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ABSTRACT

The internal energy and the entropy components of the elastic
restoring force in rubbers were determined for natural rubber up to an
extension ratio of about 3.0. Four different experimental measurements
were necessary to determine these components: (1) the force-temperature
coefficient at constant temperature and length; (2) the force-pressure
coefficient at constant temperature and length; (3) the thermal expansion
coefficient at constant length; and (4) the isothermal compressibility at
constant length. The force~temperature and the force-pressure coefficlents
were functions of strain whereas the expansion coefficients and the iso-
thermal compressibilities were independent of strain. These measurements
gave an internal energy contribution of 237 for natural rubber independent
of the strain over the range of extensions studied.

To describe the thermal as well as the elastic behavior of
rubbers a new phenomenological description of elastomers based on a gener-
alized measure of strain was developed. The incompressible form of the
strain energy function correctly described the elastic data on varilous
elastomers (natural rubber, styrene-butadiene rubber, chlorinated ethylene-
propylene copolymer rubber) in both homogeneous and non-homogeneous defor-
mation fields. For a given rubber the same set of parameters fitted the
data in simple tension, simple compression, equal biaxial tension and pure
shear up to the point of rupture.

The compressible form of the strain energy function also described



the thermoelastic data on natural rubber. The thermoelastic data on
chlorinated ethylene-propylene copolymer rubber, taken out of the litera-
ture,were also predicted. From the new strain energy function it was
possible to determine the interchain interactions. For natural rubber the
interchain energy effects were found to be small (4%) as compared to the
intrachain energy effects.

The experimental results on natural rubber established the range
of validity of the statistical mechanical (molecular) and the continuum
mechanical (phenomenological) theories. The temperature coefficient of the
unperturbed dimenéions of natural rubber determined from the internal
energy component of the force ylelded the conformational energies associ-

ated with the cis-polyisoprene chain.
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PREFACE

From thermoelastic data on rubbers it is possible to derive
information on the hindrance potentials governing the flexibility of the
network chains. Such data permit the calculation of the temperature
coefficient of the unperturbed dimensions of the network chains. This
can be used to describe the conformational changes accompanying the defor~-
mation of the network.

The research reported here focuses on the thermoelastic behavior
of rubberlike substances with emphasis on the energetic and the entropic
components of the elastic retractive force. The elasticity of rubbers is
studied from the thermodynamical, the continuum mechanical (phenomeno-
logical) and the statistical mechanical (molecular) viewpoints.

The first part of this thesis describes a new elastic potential
function (or strain energy function) capable of describing the deformation
behavior of an elastomer when it can be considered to be incompressible.
The applicability of this phenomenological function is demonstrated in
various deformation flelds. The study also includes the effect of tempera-
ture on the parameters of the potential functionm.

. The second part considers the thermodynamic behavior of elasto~
mers. A general analysis of the large principal deformation of a homo-~
geneous isotropic elastomer is presented. The thermodynamics of the

retractive force in elastomers is discussed from the viewpoint of the

statistical mechanical theory. The strain energy function described in



xiv

the first part is here extended to account for compressibility. Experi-
ments necessary to determine the energetic and the entropic components of
the retractive force based on classical thermodynamics are detailled. The
results are compared with the predictions of the phenomenological and

the molecular theories. The most satisfactory fit is obtained with the
compressible form of the new elastic strain energy function. It is shown '
that this new equation permits determination of the temperature coeffi-
cient of the unperturbed displacement length of long chain molecules by

relatively simple experiments.



PART I

A NEW ELASTIC POTENTIAL FUNCTION

FOR RUBBERS



1. INTRODUCTION

The mechanical deformation of rubberlike materials has been
widely considered in the literature using both the molecular (statisti-
cal) and the phenomenological (continuum) approaches. The most widely
accepted statistical theory is the well known network theory of rubber
elasticity (1, 2, 3, 4). The equation of state which this theory fur-
nishes, however, is at best applicable to small deformations. The other
widely used approach i1s the phenomenological theory of large deformations.
The development of the phenomenological theory, in contrast to the sta-
tistical theory, has been quite general (5, 6) and more successful (2).

The ultimate goal of these theories is to predict the state of
strain in a body deformed by applied stresses. This is customarily
achieved through a function known as the strain energy density, or
elastic potential, or increase in Helmholtz free energy, accompanying
the deformation. Once the strain energy function is known, the elastic
properties of the materlal are completely defined. In the forthcoming
discussion, a new elastic potential for the mechanical deformation of
rubberlike materials 1s introduced and the application of this function
in various modes of deformation is demonstrated.

The stress-strain relation is derived from the strain energy
function by the principle of virtual work (6). For an isotroplc material
it is known that the elastic potential depends implicitly on the strain
through three invariants of the strain tensor. The open problem iIn

characterizing rubberlike materials 1s how best to express the elastic



potential in terms of the state of strain in the material. There are
essentially two options available in approaching this problem. One may
choose a given measure of strain (such as the Cauchy, Green, Almansi,
Hencky, etc., strain), and then construct a strain energy function which
best fits mechanical data in divers stress fields, regardless of the
mathematical complexity of4this function. Alternatively, one may search
for a more generalized measure of strain (one which contains within it-
self one or more free parameters), and construct a mathematically less
complex strain energy density which fits the data equally well or better.
The latter approach is adopted here.

A general measure of strain based on an arbitrary power of the
stretch ratio was first introduced by Seth (7). We call this the
n-measure. Hsu (8) applied this measure successfully to various metallic
materials. Blétz, Chu, and Wayland (9) and later Chu and Blatz (10)
applied the same measure to rubberlike materials aﬁd elastic animal
tissues. In a recent paper Ogden (11) used a similar approach and con~-
structed a strain energy density which is a linear combination of terms
involving various powers of the stretch ratios. In his paper no refer-~
ence was made to the earlier work of Blatz, Chu, and Wayland. Specifi-
cally, Ogden ﬁsed a combination of three terms of the form first intro~
duced by Blatz et al.

The proposed new potential is based on a nonlinear combination
of terms involving a single power of the stretch ratio (12, 13, 14). The
final form of the straln energy fumction is quite different from that of

Ogden and contains fewer parameters.



2. THE GENERALIZED MEASURE OF STRAIN

A rubberlike material may be assumed to be isotropic in the
undeformed state; the strain energy density therefore depends on the
strain implicitly through three symmetric functions of the principal
stretch ratios Ay, A,, and A,.

It is customary to associate with the stretch field two strain
fields.

2

E = (Aa - 1)/2 (2.1)

in a material (or Laghangean) coordinate system, and by
- _ 3 -2
e, (1 Xa )/2 (2.2)

in a spatial (or Eulesrian) system. Here (o =1, 2, 3) denotes the three
principal directions. These have been widely used in continuum mechanics
to formulate the constitutive theories of materials and to solve problems
involving finite strains.

Seth suggested a more general measure to characterize the de~
formation field. His measure of strain is based on the realization that
there 1s no unique definition of strain; rather, the most convenient
strain measure i1s a property of the material and of the geometry of the

deformation. This measure of strain is



E, = (A, - 1/n (2.3)

in the material description, and

e, = - Xa_n)/n (2.4)
in the spatial description of the deformation. We note that ea(~n) =
Ea(n). For n=2,1, 0, -1, - 2, Eq. (2.3) ylields Green's, Cauchy's,
Hencky's, Swainger's, and Almansi's strain measure. However, the coeffi-
cient of strain measure n need not be an/integer (8). By introducing a
degree of freedom in the coefficient n, it is possible to Incorporate
more of the nonlinear behavior of the material in the definition of
strain, and less of the nonlinear behavior in the constitutive relation
between the strain energy density and the strain. Indeed, it is possible
to represent the stress-strain behavior of several rubberlike materials,
each 1n several deformation fields, by a very simple stress~strain
relation in which the strain is based on the n-measure, n being adjusted
for the best fit to the data. The coefficient n is thus a material con-
stant, and the strain measure becomes a material as well as a kinematic

quantity.



3. THE ISOTROPIC STRAIN ENERGY DENSITY

It is expedient to represent the strain dependence of an

isotropic strain energy function in terms of three invariants of the

deformation. Rivlin (5) pioneered the use of the principal invariants

of the right Cauchy-Green deformation tensor

I = ], A2 (3.1)

=31 I A (@ # 8) 6.2
and

I3 =1 A% (3.3)

which have since been widely used. One is free, however, to choose any

set of three symmetric functions. We elect to work with the principal

invariants of the strain tensor defined in Eqs. (3.4) through (3.6).

These invariants are

(3.4)

I, = %—{a ZB E, Eg (@ # B) (3.5)



and

IIIE = Ha Ea (3.6)

We note that,IE, IIE, and IIIE are the invariants of linear theory,
but are based on a nonlinear measure of strain. However, this choice
is not unique. One may choose any three symmetric functions of the
stretch ratios. In a general sense, one can define invariants on

perfectly arbitrary functions of the stretch ratios, namely:

I=] vQO) (3.7)
II = %—Za,s WO) k) (3.8)
IIT = I, w(A ) (3.9)

Thus, the most general elastic potential, therefore, is
W= Ww(I, 1II, III) (3.10)

In the particular case, where I, II, and III are replaced by IE,

I, and IIL,, respectively, we may rewrite Eq. (3,10) as

W= W(lg, I1;, III) (3.11)

E’



According to the principle of virtual work, the Cauchy princi-

pal stress is obtained as

dE
- o oW =>\nE)W

odA  JE o 9E
a o o,

0)

oW
= (1l+ngE)+—— (3.12)
o o} Bka o BEOL

where the bar on O denotes true stress. The form of Eq. (3.12) in
general coordinates 1is given in the Appendix (1). Because the deforma-
tion behavior of rubberlike materials is very nearly isochoric, it is
convenient to invoke the assumption of incompressibility and impose a

constraint among the three invariants. From Eq. (2.3) we have

n
Aa l+n Ed (3.13)

and

nznn 2 3
na xa =J 1+nlI_ +n IIE 4+ n¥ III

E (3.14)

E

The assumption of incompressibility, J = 1, then establishes the relation

@ -1)/n= Ip+n Il +n? III_ = 0 (3.15)

between the three invariants. Because of this constraint, it is neces—

sary to rewrite the strain energy densilty function as

ped n
W(IE, IIE, IIIE) W(IE, IIE) +k (I - 1)/n (3.16)



where k is a Lagrangean multiplier. The leading term of W will, of

course, be limited in the sense that Eq. (3.16) must reduce to Hooke's '

law for small strains.

