting of the network.
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Chapter 4

Dynamic Coordination:
Applications

The preceding chapter developed a class of tools for designing and analyzing distributed systems in

a systematic way; this chapter applies these ideas to a number of application areas, broken down by

category. Sections 4.1 and 4.2 provide several applications based on the distributed averaging system

with the “dynamic coordination” extensions from Section 3.4, while Section 4.3 presents some new

applications that can be explored with the new tools developed in the preceding chapters. Each

application is intended to illustrate some particular aspect of designing distributed systems.

Section 4.1 examines dynamic coordination for systems which need access to some time-varying

global quantity. The basic idea underlying each of these applications is that of a “distributed

observer”, which is a system that dynamically tracks some function of the global states of a system.

Section 4.2 considers a class of distributed data processing problems, in which each member of

some network has access to an element of some larger data set, and the group wishes to perform

various types of data analysis on this set; these applications range from statistical computations to

distributed model building.

Section 4.3 presents a class of problems we call “topological coordination”, in which the coor-

dinated state is itself induced by the structure of the network. We present some standard graph-

theoretic computations, as well as a treatment of the “distributed accounting” problem presented in

the introductory text.

Throughout this section, the reader is assumed to be familiar with the design and analysis tech-

niques presented in Chapter 3; while the dynamical systems and associated applications presented

should be intuitively understandable without any special knowledge, we will make use of previous

results for arguing that the designs presented execute the desired behaviors.
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4.1 Distributed Observer-Based Designs

This section deals with applications of “distributed observers”. An observer is simply a dynamic

mechanism whose purpose is to track the evolution of some dynamic process and report it to some

other functional unit which makes use of this information.

The two examples here demonstrate distributed observer design interacting with two disparate

classes of dynamical analysis. In Section 4.1.1, we show “feedback control design” applied to the

distributed averaging tracking system, in order to ensure desirable steady-state error properties when

applied to a special class of inputs; this design results in a mechanism for (among other things)

synchronization of multiple non-uniform clocks. The contribution of the distributed observer design

lies in quantifiable distributed tracking performance, which enables the proof of the desired property.

Section 4.1.2 shows distributed observer design in the context of a classical nonlinear dynamical

system, the Lotka-Volterra dynamics. Here the distributed observer is used to estimate the “compe-

tition term” entering the Lotka-Volterra equations without requiring global access to the variables

of every member of the network. The contribution of the distributed coordination mechanism in

this case is that, through the structure of its dynamical invariant, it provably preserves a certain

coarse-level aspect of the centralized dynamics. This enables us to obtain a distributed mechanism

which, although not identical to the centralized mechanism, has the same qualitative behavior. The

resulting system executes three useful computations: it elects a leader, determines the maximum of

a set of positive numbers, and counts the number of nodes on the network.

4.1.1 Clock Synchronization

In this section we examine the problem of determining a single global time among a network of nodes

with locally available (but distinct) time signals; specifically, suppose we have a connected graph G,

and at each node i the following local time signal:

τ(i, t) = α(i)t + β(i).

Note that this is merely a parametrization of the local time signals; we do not mean to imply that

the α(i) or β(i) terms are known locally.

We will apply a variant of ΦL(·) with the tracking behavior described in Section 3.4.2, and an

additional feedback term. Consider the following dynamics:

x(i, t) = τ(i, t) +
∑

j∈Ni

δ(i, j, t),

δ̇(i, j, t) = (x(j)− x(i)) + v(i, t),

v̇(i, t) = (x(j)− x(i)).
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Figure 4.1: Schematic representation of a distributed observer design. A distributed coordination
mechanism is used to estimate the evolution of some global variables; when this information is fed
back into the global dynamics, a coordinated output arises.

Here we have added an integral feedback term to the dynamics of the flux variables. Since this

is a linear time-invariant system, we can analyze its behavior using a matrix transfer function.

Computing the transfer function from the τ(i, t) terms to the x(i, t) variables, we obtain

s2
(
s2 + sL + L

)−1
.

Now, since L is symmetric, it can be expressed as a spectral decomposition:

L =
∑

i

λiQi

where the λi terms are non-negative real eigenvalues, the Qi are orthogonal projections onto the

associated eigenspaces, and

λ0 = 0, Q0 =
1n1T

n

1T
n1n

. (4.1)

Applying this expression, and some algebraic manipulation, we can write the preceding transfer

function as:
1n1T

n

1T
n1n

+ s2

(∑

i>0

1
s2 + λis + λi

Qi

)
.

Recall from our discussion of Laplacian matrices in Chapter 2, that the Laplacian of a connected

graph has a nullspace of dimension one, and is positive semi-definite. This implies that the remaining
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Figure 4.2: Sample trajectories of the clock synchronizing dynamics. Each node has a local time
that is independent of all the other clocks, and only constrained to grow linearly in time; the
coordinating dynamics drives all of the members of the network to a single global time, independent
of the underlying network topology.

λi terms are strictly positive, and that the transfer functions in the sums describe asymptotically

stable systems. We see that the terms in the sum each have two zeros at s = 0; from the Final

Value Theorem, we know that when applied to a signal with up to two poles at zero, these systems

produce outputs that converge to zero exponentially. Now, the Laplace transform of the inputs is:

α(i)s + β(i)
s2

which has two poles at zero. We thus have:

x(i, t) → 1
N

∑

i∈G

(α(i)t + β(i)) .

The implication of this statement is that each node asymptotically achieves an identical signal

x(i, t); further, this is a “plausible” global clock signal, in that it too is a linearly growing function of

time (its parameters are exactly the average parameters of the various local inputs). We have thus

exhibited an application of a dynamic coordination mechanism to provide global access to a single

clock on an arbitrary unstructured network.
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4.1.2 Leader Election, Maximum-Tracking, and Counting

In this section we present a distributed dynamical system that (empirically) accomplishes three

useful tasks:

• It selects from among the N nodes in a network a single “leader”; each node unambiguously

determines whether or not it is the leader, and also learns the identifier of the leader.

• It selects the largest value from a set of positive numbers, and makes this value available to

every member of the network; further this quantity can be tracked as a function of time.

• It computes the number of nodes on the network, without a priori requirements on network

structure, and makes this information available to all members of the network.

The basic mechanism that will power these results is a special case of the Lotka-Volterra dynamics,

which is as follows:

ẋ(i) = x(i)


α(i)− 1

N

∑

j∈G

x(i)


 .

