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ABSTRACT

In this thesis, the importance of polarization in radar scattering problems
is investigated. The different matrix characterizations of scatterers are
discussed in detail. The problem of finding the polarizations which would yield
an optimum amount of power received from the scatterer is solved for the most
general case. This shows that for certain classes of scatterers six optimum
polarizations exist. The concept of a polarization spectrum to characterize a
scatterer is introduced. The usefulness of these spectrums is illustrated when
results, using measured multipolarization synthetic aperture radar data, are
discussed(, Another useful parameter, the coefficient of variation, is introduced.
Measured results show that this parameter may be used to form an idea of the
scale over which the scattering properties of the scene being imaged vary. The
problem of finding the effective scattering operator of a slab filled with different
scatterers is formulated. Detailed expressions are given for the effective single
scattering operators. This formulation is illustrated by calculating the effective

single scattering operators for models of different types of vegetation.
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CHAPTER 1
INTRODUCTION.

The analysis of the scattering of electromagnetic waves by rough surfaces
has been the subject of many studies during the past four decades. It received
its biggest impetus from the advent of radar and the subsequent need to know
more about the radar returns from terrain and the sea. In recent years, the
increasing use of spaceborne radars to map the surface of the earth once more
focussed attention on the problem of radar backscatter from different types of
terrain. The appearance of multipolarization imaging radars added a new
dimension to this problem, and may provide scientists with some valuable new

information about the terrains currently under investigation.

The problem of radar backscatter from natural surfaces is inherently
different from, and usually much more complicated than that of scattering by
other bodies. For instance, the exact shape of a natural surface is usually not
known, and in many cases may not be of concern to scientists involved in radar
imaging. Instead, only average properties of the surface shape usually enter
into the problem. Since the exact boundaries of the surface are not known, a
boundary-value approach cannot be used to solve the problem of radar
backscatter from natural surfaces. Rather, one is usually more interested in
the relationship between the average properties of the natural surface and the

average radar return observed.

In radar imaging, the average properties of the radar backscatter are
known, and one wants to obtain some information about the scattering terrain
from these known properties. Due to the complexity of the problem, it is
obvious that every possible piece of information available to the scientists

involved should be utilized fully to extract the required information from the
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measured data. In this thesis, the optimum use of the polarization properties of

the scattering terrain will be discussed in detail.

The pioneering works in this field include that of Kennaugh [25],[10] on the
effects of the type of polarization on the radar echo characteristics and that of
Huynen [2] on the phenomenological theory of radar targets. Recently, the
calculation of the optimum polarizations of a scatterer received intense
attention [2],[3].[4].[9].[2%], especially when coherent measurements are
considered. A few attempts were made to find the polarizations which would
optimize the amount of power received from the scatterer when the scattered
waves are only partially polarized [4],[22] Since most, if not all, of the waves
scattered by natural surfaces are only partially polarized, this problem will be

discussed in detail in this thesis.

This thesis is divided into seven chapters. In Chapter 2, the concept of
optimum polarizations is linked to the amount of poWer that an antenna would
absorb from the scattered wave. The different characterizations that should be
used for different types of scatterers are disctiésed in detail. Two general
methods for finding the optimum polarizations of a scatterer, which applies
both when the scattered waves are partially and completely polarized, are
derived in this chapter. These methods show that in the general case, siz
optimum polarizations exist and not four as previously reported in the
literature [R],[3].[4].[9].[2R]. To fully utilise the polarization information
contained in the scattered waves, the concept of a polarization spectrum is
introduced in this chapter. It is shown how the information contained in this
polarization spectrum may be used to form an idea of the amount by which the
scattering properties of the natural terrain varies spatially. It is also shown how
the polarization spectrum may be used to compare and classify different

scatterers. Finally, the problem of finding the optimum polarization for
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discerimination between different scatterers is solved.

In radar imaging of natural terrain, one invariably encounters scattering
from vegetated surfaces. One way to model scattering from such vegetated
surfaces, is to consider the scattering from a layer of volume scatterers
covering a rough surface [11]. In Chapter 3, the problem of finding the effective
scattering operators of such a combination is formulated. Detailed expressions
for these effective scattering operators when only single reflections of the

incident wave is considered, are listed in this chapter.

In Chapter 4, the results of Chapter 3 are illustrated by calculating the
effective scattering operators for a few selected models for different types of

vegetation. The results of these models are discussed in detail and are shown to

agree with the physical picture of the scattering processes.

Chapter 5 shows how models, such as those calculated in Chapter 4, may be
used te find some information about the scattering surface through a

knowledge of measured multipelarization radar imaging data.

In Chapter 6 some polarization spectrums for different types of scattering
surfaces, taken from multipolarization radar images, are shown. Also, images of
the amount of spatial variation in scattering properties, using real

multipolarization radar imaging data, are presented and discussed.

Some conclusions are drawn and some recommendations are made in

Chapter 7.
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CHAPTER 2

OPTIMUM POLARIZATIONS FOR USE IN SCATTERING PROBLEMS.

2.1 Introduction

First, it will be shown how the polarization of an antenna affects the
amount of power that the antenna absorbs from an incident Electromagnetic
(EM) wave. Electric fields, power and polarization vectors radiated by the
antenna will be denoted by the superscript rad. likewise, electric fields, power
and polarization vectors incident on the antenna will be denoted by a

superscript inc,

The radial component of the radiated Poynting's vector in the far field of

the antenna, expressed in spherical polar coordinates is (c.f. [1])

£ *
Sod(rag) = %N/ 2B B () @-1)
0

where Frad denotes the far-zone radiated electric field vector and * denotes

complex conjugation. The radiated field polarization vector is defined by:

prad - VET];L:_‘“:;;;' (2-2)
Similarly, one finds for the incident plane EM wave that
S7C(00) = § N/ e E ) B (5 23)
and
inc — ___E_l_nc_ (2_4)

P ~/ Einc,Einc *

The power absorbed by a load connected to the antenna is [1]:



2 ) .
Prec = '27 (.p) SIRC(S,0) lprad(ﬁn¢)'Plnc(ﬁ-¢)|2- (2-5)

2
where g(3,¢) is the antenna gain function and i—‘;—g(ﬂ.gp) is the effective area of
the antenna. From (2-2) and (2-4) it follows that

ad. winc |2
ki i iy (2-6)
lEradIZ ]Elnc‘2

]prad.pinclz =
Using (2-3) and (2-8) in (2-5), one finds
P = K(\8,p) EradEinc|2, (2-7)

rec

where

. _—
% ;?;g(ﬂ.so) '\/Z—Z

rad (2 (2-8)
| Erac]

K\,9) =

In the rest of this discussion it will be assumed that K is independent of
polarization. From (2-7) and (2-8) it is clear that the direction of Erad relative
to that of EIRC plays an important role in determining how much power will be

absorbed from the incident wave. From (2-5) it follows that
>\2 inc
0= P = ng'fp) SInC(8,¢) . (2-9)

In the rest of this chapter the use of polarization to enhance or reduce the
absorption of power from waves scattered by unknown objects will be explored
in great detail. It will be shown that certain optimum polarizations exist which,
if used when illuminating the scattering bodies and also to receive the scattered
waves, ensure that the maximum or minimum amount of power will be absorbed
from the scattered waves. It will be shown that in the most general case, siz
optimum polarizations exist and not only four as has been reported in the

literature so far [2] - [4]. Finally, it will be shown that it is possible to use
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polarization to discriminate between two scattering bodies.
2.2 Mathematical Characterization of Scatterers.

Let an arbitrary scatterer of finite size be illuminated by a plane EM wave of
infinite extend. For the present purpose, it will be assumed that the origin of a
Cartesian coordinate system is located somewhere inside the scatterer and that
the plane wave is travelling in the positive z- direction of this coordinate system.
In this coordinate system, the illuminating plane wave has an electric field

vector of the form
Finc = [Eincex + E;ncey] eilkz—wt) (2-10)

where E, and Ey are complex amplitudes in the x- and y- directions respectively,
and kz-wt is the instantaneous phase of the incident plane wave. Here w
denotes the angular frequency of the wave, t denotes time and k is the wave

number of the wave.

In the far-zone of the scatterer, the scattered wave is a spherical, outgoing
wave. To express the electric field of this wave mathematically at some
observation point P, a second coordinate coordinate system (x'y'.z") of which
the origin coincides with that of the original coordinate system is introduced.
To express the scattered fields in the basis of the antenna, the negative z' axis
points in the direction into which the scattered wave is propagating as shown in

Figure 2.1.

In this coordinate system, the scattered electric field is given by:

e—i(kz+ot)
ES¢ = [E:Fex, + Estcey;] e (2-11)

where r is the distance between the scatterer and the observation point and the

k in the denominator is added to ensure that the expression is dimensionally
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Figure 2.1. Scattering Geometry.

correct.

To characterize the scatterer, one may define a complex scattering matrix

as follows:
l‘ .
Ei,c _ Sx,x Sx'y E)l(nc (212)
sel ~ |8 S ine| B
Eyl yx “yy Ey

As will be shown shortly, it is not always possible to characterize a complex
scatterer (i.e., one changing with time or one made up of a number of
independent incoherent scatterers) by a single scattering matrix. For these
cases, another characterization, the Stokes Scattering Operator (SSO) will be
used. This operator describes how the Stokes parameters as opposed to the
electric fields of the incident wave are transformed by the scatterer. In this

discussion, the definition of Stokes parameters as found in [1] and [5] will be
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used. According to this definition, an electric field of the form

E=Re“Exex +Eyey] ei(kr—”t)} (2-13)

with E_ and Ey complex quantities, is assumed. The Stokes parameters of this

electric field are defined as:

IS E E +E B
* *
Sy [ExExEyEy 10
Sa| T <ib "
2 2Re[ExEy]

*
2Im[E,E,]

It is worth noting that the present definition of the Stokes parameters is
the same as that used by Chandrasekhar [6] and van de Hulst [7], with the

exception of a minus sign in the definition of S5.

Now, let
gine = [sipe; sine; sjne; sipe (2-15a)
and
$%¢ = |s§°:55°; 85¢; s§°] : (2-15b)
It is clear from (2-14) and (2-12) that it is possible to write
c = [M]sinc, (2-16)

where [M] is a 4x4 matrix with real coefficients. This matrix will be called the
Stokes Scattering Operator (SSO) for obvious reasons. Following some simple
algebra ( shown in Appendix A ) one finds that the elements of [M] is given, in

terms of the elements of the Scattering Matrix, by:

- L ] * L *®
My, = U[S,y Sy + Sx.y-Sx,y + Sy.x-Sy,X + Sy,y-Sy.y] (2-17a)



| Myp = XSy 'Syx = SpySyy + SpxSpx = SpySov] (2-17b)
Myz = %Re[SgySeyl + % Re[Sy 50, ] (2-17c)
My, = $Im[Sg, S ] +%Im{S, S5, (2-17d)
Mgy = K[Spx'Sex * SeySyy = SpxSpx = SpySon] (2-17e)
Moz = %[Syx'Sex — SeySyy — SpxSyx + SpyS0.] (2-17f)
Mgg = % Re[SpySyy] — % Re[SyyS0,] (2-17g)
Mp, = %Im[S5, Sy ] —%Im{S, S5, (2-17h)
Mg; = % Re[Sp,Spy] + % Re[SySp] (2-171)
Mgz = % Re[Sgy Sy, ]~ ¥%Re[S,Sp] (2-17))
Mgg = %Re[S;,y'Sy,x] +%Re[S;,X-Syy] (2-17Kk)
Mg, = %Im[Sg, S, ] —%Im[Spy 5] (2-171)
My = $Im[Sg, Syl +%Im[S,Sp.] (2-17m)
My = %Im[S; xSyl = %Im[Sy,y-S;,y] (2-17n)
Mgz = $Im[Sp, S, ]+ % Im[Sg So,] (2-170)
Mgy = %Re[Sp Sy, ] — % Re[Sg,Sp.]. (2-17p)

These two characterizations of a single scatterer are identical when power
absorbed from the scattered wave is considered, as is shown in Appendix A.
Combining the expressions (2-7), (2-12) and (2-16) with the results of Appendix

A, the power absorbed by an antenna from the scattered wave is given by:
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Proe = K(ABg)|Erd[S]Erad|2 = K(A8,p)ST2d [M]sTad (2-18)

This section will be concluded by showing that any type of scatterer can be
characterized by a Stokes Scattering Operator, but only certain types of
scatterers can be characterized by a scattering matrix. It has already been
shown that it is possible to find a Stokes Scattering Operator when the
scattering matrix is known. To show that the inverse is not true, one has to
consider the case of a scatterer which is made up of a number of independent,

incoherent scattering centers.

In the case where an EM wave is made up by superposition of a number of

EM waves with independent phases, the Stokes parameters of the resulting wave

is given by ([1].[5].[6].[7]):

N
5; = (S i=1,2,3, (R-19)
i=1

where the index i denotes each of the N EM waves with independent phases.
Thus, if a scatterer is made up of N independent, incoherent scattering centers
{(i.e., there are no permanent phase relations between the waves scattered by

these centers), (2-16) must read:

N N
O -

i=1 i=1

In the general case, there are 7 independent parameters in each scattering
matrix. (A constant phase, which is lost when power measurements are made,
may be neglected.) From (2-17) it is clear that each coefficient of [M,] is a real
number that is a nonlinear expression of the coefficients of the scattering
matrix. If no assumptions are made at all, this means that there must be 9

relations between the 16 coefficients of each [M,]. These relations are:
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(My1-Mpp)?~(My5-Mp)% = (Mgg+My)2+(Mg,—Myg)? (2-21a)
MisMag+My Moy = My Moy —MipMoo (2-21b)
Mg Map+My Myp = My Myp-Moy My (2-21c)
MigMyg—Mp3Moy = MggMg +MyaMy, (2-21d)
M31Mg1-MzeMyp = MgaMyg+Ma My, (2-21e)
MPa+ME3+ME +ME, = ME -MZ+M5 M5, (2-21f)
ME +ME+ME +ME, = M +MEp-ME -ME, (2-21g)
Mfs-ME3-MF +ME, = M53-ME,+MZ5-ME, (2-21h)
M§-ME-MZ +ME, = ME;+ME,-MZ;-MZ, . (2-211)

These relationships are all nonlinear, which means that they are lost in the
addition process of (2-20). Generally, therefore, there are 16 independent
parameters in the Stokes Scattering Operator. It is thus clear that it is not
possible to characterize the most general scatterer (i.e., one made up of a
number of independent, incoherent scattering centers) fully by a scattering

matrix with only 7 independent parameters.

It is now clear that those scatterers which can be completely characterized
by a scattering matrix form a rather small subset of a more general class of
scatterers - those that must be characterized by a Stokes Scattering Operator.
The importance of this fact is stressed by the fact that the vast majority of
scatterers encountered in radar imaging are made up of a number of scattering
centers. If all the information about the combination of scattering centers are

to be retained, one has to characterize these scatterers by their total Stokes

Scattering Operators.
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2.2.1 Characterization of Scatterers in the Backscatter Case.

Since most, if not all, imaging radars use the same antenna for
transmission and reception of signals, it will be worthwhile to see how the

expressions of the previous section change, if any, in the backscatter case.

In the backscatter case, assuming reciprocity of the propagation path, it

follows that

ery = Sny . (2‘22)

In this case the primed and unprimed coordinate systems coincide. It then

follows that in the backscatter case, a single scatterer may be characterized by:

[ [ i [ .

Bl [Seele s mipe

ESc - S i(‘/’yy_‘pxy) ginc|’ (2-23)
y ISxyl 1S5y le y

There are only five independent parameters in the scattering matrix as
defined above (the monostatic scattering matriz with relative phase only).
Using (2-23) in (2-17) one finds that in this case [M] becomes a symmetric real

matrix with elements:

My; = M SyySex + SyySyy + 25,5, ] (2-24a)
Mz = X[ SyxSyx —SyyS5, ] (2-24b)
My3 = %5, Re[S,,+5,] (2-24c)
My, = %8, Im[S,~S,,] (2-24d)
Maz = X[ SyxSyx * SyySyy = 25,5 Syy (2-24e)
Mpz = %S,y Re[S,,~Sy] (2-24f)



-13..

My, = - % Sy Im[Sxx+Syy] (2-24g)
Mgg = %SZ, + % Re[Sy,S,,] (2-24h)
Mz, = %Im[S;, S, ] (2-24i)
My, = %SZ ~%Re[S; S, ] (2-24j)

Since both [M] and the scattering matrix are now symmetric matrices,
there must be five relationships between the elements of [M]. These are easily

found from (2-21) as:

Myp = Mgp+Mag+My, (R-25a)
MyaMag+MigMay = Myp(Myq—Mop) (2-25b)
MygMyg—Maghloy = Mgy(Mzz+Myy) (R-25c)
MZ5+ME +ME3+ME, = ME-ME (R-25d)
Mfy-ME,-NE3+ME, = ME-MZ, (R-25e)

It is interesting to note that (2-25a) is a linear relationship, which will be
retained if the summation in (2-20) is performed. The general backscatter
Stokes Scattering Operator may thus contain nine independent parameters, and
not ten as may be expected. Nevertheless, it is still clear that it is not possible
to fully characterize the most general type of scatterer by only the five

independent parameters of the scattering matrix.

To conclude this section, it will be peointed out that the elements of both the
scattering matrix and the Stokes Scattering Operator are functions of, amongst
other factors, frequency and the relative orientation of the scatterer with

respect to the illuminating antenna (i.e., the aspect angle of the scatterer).
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2.3 Optimum Polarizations for Power Reception.

2.3.1 Deterministic Scatterer.

A scatterer will be called a deterministic scatterer if it can be fully
characterized by a complex 2x2 scattering matrix. For such a case, the power

absorbed by the antenna from the scattered wave is given by

P_. = K(\0¢)|Ered[s]Erad|2 (2-28)

rec

Since most current imaging ( and also most other ) radars use the same
antenna for transmission and reception of signals, only the case of a single
antenna will be considered here.

238 1.1 Maximum Polarizations.

P__.in (2-26) will be a maximum (assuming that K(A8,¢) is independent of

rec

polarization) if
[S]Ered = t gred* (2-27)

where t is a (complex) constant. To change this into an eigenvalue

problem, one simply takes the complex conjugate of both sides of (2-27) and
multiply by t to find;
[S*][S]ETad = yErad (2-28)
where
X = tt*.
This is now an eigenvalue problermn which may be written as:

[A]Erad - XErad

with
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* * * * r
SXIX'SXIX‘I'SXIY’SYIX lex'sx1y+sx1y'syry A11 Alz

[A] = . 4 . = a |- (229
erxsy1x+sy)x'syyy leySny+Sy1ySny A21 22

The eigenvalues x of [A] are the real roots of
XP—(Ay+Ag0)X+A [ Aso—A 0As, = O. (2-30)

The maximum polarizations are the eigenvectors of [A]. If one defines a

polarization ratio by:

E
p, = EXL (2-31)
it is easily shown that the two maximum polarization ratio’s are:
Aoo—Aq 3/ (Ano—A, )2 +4A, A
_ Agp—Ay 3V (Agp—Ay ) +4Ay, 12 (2-32)

Prmax ~ 2A12

In terms of the complex polarization ratio of (2-31), the Stokes parameters

of an EM wave are (assuming normalized electric field amplitude):

Sg = 1. (2-33a)
2

l_

s, = —ﬁ% (3-33b)
1+|p,|
2Re(p,.)

