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Abstract

We demonstrate the use of a continuous Hopfield neural network as a K-Winner-
Take-All (KWTA) network. We prove that, given an input of N real numbers, such
a network will converge to a vector of K positive one components and (N — K)
negative one components, with the positive positions indicating the K largest input
components. In addition, we show that the (%) such vectors are the only stable states
of the system.

One application of the KWTA network is the analog decoding of error-correcting
codes. We prove that the KWTA network performs optimal decoding.

We consider decoders that are networks with nodes in overlapping, randomly
placed KWTA constraints and discuss characteristics of the resulting codes.

We present two families of decoders constructed by overlapping KWTA constraints
in a structured fashion on the nodes of a neural network. We analyze the performance
of these decoders in terms of error rate, and discuss code minimum distance and
information rate. We observe that these decoders perform near-optimal, soft-decision
decoding on a class of nonlinear codes. We present a gain schedule that results in
improved decoder performance in terms of error rate.

We present a general algorithm for determining the minimum distance of codes
defined by the stable states of neural networks with nodes in overlapping KWTA
constraints.

We consider the feasibility of embedding these neural network decoders in VLSI

technologies and show that decoders of reasonable size could be implemented on a



v

single integrated circuit. We also analyze the scaling of such implementations with
decoder size and complexity.

Finally, we present an algorithm, based on the random coding theorem, to commu-
nicate an array of bits over a distributed communication network of simple processors

connected by a common noisy bus.
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Chapter 1

Introduction

In this thesis we will discuss several systems of distributed processors. The system
that we will consider first, and in most depth, is the neural network.

Many neural network models have been proposed. Overviews of the subject area
include [AR88] and [RM86]. The structure common to these models is a system com-
posed of many simple processors that are extensively interconnected. Beyond this
basic form, these systems can differ in many ways. Some neural networks employ
feedback, others do not. Networks can use analog or digital inputs, outputs, and con-
nection strengths between processors. Also, processors can compute in a continuous
or discrete manner. The specific neural network that we study here is that proposed
in [Hop84]. This network, which we will discuss in more detail in Chapter 2, is a
continuous system with feedback.

Neural networks are currently being employed on a variety of problems. Two
classes of problems often solved by neural networks are associative memory recall
[Hop82], and minimization problems [HT85]. In this thesis, the specific application
we consider is the decoding of error-correcting codes. Here we utilize the ability of the
network to receive partial (noisy) input and converge to a (close) stable state. Thus,
the neural network is given a noisy codeword and decodes this input by settling to a
stable state codeword.

Other work that discusses relationships between neural systems and coding theory
includes: [PH86], [CG87], [Sou89], [BB87], and [MTDS8].

The general decoding problem for linear codes has been shown to be NP-complete



[BMvT78]. Because nonlinear codes are in general more difficult to specify and ma-
nipulate than linear codes, there is no reason to believe that this problem is any easier
for nonlinear codes. In addition, constructing a soft-decision decoder, where noisy
analog inputs are mapped to binary codewords without discarding any of the informa-
tion in the analog input, is an unsolved problem for many known linear codes. Thus,
because soft-decision decoding is not an easy problem, a neural network solution is
interesting.

We begin in Chapter 2 by presenting a general introduction to the encoding and
decoding of information and to the Hopfield neural network. We then present a neural
network that performs as a K-Winners—Take—-All (KWTA) network. We prove that
the only stable states of this network are those strings with K components that are
+1 (the winners) and (N — K') components that are —1. Furthermore, we prove that
this network can be used as a decoder for a code consisting of the stable states of the
network, and that this network performs optimal decoding. We say that the KWTA
network places a KWTA constraint on the N nodes in the network. Chapter 2
follows [MEAMS89] and [EAMS88]. The KWTA code has a large rate, but a small
minimum distance. The error-correcting capabilities of a code are directly related
to its minimum distance. Therefore, we are interested in the existence of neural
network codes with larger minimum distances. To this end, we have studied decoders
constructed with multiple KWTA constraints.

In Chapter 3, we introduce the concept of overlapping KWTA constraints applied
to the nodes of a neural network. A given node may now be involved in several con-
straints. We look at the characteristics of codes obtained from networks on which
random sets of KWTA constraints are placed. These studies suggest decoder pa-
rameters, such as constraint size, and provide us a basis for comparison with other
decoders constructed from overlapping KWTA constraints.

In Chapter 4, we present a family of decoders that are obtained by placing regular
(nonrandom) KWTA constraints on the nodes in the network. The placement of these
constraints is inspired by the structure of the hypercube. We also detail a neural
network gain schedule that resulted in improved decoder performance, in terms of

error rate. We present the performance of several example codes and illustrate the



near-optimal decoding performance of the corresponding networks. The minimum
distance of these codes can be made arbitrarily large, and therefore, these codes have
greater potential than the KWTA codes.

Chapter 5 introduces another family of decoders constructed by the regular appli-
cation of KWTA constraints on the nodes of a neural network. These constraints are
specified by the points on the lines of a combinatorial net. The performance of several
example codes is presented and the corresponding decoders are found to compare well
with optimal decoders. Section 5.3 presents a graphical method for determining the
minimum distance of codes defined by the stable states of networks with nodes in
overlapping KWTA constraints. We find that the structured placement of KWTA
constraints on the nodes of a neural network leads to decoders that are more powerful
than the decoders specified by random constraints.

The nodes of the decoders of Chapters 4 and 5 exhibit a high degree of interconnec-
tivity. Thus, we consider the complexity of such networks. We analyze this complexity
in terms of the integrated circuit area necessary to implement such a network. Using
Thompson’s grid model, Chapter 6 considers the feasibility of embedding the decoder
networks of Chapters 4 and 5 in Very Large Scale Integration (VLSI) technologies.
We present several nontrivial systems that could be implemented on an integrated
circuit and discuss the scaling of such circuits with decoder size and complexity. An
overview of Chapters 4, 5 and 6 is presented in [EAMO91].

The second distributed system we studied was the distributed communication
network. Chapter 7 presents an algorithm, based on the random coding algorithm, to
communicate reliably over a network of NV simple processors connected by a common

bus in O(N loglog N) communications.



Chapter 2

The K—Winners—Take—All Code

2.1 Introduction

Information sent over a channel, or in certain storage conditions, is subject to the
addition of noise. To prevent loss of information, error-correcting codes are utilized.
Retrieval of the information from encoded bits is accomplished using a decoder.

In this chapter we present some general concepts relating to encoding and decoding
information. We then present a general description of Hopfield’s network of graded-
response neurons and of the behavior of this network. These discussions lead to the
development of a neural network that can be used to decode a specific code. An

analysis of this network’s performance is given.

2.2 Encoding and Decoding

We start by offering a motivation for encoding information and we give some explana-
tion of important code parameters. For more information [McE77] discusses coding
and decoding in depth.

Often, information that is sent from a source to a destination is transmitted
over a noisy channel. That is, with some probability, the data which the source
sends and the data which the destination receives are different. A solution to this
problem of information loss is to add redundant digits to the information digits before

transmission. For example, a simple form of such redundant digits is the repetition
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Figure 2.1: Communication channel.

codewords:
0 0 0O
1 01 0
01 01
1 1 1 1

Table 2.1: Example code of four codewords.

of the information digits (some number of times). Thus, the information z is sent
over the channel as zz...z. As long as a majority of these digits arrive as x’s, our
best guess of the transmitted information () is correct. The original system of
source—channel-destination has been expanded to source—encoder—channel-decoder—
destination as illustrated in Figure 2.1. For the binary channel, the encoder performs
a mapping from m information bits to n (> m here) encoded bits, also called a
codeword. A code is defined by a set of codewords. Table 2.1 lists one such set of
codewords.  Table 2.2 details an encoding algorithm for the code of Table 2.1. A
string of information bits is divided into groups of two bits, each of which is encoded
by the mapping in Table 2.2 into a codeword of four bits. The encoded bits are
transmitted over the channel.  The decoder performs the analogous mapping from

n bits back to m information bits. Note that while the encoder will map one of 2™



m information codeword of
bits: length n:
00 — 0000
10 —_— 1010
01 — 0101
11 — 1111

Table 2.2: Encoding the example code.

information strings into one of 2™ n-bit codewords, the decoder must be able to map
one of 2" n-bit strings back into m bits of information. To illustrate a simple decoder
for our example code, we will assume that the channel introduces errors in the form
of bit flips. Table 2.3 presents the mapping for a decoder that corresponds to the
encoder in Table 2.2. Note that this decoder maps all 2" = 16 possible received
strings into information bits. Note also that there are other decoders that correspond
to the encoder of Table 2.2 (since the encoder does not specify how we should decode
the received string 0010, for example).

We see that the decoder must effectively correct any errors in the transmitted
codeword as well as perform the encoder’s inverse mapping.

In most channels, the probability of one bit of the codeword being in error is less
than that of two bits’ being in error, which is less than three, etc. Thus, given that
string y was received at the decoder, the most likely codeword z, which gave rise to it,
is that which is closest to y in terms of Euclidean distance. A decoder that gives the
codeword closest to the input, for this type of noise, is called a maximum likelihood
decoder (MLD). An obvious MLD decodes an incoming string by comparing it to
each codeword, finding the codeword closest to the string. For large codes however,
this implementation of an MLD is computationally impractical.

In some channels, like the Gaussian channel, errors added by the channel are
analog, i.e., continuous in value. The decoder can make use of the information in
these analog errors by performing soft-decision decoding. A soft-decision decoder
maps nonbinary strings directly into information bits. Soft-decision decoding differs

from hard-decision decoding, in which incoming digits are quantized before any error-



received decoder

string: output:
0000 -— 00
0001 — 00
0010 — 00
0011 Y 00
0100 — 00
0101 — 01
0110 — 00
0111 —_ 01
1000 — 00
1001 _ 00
1010 — 10
1011 — 10
1100 — 00
1101 —_— 01
1110 —_— 10
1111 —_— 11

Table 2.3: Decoder mapping for the example code.

correction or decoding occurs. This quantization in hard-decision decoding results
in a significant degradation of the signal-to-noise ratio. From the code in Table 2.1,
the codeword (1, 0, 1, 0) (using parentheses and commas for clarity), when sent over
the Gaussian channel, could give rise to a string such as (0.5, 0.1, 0.95, —0.05). A
hard-decision decoder might quantize by setting string components greater than 0.5
(half way between 0 and 1) to 1 and components less than or equal to 0.5 to 0. The
above string would be quantized to (0, 0, 1, 0) and decoded, using the algorithm
in Table 2.3, as 00, resulting in an error. A soft-decision decoder that picks the
codeword closest to the string would perform an error-free decoding (of 10). From
the above discussion, we see that the decoder’s capabilities greatly affect the overall
system performance.

In addition, several parameters of the code constrain the performance of the Sys-
tem. Here we discuss the code parameters rate and minimum distance. Note that by
encoding our information, we send fewer information bits per time period. This fact

is expressed as a rate of information transmission, given by m /n. Clearly, the rate



of the code in Table 2.1 is 1/2. Thus, half of the bits sent over the channel convey
information; the other half send redundant information. The rate of a code, used for
error-correction, is bounded above by 1 (when n = m). To maximize the amount
of information sent over a channel in any given time, we wish to use a code with a
large rate. However, in general, a code with a large rate will have a small minimum
distance. The minimum distance of a code is the Hamming distance between the
two closest codewords in the code. The Hamming distance between two codewords is
defined as the number of components in which the codewords differ (where the com-
ponents may or may not be bits). The code of Table 2.1 has a minimum distance of
two, since codewords 0000 and 0101 differ in two components and no two codewords
differ in fewer than two components. The minimum distance of a code determines
how many transmission errors the code can correct. For instance, our example code
cannot correct many errors that arise when one bit of a codeword is flipped (from 0
to 1, or from 1 to 0). If noise changes the codeword 1111 to 0111, even an optimal
MLD would at best decode 0111 correctly half the time (since 0101 could have given
rise to the noisy string as well). Codes with a larger spacing between codewords (i.e.,
greater minimum distance) can correct more errors. In general, there is a tradeoff
between rate and minimum distance; a code with a large rate (many codewords) will
have a small minimum distance, and vice versa.

Most well-known codes are linear; that is, the codeword space of the code can be
defined by a spanning basis set of the codewords, and all the other codewords can
be obtained by combining words in the basis set. Linear codes are consequently easy
to specify and manipulate. We will not place a restriction on the codes that they
be linear. Also, we will be concerned with decoding algorithms that are maximum

likelihood and utilize soft decisions.

2.3 The Hopfield Neural Network

Hopfield has presented a neural network model with continuous variables and re-
sponses [Hop84]. In this section, we give a short description of the model and some

known results about it. (For more details see the reference.)



The network consists of N neurons with synapse strength, or weight, between
the input of neuron ¢ and the output of neuron j given by Tij. The output or state
of the ¢th neuron at time ¢, given by V; = Vj(t), is a continuous function of the
input u; = u,(t) according to the relationship V; = ¢;(u;). We use a monotonically
increasing sigmoid g, such as g(x) = tanh(Gz), for a gain G, and set g; = ¢ for all 3.
The inputs of the neurons have a rate of change given by

dui _

= = Z:/}jv,--%ﬂ,-wi (2.1)
J (2

for i = 1 to N. The I;’s are external inputs that we will henceforth ignore. The 721—',-’5
are given by A = 3, |T;;|. ¢; is a threshold term which we will set to 8 for all 7. Thus,
to specify the system completely, we must give the T;;’s, the threshold 6 of the system
and the sigmoid g. If we use Hopfield’s outer product algorithm to find the Tij’s,

(and Tj; = 0) where the V*’s are the designed stable states for s = 1 to n, and

Vi® € {~1,1}, then the energy function at a state V is given by
1 s 2 Vi -1
E=—33 (V- V) + YR [ g7 (V)av

Hopfield has shown that the dynamics of the network give stable states that are
minima of the energy space. Given a state V, this energy function incorporates the
distances from V' to all the stable states. This energy, however, does not guarantee
that the network will converge from V to the closest stable state V°. One limitation,
then, of this type of neural network is that we may not be able to design a network
with the convergence behavior that we desire. Another limitation is that this network
can have spurious (undesigned) stable states in addition to the desired stable states.
Also, for a network of N neurons, the storage capacity, or the maximum number of
arbitrary memories that can be stored and recovered exactly, has been shown to be
bound above by N [AMJ85]; [MPRVS7].

Using a neural network as a decoder could be potentially difficult. The difficulty
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in designing desired convergence behavior means that such a decoder might decode
input strings as codewords far from the original string (not at all an MLD), or as an
unchosen spurious state (not as a codeword). Also, if we utilize a system with a storage
capacity that grows as the number of neurons, then the number of codewords, given
by 2™, is limited to be less than or equal to the number of stable states . Thus, a
neural network with NV stable states can decode only codes of rate = m/n = log N /N
or less. As N grows, this bound on the rate severely limits the number of codes that
can be decoded by a system with a storage capacity of N. These properties seem to
suggest that this type of network could have only limited use in a coding environment.
In Sections 2.4 and 2.5, we show that for the storage of nonarbitrary memories we can
obtain higher storage capacity and that, in fact, a neural network can decode codes

of large rate.

2.4 The K—Winners—Take—All Code and Network

Here we present a family of neural networks that we have found to perform as max-
imum likelihood decoders for a given family of codes. Platt and Hopfield [PHS6]
presented a 1-in—/V code that is decoded by a winner-take-all network. Given an in-
put of IV real numbers, the winner-take—all network will converge to a state with one
positive number, in the position of the largest of the N input numbers, and (N -1)
negative numbers in the remaining positions. Here we present a generalization of the
winner—take-all network that will decode a k-in-N code.

Our code consists of all words composed of 1’s and —1’s, of length N with the
same number of 1’s. (This code is often referred to as the constant weight code. To
avoid confusion with the weight of the network’s connections, we will not use this
nomenclature). For a given k, each codeword has k components that are +1 and
(N — k) components that are —1. Clearly, the number of codewords in this code is
(2’) Table 2.4 lists the code with N =4 and k = 2.