Here the α(i) terms are distinct positive values; within the context of the Lotka-Volterra population

model, they correspond to carrying capacities. These equations have a very special property: for

arbitrary initial conditions in which all the x(i) are non-zero, all of the x(i) terms go to zero save the

one associated with the largest α(i) term (see Hofbauer and Sigmund [11] for a proof). Intuitively,

this indicates that only the “fittest” species survives.

Let us denote the maximum of the α(i) by αm, and the associated node im. Now, from the above

property, we see that x(im) must converge to

x(im) = Nαm.

Implicitly, the node with the largest αi indirectly computes the number of nodes on the network,

and discovers that its value is indeed the largest.

The system described above suffers from two drawbacks:

• It requires global interconnection for each node to implement its local dynamics.

• It only provides the maximum value and the size of the network at one node.

We will remedy both of these failings by using a distributed mechanism for dynamically estimating

the relevant average quantity required in the Lotka-Volterra equations.
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Consider then the following dynamics:

ẋ(i) = x(i) (α(i)− y(i)) ,

ẏ(i) =
∑

j∈Ni

(y(j)− y(i)) + ẋ(i),

ż(i) =
∑

j∈Ni

(z(j)− z(i)) +
d

dt

(
x(i)
α(i)

)2

.

The first equation is the Lotka-Volterra dynamics; the second and third equations are the average-

tracking dynamics for 1
N

∑
x(i) and 1

N

∑(
x(i)
α(i)

)2

(we assume that the y(i) and z(i) variables are

initialized accordingly). Clearly, if the y(i) terms provided an exact estimate of the average of

the x(i) terms, we would reproduce the previous dynamics exactly. While we do not have exact

estimates, we do reproduce the following quantity exactly:

d

dt

∑

i∈G

log x(i) =
∑

i∈G

(α(i) + y(i))

=
∑

i∈G

(α(i) + x(i))

where in the second line we have used the invariant
∑

i∈G x(i, t) =
∑

i∈G y(i, t). Hence, the invariant

quantity ensures that the dynamics of the sum of the logarithms is unchanged by the addition of the

distributed observer. Intuitively, the distributed observer mechanism is sufficiently accurate to ensure

that “on the average” the coarse-scale dynamics is the same as in the centralized implementation.

The global stability of the proposed dynamics is a complex question in non-linear dynamics;

similar systems are treated in detail in [11], and it is not our goal to examine such questions.

Simulation studies seem to bear out its global stability, but we have been unable to find an analytical

tool that can prove this to be true.

However, we will now show that given that there is a globally-asymptotically-stable non-zero

equilibrium, then it is the desired one.

Lemma 9 (Leader Election and Counting). Suppose there exists a non-zero globally-asymptotically-

stable equilibrium of the dynamics with the distributed observer; then it has the following properties:

1. The y(i) variables converge to the maximum of the α(i) terms.

2. The z(i) terms converge to the number of nodes on the network.

Proof. In equilibrium, all the y(i) variables must be identical. Stability of the equilibrium implies

that this value must be bounded above by the maximum of the α(i) variables, else all the x(i)

variables would only be stable at zero, and hence the y(i) and z(i) variables would also de facto be

zero because they track averages of the x(i) and x2(i) terms. However, the y(i) variables must also
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Figure 4.3: Illustration of the leader-election/counting dynamics with the distributed observer.
The top plot shows the dynamics of the “activity” states; asymptotically exactly one node has
a nonzero value. The middle plot shows the estimates of the “leader’s” unique identifier (the nodes
are numbered from one to ten in this example). The bottom plot shows the estimates of the number
of nodes on the network.

be bounded below by the same maximum α(i) value, else the x(i) with the highest α(i) would not

be stable at any non-zero value. Thus, the y(i) variables must all be equal to the largest α(i). This

in turn implies that the corresponding x(i) must be non-zero, else it would be unstable.

We thus have a single non-zero x(i), and we know that the average of the x(i) terms is equal to

the maximum α(i). This implies that the remaining non-zero x(i) is equal to the product of its own

α(i), and the number of nodes on the network N . Now, all we need to note is that the z(i) variables

track the average of the terms (x(i)α(i))2. Knowing that exactly one x(i) is non-zero, and having

previously derived its value, we now know that this average is exactly N .

One final point to note is that this system naturally tracks variations in the α(i) terms without

any modification.

So, we have presented a system using the distributed averaging dynamics as an observer for

the global Lotka-Volterra dynamics, and shown (assuming stability) that this system recovers the

coordinated behavior of the centralized implementation.
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4.2 Distributed Data Processing

In this section we will present two examples of distributed data processing, by which we mean

a situation in which data from some large data set are spread over multiple computational units

connected over an unstructured network. Our goal is to perform computations that yield information

about the global data set, without ever requiring access to non-local information in the network.

We should emphasize that this is in itself not a novel pursuit; see for example Haykin [9] for an

introductory text from the artificial intelligence community. Our goal is to show designs based on

our distributed-gradient formalism that execute these useful computations.

The two “design principles” we wish to demonstrate here are parallel interconnections and cas-

cades of a distributed coordination mechanism. Section 4.2.2 will show how to use multiple parallel

coordination mechanisms to carry out principal component analysis and solve least-squares prob-

lems. Section 4.2.1 will show a cascade mechanism for decorrelating statistically dependent data

(which also produces a mechanism for distributed QR factorization).

Throughout this section we will focus on data vectors from R2 and R3 to make the exposition

as concrete as possible, but the mechanisms provided easily generalize to higher-order systems that

execute the associated operations for data vectors of arbitrary dimension.

4.2.1 Principal Components and Least Squares Models

In this section we will show a very simple mechanism for principal components analysis and for linear

least-squares problems. We will use three parallel executions of the distributed averaging system to

locally synthesize the global principal matrix (or normal equations), which will then allow each node

to perform a local computation on a problem of fixed size to obtain the globally optimal solution,

independent of the size of the network.

Let us suppose that we have a connected graph G with N nodes, and each node i has access to

some vector 
 α(i)

β(i)


 = w(i) ∈ R2.

Let us suppose that the α(i) and β(i) terms have zero mean for simplicity (the mean can clearly be

subtracted using the distributed averaging system). Organizing all the w(i) terms as rows in the

following data matrix:

A =




w(1)T

w(2)T

...

w(N)T




.