Sy = ~—-———-—r—2— (3-33¢)
1+|p,|
2Im(p.)

Sy = ____Er? (3-33d)
1+[pp|

Using the results of (2-32) and (2-17) one finds that the polarization ratio
of the maximum polarizations can be expressed in terms of the elements of the

Stokes Scattering Operator :
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_ —(M;+Mg)—-i(My53-Mg,)
Prmax = (M| 5+Mpg+Mg; —Mag) Hi(M; 4+ Mgy —Mp+Ny,)

L0085 ) 4500, 53 )P+ (M 5 4g) +iGMp M )P
; 2
[(My3+Mpg+Mg —Mgo) +i(My 4 +Mpy =My +M, )]

[(M 4 +M ) =i(Mp3=N30) P ]%

+
[(M 5 +Mpq + Mgy —Mgo) +i(My 4 +Mp—Myp +My )P j

In the backscatter case, this expression has a particularly simple form:

2 2 2
‘M12i\/M12+M13+M14

Prmax = Myg+iMy, (#54)

If (R-34) is used in (2-33) one finds the Stokes parameters of the maximum

polarizations in the backscatter case as:

S St (2-35a)
1max — -doa
\/Mfz+M123+M124
+M
13
S = (2-35b)
2max
\/M§2+M?3+M124
+M
14
S = . (2-35¢)
3max
\/M122+M123+M124 .

It also follows from (R-29) that in the backscatter case [A] is a Hermitian
matrix. This, in turn, means that the two maximum polarization vectors are
orthogonal vectors, since they are the eigenvectors of a Hermitian matrix.
Huynen [2] has shown that when the eigenvector corresponding to the larger
eigenvalue of [A] is transmitted, an absolute maximum amount of power will be

absorbed by the antenna.
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2.31.2 Minimum Polarizations.
Ppec in (2-26) will be a minimum when
Erad.[S]Erad =0 (2-36)
This oceurs when

[S]Erad = ¢ grad*. (2-37)

ort

The subscript ort means orthogonal to. But, for (2-36) to be true and if

B = |5

one must insist that

Erad* - . (1) —1

ort

Ered (2-38)

Using (2-3B) in (2-37), one finds that the minimum polarizations are the

eigenvectors of the following eigenvalue problems:

+ {0 1] [S]Erad = ¢ grad (2-39)
-1 0 :

The eigenvalues of these equations are, in general:

c = i{Sny—Sx,y:&'\/ (s},x+sx,y)2—4sx,xsyy] . (2-40)

The minimum polarizations are the nonzero {complex) scalar multiples of:

- [
Enin = [ t%[Sy’x"'sx'yj:-\/(Sx’y"'s)"x)z_487(5(8)”}'] ; iS)”.‘)’] ' (2-41)

In the backscatter case where reciprocity holds, expressions (2-40) and (2-

41) become:

c® = £ \/SZ-S,,Syy (2-42a)
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Bb - \/s2 :
EDin = £S5,V SE -85S,y 5,1 (2-42b)

Unfortunately, it is not possible to find a simple expression for the Stokes

parameters of the minimum polarizations.
2.3.1.3 Polarization (Huynen) Fork.

As can be seen from (2-35) if one plots the two points corresponding to the
maximum polarizations on the Poincaré sphere, (i.e., use 31, S5, and S5 as the
coordinates and 5, as the radius) these points are antipodal in the backscatter
" case. Huynen [2] has shown that in the backscatter case, the four points
corresponding to the four optimum polarizations all lie on a great circle. If a
vector is formed by joining the origin of the (S;,S5,53) coordinate system with
each of these points, Huynen [2] has also shown that these four vectors form a
fork as shown in Figure 2. 2. Furthermore, Huynen has shown that the angle v is
given by

x
v = tan~ 1|21 ¢, (2-43)
2

v-P»|t—

where x5 is the larger eigenvalue of [A] and X; is the smaller eigenvalue.

Using (2-30) and (2-17) it is easily shown that (2-43) can be written as:

[ ]1_
2 2 12
1 M11”\/M12+M13+M14 4

(R-44)
2 2 2
M11+\/M12+M13+M14J

¥ = tan™

Since (R-17) is only valid for a deterministic scatterer, it must be stressed
that (2-44) is also only valid for a deterministic scatterer. From (2-44) it
follows that the Huynen fork has opened completely (in the case of a

deterministic scatterer) when
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Figure 2.2. Polarization {Huynen) Fork.

2.3.1.4 Gamma Spheres

From (2-1B) or (2-26) it is ciear that for every point on the Poincaré sphere,
it is possible to calculate the power received from the scatterer. It is thus
possible to draw, on the Poincaré sphere, curves of constant power received by
the antenna. These figures are called Gamma Spheres after Huynen [2]. Figure
2.3 shows the Gamma Sphere for a slightly rough surface of relative dielectric

constant 3 which scatters according to the Bragg relations.

2.3.2 Distributed Scatterers.

When the aspect angle of a scatterer varies with time, or when the
scattering is due to a collection of scattering centers randomly oriented and/or

distributed in space, the power received by the antenna will be the averaged
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Figure 2.3. Gamma sphere for a slightly rough surface at an incidence
"angle of 45 degrees.

samples of scattering from a set of different single scatterers. In the case of a
scatterer with time varying aspect angle, the average is taken over time. In the
case of a collection of scattering centers randomly oriented and/or distributed
in space, the ensemble average is taken. These classes of scatterers will be
called distributed scatterers. It has been shown previously that, in general, it is
not possible to completely characterize a distributed scatterer by a 2x2
scattering matrix. An alternative definition of a distributed scatterer may thus
be those scatterers which can only be fully characterized by their Stokes

Scattering Operator.
2321 Optimum Polarizations.

Most scatterers encountered in radar imaging belong to this class. One may

think of simple examples such as natural rough surfaces, vegetation and the



_21-

surface of the ocean. In all these cases, the properties of the scatterers within
one rescolution cell may vary. The question of which polarization, on the
average, would yield an optimum amount of received power is therefore a very

important one. To answer this question, it is remembered from (2-18) that the

power received from a distributed scatterer is given by

P_.. = K\ p)srad M]srad (2-46)

rec
If it is assumed that K(A%,¢) is constant for all polarizations, one has to

solve the problem of optimizing

P = Srad[M]sred, (2-47)

re

Two methods for solving this problem will be discussed separately.

2.3.2.1.1 Lagrange Multiplier Method.

Assuming a normalized radiated electric field amplitude, and dropping the

superscript rad, (2-47) may be written as

P'rec = Mpp + (Myp+Mp()S) + (My3+Mg)S, + (My4+M,4)S3
+ (Mgg+Mgp)S, Sy + (Mg, +M,5)S,Sg + (Mg, +M,5)S,S,

2 2 2

There is a constraint on the values of S;,5,; and S5 that may be used in (2-

4B) - they must be the components of a normalized Stokes vector
([11.[51.[61.[7]). ie.,

S?+S5+55 = 1. (2-49)

Thus, to optimize P'[,. , the Lagrange Multiplier Method [8] may be used.

First, the auxiliary function
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G(S;.S5.8;) = S[M]S - /(S?+55+S5-1) (2-50)

is formed. Then, it is required that

8G(S,.8; S5) _

s, 0 i=1,2,3. (2-51)

Performing the indicated differentiations, one finds that the optimum

values of S 1,82 and SS are the solutions to

[ My B(Mag+Mgs) KM, +M,0)] IS, M5 +Ms, s,
H(Mpy +My5) Mgy +Mys) Myq S3 My My, Sa

This expression is of the form
[Bls+a = vs (2-53)
and [B] is a real symmetric 3x3 matrix. Two cases may be identified:

(i) a = 0 : In this case the optimum polarizations are the normalized
eigenvectors of [B]. The maximum polarization is given by the eigenvector
which corresponds to the maximum eigenvalue of [B]. Likewise, the minimum
polarization is given by that eigenvector which corresponds to the smallest

eigenvalue of [B]. Since [B] is a real symmetric matrix, these optimum

polarizations are mutually orthogonal.
(ii) a # 0: One may rewrite (2-53) to read

[B—vl]s = —a, (2-54)

where I is the 3x3 identity matrix. If v is not an eigenvalue of [B], (2-54) has a

unique solution given by:
s = —[B—] la. (2-55)

However, not all values of v which are not eigenvalues of [B] may be used in
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(2-55). This follows from the constraint condition which requires s to have unit
magnitude. Also, v must be a real number; a consequence of the fact that s
must be purely real and both [B] and a are real. If, in general, one plots the

magnitude of s versus v, the cases shown in Figure 2.4 may be identified.

These nine cases may occur when [B] has three distinct eigenvalues. If [B]
has only two distinct eigenvalues, only three cases can arise and when [B] has
only one eigenvalue, only one case is possible. Since these can easily be found

from Figure 2.4, they will not be repeated here.

The question of how to find the correct values of v to use in (2-55) still

remains. If (2.55) is used in (2-49), one finds
([B-vI]~la) ([B-v1]"la) = 1. (2-58)

Expanding this expression, cne finds that the correct values of v are the

real roots of

p(r) = B +d S +dpt +dpd+dpP +dgy +dg = 0, (2-57)
where
d; = —R¢ (2-58a)
dy = cf-qfi—afp-afs—Rc; (2-58b)
d3 = [eje3d01911 902912903913 C3) (2-58c)
dy = c§-af;—afz—afs+2lcic3d1921~dor%22 ~d03%zs! (2-58d)
ds = R[epe3—qy1921 912922~ 913923] (2-58e)
dg = c§—qf,—afz—af; (2-581)

and
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Figure 2.4. General behaviour of the magnitude of sas a
function of v.
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¢y = Mpo+M3a+Myy

| 2 2 2
T (Mag+Mgo)+(Mpy +My5) +(Mgy +My3)" | ~MagMas —MapMaz—MapMyy

Cz =
_ 1
cg = M22M33M44+Z{(M23+M32)(M24+M42)(M34+M43)
2 2
~Mp(Mgy +M,53)2—Mag (Mo, +M, 5)2~My (M3 +M3p)
Qg = AMjp+Mp)
1
Qpy = |(Myg+Mg;) (Mg +Map)+(My 4 +My,)(Mps +Myp)
—H (M o+ My, ) (Mgz+Myy)
= B(M,,+M rM M, —{Ma, +M,2)2
gy = A(Mjp+ 21)1 33Mgq =5 (Mg +My3)

[
+h(M3+M3 1)1%{M24+M42)(M34+M43)‘%M44(M23 +M32)]

1
T Moz +M30) (Mg +My3) KoMz (Mp g +My2)

+%(M14+M41)

Ao = #(M;g+Ms,)

_ 1
= o (Myg+May ) (Mpg +Mag) +(M) 4 +My 1) (Mg, +My3)

(M 3+Mg ) (Map+My,)
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Qgz = A(Mp+Mp) %(M24+M42)(M34+M43)’%M44(M23+M32)]

[
1
+/(M3+M3,) [M22M44‘;‘(M24+M42)2

[
1
M14+M41){z‘(M23+M32)(M24+M42) ‘%Mzz(M34+M43)]

dog = A(M14+Myy)

qi3 = %;{(Mm’sz1)(M24+M42)+(M13+M31)(M34+M43)
—HA(My 4 +M4 1) (Mpp +M33)

U3 = %(M12+M21){%(M23+M32) M34+M43)‘%M33(M24+M42)]

+H(M; 3+ Mgy (Mp3+Mg32) ‘%Mzz(M34+M43>]

f
1
+%(M14+M41)lezMss‘Z(Mzs’“Msz)Z] :

Once the real roots of p(v) are known, the optimum polarizations can easily

be calculated using (2-55).

2.3.2.1.2 Direct Method.
Since every polarization can be viewed as a point on the Poincaré sphere,
[1], one may rewrite (R-48), assuming a normalized radiated electric field

amplitude, as:
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P'roc = My +(M;o+My, )sin(d)cos(p)+(My g+Mz)sin(¥)sin(p)

re

+(M 4 +M 1 )cos(8)+(Mgg+Mgz)sin®(8)sin(p)cos(p)
+(Mgy +Myp)sin(¥)cos(¥)cos(g)+(Mgy +M,3)sin(B)cos(d)sin(ep)

+M2251n2(19)0052(;p) +M33sin2 (8)sin?(p) +M44cosz(13) . (R-B9)

The problem now becomes one of finding the values of ¥4 and ¢ which would
optimize (2-59). These values of ¥ and ¢ are the solutions to the following two

nonlinear equations:

[(M5+Mpy)cos(p) +(M 3+ Mg, )sin(p)Jeos(8) —(My 4+M, 1 )sin(s)
+2(Myq+Ma,)sin(W)cos(¥)sin(p)cos(p) +[ (Mg, +My5) cos(ep)
+(Mg, +M, 3)sin(g)](cos?(¥) —sin?(8))+[Mypcos®(p)

+M3331n2(¢)—-M44]251n(13)cos(19) = 0. (2-80)
and

[(M;3+Mgq)cos(g)—(M;o+Ma  )sin(p)]+(Mog+Mgs)sin(¥)cos(Ryp)
+c0s(19)[(M34+M43)cos(¢)—(M24+M42)sm(¢)]

+(Mg3—Ms,)sin(¥)sin(Re) = 0. (R-61)

It is clear that both these methods may involve a considerable amount of
numerical work. A close examination of the two procedures reveal that in both
cases a total of sir solutions may be possible. This point will be discussed in

more detail in the next section.
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2.3.2.2 Number of Optimum Polarizations.

As noted in the previous section, a total of six optimum polarizations are

possible. In this section an example will be given of one such case.

In order to elliminate speckle noise in radar imaging, it is common to
average over a number of measurements. To simulate the properties of
Gaussian background noise in such a setup, a Stokes Scattering Operator was
made up using four samples of scattering matrices generated by a random
number generator. The Stokes Scattering Operator for each sample was
calculated and the averaging was finally done on these four Stokes Scattering

Operators. The resulting Stokes Scattering Operator is:

55561 .03679 .00965 .09070
.03679 .13667 .09300 -.00076
(M] = .00965 .09300 .19990 .188B15
.09070 —.00076 .18815 .21904

(2-62)

If the Lagrange Multiplier method is used, and the magnitude of s is plotted
versus v, one finds the result in Figure 2.5. This figure clearly shows that there
are siz optimum polarizations for this case. The optimum polarizations for this

case, together with the value of P' ., for each optimum polarization, are:

Prec Sl SZ SS
1.12393 0.26069 0.80262 0.75086
0.81770 —19429 —-.81383 -.53B17
0.61632 0.44170 -—79392 0.35366
0.51523 —.53607 —56997 0.31221
0.45692 0.67213 —-36791 -—.26797

0.40265 —43148 0.57816 -.68090

Figure 2.6 shows these optimum polarizations when plotted on the Poincaré

sphere.

Not only are there now six optimum polarizations, but the Huynen fork no
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Figure 2.56. Magnitude of s as a function of v.

longer exists too. Up to now, only four optimum polarizations have been
mentioned in the literature [R2][3].[4].[10]. Mieras [9] shows six optimum
polarizations in a figure, but shows two pairs of these to be antipodal. This is
obviously not the case for the most general scatterer. Nespor, et al. observed
that for cases where noise is present, the two maximum polarizations
sometimes appear not to be antipodal on the Poincaré sphere, but did not solve

the problem [22].
Two important conclusions can be drawn from the results of this section:

(i) The Huynen fork no longer exists in the general case. Instead, six
optimum polarizations appear and no two optimum polarizations are antipodal

when plotted on the Poincaré sphere.

(ii) There is no polarization for which the received power is zero. Also, the

two nulls are not equally deep as in the case of a deterministic scatterer. It is
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Figure 2.6. Optimum polarizations.

easily seen why physically it is no longer possible to find a polarization which
yields zero received power. For each of the four samples one can find two
pelarizations which yield zero received power. If these four samples are
combined, however, there is no guarantee that the minimum polarizations of
these four samples will coincide. Thus, one may conclude that the minimum
amount of received power contains some information about the amount of

variation in the properties of the different samples.
2.3.2.3 Coefficient of Variation and Coherency Foctor,

In the case of a distributed scatterer, the properties of the scatterers
change (usually in a random fashion) either with time or spatially. It is thus
clear why no single polarization can be the zero polarization of all these possibly
different scatterers at once. Thus, the closer the minimum amount of received

power is to zero, the less variation in scattering properties are there temporally
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or spatially. Formally, this measure of variation may be expressed by

introducing a coefficient of variation , v, defined by:

. . minimum received power
coefficient of variation = v = - - R . (2-63)
maximum received power

Note that this means that

0=sve< 1l

A value of v = 0 means no variation, or a deterministic scatterer. A value of
v = 1, on the other hand, means that the received power is constant,
independent of polarization. Considering either (2-4B) or (2-59) it is clear that
the only case for which this can be true in general, is when the Stokes Scattering

Operator is of the form:

(M] =

o oOop
o OoUv o
T oo
T o000

In the backscatter case, there is a relationship between the elements of [M]
as given by (2-25a). This means that in the backscatter case, the only

distributed scatterer with a coefficient of variation of 1 must be of the form

10 0 0
o-é—oo

(M) = e 00 Lo
3

1

00 0 2

One may also introduce a coherency factor [11]. This coherency factor is

analogous to the visibility used in optics [1],[5] and is defined as:
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P -P_:
_ “max "min _ 1-Vv g
coherency factor = P P - 1w (=-64)

max min

2.3.2.4 Polarization Spectrum.

Analogous to the frequency spectrum encountered in signal analysis, one
may fully characterize any scatterer by calculating its two-dimensional
polarization spectrum. This polarization spectrum immediately shows the
amount of power that will be received from a given scatterer for any
polarization. The two variables used in plotting the polarization spectrum are
the spherical polar coordinates of the given polarization when plotted on the
Poincaré sphere. Figure 2.7 shows the polarization spectrum for the slightly

rough surface with Gamma Sphere shown in Figure 2.3.

1
of % S et -f.’a’iﬁ; DN
g g (S o L LA
ol llmlmf%?gf%fe"“
' rprar/iin. -:«73% IV

Figure 2.7. Polarization spectrum of a slightly rough surface.