We now proceed to eliminate the Lagrangean multiplier k, and

then rewrite Eq. (3.16) in terms of W.

IIE, we may write

A R |
BEa I aEa I1 BEa
where
= oW
W, = o
I BIE
and
= oW
W = o
11 aIIE
From Egqs. (3.4) and (3.5) we have
BIE -1
oF
o
BIIE Sl g
Bqu E o,

Since W is a function of I and

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

Substituting Fq. (3.16) into Eq. (3.12), differentiating, and using

Eq. (3.15) ylelds
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g, =k+ (L+nE) [gl + (1 - E) WII] (3.22)

Equation (3.22) is perfectly general within the validity of
the assumption of incompressibility. Elimination of k gives the principal

stress differences as

- - n n, |= n =
Oy = OB = (Aa - AB ) b&r + (AY - 2) WII/n] (3.23)

After expanding W(I II;) in a Taylor series, retaining the first term

E’
only, and identifying

ﬁI(o, 0) = 2G/n (3.24)
to satisfy the requirement of Hooke's law, we obtain

2G 4 (3.25)

V=0 e

This simple elastic potential is general enough to fit most data on
rubberlike materials up to about 200% strain in simple tension, and to
equivalent deformations in other stress fields, with a suitable choice
of the constant n. It contains theneo-Hookeaﬁpotential for n = 2, and
the potential of Dickie and Smith (15) for n = 1.

A pafticularly simple form of Eq. (3.10), namely

W=1I (3.26)
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was chosen by Valanis and Landel (16) to represent data on natural
rubber. The same approach has since been used by Dickie and Smith (15)
and by Kawabata (17).

Equation (3.26), when written out explicitly, becomes
W=w)) +wd) +w(iy) (3.27)

This equation was found (15, 16, 17) to répresent data in different
deformation fields up to about the same stretch ratios for which

Eq. (3.25) also gives an adequate description of the data. Equation
(3.27) implies separability of the elastic potential into three principal
contributions based on the single function, w(Aa). Equation (3.25)

contains the same feature and it 1s, in fact, easily shown that
= n-—
W(Aa) 2G()\Ot 1)/n (3.28)

One can evaluate w(ka) as a function of Nlexperimentally (15,
16, 17, 18). 1In moderate deformations, therefore, the two approaches
represented by Eqs. (3.25) and (3.27), respectively, are equivalent and
a choice can be made only on the grounds of simplicity. There is no
known basis in thermodynamics or statistical mechanics for concluding
that the elasﬁic potential must be separable.

Before studying the new strain energy function in various
deformation fields, the theoretical predictions of Eq. (3.25) for

different values of n may be considered.
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For simple tension Eqs. (3.12) and (3.25) give
5 = 26/n) OF - A/2y (3.29)

Plots of 0/G vs. A or A\~! are shown in Fig. 1 for values of n ranging
from 0 to 10. It is evident that the n-measure of strain contributes an
important degree of freedom iIn describing the behavior of incompressible
nonlinear elastic materials.

To achleve a satisfactory fit of the data at deformations
higher than those which the simple strain potential, Eq. (3.25), can
handle, higher terms in the expansion are needed. Rather than adding
higher terms in the second, third, etc., powers of the invarlants we
found it more cdnvenient to write our strain energy density function in
the form

2G m

W==1I_+B1
n

. . (3.30)

where B and m are two additional material parameters.

As previously stated, Eq. (3.30) 1s a nonlinear combination of
terms based on the n-~measure of strain. Hill suggested that a strain
energy dehsity obey his inequality (19). For Eq. (3.30) this leads to
n > 0and m > 1 (Appendix 2).

It will now be shown that this strain energy function provides
an excellent fit to data obtained in various deformation fields (both

homogeneous and inhomogeneous) up to the point of rupture with the same
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material constants G, n, B, and m for a given material. Equation (3.30)

thus leads to true constitutive relations.
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4. HOMOGENEOUS DEFORMATION FIELDS

We now examine the form of our constitutive equation,

Eq. (3.30), in several different deformation fields. Substitution of

Eq. (3.30) into Eq. (3.23) gives

- - n n m-1

Ga - OB = (la - XB ) (2G/n +m B IE ) (4.1)
Eq. (4.1) can now be specialized.
4.1 Simple Tension

In simple tension A} = X, A, = A3 = A-1/2 g = g, and
Oy, = 03 = 0. Hence, from Eq. (4.1)

5= 0" -2 (6/m +wp 1 (4.2)
where

I = O + 22 _ gy (4.3)

4.2 Equibiaxial Tension or Simple Compression

In equiblaxial tension Al = Ap = A, Az = A72, E} = 3} - g,

and 03 = 0. Hence
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= 0" - 272 (26/n +m B IE’“"")V (4.4)

where
I = (A" + A2 _ 3y /n (4.5)

For an incompressible material the state of deformation in simple com-
pression and in equibiaxial tension is the same. Hence, the behavior

in simple compression can be calculated from that in equibiaxial tension.
Letting subscript ¢ denote the former, and subscript t the latter,

3o,

we have A = A "2 and 0 = - A
c C t t

t

4.3 Pure Shear
In pure shear A\] = A, Ay = 1, A3 = A"}, g, = 0, 05 = ¢~, and

o3 = 0, where ¢ is the maximum, and 0’ is the intermediate true stress.

We have

o= " - 2™ (26/n + m’ B 1£Em"1) (4.6)
and

G e (L -2 (26/mn+mB I (4.7)

E
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where

Tg

It is often difficult to keep Ay = 1 in experiments in pure
shear. If Ay can be measured, A3 = (A1A;)~}, and Eqs. (4.6) through

(4.8) can be modified to describe the state of stress as

= " -2 A™ (26/n +m B IEm”l) (4.9)
and

o = 02" - ™ @6/n+mB I (4.10)
where

I, = O™+ "+ A,’ﬁ A2 - 3)/n (4.11)

4.4 Simple Shear

The shear stress, 0j; = 012, is obtained by differentiating

W with respect to the amount of shear, t, given by (2)

= A"+ 2™ - 2)/n (4.8)

t =tan y = A - A~} ' | (4.12)
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where vy is the angle of shear. The principal stretch ratios in simple
shear are the same as those in pure shear. Hence, IE is given by

Eq. (4.8). Differentiation leads to

An - A—n m~-1
012 = ~———— (2G/n + m B IE ) (4.13)
A+ A7l

for the shear stress.

4.5 FExperimental Evidence

We now demonstrate the applicability of er proposed new
strain anergy demsity function, Eq. (3.30), to experimental data on
natural rubber (NR) and on styrene-butadiene rubber (SBR), in homogeneous
deformations.

Natural Rubber.

We used Treloar's data (20) in simple tension, pure shear
(maximum stress only), and equibiaxial tension at 20°C, and Forster's
’data (30) in simple compression at 25°C. In both cases the shear modulus,
G, was taken from the original work. The coefficient of strain ﬁeasure,
n, was obtained on a computer from a least squares fit of the data of
Treloar in simple tension below about A = 3, The constants B and m were
obtained next, again from a computer least squareé fit of Treloar's data
in simple tension. The constants are listed in Table I. The same
constants were used to predict the behavior in the other deformation
fields. The results for the data of Treloar are shown in Fig.'z. The

data in equibiaxial tenéion were calculated for simple compression. The
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fit near the unstretched state (A = 1) in both tension and compression
is shown in an enlargement in Fig. 2. The fit to the simple tension
data is excellent up to break, The prediction of the observed béhavior
in pure shear (maximum stress) and equibiaxial tension (compression) is
also good up to break, the maximum error being about 10%.

Figure 3 shows the same data in a plot of the normal true
 stress differences, E; - Eé, against the prediction given'by Eq. (4.1).
As expected, the data lie on a straight line with a unit slope. The
same figure alsé contains the data of Forster in simple compression.
These data were obtained in an actual compressioq experiment. Except for
the shear modulus, G, they were fitted with the constants obtained from
Treloar's data in simple tension on another sample of natural rubber.

Nevertheless, the fit is very good over the entire range.

Styrene-Butadiene Rubber

We examined the data of Dickie and Smith (15) in simple tension,
pure shear (both maximum and intermediate stress), and equibiaxial
tension. The authors reported the data in a time- and temperature-~
independent reference state for which the modulus is unity. For compari-
son with other data, a modulus of 75 psi, i.e.,5.27 kg/em?, at 25°C is
appropriate (21).

The constants shown in Table I for SBR were again determined
from the data in simple tension as explained above for NR. The same
parameters were then used to predict the behavior in pure shear and in

equibiaxial tension calculated as simple compression. The results are

shown in Fig. 4 by the solid lines.
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Again, the fit is excellent in simple tension. In pure shear,
only the constants G and n were needed. The fit is excellent for the
maximum stress. Some deviation appears at large values of A in the inter-
mediate stress. This deviation can be attributed to the fact that the
stretch ratio in the direction of the intermediate stress did not remain
unity, but changed appreciably as discussed in detail by Smith and
Frederick (22). The predicted curve for 0°/3G in Fig. 4 was obtained
from Eq. (4.7) assuming A, = 1. Equation (4.10) which would undoubtedly
have improved the fit, could not be used because the actual values of Kz
are not known.