The principal matrix, or sample covariance matrix (see any textbook on statistical data processing,



79

Principal
   Vectors 

Figure 4.4: Illustration of principal vectors for multivariable Gaussian data. The equations for the
principal vectors are of constant size as a function of data set size, and the algorithm proposed
obtains at each node a copy of the principal matrix from which to compute the principal vectors.

e.g. Haykin [9]), is defined by:

AT A =
∑

i∈G


 α(i)2 α(i)β(i)

α(i)β(i) β(i)2


 .

This is a symmetric positive-semidefinite matrix, and its eigenvectors are known as principal vectors.

This matrix is used, for example, in techniques for low-dimensional approximation of data. Intu-

itively, the principal vector with the largest associated eigenvalue is the one which captures “most”

of the information about a “typical” data vector. It is very easy to obtain a distributed solution

to this problem; three parallel copies of the distributed averaging system are run for the quantities

α(i)2, β(i)2, and α(i)β(i). This allows each node to obtain a local copy of

1
N


 α(i)2 α(i)β(i)

α(i)β(i) β(i)2




Since the eigenvectors of a matrix are invariant under rescaling of the matrix, this information

suffices to compute the principal vectors at each node.

As an immediate extension of this application, we can compute least-squares solutions to systems
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of linear equations. To do so, we begin with a system of linear equations:

Ac = b.

Suppose that each row is of the form

c1α(i) + c2β(i) = b(i),

which simply means that each node has some observation b(i) which it wishes to explain with a

linear combination of its explanatory variables α(i) and β(i). In order to obtain the best possible

estimate, we wish to compute the least-squares solution to the (in general) overdetermined system

of equations above. To do so, we form the normal equations (this formulation is convenient but

there are of course many others):

AT Ac = AT b.

Now, expanding AT b, we find it is just:




∑
i∈G α(i)b(i)

∑
i∈G β(i)b(i)


 .

Applying the same technique as for the principal matrix, we can obtain both sides of the following

equation:
1
N

AT Ac =
1
N

AT b.

Clearly, the solution to this set of equations is the same as that of the normal equations, and we

can assemble these equations locally at each node; all that remains to be done is a local solution

to a linear system of equations. It should be clear that this generalizes systematically to arbitrary

dimensions; each term in the desired matrices and vectors is a scaled inner product, which can easily

be computed by appropriate application of the averaging system.

The two techniques we have presented are admittedly very simple, but serve to demonstrate two

points. First, we see that a distributed coordination tool can be applied to produce general linear-

algebraic model building in a distributed implementation; each node contributes its local data, and

gets a copy of the globally optimal answer. Second, these designs demonstrate a design mechanism

in which multiple parallel coordination processes which are then coupled at output by an appropriate

nonlinear mapping (eigenvector computation or matrix inversion). This situation is illustrated in

Figure 4.5.
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Figure 4.5: A parallel coordination architecture with a nonlinear output on the coordinated variables;
this system accomplishes distributed principal components analysis and least-squares model building.
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Figure 4.6: A cascade coordination architecture representing a recursively decomposed computation;
this system accomplishes distributed decorrelation and QR factorization.
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4.2.2 Decorrelation and QR Factorization

In this section we will present a Gram-Schmidt mechanism for orthogonalizing a collection of data

vectors; in a statistical interpretation, this will “decorrelate” the components of the data vectors

so that in the transformed sample their sample correlations will be zero. In a linear algebraic

interpretation, this is precisely QR factorization of the matrix whose rows are represented by the

data vectors. The mechanism by which we will achieve this is a cascade of two copies of the

distributed averaging mechanism ΦL(·).
Let us suppose that we have a connected graph G, and each node i has access to some vector of

observations of zero-mean variables,




α(i)

β(i)

γ(i)


 = w(i) ∈ R3.

We would like to find a transformation matrix R ∈ R3×3 such that the three components of Rw(i)

are empirically uncorrelated across the data set. The standard solution, of course, is to project one

of the variables (say β(i)) onto the other, and subtract the resulting “correlation term”. Specifically,

for two random variables p and q we can obtain a pair of uncorrelated variables as follows:

{
p, q − E(pq)

E2(p)
p

}

This corresponds to an R matrix of:

R =


 1 −E(pq)

E2(p)

0 1




Applying this idea, we can first empirically decorrelate the α(i) and β(i) by computing

R(1, 2) =
(∑

α(i)β(i)
N

)(
N∑
α(i)2

)
,

and subtracting R(1, 2)α(i) from β(i); let us call this new decorrelated variable β̃(i). As is shown

in the equation, we can implement this computation with parallel averaging systems. In order to

decorrelate γ(i), we must repeat the above operation on γ(i) for both α(i) and β̃(i); this repre-

sents a second layer of averaging computations. This recursive decomposition of the decorrelation

process leads to a natural cascade implementation with the distributed averaging dynamics; this is

schematically represented in Figure 4.6.
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Figure 4.7: Decorrelation of Sample Data

4.3 Topological Coordination

In this section we present some new applications of dynamic coordination which are associated with

the interconnection structure of the network on which they are implemented. These mechanisms

exercise the new tools developed for designing distributed coordination mechanisms.

Section 4.3.1 demonstrates a distributed gradient system for an unconstrained problem, but

imposes constraints in the interaction set that model “small groups of nodes acting together”. The

resulting dynamics will provide algorithms for graph coloring (exact for 2-coloring, heuristic for 3-

coloring). Interestingly, the only difference between the 2-coloring and 3-coloring dynamics will be

a change in the interaction sets.

Section 4.3.2 shows a distributed gradient system with a “nonlinear” coordination, and applies

this to determining the extremal eigenvectors of various matrices associated with a graph. The

resulting nonlinear dynamics is quite complex, and without the distributed gradient mechanism a

convergence analysis would be difficult (as would characterization of equilibrium). This demonstrates

the formal power of the method for synthesizing complicated nonlinear dynamics, and providing a

succinct and powerful analysis tool for these systems.

Finally, Section 4.3.3 revisits our motivational “distributed accounting” problem, in which a

group with multiple debts attempts to restructure its obligations so that the total outstanding

payment is reduced, while ensuring “fairness”, in the sense that no one is required to pay more or
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less (in total) than they owe. This illustrates the use of our modeling formalism in a less traditional

scenario, and hopefully indicates some of its flexibility for future applications.