To maximize the number of codewords and thus the rate, we take k = % (or
k = ﬁ_l%) for N odd). Then, m = log, ([NA/IQJ) > N — %log2 2N, and the rate is

m/N > 1 — %logz 2N. The rate asymptotically approaches one. The minimum
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codewords:
-1 -1 1 1
-1 1 -1 1
-1 1 1 -1
1 -1 -1 1
1 -1 1 -1
1 1 -1 -1

Table 2.4: Code of all words of length four with two 1’s and two —1’s.

distance of this code is 2, since changing a 1 component to a —1 and changing (a
different) —1 component to a 1 in one codeword results in another codeword that
differs in two positions from the first codeword (e.g., see the first two codewords in
Table 2.4).

We will present a neural network with the property that the stable states of the
network correspond exactly to the codewords of the k—in—N code. Codewords first
sent over a noisy channel are then put through the neural network, where the network
stabilizes to the codeword closest to the noisy input vector. We will first present the
network and discuss its dynamic behavior and then illustrate its capability to perform
maximum likelihood decoding.

The k-winners-take-all (KWTA) neural network that decodes the k-in-N code

has the following parameters:

Ty = 65—1
g(u;) = tanh(Gu;)
0 = 2k—N

where 6 is the Kronecker delta and G is a given gain. Note that the weight matrix of
all —1’s (except for the diagonal) forces each node to inhibit all the other nodes. In
this way, the nodes compete to be winners (i.e., to converge to 1).

From [Hop84] we know that a neural network is guaranteed to converge to a stable
state if the connection matrix T is symmetric. Since our matrix is symmetric, the

network will converge. Now let us examine these equilibrium states.
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2.5 Stable States

At the stable states i1 we have ‘—%’- = 0 for all 7. Or, substituting into Equation 2.1,

we obtain for all ¢

0 = Y TyV;—aid+(2k—N)
J

which gives

V. = Zx?;+a,~A—2k+N (2.2)
J

Theorem 2.1 For a given stable state 11, every component 4; can have one of at

most three distinct values.

Proof We can rewrite Equation 2.2 as
Vi = @)+ H(Q) (2.3)
where

H{@) = S Vi—2k+N
J

For a given stable state @, H(#) is fixed (i.e., independent of 7). Thus, when we plot
the two sides of Equation 2.3, we obtain, for all i, the diagram in Figure 2.2. We
observe that the sigmoid function V; and the linear sum {a;A+ H (@)} can intersect in
up to three points. The corresponding three values of V; are the only values that can
be assumed by the stable state components V;. Note that if the slope of @;A+ H(1) is
greater than the slope of the sigmoid at @&; = 0 (or, A > G), then the lines will intersect
at only one point. These intersection points are the solutions to Equation 2.2, and
hence the equilibrium points. B

In Theorem 2.1 we showed that components of stable states can take one of at most
three values. We now distinguish between stable state components with ¢’ (4;) > A

and components with ¢'(@;) < A. In terms of Figure 2.2, we are distinguishing between
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Figure 2.2: The intersection of V; and @;\ + H ().

equilibrium point components that are along the highly sloped center of the sigmoid,
and those components that are along the flatter portions of the sigmoid, respectively.
We categorize the equilibrium states as one of two types: Type I has one or more
components with ¢'(4;) > A; type II has no component with ¢'(4i;) > . We will show
that for a large enough gain G, no states of type I are stable. We begin by showing
that type I stable states have exactly one component u; such that ¢’ (@;) > A

Theorem 2.2 Given any asymptotic stable state 1, at most one of the components

4; of &t may satisfy

g'(4;) > A (2.4)

Proof We use the following claim to prove Theorem 2.2.



14

Claim Given any asymptotic stable state {1, the following is true for

any ¢ # j :

A > /g (ai)g (4;) (2.5)

Proof Consider a small perturbation around a stable state 1, say
u=1+Auand V=V +AV. We can linearize the sigmoid function as
AV; =~ Au;jg'(i;), and Equation 2.1 as

d(Au)

pranii L(a)(Au)

where
L) = T- dia,g(g’(ﬁl),g'(ﬁz), ... ,g'(ﬁN)) .y

A necessary and sufficient condition for the asymptotic stability of @ is
for L(1) to be negative definite. A necessary condition for L(1) to be

negative definite is for all 2x2 matrices L;;({1), ¢ # j, of the type
A g()
Lij(a) = - < . )

g(t;) A

to be negative definite. Here we have made an infinitesimal perturbation
about components ¢ and j only. Any matrix L;;({) has two real eigenval-

ues. For both of the eigenvalues to be negative, we need

—A+4/g'(a:)g'(4;) <0

Since we assumed 1 to be asymptotically stable, this condition must hold,

and Equation 2.5 follows. []

If we have an asymptotic stable state with two components @; and it; where

g'(@:) > A and ¢'(4;) > A, then /¢'(4;)g'(4;) > A, violating the claim. Therefore,
to satisfy the claim, at most one component @; of an asymptotic stable state G may
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satisfy ¢'(4;) > \. B
Theorem 2.2 established that stable states of type I have at most one component
@; with ¢'(@;) > A. Next we will prove that, in fact, there are no stable states of type

L
Theorem 2.3 For sufficiently large gain G, there are no stable states of type I.

Proof We will prove this theorem by establishing a bound on H(i1) = ¥; VJ —2k+N.
Then, by showing that there are no asymptotically stable states of type I that satisfy

this bound, we will conclude that no stable states of this type exist.

Claim If 01 is a stable state of the network described by Equation 2.2,
then
maxV; < H(@) < minV; (2.6)
;<0 ;>0

Proof In Figure 2.3 we present a graphical proof of this claim. The
point a, on the line \i; + H(1), is clearly H (i) above the horizontal
axis. In addition, this point is greater than point b, the projection of the
negative stable state on the vertical axis. And point a is less than point
¢, the projection of the smaller positive stable component value on the
vertical axis. We also can prove this claim algebraically. Since @; and
Vi = g(ii;) are of the same sign, H(i1) can be neither too large (4; > 0)

nor too small (4; < 0). We can rewrite Equation 2.2 as
My = V=S Vi+2k—N (2.7)
J
For u; > 0,
Vi=YVi+2k—N > 0
J
or

A

Vi > S Vi—2k+N
J
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Figure 2.3: Bounding H (i) (point a) by the values of the stable state
components (points b and c).
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Likewise, for 4; < 0,
Vi=SV;+2%-N < 0
J

or

~

Vi < SSVi-2k+N
J

which results in Equation 2.6. [

From Theorem 2.2 a state of type I has exactly one component @; with ¢’ (@) > A
Let v = 4; > 0 be that component. Using Figure 2.3 we can make the following
observation about H(1): If ¢ = g(v) > 0, then a = H(@) > 0 (because tanh(z) is
concave for # > 0, and we assume that G > X). (The cases where v < 0 and v = 0
are handled in a similar fashion.) In addition, such a stable state has N, components
with ¢'(a) < XA and @ > 0, and N_ components with d(8) < X and 8 < 0. Note also
that Ny + N_ +1 = N. Now let us substitute these values into Equation 2.6:

0 < g()Ny +g(B)N-+g(7) =2k + N < g(7) (2.8)
By substituting for IV, and rearranging terms, we obtain
—1=g(7) < (9(a) + 1)N; +(9(8) + 1)N- - 2k < -1

For a large enough gain G, g(a) and g(8) can be made arbitrarily close to +1 and

—1, respectively. These assumptions yield
-1—-g(y) < 2N, -2k < -1 (2.9)

Since 2Ny — 2k is even, the only way to satisfy Equation 2.9 is for —1 — g(y) < -2.
Then g(y) must be greater than 1, which implies that ¢ (v) < A. This contradicts
our assumption that ¢'(y) > A. Thus, there is no v > 0, ¢'(y) > X such that the

condition in Equation 2.9 can be satisfied. This contradiction implies that there are
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no stable states of type I.

The possible stable state equilibrium components that result from the curves of
At; + H() and V; intersecting in two locations result in states that can be shown,
in a similar way, to be not stable (because Equation 2.6 can not be satisfied). Also,
the only possible type I stable states resulting from a single crossing of \@; + H (k)
and V; occur when the gain G is less than A\. We will preclude this state by choosing
the gain G to be greater than A. Hence, independent of the intersections of the lines
At; + H() and V,-, there are no stable states of type I. Now we consider stable states

of type II.

Theorem 2.4 The KWTA network has (],:_’ ) stable states corresponding to the states

with k positive components and (N — k) negative components.

Proof We consider stable states that have N, components with ¢’(a) < X and a > 0,
and N_ components with ¢'(8) < X and 3 < 0. (Other possible stable states of type
I can be shown, using Equation 2.6, not to exist.) Applying Equation 2.6 to stable
states of type II, we obtain

-1 < g(a)Ny +g(B)N- —2k+N < 1
Since Ny + N_ = N, this results in
—1 < (g(@) + )Ny + (9(B) + 1)N- -2k < 1

Again, for a large enough gain G, g(a) and g(f) can be made arbitrarily close to +1
and —1, respectively. These assumptions yield: —1 < 2(N, — k) < 1,or Ny = k.
Thus, stable states of type II have k& components a (a > 0) and (N — k) components
B (8 < 0). By symmetry, all states with k components a and (N — k) components 3

are stable. There are (12[ ) such states with & components a and (N — k) components

g. B
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2.6 Maximum Likelihood Decoding

Finally, we need to show that our network performs maximum likelihood (or nearest
neighbor) decoding. The network is a maximum likelihood decoder because it forces
the largest & components of the input vector to a (a > 0) and the remaining compo-
nents to # (8 < 0). This type of convergence occurs because the network upholds an
invariance among the components of u. In other words, if we order the components

ofuas (u; >up>...> uy) at time tg, then this order will remain true for all time.
Theorem 2.5 If u;(ty) > u;(to), then u;(t) > u;(t) for all time ¢ > t,.
Proof From Equation 2.1,

dt | Sonstij Vin + Vi — Auj + 2k — N

With this equation and initial conditions u;(ty) and u;(to), the functions u; and u; are
completely specified. These functions have identical forms and thus, if ui(ty) > u;(ty),
then u;(t) > wu;(¢t) for t > ¢;, and hence the invariance holds. B

Finally, Theorems 2.4 and 2.5 give us the following theorem.

Theorem 2.6 Given an initial state u(0) and a large enough gain G, the KWTA
neural network will converge to a stable state with k components equal to a positive
number (o > 0) in the positions of the k largest initial components, and (N - k)

components equal to a negative number (6 < 0) in the other (N — k) positions.

Proof Assume that u;(0) > u;(0). By Theorem 2.5 this ordering will be preserved
by the network. Similarly, the ordering of all the components is preserved. By
Theorem 2.4, the network will converge to a state with & positive components and
(N — k) negative components. To preserve the initial ordering of components, the k
largest (at t = 0) will converge to a (a > 0), and the remaining (N—-k)top(8<0).
|
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Figure 2.4: An implementation of the KWTA Network with O(V) con-
nections.

2.7 Discussion

The rate of the KWTA code is maximized by setting N = k/2. The rate of the N/2-
winners-take-all code is bounded below by 1 — # log2N. This rate asymptotically
approaches one.

Experimentally, we have found that a gain G greater than A = (IV — 1) was large
enough to ensure that the network converged to the desired stable states.

The network has O(N?) connection weights. However, we can implement the
network as shown in Figure 2.4 with only O(N) connections. This network sums the
output from all the neurons and compares it with the threshold. The result is then
negated and fed back as input to all of the neurons. In addition, a self-connection is
required at each node.

We have presented a neural network that behaves as a maximum likelihood de-
coder for a given nonlinear code. For k& = N/2, we have seen that the number of

stable states is exponential in the number of neurons. Because the network takes N
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real numbers as inputs and converges to the closest codeword of k& components that
are +1, and (N — k) components that are —1, it performs soft-decision decoding of
KWTA codes. The minimum distance of this code is two. This code has a small
minimum distance (the decoder can correct only small errors), and thus provides mo-
tivation to look for codes with larger minimum distances that can be decoded by a
neural network. Chapters 3, 4, and 5 discuss such codes and develop networks to

decode them.
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Chapter 3

Interconnected KWTA Networks:
Randomly Placed KWTA

Constraints

3.1 Introduction

To construct codes with greater minimum distances than those achieved by using a
single KWTA constraint, we have experimented with interconnecting KWTA con-
straints. Overlapping KWTA constraints of some size N are placed on M nodes.
Thus, a given node may be in several constraints, each involving a different set of
nodes. This interconnecting of constraints does not give rise to a neural network of
different form. The inputs of the neurons still have a rate of change given by

d’LLi U;
i ZTUVj—E+Ii+t,~ (3.1)
7 (3

for s = 1to V. Now, however, the weight matrix 7 will not be given by Tj; = 6,;—1, as
was the case for the KWTA code in Chapter 2. Instead, the weight matrix contains
inhibitory (KWTA) connections for each set of nodes in a KWTA constraint. For
example, let us consider the following two systems of four nodes each. The first

system consists of a single KWTA constraint on the four nodes. The weight matrix
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is given by
0 -1 -1 -1
-1 0 -1 -1
T =
-1 -1 0 -1
-1 -1 -1 0

The second system has three KWTA constraints of size two. The first constraint is
composed of nodes 1 and 2, the second of nodes 3 and 4 and the third of nodes 1 and

3. The weight matrix for this network is given by

0 -1 -1 0
-1 0 0 o0
T =
-1 0 0 -1
0 0 -1 o0

Note that the KWTA constraint composed of nodes 1 and 2 is evident in the submatrix
given by 711, T12, To; and The. We could rewrite Equation 3.1, for u;, for example, to

emphasize this constraint on nodes 1 and 2.

du u

The last term in Equation 3.2, which is due to other constraints on node 1, could be
thought of as a time-varying input.

In Chapter 2 we established a direct correspondence between the stable states of
a neural network and the codewords of a code. We define the codewords in the code
to be the stable states of the network. It is also convenient to consider those strings
of +1’s and —1’s that strictly satisfy the constraints (e.g., for the KWTA network, we
consider strings of length N with K components that are 1 and (N — k) components
that are —1). For all of the analog decoders that we have observed, these strings
correspond exactly to the stable states of the network, and therefore, we often discuss
the stable states as strings that must satisfy a set of constraints on their components.

We have not always seen this behavior with the digital decoders [Hop82].



24

We have looked at several families of codes where the KWTA constraints are
placed in a regular fashion as well as codes with randomly placed constraints. In
this chapter, we discuss decoders constructed with overlapping KWTA constraints
that are placed randomly. In Chapters 4 and 5 we discuss decoders constructed with
regularly placed KWTA constraints.

The neural network is simulated on a computer. We analyze the decoding perfor-
mance of the network by adding Gaussian noise to each bit of a codeword, and then
giving our neural network this noisy string as input. By repeating this many times
and for different codewords, we can obtain an estimate of the decoding performance
(in terms of error rate) for a given neural network when used with a given code. We
also simulated an MLD by comparing each noisy input vector to all possible code-
words and decoding the vector as the closest codeword. Since maximum likelihood
decoding is optimal in this noise environment, the performance of the neural net-
work can be compared to MLD performance to get a measure of the neural network’s

decoding ability.

3.2 Randomly Placed KWTA Constraints

To test random sets of KWTA constraints on M nodes as decoders, we first choose
N, the size of the constraints. Our constraints were KWTA constraints with N = 4
and k£ = 2. By placing inhibitory connections between the nodes in a constraint,
these constraints define a neural network. The stable states of the network define
a code. We simulated networks defined by 3000 random sets of C' constraints each,
for various C' (7 < C < 14). For each set of constraints, we recorded the minimum
distance of, and the number of codewords in, the corresponding code. Many of the
sets of constraints resulted in a network with no stable states, and thus in an empty
code.

Table 3.1 shows an example set of nine constraints, randomly placed on 16 nodes.
The first KWTA constraint is composed of nodes 1, 4, 11 and 14. The resulting
code contains 166 codewords and has a minimum distance of two. To find the

stable states of the network, an exhaustive test of the stability of all 2M states was
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nodes:
1 23 45 6 7 8 9 10 11 12 13 14 15 16

a|l 1 1 1

b|1l 1 1 1

c|1 11 1
constraints: d 1 1 1 1

el 1 1 1

f 1 1 1 1

g 1 1 1 1

h 1 1 1 1

i1 1 1 1

Table 3.1: Nine random KWTA constraints that yield a code of length
16 with 166 codewords and a minimum distance of two.

performed on the network. Thus, for practical considerations, we used a network of 16
nodes (M = 16) for most of these experiments with random constraints. (A 16 node
system is large enough to be interesting but not too large to simulate.) Figures 3.1,
3.2, and 3.3 illustrate the maximum and average code size, and the number of codes
found, at each minimum distance and number of constraints.