In equibiaxial tension the constaﬁts B and m determined in
simple tension did not fit the data well. They begin to contribute
around 1/A = 12. The broken line indicates the fit with the values of
B and m shown in the last row of Table 1. These were obtained directly
from the equibiaxial tension data and provide an excellent fit. Figure
5 shows the same plot as Fig. 3. The unfilled squares correspond to
the four points fitted by the broken liﬁe in Fig. 4.

The points shown in Fig. 4 were taken from Table 1 of
reference (155. The entries in that table for equiblaxial tension were
read from Fig. 4 of the same reference. The last point, corresponding
to a reduced‘strain of 5.0, appears to have been extrapolated in an in-
consistent way from the figure and was, therefore, omitted from our
calculations and plot.

The differences in the constants B and m for the uniaxial and
equlblaxial tensilon data éf Dickie and Smith 18 probably explained by the

fact that the materials for the separate studies were prepared at
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different times with minor variations in the preparative procedures (15).
This may affect not only G (which was divided out by authors for this
reason) but also B/3G and / or m. The parameter n appears to be insen-
sitive to such variations as witnessed by the satisfactory fit to all

NR data with the same value of n, and of the SBR data for values of the

strain which do not require B and m.
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5. INHOMOGENEOUS DEFORMATION FIELDS

5.1 Introduction

The application of the new strain energy function in various
homogeneous stress fields was demonstrated in the preceding section.
In this section we consider an inhomogeneous stfess field for which the
data are available in literature. The problem of simple torsiom and
torsion combined with extension are solvéd with the aid of the new strain
energy function. Since the second term in Eq. (3.30) only contributes
significantly beyond about 250% strain for natural rubber, and the
available data in torsion do not exceed 1502 strain, the form of the
strain energy function used in this section is given by Eq. (3.25).

The torsion of a right circular cylinder, both with and without
superimposed stretch, was considered by Rivlin (24). Rivlin and
Saunders (25) measured the torsional couple on natural rubber (NR) in
simple torsion, and in combined torsion and extension., The normal loads
were also obtained in the simple torsion experimenﬁ. Ogden and Chadwick
(26) predicted the torsional couple data of Rivlin and Saunders in
combined torsion and extension using A new six parameter equation. The
torsional couple data in simple torsion were recently predicted by Valanis
(27) using the approach of Valanis and Landel (16). Equation (3.25) is
used to predict the data in both the‘simﬁle torsion and the torsion with
extension. The prinéipal Cauchy stresses corresponding to Eq. (3.25)

are given by



I
Oy = - k + 2G [Ea - —5} (5.1)
where k is an arbitrary hydrostatic pressure.

5.2 Combined Torsion and Stretch of a Right Circular Cylinder

Consider a right circular cylinder of length L and radius A.
Ihe cylinder is capped by rigid plates, one of which is simultaneously
displaced in the axial direction and twisted. The deformed length is
denoted by (= AL) and the deformed radius by a(= A/YX). The inverse

mapping in cylindrical coordinates is given by

R = /r (5.2)

0 =8 - 4‘-‘—;- (5.3)
z

Z = 3 (5.4)

where k is the angle of twist per unit undeformed length. R, 0, Z are

the material coordinates (XK) and r, 6, z are the spatial coordinates

(xk), The Cauchy deformation tensor is given by

A 0 0
k k& K L
L8 X"y GpL X - 0 A k (5.5)
0 - k2 1 + Ak?r?
AZ
! )
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where gkz and GKL are the metric tensors and XK,Q is the deformation

gradient. The eigenvalues of the deformaticn tensor are given by

k £ _ .2 k

e, n, Au n (5.6)
which leads to the secular equation as

(- 23?) [};“ - 2(A1/2 cosn v) A7 + A*{J =0 (5.7)
The solution of this equation gives the eigenvalues as

Ay = Am1/2 (5.8)

Ap = A1/u exp (-y/2) (5.9)

A3 = A% exp (v/2) (5.10)
where

A2 4+ %-+ k?r?
vy = cosh™! (5.11)
2/x

The matrix of the eigenvectors corresponding to these three eigenvalues

is given by
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1 0 0
Ja3/2 o oY /Y _ \3/2
2< = |0 A e e - A (5.12)

o
r el - o7 I <4 el - eY
/e¥ - 23/2 /a3/2 - Y

e - Y oY - oY

The principal stresses are obtained from Egqs. (5.1), (5.8), (5.9), and

{5.10) as

oy = -k =28 | _ /2, n/b [enY/Z + e-nY/Z] (5.13)
L

) ' ]
26 | /2 nlh )| mY/2 g v/2 (5.14)
. J

r 1
+ An/A e-nY/Z - 2enY/2 (5.15)

\ J

Gy = -k -2 |02

One can now combine the last three equations with the tensor of the

eigenvectors [Eq. (5.11)] to obtain the Cauchy stresses given by
ek - ) o 7 o° - (5.16)
a

from which the following stress tensor is obtained
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() (A3/2-e7Y) G, + (e¥-23/2)5; (03-0,)7(e¥-23/2) (23/2_¢")
t

[N

2 sinh vy 2 sinh vy

(&—3-—32) /(eY._A3/2) (AB/Z_Q-Y) ()‘3/2_e—'¥);3 + (eY—A?*/Z)B‘z

2 ginh vy 2 sinh vy

(5.17)

where t(kiz) are the physical components of tkz.
The components of Eq. (5.16) are undetermined with respect to
an arbitrary hydrostatic pressure. We therefore solve the radial equili-

brium equationv(6)‘

Bcr _ _ ,
Ty ™ 0y - O (5.18)
where
G = :(lil), oy = t(ziz) and 53 = °(3i3) (5.19)
subject to the boundary condition
at r=a, o =0 (5.20)

Equation (5.18) may be rewritten as
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3;1 _ (7\3/2 - e"Y) ‘C?z + (eY - )\3/2) -(;-3
ry;tor = (5.21)
2 sinh ¥y

Equation (5.21) may be integrated numerically by replacing r by y by
means of Eq. (5.11), and the result can be used to correlate normal
stress data for various values of X and k. Such data are available only
in simple torsion (i.e., no superimposed stretch), the solution for which
is given in the next section. There are, hcwever, data available for the
torque M vs. the amount of torsion for various values of the extension

ratio. From Eq. (5.11)
r2 = (e¥ - 23/2)(a3/2 - &~Y)/2k2 | (5.22)

which in conjunction with

a

M o= 2 J T, ¥ dr (5.23)
0
yields
ser™4 Yoy Y n
M o= - S I (e¥ - 23/2) (a3/2 _ ") ginh ~%~dY (5.24)
nk Y
o
where
T om- t(2) (5.25)

0z (3)
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A2+}_
cosh y = A (5.26)
2Vx
and
A2 +%—+ k%a?
cosh Y, " (5.27)
2vx
For the special case of n = 2, the above result reduces to
T G A%k
M= 3 3 (5.28)

which is a result obtained by Rivlin (28) for neo-Hookean materials.

5.3 Simple Torsion

This is a special case of torsion with superimposed elongation,
where now the stretch ratio is unity. Thus, the principal extension

ratios are given by

Ap = 1 (5.29)

Ay 2 A7l = /14 (kr/2)2 - kr/2 (5.30)
and

A3 EA = /1 + (kr/2)? + kr/2 (5.31)
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Proceeding in a fashion similar to the one described in the previous
section it is easily shown that the normal axial force N and the

torsional couple M are given by

o) k?n A A
- (5.32)
1 n/2+1 -n/2-1)2 2 n/2-1 -n/2+1)2}
+n+2{)‘A ~ } *n-z[)‘A "
and
n/2+1 ,-n/2-142 n/2 -n/242 n/2-1 1-n/2y2
(r TR 20t =) - A
M = 476 A A _ A A A A (5.33)
nk3 n+ 2 n n - 2
where A, = ) .

5.4 Experimental Results

Since the original data were obtained on two samples with
slightly different moduli we used our equation in a normalized form.
. For the parameter n we used 1.64 as in our treatment of other data on NR.

5.41 Simple Torsiom

The details of the simple torsion experiment are given in the
original paper (25). The dimensionless torsional couple M is plotted
against the amount of torsion in Fig. 6. The points represent the
experimental data, given both as an increasing and decreasing load cycle.

The solid line is the predicted curve using Eq. (5.33). The theory and
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the observed behavior are in good agreement. In Fig. 7 the dimensionless
normal axial load N is plotted against the square of the amount of torsionm.
As shoﬁld be noted, the axial force is compressive, since to apply a
torsion of amount k in a cylinder bonded with rigid plates to its plane
ends, we must apply a torsional couple and é thrust parallel to the
cylinder axis. The original data points predict an intercept as shown

in Fig. 7. There is a finite value of thrust N even though there is no
torsion. If we consider the material to be isotropic in the undeformed
state, such an intercept cannot be expected. This can only be explained
as an experimental error at this time. To circumvent this difficulty

we have taken the mean of the intercepts of data points for increasing

and decreasing loads and added it as a constant to the theoretical
prediction as given by Eq. (5.32). Thus, the solid line in Fig. 7
represents the predicted curve shifted vertically by a constant amount,
Hence, Eq. (5.27) predicts the normal axial force fairly well within the
accuracy of the experiment. Since the parameter n was cbtained from
simple tension data, the results of Figs. 6 and 7 show that the strain
energy function given by Eq. (3.25) correctly describes the simple torsion
of a circular'cylinder of a rubberlike material.