It is clear by comparison of Figures 2.3 and 2.7 that the polarization

spectrum conveys all the information of a Gamma Sphere and more at a glance.
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In a later section the use of polarization spectrums will be discussed in more

detail.
2.3.2.5 Polarization Spectrum and Oplimum Polarizations.

The polarization spectrum allows a simple explanation of the various

different cases of optimum polarizations shown in Figure 2.4.

(i) Two optimum polarizations. (Figure 2.4 (b)) This is the simplest
pelarization spectrum and contains one absolute maximum polarization and

one absolute minimum polarization.

(ii) Three optimum polarizations. (Figure 2.4 (h) and (i)) In this case one

finds an inflection point somewhere between the one absolute maximum and the
one absolute minimum.

(iii) Four optimum polarizations. (Figure 2.4 (c), (d) and (e)) Two cases
may arise. In the one case the optimum peolarizations consist of one absclute

maximum, two local minima and one saddle point. In the second case, the four

optimum polarizations consist of one absolute maximum, one absolute
minimum and two inflection points.

(iv) Five optimum polarizations. (Figure 2.4 (f) and (g)) The optimum
polarizations consist of one absolute maximum, two local minima, one saddle
point and one inflection point.

(v) Six optimum polarizations. (Figure 24 (a)) The optimum
polarizations are two local maxima, two local minima and two saddle points.

Figure 2.8 shows the polarization spectrum of the scatterer with six optimum

polarizations discussed in Section 2.3.2.2 and clearly shows two local maxima,

two local minima and two saddle points.
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Figure 2.8. Polarization spectrum showing six optimum polarizations.

2.3.2.6 Decomposition of Scatterers.

From the discussion in Section 2.3.2.3 it is clear that every distributed
scatterer can be viewed as a scatterer with a coherency factor of 1 with "noise"
added to it. In fact, it has been proven by Huynen [2] that one can always
decompose a distributed scatterer into a single, deterministic scatterer plus
"noise.” Using the polarization spectrum, it is easy to see that it is possible to
decompose any scatterer into two scatterers: one with a coherency factor of 1
(coefficient of variation = 0) and one with a coherency factor of 0 (coefficient of
variation = 1). The second scatterer is one with received power independent of
polarization and can be viewed analogous to "white" noise in frequency
spectrums. It is easily seen that in the backscatter case this decomposition will
be unique, since the constant ¢ {Section 2.3.2.3) is uniquely determined by the

minimum received power. In general, however, the decomposition will not be
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unique, and one has the freedom of choosing the two constants a and b to yield

the minimum received power. In the backscatter case the unique decomposition

is:

3
S 000
0+ 0 0
[M] = P’min 1
00 0
1
0 —_
0 0 4
M, —2p M M M
1172 % min 12 13 14
1o
Mz Ma2=2 min Mas Mag
+ 1 (2—65)
M3 Mas M33=7Pmin  Mas
1 '
Mg Maq Msy M44"4"P min

2.8.2.7 Comparison and Classificalion of Scatterers.

The polarization spectrum provides one with a simple and efficient way to
compare different scatterers. This comparison is based on the normalized root
mean-square difference between the scatterers. The difference is calculated for
N points on the Poincaré sphere and is given by:

N %
. . 2
b (P recl =P rec2)i

1
N P +P' (2-66)

Normalized Difference =

’
max1 max2

The difference is normalized with respect to the sum of the two maximum
received powers to ensure that the final result will be independent of the

absolute values of the polarization spectrums.

This way of comparing different scatterers also provides one with an easy
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way to classify scatterers. To do this, one needs a few reference scatterers,
which will typically be contained in a library. Either these reference scatterers
may be models of certain physical scattering processes or they may be some
previously measured polarization spectrums. The classification is then based on
the normalized difference (ND) values of the scatterer under consideration when
compared to the various reference scatterers [11]. This technique will be used

in Chapter 6 to classify different scatterers in radar images.
2.4 Optimum Polarization for Discrimination between Scatterers.

In radar problems it is often necessary to discriminate between different
sources of backscattered power. It is not always possible to do this on the basis
of a difference in range or azimuth, and in these cases polarization may prove to

be a valuable tool for discriminating between scatterers.

The problem of discriminating between two scatterers using polarization
has been discussed by Ionannidis and Hammers [12] for the case of two different
antennas used for transmission and reception. Here, the further restriction of
a single antenna will be introduced, and it will be shown that the resulting
problem can be reduced to one of finding the optimum polarizations for power

reception. In addition, two different ways of discrimination will be considered:

(i) The first method maximizes the ratio

P
_reel (2-67)

F1=P

recd

The disadvantage of this method is that F; may be large, but both P 4
and P, o may be relatively small. In practice, this may mean that unacceptably
low powers may be received from both sources when the optimum polarization is

used.
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(ii) The second method maximizes the difference,

FZ = Precl_Prec?, : (2'68)

In these expressions the subscript 1 denotes the source of primary interest

and the subscript 2 denotes the unwanted source. The following different cases

may be identified:
2.4.1 Two Deterministic Scatterers.
2411 F 1

When the unwanted source is a deterministic scatterer, there are two
polarizations which yield zero power received from this source. For these two

polarizations the ratio F, becomes infinite and hence the minimum

polarizations of the unwanted source maximizes F;.
2412 Fy
To maximize Fy, one may rewrite (2-68) using (2-18) as:
Fp, = K(A\8,9)S72d M, -M;]s7ad (2-69)
It is then clear that F, will be maximized in all cases by the maximum
polarization of [M;—M].
2.4.2 Two Distributed Scatterers.

To maximize F, for this case, first rewrite (2-67) as:

Srad.[nl]srad
1~ Srad,[Mz]Srad'

(2-70)

This function must be maximized subject to the constraint condition that
srad must be a normalized Stokes vector. (A normalized radiated electric field

is assumed.) This suggests that the Lagrange Multiplier Method should be used
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to solve this problem. Accordingly, the auxilliary function
G(S,,55.S2) = F, — u(S2+52+S8-1)) (2-71)
192:°3 1 T HARTTRZ TR
is formed. Furthermore, it is required that

8G(S,.55.33)

—_— =0 i=1,2.3. -
a5, i=1,2,3 (2-72)

Performing the differentiations, one finds that the optimum polarizations

are the solutions to '

(S[M,]S)[B;]s + (S[M;]S)a; - (S[M,]S)[B;]s - (S[M,]S)a,

= us(S[M,]S)? (2-73)
where [B] and a have the same meaning as in (2-52) and the subscripts denote
the two different scatterers. Dividing both sides by S[M;]S, which is permissible

since the unwanted scatterer is a distributed scatterer and hence has a

minimum received power different from zero, one finds

[B,—aB,—1l]s = —(a;—aay) (2-74)
with

a = Fl (R-75)
and

v = u(S[M,]S) . (2-76)

In these expressions the superscript rad has been dropped from the
elements of the Stokes vector. Since a and v are just variables, one may

perfectly well consider them to be Lagrange multipliers. One may then rewrite

(2-74) to read
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[B(a)—I]s = -a(a) . (R-77)

Now, given a value of a , the resulting maximum polarization is simply the

maximum polarization of
[M(c)] = [M;]-a[Mp] ‘ (2-78)

and can be found using the procedure described earlier in section 2.3.2.1.1.
The largest value of a for which such a maximum polarization can be found, is

also the maximum value of F;. However, a cannot take on just any value. The

range of values that a can take follows directly from (2-70):

— (Pyrecl)max (2_79)

Xmax ~ (P

recz)min '
Since the unwanted source is a distributed scatterer, (P'.ooo)min # 0 and
Qax S finite. Of course, o .. can only be achieved if the maximum

polarization of [M;] coincides with the minimum polarization of [My].

Similarly, from (2-70) one finds that

- (Pvrecl)min ' (2-80)

min P 'recz)max

Since for both sources distributed scatterers (P'L . ()i @nd (P'Loco) max
are both strictly positive, it follows that o, is strictly positive. Also, a; will
be achieved if and only if the maximum polarization of [Mz] coincides with the
minimum polarization of [Ml], In the general case, however, it is possible to
state that

(P' (P'recl)max (2-81)

B (P’rec2)min '

recl/min < o

(P'rec2)max
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2.4.3 One Deterministic Scatterer and One Distributed Scatterer.

If the unwanted source is a distributed scatterer, the solution is the same
as that of the previous section. If the unwanted source is a deterministic

scatterer, the solution is the same as that of section 2.4.1.

2.4.4 Numerical Example.

As an example, consider the problem discussed by loannidis and Hammers

[1R2]. The two scatterers have Stokes Scattering Operators,

i 0o o o
o0 & M3 V3
8 B 4
Ml= 1 v3 s 3
8 8 4
V3 3
0 4 ” 0
1000
CK¥oo0
(M2l = lhoyo
000COC
The results are:
(Pvrecl)max =20
(Plrecz)min =10
Crax = .0

(P’recl)min = 25

(P =15

'rec2)
rece’/max
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=1
amin'6'

The maximum ratio is found to be

Fimax = 1.62.

This maximum ratio is obtained by using the Stokes vector

S =[1.;03214;-0.5567;0.7660 | .

Figure 2.9 shows the result when the polarization spectrum of [M;] is

divided by the polarization spectrum of [M].

Figure 2.9. Ratio of the two polarization spectrums.

Ioannidis and Hammers reported a maximum ratio of 2.5 when two
different antennas are used. The current result is still much better than would

have been found if any linear or any of the two circular polarizations were used,
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Figure 2.9 also shows that polarization alone may be a valuable tool in

discriminating between different scatterers.

2.5 Conclusion.

In this chapter, the concepts of optimum polarizations and scatterer
characterization were discussed in detail. Some techniques that use
polarization to the advantage of scientists involved in radar imaging were
introduced. In the subsequent chapters, these concepts will be applied to some

scattering problems of interest in radar imaging.
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CHAPTER 3

EFFECTIVE SCATTERING OPERATORS OF A SLAB OF SCATTERERS.

3.1 Introduction

In this chapter, the problem of finding the effective scattering operators to
describe volume scattering inside a slab of scatterers will be formulated. The
formulation will be done in terms of the bistatic scattering operators of the
single scatterers inside the slab, and will be done in such a way that the effects
of multiple scattering are included in the formal result. The formulation will
alsc allow for more than one type of scatterer in the same slab, and effective
scattering operators for both the fields and the incoherent components of the
scattered radiation will be defined. This represents an advantage over the usual
radiative transfer formulation [6]. Also, using this formulation, it is easy to
calculate results when only single reflections are considered. This will be the
subject of the last section of this chapter. The disadvantage of this formulation
is that it is hard to calculate the multiple scattering results. This issue will be

addressed in a later chapter.
3.2 Mathematical Formulation.

The problem to be considered is that of a plane electromagnetic wave
incident upon a volume containing a number of scatterers. It will be assumed
that the volume is in the form of a slab of thickness L and that only a finite part
of the slab is illuminated at any instant in time. To formulate the problem
mathematically, it will be assumed that the origin of the coordinate system in
which the calculations are to be performed lies in the center of the illuminated
area on top of the slab. The layer containing the scatterers thus occupies the

region 0 < z < —L as shown in Figure 3.1.
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Illuminated

Area

Figure 3.1. Scattering Geometry.

Here, it will be assumed that the spacing between scatterers is large enocugh
so that the interaction between scatterers is due to far-zone fields only. Also, it
will be assumed that shadowing of one scatterer by another may be neglected
and that the bistatic scattering matrix of every scatterer in the volume under
consideration is known. This bistatic scattering matrix relates the electric field

scattered by the scatterer, E°¢, into a direction (195,905) to the electric field
incident on the scatterer, EC, from a direction (¥,.9;) (see Figure 3.2) as

follows:

. eik|r—r|
BOrs00) = (500,08, BV 3) S (3-1)
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In the far zone, r > r', this becomes:
FSC(r8,,05) = [S(8,0,85.95)] ERO(r 8,¢,) h(kr) exp{—iker-r’] (3-2)
with

eikr
kr

hkr) = (3-3)

In this discussion, the transverse components of EIC and FSC will be expressed

in the two right-handed bases shown in Figure 3.2.

e 'y
}
€ €n €y
- - ’
- Qh OBSERVATION POINT
INCIDENT ; f
1\6 e
-n
WAVE ] r N
| - \ \
N\ SCATTERE
I r-r . D WAVE
~ \
(S | 7y
’ J
4" ! -
®s
X

Figure 3.2. Bistatic scattering.
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In these bases
e, = unit vector in e,—k plane. (3-4)

In both cases the e, vector points towards the scatterer. In these bases,

the transverse components of the incident and scattered electric fields can be

written as:
E"¢ = (EliCe + E[lCe, ) exp[i(kl'r—-wt)] (3-5)
exp[i(ks'r’—wt)]
ESS(r) = (E5C€, + Ei%ey) = , (3-6)

The primes on the second set of basis vectors serve as a reminder that
these are different from the first set as shown in Figure 3.2. It will be assumed
that the bistatic scattering matrix as defined in (3-1) relates E°¢ as expressed in

the primed basis to EIC in the unprimed basis.

Once the electric fields are related by a bistatic scattering matrix, it is easy
to relate the Stokes parameters of the scattered wave to that of the incident
wave. This has already been discussed in the previous chapter. For the moment

it will merely be repeated that the relationship can be expressed by:
SS¢ = [M]SinC, (3-7)

The problem now is to find effective operators [S] and [M] for the whole

volume of scatterers.
3.3 Positions of Scatterers are Known.
The total electric field at any position r follows from superposition to be:
E(r) = EP%r) + E5%(r) (3-8)

where ESC(r) is the total scattered field at point r due to all the scatterers in the

volume V under consideration. Since all the scatterers are assumed to be of
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finite size, E°C consists of a collection of spherical waves travelling away from
each scattering center in all directions. It will now be defined, analogous to (3-1)

that
ESS(r) = [S,(8,9,95.%s)] ERC(0) hkr) (3-9)

where FiPC(0) denotes the incident electric field at the origin of the coordinate

system shown in Figure 3.1.

The total electric field incident on the jth scatterer at position T is:

En(r) = EmO(r) + iEgC(rj). | (3-10)

n#j

The second term represents the total scattered field at point I; due to all

the other‘ scatterers in the volume. Here, it was assumed that there are M
scattering centers in the volume. There may, of course, also be an electric field
due to scattering centers outside the illuminated volume, particularly when
higher-order reflections are considered. Since these contributions are expected
to be small when the scatterers are relatively far apart, except maybe near the

boundaries of the volume, they will be ignored here.

From (3-10) it is clear that one needs to know EC | both magnitude and
phase, at every point L inside the medium. Since energy is taken out of the
incident wave when the scattering centers are excited, the incident wave will be
attenuated as it propagates through the medium. Depending on the geometry
and the orientation of the various scatterers relative to the direction of the
incident electric field, the two transverse components of the incident wave will
suffer different attenuations. To incorporate this type of loss in this discussion,

it is defined that
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[ 12| loss suffered by E, component of E"C when
exp ——C:‘;W- = | travelling at an angle %, to the z-axis (3-11a)
Y for a vertical distance |z| into the medium.
r
expl|-222L | _ g 3-11a), but for horizontal
P~ cos( 5| ° ame as (3-11a), but for horizontal component. (3-11b)

It must be noted that although this energy is taken out of the incident
wave, it is not necessarily lost. Some of this energy will indeed reappear as the
scattered wave.

Since it was assumed that the scattering centers are fairly far apart and
that the scatterers are small, it will be assumed that the phase of the incident
wave changes in the same way as if it was travelling in air when travelling in the
volume of scatterers. To relate the phase of the EINC at different positions, the
plane of constant phase that goes through the origin of the coordinate system

will be used as a reference. The equation describiﬁg this plane is
x sin(¥;)cos(yp;) + y sin(¥;)sin(g;) + z cos(¥;) = 0. (3-12)

Taking proper care of the sign of the phase (points on the same side of the
reference plane as the source of the incident wave have '"'negative"” distance to

this plane), one finds that the phase of the incident wave at T relative to the

reference phase is:
£ = ke (3-13)
with

sin(d;)cos(g;)e, + sin(ﬂi)sin(goi)ey + cos()e, .

1]
"

Thus, at every point inside the medium
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Emc(r) = [ JEInC(0) exp[—lke r] (3-14)
where
ahZJ
P cos(%;) 0
[og] = oz || (3-15)
0 exp cos(%,) |

An argument similar to the one above gives the scattered electric fileld, in

the far zone, due to the scattering center at r; as:
Ejsc(r"ds'gos) = [og] Ejsc(rj,qjs,;ps) exp[—lke r] h(kr) (3-18)

where [ag] is the same as [a;] . but with cos(%;) replaced by cos(dg). The total

scattered field at point ris
EC(rd p.) = iEJSCrﬁ P - (3-17)

In the same way as before, one can write the scattered electric field at a

position r,; due to a scattering center at point r; as:

ESC(r,) = [ogn) EFO(r) h(k|ryry |) (3-18)
where
rexp [—cxh | ri T, ! ] 0
[, = 0 exp[—avlrj—rnl] '

Using (3-18), (3-2) and (3-10) in (3-17), one finds that:

—ike -r.

[og] [S(8,9:8505) | E™(r) e T Th(kr)

M

EC(rv.¢,) =

—.
]
—
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sc —ike:l,__-rj i
* gt ) s] [5;(8;9;85.95) ] B%(ry) e h(kr) . (3-19)
n#j

With the help of (3-14), the first term may be written as:

Mg

[og] [55(8;.9;35.05)] E‘nc(r)e " h(kr)

o
H
—

[ag] [5,(8,9,5509)] [a] ¢ o 37| gince(0) nir)

I
e

]
[

1

[S{(8,,0,8,.0,)] BR(0) hkr) . (3-20)

f (3-2), (3-18), (3-10), (3-14) and (3-18) are used repeatedly in (3-19) one

finds that
EPS(rdg,ps) = [Sy(9,¢;95.95)] EN(0) h(kr) (3-21)
with
(5,015,201 = 3 [SE(3,915,09)] (3-22)
and
[s{V8,0,.8,09)] = i[asl [5)(8;2,:95.05)] [a] exp|~ik(e, Ty+e ) (3-23a)

o~
I
-

!
=

S@0,0,5,99)] = [[cxs] [5,(8,9,8,99)] [o,]

—
1]
e
- -

=B
J‘L"

[S,(B505:8599)] L] exp{-—ik(er'rj+ei'rn) h(k |r-r, |) ] . (3-23b)

110
X [o 1
The extra matrix with diagonal elements -1 and 1 is needed to correctly

change coordinate bases between the two scatterers.
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It is clear that the superscript (m) denotes the number of reflections that
the electric field has suffered inside the slab before reaching the observation
point. Although this is an infinite series, the higher-order terms will be
important only when the scattering centers are fairly close together. In general,

it is expected that the series will converge in most cases with only a few terms.