4.3.1 Graph Two-Coloring and Three-Coloring

Here we consider the problem of “graph-coloring”, which is a prototypical algorithmic problem

involving graphs. We will present an “exact” solution for the case of two-coloring (which is well

known to be a tractable problem), and a heuristic mechanism for three-coloring (which is a classic

NP-complete computation, see Papadimitriou and Steiglitz [20]).

The problem of graph coloring is as follows: given a graph G, and a fixed set of “color” labels,

say “red” and “blue”, assign to each node a color such that every node’s color is distinct from its

neighbors’ colors. For any particular graph G, such an assignment may or may not exist; if one does

exist, we would like to find it, and if no coloring exists we would like to obtain proof that it does

not.

The two-coloring mechanism we will present will encode the coloring information in the sign of

a real-valued state variable. Let us assume that G is a connected graph, with node states x(i). The

optimization which will specify our problem is simply the unconstrained problem

min
∑

i∈G

x(i)2,

but we will impose a special interaction structure. Specifically, we will consider the following inter-

action set: {
1
2

(ei ⊗ ei + ei ⊗ ej + ej ⊗ ei + ej ⊗ ej)
∣∣∣∣ (i, j) ∈ G

}
.

Intuitively, this interaction set allows pairs of neighbors to move identically; in the {ei, ej} basis,

the matrix representing this interaction is

1
2


 1 1

1 1


 .

Assembling the distributed gradient dynamics, we obtain

ẋ(i) = −
∑

j∈Ni

(x(i) + x(j)).

Now, since this is a distributed gradient system, we know a priori that it goes to a limit, and

that in the limit every interaction produces a zero tangent vector. In particular this means that in

equilibrium

x(i) = −x(j) for all (i, j) ∈ G.
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This implies that there are at most two possible values of the various x(i) on the network; if they

are non-zero then we have produced an encoding of a two-coloring in the sign of each x(i). The only

question that remains is whether the equilibrium is non-zero.

If the graph G is not two-colorable, then it is impossible to assign two opposite values to the

nodes of the graph such that the above is satisfied; hence the equilibrium in this case must be zero.

If the graph is two colorable, then there exists an assignment of values from {−1, 1} to each node

in the graph, call it c(i), such that c(i) = −c(j) for every edge in G. Consider then, the following:

d

dt

(∑

i∈G

c(i)x(i)

)
= 0.

This can readily be deduced from the fact that each interaction produces a tangent vector that

respects this invariant. This implies that there is a non-zero linear invariant in our graph-coloring

system, and so the system will converge to the intersection of this manifold with the equilibrium

manifold described above, producing a non-zero equilibrium state in which the color of each node

is encoded in the sign of the corresponding x(i). This is guaranteed to be non-zero “generically”; it

is of course possible to pick an initial value for which the resulting equilibrium state will be at the

origin, but the set of values which cause this has measure zero in Rn.

Peripherally, we should now mention that this system can be interpreted as a potential system.

Specifically, it arises from the pairwise potential

f(x, y) = (x + y)2 .

We indeed see that this accomplishes “reflection alignment”, as indicated in Section 3.1; the only

possible non-zero equilibria correspond to neighbors’ states reflected across the point x = 0.

Now, to examine three-coloring, let us consider a new interaction set; in order to define it, we

introduce the following set T (G):

T (G) = {(i, j, k) | (i, j), (j, k), (k, i) ∈ G} .

This is the set of all “triangles” in T . The interaction set we wish to define is as follows:





∑

p,q=i,j,k

ep ⊗ eq

∣∣∣∣∣∣
(i, j, k) ∈ T (G)



 .

each interaction represents the collective action of a group of three mutually interconnected neigh-
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Figure 4.8: Two coloring for a pair of graphs. One graph is two-colorable, and this coloring is
indicated by the color labels next to the nodes. The other graph does not admit any two coloring.
The coordination mechanism proposed provides a solution when one exists, and converges globally
to zero when no two-coloring exists (see Figure 4.9).
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Figure 4.9: The dynamics of our two coloring mechanism for the graphs shown in Figure 4.8; for the
two colorable graph, the “red” node converges to a negative value, and the “blue” nodes converge
to the opposite value. For the graph with no admissible coloring, all states converge to zero.
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bors. To see this, consider the matrix representation of the above interaction in the {ei, ejek},

1
3




1 1 1

1 1 1

1 1 1


 .

Clearly, every tangent vector produced by this interaction modifies the states of the three members

of the triangle equally.

At this point let us introduce an additional assumption about G, that it is “triangularly con-

nected”.

Definition 30 (Triangular Connectedness). Let G be a connected undirected graph. We will

say that G is triangularly connected if it has the following three properties:

1. G is connected.

2. For every edge (i, j) ∈ G, i and j occur as neighbors in some triangle (i, j, k) in T (G).

3. For every two triangles (i, j, k) and (i, p, q) in T (G) sharing a node i, then (i, j, k) and (i, p, q)

also share an edge, e.g. (i, j) = (i, p).

Lemma 10 (Triangular Connectedness Implies “Uniqueness” of Three Coloring). Let G

be a graph that is triangularly connected. Then, up to renaming of colors, there is at most one three

coloring of G.

The proof is a straightforward exercise and omitted. Now, considering the distributed gradient

dynamics, and again applying our characterization of equilibrium from Chapter 3, we see that for

each triangle the equilibrium states satisfy:

x(i) + x(j) + x(k) = 0.

This means that for each triangle there exists some non-positive value α, some non-negative value

β, and some third value γ satisfying α ≤ γ ≤ β, such that the x(i), x(j), and x(k) variables each

take one of these values. Moreover, the triangular connectedness requirement implies that the values

α, β, γ are the same in each triangle on the network. To see this, consider assigning any two in some

triangle T1; this clearly specifies the third value. Now, every triangle adjacent to T1 shares an edge,

and hence two node values with T1; this in turn sets the third value in each of the adjacent triangles.

The triangular connectedness requirement implies that this in fact specifies all the values on the

entire network. The only question that remains is whether these values can be non-zero.

Now, there can be a non-zero solution to these equations if and only if G is three-colorable; clearly,

if the graph is not three-colorable, no such solution can exist. If G is three-colorable, then there
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exists an assignment of the values {−1, 0, 1}, call it c(i), satisfying the above conditions. Further, if

such an assignment exists, then we have the following invariant quantity in the dynamics:

d

dt

(∑

i∈G

c(i)x(i)

)
= 0.