5.42 Combined Torsion and Simple Extension

To verify the theoretical results obtained for combined
torsion and extension, we examined the dependence of the torque on the
amount of torsion at each extension ratio. Figure 8 shows the dimension-
less torsional couple M plotted against the amount of twist per unit

deformed length at each extension ratio. A horizontal shift (indicated



30

by the intercept on the abscissa) was used for clearer representaticn.
Using the parameters obtained earlierx, the theoretical predictions of
Eq. (5.24) are plotted as solid limes in Fig. 8., The predicted lines
describe the experimental values of the torsiomal couple fairly well,

An important consequence of an experiment of torsion super-
posed on a stretch was pointed out by Rivlin and Saunders (25). They
showed that the ratio of the load to torsiomal modulus for infinitesimal
torsions is independent of the stored energy function. That is,

Nl a2

k=0
= 2(% - 172) (5.34)

M/k) |k .

It can be shown easily that Eq. (5.24) reduces to

4 |0 -n/2
%_ =T Ga A A (5.35)
n Ao~ A2
k=0
and the normal load at zero torsion is givem by
N| = ot (5.36)

k=0

Thus our theoretical analysis supports Eq. (5.34).
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6. TEMPERATURE DEPENDENCE OF PARAMETERS

The dimensions of G and B are those of moduli while the
constants n and m are dimensionless. To study the effect of temperature
on these four parameters, we chose the natural rubber data of Anthony,
Caston and Guth (29). The data are shown in Fig. 9 in which the stretch
ratios are offset for clarity by an amount A as shown. We obtained the
constants G, n, B, and m as described for the data of Treloar from the
data at 30°C. Holding n and m fixed, we then determined G and B at the
other three‘temperatures. The values are tabulated in Table I. We
also determined G, n, B, and m separately for all temperatures. The
variation in n and m was so slight that we feel justified to regard the
exponential constants n and m to be independent of temperature in the
range investigated. Figure 10shows a plot of G and B as a function of
temperature. It is seen that G and B vary linearly with temperature at

least between 10° and 70°C for natural rubber.
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7. CONCLUSIONS

The new strain energy function thus satisfactorily meets
the requirements of a constitutive relation. The same parameters des-
cribe homogeneous as well as inhomogeneous modes of deformations up to
the point of rupture. The strain energy function contains only four
parameters and is quite simple to use. In comparison, Ogden's strain
energy function (11) contains six parameters and is rather difficult to
handle. Our treatment also offers advantages over the approach of
Valanis and Landel (16) in which the function w”(A) has no analytic rep-
resentation (12) and must be determined experimentally.

The concept of using an arbitrary power of thé stretch ratio,
although very useful, is completely empirical. No statistical thermo-
dynamic argument exists which can substantiate the choice of such a
strain measure. However, it is possible to look at the results in the
light of the network theory of rubber elasticity. It is hoped that the
n~-measure may eventually be placed on a sound theoretical basis. Also,
the importance of Seth's measure in viscosity and viscoelasticity can be
anticipated since the power law has been widely used in these fields.
fhié measure can be considered to be a modified power law and utilized
to arrive at new constitutive relations in these fields.

A detailed summary of the results of the new strain energy
function will be discussed in conjunction with Part II of this work. A
number of suggestions for future work in the field of phenomenological

behavior of elastomers is given in Chapter 6 of Part IT.
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APPENDIX 1

In general coordinates the matrix of the Lagrangean strain

tensor is given by

(A-1.1)

where NKOt is the matrix of the eigenvectors of the Green Q—tensdr.

Introducing Eq. (2.3) and noting that ng is an orthogonal matrix, we

obtain
n
A 1
K o
EC = ] N N
Qa
where
Cn/2 - (c)n/Z
L") n,
and
C - xk xz
KL~ Bk * k¥ oL
where

X = xk(XK) .

n/2.K K
€7 -6y
n

(A-1.2)

(A-1.3)

(A-1.4)

(A=1.5)
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The {Aa} are the eigenvalues of the C-tensor; {xk} are the spatial
coordinates while (XX} are the material coordinates.

Phe Cauchy stress in general coordinates is given by
- (A-1.6)

where nkz is the matrix of the eigenvectors of the g—tensor

K L '
Cre ™ 8L X 'k X 'y (A-1.7)
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APPENDIX 2

Hill (19) suggested that any constitutive relation should obey

the inequality

Qe
Do
A\
o

(A~2.1)
where Ea and éu are rates of stress and strain respectively. Hill's in~-
equality is a sufficient but not a necessary condition.

The strain energy function

. _ 2G m _

W= a IE + B IE (A-2.2)
implies

- oW __ ,n (26 m-1 _

0, = Aa 5»; Aa [Il + m B IE ] (A-2.3)
and

T e | m-1 m-2 ,n

Ga = Xu Ka [ZG +nm B‘IE + m(m-1) B IE Ka] (A-2.4)

The Eulerian strain €y 1s defined by Eq. (2.4), from which

e, = Aa/xa (A-2.5)
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Now, combining Eqs. (A-2.4) and (A-~2.5) yields

AR~2 [2(; +nmB IE“"I +m(m-1) B IE‘“'Z Ag] (A-2.6)

Thus Hill's inequality is always satisfied 1f n > 0 and m > 1. It may,

however, also be satisfied for other values of n and m, depending on G and B.
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TABLE I

Material Constants for Natural and Styrene-Butadiene Rubbers

B x 103
Material Temp. (°C) G(kg/cm?) n (kg/cm?) m Ref.
NR 20 4.0 1.64 0.83 4.0 20
NR 25 5.6 1.64 ceen ceen 30
NR 10 3.62 1.64 16.67 3.1 29
NR 30 3.80 1.64 18.65 3.1 29
NR 50 3.97 1.64 20.73 3.1 29
NR 70 4.15 1.64 22.84 3.1 29
SBR? 25 ceen 1.34 0.00249°  6.55 15
SBR? 25 e 1.34 0.24¢ 4.02 15

a Simple tension and pure shear.

b Equibiaxial tension (compression).

¢ This value is actually B/3G (see the text).
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1. INTRODUCTION

The establishment of relations between the bulk properties of
macromolecules and their chemical structure has beén a topic of major
attention in polymer science. A number of general reviews of rubberlike
elasticity are available in the literature (1, 2, 3, 4, 5; 6). These
consider rubber elasticity from thermodyﬁamics, molecular (statistical
mechanical) and phenomenological (continuum mechanical) viewpoints. The
objective of the work described here is the development of a phenomeno-
logical equation which permits the calculatioﬁ of the temperature co-
efficient of the unperturbed displacement length of network chains ovér
a wide range of extensions.

An effective way of examining the long range flexibility of
macromolecules is to study the elastic retractive force in elastomers.
Earlier theories of rubber elasticity have associated the retractive
force with changes in the configurational entropy of the individual net~
work chains. This has resulted in an equation of state applicable ﬁo
what has been termed an ideal elastomer. In real elastomers, the elastic
force arises not only from changes in the configurational entropy of the
individual chains, but also contains significant contributions from the
changes in internal energy due to intrachain and interchain interactions.
Volkenstein (7), Flory et al. (8), and Volkenstein and Ptitsyn (9) have
made important contributions to the étatistical mechanics of polymer

chains by incorporating the internal energy effects in the theory of
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rubber elasticity. However, the range of validity of this equation is
restricted to relatively low extensions (~402%).

The retractive force (f) in rubbers comprises the internal
energy contribution (fe) and the entropic contribution (fs). From
classical thermodynamics (see below), the relative change in the internal

energy is given by:

£
£ = f-T —g—%— - %,%' —%% (1.1)
P,L v,L T,L

The entropic component of the force is then obtained by subtracting fe

from the total force. In order to determine fe from Eq. (1.1) it 1is

necessary to conduct four different experiments. These are the force
temperature coefficient at constant pressure and length, the force-temperature

coefficient at constant temperature and length and two components in Yy}
1]

LA
T ToaT

e
v,L P,L

/ 4 (1.2)

iT,L

Due to difficulties in the determination of the force-pressure and the
pressure-temperature coefficients, fe/f has been determined traditionally
by resorting to elastic equations of state which are subject to different
assumptions. In this work, experimental measurements based on Eq. (1.1)
have been generated.

In Chapter 2 the thermodynamics of a large principal deformation

of a homogeneous isotropic elastomer is discussed. The analysis based on
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different sets of independent variables is detailed. In Chapter 3 the
theory of the retractive force is discussed from the thermodynamical,
statistical mechanical, and the phenomenological viewpoints.

In Chapter 4 experiments on natural rubber conducted in connec-
tion with this study are described, and the data are presented. In Chap-
ter 5 the results are compared with the predictions of the statistical
and the phenomenological theories. Published data on a chlorinated
ethylene-propylene copolymer rubber are élso considered to extend this
study. Calculation of hindrance potentials from fe/f is demonstrated
for the example of cis-polyisoprene chain. Finally in Chapter 6, the

results and conclusions of this study are summarized.
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2. THERMODYNAMICS OF ELASTOMERS

The thermodynamic description of the deformation of a solid
system is more complex tham that of a fluid (gas or liquid) system. 1In
the latter, volume and pressure are the only mechanical parameters to be
taken into‘account. In the former, the set of mechanical parameters must
be enlarged, in the general case, to the 6+6=12 components of the strain
and stress tensors (10). This section discusses the thermodynamic poten~
tial functions which are useful in describing the thermodynamics of large
principal deformations of elastomers, and the general relations between
their differentials and those of varlous sets of independent variables. -
Because an elastomer may be regarded as.a homogeneous isotropic solid,
its deformation can be described more simply than that of a general solid.
The potential functions for the thermodynamics of elastomers introduced
here are defined in a way which makes them consistent with the definitions

of the potential functions in the thermodynamics of fluids.