From these graphs, we can make the following three general observations: (1) The
average random code size for a given minimum distance will be increased if we use
fewer constraints. For example, at a minimum distance of two, the average code size
decreases from 95.6 codewords for systems defined by seven constraints to 31.6 code-
words for systems defined by fourteen constraints. (2) Codes with fewer constraints
have smaller minimum distances, in general, than those with more constraints (e.g.,
there were no codes with a minimum distance greater than four for systems of seven
or eight constraints). We explain some of this behavior by noting that adding a
constraint to a system can eliminate only stable states, and thus, in general, more-
constrained systems have fewer codewords than less-constrained systems. As a result
of not having many codewords, the code’s minimum distance will be large. (3) More
codes were generated at each minimum distance for more-constrained systems than
for less-constrained systems. We summarize these observations in Table 3.2.  When

we increased the constraint size to N = 6, we found that almost all the resulting codes
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Figure 3.1: Maximum random code size by minimum distances (dmin)
for various numbers of constraints. These experimental data were com-
puted from 3000 random sets of constraints, for each set size from 7 to
14.

Number of Constraints:
few many
(1) larger codes on average smaller codes on average
(2) codes have small dmin  codes have larger dmin
(3) not many codes many codes

Table 3.2: General characteristics of random codes.
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had a minimum distance of two. As the constraint size grows, we are approaching
the single KWTA system (i.e., N = M).

When the constraint size was decreased to 2, the system was overconstrained. Note
that this system forces the two nodes in a constraint to have opposite values. Thus,
every pair of nodes in a constraint can have one of at most two values in a codeword
(ie., (1,=1) or (=1,1)). In essence, the KWTA constraint of size 2 constructs codes
where bits are repeated (actually, their complement is given), and because of the
interconnection between constraints, this results in codes of large minimum distance
but small code size.

To obtain insight into the properties of good codes, we looked at those codes with
a large number of codewords at each minimum distance. We observed that some of
these better random codes had repeated constraints. (A repeated constraint appears
in the network’s weight matrix 7' as larger inhibitory weights between the involved
nodes.) Other codes had constraints that had three nodes in common (thus, they were
almost-repeated constraints (arc)). For example, in Table 3.1 constraints d and g are
identical, and constraints b and ¢ both contain nodes 1, 7 and 14 (so they are arc).
A general analysis of the probability of repeated and almost-repeated constraints as
observed and as calculated follows.

First consider the probability of repeated constraints. For a system of M nodes
and constraint size IV, there are (%) different constraints. There are ((g)) sets with
C unique constraints. The total number of sets of C constraints, if we permit repeated
selection of individual constraints, is ((%)20—1) Assuming that we pick constraints

independently, with equal probability, and with replacement, the probability of no
M
(‘9)
((’)3)+c—1)
c
For ¢ =10, M = 16 and N = 4, Equation 3.3 gives p(repeats) = 1 — 0.9518 =
.0482. Over a group of 100 better codes with 7 to 13 constraints, the frequency of

repeated constraints is

p(no repeats) = (3.3)

repeats was found experimentally to be 3%. Experimental results agree well enough
with theoretical results for us to conclude that repeated rows are not an important

characteristic of better codes.
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Now let us consider the probability of almost-repeated constraints. Given a con-
straint, there are ((M oy )) (1;7 ) = (M — N)N = 48 other constraints that share three
nodes with this constraint. For example, the first constraint in Table 3.1 is placed on
nodes 1, 4, 11 and 14. One neighboring constraint is on nodes 1, 4, 11 and 16. Let
us consider the number of sets of C' constraints with no repeated or almost-repeated
constraints. There are (%) ways to pick the first constraint. The second constraint
cannot be the same as the first constraint or any of its neighbors. Thus, there are
(%) —49 ways to choose the second constraint. There are at least (%) —49 — 49 ways
to choose the third constraint. If the first and second constraints overlap in V — 2
positions, then they can share neighboring constraints. For example, in Table 3.1
constraints a and b share the four neighboring constraints given by (1, 4, 7, 14), (1, 4,
14, 16), (1, 7, 11, 14) and (1, 11, 14, 16). Thus, if we had picked constraints such as
a and b for our first and second constraints, then four neighboring constraints would
be subtracted twice from the number of constraints left from which to pick the third
constraint. Therefore, there are at most (%) — 49 — 49 + 4 constraints from which to
pick the third constraint. Similarly, there are at least (%) —49 — 49 — 49 ways to pick
the fourth constraint. And, since any pair of the first three constraints could share
(four) neighboring constraints, there are at most (%) —49—-49 —-49+ 4(3) ways to
pick the fourth constraint.

Finally, letting L = (M — N)N + 1, we obtain

) ((}) -1 (V) -(c-vr) &)
((Wre-n)

p(no arc) >

and

() =0 () - € -ns ()
(77

p(no arc) < (

In Figure 3.4 we plot the upper and lower bounds for the probability of almost-
repeated constraints as well as for the observed probability. These observations were
made over a total of 100 good codes. For all but one value of C, the observed

probability of almost-repeated constraints is below the upper bound, and in most
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prob. of almost repeated constraint
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number of constraints

Figure 3.4: The observed probability of almost-repeated constraints,
for a total of 100 codes, plotted against upper and lower bounds for the
probability of almost-repeated constraints.
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cases, below the lower bound. Thus, it appears that almost-repeated constraints are
not an important characteristic of good codes.

In summary, by placing random KWTA constraints on the nodes in a neural
network, we obtain stable states that define a code. By varying the number and
size of the constraints we vary the size and minimum distance of the resulting code.
We observed a tradeoff between less-constrained systems with fewer, larger codes
displaying small minimum distances, and more-constrained systems with many codes
of relatively large minimum distance but of smaller average size. In the next chapters,
we consider systems with regularly placed constraints; the results of this section give

us a basis for comparison.
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Chapter 4

The Hypercube Family

4.1 Introduction

Here we present one class of codes that arise when we place a set of KWTA con-
straints on the nodes of a neural network in a regular fashion. We call these codes
the hypercube family because the network with constraints of size two (N = 2) is
interconnected like a hypercube, and networks with larger constraints resemble hyper-
cubes with more than two nodes in each dimension (we discuss this structure in more
detail later). We present example codes of this family and discuss their performance.
We conclude by describing some general characteristics of the family.

A decoder for the hypercube family of codes has M = N nodes that we can
organize as an i-dimensional hypercube. We label each node {x1,29,...2;} with
z; € {1,2...N}. A KWTA constraint is placed on a set of N nodes that differ
only in one index. For example, {1,1,1,...,1}, {2,1,1,...,1}, {3,1,1,...,1}, ...,
{N,1,1,...,1} are the nodes in one KWTA constraint. Each node is involved in i
constraints, and the total number of constraints in the system is C = i = iN*—1,

The minimum distance of an i-dimensional hypercube code is 2°.

4.2 One-Dimensional Hypercube

The hypercube system with ¢ = 1 reduces to the KWTA configuration with M = N.
This system has been described in Chapter 2. With & = N/2, the rate of this code is
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Figure 4.1: One-dimensional hypercube constraint placement. The oval
represents the KWTA constraint.

greater than 1 — ﬁ log 2N, and the minimum distance of this code is two. Figure 4.1
shows how the KWTA constraint (the oval) involves all the nodes (circles) in the

network.

4.3 Two-Dimensional Hypercube

We will begin by discussing some general characteristics of two-dimensional hypercube

codes, then we will present several example codes.

4.3.1 General Two-Dimensional Code

For a two-dimensional system (i = 2) the nodes can be arranged in an array where
the KWTA constraints are along the rows and columns of the array. Each node is
involved in two constraints (one involving the nodes in its row, the other involving
the nodes in its column). Figure 4.2 illustrates the placement of constraints (ovals)
on nodes (circles) on a system of N2 nodes. From the figure, there are iN = 2N total
constraints.

We refer to the two-dimensional code of N? nodes as the N x N code. The general
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Figure 4.2: Two-dimensional hypercube constraint placement. The
ovals represents the KWTA constraints of size V.
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connection matrix for the corresponding N x N decoder is given by

AT T . Ty

I A I
T=—|1 1 4

I I I ... A)

where I = Iy and A = Jy — Iy, with Jy the matrix of size N by N with all 1 entries.
Here, the A portions of T enforce the KWTA constraints along the rows, and the I
portions enforce the KWTA constraints along the columns. A stable state u has the
form (u1,us,...,uy2). When discussing stable states, we will also refer to them in

their matrix form (as an NxN codeword) as given by

Uy U2 ce. Uy
UN+1 UN+2 ... U2N

u = - .
UN2_N4+1 UN2Z_N42 ... Up2

The minimum distance of these codes is four. This is easily illustrated by the

example 4 x4 codeword

1 -1 -1 1
If we negate the submatrix composed of uy, ug, us and ug, the result is another
codeword (since the KWTA row and column constraints are still satisfied). These
two codewords are at Hamming distance four apart. In fact, one can show that
no closer codewords exist, and thus, the minimum distance of the two-dimensional
hypercube code is four. In Section 5.3, the minimum distance of hypercube codes is
discussed in more detail. In the next section, we discuss the rate of two-dimensional

hypercube codes.
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Counting the Number of Codewords

For k = N/2, we have found that the stable states of this network correspond to
the (1,—1) matrices of size N x N with zero row and column sums (i.e., the matrices
that have (IV/2) entries that are +1 and (IN/2) entries that are —1 per row and
column). For general N, the problem of counting such matrices is nontrivial. A
simple upper bound is obtained by counting the number of matrices constructed by
using all possible rows (and ignoring the column constraints). Thus, the number of
(1,—1) matrices with zero row and column sums is at most ( NA/Iz)N. Knutson [Knu88]

has shown that a lower bound on the number of codewords is

(NA/,2) i

number of codewords > m

(The numerator gives the matrices with correct rows. Note that these matrices give
rise to less than (IV + 1)" column sum vectors. We are interested only in one column
sum vector, the one with all zero entries. Knutson [Knu88] shows that the all-zero
column sum vector is the most common, and the bound results). These bounds
on the number of (1,—1) matrices give us the following bounds on the rate of the

two-dimensional code:

te <1 10gV%7TN<1 log IV
rate N 2N

log (N +1)v2N) {_ 3log N
N ~ 2N

In Chapter 2 we discussed setting the gain of the network to obtain desired net-

rate > 1 —

work convergence. The gain affects the error-correcting performance of the decoder.
Allowing the value of the gain to be time-dependent resulted in a system with less
decoder error. In the next section, we detail a scheme for changing this gain that

improved the decoder’s performance.
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4.3.2 Gaingain

Various decoder parameters can be adjusted to yield optimal decoder performance in
terms of error rates. The most critical of these is the gain of the network. For example,
in simulation of the 2x2 network (Section 4.3.3), a large gain resulted in a network
that converged quickly, but that might make errors early that it would not correct.
A small gain resulted in a network that was more accurate, but which took longer
to converge. These results suggested that a better decoder network might be one
in which the gain started small but became large towards the end of the processing.
Thus, the network would have time to make a correct decision at the beginning of its
computation, and once this decision was made, the network would converge quickly.

This general concept of a variable gain permits many possible formulations. The
gain could simply have two values—one from step 1 to step j of the computation,
another from step (j+1) to the end of the computation. Or the gain could increase—
linearly, exponentially, logarithmically, etc.— at every step, or at every kth step of
the computation. Much experimentation showed that of these the best form of a
variable gain is one where the gain increases exponentially during the computation.
The amount by which the gain was increased (multiplicatively) at each step is the
gaingain.

Other neural networks with parameters that are time-dependent have been pro-
posed. Touretzky [Tou89] presents a Boltzmann machine that increases the threshold
during computation to achieve better network performance. Platt and Barr [PB8g]
constructed a neural network to perform optimization in which the neurons, which
estimate Lagrange multipliers, enforce constraints gradually over time. The gaingain
concept is most reminiscent of simulated annealing [KGV83] and simulated mean
field [BMM*89] techniques; these techniques involve decreasing the temperature of
the system over time until the system “solidifies” at a stable state.

After establishing that we would use a gain that changed exponentially with time,
we next needed to determine the best value of the gaingain. To test the neural network
as a decoder, the input to the decoder was generated by adding random Gaussian
noise of standard deviation ¢ and mean 0 to each codeword. This system was allowed

to evolve until a minimum-change criterion was satisfied. Then the system was said



39

100 T T T T T T

10 [ 4

incorrect decodings (percent)

0.1 1 1 1 1 1 1
1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08
gaingain

Figure 4.3: Error rate for 4x4 decoders with different values of gaingain,
and noise of standard deviation 0.6.

to have converged to a codeword if it was within a small radius of the codeword. We
found that a very small gain (and unity, or only slightly greater, gaingain) does not
produce a system that behaves well because the minimum-change criterion would be
satisfied before the computation had moved the decoder close enough to a codeword
(and therefore incorrect decoding would occur). Figure 4.3 presents the error rate
for the 4x4 decoder with different values of gaingain. From the figure, we see that
there is a minimum value of gaingain above which the error rate is fairly constant,
and below which the error rate increases a large amount. For this decoder and this
level of noise, the minimum decoder error rate occurs at gaingain= 1.04. The value
of the gaingain also affected how fast the simulation converged. Figure 4.4 illustrates
the relative speed of convergence of the decoder for the 4x4 code, for different levels
of gaingain. From the figures, we see that the fastest decoder (at gaingain= 1.02)
was also the least accurate. The most accurate decoder was also one of the slowest

decoders. This tradeoff was noticed for all our decoders. Since we wish to investigate
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Figure 4.4: Relative convergence speed for the 4 x4 decoder for different
values of gaingain. The relative speeds are in average number of steps

in a Euler simulation of the network with o = 0.6.
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Figure 4.5: The best values of gaingain for the 2x2 decoder for different
values of noise.

how accurate our decoder can be, we will always consider the best value of gaingain
as that which minimizes the error rate. One could also consider the best value, given

a certain time constraint.

Adaptive Gaingain

After much experimentation, it was also observed that the best value of gaingain was
dependent on o (again, the best being that value which minimized the decoder’s error
rate, for some large number of samples). Figure 4.5 presents the best experimental
gaingain for different values of noise for the 2x2 decoder. In normal usage, input to
a decoder may include a wide spread of noise variance. Consequently, a decoder that
could adapt to the noise of its input would be quite useful. We will see in Section 4.3.3
that the 2x2 code has only two codewords. A measure of the noisiness of the system
might be related to how far the input vectors are from the codewords—and how close

they are to the hyperplane h that is equidistant from the two codewords. A point
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X = Z1,%2,%3, T4 on the hyperplane satisfies x; — 29 — 23 + 24 = 0. To calculate the
distance from a vector y to the hyperplane, we project y on a vector normal to Y,
such as a = (1,—1,—1,1) . The distance is given by

ay 1
—m=§(y1—y2—y3+y4)-

We proposed several heuristics for setting the gaingain proportional to d, the input
vector’s distance from the hyperplane. Thus, a vector that began close to the hyper-
plane (far from the codewords) would be decoded by a network with a small gaingain
(allowing the network to choose the correct codeword slowly). We also tried using
other noisiness criteria to help determine the value of the gaingain. None of the meth-
ods gave systems that behaved consistently better than previous systems. Also, in
more complex codes with many codewords, a useful noisiness criterion would be more
difficult to construct. (Note that an obvious criterion involves comparing the input
vector to each of the codewords. But then our decoding is accomplished! Thus, our
criterion must be easy to compute.)

In conclusion, we have found that we can improve on the decoding performance
of the constant-gain network by implementing a gain that grows exponentially with
time. We consider one-value (vs. adaptive) gaingains, and our decoders utilize that
value of gaingain which minimizes the error rate. (Since the best gaingain can vary
over sigma, as in Figure 4.5, we will pick an average best value to use on the decoder.)
The performance of decoders with gaingain will be illustrated as we discuss individual
codes. In the next sections, we give several examples of two-dimensional codes and

discuss their performance.