To verify this, simply note that every interaction satisfies this property. Again, this invariant implies

that for generic initial values, the states converge to a non-zero equilibrium. Encoding the color of

the node by it being the largest, smallest, or intermediate value among the three values in the

triangle, we can convert these equilibrium states into a three-coloring.

We have thus shown that for triangularly connected graphs, our algorithm solves the three-

coloring problem from generic initial values. This is “unsurprising”, as a greedy algorithm easily

solves such instances of three coloring. For general graphs, we do not have a good characterization

of the system’s performance; it is not our goal to treat intricacies of graph coloring, and so we will

omit further discussion of this topic. The point we wish to emphasize is the simplicity of the analysis

provided by the distributed gradient formalism, and the “naturalness” of the transition between the

two-coloring and three-coloring formulations (parametrized only by the allowable set of interactions).

4.3.2 Graph Eigenvectors

In this section we consider a significantly more difficult problem with a nonlinear coordination;

specifically, we will constrain our system to evolve on a sphere.

Let us suppose we have some symmetric matrix associated with the edges of a connected graph

G, say M(G); the adjacency matrix or the Laplacian matrix could be considered, for example.

Specifically, we assume that Mij(G) is some real-valued weight on the edge (i, j) in G, and that

Mij(G) = 0 if (i, j) is not in G. This matrix has some set of eigenvectors, with corresponding

eigenvalues; suppose now that we wish to compute an extremal eigenvector of this matrix (say the

one corresponding to the largest eigenvalue). This corresponds to the following optimization:

max
‖x‖=c

xT M(G)x
xT x

.

Let us consider the standard pairwise interaction set PE(G)

{ei ⊗ ei + ej ⊗ ej | (i, j) ∈ G}

Now, we wish to coordinate this interaction set so that it respects the fixed-norm constraint of the

eigenvector optimization problem. We know from Chapter 3 that this interaction has coordination
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No Three−Coloring Possible 

Figure 4.10: Three coloring for a pair of graphs. One graph is three-colorable, and this coloring is
indicated by the color labels next to the nodes. The other graph does not admit any three coloring.
A small modification to our two-coloring system can serve as a heuristic for three coloring, which
solves a small class of problems exactyl (see Figure 4.11).
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Figure 4.11: The dynamics of our three coloring mechanism for the graphs shown in Figure 4.10; as
specified in the text, the three-coloring is encoded in the asymptotic state being positive, negative,
or zero. For the graph that admits no coloring, we see that all the states converge exponentially to
zero.
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capacity 1, and since the norm constraint represents a codimension 1 coordination we know a priori

that the resulting dynamics will weakly solve the system (we will return to strong solvability in a

moment).

The coordinated interaction set can be calculated to be:

{
1

x(i)2 + x(j)2
(
x(j)2ei ⊗ ei + x(i)2ej ⊗ ej − x(i)x(j)ei ⊗ ej − x(i)x(j)ej ⊗ ei

)∣∣∣∣ (i, j) ∈ G

}

This expression is rather intimidating, but it is somewhat more clear in the {ei, ej} basis:

1
x(i)2 + x(j)2


 x(j)2 −x(i)x(j)

−x(i)x(j) x(j)2


 .

Note that each such interaction annihilates the gradient of the constraint equation as desired.

To write the distributed gradient dynamics, let us introduce the notation y(i) for the i − th

component of M(G)x. Writing out the dynamics, we obtain:

ẋ(i) =
∑

j∈Ni

y(i)x(j)2 − y(j)x(i)x(j)
x(i)2 + x(j)2

.

Note the complexity of the dynamics we have synthesized; without knowing the mechanism that

generated this system, it seems that it would be extremely difficult to understand its dynamical

behavior. For example, it is not obvious from the equations how (or if) the graph structure plays a

role in the equilibrium, nor is it clear that it will go to an equilibrium. Nonetheless, we know that

this will indeed go to an equilibrium, and that equilibrium will be a distributed extremum relative

to the coordinated interaction. Specifically, we will have

y(i)x(j) = y(j)x(i)

for all (i, j) ∈ G. It seems we have nearly proven that this does indeed strongly solve the optimization

(recall that strongly solving an optimization means that every distributed extremum is also an

extremum of the centralized optimization); to see this, suppose all the x(i) terms are nonzero.

Dividing through in the above equation, and writing out y(i) explicitly, we obtain:

eT
i M(G)x

x(i)
=

eT
j M(G)x

x(j)
.

This equation says that each component of the x vector is scaled identically by the action of

M(G); hence, x must be an eigenvector. Unfortunately, it is possible to generate spurious distributed

extrema in which some of the x(i) are zero; this interaction set does not strongly solve the general



91

0 0.5 1 1.5 2 2.5 3 3.5 4
2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

Eigenvector Components 

xTAx 

Figure 4.12: Distributed graph eigenvector dynamics. The top figure shows a graph for whose Lapla-
cian matrix we will compute the maximum eigenvalue and associated eigenvector. The center figure
shows the trajectory of the objective function dynamics, and the bottom figure shows the evolution
of the individual node states; the dashed lines show the exact values of the desired eigenvector (two
of the node trajectories are nearly identical and are not distinguishable in the plots). Note that
as the limiting values are all non-zero, we have proof that this distributed extremum is in fact a
centralized extremum (and hence indeed an eigenvector).



92

graph eigenvector problem. On the other hand, if one obtains a strictly non-zero solution (which

can be easily verified using a distributed mechanism) then it is provably an eigenvector of M(G).

4.3.3 Distributed Accounting

In this section we return to the motivating example with which we began the text, “distributed

accounting”. We suppose we have a collection of nodes, each owing or being owed some amount of

money from its immediate neighbors in some connected graph G. We will encode these debts as a

collection of variables x(i, j)1 with i < j; each x(i, j) indicates how much is owed by i to j (this

quantity can be negative, indicating that j in fact owes some money to i). Each node then has net

payment that it must make,

p(i) =
∑

j>i

x(i, j)−
∑

j<i

x(j, i).