2.1 Potential Functions

The first law of thermodynamics gives the change in the internal

energy U as

dUu = dQ -~ dwW (2.1)

where dQ is the element of heat absorbed, and dW is the element of work
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done, by the system on its surroundings. If the process is conducted

reversibly
dQ = T dS (2.2)

where T is the (absolute) temperature and S is the entropy. Flory (11)
has shown that the element of elastic work, dW, done by a homogeneous
isotropic system in a large principal deformation is given by

3

dWw = -~ V) t, dfn) (2.3)
i i

i=1
where V is the deformed volume, the ti are the principal true stresses,
and the Ai are the principal extension ratios defined as the ratios of

the stretched lengths, L to the unstretched lengths, L

i’ io”

Thus, the change in the internal energy is given by

du = TdS + V zitidznxi (2.4)
and the change in the associated free energy, defined by

A=U-TS8 ‘ (2.5)

becomes
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dA = - SAT + V Xitidznxi (2.6)

The last terms in Eqs. (2.4) and (2.6) contain both the work of extension
and the work of expansion. The two must be separated because changes in
volume may be induced both by the application of forqes or extensions, and
by changes in temperature. We consider that the principal true stresses

are

£, = (Lifi/v) - P 2.7
where P is the external pressure and the fi are the tractions along the
three principal directions. Combining Eqs. (2.4) and (2.7), recognizing
that

L;dlnr; = dlav (2.8)

and using the summatiocn convention for repeated indices from this point

on, yields
dU = TdS - Pav + fidLi (2.9)
Similarly, from Eqs. (2.6) and (2.7),

dA = - SdT - PdV + fidLi (2.10)
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Eq. (2.9) describes the elemental change in the internal energy, dU, in

terms of their extensive parameters S, V, and L By contrast, Eq. (2.10)

it

has T, V, and L, as the independent variables. The free energy (or Helm-

i
holtz free energy, or work content) A, therefore, is that partial Legendre
transform (10) of U which replaces S by T as the independent variable.

The enthalpy, H, is defined in the thermodynamic of fluids as the

thermodynamic potential summing the internal energy and the product of

pressure and volume
H=U+PV (2.11)

It is thus that partial Legendre transform of U which replaces V by P.

Taking differentials and using Eq. (2.9) gives

dH = TdS + VAP + f£,dL, | (2.12)

Now the Legendre transform of H which replaces S by T (or the transform
of U which replaces S by T and V by P) is the free enthalpy (or Gibbs, or

Lewis free energy), defined as
G=H-TS=U+PV - TS (2.13)

Taking differentials and using Eq. (2.12) yields
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dG = - SdT + VdP + fidLi (2.14)

The free enthalpy, G, is the free energy associated with the enthalpy, H.
The potential functions introduced so far simply parallel those
in use in the thermodynamics of fluids and differ from them only in the
additional fiLi terms. It is because of the presence of these terms that
A and G measure the work available in a reversible process from a homo-
geneous isotropic solid at constant temperature, and at constant tempera-
ture and pfessure, respectively. Evidently, the work available at constant
§0nces may also be of interest. Thus, we are led to consider those partial

Legendre transforms in which L, is replaced by fi' As thé first we intro-

i
duce that thermodynamic potential which (algebraically) sums the internal

energy and the products of the forces and lengths in the principal direc-
tions. Calling this potential D, we have

D=1U~- fiLi (2.15)
which, proceeding as before, furnishes

dD = TdS -~ PdV - Lidfi (2.16)

Eq. (2.16) describes the elemental change in the thermodynamic potential

D in terms of the independent variables S, V, and fi.~ The corresponding
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free energy, in which S is replaced by T as the independent variable, is
B=D-~-TS =10 - fiLi - TS (2.17)
from which we obtain
dB = - 84T - PdV - Lidfi (2.18)

If we assume the volume change to be negligible, we may set
dV = 0, and D and B reduce to the "elastomer enthalpy'", K, and its asso-
ciated frée energy, J, introduced by Wall (12) and elaborated by Reghi
and Livingston (13). Wall derived these starting from the assumption

that (in our notation)
aw = - £.dL, | (2.19)

i.e., that the elastomer is incompressible,.in contrast to Eq. (2.3).
However, even though the extension of an elastomer may not be accom-
panied by a noticeable change in volume, such a change may occur as
function of temperature. In addition, at large pressures the incom-
pressibility assumption is no longer tenable. Thus, Wall's potential
functions are restricted to purely isochoric deformations. We prefer to
bar the assumption of incompressibility from the definition of thé

potential functions.
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With Eqs. (2.11) and (2.15) we have introduced potential func-
tions which (algebraically) sum the internal energy and either the PV or

the fiLi term. The remaining potential to be introduced is

M=H - fiLi =U+ PV - fiLi , (2.20)

which algebraically adds the internal energy to the PV as well as the fiLi

terms. We have

dM = TdS + VdP -~ Lidfi (2.21)
The asséciated free energy is

Z=M~-TS =10+ PV - fiLi - TS (2.22)
from which we obtain

dZ = - SdT + VdP - Lidfi’« (2.23)
We call M the elasthalpy and Z the free elasthalpy. B and Z measure the
work available in a reversible process from a homogeneous isotropic solid
at constant temperature, and forces, and at constant temperature, press-

ure, and forces, respectively.

The choice of the appropriate thermodynamic potential with which
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to describe the system depends on the experiment or the theoretical point
one wishes to discuss. It should be noted, however, that the potentials

U, Ay H, G; D, B; and M, Z are the only transforms that need to be con-
sidered for the thermodynamic description of the principal deformation of
an elastomer. In fact, for an elastomer, essentially the same thermo-
dynamic information is obtained in uniaxial tension and in a more general
deformation. Henceforth we shall, therefore, consider only simple tension,

for which i = 1. For simplicity, we will write £, L, and A for fl’ Ll’

and Al' Thus we have
dU = TdS - PdV + fdL | (2.24)
dA = - SdT - P4V + fdL (2.25)
dd = TdS + VdP + fdL (2.26)
dG = - SdT + VdP + fdL (2.27)
dD = TdS - PdV - Ldf (2.28)
dB = - SdT - PdV - Ldf (2.29)
dM = TdS + VdP - Ldf (2.30)
dZ = - SdT + VdP - Ldf (2.31)

We have here considered a closed system. Extension to an open
system is straightforward. Consideration of an open single component
system further elucidates the significance of the free energies asso-
ciated with the deformation of a homogeneous isotropic solid. For an

open single component system the Euler relation is
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U=TS - PV + fiLi + uN (2.32)

where y .is the chemical potential and N is the number of moles of the
component. Inserting the Euler relation intc Eqs. (2.5), (2.13b), (2.17b),

and (2.22b) gives

A= -PV+ fiLi+“N (2.33)
B =- PV + N ' (2.35)
and Z= uN (2.36)

in turn. Thus, while the chemical potential is equai to the molar enthalpy
in a fluid system, it is equal to the molar elasthalpy in a homogeneous
isotropic solid.

In closing this subsection, we point aut that the Gibbs-Duhem

relation for.such a solid is

SdT - VdP + Lidfi =0 (2.37)
in a closed system. In an open single component system we have

du = - sdT + vdP - (Li/N)dfi (2.3?)

where s and v are the molar entropy and molar volume, respectively.
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2.2 General Relations

Inspection of Eqs. (2.24) through (2.31) shows that S, V, and L
are natural variables for U; T, V, and L are natural variables for A; etc.
The differentials for these eight potential functions for a closed system,
may, however, be expressed in terms of variables other than the natural
ones and are often needed in such terms. In principle, the three indepen-
dent variables can be chosen taking one variable from each of the three
sets {S, T}, {V, P} and {L, f}, in which the first are extensive and the
second are intensive variables. Thus, there are altogether 23 = 8 sets of
theoretically possible sets of variables. However, S is never used as an

independent variable and, therefore, only the four sets

{Tt, v, L}
{r, v, £}
{r, p, L}

{T, p, £}

need to be obtained for each of the eight potential functions. Of these
four sets, only the last two are convenient from the experimental stand-
point. The first two sets are required, however, to correlate obsefvations
with theoretical considerations. Singling out U, A, M, and Z as the most
important of the potentials, only 16 of the total of 32 relations will

be derived here. To these may be added the "trivial" relations (2.25),
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(2.27), (2.29), and (2.31). The remaining twelve are easily derived,
when needed, by the procedures used in the following.

The derivations will make use of the Maxwell relations which
are listed in the Appendix. Several of the partial derivatives have
been designated by special symbols in the thermodynamics of fluids.
These are redefined below as used in the thermodynamics of elastomers.
They are:

(a) the specific heat at constants x and y

3S
c =T (2.39)
X,y T X,y

where x represents either V or P, and y represents either f or Lj;
(b) the volumetric expansion coefficient at constant P and y

1 3v] |
B 7 a'r{ (2.40)

P,y

where y is either f or L;

(c) the given expansion coefficient at constant P and f

Up g = (2.41)

g ]
3l

‘P, f

(d) the isothermal compressibility at either constant force

or constant length
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oV

o 5|
K = - = o= (2.42)
T,y Vv oF T,y
(e) and, finally,
P BP!z
'YV y = _é-'f = ” (2.43)
’ V,y T,y

with the previous meaning of y.