If one is interested in the energy transmitted through the slab, the only

modification to (3-23) needed is to replace the subscript s with a subscript t and

to replace [a ] by [o; ], where

o (L—12;1) |
PI~ Icos('ﬂtJ)I J 0
[ay] = aimlz | (3-24)
° P\ Teos(3,)]

3.4 Scatterers Distributed Statistically

In the vast majority of the cases encountered in radar imaging, scattering
centers are distributed statistically., In these cases, it is not possible to
calculate the exact field scattered by the slab of scatterers, and one has to

settle for information about the average fields or powers reflected or

transmitted.

It will be assumed that in these cases, some information about the

distribution of scattering centers is already known. In particular,

Three-dimensional probability density function (p.d.f.) for

Ar)y =
pl( ) the location of a scatterer of the itP kind.
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Three-dimensional conditional p.d.f. expressing the
pij(rj/ r;) = | probability to find a scatterer of the P kind at r

given that a scatterer of the ith kind is located at r;.

should be known. Similar functions should also be known for combinations of

three, four, five, etc, scatterers.

It is easily seen that in general the fields scattered by such a slab will be
partially coherent [13]. If there are some permanent phase relations between
the different waves scatiered, one must add the fields in such a fashion that
these permanent phase relations are not lost. For the incoherent part of the

power, there are no such permanent phase relations, and powers may be added.

In general [5],

<Ptot> = Pcoherent + Pincoherent : (3'25)
Here, it will be understood that
Pincoherent « <I Sgt!2> ’ (3'26)

It is clear that in order to characterize the slab completely, effective

operators for both the average field and the average intensity must be found.

3.4.1 Effective Operator for the Average Electric Field.

- Let p be the average volume density of the scatterers in the volume. Then,
if an electric fleld travels a distance d through the medium, the resulting
attenuation matrix which describes the attenuation of the electric field per unit

area normal to the direction of propagation is:

rexp[—-mh,od] 0

[a(d)] = 0 ewfap| (3-27)
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Thus, [ay], [a ] and [a,] are:

[ [ a
hP?
exp cos(;) 0
[o] = ooz (3-28a)
0 XP| Zos(Dy)
04,02
exp cos(vy) 0
[a)] = a7 (3-28b)
0 exp cos(¥y)
_cxhp(L+z) 0
S Teos(s))]
(] = o p(L+2) : (3-28c)
0 eXp(= [cos(¥,) |

The effective scatiering matrix for the average of the reflected fields, per unit
scaltering area projected normal fo the direction of propagation , follows from
the same arguments as in the previous section to be given by (3-22). In this

case, however,

\/cos('z?

[Sél)] = Z N f [a] (8] [a] exp{—ik(er'r+ei'r)] dv} (3-29)

with A; the total illuminated area and assuming that there are N different types
of scatterers present in the volume. N; is the number of scatterers of the ith

type present in the volume. The integration must include the whele illuminated

volume. Similarly,
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sy = Yot
1

{Ni(Ni—l)fpi(r)fpﬁ(I"/ r) [Sii]

—

ot

x exp|-ik(e, T+e;x)| h(|r—r'| vy

N
+ YN N S, f py(r/ 1) [5;] exp[—ik(er»nei-r')] h(|r—r|) dvdv (3-30)
=

J#i

with

-1 0
(Sy] = [a,] 18,09 3,99)] [age o 1) [5,890] [o]

3.4.2 Effective Operator for Incoherently Reflected Intensity.

It was already shown in section 2.2 that for incoherent scattering, the total
Stokes vector is the sum of the individual Stokes vectors. Hence, in terms of
incoherently reflected (or transmitted) intensities, the slab of scatterers is best
characterized by an effective Stokes Scattering Operator. Using (3-27) and (=-

17) one finds that the attenuation matrix for this case is [8,] with elements:

20y, oz 2o, pz
ﬁxll = % exp -(—ZB—S('Q,T +%6Xp —CO——;(—'GX—) (3‘31&)
Roy, 0z Ro,pZ
Byiz = Fexp ooy — % exp cos(®) (3-31b)
[
(o +o,)pz
By3z = exp —c};—s(ﬁ;)— (3-31c)
ﬁx22 = ﬁxll (3-31d)
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Bx21 = Bxiz (3-31e)

Bxaa = Pysz- (3-311)

All other 8_.. = 0. (3-31g)
Xij

Here, x may either be s or i. For transmission, the x is replaced by t, z is

replaced by -(L+z) and cos(¥,) is replaced by |cos(®,)].

Then, in the same way as for the flelds, one finds that the effective Stokes
Scattering Operator for reflection, per unit illuminated area projected normal to

the direction of propagation, is of the form:

M (5,0180)] = 3 ME(5,0,5,0)] (3-32)
with
s
(M) = 39—2%—)—551 N; f py(0)B)(M;) [8] av (3-33a)
{Méz)] = So—ﬂi’&—)%{Ni(Ni—-l)f'pi(r)f E_ii(_r:./r_)mﬁj av' dv
A3 Jr—r'|?
'/
L SN N [0 S %%mﬁ] av' dv (3-33b)
I=1 =

i
where [ny] has the same form as [Sij] of the previous section, but with the [«]
matrices replaced by the corresponding [8] matrices and the [S] matrices
replaced by the [M] matrices. The matrix to take care of the change in basis
should be replaced by its equivalent Stokes Scattering Operator. The effective

operator for the transmitted energy can be found by replacing [8] by [8,] in the

expressions above,
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3.5 General Results for Single Reflections.

In the rest of this chapter, it will be assumed that the scattering centers

are distributed unifermly and randomly; i.e.,
f
pilr) = (3-34)
where f; represents the fraction of the the total amount of scatterers, which are

of the ith type and V is the total illuminated volume.

3.5.1 Reflection Operators.
3.51.1 Inlensities.

Following the procedure described in the previous section, one finds that

the elements of the effective Stokes Scattering Operator are:

(9;) cos®(dg
u() = 22 :"S ) zf { (1S 1) + B(ISyp 12);
C(| Sh’v|2)i + D( |va]2)i] (3-35a)
(8;) cos®(s
i) = = [ZOS Zf { (ISpm 13 + B(ISpp 13
- C(lsh'vlz)i - D( ’Svlvlz)i] (3-35b)
M{1) = cos(®;) cos?(v,) 5 f; { E Re(SpSp); + F Re(SV,VS‘:,h)i} (3-35¢)
i=1
M) = cos(s;) cos®(sy) | fI{EIm (SpnShw); +FIm(SVVSV,h)} (3-35d)
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cos{;) cosz('tﬁs) N
4 i=1

f [ A([Syp |3 = BUSy, 12

C(ISpy13); = D lSvViz)i}

. (8
costs) cos™ S PUEWC R EWEY

- C(]Sh'vlz)i + D(fSV,v!Z)i]

cos(¥,) cos (19 )

{E Re(Spy,Sp); — F Re(S,0So0);

"Mz

cos(¥;) cos® E Im( Sh’hSh‘ ); — FIm(S,, vSv'h)1

cos(¥;) cos®

"Mz

{G Re(Spp,Syn); + H Re(SySpi) }

"Mz

cos(d;) cos® G Re( Sh hSvn)i — H Re( SV,VSh,

cos(®;) cos?(dy) ) f; 1 [ Re(SpnSyn); + Re(ShnSe); }

[
]
-t

cos(®;) cos?(¥y) 3, ;1 { Im(S;Son); — Im(sg,vsv,h)i]

e
1}
-

cos(d;) cos?(dy) Y f; { G Im(Spy,Sep); + HIm(S, Spi); }

et
L
—

cos(;) cos?(¥y) ¥ f { G Im(Sp,Sep); — HIm(S, Sp); }

s
U]
—

cos(d;) cosz('@ ) { Irn(Sl,1 LSVV); + Im(Sh:v Svnl ]

W
-

(3-35¢)

(3-35f)

(3-35g)

(3-35h)

(3-351)

(3-35))

(3-35k)

(3-351)

(3-35m)

(3-35n)

(3-350)
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1- exp[~—a 1L]

alilcos(ﬁs) + afcos(W;)

1 —exp {—cng]

cxkilcos('&s) + aScos(;)

1- exp{—aSL]

ot‘i,cos(ﬂs) + afcos(d;)

1 - exp{~a4L]

af,cos(ﬁs) + aScos(;)

1 —exp;—asL

(akil+a‘i,)cos(1ﬁs) + Rafcos(d;)

1 —exp;—oglL

(a}il+a‘i,)ccs(tis) + 2oScos(W;)

1 - exp[—co,L]

2aj cos(Vg) + (of +aS)cos(,;)

1- exp{—cxeL]

Za‘i,cos(ﬁs) + (af+o)cos(s,)

1- exp{—agL]

*
(SpnSyv); ] '

(a}il+a‘i,)cos(19$) + (o +ag)cos(8;))

(3-35p)

(3-36a)

(3-36b)

(3-36¢)

(3-36d)

(3-36e)

(3-36f)

(3-36g)

(3-36h)

(3-361)
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&g
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¥

N

7

A\

al of
h h
+
&P cos(d;})  cos(W)
2] % o
cos(d;)  cos(dy)
[
i s
2p4 2y " Oh
cos(d;)  cos(dy)
[ .
20 oy + oy
cos(¥;)  cos(W)
( . -
agtay _ag
Pl cos(®,) T cos(v,)
| pivod 205
P cos(¥;)  cos(v)
pl Rag N as+of
cos(d;)  cos(B)
¢ 3
Za‘il as+of
p cos(d;) * cos(d,)
\ /
2 ) ‘ ‘
aj +a, . af+ol
p cos(¥;)  cos(Uy) } '

(3-37a)

(3-37b)

(3-37¢)

(3-374)

(3-37e)

(3-371)

(3-37g)

(3-37h)

(3-371)
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where x may be either h or v and y may be eitherior s.

(3-38)

Here, a distinction is made between the attenuation constants for the

incident and scattered waves. This must be done since, in general, the relative

orientation of the scatterer with respect to the incident and scattered waves

may be different. This will lead to different amounts of energy absorbed from

the two waves or, equivalently, different attenuations suffered by the two waves.

3.5.1.2 Electric Fields.

In a similar fashion, it is found that the effective scattering matrix has

elements
| I
o 1 —exp|— cos(5) f cos(3]) p L + ik(cos(;) +cos(d¥y))L
Seh = i S
% . @h .
cos(5) i Gos() p — ik(cos(;)+cos(d,))
X c{g‘.. t; Spp)i
i=1
N
1 —exp|— cos(5) : cos(8)) p L + ik(cos(®;) +cos(¥,))L
(1) -
Sehv =d

i
Oy

S
&h

N
x 3, £ (Spw);
i=1

cos(¥;) : cos(dy)

p — ik(cos(¥;)+cos(¥))

(3-39a)

(3-39b)
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[

i
Qp

oS
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1 - exp’—

cos(d;) | cos(’&s)J

p L + ik(cos(;) +cos(¥y))

L

s =14 r

i
Qh

S

o5

cos(d,)  cos(d) J

p — ik(cos(®;)+cos(dy))

X li: f; (Senli (3-39¢)
1—exp|— co:(vﬁ) t cosa(vﬂ ) p L + ik(cos(;) +cos(¥,))L)
s =1 R - -
co:(vﬁ~) : co:(V'd ) p — ik(cos(¥;) +cos(¥,))
1 S | J
x 3, £i(50); (3-394)
i=1
with
J = ~/cos(d,) p Sa[k(sin(¥;)cos(p;)+sin(dg)cos(p)) Lg(—]
x Salk(sin(";)sin(g;) +sin{¥y)sin(ep.)) %L] (3-40)
and

Sa[x] = sin(x) .

X

The attenuation constants are the same as those given in (3-38).

3.5.2 Transmission Operators.

3521 Intensities.

The effective Stokes Transmission Operator for intensities transmitted
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through the slab is of the same form as given in (3-35), but with A through I

replaced by:

[

2ot 2ol
——-———-ph L} —ex ——ph L
exp [cos(d,)] P cos(¥;)
a}illcos(ﬂt)l + a}tlcos(ﬁi)
| 2al ) 20l
expI~ |cos(9,) | Pl —exp —cos('&i pL
a}il!cos('dt)I + a‘gcos(ﬂi)

[ 2at 2al
eXP| [cos(¥y) | Pl —exp ——cos(ﬁi) L
a‘i,]cos("élt)[ + altlcos(ﬁi)

[ 2al 2al
exp|—+———~pL| —exp|———FpL

|cos(¥,)] cos(W;)
a‘i,!cos("dt)l + a&cos(ﬁi)
¢ o
ex —————-—-—-—-——*-pzah 1| —ex —————700(}11+a‘17 L
P1" Teos(sy) | Pl Cos(s)
Rayf cos(W;) + (alil+a‘i,) |cos(,) |
¢ )
ex —--———-——-—-——pzav L| —ex —-—————-———pall#a‘l' L
P [cos(d,)] P cos(;)
2a$cos(19i) + (a.\i,+a}il) | cos(¥;) |
cx}tl+cx‘§ Za}il
exp|—————=<7pL| - exp|———F—pL
[cos(®,)| cos(;)

(altl+cx$)cos(19i) + Zcxlil| cos(¥,) |

(3-41a)

(3-41b)

(3-41c¢)

(3-41d)

(3-41e)

(3-41f)

(3-41g)
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[t t [ i
oy, oy L o .
exp |cos(Wy) | L exXp cos(ﬁi)i
H, = (3-41h)

(aﬁ+cx§)cos(1§i) + Za‘i] |cos(,) |

Lot .
exol— ay +ag 1 — exol— ap oy L
P [cos(®,)] L P cos(¥;)
It = . (3'411)

(a$+a}tl)cos(19i) + (a}il+a3,)]cos(13t) |
These expressions represent the power that appears on the transmission
side of the slab after suffering one reflection inside the slab. The angle ¥, is
measured from the normal teo the slab surface on the refiection side of the slab;

e, 9,>90 degrees.

Added to this component of the transmitted power is that component of the
power which suffered no reflections at all. This will only appear in the same

direction as the original incident plane wave and has an effective Stokes

Transmission Operator [Téo)] with coefficients:

r 3
r ) .
~(0) . Ray, Ra, -
T87) = ¥lexp —WL + exp —WL (3-42a)
\ J
© 2aj, 2al
Tel = % exp —WL — exp —WL (3'42b)
0 o) +al
Te3 = —exp "WL (3-42¢)
T = 1% (3-424d)
T = 18} (3-42¢)
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9 = 18} (3-42f)
All other Tég) = 0. (3-42¢g)
3522 FElectric Fields.
The effective transmission matrix is of the form
al
—exp ————}—1——-pL 0
cos{¥) ikl
[R] = _ e cos(®) 5(0-0,) + [R{V], (3-43)
oy
0 exp|————pL
cos(¥)
4
where
1 if ¥9=m—8, and p=¢;+m
6(0-0) = . 3-44
( i) 0 if 9#m—0, or p#p,+7m. ( )
The elements of [Rél)] are:
t [
exp —a—h—pL — exp —IL—ik(cos(d-)ﬂcos(ﬂ DL
Vl [cos(®,) | l lcos(’@i) i t/
R{YD =14
eh . N
i M ik(cos(;)+ | cos(®
cos(d;)  |cos(®,)] p —ik(cos(d;)+|cos(8y) ) |
x ﬁl £, (Spp); (3-45a)
i=
{ t l_ i \
Bl — exp| | < p-ik(eos(5)+ |cos(s,) |1
exp _I—CO—S—(’dt—)’p exp E_(;_S-(—‘&l—)—p 1K\ COS i coes t
Rérllzz =1 T -
oh oy |
[cos(8y)] | cos(oy) p — ik(cos(W;)+ [ cos(¥,) )
; )
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N
x iZ £ (Sh'v)i (3-45b)
=1

f 3

« el |
exp —T——(———-pL —exp|— —W—m(cos(ﬂi)+[cos(dt)[) L

R() = ; cos(¥,) | cos(¥;
eV N :
Bl ik(cos(By)+ | cos(8,)|)
]COS(ﬂt)! ‘Cos(f@i) L — 1K \COS{Vy |cos ¢
' J
x 2 f; (Spp); (3-45¢)
i=1
(
—'-"—POL‘E L ———pm3 ik 8 3,))|L
(1) P —_’Cos(ﬁt)f — exp cos(;) ik(cos( i>+iCOS( 1)
Revv = J !‘ ¢ :
;co:ﬁw ’ co:ﬁsp [P~ i(eostBleos(B0) ) |
N
X 1_21 f; (Syvdi - (3-45d)

J is still given by (3-40), but with ¥, and ¢  replaced by ¥, and g,
respectively.

A closer look at the results of the previous sections reveal a few general
features of these effective operators. In the first place, it is noted that when L is
made zero, all the first-order operators vanish. At the same time the total
effective transmission operators describe an undisturbed wave propagating
through space. This, of course, is to be expected. A slab of thickness zero
simply means no scatterers present. Hence, no scattering is expected and the
incident wave propagates undisturbed through space. Secondly, when pL
approaches infinity, all transmission operators vanish and all reflection
operators approach limiting values. This again corresponds te the physical

picture. If the slab is very thick (i.e, pL is very large), any wave propagating



-8686 -

through the medium is attenuated strongly. Since the energy is only incident
from one side of the slab {say the top), very little of the incident energy reaches
the bottom layers of the slab. Similarly, energy scattered in the forward
direction from the top layers will also be absorbed by other scatterers before it
can reach the bottom layers. The result is that ne energy is transmitted
through a thick slab. This also explains why the reflected energy reaches a
limiting value as the thickness of the slab is increased, Only energy scattered
from the top layers actually manages to reach the outside of the slab.
Increasing the thickness of the slab further has no effect on the amount of
energy reflected by the slab, since the energy reflected off the bottom layers is

absorped before it reaches either side of the slab.