Now, it is possible that the “status quo” is suboptimal, in the sense that debt could be rearranged

in a way that maintains everyone’s net payment while reducing some metric of total outstanding

debt; we will work with the mean-square outstanding debt,

∑

(i,j)∈G

x(i, j)2

but this choice is mostly inconsequential for the upcoming development. Our formal specification is

thus:

min
∑

(i,j)∈G x(i, j)2

s.t.
∑

j>i x(i, j)−∑
j<i x(j, i) = p(i)

for all i ∈ G.

Now, we must ask ourselves what interaction is sensible for this model. Clearly, no interaction

involving only one or two edges can even weakly solve this problem; it is simply impossible to

respect the fixed net-payment constraint. The simplest interaction that has some hope of solving

the problem is the “triangle” interaction: each triangle (i, j, k) ∈ T (G) has three associated edge

variables (“debts”) available to it: x(i, j), x(i, k), and x(j, k) (we have assumed that the i, j, k are

listed from lowest to highest index). Denoting by eij the unit vector modifying the x(i, j) variable

in the global state vector x, we have the following interaction set:

{eij ⊗ eij + eik ⊗ eik + ekj ⊗ ekj | i < j < k, (i, j, k) ∈ T (G)}
1In this description the state variables are associated with edges and not nodes, which technically breaks with

our convention for distributed dynamical systems. It is possible to define another graph in which the states are
indeed associated to nodes instead of edges; this is merely notational trickery however, and we will dispense with the
formality.
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x(1,3) = 1 

x(1,2) =  −1

x(3,4) = 2 

x(2,3) = 1 

x(2,4) = −2 

Figure 4.13: Illustration of the Distributed Accounting Problem. Each node owes (or is owed) some
amount of money, indicated by the arrows alongside the edges in the network. The goal of the
distributed coordination system is to reduce some metric of total outstanding social debt, while
maintaining every node’s net payment.

The “coordinate-free” expressions for the interaction set are somewhat tedious, so we will not present

them. However, in the {eij , eik, ejk} basis, the coordinated interactions are fairly intuitive and have

the following matrix representation:

1
3




1 −1 1

−1 1 −1

1 −1 1


 .

To obtain some intuition about this coordinated interaction, consider an arbitrary vector in its range




α

−α

α




with α > 0. This vector indicates an increase in x(i, j), the debt owed from i to j. To compensate

this increase x(i, k) is decreased, to maintain i’s balance of payments. Similarly, x(j, k) is increased

to maintain the balance of payments at j and k. Now, it is clear that the coordinated interaction

weakly solves the optimization specification; the question of conditions under which it strongly solves

the specification is somewhat complex and relies on assumptions about the graph structure. For

example, the graph in Figure 4.13 has five debt variables, and three linearly independent payment

balance constraints (balancing payments for any three nodes implies balanced payments for the
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Figure 4.14: Sample trajectories for distributed accounting dynamics; the trajectories shown corre-
spond to the network and initial debts shown in Figure 4.13. Each node’s net payment is constant
(zero, in this case) across time, but the total outstanding debt is monotonically reduced. In this case,
the system recovers the globally optimal solution (in which no payments remain outstanding); for a
general graph, the resulting performance depends strongly on how the nodes are interconnected.

fourth). There are two triangles, producing two linearly independent vector fields, and so the

distribution operator has rank two. Thus, any vector in the tangent space can be reached by the

distribution operator, and so the problem is strongly solved for this special case. We will not attempt

a characterization of general conditions under which the problem is strongly solved.

The distributed gradient dynamics for the situation in Figure 4.13 is:

ẋ(1, 2) =
2
3

(−x(1, 2) + x(1, 3)− x(2, 3)) ,

ẋ(1, 3) =
2
3

(x(1, 2)− x(1, 3) + x(2, 3)) ,

ẋ(2, 3) =
2
3

(−x(1, 2) + x(1, 3)− 2x(2, 3) + x(2, 4)− x(3, 4)) ,

ẋ(2, 4) =
2
3

(x(2, 3)− x(2, 4) + x(3, 4)) ,

ẋ(3, 4) =
2
3

(−x(2, 3) + x(2, 4)− x(3, 4)) .

Sample trajectories for this system are shown in Figure 4.14. As can be seen, the sample trajectories

converge exponentially to zero (each nodes net payment was zero for this example); this behavior is

guaranteed by our previous deduction that the distribution operator has rank two, and thus strongly

solves this problem.
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Chapter 5

Summary, Conclusions, and Future
Directions
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5.1 Discussion and Summary

This work has been a study of a class of distributed coordination problems, and has presented a

novel viewpoint in which to analyze and design dynamics for distributed coordination; herein we

present a summary of the main issues examined in the preceding text. We will begin our summary

of the work by examining its basic principles, and discussion of the technical aspects will follow

thereafter.

Several overarching themes have appeared repeatedly in our discussions. The first and most

obvious theme of this work has been the idea that coordination is in some way fundamentally tied

to optimization; to reiterate the view expressed in the introduction, we have taken the position that

coordination is essentially the improvement of global performance metrics while respecting global

constraints. A second but equally important theme has been the idea that distributed coordination

is also fundamentally tied to dynamics; the very notion of a distributed system is intrinsically tied

to the process by which the global state evolves. Moreover, we have made heavy use of an interplay

between optimization and dynamics, which has formed the basis for our “design theory”.

We have paid considerable attention throughout to systematic design of distributed coordination

mechanisms; perhaps our most significant break with traditional work on the subject has been in

the separation of functional specification from implementation. We have used optimization as a

general specification language for describing coordination problems, and have discussed the use of

optimization models in specifying functional relationships. Simultaneously, we have coupled this

idea with an architecture for dynamical systems, which we have referred to as “Stability - Invariance

- Equilibrium”. We have seen that this architecture allows us to encode functional relationships

in a dynamical system by appropriately setting equilibrium and invariant manifolds. Utilizing this

dynamical architecture as a means for implementing functional relationships represented by opti-

mization models, we have arrived at the desired separation of functionality from implementation.

However, this viewpoint is incomplete without a tool for synthesizing appropriate dynamical systems

based on a specification, while ensuring that the resulting system is appropriately distributed ; this

latter goal has been accomplished by a different set of tools, coming from a geometric interpretation

of distributed systems.