4.3.3 2x2 Code

The simplest two-dimensional code (and corresponding network) is the 2x2 code.
Here, N = 2 and ¢ = 2. Figure 4.6 shows how the nodes (dots in the figure) are

placed in constraints (represented by ovals in the figure). The connection matrix for
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Figure 4.6: Arrangement of the constraints for the 2x2 code. Nodes
encircled by an oval share a constraint.

this network is given by:

01 10

1 0 01
T=-

1 0 01

0110

Simulating this decoder, we find that the network has two stable states. As a result,
the corresponding code has two codewords, (—1,1,1,—1) and (1,-1,-1,1), or in
matrix form (corresponding to a T' of different form):

-1 1 1 -1

and
1 -1 -1 1

Clearly, the minimum distance of this code is four.

Performance

Here we present the performance of the 2x2 decoder. As we have seen, this code has
two codewords. In the best case, an input vector will be decoded by the system as

the closer codeword. Let us consider the probability of error for this best case.
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The input to the decoder is the sum of a codeword and a four-dimensional Gaus-
slan noise vector contributed by the simulated noisy channel. Again, the hyperplane
h is equidistant from the codewords. In this system we will make a decoding error if
the noise vector moved the input vector across the hyperplane. Thus, the probability
of making an error is the probability that the noise, when added to a codeword, will
result in a vector that is on the opposite side of the hyperplane from the codeword.
The shape of the input vector distribution at each of the two codewords is equiva-
lent. Thus, we need to analyze the distribution around one of these codewords; the
results will hold for the second as well. Let us consider the distribution peak around
(1,-1,-1,1).

The probability of error of the system, as calculated in Appendix A, is

pe = 1-G (2)

g
1 2
g et (;)

where G is the integral of the Gaussian function and erf is the error function [Pap84].

This probability of error indicates the theoretical performance of the 2x2 code. Now
we can plot this function against our simulated MLD to calibrate against statistical
deviation and simulation inaccuracies.

Figure 4.7 presents the performance of the neural network with constant gain and
with an exponentially increasing gain. We see that the network with gaingain has
improved performance except at very low noise rates. The low noise behavior is, at
least in part, because we are using a gaingain of 1.03 which, as Figure 4.5 illustrates,
is a good value for larger values of sigma, but perhaps not as good for small values of
sigma. Figure 4.8 shows the performance of the decoder with gaingains of different
forms. We see that the exponential form yields the best results. And Figure 4.9 shows
the performance of the network with an exponentially increasing gain compared with
the maximum likelihood decoder and the theoretical maximum likelihood decoder
performance as calculated above. The simulated and theoretical error curves of the
MLD are quite similar. From the figures we see that the decoder with gaingain has

an error rate very close to that of the simulated MLD.
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Figure 4.7: Decoder performance of a neural network over 20,000 in-
puts of the 2x2 code with constant gain (const), and gain that increases
exponentially during the computation (exp). Also shown is the perfor-
mance of a maximum likelihood decoder given the same data (mld).
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Figure 4.8: Performance of a neural network over 20,000 inputs of the
2Xx2 code with gain that increases at each step by an additive factor
(add), or at only some steps by an additive factor (step), and gain that
increases exponentially during the computation (exp).
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2X2 code with gain that increases exponentially during the computa-
tion (exp), and performance of a maximum likelihood decoder, given
the same data (mld), and the theoretical performance as derived above
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4.3.4 4x4 Code

The decoder for this code has 16 nodes. If we place the nodes in a 4 x4 matrix, the
KWTA constraints are along the rows and columns of the matrix. We will consider

K = N/2 = 2 for our analysis.

Codeword Classes

The stable states of this system are those matrices of size 4x4 with two entries that
are 1 and two entries that are —1 in each row and column. This system has 90 stable
states or codewords. We have found that the 90 codewords can be partitioned into
two classes. Two codewords are in the same class if they satisfy these equivalent re-
quirements: (1) We can obtain one from the other by permuting rows and/or columns
of the codeword matrix, and (2) they are surrounded by identical codeword space.
Two codewords have identical codeword space if the distribution of distances to other
codewords is identical. These classes are of interest because they will give rise to
different decoder error behavior. Let us first discuss the two classes, and then detail
the effect of class on error behavior.

First note that each row in the codeword matrix will be one of (‘21) = 6 possible
rows with two 1 entries and two —1 entries. (These rows are listed in Table 2.4.)
Also, if a given row exists in the matrix, its negative will also appear as a row in the
matrix. (This existence of pairs of matched rows results from a simple application of
the pigeon-hole principle to the number of positions (three) left in a column after one
row is chosen and since the number of 1’s which must appear in each column is fixed.)
Thus, we can pair up possible rows with their negative. Let us label the possible rows
A, B, C and 4', B', C" (where A’ is the negative of A). The first codeword class has
two sets of identical rows — such a codeword is AAA’A’. (The matrix AAA’A’ has
row A for the first and second row, and row A’ for the third and fourth rows.) There
are (:13) (‘21) = 18 (choose one of A, B, or C; then order the rows) codewords in this
class. The second class has four different rows — AA’BB’ is such a codeword. There
are (g) - 4!' =72 (choose two out of A, B, C; then order the rows) codewords in this
class. (The example 4x4 codeword in Section 4.3.1 is of the form ABA'B’, and thus,

is a member of the second class.)
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As we stated above, these classes are of interest because they will give rise to
different decoder error behavior. The codeword space surrounding codewords of dif-
ferent classes is dissimilar. A codeword of class 1, such as AAA’A’, has 16 codewords
at Hamming distance 4, and 56 codewords at distance 8 (and symmetrically 16 code-
words at distance 12 and 1 codeword at distance 16). In contrast, a codeword of
class 2, such as AA'BB’, has 12 codewords at distance 4, 16 codewords at distance 6,
and 32 codewords at distance 8 (and symmetrically 16 codewords at distance 10, 12
codewords at distance 12, and 1 codeword at distance 16). To analyze the behavior of
this code, we must consider the behavior of codewords of both types. In this system,
where the code has only 90 codewords, the performance of the simulated decoder
could be easily analyzed by repeatedly adding noise to each codeword and decoding
this sum. But since the noise is Gaussian, two codewords of the same class will on
average give rise to equivalent error rates. And so, alternatively, and of particular
interest for larger codes, we could test the decoder with two noisy words — one of

class 1 and the other of class 2.

Performance

This code has 90 codewords of length sixteen and has a minimum distance of four.
Performance curves for this system are given below. First we present the performance
of neural networks with different values of gaingain (Figure 4.10). Note that for values
of the gaingain greater than or equal to 1.03, the performance of the system was fairly
constant. For small values of the standard deviation of the noise, a larger gaingain
gave slightly better results. In Figure 4.11 we see that the MLD and the neural
network decoder have similar error rates. Also in Figure 4.11, we compare the neural
network with gaingain to another with constant gain. The network with gaingain

outperforms the constant gain system at all levels of sigma.

4.3.5 6x6 Code

Here we discuss a system of 12 constraints on 36 nodes. Again we will use KWTA

constraints with X' = N/2 (K = 3).
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Figure 4.10: The performance of decoders with different gaingain levels.
Each decoder was presented with 9000 inputs of the 4x4 code at each
value of sigma.
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A 1 1 1-1-1-1 A -1-1-1 1 1 1
B 1 1-1 1-1-1 B -1-1 1-1 1 1
C 1 1-1-1 1-1 ¢’ -1-1 1 1-1 1
D 1 1-1-1-1 1 D -1-1 11 1-1
E 1-1 1 1-1-1 E' -1 1-1-1 1 1
F 1-1 1-1 1-1 F'r -1 1-1 1-1 1
G 1-1 1-1-1 1 G -1 1-1 1 1-1
H 1-1-1 1 1-1 H -1 1 1-1-1 1
I 1-1-1 1-1 1 ' -1 1 1-1 1-1
J 1-1-1-1 1 1 J -1 1 1 1-1-1

Table 4.1: Legal rows for the 6x6 codewords.

Codeword Classes

This code has a total of 297,200 codewords. There are (g) = 20 possible rows for
our matrix codewords. Let us label them A, B,C,D, ...,J and A',B',C",D’,...,J',
where again A’ is the negative of A. They are listed in Table 4.1.

Experimentally, we find that six codeword classes exist. Appendix B enumerates
these six classes. Table 4.2 lists the six classes by representative codewords and gives
the size of each class.

Also, Table 4.2 shows the number of codewords at given Hamming distances from
a codeword of each class. There are no codewords at a distance of less than four from
each other and there are no codewords that are an odd distance from each other. The
number of codewords at distance ¢ from a codeword is equivalent to the number at
distance 36 — ¢. We would expect a codeword of class 1 to behave quite differently
than a codeword of class 6 in small noise environments, since a codeword of class 1
has 81 codewords at distance four and no codewords at distance six, while a codeword
of class 6 has 51 codewords at distance four and 224 codewords at distance six. This
difference will be illustrated in the next section.

In summary, the importance of the data given in the table is that the minimum
distance of this code is four (since there are no codewords at a distance less than four
from each other) and that there are six codeword classes. We will discuss in the next

section how we can take advantage of the class structure of the codewords.
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distance from codeword:; codeword:
4 6 8 10 12 14 16 18 class number
81 0 2754 0 32850 0 112914 0 AAAA'A'A 200

65 144 1762 4544 18386 32592 60418 61376 AAA'A'BB’ 16200
57 200 1506 5280 16850 35112 57162 64864 AA'CC'FF’ 86400
o7 196 1518 5280 16794 35268 56886 65200 AA'’AD'JF’ 43200
93 216 1446 05440 16546 35608 56474 65632 CC'AHB'F’ 129600
ol 224 1419 5496 16481 35664 56424 65680 ABJC'D'E’ 21600

Table 4.2: Number of codewords at a given distance from 6 x 6 code-
words of each class.

Performance

This code has 297,200 codewords of length 36 (= 6 X 6) and has a minimum distance
of four. The best neural network decoder for this code used a gaingain of 1.07. This
value of gaingain produced the best decoder performance for all codeword classes and
all values of sigma, the standard deviation of the noise. We found the performance
of the decoder to be relatively constant for gaingain values greater than 1.04. The
network with gaingain set to 1.07 reduced the error difference between the constant
gain neural network and the best-guess decoder, described below, by more than half.

To test the performance of this decoder, we tested the performance of six code-
words — one of each class. We present the performance of the neural network with
gaingain set to 1.07, and a gain of 1.0, in Figure 4.12. Each data point represents
1000 decoded inputs. We see that codewords of different class do indeed give rise
to different decoder performance. The curve represents the weighted average perfor-
mance (according to the number of codewords in each class), over all six codewords,
of the decoder.

The maximum likelihood decoder implemented in previous sections compared an
input with each of the codewords to find the closest match. Because of the size of
this code, such a decoder is not practical. Here we use a best-guess decoder, which
compares each decoder input to the corresponding channel input’s closest neighbors.
Thus, if codeword R is sent over the channel, and string S is received by the decoder,

the best-guess decoder will find the codeword at distance 0, 4, 6 or 8 from R that is
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Figure 4.13: The weighted average performance of the neural network
(nn) decoder and the best-guess (bg) decoder for the 6x6 code.

closest to the string S. (Note that this decoder uses information about the channel
input, which is not usually available.) By using codewords at distance 0, 4, 6 or 8
from the input codeword, the best-guess decoder makes less than 3000 comparisons
per decoding. Most of the noisy vectors from the channel will be closer to these
codewords than to codewords that are at a greater (than 8) distance from the initial
codeword, and thus, the best-guess decoder will have error-correcting behavior similar
to the MLD. Figure 4.13 compares the performances of the weighted average (over all
six codeword classes) neural network decoder and the best-guess decoder. The neural

network’s performance is close to that of the best-guess decoder.

4.3.6 Summary

Table 4.3 lists some two-dimensional codes. The codes we discussed in our examples
utilized even values of N because codes with K = N/2 are symmetric (i.e., if A is

a codeword, then so is —A), and the rate is maximum. Table 4.3 also gives a code
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code # codewords rate # codeword classes

2x2 2 0.25 1
4x4 90 0.406 2
6x6 297,200 0.505 6
7x7 68,938,800 0.5314 ?
8x8 1.17x 101  0.5745 > 13

Table 4.3: Some two-dimensional codes.

with N =7 and K = 3, and statistics on the 8x8 code. By extending codeword class
forms (such as AAAA'A’A’ for the 6x6 code), one can count at least 13 codeword
classes for the 8 x8 code.

We found that the two-dimensional hypercube codes could be decoded on neural

networks at an error rate very close to maximum likelihood or best-guess decoders.

4.4 Three-Dimensional Hypercube

If we now arrange the M = N? nodes in a cube, the KWTA constraints are parallel
to the horizontal, vertical and depthwise edges of the cube. Each node is involved
in three constraints. There are a total of iN? = 3N? constraints. The minimum

distance of a three-dimensional hypercube code is eight.

4.4.1 4x4x4 Code

As a case study, we now consider the 4x4x4 code, comprised of 51,678 codewords
of length 64. Table 4.4 lists the ten codeword classes of the 4x4x4 codewords.
Each letter of the codeword represents a row (take the binary representation of the
hexidecimal letter and change 0’s to —1’s). 4x4x4 codewords consist of four matrices
of size 4x4. The first matrix of the class two codeword CC33C A3533CC35C A, is
given by the first four rows, CC33 (i.e., the first two rows are C =(1 1 —1 —1), and
the second two rows are 3= (—1 —1 1 1)). The second matrix of the codeword is
CA35, the third matrix is 33C'C, and the fourth matrix is 35C A.

Table 4.5 gives the codewords at each distance from a codeword of a given class.
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codeword number of
class codewords
C(C33C(C3333CC33CC 54
CC33CA3533CC35CA 3456
C(C33C33C33CC3CC3 648
CC33C33C35CA3ACS 10368
CC33C35A35AC3ACS 20736
CC33A55A33CC5AA5 1296
CC33A55A3AC553AC 5184
CC33A56933CC5A96 2592
CA35A56939C6569A 6912
CA35A35C35CASCA3 432

5 © 000 Uk W

Table 4.4: Codeword classes for the 4x4x4 code. Each hexadecimal
letter of the codeword gives a row, where 0’s are converted to —1’s.

From the table, we see that there are no codewords at distance less than eight, or at

any odd distance, or at distance 10, from each other. Thus, the minimum distance of

this code is 8.

4.5 General-Dimensional Hypercube

The rate of these codes can be bounded only very loosely. One-dimensional hyper-
cube codes have known rate ((log (J,g)) /N). We have shown that the rate of two-
dimensional codes behaves like 1 — E%’Ig\,ﬂ for a constant c.

The minimum distance of these codes (also discussed in detail in Section 5.3) is
21,

The number of constraints for the one-dimensional code is 1. If we are given that

the number of constraints for the (i — 1)-dimensional code is C(;_1), then
C; = C(i_l)N + Ni-l

The first term results because we repeat the nodes (and their constraints) of the
(¢ — 1)-dimensional decoder N times in the i-dimensional decoder. The second term

counts the constraints that connect these N repetitions. From this recursion, the
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distance from codeword:
8 12 14 16 18 20 22 24 26 28 30 32

64 O 0 1232 0 0 0 9792 0 0 0 29500
44 48 32 616 264 1068 864 3740 3264 5988 5432 8956
48 64 0 708 0 1472 0 6240 0 8320 0 17972
36 56 64 436 288 1176 1168 3468 3184 6480 5152 8660
28 54 104 312 364 1090 1508 3084 3740 5784 5996 7548
40 64 0 608 0 1568 0 6056 0 10080 0 14844
32 64 64 380 288 1208 1168 3592 3184 6536 5152 8340
28 48 96 380 256 1168 1408 3236 3520 6496 4576 9252
18 48 136 214 416 1148 1664 2662 4256 5588 6072 7232
32 96 0 448 0 1888 0 5728 0 10560 0 14172

D © 00O Uk N
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Table 4.5: Number of codewords at a given distance from 4x4 x4 code-
words of each class.

number of constraints is ¢4f = ¢ Vi~L.
For the codes that we have studied, it appears that codes of higher dimensionality,

in general, exhibit more codeword classes than codes of lower dimensionality.