3.5.3 Scattering Cross Sections.

In any basis, the Scattering Cross Section, or Radar Cross Section (RCS) of

a scatterer is defined as [14]:

P ..
r-oo Ptransmitted

Here, the subscript ij means that polarization' j is transmitted and
polarization i is used to receive the scattered waves. It is easily seen from (2-18)
and (3-2) that

P
Ptransmjtted B z(kr)z '

rec ij _ 1 S_rad.[n]sjl‘ad , (3-48)

Using (3-48) in (3-47), one finds that

— E]_T__ rad. rad _
aij = k2 Si [H]SJ- . (3-49)

In particular, when the horizontal-vertical basis used previously is used,

one finds, using the results of section 3.5.1, that
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pp = Z-cos(s) cosP(s,) Aii ENE) (3-50a)
o = i—g—cos(ﬁi) cos?(s,) B li £, (1Syp 13); (3-50b)
Opy = i—g-cos('&i) cosz(ﬂs) Cg f; ( |Sh'V|2)i (3-50c¢)
o, = %—cos(ﬂi) cos?(8,) D ji £ (18,13 (3-504)

In the backscatter case where reciprocity of the propagation path holds, it
follows from (3-50) and (3-36) that

hv T Oh- (3-51)

At this stage a few words about the units of these various parameters are in
order. According to the definition of the bistatic scattering matrix given in
Section 3.2, the elements of the bistatic scattering matrix are dimensionless. In
Section 3.4; however, the effective operators per unil illuminated area are
calculated. This means that in the present definition the scattering cross

sections are dimensionless quantities: they are the scattering cross sections per

unit illuminated area.

3.6 Conclusions.

In this chapter the effective scattering operators for a slab of scatterers
were defined. General expressions in terms of the elements of the bistatic
scattering matrices were derived for the case where only one r.eﬁection inside
the slab is considered. In the next chapter these expressions will be used to

derive some models to describe scattering from vegetation layers.
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CHAPTER 4
MODELS TO DESCRIBE BACKSCATTER FROM VEGETATION LAYERS.

4.1 Introduction

In this chapter, some simple models to describe backscatter from
vegetation layers will be derived. These models will include only single
reflections. In the first part of this chapter, the reflection operators for slabs
filled with some simple scatterers will be calculated. In the last part these

models will then be combined te form models that describe backscatter from

different types of vegetation.
4.2 Effective Operators for Slabs Filled with Simple Scatterers.

In this section, the single reflection effective operators for some slabs filled

with simple scatterers will be derived.

4.2.1 Slab of Isotropic Scatterers.

An isotropic scatterer does not change the polarization of the incident wave
and scatters equally strong in all directions. Thus, the scattering matrix of an

isotropic scatterer is of the form:

%11 0
01l (4-1)

[ ~
[S(9;.9;8,.#5)] = [ﬁ

The constant & is the single scattering albedo [6] of the scatterer, and is a
measure of loss inside the scatterer. When & = 1. , all the energy absorbed by
the scatterer is reradiated. This is the case of perfect scattering [6]. The

effective area of an isotropic antenna with unit gain, is [1]:

N
A(B,p) = et (4-2)

To find the attenuation constants for this type of scatterer, it is defined
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that:

A(8,¢) x Incident power density

E[l, - e—Za] x Incident power. (4-3)

Assuming « for each scatterer to be small, it follows from (4-20) that, to a

good approximation, per unif area normal to the incident direction :
oy (Be) = $A(Pp) x=hv. (4-4)

Here, A; must be taken as the effective area that will be "seen” by a

horizontally polarized wave approaching the scatterer from a direction 9,¢ . For

the present case, it follows from (4-4) that:

s =g = A

a‘i,=cx}il=o.v—ah= B (4-5)
If one defines:
i, = cos(d,) (4-8)

and the results of Section 3.5.2 are used, it is easily shown that the eflfective

reflection operators, per unit illuminated area, are:

5 [ 100 O
[ 11 i INR[1 1 0100
H(l) = L] Ts 1-ex _pAT — 4-7
[ e ] [)\2 #i+“‘bs p 497 '““1 7 001 0 ( )
000 —1
and
\
Mol1, 1] .
1. —exp|— —+ = =ik (4 +ug) Lo
Br (4 K [
[si] =3 “24’;5 — , Ié ?] (4-8)
A .
2 1p —ik(u+
“ Ms]p (ki + 1)
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The backscatter coefficients per unit illuminated area are:

- ~ ‘u’l
Opp = Ogy = 21\'&)[1-5—

2 [ P
PA*L
{1 —expl— )

} (4-9)

and

Oh = Ohy = 0

Isotropic scatterers, like isotropic antennas, cannot, of course, exist in
practice [15],[16],[17]. This model, however, allows one to compare results with
other formulations. Chandrasekhar [6] gives the result for single-scattering

intensity for a slab of isotropic scatterers as:

[ui

Mg +'u'i

-T

I
|82

F {l. - exp

1,1 ;
F/“"s H (4-10)

Here, F is the net flux of the incident radiation which, for a plane wave, is
directly proportional te the incident intensity. Apart from a different constant,
which arises because of the normalization introduced by Chandrasekhar, the
only difference between (4-7) and (4-10) is the factor of ysz in (4-7), which is
absent in (4-10). This difference is easily explained by the fact that in the
present case a fixed illuminated area is considered. As the observation angle is
increased, the "effective” illuminated area, the illuminated area projected
normal to the observation direction, reduces according to a cosine law. In the
case treated by Chandrasekhar, the observation area is fixed. As the
observation angle is increased, the effective ground area to illuminate the

complete observation area must increase according to an inverse cosine law.
Thus, to compare results, one has to divide (4-10) by /J,ég , which clearly gives a

result similar to (4-7).
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4.2.2 Slab of Dipoles of Arbitrary but Similar Orientation.

Although this case will seldom be encountered in radar imaging, it is the
first step towards deriving other, more realistic models. The arbitrarily oriented

dipole, shown in Figure 4.1, is assumed to have an electric susceptibility x. .

Note that x, may be a complex quantity. As is shown in Appendix B, the results

for this case are:

aX = %ZE (4-11a)

af = %‘%—Wﬁ, (4-11b)
where

Z, = sin(¥,)cos(dy) — cos(pq—¢,)sin(¥y)cos(V, ) (4-12a)

W, = sin(d4)sin{pg—py). (4-12b)
where X may be either i or s. Also:

Sy = p W, Wy (4-13a)

Sy = PWZ (4-13b)

Sen, = P W; Zg (4-13c)

Syy = P2 7. (4-134)

Using the results in Chapter 3 one can now calculate the effective operator

for a slab of dipoles with arbitrary but similar orientations.

The constant p in (4-12) is a dimensionless quantity. This is easily shown

when the results in Appendix B are considered. According to these,

_ kxe
b=
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<V

Figuare 4.1, Dipole of arbitrary orientation.
(4-14)

But Schelkunoff and Friis [21] give an approximation for x, for a thin

conducting rod of length 2] and radius a as:

4718
= (4-15)
3log( P

Using this in (4-14) one finds:

3
271 ] 1 . (4-16)
3log( -E;—)

which is indeed a dimensionless quantity.
4.2.3 Dipoles Oriented Randomly Around a Fixed Angle.

In this meodel, it will be assumed that the dipoles are oriented around a

fixed angle, 8, , according to the probability density function:
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3cos2(13——191)
p;(Ve) = 5 O<p=<2nm ;, 0<d¥=<m. (4-17)
4n[1+sin<(8)]

This probability density function with 44 = 0 has been used by Peake in a
model (discussed in [23]), which describes backscatter from an infinitely thick
vegetation layer.

To find the effective scattering operators for this case, the ensemble

average of the previous model must be calculated using (4-17). Each element of

each operator must be averaged separately. The results are:

322 I 1 +sin2(191)+231n2(ﬂx)cosz(ﬂl)+2sin2(131)cos’2 (¥,) l
(4-1Ba)
30771 1 + sin®(s,) J

<o¢;‘> =

3}\2 Il + 331]32(‘(91)1

BOnl 1 + sin®(8;) J ' (#-18b)

X —_
<ah> =

Here, x may be either i or s. The ensemble average of the elements of the

scattering matrix are:

' [N

1+ 381112(191)

<S> = cos{p.—p) (4-19a)
b'h 5 SR sin2(191)
5 P ging ) 5) 1+ 3sin2(1$1) (4-100)
<Sy1,> = sin(g;—p.) cos(V; 4-1
By 5 v Y11+ sin(s))
{
1+ 3511’12(191)
<S> = Esin(p.—p.) cos(¥) (4-19c)
vh o s 1 1+ sin®(9,)
‘ )
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sin(ﬂi)sin(ﬂs)[2+cos2(191)]
1+ sinz(dl)

<S> = %cos(gps—;oi)

N cos(‘(?i)cosws)[1"’351'112(01)]1. (4-194)
1+ smz(ﬁl) J

The other guantities needed to calculate the effective scattering operator

for intensities are:

1+5sin?(9)
<ISh:h|2> = T 1+2cosz(¢s—¢i)] m (4-20a)
<ISi. |2 = JplzIcosz(ﬂi)[1+5sin2(131)][1+Zsin2<¢s—gpi)]
B 35 l 1 +sin2(191)
2 "
, Sin (di)[3+zs1n (8,)] (s-200)
1 + sin®(¥,)
IS |25 = JPIZIcosz(ﬁs)[1+5sin2(191)][l+Zsin2(¢s-—<pi)]
vk S [ 1 +sin2('&1)
N sin ('ds)[3+2sm (191)]1 (-200)
1+ sin?(d,) J
IS |3 = 2 [1+5sin2('(91)][1+20032(¢S—¢i)]cosz(ﬁi)cosz(193)
v'v -

35 1+ sinz(ﬂl)
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N BSinz('ﬂi)sinz('ds)[2+3cosz(191)]

in 2
- szwl) + [3+sin*(¥,)]

[cos® (¥) sinz(ﬁs) +sin? (49;) cosz(ﬁs) +cos(p,—p;)sin(RY;)sin(RY)] 1

X
1+ sinz("dll)

35 1+1n 1

208
512 . 1 + Bsin®(4¥,)
<SppSpv> = —Lp—l—cos{l?i)COS(soswi)Sm(% Sf’S{

. 2 1 + 5sin®(¥,)
<SppSen> = EJB%I_C s(¥g)cos(p—p;)sin(p — ;a)[ - 81212(131) }

5 sin(¥;)sin(¥ )[3+sin2(19 )]
. _ 2 . i s L
Syvdpy> = —%%l—sm(;as—;oi)cos(ﬂi)l 1 + sin®(9,)
1

N cos(pg—p;)cos(;)cos(¥y)[ 1 +551n2('61)] l

1+ sin2(191) J
. . _ 2lpl? . sin(",)sin(8)[3+sin?("9,)]
<SSy Syp> = —13-%l—sm(goi—¢s)cos(ﬁs)[ - sinz('&l)
cos(gos—;oi)cos(ﬁi)cos(ﬁs)[1+531n2(191)] l
¥ 1+ sinz('tﬁl)
. Ip|? [cos(;as—g:i)sm(ﬂi)sin(ﬂs)[3+sin2(191)]
<Sh’hsv’v> =

35 l 1+ sinz('dl)

J (4-20d)
(4-20€)

(4-201)

(4-20g)

(4-20h)
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s cos(Z;aS—2¢i)cos('¢9i)cos(ﬂs)[1+531n2(191)] l

TrsnEy) J (4-20i)

* _ * .

Using these expressions in the expressions of the previous chapter allows

one to calculate the effective operator for incoherently reflected power.

4.2.4 Dipoles Oriented Spherically Randomly.
The probability density function which describes the orientation of the

dipoles for this model is:

pa(B.¢) = Zln_ O<p<2m; 0<d<r. (4-21)

Using the results of Section 4.2.2 and taking ensemble averages, gives:

<aj> = <af> = <al> = <a$> = % (4-22)
and
<Spp> = ‘g—cos(;ps—gpi) (4-23a)
{Sh.v> = %sin(goi—gps) cos(¥;) (4-23b)
<S> = g—sin(gas-—;ai) cos(¥y) (4-23c)
<Syy> = %[ cos(¥g)cos(¥;)cos(p —¢;) +sin(¥;)sin(¥.) ] . (4-234)
Also,
<|Sh,h|2> = -‘-%—2—[1+20032(¢S—¢i)] (4-24a)
<ISyl®> = -L%SE-[1+20032(19i)sin2(¢s—¢i)] (4-24b)
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2
<]SV,h[2> = -ngsl—[l+zcosz(zﬂs)sm2(;os—¢i)] (4-24c)
25 = IpI® [14p72 4-24d
<ISy 1> = G [1+2 Z2%] (4-24d)
2|pl®_.
<S}:'hsh’v> = ——Ii%l—sm(;os—gpi)cos(;as—gai)cos('di) (4-24¢€)
2|pl® .
<S}:’hSVh> = —E%[—sm(gai—-qps)cos(gps—;oi)cosws) (4-24f)
2[pl® .
<SV.VSIIIV> = —-E%L—sm(;as—;ai)cos(ﬁi) Zis (4-24g)
2ipl® .
<SVJVS‘:h> = ——ll-%Lsm(;oi—gas)cos(ﬁs) Zis (4-24h)
2
<Sv’v81;’h> = ﬂl)—g—{cos(6i)cos(ﬁs)cos(2¢s—2¢i)
+ sin(;)sin(dg)cos(p —p;)] (4-241)
<SV’hS}:'V> = <SV’VS}:’h>' (4—‘24J/
where
Z,s = cos(¥y)cos(¥;)cos(p —p;)+sin(¥,;)sin(d) . (4-25)

4.2.5 Slab Filled with Small Dielectric Spheres.

When a plane wave is incident upon a small dielectric sphere, a dipole is
created [7],[14],[21]. Comparing the first term in the Mie series solution for a
wave scattered off a dielectric sphere [7],[14] with the results of Appendix B and

section 4.2.2, it is clear that the constant p in this case becomes:
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g ~1
p, = |/ (ka)3, (4-26)

r

where £_ is the (complex) relative dielectric constant of the sphere and a is the

radius of the sphere. In this case, the dipole created by the incident electric
field is parallel to the incident electric field. Thus, using the results of Appendix

B, one finds that:

i s i s 3>\2
of =af = o =af= T~ (4-27)
and
rs -1
r
Sen = | sog] (ka)® cos(ps—py) (4-28a)
r
(81—_1 3 )
Spy = |5 75| (Ka)° cos(¥y) sin(p;—py) (4-28b)
r
]
g1 3 ,
Spn = |35 (ka)? cos(¥y) sin(p—¢;) (4-28c)
r
J
[ e —
Sy = 8r+2 (ka)3 [sin(¥;)sin(¥ ) +cos(ps—p;)cos(B )cos(;)]. (4-28d)
r

4.2.6 Slab Containing Chiral Objects.

To model a chiral medium, a slab filled with the small chiral objects shown
in Figure 4.2 will be considered. The objects are assumed to be spherically
randomly oriented; i.e., the probability density function describing the
orientations of the objects is given by (4-21).

The results for this case are derived in detail in Appendix C. Here, the

results of Appendix C will be compared with results found elsewhere in the

literature [1B]. To do this, a wave normally incident upon a slab of chiral
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Az

Figure 4.2. Chiral object.

objects will be assumed. The incident wave is then of the form:
Einc - (aheh + %eiéev) eilkz+awt) (4-29)

From the results of Appendix C (C-20) it follows that the reflection matrix is

of the form

XetXm =(x em "Xme)

H(XmeXem)  XetXm (4-80)

The constant ¢, is not important for the comparison of the results. The

reflected electric field is thus:

= o {0 0o,
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+ [ﬂ(xme_xem)ah+(Xe+Xm)avei‘5]ev} e—i(kz—owt)

For the chiral objects shown, X, = Xme = Xe [18]. In that case, the

reflected field becomes:
Eref - ¢y (Xe+xm) [aheh + avei‘sev] emi(kz—wt) (4-31)

This result is in accord with the results reported in [18]. The same result

as that in [18] is also found when the transmitted wave is considered.

It must be stressed, however, that this result takes only single reflections in
the slab into account. It is possible that the chiral medium may in fact alter the
state of polarization of the incident wave upon reflection when higher-order
reflections are considered. This is indeed the case when the incoherent
component of the backscattered energy is considered. Using the results in (C-

21) of Appendix C, it is easily shown that:

If the slab of chiral objects is illuminated by a linearly polarized wave, the
resulting incoherently reflected wave is elliptically polarized. The orientation
angle of this ellipse is the same as that of the incident linear polarization and
the ellipse "fatness” is directly proportional to x. This means that if the

medium was not chiral, ie, x, =0, the reflected wave would also be linearly

polarized. The handedness of the elliptical polarization is the same as that of

the chirality of the medium.

Now consider the case of a general elliptically polarized incident wave. The
incoherently reflected wave will also be elliptically polarized, with the orientation
angle of the ellipse the same as that of the ellipse of the incident wave. If the
incident wave is polarized with the same handedness as the chirality of the

medium, the ellipse of the reflected wave will be slightly "fatter" than that of the
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incident wave. If the incident wave polarization and the chirality of the medium
are of opposite handedness, the ellipse of the reflected wave will be slightly

"thinner” than the ellipse of the incident wave.

Unfortunately, there are no other works currently available to compare this
interesting result with.
4.3 Some Simple Models to Describe Backscatter from Vegetation Layers.

In this section, some of the models of the previous sections will be
combined to describe backscatter from a few selected types of vegetation.
4.3.1 Grasslands.
4.3.1.1 Grass Only. (First Grasslands Model)

The grass-like vegetation is modelled as vertical dipoles oriented randomly
around the vertical direction. In this and all other models, the ground surface
will be assumed to be a slightly rough surface which scatters according to the
Bragg relations [25] and with a relative dielectric constant of 3. The dipoles are

assumed to have a x,, given by (4-14) and it is assumed that A/1 =1/a = 10.

-— ) / V) ' Faty
M ; R
////////////
Figure 4.3. Model for grass-like vegetation layers.

Figure 4.4 shows the backscatter coefficients as a function of incidence
angle for this model without the presence of a ground surface. From this it is

seen that the hh and vv coefficients approach the same value for incidence
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angles near normal incidence. This is, of course, to be expected since at normal
incidence there is no distinction between the vertically and the horizontally
polarized electric fields. Also, it is seen that for angles of incidence away from
the normal, the hh coefficient is always smaller than the vv compeonent. This is

also to be expected, since the layer consists of dipoles mostly vertically oriented.

Figure 4.5 shows the backscatter coefficients as a function of incidence
angle for this model with the ground surface present. This shows that for
incidence angles less than 50 degrees there is an appreciable degree of
interaction between the vegetation layer and waves reflected by the ground
surface. Since the vegetation is mostly vertically oriented, the vv component of
backscattered power from the ground surface is attenuated more than the hh
component. In this area, the actual received backscattered power is
predominantly due to the ground surface. For incidence angles greater than 50
degrees, the vegetation layer appears thick enough to attenuate power received
from the ground surface to the extent that the received power is mainly due to

the vegetation layer, and the behaviour is similar to that in Figure 4.4.

Figure 4.6 shows how the backscatter coefficients change when the layer
thickness is increased. The vv component of the power scattered by the ground
surface is attenuated much more than the hh component as expected. All the

coeficients finally reach a limiting value as discussed in Section 3.5.2.2.