These partial derivatives differ from the definitions of speci-
fic heat, expansion coefficients, and isothermal compreséibility in the
thermodynamics of fluids because of the requirements of constant length
or force. |

2.21 T, V and L as independent variables

T, V, and L are the natural variables for the free energy, A.
To obtain a relation for the internal energy change we need an expression
for dS in terms of these variables. From S =S (T, V, L) we obtain
9 9 '
Sl gr+ 28 av+ B a4 (2.44)

T ? oL
Tly,L Vip L Lipy

ds =

With the aid of the appropriate Maxwell relations and Eqs. (2.39) and (2.43),

Eq. (2.44) becomes

-1 of
ds =T CV,LdT + YV,Ldv - 3T v LdL (2.45)4
bl

Equation (2.45) is not in a useful form because the partial derivatives

in the first and third term on the right side must be determined at
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constant volume which is difficult to do experimentally. We therefore
change these partial derivatives at constant volume into the corresponding
ones at constant pressure with the help of the general relation

0z

ox

2z

w,U 9x

sz] 3y
% (2.46)

y,U aY{x,U Ww,U

using the Maxwell relations, if needed. This gives

of
Tv,Lop

of
)dT + YV,LdV - (3T

ds = (T'lc - TV8

P,L p,1YV,L ydL .

’T,L
(2.47)

Inserting this expression for dS into Eq. (2.24) and collecting terms,

-

yields

du = (CP,L - TVBP,LYV,L) dT + (TYV,L - P) av
+(f-Tg—,§ -TYVL—g-,E ) dL (2.48)
p,L = L

To obtain the desired expressions for the changes in the elas-
thalpy and free elasthalpy, we need, in addition to Eq. (2.45), expressions
for dP and df. We obtain these from P = P(T, V, L) and f = £(T, V,L).

Proceeding then as before, we obtain
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of

of
) Yy, T LaT

V,L P dT

T,L

dM = |c + (1 - T8 l - Ly
P,L P P,L

1 L of
+ (Ty. . - + 22 Hav
v,L KT,L VKT,L aP T,L
'Tgif? +L§%, +(TYVL_K1+VKL %. )%, di
P,L T,P ’ T,L ,L lT,L T,L
(2.49)
and
dZ=(VYVL"S'L%T€ "LYVL% )dT—TL(l'%%IfT
’ P,L ? T,L T,L T,L
+ ;—L(l—%%‘ )g—g) —L%]f:' dL (2.50)
T,L T,L T,L T,P

2,22 T, P and L as independent variables

" This set of independent variables is the natural set for the free
enthalpy. To obtain a relation for the enthalpy H we have, from
S = s(T, P, L),
ds=9-s—’ ar + 8| gp 4+ 8
R
3

L oP T,L oL T,PdL (2.51)

which can be rewritten by using the Maxwell relations and Eqs. (2.39) and

(2.40) as
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1 of
ds = TCP,LdT - VBP,LdP = AT > LdL (2.52)
s

Combining Eqs. (2.26) and (2.52) yields the change in enthalpy in terms

of T, P and L as

_ of
dd = CP LdT + vQ@a TBP,L)dP + (f T 5T > L)dL (2.53)

s

To obtain expressions for dU and dA, we use V = V(T, P, L) from

which we obtain

v = —g-% ar + g—;’-! P + %—E dr. (2.54)
P,L T,L lpp
which leads to
av = Ve, .dT - vk _dp + 2|  a (2.55)
P,L T,L |y L
. s

Combining Eqs. (2.24), (2.52) and (2.55), and collecting terms, the change

in internal energy results as

du = (CP,L - PVBP,L)dT + (PKT,L - TBP,L)VdP
+(f-T %% - P %%‘ ) dL (2.56)
P,L T,L '

Inserting Eq. (2.55) into Eq. (2.25) yields
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dA = - (S + PV _)dT + PVk. .dP + (f - P 2L HyaL (2.57)
P,L T,L e .
b

To obtain expressions for dM and dZ we need df in terms of T,
P, and L. From f = £(T, P, L)
ar+ & @+ ¥ g (2.58)

\P,L Flr.L Lir p

Substituting this into Egs. (2.30) and (2.31) and using Eq. (2.52) in

addition for dM, we find

of of
aM = (c -L——-, )dT + (V- Vg . - L 2| ) ap
P,L T BT, o Bl gy
SRR S -gﬂ )dL (2.59)
P,L T,P
and
az = (s +—27§- )dT + (V - L —g—g— )dP - L %{' dL (2.60)
P,L T)L T’P

2.23 T, V and f as independent variables

B is the natural function for this set of independent variables.
An expression for dD is obtained by first finding 4S5 from S = S(T, V, f).

This gives

ds = L

T-cv’de + YV,de + Lo df (2.61)

Vv, f
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where we have used the appropriate Maxwell relations to eliminate partial
derivatives of S. Since the coefficients of dT and df are the inconven-
ient partial derivatives at constant volume, we change them to the cor-

responding ones at constant pressure using Eq. (2.46). This leads to

1

a8 = (G cp ¢ = VBp ¢ Yy AT+ vy (dV
+ (Lo, . + Ll ygr (2.62)
P,f  'v,f 3P - . :
s

Substituting this into Eq. (2.28) yields

dD = (CP,f - TVYV,f BP,f)dT + (TYV,f - P)dv

aL
p,f + TYV,f P - L)df (2.63)

T,f

+ (TLo

To obtain dU and dA, we need an expression for dL. From L =

L(T, Vv, f) we find

3L aL!
dL = (Lo + v ——} )dT + — av
P,f 7 TV, E Py ¥y ¢
+ (%%! + %%. %%‘ Ydf (2.64)
T,P S, f T,f

To avoid derivatives at constant volume, we have used Eq. (2.46) for the

coefficients of dT and df, and the Maxwell relation (A18) in the last
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term on the right. Since the derivative 9L/9V is inconvenient experi-

mentally, we eliminate it using the identity

AL _ 1 oL (2.65)

Wiy Ver ¢ 9Pl ¢

Substituting the appropriate equations into Eqs. (2.24) and (2.25)

furnishes
v = ( TVy. .B. .+ fy . L + fLa, .)dT
‘e, = 'Yy, f%p, £ v, f aP c P,f
’
£ 3L oL
+ (Ty - P - )dV + |TLop .+ £ o7
V,f VKT’f aP L f of T.p
+ (Ty, ————f———— ] (2.66)
v, f VKT’f T,f
and
dA = (-8 + f %% +fry gg )dT -~ (P + va §%~ )dv
P,f T,f T, f T,f
+ |2 l Ver £ (%%’ )2 |far (2.67)
T,P T,f T, f
For dM and dZ we require
dP =y, dT - ;9¥~ "El"“'%%l daf (2.68)
» T,f T,f T, f
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which results from P = P(T, V, f), using Eq. (Al8) and then Eq. (2.65)

to obtain the last term. With Eqs. (2.68) and (2.62) we then find

— :
= - .
M = Jep ¢+ Vry (1 TBP,f;—’ dT + (Tvy ¢ <r f)dv
L 1 oL] ‘
- |L - TLa - Ty ——1 + — df (2.69)
u P,f LA M T,j
and
az = (=S + Vy, )dT - 'EL" av - (L + 7}—%’; )df (2.70)
’ T,f T,f OCiT, £

2.24 T, P, and f_és independent variables

This set forms the natural variables of the free elasthalpy, z.

To obtain dM, we seek dS from S = S(T, P, f). This yields

ds =

i

cP’de - VBp’fdP + LaP’fdf (2.71)

and the change in the elasthalpy follows immediately as

dM = cp dT + v(1 - TBP f)dP - L1 - Toa, _)df (2.72)

of P,f

To obtain the desired expressions for dU and dA we need expres-

sions for both dV and dL. Proceeding as before, we find
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and
dL
Substitution
du
and
dA

73

oL

dp +-§-1; df

T, f

dT - Vk

P,f T,f (2.73)

Vg

L
Lop (dT + 43

ar + % af
T,f T,P

(2.74)

into Eqs. (2.24) and (2.25) then furnishes

(CP,f + fLov.P’f - PVBP,f)dT

oL

.+ f 5P

+ (PVKT,f

- TV8. .)dP
T,f P,f

oL

- P 5P )df

T,f

(2.75)

T,P

5L
¢t I3

)dP

(- S + fLaP
? T, f

£ PVBP’f)dT + (PVKT,

oL
£ 3%
T,P

oL

- P - ydf

T,f

(2.76)

-+
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3. INTERNAL ENERGY CONTRIBUTION TO THE ELASTIC FORCE

The elastic restoring force in rubbers results from deformational
changes in the internal energy and the entropy of the rubber network. The
internal energy changes are due to changes in the interchain and intra-
chain interactions in the network, whereas the entropy changes are asso-
ciated with changes in the configurations of the network(chains. From
Eq. (2.25), the elastic force f is the change in the free energy with

deformation at constant temperature and volume

£ = g—i | (3.1)
T,V -

which, from the definition of the free energy, Eq. (2.5), is also given by

f = %g- - T -g—% , (3.2)
T,V T,V

The total force f is thus resolved into entropic and energetic

components defined by

fSE-T-%I—S: =T%—,§- | (3.3)
T,V V,L
£ = —2—%, (3.4)
T,V
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We obtain fe from f = fe + fs’ or by substituting Eq. (2.45)

into Eq. (2.24) to obtain

= . - - of
dU = e AT + (Tyy | =~ P)AV + (£ - T 45 ; L)dL (3.5)

and then using Eq. (3.3). Either way results in

_, _TOf|
=1-1 (3.6)

9 v,L

-ml h
)

An easily derived alternative form of Eq. (3.6) is

f
?E -—_ T 3Lln(£/T) v (3.7)

aT V,L

To determine fe/f from Eq. (3.6), it is necessary to measure the changes
in force with temperature at constant volume and length. Achievement of
the constant volume condition requires aéplying hydrostatic pressure
during the force temperature measurements. This experiment is extremely
difficult in practice (14, 15). However, Eq. (2.48) directly provides

the thermodynamically equivalent form of Eq. (3.6) given by

Te_,_orael  _1_ o
£ £oTlp T F VL ER

(3.8)

Instead of measuring the force-temperature coefficient at constant volume
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and length, it is necessary to determine the four coefficients in Eq.
(3.8) in order to calculate the relative internal energy component of the
force. The four coefficients are the force-temperature coefficient at
constant pressure and length, the force-pressure coefficient at constant
temperature and length, the volumetric expansion coefficient, and the
iéotbermal compressibility, both at constant lengths. The ratio of the
last two is the pressure-temperature coefficient (YV,L)’ [cf., Eq. (2.43)].