4.5.1 Comparisons

Figure 4.14 compares the performance of the one-dimensional codes with N = 4, 6
and 8 (and k = N/2) and the two-dimensional codes with N = 2, 4 and 6. Figure 4.15
compares the performance of the two-dimensional 6x6 code with the Hamming code
of length 15 and the constant weight of length 27 found in [Kos91]. (The second two
codes are decoded by an MLD.) The vertical axis of these figures marks the decoded
bit error probability. On the horizontal axis we measure the bit signal-to—noise ratio

(SNR), plotted in dB, and given here as

where
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Figure 4.14: The performance of several one-dimensional (1-d) codes
(of size N = 4, 6 and 8) and of several two-dimensional (2-d) codes (of
size 2Xx2, 4x4 and 6x6) compared.
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Figure 4.15: The performance of the 6x6 code, the Hamming code of
length 15, and a constant weight code of length 27.
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and Ej is the energy per bit of the signal, N, is the noise density and R is the in-
formation rate. For more on signal-to-noise ratios see [McE77] and [PB88]. Ideally,
one would like a code to have a small, decoded bit error probability (good perfor-
mance) at a small SNR (not much power expended). Thus, the figure shows that
for one-dimensional codes, the performance improves as N grows. Similarly, for two-
dimensional codes, we see a marked improvement in code performance with increased
constraint size (V).

Now let us compare some of the hypercube codes with the random codes from
Chapter 3. For systems of sixteen nodes, we have the one-dimensional hypercube code
of (186) = 12,870 codewords at a minimum distance of 2, and the two-dimensional code
of 90 codewords at a minimum distance of 4. The largest random codes with minimum
distances of 2 and 4 had 270 and 28 codewords, respectively. These comparisons lead
us to conclude that the hypercube configuration of constraints is a good one.

In terms of general constant weight codes, Brower et al., [BSS90] list the best-
known code of sixteen-bit codewords, weight eight (i.e., k¥ = 8), and minimum distance
of 4, with 1170 codewords. The two-dimensional 4x4 hypercube code has only 90
codewords, but it does have the advantage of a known almost-maximum likelihood
decoder.

In conclusion, we have presented a family of decoders constructed by overlapping
KWTA constraints on the nodes of the decoder. If we arrange the nodes of the
decoder in an i-dimensional hypercube, the placement of the constraints is along
the horizontal, vertical, depth-wise,...etc. edges of the hypercube. These decoders
perform almost-maximum likelihood decoding on a family of constant weight codes.
In the next chapter, we will consider another family of decoders constructed by placing

KWTA constraints on the nodes of a neural network in a regular fashion.
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Chapter 5

Net-generated codes

5.1 Introduction

We present another family of codes defined by the stable states of a neural network
constructed by the regular placement of overlapping KWTA constraints on the nodes.
Here we use combinatorial nets to specify the nodes in the KWTA constraints. We
will first briefly discuss nets and then present an example net.

A net of order n consists of a set X of n? points and a family of parallel classes (of
lines), each class being a partition of the n? points into n n-subsets (called lines) such
that two lines from different classes meet in exactly one point. Dénes and Keedwell
[DK74] discuss nets, projective planes, and affine planes, as well as the relationship
of these geometric constructions to each other, and to many other interesting con-
structions. Next, we illustrate constructing a net from a projective plane.

If n is the integer power of a prime number, we can use a projective plane to
generate a net with (n + 1) classes. For example, in Table 5.1 we have the projective
plane of order n = 2. It consists of n? + n + 1 = 7 points and n® 4+ n + 1 = 7 lines,
where each line has n 4 1 = 3 points and any 2 lines intersect in exactly one point.

We can generate a net of 3 (i.e., n + 1) classes in the following way: Pick one line
of the projective plane. Without loss of generality, we select the first line. Eliminate
the line, and also eliminate the points in that line from all the lines in the projective

plane, as shown in Table 5.2. Renumber the remaining n> + n + 1 — (n + 1) = n?
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lines: 1 1 1

Table 5.1: Projective plane of order 2. (Points are numbered for clarity. )

projective plane’s points: 1 2 3 4 5 6 7
g
{1 1
1\ 1
lines: i1 1
i 1 1 L,
i 11
)| 1 1 Ly
net’s points: 1 2 3 4

Table 5.2: Constructing a net from a projective plane.
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classes: lines:
1 (2,3) (14)
2 (L2)(34)
3 (1,3)(24)

Table 5.3: Lines of a net. Each class has n (= 2) lines that partition
the n? points. Points on a line are enclosed by parentheses.

points. These are the points of the net. The first class of the net is composed of the
reduced lines that previously contained the first point (old label 1) of the projective
plane. In our example, this class contains two lines: L; consists of points 2 and 3,
and Lo consists of points 1 and 4. The remaining classes of the net are formed in a
corresponding manner from the other points of the first line of the projective plane.
Table 5.3 lists the lines of the three classes for this example.

Our neural network has n? nodes which correspond to the points in the net. If
we impose a KWTA constraint on the nodes whose corresponding points are on a
line, a net can be used to generate a family of decoders. If we use all (n 4 1) classes
to specify KWTA constraints, we find that the nodes are over-constrained and the
network has no stable states. We can obtain different decoders by using 1, 2,..., up
to n classes to specify constraints on the nodes.

From the net construction process, we see that a network, of n? nodes, specified by
a classes has a constraints per node, and an constraints overall. In the next section,
we discuss some general characteristics of net-generated decoders, and consider some
specific codes. Then, we will detail in Section 5.3 a general method for determining
the minimum distance of codes generated by overlapping KWTA constraints. Finally,

in Section 5.4 we compare these net-generated codes with other codes.

5.2 Net-Generated Codes

We first present general observations about net-generated codes. Then, we present
several example nets, and discuss codes resulting from these nets. In Section 5.2.6 we

list all the net-generated codes that we have considered.
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Figure 5.1: Placement of KWTA constraints on nodes for one-class
code. Ovals around nodes represent constraints.

5.2.1 General Net Codes

Place the n? nodes of a net-generated decoder in an nxn matrix. A single class
of a net partitions n? points into n disjoint lines of n points each. If we arrange
the n? points in an nxn matrix, the constraints can be placed along the rows as in
Figure 5.1. These n constraints are unconnected, yielding codes with a minimum
distance of two, and (n';z)n codewords, each of length n?. The decoding ability of
this code compares with the (one-dimensional) KWTA code of Chapter 2. Because
of their similar rate and minimum distance, the one-class codes have no advantage
over the KWTA codes.

The decoder constructed with two classes of a net of size n? is identical to the two-
dimensional decoder discussed in Section 4.3. The two-class codes have a minimum
distance of four, and a rate that behaves like 1 — dﬁﬂ for a constant c¢. The placement
of constraints over nodes is illustrated in Figure 5.2.

The three-class decoder is a system of 3n constraints on n? nodes. If the nodes
are arranged in an array, the constraints can be placed along the rows, columns,
and diagonals of the array. The diagonal constraints are illustrated in Figure 5.3.
Figure 5.4 illustrates the placement of all the constraints for a three-class decoder of

16 nodes. As we will see in Section 5.3, the minimum distance of a three-class code
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Figure 5.2: Placement of KWTA constraints on 16 nodes for the two-
class code. Ovals around nodes represent constraints.
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Figure 5.3: Placement of the third class of KWTA constraints for three-
class codes. Ovals around nodes represent constraints for the third
class.
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Figure 5.4: Placement of KWTA constraints on 16 nodes for three-class
code. Ovals around nodes represent constraints for the first two classes.
The third class constrains nodes that are the same shading.

is at least 6. The rate can be only bounded loosely.

For a general a-class code, the rate is hard to determine. However, for a = n and
a = (n—1) we can find the number of codewords as follows. Let N,(a) be the number
of codewords of a code generated by a net on n? points and a classes. Experimentally,
we have found that N,(n) = $N,(n — 1). In addition, N,(n) = (Z) where k = n/2

for n even, and k = (n — 1)/2 for n odd. Thus, the rate of n-class codes is

log (7) _
n2

S|=

and, similarly, the rate of (n — 1)-class codes is approximately (1 + n)/n2.
Recall that the number of different rows that can occur in a codeword is (Z) (since
the nodes in the row are in a KWTA constraint). We have observed that the number

of codewords for an n-class code is also equal to (Z) Therefore, because nodes in
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a row can be reordered, one row of a codeword uniquely determines the codeword.
In fact, in an n-class code, (since rows are not special) once any set of n nodes in a
KWTA constraint is determined, the values of the remaining (n? —n) nodes are fixed.

In Section 5.3.2 we find that the minimum distance of an a-class code is at least
2a. Experimentally, we have found the minimum distances of a class codes to be 2a
or 2(a+1).

Since the minimum distance of an a-class code on n? points is at least 2a, and a
can be great as n, this implies that we can construct an n-class code with a minimum
distance of at least 2n.

Next, we consider codes constructed from nets of size sixteen, twenty-five, thirty-

six and forty-nine.

5.2.2 The Net of Sixteen Points

Here we will discuss several decoders constructed from the net on sixteen points.
Recall that, in Section 4.3 we discussed the decoder constructed from two classes of
constraints. The corresponding code (the 4x4 code) has ninety codewords of two
codeword classes, and a minimum distance of four. ‘

Figure 5.5 gives the performance of the net decoder of 16 nodes constructed with
three classes of constraints. The neural network decodes at an error rate close to that
of the MLD’s error rate. The three-class code has twelve codewords of a single class
and a minimum distance of eight. Table 5.4 lists the codewords.

Figure 5.6 gives the performance of the net decoder of 16 nodes constructed with
four classes of constraints. The corresponding code has six codewords of a single class
and a minimum distance of eight. These codewords are a subset of the codewords
of the three-class code, and are indicated in Table 5.4 by an asterisk. As shown in
Figure 5.6, the performance of the neural network decoder is almost identical to the
MLD'’s performance.

In Table 5.5 we list the codes constructed from the net on sixteen points.
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Codewords:

-1-1-1-1 1 1-1 1 1-1-1 1 1 1 1-1

-1-1-11 11 1-1 1-1 1-1-1 1-1 1 *
-1 1-1-1-1 1 -1-1 1 1 1-1 1-1 1 1
-11-1-1 1-1-1 1-1 1 1 1-1 1-1 1
-11 1-1-1-1 1-1 1-1-1 1 1 1-1 1
-11 111 1-1-1-1-1 1 1 1-1-1-1
l1-1-1-1-1-1 1 1 1 1-1-1-1 1 1 1
1-1-1 1.1 1-1 1-1 1 1-1-1-1 1-1
1-1 1 1-1 1 1-1 1-1-1-1 1-1 1-1
1-1 11 1-11 1-1-1-1 1-1 1-1-1
11 1-1-1-17-1 1-1 1-1 1 1-1 1-1 *
111 1-1-1 1-1-1 1 1-1-1-1-1 1

* ¥ K ¥

Table 5.4: The three-class code for the net on sixteen points. Code-
words also in the four-class code are indicated by *.

percent incorrect decodings

1 1 1 1 1 1

0.001 1 ! 1
0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
sigma, noise standard deviation

Figure 5.5: Neural network and maximum likelihood decoder perfor-
mance, over 12,000 inputs per noise level, for the three-class net code
on sixteen points. The neural network has a gaingain of 1.05.
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Figure 5.6: Neural network and maximum likelihood decoder perfor-
mance, for 6000 inputs per noise level, for the four-class net code on
sixteen points. The neural network has a gaingain of 1.05.

# of classes number of rate minimum # codeword

of net codewords distance classes
1 1296 0.6462 2 1
2 90 0.4057 4 2
3 12 0.2241 8 1
4 6 0.1616 8 1

Table 5.5: Codes constructed from the net on sixteen points.
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# of classes number of rate minimum # codeword
of net codewords distance classes
1 105 0.6644 2 1
2 2040 0.4398 4
3 130 0.2809 6
4 20 0.1729 10
5 10 0.1329 10

— =N

Table 5.6: Codes constructed from the net on twenty-five points.

5.2.3 The Net of Twenty-five Points

The net on twenty-five points enforces KWTA constraints with & = 2. The three-
class code has 130 codewords of two codeword classes. The four-class code has 20
codewords, each at distance 10 from six codewords, at distance 12 from ten codewords
and at distance 20 from the remaining three codewords. The five-class code has 10
codewords, namely, all those from the four-class code that were not at distance 12
from each other. In Table 5.6 we list the codes constructed from the net on twenty-five

points.

5.2.4 The Net of Thirty-six Points

Because six is not the power of a prime, we cannot construct a projective plane of
order six. It has been shown that there exists a correspondence between k classes of
a net of order n and k — 2 mutually orthogonal Latin squares (MOLS) of size nxn
[DK74]. Therefore, the nonexistence of two MOLS of size 6x6 implies that for a net
on thirty-six points, less than four classes exist. We constructed three classes of this
net, but found that imposing the constraints from all three classes on the nodes of a
neural network resulted in a decoder with no stable states.

In Table 5.7 we list the codes constructed from the net on thirty-six points.
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# of classes number of rate minimum # codeword

of net codewords distance classes
1 206 0.7203 2 1
2 297,200  0.5050 4 6

Table 5.7: Codes constructed from the net on thirty-six points.

# of classes number of rate minimum # codeword

of net codewords distance classes
1 357 0.7328 2 1
2 68,938,800 0.5314 4 ?
3 310,198  0.3723 6* ?
4 5726 0.2548 8* ?
5 399 0.1763 12 3
6 70 0.1251 14 1
7 35 0.1047 14 1

Table 5.8: Codes constructed from the net on forty-nine points. Dis-
tances marked with % are lower bounds.

5.2.5 The Net of Forty-nine Points

The code formed with 5 classes of the net on 49 points has 399 codewords in 3
classes. The code formed with 6 classes of the net has codewords of a single class. A
codeword from this code has twelve codewords at distance 14, thirty-five codewords
at distance 24, eighteen codewords at distance 28 and the remaining four codewords
at distance 42. The code formed with 7 classes of the nets has thirty-five codewords;
interestingly, these codewords are the thirty-five codewords from the 6-class code
that were not at distance 24 from each other. (Thus, the difference code, formed
from the codewords that are in the 6-class code but not in the 7-class code, is a code
of thirty-five codewords with a minimum distance of 24.) In Table 5.8 we list the

codes constructed from the net on forty-nine points.

5.2.6 Summary

Table 5.9 lists the net-generated codes that we have found.
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constraint size, n:

n.c.: 2 3 4 5 6 7
1 (44,2) (9,27,2) (16,1296,2) (25,105,2) (36,206,2) (49,357,2)
2 1 (424) (9,604) (16,90,4)  (25,2040,4) (36,297200,4) (49,68938800,4)
3 - (9,3,6) (16,12,8) (25,130,6) - (49,310198,6*)
4 - - (16,6,8) (25,20,10) - (49,5726,8*)
5 - - - (25,10,10) - (49,399,12)
6 - - - - - (49,70,14)
7 - - - - - (49,35,14)

Table 5.9: Some net-generated codes arrayed by number of classes
(n.c.). Codes are listed by (codeword size, number of codewords, code
minimum distance). Distances marked with * are lower bounds.

5.3 Determining Minimum Distance

Here we present a graphical method for determining the minimum distance of a code
constructed by overlapping KWTA constraints on the nodes of a neural network. To
illustrate the method, we will begin by finding the minimum distance of a known

quantity: the hypercube codes of Chapter 4.

5.3.1 The Minimum Distance of the Hypercube Code

The basis of the algorithm is as follows: Choose one codeword. Change one bit of the
codeword from a 1 to a —1. Now we will consider how many additional bits must be
changed until all of the constraints are satisfied again. Since the minimum distance
gives the distance between the two closest codewords, we will want to change as few
nodes as possible. We will draw the changed node and its constraints in a constraint
graph to facilitate the counting of other changed nodes.

Let us start by considering the one-dimensional hypercube codes. In these codes
each node is present in exactly one constraint. Thus, if one node, z, is changed, one
more node, call it y, must be changed to keep the KWTA constraint satisfied (see
Figure 5.7). Since only two nodes must change their values to resatisfy the constraint,
the minimum distance of the code is 2.

Next let us consider two-dimensional hypercube codes. A given node z is in two
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Figure 5.7: One-dimensional constraint graph. The line represents the
KWTA constraint that z and y share.