Figures 4.7 and 4.8 show the angle between the two minimum polarizations
(analogous to the Huynen fork angle) and the coherency factor for this model as
the layer thickness is increased. For the ground surface alone, the maximum
polarization is vertical polarization. As the layer thickness increases, the
vertical component of the power reflected from the ground surface is

attenuated more than the hh component. When the point is reached at which
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Figure 4.4. Backscatter coeflicients as a function of incidence angle
for the first grasslands model suspended in air. pL. = 1500.
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Figure 4.5 Backscatter coefficients as a function of incidence angle
for the first grasslands model with a ground surface present. pL. = 1500.

received power is divided equally between the vertical and horizontal

components, the "fork” has opened completely. If the layer thickness is
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Figure 4.6. Backscatter coefficients as a function of layer thickness
for the first grasslands model with a ground surface present. Incidence
angle = 45 degrees.

increased beyond this point, the horizontal component of the received power
becomes larger than the vertical component, and horizontal polarization
becomes the maximum polarization. This situation is shown in the polarization
spectrum of Figure 4.9. Here, power is still received mainly from the ground
surface. As the layer thickness is increased, the difference between the vertical
and the horizontal components of the received power increases to a maximum
(Figure 4.6). At this point, the "fork" angle is a minimum (Figure 4.7). If the
layer thickness is further increased, the power in the vertical component of the
received power starts to increase relative to the power in the horizontal
component. This happens because the power in the vertical component comes
mainly from the vegetation layer, which increases as the layer thickness is
increased. At this stage, the power in the horizontal component is still mainly
due to the ground surface, and decreases as the layer thickness is increased.

The result of this is that the "fork" starts to open up again, and has opened
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Figure 4.7. Angle between the two minimum polarization vectors as a
function of layer thickness at various incidence angles for the first
grasslands model.
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Figure 4.8. Coherency factor as a function of layer thickness at various
incidence angles for the first grasslands model.

completely when the received power is divided equally between the horizontal

and vertical components.
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Figure 4.9. Polarization spectrum for the first grasslands model when
power is received mainly from the ground surface. Incidence angle = 45
degrees and pL = 400.

Figure 4.10. Polarization spectrum for the first grasslands model when
power is received mainly from the vegetation layer. Incidence angle = 45
degrees and pL. = 2000.

At this point, seen over the whole polarization spectrum, the received power
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is divided equally between that from the ground surface and that from the
vegetation layer. This represents the scatterer with the biggest constant of
variation or, equivalently, the smallest ccherency factor. If the layer thickness
is increase’d beyond this point, the scattering from the vegetation layer
dominates. The result is that the "fork” closes to its limiting value and the
coherency factor increases slowly to its limiting value. At this stage, as
expected, the most power will be received if vertically polarized fields are

transmitted. This situation is shown in the polarization spectrum of Figure 4.10.
4.8.1.2 Grass plus Point Scatterers. (Second Grasslands Model)

This model is an extension of the previous model to provide for any point
scatterers that may exist in the vegetation layer. This is done by adding small
dielectric spheres to the dipoles of the previous model. In the figures that follow
it was assumed that the layer consists of 50% dipoles oriented randomly around
the vertical direction and 50% small dielectric spheres with radius .075

wavelength and relative dielectric constant 6 + i0.

Figure 4.11. Second model for grass-like vegetation.

Figures 4.12 to 4.16 show the results for this model. Figure 4.12 shows the
surprising result that at higher incidence angles the hh component of the
backscatter coefficients is bigger than the vv component. This result is directly

the opposite of that in Figure 4.5, The reason for this becomes apparent
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Figure 4.12. Backscatter coeflicients as a function of incidence angle
for the second grasslands model with a ground surface present. pL. = 1500.
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Figure 4.13. Backscatter coeflicients as a function of layer thickness
for the second grasslands model with a ground surface present. Incidence
angle = 45 degrees.

however, when it is realized that in Figure 4.12 the backscattered power is

mainly due to the spheres. If a sphere alone is considered, the hh and vv
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Figure 4.14 Angle between the two minimum pelarization vectors as a
function of layer thickness at various incidence angles for the second
grasslands model.
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Figure 4.15. Coherency factor as a function of layer thickness at
various incidence angles for the second grasslands model.

backscatter coeficients are equal. However, when the dipoles, oriented mostly

vertically, are added, the vertical component of the scattered electric field is
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Figure 4.16. Polarization spectrum for the second grasslands model when
power is received mainly from the vegetation layer. Incidence angle = 45
degrees and pL = 2000,

attenuated slightly more than the horizontal component inside the vegetation
layer. The result is that the hh backscatter coefficient is slightly larger than the

vv backscatter coefficient.

Figure 4.13 shows that the vertically polarized electric fields are attenuated
more than the horizontally polarized ones. This fact is to be expected from the
composition of the layer. Also, since the scattering from the spheres is much
stronger than from the dipoles, a much lower value of pL than before is needed

for the scattered power to be received mainly from the vegetation layer.

Figures 4.14 and 4.15 show that both the "fork” angle and the coherency
factor are close to that of a layer of spheres for most layer thicknesses. The
"fork" angle opens completely from that of a slightly rough surface and then
closes slightly. This happens because for thick layers the maximum polarization

is horizontal polarization as opposed to vertical polarization for very thin layers.
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The fact that horizontal polarization yields the maximum amount of received
power as well as the fact that the polarization "fork" has almost opened

completely for thick layers is shown in the polarization spectrum of Figure 4.16.

A comparison of the results of the two grasslands models clearly shows that
changing the composition of the vegetation layer dramatically affects the
results. Also, the results for the second grasslands model show that even
though the scattering is mainly due to the spheres, the presence of the dipoles

can be seen in the final results, albeitl in an indirect manner.

4.3.2 Coniferous Trees.

The model to describe backscatter from coniferous trees consists of two
layers. The top layer is made up of dipoles oriented randomly around 120
degrees from the vertical and the bottom layer is made up of dipoles oriented
randomly around the vertical direction. Physically, the top layer models the

branches and needles and the bottom layer models the trunks of the coniferous

trees.
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Figure 4.17. Model for coniferous trees.
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Figure 4.18. Backscatter coefficients as a function of incidence angle
for the coniferous trees model suspended in air. pL. = 1500.

L 1 L 'l ol L ' L ]
-30 T 1 T T ) T 1 T 1

@ 10 20 38 40 50 60 70 88 Y@

Backscatter Coefficient in dB

Incidence Angle in Degrees

Figure 4.19. Backscatter coefficients as a function of incidence angle
for the coniferous trees model with a ground surface present. pL. = 1500.

To keep the model simple, it will be assumed that the two layers are of

equal thickness. For thick layers, one expects the hh backscatter coefficient to
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Figure 4.20. Backscatter coeflicients as a function of layer thickness

for the coniferous trees model with a ground surface present. Incidence
angle = 45 degrees.

be larger than the vv coefficient. When the two layers are suspended in air,
(Figure 4.18) the hh coefficient is only slightly larger than the vv coefficient. For
the case shown, however, the top layer is not thick enough to completely
attenuate returns from the bottom layer, which scatters the vertically polarized
electric field more strongly than the horizontally polarized ones. These
vertically polarized fields are also not strongly attenuated in the top layer, with
the result that the vv coefficient is closer to the hh coefficient than would be

expected if only the top layer were present.

Figure 4.20 shows the backscatter coefficients as a function of layer
thickness, This figure shows that, for pL. smaller than 600, the vv coefficient
decreases more rapidly than for 600 <pl < BOO . For pL < 600 this attenuation is
strongly affected by the bottom layer, but as pL grows bigger than 800 the effect

of the top layer starts to dominate. The result is that seen in Figure 4.20.
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Figure 4.21. Angle between the two minimum polarization vectors as a
function of layer thickness at various incidence angles for the coniferous
trees model.

Coherency Factor

0 1000 2000
PL

Figure 4.22. Coherency factor as a function of layer thickness at
various incidence angles for the coniferous trees model.

Since the vertically polarized electric fields are attenuated more than the

horizontally polarized ones in thin layers, one would expect the "fork” angle to
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Figure 4.23. Polarization spectrum for the coniferous trees model when
power is received mainly from the ground surface. Incidence angle = 45
degrees and pL. = 400,

Figure 4.24. Polarization spectrum {or the coniferous trees model when
power is received mainly from the vegetation layer. Incidence angle = 45
degrees and pL = 2000.

first open up and then close to a minimum value. If the layer is made even
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thicker, one would expect the "fork" to start opening again, but since for this
model the maximum polarization for thick layers is horizontal polarization, one
would not expect the "fork"” to open up completely again. Instead, the "fork"
angle should approach a limiting value for thick layers. This behaviour is
displayed in Figure 4.21. Similarly, one would expect the coherency factor to
decrease monotonically to a limiting value. This is indeed the case, as is

witnessed in Figure 4.21.

For thin layers, the effect of the bottom layer is very pronounced. Thus,
one would expect that the polarization spectrum of the vegetation-ground
combination for thin layers would look similar to that of the first grasslands
model. This is seen to be true when Figures 4.9 and 4.23 are compared. For
thick layers, one would expect that polarizations nearly horizontal would yield
the most power received. This is indeed the case shown by the polarization

spectrum shown in Figure 4.24.
4.3.3 Deciduous Trees.

Deciduous trees usually have leaves and branches pointing in all directions.
To model this situation, the top layer of the previous model is replaced by one

which contains dipoles oriented spherically randomly.

For layers thick enough so that the scattering is dominated by the top
layer, one expects the hh and vv backscatter coefficients to be the same. This
must be the case since the top layer presents the same characteristics to both

pelarizations. This result is found in Figures 4.26 and 4.27.

As the layer thickness increases, one first expects the vv backscatter
coefficient to decrease more rapidly than the hh coefficient due to the presence
of the mostly vertically oriented dipoles in the bottom layer. When the layers

are thick enough so that the effect of the bottom layer is negligible, one expects
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Figure 4.25. Model for deciduous trees.

the hh and vv coefficients to decrease at the same rate and finally to become

equal. This behaviour is displayed in Figure 4.28.

For thin layers, vertical polarization is the maximum polarization. As in
the case of the first grasslands model, for medium thick layers the maximum
polarization is horizontal polarization. For very thick layers, the top layer of
the model displays the same characteristics for any linear polarization. One
would thus expect that the polarization "fork” should first open completely,
then close to a minimum and finally open completely. This is clearly the case
shown in Figure 4.29. The result in Figure 4.30 can also be explained in this way.
Since the variation in scattering properties increases to a limiting value as the
layer thickness is increased, one would expect the coherency factor to decrease

to a limiting value as shown in Figure 4.30.

For thin layers, as in the case of the coniferous trees model, one expects
that the most power will be received (mainly from the ground surface) if
horizontally polarized waves are transmitted. This is clearly the case in Figure

4.31. For very thick layers, one expects that any linear polarization would yield
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Figure 4.26. Backscatter coefficients as a function of incidence angle
for the deciduous trees model suspended in air. pL. = 1500,

Q 20T hh
< ---- wvh
T 187 v
2
9
T e7
(-]
o
Q
-187
[
e
® 207
9
® -39 e ——p—————
@ @ 1@ 20 30 48 SO 60 70 80 90

Incidence Angle in Degrees

Figure 4.27. Backscatter coefficients as a function of incidence angle
for the deciduous trees model with a ground surface present. pL. = 1500.

a maximum amount of power received. This result is shown in Figure 4.32.
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Figure 4.28B. Backscatter coefficients as a function of layer thickness
for the deciduous trees model with a ground surface present. Incidence
angle = 45 degrees,

4.4 Conclusions.

In this chapter, some single scattering models to describe backscatter from
four different types of vegetation were derived and the results discussed. It is
clear that when the results of these models are compared, there is a big
difference between the different models, especially when the vegetation layers
are thick. This difference is easiest to see when the polarization spectrums of
the models are compared. All the results found can easily be explained by the

physical properties of the various models.

The models described in this chapter were chosen to be the simplest
possible theoretical model which could describe scattering from different types
of vegetation. When more measured data become available, more sophisticated
models may be generated. To really model a physical scattering process

accurately, the relative importance of the various parts of the vegetation when
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the scattered fields are generated, must be known.

In the next chapter it will be shown how these models, and the difference
between the various models, may be used to the advantage of scientists involved

in multipolarization radar imaging.
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Figure 4.29. Angle between the two minimum polarization vectors as a
function of layer thickness at various incidence angles for the deciduous
trees model.
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Figure 4.30. Coherency factor as a function of layer thickness at
various incidence angles for the deciduous trees model.
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Figure 4.31. Polarization spectrum for the deciduous trees model when
power is received mainly from the ground surface. Incidence angle = 45
degrees and pL, = 400.

Figure 4.32. Polarization spectrum for the deciduous trees model when
power is received mainly from the vegetation layer. Incidence angle = 45
degrees and pl, = 2000.
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CHAPTER 5
SOLVING THE INVERSE PROBLEM.

In radar imaging, scientists usually deal with the inverse scattering
problem: the average properties of the radar backscatter from the vegetation
layer is known and one wants to obtain some information about certain
parameters of the vegetation from these known properties. This is a very
difficult problem, since it is conceivable that there may be more than one type
of vegetation that may produce the same average radar backscatter as a
function of incidence angle and wavelength. If one has some knowledge of the
vegetation layer, it may be possible to use the measured radar backscatter to

obtain more general information about the vegetation under consideration.

In this chapter, a simple way to classify measured results into different
classes wil be presented. It will also be shown how this process will essentially
solve the inverse problem to the accuracy permitted by the accuracy of the

models used to do the classification.

characterizing a vegetation layer. Some of the most important ones are:

(a) The thickness L of the layer.

(b) The amount of absorption in the layer. This would give some
information about the quantity of biomass (i.e., amount of vegetation

and the water content of the vegetation) per unit volume it contained.

(c) The type (ie., long, thin scatterers or point scatterers) and
relative orientation of the scatterers in the layer. This may provide

some information about the type of vegetation present in the layer.
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(d) Geologists may be interested in discriminating between
scattering from the ground surface and scattering irom the vegetation

volume.

Obviously, it would be very difficult in practice to distinguish between each
and every possible type of vegetation. A promising method of obtaining a
reliable solution is to build up a library of models of vegetation layers which
would include the most important types of vegetation and ground surfaces. To
find the parameters of the model which best approximate a measured Stokes
Scattering Operator, one simply has to calculate the polarization spectrum for
the measured Stokes Scattering Operator and compare the result with the
polarization spectrums of the models in the library [11]. The parameters of the
polarization spectrum that differs the least from the measured one may then be

taken as the parameters of the vegetation layer. The advantages of this method

are.;

(i) Al the parameters of the vegetation layer are solved for

simultaneously.

(ii) Once a model has been chosen to represent the measured
Stokes Scattering Operator, the polarization which would yield the
optimum amount of discrimination between the power scattered by the
ground surface and the power scattered by the vegetation volume can
easily be calculated. Alsc the polarizations that would enhance or
decrease the intensity of the particular pixel in the image are easy to

calculate.

The main disadvantage of this method is that the accuracy that may be
achieved is limited by how well the models imitate the real physical scattering

processes encountered in nature.
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To illustrate this method, the four models of the previous chapter will be
compared. The comparison is done on the basis of their normalized difference

values defined in Section 2.3.2.7. Two cases will be considered:

(i) The models all have the same thickness as the reference model.

(Figure 5.1.)

(ii) A reference model of fixed layer thickness is compared to all
the other meodels, including itself, for all possible layer thicknesses.

(Figure 5.2.)

In both Figures 5.1 and 5.2, the first grasslands model was used as the
reference. It is clear from both these figures, which were calculated using 200
points on the Poincaré sphere, that there is indeed a sizable difference between
the various models. The real difference may, of course, be increased by using

more points on the Poincaré sphere when calculating the normalized difference

values.

One does not have to use models to do this type of classification, however.
This technique of comparing different scatterers gives a simple way to map
those parts of an image which are similar to a previously selected pixel. In that
case, the reference polarization spectrum is the polarization spectrum of the
selected pixel. Mapping is done by comparing the polarization spectrums of the

other pixels in the image to that of the reference pixel.

For those scientists interested in the ground surface, it is important to
know which polarization would give the best discrimination between the power
scattered by the ground surface and the power scattered by the vegetation
volume. Once a model for the measured polarization spectrum has been chosen,

it is a straightforward problem to calculate this optimum polarization.
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Figure 5.1. Normalized difference values when the first grasslands model

is compared with other models with the same layer thickness.
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Figure 5.2. Normalized difference values as a function of layer
thickness when the first grasslands model with pL. =1000 is
compared with all the models.

Figures 5.3 and 5.4 show the locus of this optimum polarization for
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Figure 5.3. Optimum polarization for discriminating between the returns
from the ground surface and the vegetation for the first grasslands model,
the coniferous trees model and the deciduous trees model.

different layer thicknesses plotted on the Poincaré sphere. It is not completely
surprising that the behaviour of this optimum polarization is similar for the
first grasslands, the coniferous trees and the deciduous trees models. The
reason for this is that the return from the ground surface in all three cases is
influenced most by a layer of dipoles that are randomly oriented around the
vertical direction. For these cases, it was explained earlier why horizontal

polarization would yield the strongest return from the ground surface.

The optimum polarization for discriminating between returns from the
ground surface and the second grasslands model exhibits an interesting
behaviour. Starting off at vertical polarization (the maximum polarization of
the ground surface), it soon moves to the circular polarizations. For pL in the
region of 500, it moves back to vertical polarization and then rapidly moves via
the linear polarizations to horizontal polarization. After a brief stay at

horizontal polarization, it moves back to the circular polarizations, where it
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Figure 5.4. Optimum polarization for discrimination between the returns
from the ground surface and the vegetation layer for the second grasslands
model,

finally stays. It was remarked earlier that for this model the scattering is
dominated by the spheres. Spheres, however, have their polarization nulls at
the circular polarizations, and hence it is to be expected that the circular
polarizations would give the best discrimination between the returns from the
ground surface and the second grasslands model. The quick movements to
vertical polarization and then via the linear polarizations to horizontal
polarization is the result of the slight difference between the attenuation
constants for vertical and horizontal polarizations due to the presence of the

dipoles.
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CHAPTER 6
MULTIPOLARIZATION RADAR IMAGING RESULTS.

6.1 Introduction.

In this chapter, some of the concepts defined in earlier chapters will be
applied to real multipolarization synthetic aperture radar data. The data were
captured by the airborne high resolutiocn synthetic aperture radar flown by the

Jet Propulsion Laboratory [25] during early summer 1985. Two areas will be

investigated:
(i) The San Francisco area in California.
(ii) The Snake River Plain lava flow area in Idaho.

Here, the polarization spectrums of different scenes will be shown and

discussed. Also, the coefficient of variation for these two areas will be calculated

and shown in image form.