Our geometric viewpoint on distributed systems has been the “cornerstone” in bridging the gap

between specification and implementation; it has accomplished several goals at several levels. First

and foremost, it addresses yet another fundamental specification problem, that of the model for the

distributed system; this too is a significant break from established approaches to this subject, in

which a priori assumptions are made on a case-by-case basis. For example, it is very common to see

models in which only immediate neighbors on a network can affect each others’ states, or to see mod-

els in which it is assumed that there is a link between any two units whose dynamics influence each
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other. We have had no need for such assumptions, as our approach has been explicitly parametrized

over the structure of the distributed system; pairwise interactions, global control, tree-like struc-

tures, and other distributed architectures are all treated uniformly by our geometric language. This

representation has allowed us to systematically synthesize different dynamical systems for the same

coordination specification, parametrized by the underlying network model. Further, this power of

expression has made it possible to formally ask (and partially answer) basic questions regarding

what kinds of coordination are achievable under various patterns of distributed interaction.

Another central aspect of our work has been the idea of distributed proof of coordination; we have

taken as an explicit part of our framework the requirement that “coordinated actions” be locally

verifiable. This has motivated both the development of some of our tools, as well as the formulation

of basic questions regarding the possibility of obtaining distributed proof of coordination under

different models for the networked interaction. This aspect of our philosophical assumptions has

had perhaps the greatest impact on the development of our technical tools, which are all geared

toward synthesizing dynamics with distributed proof that a certain specification is carried out.

The technical tools presented have reflected our overall viewpoint, and we have made use of our

geometric language to provide a unified model for distributed optimization and dynamics. The fun-

damental concept that has driven this development is the interaction: a tangent subbundle of vectors

modeling “locally available” tangent directions. This provides a natural language for describing the

behavior of locally interacting units, and is extremely flexible; we can uniformly describe purely

local control, global control, and various kinds of distributed control by an appropriate choice of

subbundle. The power of an interaction is algebraically measured by the dimension of the subspaces

it defines, and this corresponds naturally with our intuitive notion of how powerful an interaction

should be. Dual to the idea of an interaction is a coordination, another tangent subbundle which

represents tangent directions that respect some global constraints; again, we can uniformly express

various kinds of coordinated behavior by choosing an appropriate subbundle. The complexity of a

coordination is algebraically measured by its codimension, and this corresponds with an intuitive

expectation that some coordinated behaviors are harder to achieve than others. Coupled with the

idea of an interaction, this concept naturally provides the notion of coordination capacity for a

given distributed interaction; as one would expect from intuition, the capacity of highly localized

interactions is lower than that of richly coupled interactions.

We have applied our geometric model to present a framework for optimization under the con-

straints of distributed interaction. This has allowed us to define a distributed notion of an extremum,

as well as the ability of a collection of interactions to solve an optimization problem. Coordination

capacity was shown to have a natural connection to distributed optimization problems, and allowed

us to make some “intuitive” statements regarding the possibility of implementing general specifica-

tions under a give model for the local interactions. Perhaps most important of all from a design
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perspective, our geometric formalism provided a natural definition for the distributed gradient, which

has many of the desirable properties of a classical gradient (which is recovered as a special case of the

distributed gradient under the “global control” interaction). The dynamics of distributed gradient

flow was shown to go to a distributed extremum, and we were able to make use of our differential

characterization of distributed extrema to argue that the equilibria of distributed gradient flows

must in fact be highly structured. Furthermore, we were able to recast the well-known distributed

averaging system ΦL(·) as a special case of our design framework, and to recover all of its desirable

features as immediate consequences of the design formalism.

The tools we developed for distributed optimization provided precisely the elements we had

sought to create in the proposed “Stability - Invariance - Equilibrium” design architecture. Con-

vergence to an equilibrium is guaranteed by the properties of distributed gradient flow, and the

differential characterization of distributed extrema provides structural information about the set of

possible equilibria. Further, by distributing the gradient over an appropriately coordinated interac-

tion set, we have a priori guarantees of whatever invariance property we desire. This allows us to

take a general functional specification, which is agnostic of dynamics or a network model, and couple

that with an interaction set modeling the underlying network to systematically synthesize dynamics

implementing the desired coordination behavior. Moreover, this architecture provided the basis for

some useful extensions of the coordinated behavior to dynamic tracking and reconfiguration that

were not obvious in its absence.

We have presented a suite of applications of distributed coordination; the collection has been

assembled to illustrate a variety of “practical” scenarios in which distributed coordination (and

the tools of this thesis) could be utilized to achieve some desired goal. This section has provided

some less formal, but nonetheless useful, design concepts for distributed systems. For example,

we demonstrated the coupling of a distributed coordination mechanism with another nonlinear

dynamical system in which the invariant structure of the coordination dynamics provided a crucial

piece of structural information for analyzing the asymptotic behavior of the dynamics. Similarly, we

examined the use of parallel and cascade interconnections of coordination mechanisms to execute

more complex computational tasks than, say, simple averaging. Finally, we presented a collection of

novel applications involving “topological coordination” where we demonstrated the entire collection

of our new tools: specification, synthesis, and analysis of distributed coordination dynamics.

Throughout the text, we have attempted to emphasize the unity of the underlying design concept:

the use of optimization to specify behaviors, the use of geometry to specify a distributed model, and

a combination of the two to synthesize dynamics (as parametrized by a network structure) that

implements the desired coordination. This, combined with the design and analysis framework of

“Stability - Invariance - Equilibrium” has provided us with a suite of novel and powerful tools for

generating and analyzing distributed coordination systems.
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5.2 Main Limitations

Although we have been able to obtain a relatively self-contained modeling and design methodology,

there are some significant limitations in its applicability as it stands (extensions are discussed in the

following sections).

From the perspective of optimization theory, we have not discussed two important constructs:

non-gradient (e.g. Newton-like) descent methods, and inequality constraints. We have relied on the

gradient rather than other candidate descent directions for one fundamental reason: our mechanism

for obtaining distributed proof of descent has focused on computing inner-products with the global

gradient vector. The Newton descent vector will (in general) not align with the gradient vector,

and so it cannot be used as a mechanism for computing distributed proof. It is possible to obtain

distributed proof for Newton mechanisms in certain situations, but this is fairly technical and requires

bounds on the condition number of the matrix of partial derivatives. To see this in a trivial case,

note that the distributed averaging system actually has a Newton direction that aligns exactly with

its gradient direction; this system’s Hessian matrix is the identity, and so is as well-conditioned as

possible.