1 & =2

Figure 5.8: Two-dimensional constraint graph with two constraints, 1
and 2, on node z.

constraints, call them 1 and 2. (Here constraint 1 could be a horizontal constraint
and constraint 2 a vertical constraint. Furthermore, all constraints of type 1 would
be horizontal, and all constraints of type 2 would be vertical.) By Figure 5.8 we see
that at least two more nodes (beyond z) must change so that the KWTA constraints
on z are satisfied. Call these two nodes y and 2. Now, y and z must also have their
2nd and 1st constraints, respectively, satisfied. Note that containing y and z in a
common constraint will not satisfy the constraints (would such a constraint be type
1 or type 27). Thus, we must add another node, obtaining the complete constraint
graph in Figure 5.9. Note that if 2 were changed from a 1 to a —1, y and z would be
changed from —1’s to 1’s, and w from 1 to —1. In this way, each constraint (or line
segment in the graph) has one 1 node and one —1 node, and thus is satisfied. From

this, we see that the minimum distance of two-dimensional hypercube codes is four.

Another interpretation of this counting argument involves traversing an NxN
matrix. We begin at the changed node and move along the constraints we wish to

resatisty. Figure 5.10 shows the Figure 5.9 constraint graph reinterpreted in this way.
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Figure 5.9: Complete two-dimensional constraint graph.

For simplicity we illustrate the example with a 4x4 matrix. In Figures 5.9 and 5.10,
we traverse two paths from z to w. One path moves horizontally to y, then vertically
to w; the other path moves vertically to z, then horizontally to w. (Actually, the two-

dimensional constraint graph is the node matrix with the nonchanged nodes omitted.)

Now let us consider three-dimensional hypercube codes. Three KWTA constraints
contain the node z. From Figure 5.11 we guess that w and y could share a type 3
constraint. However, if x changed from 1 to —1, then w, y and z must change from
—1 to 1 to satisfy the 1, 2 and 3 constraints. Then, w and y cannot share a constraint
(since changing two nodes in a KWTA constraint from —1 to 1 will not satisfy the
constraint). With this set of KWTA constraints (which go horizontally, vertically, and
depth-wise through an NxNxN cube of nodes), a shortest path, along constraints,
between nodes can be characterized by the types (or dimensions) of the constraints
traveled. Thus, if a shortest path between nodes = and v is along constraints of type
1 and 2, then all shortest paths must be along paths of constraints of only type 1 and
2. For example, consider the Nx N XN cube of nodes. The shortest path between
two nodes is characterized by the dimensions that must be traversed. Because of this
dimensional characterization of the shortest path, the constraint graph in Figure 5.12
is invalid. This figure shows two paths of length two between x and v, where one
traverses constraints of types 1 and 2, and the other traverses constraints of types
2 and 3. However, Figure 5.13 is a valid partial graph. Now the constraint graph
shows two paths, both containing only type 1 and type 2 constraints, from node z

to node v. Figure 5.13 leads to the complete constraint graph in Figure 5.14. The
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Figure 5.10: Two-dimensional constraint graph reinterpreted as matrix
traversal. The directions of constraints of types 1 and 2 are indicated.

Figure 5.11: Three-dimensional constraint graph : x and its constraints.
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Figure 5.13: Valid constraint graph for the three-dimensional hyper-
cube code.

closest codewords are at distance eight from each other, and therefore, the minimum
distance of the three-dimensional hypercube code is 8.

This algorithm is easily extended to any dimension. In 7 dimensions, the constraint
graph has one node at the first level (our node z, all the way to the left of the graph),
i nodes at the next level (i paths involving just one constraint), (;) nodes at the
next level (representing nodes reached by paths of length two), ’(1—11) nodes at the
next-to-last level, and (Z) = 1 node at the last level. Thus, the closest codewords
are at distance 1 + 7 + (;) +...+ (111) + (Z) = 2¢, and the minimum distance of this

code is 2¢.

5.3.2 The Minimum Distance of Net-Generated Codes

Using the methodology introduced above, we now consider the minimum distance of
a-class, net-generated codes. The one-class system produces the constraint graph of

Figure 5.15. The minimum distance of the one-class code is two because two nodes
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= number of nodes changed = 8

Figure 5.14: Complete constraint graph for the three-dimensional hy-
percube code.

Figure 5.15: One-class constraint graph.
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Figure 5.16: Three-class partial constraint graph.

must be changed to resatisfy the KWTA constraint.

The two-class code is identical to the two-dimensional hypercube code of Sec-
tion 4.3 and therefore, has a minimum distance of four.

The three-class system has the partial constraint graph of Figure 5.16. As we ex-
plained for the three-dimensional hypercube code, the nodes w, y and z cannot share
any constraints (because each constraint must have a 1 and a —1), and therefore
more nodes must be added to the graph. Nodes w, y and z each have two additional
constraints that must be satisfied. Any additional nodes will each have three con-
straints that need to be satisfied. Thus, in the best case, only 6/3 = 2 nodes must
be added. In fact, two nodes are sufficient. The resulting constraint graph is shown
in Figure 5.17. Also, Figure 5.18 gives the location of one set of changed nodes in
a matrix with n equal to four. The net-generated constraints do not force shortest
paths between nodes to be of a certain dimensionality, as was the case for the hy-
percube codes. As we see in Figure 5.18, there are three paths of length two (along
dimensions 1 and 2, 2 and 3, and 3 and 1, respectively) from z to .

For a general a-class code, the partial constraint graph is illustrated in Figure 5.19.
In the best case, the constraint graph in Figure 5.19 shows that the original 1 + a
nodes change values, plus a minimum of ﬂaa—"ll = a—1 new nodes must change values.
Thus, the minimum distance of the a-class code is at least 1 + a + (a — 1) = 2a. In
Table 5.9 most of the codes listed have a minimum distance of exactly 2a (and those

that did not have a minimum distance of 2(a + 1)).
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Figure 5.17: Complete three-class constraint graph.
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Figure 5.18: Matrix interpretation of the three-class constraint graph.
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total of a%z — 1) constraints a constraints
to be satisfied per node

Figure 5.19: Partial a-class constraint graph.

5.4 Comparisons

Experimentally, we have found that decoders generated using the methods presented
in this chapter perform near-optimal decoding on their corresponding code.

Figure 5.20 compares the codes decoded by the two-, three- and four-class net-
generated codes on sixteen points using the SNR discussed in Section 4.5.1.

At each minimum distance, the size of the net-generated codes surpassed the size
of the largest randomly generated codes of Chapter 3.

We can also compare these codes to the best-known, constant weight codes from
[BSS90]. Recall that the net of nine points gives rise to three codes. The three-class
(9,3,6) code is also the largest constant weight code with codewords of size nine,
weight three and a minimum distance of six. The two-class (9,6,4) code has half as
many codewords as the largest code with a minimum distance of four.

The three-class (16,12,8) code has fewer codewords than the largest code with

these parameters, which has 30 codewords. The largest constant weight codes with
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codewords of length twenty-five and weight ten are (25,6036,6) and (25,100,10), as
compared to the net-generated codes (25,130,6) and (25,20,10). These comparisons
illustrate that the net-generated codes are smaller than the comparative largest con-
stant weight code. The advantage of the net-generated code is the existence of a
decoder which can quickly decode the net-generated code.

We can also make some general observations about hypercube and net codes. To
see how these families of codes compare, we consider the ratio of minimum distance
to codeword length. For an i-dimensional hypercube code, this ratio is (2/N)’. As
¢ grows, the ratio becomes small. Hence, to increase the minimum distance of a
hypercube code, we must increase the codeword size. For an a-class, net-generated
code, this ratio is 2a/n?. As a increases, the ratio increases. Thus, the codeword
size does not need to be increased to increase the minimum distance. Of course, we
are limited to a minimum distance of 2n for net-generated codes. Another interesting
ratio is the number of constraints in the system to the number of nodes in the system.
In Section 4.5 we found the number of constraints in an i-dimensional hypercube
decoder to be iM/N. Thus, the ratio of constraints to nodes is i/N. The number of
constraints in an a-class, net-generated decoder is an. Thus, the constraint to node
ratio is a/n. Both the hypercube codes and the net-generated codes are more powerful
than the random codes we discussed in Chapter 3. We hypothesize that a constraint to
node ratio of ¢/N, for some constant ¢, is a useful property for decoders. In addition,
in terms of decoder complexity, a constraint to node ratio that grows as ¢/N indicates
that we are not trading a low processor complexity (here the number of processors is
equal to the codeword size) for a high degree of processor interconnectivity (related
to the number of constraints). In the next chapter, we will discuss, in detail, decoder
complexity in terms of the space necessary to implement the decoder on an integrated

circuit.



85

Chapter 6

Decoder Layout

6.1 Introduction

In this chapter, we consider the implementation of decoder circuits. Specifically, we
will discuss decoders that can be constructed on a single, integrated circuit.

Components such as transistors and wires are constructed on a silicon chip by
layering different materials. The limited precision of the fabrication process to pattern
and align these layers, and the intrinsic electrical behavior of the devices, dictate a
set of design rules, or minimum size and spacing rules, that chip designers must
follow in order to obtain reliable chips. Because the minimum feature size changes
with improvements in processes, these design rules are often given in terms of a
dimensionless length unit A\. We will use a width allowance for one wire of 7); this
wire pitch includes sufficient space around the wire such that it will not interfere with
an adjacent wire. Currently, A &~ 1 micron for typical processes. Mead and Conway
[MC80] give an overview of the wafer fabrication process and discusses scalable design
rules in depth.

Thompson’s grid model [Tho80] is used to study the asymptotic complexity, in
terms of relative area, of an integrated circuit. In this chapter, we apply Thompson’s
model in order to determine the scaling relationship of implementable circuits with
decoder size and to estimate the maximum size of decoders that can be realized

on a single, integrated circuit. Thompson’s model assumes a chip of evenly spaced
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horizontal and vertical tracks. Wires on two layers run independently along these
tracks. Wires go from layer to layer via contacts. Processors can be located at
intersections of two tracks (one horizontal, the other vertical). For processors where
more than four input/output lines are needed, a rectangular processor is used that
will cover several intersections of horizontal and vertical tracks. Inputs and outputs
for this type of processor run along the tracks that abut the processor (e.g., an N x M
rectangle has 2(INV + M) input/output lines).

Applying this model, we can construct layouts of circuits. Our system has simple
processors, and each processor has a fanout that grows with the dimension of the
system. To estimate the size of the chip needed for our system, we will make the
processors large enough for the necessary fanout and assume that this size will be
adequate for all the necessary processing. In this analysis, we will ignore wires not
directly used in the computation, such as power and ground wires.

The size of the integrated circuit is limited by the defect density introduced by
the fabrication process. A variety of fabrication errors can result in a chip that does
not function properly. The yield of (good) chips is modeled as inversely exponential
in the utilized area of the chip. Thus, beyond a certain size, fatal errors are likely to
occur. Currently, the largest practical integrated circuits being fabricated are lcm by
lem.

If the size of a (two-dimensional) chip is limited to 1 cm on a side, and wires
occupy 7pm each, then a chip containing only wires could have about 1430 wires in
each dimension. Because we require processing elements in addition to wires on our
chip, we will use a bound of 1000 wires in each dimension as our limit. From this
analysis, we find that decoders of a reasonable size could be implemented on a single,
integrated circuit.

Most of our analysis will focus on worst-case arguments for the chip size necessary
to implement our decoders. After these arguments, we will present in Section 6.4
an aggressive layout suggested by Carver Mead that reduces greatly the circuit area

necessary to implement an N x /N decoder.
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1 2 N

Figure 6.1: Layout of KWTA circuit with NV nodes. Arrows indicate
direction of information flow.

6.2 Layout of a Hypercube Decoder

In this section, we will present a bound on the physical size of a hypercube decoder
circuit constructed on silicon. We will consider the size of the largest decoder that
could be built on a typical lecm by lcm integrated circuit. We will use the Thompson
grid model of VLSI chip layout and the assumptions discussed in Section 6.1.

The circuit we wish to construct has N* nodes (processors). Each node is labeled
as {x1,2s,...2;} with z; € {1,2... N}. A KWTA constraint is placed on a set of N
nodes that differ only in one index (see Chapter 4). These groups of N processors
are completely interconnected. That is, the output of each node in the group is an
input to all the other nodes in the group. The layout of such groups is illustrated in
Figure 6.1.

The processors are laid out on the silicon in the following manner. For i = 2, the
usual matrix format is used—with node (1,1) in the upper left and node (&N, N) in
the bottom right. For ¢ = 4, the (i = 2)-system is repeated N? times to form an
NxN matrix of (i = 2)-systems. The third and fourth indices of a node give the
identity of the particular (¢ = 2)-system in which it resides. Thus, to proceed from
a size ¢ to a size (i + 2) system, we fill an N x N matrix with i-systems, where their
labeling is done by the (i + 1)th and (¢ + 2)th indices. The result is a square matrix
of N/2x N/2 nodes.

Now let us consider the connections that exist between nodes. Each node will

share constraints only with other nodes in the same row or column of the matrix.
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(2,1,2,1) (2,2,2,1) (2,1,2,2) (2,2,2,2)

Figure 6.2: Node placement for the 2x2x2x2 decoder. Lines between
nodes indicate that they share a KWTA constraint.
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Figure 6.2 shows the layout of the nodes, their labels and the constraints for the
2Xx2x2x2 decoder. For a general decoder, the leftmost upper node is in 7 constraints,
and thus, will be connected to i(/N — 1) other nodes. For the first constraint, we
have connections to the (/N — 1) consecutive nodes as we move horizontally. Thus,
connections exist to the second, third,..., Nth node in the top row of the matrix.
So, node (1,1,1,1,...,1) is connected to nodes (1,2,1,1,...,1), (1,3,1,1,...,1),...,
and (1,N,1,1,...,1). For the second constraint, there exists a connection to every
Nth node in the row (for N — 1 nodes) — ie., the (N + 1)th node, the (2N +
1)th,..., and the [(N — 1)N + 1]th node. Here node (1,1,1,1,...,1) is connected
to nodes (1,1,1,2,...,1), (1,1,1,3,...,1),..., and (1,1,1,N,...,1). For the third
constraint, we have connections to every N2th node in the row (again for N — 1
nodes) — or to the (N2 + 1)th node, the (2N? + 1)th node,..., and, the (N —
1)N2 + 1)th node. Here, node (1,1,1,1,1,1...,1) shares a constraint with nodes
(1,1,1,1,1,2,...,1),(1,1,1,1,1,3,...,1), .., and (1,1,1,1,1, N, ..., 1). Finally, for
the i/2th constraint, we have connections to every N*/2~1th node in the row. This
constraint connects node (1,1,1,1,...,1), tonodes (1,1,1,1,...,2), (1,1,1,1,...,3),
.,and (1,1,1,1,...,N). The other 7/2 constraints of the upper left node are laid out
vertically. Each of the above-mentioned horizontal connections has a corresponding
vertical connection. Above, we specified horizontal connections between nodes that
differed in their second, fourth, sixth and Nth indices. The vertical connections exist
between nodes that differ in odd indices. The other nodes in the matrix (besides the
upper left node) are involved in similar connections. Now that we have specified the
layout, we are ready to measure the area it occupies.

The operation that we wish our processors to accomplish is a relatively simple one.
However, the fanout of each processor grows rapidly with the dimension of the system.
Thus, we will assume that our processor size is that necessary to accommodate its
fanout.

The processors can have connections on all four sides. As shown in Figure 6.1,
processors make vertical connections to horizontal buses. Similarly, processors make
horizontal connections to vertical buses. Thus, a connection between processors in a

(horizontal) row uses both horizontal and vertical space. Hence, if we wish to deter-
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vertical wires nodes:
(1,1,1,1)
(2,1,1,1)
B (3’]_,]_,]_)
3 (4,1,1,1)
(1,1,2,1)
3 (2,1,2,1)
(3,1,2,1)
(4,1,2,1)
(1,1,3,1)
(2,1,3,1)
(3,1,3,1)
(4,1,3,1)
(1,1,4,1)
(2,1,4,1)
(3,1,4,1)
(4,1,4,1)

horizonal
buses

N N N N N
constraints: A B C D EF,
G, H

)

Figure 6.3: Vertical constraint layout for a column of 16 nodes of the
4x4x4x4 decoder. Thick horizontal lines represent buses (of N = 4
wires); vertical lines represent wires. Connections between wires and
buses are shown as dots.

mine the width of our chip, we must include the space occupied by both horizontal
and vertical buses in our computation.