An alternative approach to the determination of fe/f consists
in the simplification of Eq. (3.8) by resorting to an elastic equation of
state. This procedure is subject to the validity of the assumptions made
for the particular equation of state and, in addition, may be limited by
the range within which the equation applies.‘ Recently, Mark (16) has ex-
tensively reviewed the published data on fe/f for a large number of elas-
tomers. All the published works [except that of Allen et al. (14, 15)
and of Dick and Mueller (17)] have used differeht equations of state in
estimating fe/f' Allen et al. have employed Egs. (3.6) and (3.8),
whereas Dick andbheilerobtained fe/f from calorimetric methods. In the
present work we determine the four coefficients in the thermodynamic Eq.
(3.8) by employing new techniques. Also, we consider the statistical
equation of state and the Blatz-Sharda-Tschcegl (BST) strain energy
density function in estimating the relative internal energy component of
the force.

3.1 Statistical Theory

The statistical theory of rubber elasticity considers the
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changes in the free energy of an amorphous, cross-linked polymer. It is

postulated (11, 18) that the free energy consists of two parts given by
A= Al(T,V) + AZ(T,A) (3.9)

where Al is the energy of interchain interactions and A2 is the so-called
"elastic" part of the free emergy. It is assumed that Ay depends only on
T and V and is not a function of the state of strain. All the dependence
of the free energy A on the deformation is through A2 which_ié specified
for a given temperature and displacement gradient tensor A. A2 contains
the contributions to the total freé energy A arising from two factors.

(1) the configurational entfopy of the network chains, and (2) the hind-
rance to rotational potentials along the chain backbone (energy of intra-
chain interactions). 1In addition to assuming the addivity of free ener-
gies as given by Eq. (3.9), we require an explicit form for A2. Since the
elastic force as defined by Eq. (3.1) will have no contribution from Al’
it is not necessary to calculate this term. An expression for A2 was
given by Flory et al. (8) in the form

2 2 2 '
= [ﬂ(xl + g + Aa)‘3]" et ta(n2p03)  (3.10)

v is the number of network chains, k is Bolzmann's constant, and n is

defined by
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n = :;‘z;i (3.11)

To derive Eq. (13.10), Flory et al. have used the configura-

tional integral of Volkenstein and Ptitsyn (9)

Z; = ff exp [ @.F- e{’i})/kT] le....dZn (3.12)

in which F is the external force applied to a chain, Z; (i=1, 2, ....n)
are the n bond vectors, T is the vector connecting the ends of the chain
and s{z} is the conformational energy (representing intrachain interactions)
for the set of bond vectors {Z}. This is in contrast to the earlier
statistical theories (19, 20) where the total free energy had“been con-
sidered to consist of only the configurational entropy of the chains
(i.e.,s{z} = 0) thus in effect neglecting the changes in the internal
energy. Equation (3.12) includes the contributions of intrachain energy
and forms the basis for the network elasticity in the present form. The
‘ details of the derivation of Eq. (3;10) are given elsewhere (8, 18, 21).

In Eq. (3.11), <r2>i is the mean square end-to-end distance for
a network chain in the state of volume V, and <r2>o is the corresponding
"unperturbed" value for the free chain. <r2>0 depends on the potentials
hindering the rotation and is therefore a function of temperature. On the
other hand, <r2>i depends only on the volume V of the network and 1is
2/3

directly proportional to V The various assumptions involved In KEq.

(3.10) are
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1. The chains in the network are long enough to assure the validity of
the Gaussian distribution.

2.  The free energy is the sum of two terms given by Eq.‘(3.9).

3. The intermolecular interactions are independent of deformation.

4, Cross—-1ink junctions in the network transform in the same ratio as
the macroscopic extension ratio (affine deformation).

5. Cross-link junctions are fixed at their mean positions. Needless
to say, these assumptions are quite restrictive and oversimplify the
physical nature of a rubbery network.

For the case of simple elongation, the retractive force in

elastomers may now be obtained from Eq. (3.10) as

A

oL T,V

_ _ __v
f = = GAO (A -\—7;—)\7) (3.13)

where Ao is the 1initial cross-sectional area of the specimen, and the

modulus G 1s defined by

G

i

vkT
Vo n (3.14)

Equation (3.13) is the statistical equation of state for elastomers
(also referred to as the neo-Hookean equation). This equation provides

the motivation for determining fe/f. Combining Eqs. (3.7) and (3.13)

yields
fe dl’.n<r2>o
o= T —r (3.15)
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Thus, fe/f is directly related to the temperature coefficient of the
dimensions of the chains in the network. Specifically, the temperature
coefficient of the free chain can be used to interpret the difference in
the energy levels present in the chain. For the purpose of illustration
let us consider the chains in the network are of the polymethylene type
so that their rotational potential energy curve is characterized by three
minima at ¢ = 7 and * 7/3, where ¢ is the angle of rotation. The dimen~
sion of such a chaln consisting of n bonds each of length £ is given by

(22, 23)

2y = ap2 1+ cosb 1+ x ' *
<r >o nt 1 -rcostb 1-y (3.16)

where m -~ 6 is the bond angle and x depends upon the angle of rotation.

For this particular chain, x is given by (7, 23)

N _ 1 - exp (~Au/kT) : '
X = <cosd>, =T exp (~Au/kT) (3.17)

where Au is the difference between the energies u(w/3) and u(n) of the

gauche and transrotational isomers, i.e.

A = u(n/3) = u(m) (3.18)

*A large number of such relations for various types of chains are avail-
able in literature (7, 23, 24).



81

Now Eqs. (3.15) and (3.16) yield

£ Tdln<r?>
e _ o _ -2Au
r i It = (3.19
kT[Z + exp (—Au/kT)]

Thus, fe/f, which is determined from the physical properties of the bulk .
polymer, yields two important molecular characteristics of polymethylenic
chains. Of course, the two quantities given by Eq. (3.19) may be deter-
mined from alternative procedures (measurements of light scattering,
intrinsic viscosity, sedimentation velocity, diffusion constant, etc.),
but the thermoelastic experiments are easier and more effective for cross-
linked amorphous polymers.

Since Eq. (3.13) is a special case of the BST equation of state,
we will consider the predictions of the statistical theory together with

the predictions of the BST strain energy function.

3.2 Compressible BST Strain Energy Function

To describe thermoelastic behavior from the phenomenological
viewpoint, it is necessary to modify the BST strain energy function to
account for the compressibility of the material. An infinity of choices
is possible for the compressible form of a strain energy function;vthe
only restriction being that it satisfy Hooke's Law in the limit of small
strain. The function we have chosen is similar in form to one suggested

by Blatz (25, 26, 27) but is based on the BST equation, of which we use
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only the first part, valid, for natural rubber, up to about 200% extension
in simple tension. We write

2G

W= I+ () (3.20)

E
where ¢(J) is a function to be determined. Once again, J is the ratio of
the stretched volume to the unstretched volume of the rubber. The com-

pressible stress—-strain relation is obtained from Eq. (3.20) by differen-

tiation
- 2Gn -
OaJ nxa + J$°(J) (3.21)

To evaluate the function ¢~ we make use of the procedure developed by
Blatz. To describe compressibility data on rubberlike materials he used

the empirical expression
- =.% a-a% (3.22)

in which k is known as the Murnaghan exponent (28) and K is the bulk
modulus. This equation was successfully used by Murnaghan to fit Bridg- ‘
man's (29) high pressure data for solids. The same expression was found
to hold for rubbers (25). The value of k for a number of rubbers was
estimated to be around 10. Writing Eq. (3.21) for the case of hydro-

static pressure, we obtain
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- 26 n/3-1
n

-P + ¢°(J) (3.23)
Equating Eqs. (3.22) and (3.23) we obtain, upon integration between the

limits 1 and J

gk g 6G

Ik, n/3
k-1 k-1’ ~ 0%

K
$() =3 0 + @) - 1) (3.24)
Substituting Eq. (3.24) into Eq. (3.20) gives a compressible strain

energy function

n/3
. _._z_g[IE 33 -1)] LK [(J S+l =1 (3.25)

We expect Eq. (3.25) to describe the simple tension behavior of elastomers
at high pressures.

Equation (3.25) assumes that the modulus is independent of
the volume. Tobolsky and Shen (30) have shown that the shear modulus of
rubbers is slightly volume dependent. To account for this dependence
they introduced a parameter y in the statistical theory; The effect of
this is to render the statistical theory semi—empirical.‘ This parameter
can only be considered phenomenological since no reasons for its existence
have been advanced on the ground of molecular considerations. Thus,
whereas the parameter y 1s perfectly legitimate in a phenomenological
description, it 1s out of place in a rigorous statistical theory. We

introduce it into the compressible form of the BST equation in anticipa-
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tion of its possible use in describing the volume dependence of the

modulus. Following Tobolsky and Shen, we modify Eq. (3.25) to

oo Y 26 L 3(Jn/3
c E k k~1

1-k
-] K[, _ -1
- - ] + {(J 1) +-—————--” (3.26)

It will become clear later that the form of Wc given by

Y 26
c J n IE

=
]

(3.26a)

is all that we need to deal with our data. However, at high pressure,
Eq. (3.26a) is inadequate (25). We, therefore, prefer to carry out the
analysis using the full Eq. (3.26).