Inequality constraints have also been excluded from our treatment because of difficulty in ob-

taining distributed proof that the global constraint is respected. For example, a constraint requiring

the sum of all node states to be less than some constant is difficult to treat because it requires every

node to know at all times whether the global state vector has reached the boundary of the feasible

set. Cast geometrically, this is fundamentally a question about manifolds with boundaries versus

manifolds without boundaries. We do not have a good technique to answer such questions, although

we should point out that in the case that the inequality constraints happen to be locally observable,

all of our current mechanisms apply (possibly generating non-smooth vector fields because of the

inequality constraints). Put more plainly, if each node can communicate with every node to which

it is coupled by an inequality, the present methods are applicable.

Finally, we have focused our work on coordination problems that are primarily of an informational

nature; roughly, we have attempted to provide a dynamic communication infrastructure for executing

computations that lead to coordinated states. In order to apply the mechanisms proposed here

effectively, one must be able to cast the desired coordination task in the representation language of

an optimization (or a cascade of optimizations) that is strongly solvable on the network structure of

interest. This is to some extent an art, and it may not be clear how to generate this representation

(especially for systems with intrinsic dynamics, as discussed in the following section). Nonetheless,

this kind of restriction is common in this area of research (consider, for example, early Lyapunov

theory). Further, the diversity of examples from Chapter 4 seems to suggest that with the right

cascade, parallel, or feedback structure, a large class of problems can be cast in this framework.
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5.3 Extensions and Future Work

The main areas for future development of this work fall into three broad categories: coordination

for systems with intrinsic dynamics, technical extensions of the theory itself, and applications of the

modeling tools to other types of distributed systems arising in other fields.

Throughout our work, we have tacitly assumed that we were free to design arbitrary dynamics

and introduce arbitrary states for each node on our network; we took the liberty of inducing what-

ever structure was necessary to implement a particular coordinated behavior. In practice, one may

have fundamental dynamical constraints preventing the direct application of this theory, and this

seems like the most significant limitation of the work in its current form. As our theory currently

stands it seems most suited for achieving coordination in some “abstract” sense, and less immedi-

ately applicable to situations in which one must control physically (or otherwise) limited dynamical

systems. The problems that must be addressed in order to make this theory practical for systems

with intrinsic dynamics mostly center around a different kind of tangent space constraint, describing

what tangent vectors are physically realizable for a given system. It seems that our overall modeling

viewpoint, focusing on distributed proof of improvement of some global function (for example, a

candidate Lyapunov function), may be of use in designing such a theory even if it does require many

of the individual pieces of this work to be recast in a more general framework. Similarly, one must

grapple with the notion of specification and implementation of distributed coordination, although

in the case where the system’s dynamics is intrinsically limited this becomes somewhat problematic

to separate. Indeed, at the point that simply implementing a desired tangent vector is in itself a

design problem, the line between specification and implementation starts to become rather difficult

to draw. On a more optimistic note, the distributed gradient seems likely to be useful even for

systems with intrinsic dynamics; gradient-based control is common for many dynamical systems,

and gradient structures also appear frequently in potential-controlled Hamiltonian systems. One

can certainly imagine designing control potentials for Hamiltonian systems and using distributed

gradients to synthesize appropriate control forces. This seems like a promising avenue of research,

and appears to be the natural next step from the study of gradient-like systems.

The formalism we have presented has made some assumptions that were not strictly necessary

from a technical point of view; as an example, the definitions of interaction and coordination could

be somewhat more general. Abstractly, all one requires is a mapping from a vector field to another

vector field which provably makes a non-negative inner product with the first (pointwise across the

configuration manifold). While we have defined this in terms of orthogonal projections, one could

certainly imagine other classes of mappings. Similarly, we defined coordinations as idempotent

mappings acting on interactions, where we interpreted interactions as subbundles; by expanding our

definition of interactions, we necessarily must expand our definition of coordinations to encompass



101

the new classes of mappings allowed. In some sense, the transition we are proposing is analogous

to the parallel between optimization theory based on linear algebra and multivariable calculus, and

optimization theory based on convex and non-smooth analysis. In order to effect this expansion of

the theory in a useful way, one will need a sensible characterization of the class of mappings producing

vector fields with “provable progress” towards some goal, and in the general case this seems difficult

to achieve; nonetheless, expanding the theory to include more than just the projective definition we

have provided seems a likely avenue for future development.

The modeling approach we have presented, although geared towards our specific purposes, seems

to be relatively general as a language for discussing spatially distributed interactions; thus, it seems

possible that this kind of modeling approach could be applied to other pursuits involving the inter-

action of multiple decision-making units. It seems likely, for example, that this kind of approach

may be of use in the economic sciences for the purpose of analyzing the decision-making behavior

of groups having locally available information; as a model for local decision-making, it seems that

our geometric framework provides useful tools and poses tractable problems, especially as regards

optimization. The role of optimization in economics is, of course, fundamental; it seems possible

that market equilibrium models might benefit from analysis as distributed systems, and that this

might provide some useful insight into their behavior that classical optimization and game theory

do not. Furthermore, it seems that the concept of coordinations might provide some useful insight

into the effect of social norms and regulatory interference in market dynamics; presumably, a market

model with low coordination capacity pays a steep price in efficiency when subjected to regulation,

whereas a market with a rich interaction structure can tolerate significantly more regulation. The

dynamics model presented may also yield some insight into equilibrium selection, although in order

for this kind of analysis to be carried out one will have to produce a more general version of our

model to account for the fact that each economic agent has differing local goals.

Finally, one would like to obtain a suitable discrete-time version of this set of tools; although it is

possible to effectively discretize the dynamics of most of the systems we have described, this seems

an unsatisfying solution to the problem. However, developing a similar theory for discrete-time

systems seems a rather difficult undertaking because so much of our work has exploited the natural

geometric structure of continuous models; the notion of interactions seems much more complex to

define for systems in which updates occur at discrete time-steps, because we can no longer model the

dynamics with tangent vectors. A more natural approach, perhaps, is to find systematic methods

for discretizing the systems produced by a continuous model in such a way that we ensure the three

underlying principles of our design architecture: stability, invariance, and equilibrium structure.

This would be, in some sense, the most satisfying possible solution in that it would continue to

exploit the underlying structure that has made this work possible, while systematically generating

discrete-time systems implementing a given specification.
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