We will determine the width of our system by measuring the width of one column
of processors as well as its associated wires and then multiplying by the number of
such columns. This is a legitimate calculation of the width because of the symmetry
of the system; i.e., all columns have the same connections.

We have said that all connections from a processor use horizontal (and vertical)
space. First let us look at the space used by the vertical buses associated with one
column of processors. Figure 6.3 illustrates the layout of a column of nodes, and its
associated vertical constraints, of the 4x4x4x4 decoder. Each constraint introduces
a bus of N wires as in Figure 6.1. The first connections that we discussed enforce
a constraint on N consecutive nodes. Thus, the N/2 nodes in the first column are

divided into N/2~! groups of N consecutive nodes. Each of the resulting buses will
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look like the bus in Figure 6.1 (rotated ninety degrees). These N¥/2~! buses are
nonoverlapping. Thus, the width allotted for the first group’s bus can be reused by
the second, third,..., and the (i/2 — 1)th group’s bus. Hence, we need 1 bus width for
this group of buses. These connections are labeled as constraints E, F, G, and H in
Figure 6.3.

The next constraints that we discussed connected every Nth node. A group of
N2 nodes (say the first through the N2th) has NV of these overlapping buses. (That
is, one bus will have a node between two nodes from another bus.) These buses are
labeled A, B, C, and D in Figure 6.3. The next group of N2 nodes, however, will
have (again V') buses that do not overlap with the previous group’s N buses. (Think
of adding another copy of Figure 6.3 under the original. New constraints A’, B,
C', and D' would use the same width already allotted for constraints A, B, C, and
D.) Hence, the space we allocate for the first N buses can also be used for the next
N buses. Finally then, we need N bus widths for these connections. This pattern
generalizes. Finally, for the (¢/2)th mentioned buses, we need N/2-1 bus widths.

Each bus width is V wires. The number of columns of nodes in our chip is N2
This gives a width of (1+ N+ N2+...+ N/2-1) N(N/?) wire widths to accommodate
the vertical buses on the chip. We can rewrite this as
Ni — Ni/2

7— wire widths.
l-%

Nt Nl g Ni/2+L

Now we need to look at the width that is due to the horizontal buses. The buses
themselves do not add to the width of the system; however, the connections from
the processors to the buses do require space. There are %iN of these connections
per node (i.e., half of the total connections.) In the best case, we will have half of
these connections to the top of the node and half to the bottom. This gives a width
contribution of % %iN = }IiN . In the worst case, all the connections would be onn one
side (top or bottom) of the node. This gives a width contribution of $iN. Horizontal
buses constrain nodes in the same row. Thus, as in Figure 6.4, the other nodes in1 the
column use this same horizontal space to make their vertical connections to horizontal

buses. In the worst case, the horizontal buses contribute $:N(N¥/2) = {NG/2+1) /2 wire



92

N

horizontal constraints

e

Figure 6.4: Vertical connections to horizontal constraints. The hori-
zontal space used by one processor in a column of nodes to connect to
constraints is sufficient for the other processors in the column.

—-®
o ®
®

widths to the chip (i N(/2+D /4 in the best case).

Finally, we obtain a total (worst case) chip width of

i 1/2 . i+1 :
N NP2 i e ]W+)_+Nwwﬂ(i___L_J
11—+ 2 (N -1) 2 (N-1)

Q

N+ -;-N(WH) wire widths.

6.2.1 Winner-Take-All Circuits

For the particular case of the single-winner-take-all network (K = 1) Lazzaro et al.
[LRMMS89] have demonstrated an efficient circuit on silicon that uses a bus consisting
of only two wires. If we restrict ourselves to networks of winner-take-all circuits, we

can replace the bus widths of IV in the above counting arguments with bus widths of

2.

2 [N — N/? : 2N¢ , 1
e B AL 2N’/2<1————)
N[l—%]+ (N—l)+ (N —-1)

~ 2N! 4 2N2 wire widths.
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6.2.2 Circuit Size

We can use the technique established above to count the width and height of non-
square (i odd) systems. For a system of NG=1/2x N(+1)/2 nodes, we obtain a width

of

width = NEDEN(14+ N+ N2 4. 4 NO-D/2- 1)+(Z+1) NNU+D/2
2

= N 4. N2 (—Z-%llN(”?’)/z wire widths.
The height of the system is equal to

helght = N(l—l)/2N(1+N+N2 ]\]’(H‘l)/2 1)+( 5 )NN(z 1)/2

. . -1
= N’+...+N(z+1)/2+(22 )N(”'l)/2 wire widths.

Assuming that we embed this nonsquare circuit on a square lem by lem chip, the
width of the system will limit the size of our design since the width is greater than
the height (for V > 1). Table 6.1 lists possible designs. Given a value of 7, the chip
width (in wires) was calculated. Then, the largest value of N that kept the chip width
under 1000 wires was calculated. The number of total nodes M (for this value of N)
is also given. These results suggest that there are hypercube decoders of reasonable
size that could be implemented on a single, integrated circuit. Note that standard
pad configurations can take up to 256 input/output lines to or from the chip. Thus,
for systems with more than 256 nodes, signals to and from the nodes will need to be
multiplexed.

In conclusion, the chip width of the decoder circuit grows linearly as M, the total
number of nodes. The circuit area scales as the square of the network size. This
analysis suggests that non-trivial hypercube decoder systems could be constructed

with current VLSI technology.
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i chip width (in wires) largest N M
10 N4 N9 4 N8 4 N7 4+ 6N <2 -

9 N+ N8 4+ N7 +6NS <2 -

8 N& + N7 4 N6 4 5N5 2 256
7 N7 4+ N6 4 5N° 2 128
6 N6 + N5 4 4N* 2 64
5 N> 4+ 4N* 3 243
4 N*+3N3 5 625
3 3N3 6 216
2 2N? 22 484
1 N? 31 31

Table 6.1: Chip width for ¢-dimensional system. Also given is largest
N for which the chip width is less than 1000 wire widths, and the
corresponding value of M = N*.

6.3 Layout of a Net-Generated Decoder

In this section, we will present an argument for the size of a net-generated decoder
(Chapter 5) circuit constructed on silicon. We will calculate the largest decoders that
can be built on a 1lecm by lcm integrated circuit, using the Thompson grid model of
VLSI chip layout and the assumptions discussed in Section 6.1.

We begin by placing the m = n? processors in an n xn array. The one-class decoder
will have KWTA constraints enforced along the rows of the array. The width of the
system is equal to the width of a KWTA constraint on n nodes. From the techniques
in Section 6.2, we derive that the width of the KWTA constraint on n nodes is n?
wire widths. Assuming processors of height one, the height of the one-class decoder
is n(n +1). (If we assumed square processors, the chip height would be 2n2.)

The two-class decoder is identical to the two-dimensional hypercube code and
(from Section 6.2) has height and width equal to 2n? wire widths. Each additional
constraint for the three-class decoder will connect to one node per row and one node
per column. Thus, there is no advantage to placing these constraints in a vertical
direction versus placing them in a horizontal direction. Thus, if we are considering

an a-class system, we will place a/2 classes vertically and a/2 classes horizontally.

The 2-class layout accounts for one vertical and one horizontal class. The remaining
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(§ — 1) classes

—

two-class

layout

(§ — 1) classes

Figure 6.5: Placement of class constraints for the a-class net-generated
decoder.

§ — 1) vertical classes contribute n(§ — 1) constraints, or n*($ — 1) wire widths to
the chip width. This arrangement is shown in Figure 6.5. Since we already know the
width of the two-class layout (2n?), let us now consider the width of the constraints
introduced by the additional (a — 2) classes.

Figure 6.6 shows the connections from two processors in a column to the vertical
constraints. In Section 6.2, the vertical constraints were connected to nodes by hori-
zontal wires (as in a rotated Figure 6.1). Here, because each constraint is placed on
exactly one node per row and one node per column, connections to constraints must
span the array of nodes. Thus, we have vertical connections to horizontal wires that
in turn connect to the vertical constraints (as in Figure 6.6).

Each class specifies one constraint for a given node. Thus, the (§ — 1) vertical
classes specify (§ — 1) constraints for each processor. Since each processor connects

to (£ — 1) vertical constraints, its vertical connections use n(2 — 1) wire widths. Two
2 ) 2

processors in the same column can use the same horizontal space for the connection
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vertical constraints:
—_—

I

Figure 6.6: Connections to vertical constraints for the a-class net-
generated decoder.

(as in Figure 6.6). Hence, over all n columns, n*($ — 1) wire widths are necessary.

Now we need to consider the width needed for the vertical connections to the
(5 — 1) horizontal buses. Figure 6.7 shows these connections. Each processor in the
column must satisfy (§ — 1) horizontal constraints. For each constraint that involves
the processor, n wires are needed. Thus, the processors in a column need n?(% — 1)
wire widths, for a total contribution to the chip area of n3(% — 1) wire widths.

We can now sum the width needed for the two-class decoder, plus the width of
the (§ — 1) vertically laid classes and the width needed to connect to these classes,

plus the width to connect to the (§ — 1) horizontally laid classes to obtain a total

width of

idth = 252 2(3—1> 2(9—1) 3(9—1)
width n"+n 5 +n 5 +n 5
3(@ 2
- 24
" (2 >+°m
~ am3/? /2 wire widths

To transform an a-class system to an (a + 1)-class system, where a is even, we add

one horizontal class. By our previous arguments, this will add n3 wire widths to the
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n(§ — 1) wires

2(a :
n®($ — 1) wires

L

to horizontal constraints

Figure 6.7: Connections to horizontal constraints for the a-class net-
generated decoder.
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a chip width largestn m

8 3n®+8n? - -

7 3n®+6n? - -

6 2n3+ 6n? 7 49
5 2n+4n? 7 49
4 nd+4n? 8 64
3 nd42n? 9 81
2 2n? 22 484
1 n? 31 961

Table 6.2: Chip width for a-class decoder. Also given is largest n for

which the chip width is less than 1000 wire widths, and the correspond-

ing value of m = n2.

width of the chip, and 2n? wire widths to the height. From an (a + 1)-class system to
an (a+ 2)-class system (again with a even), the added vertical constraint contributes
2n? wire widths to the chip width and n® wire widths to the chip height. For n greater
than or equal to 2, the chip width is greater than or equal to the chip height. Thus,
the chip width will limit the size of the decoder we can construct.

Table 6.2 lists possible designs for different numbers of classes. Recall from Chap-
ter 5 that for the net-generated codes, the number of classes a must be less than or
equal to n, the size of the constraints. For 7-class and 8-class systems, the largest n
that results in a chip width less than 1000 is n equal to six. However, a net-generated
decoder with constraints of size six can have six or fewer classes.

In conclusion, we have found that we can embed a net-generated decoder with a
nets in an integrated circuit with width proportional to %an3. The circuit area scales
as the cube of the network size. This analysis suggests that, in a typical VLSI process,

one could implement net-generated decoders of reasonable size.

6.4 An Improved NxN Decoder Layout

In this section we present a decoder layout suggested by Carver Mead. This layout

utilizes aggressive circuitry implemented by students such as Misha Mahowold at
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Figure 6.8: Connections to horizontal constraints for the a-class net-
generated decoder.

Professor Mead’s laboratory at Caltech.

We begin by placing our N? nodes into an N x N matrix. Nodes in a given row or
column share a KWTA constraint. This constraint we now implement with a single
wire. It is necessary for this implementation of a KWTA circuit that the transistors
of the circuit are well matched. The nodes are addressed by horizontal and vertical
select lines. The output of the circuit can then be read out one column at a time.
Also, the input of the next computation can be read into the circuit as the output of
the present computation is read out of the network. This leads to a two frame latency
(thus, data is read in during one frame, used for computations during the next frame,
and is read out in the following frame).

Figure 6.8 illustrates this layout. Note that the processor size now contributes to

the size of the circuit. The width of this N XN decoder circuit is
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3N processor widths

An implementation of this circuit would present an interesting neural network

application.
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Chapter 7

Communication on a Broadcast

Network

7.1 Introduction

El Gamal [El 87] presents a problem of communicating on a distributed communication
network (also called broadcast network). The distributed communication network
that we will be working with has N sender nodes s1,...sy and one receiver node r.
The senders may transmit or receive bits, while the receiver r can only receive bits.
When s; transmits a bit b, all of the other nodes will receive this transmission. The
communication between any pair of nodes is modeled as over an independent, binary
symmetric channel (BSC); i.e., each node has a probability € of receiving an erroneous
version, independently of the other nodes.

To begin, each s; obtains an independent bit z; (a Bernoulli trial B(3) ). The
node can transmit this bit as well as any function of the bits it has heard and its
own bit (i.e., s; can transmit t; = f(sy,%o,%3,...,1x), where #; is s,’s best guess of
§;’s transmission). El Gamal’s problem is to determine how many transmissions are
needed for r to have received the whole array of the bits x reliably. (A protocol gives
a reliable estimate if, given an allowable probability of error, 6 > 0 , there exists a
Tp such that for T" transmissions where T' > T, the probability that the estimate is

correct is > 1 —4.)
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Gallager [Gal85] (and [Gal87]) gave a bound of O(N Inln N) bits for the amount
of communication needed to give the receiver a reliable estimate of the parity of NV
bits (one bit per node), as well as the array of N bits. It is clear (from Shannon’s limit
of ©(N) for a binary symmetric channel [Sha48]) that Q(/N) bits are necessary for
reliable communication. Here, using a random coding argument, we repeat Gallager’s
bound of O(NInln N) bits to obtain a reliable estimate of the array.

Before proceeding, let us look at the network with N = 6. Clearly, if we wish to
have r know the parity of the 6 bits, p = x1 ® 22 @ ... & xg, then each sender node
must transmit its bit at least once (since if s; never transmits, then r will at best
guess the parity with a 50% chance of error). If all the senders transmit once, then
sy (for example) will have estimates of xq, z3, 24, =5, and zg. Its next transmission
could use this information; for example, it could send its estimate of the parity of
the 6 bits. The next node to transmit can take advantage of this information, and so
on. Let us leave this example now, and look at algorithms where N is assumed to be
large.

We will give a protocol for obtaining a reliable estimate of the entire array at one

node. Appendix C gives the proofs of the theorems presented in this chapter.

7.2 Array Protocol

We wish to obtain a reliable estimate of the array of N bits at . The most straight-
forward algorithm to achieve this is to have each node repeatedly transmit its bit
until 7 knows each bit well enough that it has a reliable estimate of the whole array.

Theorem 7.1 tells us how many transmissions are necessary for this algorithm.

Theorem 7.1 For a distributed communication network of N nodes, let M be the
number of times each node has to repeat its bit for 7 to have a reliable estimate of

the array of N bits. Then M = ©(log N).

Proof See Appendix C.
One familiar with coding might guess that ©(log V) bits of communication per

node are not necessary for all transmission schemes. (We can note that s; never used
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the information it obtained about z; (¢ # j)). That is, in fact, true, and next we
present an algorithm that requires many fewer transmissions.

First, let us divide the senders si,..., sy into (approximately) N/K groups with
I{ members per group. Each sender transmits its bit M times, where M is enough
times that each member of a group has a reliable estimate of the group of K bits. To
satisfy this requirement, M should be O(log K) (Theorem 7.1).

Now, each node in a given group of size K has a reliable estimate of that group —
with error independent from node to node. If a sender node knew the group of K bits
perfectly, that node could encode these K bits and send the encoding over the channel
in about pK transmissions. (Shannon [Sha48] has shown that pK transmissions are
necessary and sufficient to send K bits over a BSC reliably, where p = (1/R) > (1/C),
R is the rate, and C' is the Shannon capacity.) Instead, each of the sender nodes has
an estimate of the array of K, each with independent error. Thus, the system includes
the channel error as well as the error in the node’s estimates of the group.