Figures 8.1 and 8.2 show images of the two areas to be investigated. Both

the images were made assuming horizontal polarization for both the
transmitting and the receiving antennas. In each of these areas, a strip
corresponding to a quarter of the total image was selected to be investigated.
For these strips, the average Stokes Scattering Operators were calculated for 16
pixels, giving a final resolution of 15 metres in the slant range direction and 22
metres in the azimuth direction. Figure 8.5 shows the definition of these
directions. For each of the average Stokes Scattering Operators, the coefficient
of variation was calculated. The results, together with the "reference" strip, are

displayed in Figures 6.3 and 6.4.
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Figure 8.1. Image of the San Francisco area.



2 Image of the Snake River Plain lava flow area.

]



-112 -

Figure 6.3. Coefficient of Variation for the San Francisco area.
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Figure 6.4 Coeflicient of Variation for the Snake River Plain area.
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In the San Francisco images, it is clear that, apart from the noisy
character, as expected, the ocean has a lower coefficient of variation than the
urban ares or the park areas. On this fairly small scale, there is very little
difference between the coefficient of variation of the park area and that of the
urban area, although the park area has a slightly higher coefficient of variation
than the urban area. This is in accord with what should be expected, since

urban scenes do not vary much over a 22m by 15m area.

Radar

S

Slant Range Resolution

Pixel
Azimuth Resolution

Ground Range Resolution

/ /

Figure 6.5. Measurement Geometry.

In the Snake River Plain images, it is clear that, on this fairly small scale,
the smoother lava flow areas have a higher coefficient of variation than the
rougher lava flow areas. While this may sound opposite to what one may expect,
the higher variation for the smoother areas is probably due to the presence
some vegetation (low bushes and grass) in the smoother areas. Since the
received power for the smoother lava flows is very small, noise may also

contribute to the higher coefficient of variation for these areas.
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To investigate the character of the scattering processes in more detail, five
"test'" areas were selected from Figures 6.1 and 6.2, For each test area, the
average Stokes Sqattering Operator was calculated for an area of 90 metres
(azimuth) by 132 metres (slant range). The polarization spectrums for each of
these five test areas are shown in Figures 6.6 - 6.10. A comparison of some of

the characteristics of these polarization spectrums is shown in Table 6.1.

TABLE 6.1 COMPARISON OF TEST AREAS.
Area Image label Max. "power" Coef. of Var.
Ocean San Francisco a 0232 019
Park San Francisco b 1035 653
Urban San Francisco c .1409 ARl
"Smooth” lava Snake River Plain d .0018 145
Rough lava Snake River Plain e 0155 241

The results in Table 8.1 show that, on this medium scale, the ocean has very
little variation in scattering properties, which corresponds with what one
expects from the physical setup. The urban area has much more variation in
scattering properties than the ocean, but less than the the park area. This is to
be expected, since fairly large patches of urban areas exhibit the same
scatlering properties, while park areas covered with different types of vegetation

show more variation in scattering properties on the medium scale.

Also, on the medium scale, the smoother lava flow shows less variation in
scattering properties than the rough lava flow. On this scale, the effects of the
relatively short bushes and grass are much smaller than that of the huge
boulders found in the rougher flows. Also, the effects of noise is much smaller

on the medium scale. Thus, it should be expected that, on a medium scale, the
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Figure 8.6. Polarization spectrum for ocean area.

rougher lava flows will show more variation in scattering properties than the
smoother flows.

When the polarization spectra of the ocean area, the smoother lava flow an
the rough lava flow are compared to that of a slightly rough ground surface
calculated from Valenzuela's model [24], (Figure 2.7) it is clear that these four
polarization spectrums are very similar. While it may be expected that the
ocean, and even the smoother lava flow, may have spectrums that compare
favorably with Valenzuela’'s model, it is surprising that the very rough lava flows
have spectrums that look similar to Figure 2.7. It is clear that more work
should be done in order to understand the dominating scattering processes
when geological areas are imaged. More work is also needed to understand how

the scattering process influences the form of the polarization spectrum.
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Figure 8.7. Polarization spectrum for park area.

Figure 6.B. Polarization spectrum for urban area.

Next, consider the polarization spectrum of the urban area shown in Figure
6.8. This spectrum shows a maximum near horizontal polarization, minima

near the 45 degrees and 135 degrees linear polarizations and a local maximum
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Figure 6.9. Polarization spectrum for smoother lava flow area.
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Figure 6.10. Polarization spectrum for rougher lava flow area.

near vertical polarization. Now, consider the case of a wave reflected as shown
in Figure 8.11. For simplicity it is assumed that the reflecting surfaces are

smooth when the double-bounce case is calculated. All surfaces are assumed to
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Figure 6.11. Model for scattering in urban areas.

Figure 6.12. Polarization spectrum for model shown above.

have relative dielectric constants 6. The polarization spectrum of this
scattering setup, assuming the power in the double-bounce wave is twice that of

the wave reflected from the slightly rough surface, is shown in Figure 6.12. It is
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clear that, apart from the offset caused by the variation in scattering
properties, the polarization spectrum of the urban area exhibits the same
behaviour as the polarization spectrum shown in Figure 8.12. This leads one to

conclude that scattering in urban areas is dominated by double bounces.

In a similar way, it is possible to show that that the polarization spectrum
of the park area is also a combination of the polarization spectrums of a slightly
rough surface and that of a double bounce reflection. For the park areas,

however, the double bounce reflections play a much smaller role than in the

case of the urban areas.

At this point, a word of caution is in order. Since, as pointed out before,
the polarization spectrum is not unique, it is conceivable that other
combinations of scattering processes may also give spectrums which exhibit
behaviours similar to that of the urban or park areas. When trying to explain
the form of a polarization spectrum, one has to be careful in assuring that the
explanatory processes chosen are physically possible for the area under

consideration.

6.3 Conclusions.

In this chapter, some of the concepts introduced earlier were applied to
real data. It is clear that the behaviour of all the parameters may be explained
qualitatively, and all parameters were found to behave as expected. The
polarization spectrum proved to be a valuable tool in deciding which scattering

processes are important when different areas are imaged.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS.

In this thesis, the different characterizations of scatterers were discussed
in detail. The problem of finding the polarizations that would yield an optimum
amount of power received from the scatterer was solved for various different
cases. It was shown that, in the most general case, six optimum polarizations

may exist and not four as reported elsewhere in the literature.

The concept of a polarization spectrum was introduced and results, using
real multipolarization synthetic aperture radar data, show the usefulness of this
concept in understanding the scattering processes at work in radar imaging.
Although this polarization spectrum concept was introduced with the same
antenna used for transmission and reception, this is actually a very special case.
Strictly speaking, one scatterer has infinitely many such polarization
spectrums. For every transmit polarization, a spectrum may be calculated by
varying the polarization of the receiving antenna. Although the same antenna is
usually used for transmission and reception in practical radar systems, this
limitation no longer exists when multipolarization synthetic aperture radar data

are processed using digital computers.

In the same way, the definition of the coefficient of variation may be
generalized. Instead of using the maximum and minimum powers in the
spectrum when the same antenna is used for transmission and reception, one
should use the absolute maximum and minimum amounts of power received
from the scatterer when all possible polarizations are used for transmission and
reception. When this is done for the areas shown in Table 6.1, the results shown

in Table 7.1 are found.
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TABLE, 7.1 COMPARISON OF TEST AREAS.
Area Image Label Coef. of Var.
Ocean San Francisco a .0085
Park San Francisco b .2440
Urban San Francisco c 1146
"Smooth" lava Snake River Plain d 0293
Rough lava Snake River Plain e 1001

This shows that the global coefficients of variation, which may be thought of
as being proportional te the ratio of the diffuse- and coherent components of
the received power, are much lower than the coefficient of variation calculated
when the same antenna is used for transmission and reception. The results
discussed in the previous chapter showed that the coefficient of variation may
provide some information about the scale over which scattering properties vary

in an area,

At present, no calibrated data are available for heavily vegetated areas. It
is therefore not possible to compare the results of Chapter 4 with measured
data. An image taken over the Raisin City area in California, which is an
agricultural area, will be investigated in the near future and should provide the

opportunity to compare the results of Chapter 4 with measured data.

In the introduction of Chapter 3 it was mentioned that it is hard to
calculate multiple scattering results from the formulation given in that chapter.
The results in Tables 6.1 and 7.1 seem to suggest that, at least for the five areas
investigated, the diffuse component of the received power is fairly small. This

would mean that multiple scattering is relatively unimportant in those areas
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investigated. However, the only area with a reasonable amont of vegetation, the
park area in the San Francisco image, has a diffuse component much larger
than the other areas. This may suggest that multiple scattering may be

important in heavily vegetated areas.

If it should prove to be necessary to calculate multiple scattering results,
the well-known matrix addition and matrix doubling methods may be used
[26].[R7],[28].[29].[30]. It is easy to find the single scattering operators from
the formulation given in Chapter 3. This single scattering operator is then used
as an input to the matrix-doubling methed to calculate the multiple scattering
operator for a slab of arbitrary thickness. Finally, the matrix-addition method

may be used to add a ground surface to the ''vegetation' layer.

The results presented in this thesis clearly illustrate the importance of
pelarization in radar scattering problems. When the concepts started in this
thesis are applied to the increasing volume of multipolarization synthetic
aperture radar data, the present understanding of the scattering processes

involved may be greatly improved.
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APPENDIX A.
THE STOKES SCATTERING OPERATOR.

It will be assumed that the scatterer is characterized by a 2x2 bistatic

scattering matrix as follows:

[ .
ESF B Sk Sx’y Ene
Ese| Sy’x Sy’ ginel” (A-1)
Y y y

It is easily shown that

(EiF'EgP* rE;;ad-ﬁ:;ad'
sc, psct rad prrad®
Eyr Ey, _ Ey Ey
sc pse* (W] rad prad®|’ (A-2)
Eg -EyJ Eyg 'Ey
sc.psc* rad, prad*
Eyl EX' | Ey EX J

where

S, S, S..,S5, S..SI St S,

X'x Vx'x X'y xy X'x ¥x'y X'X xy
— SYX'S x  SyyS y'y y’y' x SyyS y’x Sy
TS s Sios.. S, S% s..Sh | W)
x'x Vy'x vy X'y x'x Vy'y X'y Py'x

* t Y
SX'X y X Syxysxyy ylx' X'y Sx:x'sy.:y‘

If the Stokes parameters of an electric field of the form
E:Re{lE e, +E e] i(kr‘“t)} (A-3)

are defined to be
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it follows that one can write (A-4) as:

S(E) = [R]G(E) .

where
r1 1 O” 0
1 -1 00
Rl =19 o0 1 1
C 0 —i
and
~ E 3 ¥
GE) = [E By i B E Ex'Ey;EyEx],

Here, ™ means transposed. It then follows from (A-5) that
G(E) = [R]7'S(E).

where

]

A
e OO
OO

1

..1 - 1

0 0

Using this notation, one may write:

G(ES®) = [W] G(E™Y),

where [W] is the 4x4 matrix in (A-2a). In Chapter 2 it is shown that

P = K(\8,¢) ERdESC|2

rec

(A-2)

(A-5)

(A-6)

(A-7)

(A-8)

(A-9)

(A-10)

(A-11)
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Now, define

P’rec = ( prad.gsc )( prad.gsc )* i

Expanding the right-hand side of {A-12), one finds

Pl = | E;adE)f,C + E)x;ad,E;c |2

= G(Erad) G(ESC)
= G(Erd9) [W] G(Er9)
= §(Erad) (R]! [W] [R]~! S(EFad)

If it is now defined that
Srad - S(Erad)
and
1 1
(M] = [R]™" [W] [R]™
it is clear that

PLec = (Erad_Esctz — Srad,[M]Srad

r

(A-12)

(A-13)

(A-14)

(A-15)

This 4x4 real matrix [M] will be called the Stokes Scattering Operator. If

the matrix multiplication is carried out, the results shown in (2-17) are found.
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APPENDIX B.
BISTATIC SCATTERING MATRIX OF A DIPOLE OF ARBITRARY ORIENTATION.

The scattering geometry to be considered is shown in Figure B.1.

‘<¢

X

Figure B.1. Dipole of arbitrary orientation.

According to the definition in Chapter 3, the bistatic scattering matrix

relates the scattered and incident electric fields in the following way:
ESC(r) = [S(8;.¢;85.95)] E™°(0) h(kr) (B-1)

where, as before,

eikr
kr

h(kr) = (B-2)
According to Figure B.1, the dipole may be described by:

P = pey
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= p [ sindy cospy e, + sindy sing 4 e, +costy e, 1. (B-3)

where p is the dipole moment of the dipele. The dipole moment created by an
incident electric field, B¢, is given by [18],[19]:

P = one(ed'EinC)ed (B-4)

with x. the electric susceptibility of the material. The far-zone electric field

radiated by this dipole is [18]:

k2 eikl‘
e = K cpyxey]. (8-5)

4m:0r

Combining (B-4) and (B-5), one finds:

3

k .
ESS(r) = —2 (), X p) X €] (egE") h(kr) (B-6)

It is easily shown, using some vector identities [20], that:

(e, xey xe = ey—(e ele . (B-7)
If this is expressed in the €} ,€', basis, one finds:
(¢, xeq) xe = (e eg)ey + (e, eq)e, —(e ee (B-8)

Using (B-8), (B-5) and (B-1), one finds that the elements of the scattering

malrix are ;
Shh = kjj:e W, W (B-9a)
S kz:e W, Z; (B-9b)
= KX W. Z (B-9¢)
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3
Sy = k;f Z, Z . (B-9d)
where
Z, = sin(¥)cos(d4) — cos(pg—p,)sin(¥)cos(d,) (B-10a)
W, = sin(dg)sin(p4—¢,) (B-11b)

and x may be either i or s.

The effective area that this dipole exhibits to vertically polarized incident

electric fields is, following the definition in [1]:
322 o
A () = B e (B-12)

This gives the attenuation constant for vertically polarized electric fields as:

i _ 8% a2 ]
oy = Tp- Ze . (B-13a)

Similarly, the other attenuation constants are:

s — 3)\2 2 _

oy = Tar 75 (B-13b)
i _ 3\% o _

oy = Tpn Wi (B-13c)
s _ 9% .o .

oh = g W (B-13d)
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APPENDIX C.
EFFECTIVE OPERATORS FOR A SLAB FILLED WITH CHIRAL OBJECTS.

As a chiral medium, a slab filled with small chiral objects as shown in Figure
C.1 below, will be considered. It will be assumed that the chiral objects are

spherically randomly oriented, i.e., all orientations are equally likely.

Figure C.1. Vectors indicating the directions and angles of incident

and scattered waves and the orientation angles of the chiral object.

1t is clear from Figure C.1 that:

& = —eﬂ('ai#’i)
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=~ cos(¥;)cos(p;)e, — cos(8,)sin(p,)e, + sin(d,)e, (C-1a)
% = gy, ) = " sinle)et coslee, (C-1b)
®v = _%(ﬂs,¢s)

= — cos(8y)cos(p,)e, — cos(8,)sin(py)e, + sin(s)e, (C-1c)
T Sy, =~ Sn(eey *eostee, (c-1d)

Now, in general, the incident plane wave has an electric field of the form:
Einc = [ Eheh + Evev ] e—i(kl"+a}t) , (C_za)
and the magnetic filed of the incident plane wave may be expressed as [18]:
Binc - %{ e X EIC). (C-2b)

Here, c is the free-space velocity of light. This incident plane wave excites
an electric and a magnetic dipole in the chiral object. In the limit where the

chiral objects are small compared to the wavelength, these dipole moments are

[18]:
p = g xe(ed'Einc) + ixemc(ed'Binc) leq =pey (C-3a)
m = —cg [ xmc(ed’BmC) + ixme(ed-Einc) leg = mey . (C-3b)

The upper (lower) signs correspond to the case of objects with right-handed
(left-handed) chirality.
The electric field radiated by this combination is given by [18]:

e1kr

- (C-4)

ESC(r) =

k , | —1a
prs [ (e xp)xe, +c (e xm) ]
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It is easily shown that
(e, xeg) xe, = (e ey)ey + (e eg)e, — (e eq)e, . (C-5)
Thus, the transverse components of (C-4) may be written as:

k3

Br) = 4meg

m r ] t
[(peg+ = LXeg) ey ley

m D eikr
+ [(ped+-—(—3—-&n><ed)~e.-v]eV o (C-8)

Going through some simple algebra, one finds that

ey ey = sin(¥y)sin(pg—p) = W (C-7a)
ey €, = sin(¥ )cos(¥y) ~ cos(pyg—p)sin(¥y)cos(dy) = Z (C-7b)
(e xey) ey = Zg (C-7c¢)
(e xey)e, = —W,. (C-74d)

In the same way, it is easily shown that

P =g {Wi[erh:tixemEv] + Zi[x By~ :(:ixemEh]}ed (C-8a)

m = cgg {Wi[—mev— X mePR] + 2 X By~ :tixmeEv]}ed , (C-8b)

where W; and Z; are given by (C-7a) and (C-7b), but with ¥, and g replaced by %,
and g, respectively. Using (C-6), (C-7) and (C-8), the elements of the bistatic

scattering matrix may be written as:

Sh'h = an [WiWsXe + Zizsxm] - ﬂ[ziwsxem + wizsxme] (C-9a)
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_ K .
Svn = Z;{ [WiZsXe = ZiWeXn] = #i[ZiZXerm — WiWSxme]} (C-9b)
_ k3 .
Spry = Zﬂ:_{ [ZWeXe = WiZox ] + 1WiWoXerm — ZiZsXmel } (C-9c¢)
k3 .
Syy = ZTT{ [Z;ZXe + WiWoXm] #HWiZXem *+ ZiWeXme) } , (C-94)

It is easily seen that the results of appendix B is a special case of {C-9) with
Xm = Xem = Xme =0.

Using the definition of effective area as found in [1], it is found that the

effective area may be written as:

ARPR iErad(r) ;2 ' (c-10)

A(S,p) =

R
[ [ 1Er2d(r) |2 r2 sin(v) dv dy
° 0

Since the amount of power radiated into all of space does not depend on
the orientation of the chiral object, for the purpose of evaluating the integral in
the denominator of (C-10) it will be assumed that the chiral object is oriented

along the z-axis. From (C-8) and (C-7)

ikr
Ered(r) = P, [psin(®)e, - Tsin(d)e},] S—. (C-11)
Thus:
[ 2 «in2
|Erad(r)|2 = [4i0} [p2+1'(1:2 ]Slnrz(’iy) (C-1R)

and



2n I' 2 12 2
J [ PIEred) Rsin(s) as dp = %’1{ ;TEO} [p%+ 5 (C-13)

Using (C-18) in (C-11), one finds that

- 3)\2[47?80 ]2 r2 rad 2 -
A(Bp) = 8 | W2 | \p2+%2~iE (o=, (C-14)
¢

Using the general result for E°€ given in (C-8), one finds:

A2 1 - mp
A¥ = Ny {pzz;? + e PmPWE + 2 wxzx} (C-15a)
and
3% 1 [aee. 2 22, m
AF = = ey W2+ e Bmz2 + TRw.z (C-15b)

where x may be either i or s. The average effective areas are:

2n @

<AX> = i { { AXsin(¥,) ddy deg . (C-18)

where y may be either v or h. Now,

2Zn ow

2, _ 4
{‘O[WXSLD(’@d) d¥gdey = 37 (C-17a)
2n w 4

2 -
{ { Zgsin(8y) ddg dpg = g (C-17b)
2n =
{{zxwxsm(ﬁd) d¥,dgy = 0. (C-17¢)

Thus, the average attenuation constants are:
<al> = <a5> = <al> = <S> = 22 (C-18)
& &y h h 16n

In order to calculate the effective scattering operators, the following

integrals are listed first:
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2r 7
1 . 1
-—-;-T-{{Wiwssm(ﬂd) ddg dpy = -3—cos(;as—-;ai)

2r
1 . -1 .
yr { { W,Zsin(dy) d¥ g degy -é-cos(ﬂs)sm(;os—gpi)

2n 7

1 . 1 .
o [ WiZsin(8y) 485 dgg = Seos(d))sin(p;-p,)
[}

2

ffz Zsin(8q) d0q dpg = =T

1 2T w 1

=1/ WAW3sin(vy) doy dpg = T—5{1+2c082(¢5—¢i)]
0 O

1 2n 1

—— [ [ Z223sin(¥,) d¥; dpy = ——{1+2ZZ]

4T 5 9 15

en
1 1 .
i fszzzsm (¥q) d¥gq dpgq = -—115 1+Zsm2(¢s—¢i)cosz(ﬁs)]

2mow
1 1 .
Z;T—f f 2W sin 19d) d’lyd d;ﬂd = E[1+Zsm2(;os—gai)cosz(1ii)]

1 2m w 1

e T WW 7.7 sinfd Ydd.de, = ——

At .{3 J0 iMsTiest Y, YV g Y¥d 15 is
?m o

—LffWiWEZisin(ﬂd) d¥g dggq = Tzcos(¥)sin(Re —Ry;)
4m 45 % 15

2n w
1 ; 1
g{{wfwszssm(ﬁ& d¥g deg = Ecos('& )sin(Re;—R¢,)

2n 7
2
Z—{‘of lzlzszsm(ﬁd) ddgq dpg = T5—sm(;oi-—;os)cos(ﬂs)zis

2n n
1 2
Z—;T-ffZZW Zsin(¥q) d¥g dey = Té—sm(gos——gai)ccs(ﬂi)zis

with

(C-19a)

(C-19b)

(C-19c)

(C-19d)

(C-19e)

(C-19f)

(C-19k)

(C-191)

(C-19m)
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N
1

sin(¥;)sin(¥g) +cos(p —¢;)cos(¥y)cos(;) (C-19n)

cos(W;)cos(V¥ ) cosR(p;—¢,) +sin(¥;)sin(Y ) cos(p~¢;) . (C-190)

Qis

Using these, it is now easily shown that:
_ K3
<Spp> = T [cos{p—9)Xe + ZigXm ]
— ti[cos(¥;)sin(g;~¢ ) Xem + cos(ﬁs)sin(;ps—-goi)xme]} (C-20a)

k3 . .
<S> = —1——2—7—;{ [cos(Bg)sin(p —p;)xe — cos(¥;)sin(@;—0 )X m]

1

k3 . .
1—2—”—{ [cos(8)sin(g;—p )X, — cos(B)sin(g ~¢)xy ]

+ i[COS(WS_¢i)Xem - ZISXme] } (C‘ZOC)
<SS - _33_... 7 + _
V’V> - 127 [ jsXe COS(GOS gal)Xm]
+ifcos(¥)sin(p = )Xem + cos(¥)sin(g; 2 X mel } (C-20d)
and
k3 2 1 2
<ISpyl?> = | = E.{Xgmzcos?(;as_;pi)]+Xm[1+zz§s]

+ Xegm[1+25in2(¢s—;oi)cosz(z9i)] + xrgne[l+Zsin2(;os—goi)cosz(133)]
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+ B[XeXm+Xemee]st} (C’21a)

2
k3| 1 .
<}Sh’V12> = {E‘] 1‘5—{)(62[1+251n2(§0s—¢i)0052(191)]
+ xrzn[l+231n2(qps—gpi)cos2(1ﬁs)] + Xgm[l+2cosz(;as—¢i)]

+ X2 [1+2Z2] = 2[X X FX omXme ) Qs (C-21b)

2
k3% 1 .
<}Sv,h]2> = Z;T——} fg‘{xez[1“"231“2(%—591)"032("‘33)}

+ xr%[l+2sin2(;os——goi)cosz(1ii)] + xlzne[1+2c:osz(gas-—;ai)]

+ X&m[ 1+R2E] ~ 2lXXrn X emXme Qs } (C-210)
<{q i2> - [L{S]ZLJV2FW4-721J—vzr"-l-gnncg/ﬂ —o )1
~ iy - 14?71’} 15 l/\eL" gl Amil~ T MYYS \Yg ¥/l

+ xezm[l+Zsin2(;as—;ai)cosz(195)] + xlzne[l+Zsin2(gps—;oi)cosz(13i)]

+ 2[Xexm+xemxme] Qis } (C-21d)

2
. k3 |% 2 :

2 2 ; -
- ‘:Xm —_Xme]Sln(cpi 903) COS(TSS) le
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- [Xexm'*'xemxme}Sin(V’s_9°j)Vis} (C-Zle)

* k3 & 2 2 .2 2
Im[ <8} 4, 5p,>] = = ol 15 XeXeml 1+c0s (pg—p;) +sin (ps—pp)cos®(9;)]

- meme[l+Sin2(§ps_99i)cosz(ﬁs)+Zi§]} (C-211)

2
. K3 |% 2 [ .
Re[ <5y, Syp>] = {ZTT—J 5 [X§—xge]cos(ﬂs)sm(¢i—¢s)cos(¢s~gpi)
[XEm—xIsin{gs—y;)cos(8))Z,
+ Xem Xm:{SHl Ps~¥¢i cos( i/%is

+ [XeXm+Xemee]Sln(§a1—¢s)V51} (C-Elg)

* k3 R 2 2 .2 2
Im[<Sp 454> = = o 15 XeXmel 1 +c08%(g ~¢,) +sin (ps—pplcos=(¥,)]

~ XmXem! 1+sin%(g ;) cos?(s,) +22] f (C-21h)

2
k3|° 2 A
Re[(Sv;VSII;V}] = {ﬁ} E‘{[XE—XI%IQ]COS(ﬁl)sln<¢s"§0l>zls
+ [xEn—xE Isin(p;~pg)cos(8)cos(¢ ;)

+ [XeXm+Xemee]sm(ws-';ai)vsi} (C‘le)

| 15 1XeXmel 1 #sin®(p —¢;)cos?(8,) + 22 ]

Im[<S_, Sy, >] = +
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= XmXeml 1 +cos® (ps—e;) +sin”® (gos—;oi)cosz (133)]} (C-21j)

. k3 2 2 2 .2 .
Re[<S, Syp>] = 0 15 [X&—xEn]cos(B)sin(p;—p )2

+ [BexBIsin(p —py)eos(3)cos(v, )

- [Xexm+Xemee]Sm(goj_;ﬁs)vjs} (C'Zlk)

i3 J°

477

Im[<S, Sop>] = £

2 .
2l el 05,000,427

~ XmXmel 1 +cosz(;as——goi) +sin2(gas-goi)cosz('01)]} (C-211)

2

K3

41

1w 02 442 12
15 [XE Xém™XmXmel s

Re[<S,Spn>] =

T, Y Ta o wld N L2
h e QXeXmL_L"I’(..OS \gﬁs_gﬂi}“l‘l_«isj

- ermxme[l+sin2(;ps—¢i)(cosz(1ﬁs)+cosg(ﬁi))]} (C-21m)

k3J2

Im[<S_ Spp>] = £ yom

2 .
E{[Xexem+xmxme]31n(¢s —¢)Uis

+ [xexme+xmxem]sin(wi—¢s)Usi} (C-21n)

2

K3

4m

1 2_.2 2_.2
15 [Xe "Xem"'Xm"Xme]Qis

"

Re[<S,1,Spv>]
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— XXl +sin2(gas—cpi)(cosz(1ﬁs) +cosz(191))]

+ EXQmee[1+Cosg(¢s_¢i)+zizs]} (C‘210)

* k3 2

2 )
g{[xexem+xmxme]sm(¢s~s0i)Uis

where

V.

15

i

cos(;)sin(¥;)sin(V) +cos(gas—;oi)cos(ﬁs)[cosz(ﬂi) +1]

V., = cos(ﬂs)sm(ﬁi)sin('tﬁs)+cos(gps—¢i)cos(1ﬂi)[cosz(ﬂs)+l]

S1

Ui = cos(191)sin("&i)sin('as)+cos(¢s-—;ai)cos(v35)[ccss2 () -1]

~si

The use of these expressions, together with the results of Chapter 3 now
allows one to calculate the effective bistatic scattering operators for the slab

filled with the small chiral objects.

Again, it is clear that if x = 0 are used in (C-20) and (C-21),

= Xem = Xme

the results are the same as that of appendix B.
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APPENDIX D.
OPTIMUM POLARIZATIONS WHEN TWO ANTENNAS ARE USED.

In this appendix, the general problem of finding the optimum polarizations
for power reception from a scatterer when two different antennas are used for
transmission and reception, will be considered. While it may not be practical to
use two different antennas in a radar instrument, there is no reason why only

one "antenna" should be used when the measured results are processed in a
computer.
In order to solve this problem, the Stokes Scattering Operator of the

scatterer is written as:

My, 9

M= |y g

where u and v are vectors with three coefficients and [Q] is a 3x3 matrix. To

(D-1)

optimize the amount of power received from the scatterer, one must consider
the function

41 1

.
yii M VX
Y3 X3
Since both x and y are Stokes vectors, they must satisfy
ST LS|
XX = X |Xg| = 1. (D-3a)
%3] X3

and
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Yl Y1
yY = |Vo| |¥o| = 1. (D-3b)
Ysi Y3

Lagrange Multiplier Method: To solve this problem with this method, the

auxiliary function G{y.,x) is formed
G(yx) = My; +vx+uy+y[Qlx+v(l—xx) +u(1-yy) . (D-4)

1t is then required that

acagz.xz -0 5_35(1-_&_-.0_ D i=1,2.3. (D-5)

Performing these differentiations, one finds that the optimum polarizations

are the solutions te

[Qly+v = 2vx (D-6a)
and

Qx+u = 2uy. (D-6b)

Here, ™ means transposed. If (D-6a) is multiplied by [Q] and the results of

(D-8b) are used, one finds:

[QG-4wly = —{Qlv - 2vu, (D-7)
where 1 is the 3x3 identity matrix. Similarly, one finds for x that

[@-4w1lx = ~[Qlu - 2uv. (D-8)

If 4uv is not an eigenvaiue of either [QQ] or [QQ], both (D-7) and (D-B) have

unique solutions given by:

~[§Q—4u1]~1{([Qlu+2uv) | (D-9a)

I

X

—[QQ-4u1]71([Q]v+2vu) . (D-9b)

y
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Thus, once the values of u and v are known, both x and y can be found. To
find the values of u and v, one uses the conditions given in (D-3). This would give
two non-linear equations in the two unknowns u and v. Once the solutions of

these two non-linear equations are known, the problem is essentially solved.

If both u and v are zero, it follows that the optimum polarizations x and y

are the eigenvectors of [@Q] and [QQ], respectively.

Direct Method: The direct method, as in Chapter 2, involves realizing that x

and y may be written as:

cos(p,)sin(d,)
x = |sin(p,)sin(¥,) (D-10a)
cos(d,)

cos(¢y)sin(13y)
y = sin(;oy sin('&y)
cos('@y)

(D-10b)

Using these in (D-2) and taking the partial derivatives of F(yx) with respect
to gax.;ay,ﬂx and 19},, one finds that the angles of the optimum polarization

vectors are the solutions to the following four non-linear equations:
[Mgscos(;oy) +M33sin(¢y)]cos(gax)sin(19y)
—[Mzzcos(gpy) +M325m(goy)]sin(gox)sin(ﬂy)

+Mlscos(¢x)—-M123m(¢x)+[M43005(¢X)—-M4gsin(gpx)]cos(19y) = 0. (D-11a)

[Mgzcos(gpx)+M3351n(¢x)]cos(¢y)sin(19x)

~[Mgpcos(ep,) +M23s'1n(cpx)]sin(rpy)sin(ﬁx)
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+M31cos(goy) —-lesin(goy)+[M34cos(;ay)-M24sin(gpy)]cos(19x) = 0. (D-11b)

[M, pc0s(p, ) +M, gsin(p,) Jcos(B,) M sin(d,)
+[Mppcos(p,) +Mgpsin(p,)cos(p,)sin(B, Joos(8, )
+[Mpgeos(g,) +Magsin(p,) Isin(p,)sin(s, )cos(s,)

~[[Mpyc0s(p,) +Mg,sin(p, ) Jsin(B, ) +M, cos () sin(s,)

+ [M4gcos(¢x)+M4351n(gpx)]cos(ﬁx)cos(ﬂy) = 0. (D-11c)

(Mg cos(p,)+Mgsin(p,)Jeos(8,)—My, sin(s,)
+[Mpgc0s(p,) +Magsin(p, ) Jcos(p, )sin(¥, )cos(s,)
+[Mgpcos(p,) +Mggsin(p,) Jsin(, )sin(8, Jcos(d,)

~[[Mpc08(py) +M, gsin(p,) [sin(B,) +M, 4cos(8,) sin(s,)

+ [M24cos(;py)+M34sin(gay)]cos(19x)cos(ﬂy) = 0. (D-11d)

The problem of finding the optimum polarizations, using two antennas to
discriminate between two scatterers, has been sclved by loannidis and Hammers

[12] and will not be considered here.

ORTHOGONALLY POLARIZED ANTENNAS. One special case where two
"antennas' may be used will be discussed in more detail. In this case, the two

"antennas' are orthogonally polarized. It is easily shown [2] that, in this case,



- 145 -

y = —x. (D-12)
Lagrange Multiplier Method. The function G(yx) for these cross-polarized
"antennas" is

Go(x) = Mj; +vx—ux —x[Q]x + v(l-xx). (D-13)

It is then required that

8G (%)
8x.

1

=0 ; i=123. (D-14)

1t is then easily shown that the optimum polarizations are the solutions to
[4Q+5Q+ul]x = Yv—Yu. (D—l‘5)
If —v is not an eigenvalue of %[Q+Q], then (D-15) has a unique solution,
given by
x = BHQHHQ+UI] " (v-u) . (D-16)
To find the values of v that may be used in (D-16), one uses the condition
xx = 1. (D-17)
The result of this is that the values of v that may be used in (D-16) are the

real roots of

p(v) = 18+ d1u5 + d2V4 + d3u3 + d4u2 +dgv +dg = 0, (D-18)
where

d; = Rey (D-19a)

dy = cf-qf;-af—afa+2es (D-19b)

dz = R[c;c3=40;91 902912 %03%13+ 3] (D-19¢)

dy = C22_q121—q§2”q§8+2[‘31°3“qo1‘121‘%2‘122‘%3‘3123] (D-19d)
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ds = R[cge3-9;7921 912922 913%3] (D-19¢)

dg = c§—a5;—a5p—a%; (D-19f)

ey = Moo+Mgg+My,

cgp = ‘“%{(M23+M32)2+(M24+M42)2+ (Mgy+My3)?
tMggMy g +Mao Mgz +MpaM,

cg = M22M33M44+zlr‘{(Mza”Msz)(M24+M42)(M34+M43>
Mg (Mg, +My5)%—Mga (Mpy +My5)2-Myy (Mag +M35)

qo1 = AM;z-Mzq)

1
q1 = ‘Z{(Mw‘Ms1)(M23+M32)+(M14"M41)(M24+M42)

(M 2—Mg1)(Mag+Myy)

[ 1
- 2
gy = #Mpp-M, 1)[M33M44“Z(M34+M43)

1
+HMy3—M31)| (Mg +Myp) (Mg +Ms3) FeMy 4 (Ma3+M3z)
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1
M3 +M32)(M34+M43)*%Mss(M24+M42)J

My 4 —Myqy

9oz = AM;3—Mgzq)

1
qiz “:{[(Mm"Mg1)(M23+M32)+(M14”M41>(M34+M43)

(M 3—Mg1 ) (Mao+M, )
[
gz = %(Mlz‘le)l;}I’(M24+M42)(M34+M43)‘%M44(M23+M32)}

r 1
+%(M13‘M31)[M22M44“;;‘(M24+M42)2]

[
My 4 Mm)[Z{Mza*Msz) May +Myoy—/eMaa (Mg, +M,5)

Qoz = 7(Myg—Myy)

1
Q3 = -~ Z{(Mm“Mz1)(M24+M42)+(M13"M31)(M34+M43)]
+A(M14—My 1) (Mpa+Mag)
[
dz3 = %(Mm“le)[zlﬁMzs+M32)(M34+M43)"%M33(M24+M42)

+#(My3-M3;)

1
Moy tM40) (Mpg+Mgp) ‘%Mzz(M34+M43)}
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1 2
(M 4~My 1) | MapMas— o Mp3+M30)°| -

Direct Method. As before, the direct method involves writing the transmit
polarization in terms of the two spherical polar angles. The optimum

pelarizations then are the solutions to the following two non-linear equations:

[(M;5-My,)cos(p)+(M, 5~Ms,)sin(g)Jcos(8) —(M, , M, , )sin(s)
—2(Mag+Mao)sin(¥)cos(¥)sin(p)cos(p)~[ (Mg +M4o)cos(p)
+(M34+M43)sin(¢)](cosz("ﬁ) —sinz(ﬂ))—[Mzgcosz(;o)

+Mg5sin®(p) ~M,, 12sin(B)cos(s8) = 0. (D-20)
and

[(M;3=Mz;)cos(p)—(M; 5—My, )sin(p) | ~(Myg+Mg5)sin(W¥)cos(R¢)
~[(Ma, +M,5)cos(p)—(Mp, +M,5)sin(p)Jcos(¥)

“"(M33 —MZZ)Sm(ﬁ)sm(Z;a) = 0. (D'Zl)

To find the optimum polarization for discrimination between two scatterers
when orthogonally polarized antennas are used for transmission and reception,

the same procedure as described in Chapter 2 may be followed.
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