Let us look at the encoding of x1, ...,z g, the first K bits. Again, if node s; knew
this group perfectly, it could send about pK bits, call them g1, 9o, ..., g,x, so that r
would have a reliable estimate of x1, 29, ...,z (i.e., with pK bits sent, transmission
errors could be corrected). But in our model, s; does not know the array of K
perfectly. so’s estimate of the array is also imperfect; however, the two estimates
have independent errors. The same is true for any two s;,s; (i # 7). So if one node,
say s1, sends pK bits, » could correct any errors made during the transmission — but
not errors in s;’s estimate. Thus, » would obtain a reliable estimate of s;’s estimate
of the array of K. But, as we have stated above, the errors in each node’s estimate are
independent from node to node. Thus, if each node transmits one bit of the encoding,

i.e., s; sends g;, then

Pr(g; is in error at ) = Pr(g; is in error at s;) - Pr( correct transm. over BSC)

+Pr(g; is correct at s;) - Pr( incorrect transm. over BSC)

IN

el—e€)+1-¢

< 2¢
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where g;’s error is independent of g;’s error for all 7 # j. (Recall that the probability
of error in s;’s estimate of the group of K (and therefore in g;, an encoding of the
group) is at most €. Also, the channel error is .)

Now we have combined the channel error and the node’s (estimate) error into
one error that coding can correct. Our system now looks like perfect information
being sent over a BSC with crossover probability 2e. ( We can reduce € by a constant
amount with a linear number of transmissions, so we do not have to be concerned
with the case of 2¢ = 1/2.)

There is one more detail of this encoding to be mentioned. Since p > 1 for
€ > 0, nodes Sy41,5K42,...,5,x Will be sending gr 41, grt2,- - -, ok (Where the g;’s
are functions of the K bits z1,...,2x). Nodes sgy1,..., S,k received the initial
transmissions of z1, ..., 2 (made by s1,...,sk) and thus these nodes have a reliable
estimate of x,...,xx, making their g; bit reliable. So we see that having nodes
outside the group of K nodes send bits of the their version of the K bit encoding
does not compromise the reliability of the encoding. The encoding described above
results in r’s knowing the first K bits, z1,2,...,2k, super reliably. (Before the
encoded bits were sent, r had a reliable estimate of the group of K bits. Now, r’s
estimate of the group of K has a probability of error exponential in K — or super
reliable.) In fact, if we repeat this encoding for each of the N/K — 1 remaining sets
of K bits, r will know each group of K bits super reliably — so that the whole array
of N will be reliable — if K is the correct size.

Thus, we have made (p/ - &) = (pN) = O(N) transmissions. These transmissions
are detailed in Table 7.1.  Next, Theorem 7.2 gives a restriction on K, the size of

the group.

Theorem 7.2 If we communicate N bits of information over a BSC by sending K/R
bits per group of K bits (for N/K groups), then the probability of error of the whole

array of NV bits goes asymptotically to zero when K = W log N for some constant W.

Proof see Appendix C

Thus, this scheme gives us the whole array of N reliably in

#transmissions = O(MN + N/R)
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sender # # of transmissions transmission content

1 M 1

N M TN

[1]x 1 91
[PK]y 1 9K

(K +1]y 1 9t
K+ 14 pK]y 1 ggK

2K + 1], 1 g
2K+ 1+ pK]y 1 ggK
[N - K +1], 1 a’'®
[N — K + 1+ pK]y 1 g

Table 7.1: Transmission scheme where [z]y = (z — 1)y + 1, (2)y is
mod N, and g/ is the 7** bit of the encoding of the K bits with indices
(j—1)K+1,...,7K) by the given sender. (So g3 is the 3" bit of the
encoding of z1,29,...,2f).
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= O(N(loglogN + (1/R)))

7.3 Summary

A reliable protocol for obtaining the entire array of N bits at one node on the dis-
tributed communication network of N nodes has been presented. By employing a

random coding argument, this protocol gives reliable estimates of the array using

O(N(loglog N)) transmissions.
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Appendix A

Probability of Error for the 2x2
Code

Our first step in calculating the probability of error is to establish friendly coordinate
axes. We will use the following orthonormal set of axes: %(1, -1,-1,1), %(1, 1,1,1),
3(-1,-1,1,1), $(1,—1,1,—1). Note that the first axis goes from the origin towards
the codeword (1, —1,—1,1). The remaining three axes are in the hyperplane h. Thus,
they are equidistant from the two codewords.

In the original coordinate basis, the four dimensions of the noise vector n were

independent. To see that this independence is preserved in the new basis system, we

start by verifying that the new noise vectors 1, fig, 713, iy are uncorrelated. Let

1 1 -1 1
W—l—ll_l—l
21 -1 1 1 1
1 1 1 -1

be the transformation matrix. Thus, 72 = Wn. The covariance matrix is given by

¢ = E[(h—a)(n— )
= E[(Wn - Wu)(Wn - Wau)T)
= WE[(n — u)(n —u)T]WT
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= Wwcw?T

Since C' = I, C = I, (where I, is the identity matrix of rank four). Thus, the
noise vectors are uncorrelated. In addition, if two normal random variables are uncor-
related, then they are independent. Now that we have established the independence
of the noise vectors 7, we can find the probability of error of the system. (Note that

the point (1,—1,—1,1) is expressed as 2w; in our new basis.)

_ (21 — 2)2 + 202 + 232 + 242

Pe = / / / / ( 27ra> exp [ 552 dzydzo dz3 dzy
_ —(z1 = 2)?
= [/ 27mexp <202) } / 27mbxp < 557 dz,

Note that

0o 1 22
—_— —— ) dz=1
/—oo 210 Xp ( 202> z

And hence,

o1 —(z —2)?
e = d
p /—oo om0 <*p < 202 ) ?

where G is the integral of the Gaussian function [Pap84]. This probability of error

indicates the theoretical performance of the 2x2 code.
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Appendix B

Enumerating the Classes of the

6x6 Code

The 6x6 code has ninety codewords of six classes. Table 4.1 lists the possible rows of
the codewords. Here we give an example codeword, by rows, of each class and count

the number of codewords of each class.

Class 1: AAAA’A’A" : First choose one of the ten pairs of rows. Then order the

(11()) <g) = 200 codewords

Class 2: AAA'A'BB’ : Pick two pairs from the ten pairs of rows. Pick one of

six rows of two classes.

these pairs to appear twice. Pick two positions for the A’s; pick two more positions

for the A”s and one for the B.
10\ [2\ [6) [4)\ (2
(2> <1> (2) (2> (1) = 16,200 codewords
Class 3 : AABB'CC’ : Pick three pairs from ten. Order the six distinct rows.
10
( 5 ) 6! = 86,400 codewords

Before continuing, we need to count the number of ways in which four nonpaired rows
can sum to zero. (Classes 4 and 5 have two rows that cancel each other (A and A’)

and therefore, four rows that must sum to zero.) Four such rows are AJD'F’. The
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distance between any two of these rows is four. (Two rows differ in four positions.)
The number of legal rows at distance four from A is (g) (g) = 9 (pick two —1’s to
change to +1’s, and pick two +1’s to change to —1’s). Once we pick another row,
J for example, we have only (?) (f) /2 ways left to complete the four-row matrix. (J -
and A agree in one +1 and one —1 position. The next rows, which are at distance
four from A and J, must each agree in one of A’s two remaining +1 positions and
one of the remaining —1 positions. We divide by two because we take two rows at a
time to complete the matrix.) So, we have found that there are two ways that AJ
can be completed to yield a four-row matrix with zero row and column sums. In fact,
these matrices are AJD'F" and AJC'G'. In a similar way, pairing with A each of the
nine rows at distance four from A will give rise to two legal third and fourth rows.

So, how many legal (four-row, zero row and column sums) matrices have A in them?

(# rows at dist. 4)(# ways to finish each pair)
(rows per A)

# matrices with A =
9.2

- 73

= 6

These six matrices are AJD'F', AJC'G', AHB'F', AIB'G', AHC'E', and AID'E'.

Now, how many four-row sets are there that sum to zero?

# of four row sets that sum to zero

(# with A)(# legal rows)
(# rows per set)

6-20

4
= 30

So, A appears in six of these sets, A’ appears in six more, and neither A or A’

appears in 18 (= 30 — 6 — 6) of the sets.
Class 4 : AAAJD'F’" : Pick one of the ten pairs. Pick A or A’ to appear in the
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pair 1: 1 1 1-1 -1-1
1 1 -1 1 —-1-1

pair 2: 1 1
1 1

pair 3: -1-1
-1 -1

Table B.1: Partial 6 x6 codeword of class six.

set of four. There are six ways to finish the set of four. Next order the rows. Pick

two positions for the AA or A’A’. Order the remaining four distinct rows.

10\ [/2\ (6 (6
-
< 1 ) <1) (1) (2) 4! = 43,200 codewords

Class 5 : BB’AJD'F’ : Pick one of ten pairs. There are 18 sets of four rows that

can complete the matrix. Then we order the six distinct rows.

<110> (118>6! = 129,600 codewords

Codewords of class six have six distinct, nonpaired rows. We can break the six
rows into three pairs of rows. Two rows in a pair differ in two positions. If we pick A
as our first row, there are G’) (‘I’) = 9 rows at distance two from A. Let us take B for
the second row. A and B differ in the third and fourth positions. Since two rows in
a pair disagree in only two positions, the rows in the remaining two pairs must agree
in the third and fourth positions. (If they disagreed in the third and fourth, they
would have to agree in the first, second, fifth and sixth; but then we would not have
three +1 entries and three —1 entries in the first, second, fifth and sixth columns.)
So, given A and B, we have the partial codeword as shown in Table B.1.

Pair 2 can either agree or disagree in positions five and six. If they agree, they
must have 41 entries (because we need three +1 entries and three —1 entries in
columns five and six). But the pair 2 rows have two +1 entries already. Therefore,

pair 2 must disagree in positions five and six. Thus, the pairs 2 and 3 are fixed by

our selection of pair 1 rows. The final six rows are given in Table B.2. How many
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A 1 1 1-1-1-1
B 1 1-1 1-1-1
¢’ -1-1 1 1-1 1
D -1-1 1 1 1-1
E -1 1-1-1 1 1
J 1-1-1-1 1 1

Table B.2: 6x6 codeword of class six.

different sets of six rows are there? A appears in nine such sets, there are twenty rows
each of which appears nine times (with the nine rows that differ in two positions),
and each codeword uses six rows.
Thus,
. . 9-20
number of different sets of six rows = —— = 30

6
Class 6 : ABJC'D'E’. Pick one of the 30 sets of rows. Order the six rows.

(31()) 6! = 21,600 codewords
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Appendix C

Proof of Theorem 7.1 and
Theorem 7.2

C.1 Theorem 7.1

Theorem 7.1 For a distributed communication network of N nodes, let M be the
number of times each node has to repeat its bit for r to have a reliable estimate of
the array of N bits. Then M = ©(log N).

Proof
The following two claims prove the theorem.

Claim If Pr(z; # y; : 1 transmission) < e , and we would like Pr(z; # y; : M
transmissions) < (e/I), then M = O(log K).

Proof Let z; be the transmitted bit and y; be the received bit.

Pr(z; # y; : M transmissions) = Y ( _ )e’(l — M
i=m/2 \ ¢
< )\—/\M#—;AMG)\M(]- _ 6),uM

where AM = M /2 and uM = M — AM = M/2 (see [PW72]). Thus,

.. 1\~ M M
Pr(z; # y; : M transmissions) < (5) (e(1—€))

- ()"
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For0<e<1/2, (24/e(1 —€) ) <1; therefore,
Pr(z; # y; : M transmissions) < (a)

(where o < 1, as determined by e).
If one less bit had been sent, the desired probability of error ( < ¢/K) would not

be met (since we would choose the minimum M ). Therefore,

Pr(z; # y; : (M — 1) transmissions) = o™~ > %
inverting this we obtain
( 1 ) M-l K

— < —_—

et €
and thus,

M = O(logK) (C.1)

U

Also, to find a lower bound:

<i\vj) f%(l - *5)_1\2i < f: (AZ/[) e€(l—e™* = Pr(a; #y : M transm.)

2 i=M/2
M
<M>e%(1 - 6)%{ < Pr(z; # y; : M transmissions) < %
2

NIE
(92

(';')ﬁ (m) (%) _M(f(l -7 < z [PW7]

1
2

(\/—51—]\—) @yel-9)" < —=

and hence,

M = QlogK) (C.2)
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Therefore, by Equation C.1 and Equation C.2 :
M = 0(log K).

Claim If Pr(x; # ;) < 6/K and we would like Pr(x # y) < 6, then K = O(N).
Proof x=(z1,29,...2x), y=(y1,¥2,.-.yn), T; is the transmitted bit, y; is the
received bit, and 0 < § < (1/2).

s - )R 0-4)"
)

We would like Pr(x # y) < 6, using the above equation we obtain

N
§
1-(1-—=

or K >

IN
&

§
1—(1-86)""

Call (m—f—m) = A (where c is some constant). Now, let us assume that K < A.

1—<1—£>N < 1—(1—£>N=Pr(x7ﬁy)<6
A - K -

Therefore :

or

which results in

or
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Choose ¢ =1 so that §/c <1 for all §. Thus:

1
K<
T1-(1-8Y

therefore,

K=o (1_(11_5)1/N>

Furthermore, this is equivalent to ©(N), since

. N
lim ————— = constant.

N—oo 1
1—(1=8)1/N

To see this, let
N(1-@a-8"")=b

Thus,
1_%=(1—5)1/N=% (a=1-26)
or N
b
=(1-2
o= (1-3)
and

b\
li — T 1— 2 — -b
g e = gim (1= %) =
Since «a is a constant, therefore, e~ is a constant; thus b s a constant. Therefore,

K = O(N). U Together, the claims prove the theorem. H

C.2 Theorem 7.2

Theorem 7.2 If we communicate N bits of information over a binary symmetric
channel (BSC) by sending K/R bits per group of K bits (for N/K groups), then
the probability of error of the whole array of N bits goes asymptotically to zero

when K = Wlog N for some constant W.  Proof Given a BSC with crossover
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error probability e, if the sending end of the channel has K bits of information it
wishes to have the receiving end know, it has been shown that ©(K/R) bits suffice
(R < C =1—"H(e), where H is the binary entropy function) and give a decoder error
probability for the K bits given approximately by 2~ (KE(R/E) [McET77).

If we now look at all the groups of size K together, then the probability of error
of the array of N bits is given by

pe(array of N) = 1 (1 - 2-KE(R/R)) NIK
= 1-(1-BK/N)NK

~ B
where § = N/K2KER/E

We would like 8 to approach zero asymptotically as N gets large; thus, we can
take K = Wlog N and E(R)-W/R>1 (E(R),W and R are ©(1); therefore, K is
Qlog N) as 3 goes to 0, for N approaching infinity. We wish to have K as small as
possible to minimize the necessary number of transmissions.)

Thus, we have
1

(log N)N =741
which goes to zero as N goes to infinity (with E(R)W/R > 1).

[MO77] give bounds for the error exponent E(R). In figure C.1 we plot two lower
bounds for E(R), Ex(R) and E,(R), for several values of €. E,(R) is the random

pe(array of N) ~ =

coding bound given here by

1—R—logy(1++/4¢(1—¢) 0<R<1-— Hz(#)

Er(R)={ﬂ(D)_H2(D) R>1- Hy(7z5=)

where T,(D) = —Dlogy e — (1 — D)logy(1 — €) and D is defined by R = 1 — Hy(D),
for Hy(D) = Tp(D), the binary entropy function. E.,(R) is the expurgated bound

here given by

Ew(R)=-D (1 + %Iog2 e(1 — e))
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Figure C.1: E, and E. lower bounds for the error exponent E(R) for
€ = 0.1 (Ex0.1 and Er0.1) and € = 0.01 (Ex0.01 and Er0.01) plotted
against W = 0.5, 1.0 and 2.0.
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Ee(R) is only valid from where it intersects E,(R) until R = 0. For more general
forms of these bounds, see the reference. Also indicated on figure C.1 are lines for
W =1, W =1/2 and W = 2. From the figure, we see that there exist rates R for
which E(R) > R/W. For example, the space above and to the left of the W = 1/2
line, and above and to the right of the curves lower bounding E(R) is the location of
rates that satisfy E(R)/2 > R.

Thus, figure C.1 shows that there exist rates R, with E(R)- W > R, at which we
can transmit reliably. (Even if we take the tougher restriction E(R) > 1, we find that
this implies that € < 1/64 (using Ee(R)), a restriction we can always secure with a

fixed number of repetitions.)
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