The general stress—-strain relation thus becomes

o] A oW
s . 9o _a_c_
o J J 38A
/3 1-k
y=1f2¢[. _ 3¢"™° - 1) | K[, _ A
vJ {n[IE 3 +k'(J l)+~—~———-~——-~-k_l
Y-1/26 , n _ .n/3 K _ 1=k :
+ J { o th J7T) + * I-37) (3.27)

where Ea is the true stress.
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For the special case of simple tension and superimposed hydro-

static pressure, we have 51 =g - P, o = 53 = P, and Al = A,
2

A =1 =VYI/A

2 3

Substituting these into Eq. (3.27) yields

‘ n/3 ' 1-k
R R e s R IR R )

n n k-1

Yy J2G ,.n n/3 K _ 1=k
+J {n(x—J )+ @ -7 )}

But, from 52 =g =-P and Eq. (3.27)

/3 1-k
= Y 126 _3¢™M-n) Lk - J -1
- PJ =+vJd { [IE = ] + X [(J 1) + — 1}}

/2
vf2¢ J° n/3, , K . .1-k
+J{ (An/Z-J y+X @ - )} (3.29)
so that
or = 28 5Y (0 _ jn/2,,n0/2 (3.30)

n

Equations (3.29) and (3.30) reduce to the incompressible equations in-
troduced in the first part of this thesis by setting J = 1. Equation

(3.30) may be rewritten in terms of the elastic force as:
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2G AOJY (An—l _ Jn/Z/}\n/Z + 1) (3.31)

£ ==
n

These equations are now used in conjunction with Eq. (3.7) to determine
the relative internal energy compohent of the force. For the following
analysis it is assumed that the parameters k and y are independent of
temperature and pressure, at least in the small range of temperature and
pressure we will consider in this work. This assumption seems reasonable
in the light of the temperature independence of the parameters n and m

(see Part I). Equation (3.31) is rewritten here as

30/2 _ .n/2

I35

- (n/2 + 1)£n) _ ’(3.32)

£nf = £n(2/n) + LnG + EnA0 + vnJ + £n ()

Keeping in mind that Vo’ Ao’ and Lo change with temperature,

the temperature derivative of Eq. (3.32) at comstant V and L 1is given by

3nf _1lde L '
T v L-— G aT + 01.0(3 n - 3y) (3.33)
b4

where ol is the linear expansion coefficient of the undeformed material.

Hence, from Eqs. (3.7) and (3.33)

¢ ,
e 1 T dG
v (BST)” = 1 - Car aoT(3 - n - 3y) (3.34)
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where the superscript 1 distinguishes this expression from the one to be
derived below.
An alternative expression for fe/f may be obtained by con-

sidering the temperature derivative of Eq. (3.32) at constant P and L

3n/2
50nf 146 (3-n)A - (3 +n/2)

oT © G dT o \3n/2 _

(3.35)
1

where it has been assumed that B 3a0. This assumption will be

P,L
justified below. Combining Eqs. (3.33) and (3.35) yields

£ 2
—%-(BST) =1 -

|3
3l

n
- - y¥!3a T (3.36)
'P,L [2(A3n/2 -1 } o .

Now, the statistical or neo-Hookean equation of state is the
special case of Eq. (3.31), in which n = 2 and Yy = 0. For this special

case we obtain the following equations from Eqs. (3.34) and (3.36)

e -1 _TIdG _

£ (SB) =1 G ar uoT (3.37)
f 30 T

e ~ 7 _ T af __o

g (FCH) =1-%7 Lp A1 (3.38)

In these equations SB stands for Shen and Blatz (31) and FCH stands for

Flory, Ciferri and Hoeve (32) who first derived these equations. FEquations
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(3.37) and (3.38) are both based on the statistical theory but differ con-
siderably in their estimation of fe/f' Equation (3.37) claims fe/f to be
independent of strain, but this would be true according to Eq. (3.38)

only if there were a compensating effect in the strain dependence of the
force~-temperature coefficients. The various equations will be compared

in Chapters 4 and 5.

Before we close this section, however, we note that, from Eq.

(2.46)

of

of|  _ of ]
Tip 1

Yy,1 3P = %7 (3.39)

T,L |V,L
where the two terms of the right side are given by Eqs. (3.33) and (3.35)
which were derived from Eq. (3.30). To check on the consistency of these
expressions we can obtain (af/BP)T L also from Eq. (3.30), and Yy~
H . bl

(9P/3T) from Eq. (3.29). Simultaneously we will obtain justification

V,L

for the earlier assumption that B = 3o .,
P,L o

To obtain the force-pressure coefficient at constant temperature

and length, we differentiate Eq. (3.32) with respect to pressure to yileld

3fnf
oP

(3.40)

n
T,L T,L [2(A3n/2_1) }

Taking the temperature derivative of Eq. (3.29) at constant V and L,

we get
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- zr;l - Y{zc o (V3R gy n/3n/2)
V,L

aT (o}
PR ETCLE Y R
- é% ao(J - Jl-k)}
+%%§- ot - g3 ZGaO(An + 373 +-11;% @ -3
1-y

- 31 [J -Qa- k)Jl-k} - 31 - y)aJ (3.41)

For ordinary pressures J will not change much, so that we may set J = 1.
We also note that the bulk modulus K of rubbers is usually.four orders

of magnitude larger than the efhe% modulus G, so that the terms containing
K are dominant in Eq. (3.41) (P<<K). This observation simplifies the

above expression to

= = = 30 K (3.42)
v,L °

Simil. 1y, we may differentiate Eq. (3.29) with respect to pressure at

constant temperature and length, and with respect to temperature at con-

stant pressure and length to obtain expressions for the isothermal com-

pressibility and expansion coefficient, respectively, at constant length.

The results thus obtained are
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. 1
KT’L * X (3.43)
and
BP,L = 3ao | - (3.44)

which justifies the assumption made earlier in connection with Eq. (3.35).

Once again, we have set J = 1 in Eqs. (3.43) and (3.44) and assumed that

~

i
<< G, and P << K.

Combining Eqs. (3.40), (3.42), and (3.43) yields

ofdnf n
Y — =3 |- (3.45)
V,L 9P T,L o [2(y3n/2—1) ]

But the right side of Eq. (3.45) equals the difference between the force-
temperature coefficient at constant volume»and length, and the force-
temperature coefficient at constant pressure aqdllength [cf.,Eqs. (3.33)
and (3.35)]. Hence, Eq. (3.39) is vindicated. |

Equations (3.35), (3.40) and (3.42) give expressions for the
partial derivatives in Eq. (3.8). These expressions predict that the
force-temperature and force-pressure coefficients in Eq. (3.8) are
functions of the strain but the volume-temperature and volume-pressure
are not. The latter was postulated by Flory (5) and was later con-

firmed experimentally by Allen and coworkers (14).
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3.3 Contributions to the Extension

As is the custom, we have discussed the contribution of the
internal energy to the restoring force in elastomers. It should be noted,
however, that the length may be considered just as well as the force in
the extension of an eléstomer specimen. In such an experiment, a constant
force is applied to the test piece and the changes in equilibrium lengths
are studied at various conditions of temperature and pressure.

From Eq. (2.31), the lengths at constant temperature and pres-

sure are obtained as
L =22 (3.46)

i.e., as the partial derivative, with respect to force, of the free

elasthalpy defined in Chapter 2. From Eq. (2.22a) then,

L = %%‘ -T %% (3.47)
T,P T,P

where M is the elasthalpy. The length (or, more meaningfully, the exten~
sion AL = L - Lo) can, therefore, likewise be resolved into elasthalpic

and entropic components
AL = —= - L (3.48)

and
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3S oL
AL = - T — -1L =-T — - L = LTa - L (3.49)
S of T,P o aT P,f o P,f o
thus
ITI= L(1 + TaP’f) (3.50)

The linear thermal expansion coefficient at constant pressure and force,

o is easily determined experimentally by the method detailed in Section

P,f

4.4, We remark parenthetically that similar decompositions can be made

from
g- | (3.51)
T,P
and
L = i;-%l (3.52)
T,V

The first splits the force into an enthalpic and entropic component,
while the second resolves the extension into components linked to the
functions D and S. The two entropic components of the force or the ex-
tensions are, of courée, not identical. We suspect that the elasthalpic
and entropic components of the extension could be useful parameters,
particularly in practical applications.

It is, naturally, also possible to obtain the extension con-
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tributed by internal energy. This is easily obtained from Eq. (2.74) as

ALE=-§—I§ -L0=TLan+f—g~]§- -P% - L (3.53)
T,P ? T,P T,f o

The expressions involving changes with length and changes With force are
interchangeable and, in principle, would yield exactly the same molecular
information. However, the choice of one set of independent variables over
the other may be dictated by experimental convenience. With the recent
development of new techniques for measuring dimensional changes (33),

the constant force experiment may prove to be of some importance. Shen
and coworkers (34, 35) have studied some thermoelastic behavior at con-

stant force.
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4. EXPERIMENTAL

Natural rubber latex was chosen as the material for studying

the internal energy component of the restoring force in natural rubber.

4.1 Natural Rubber Latex (NR) Samples

Natural rubber samples were prepared from a rubber latex using

the following formula

Firestone S-5 Hevea Latex 100.0 parts
AZ-64 16.78 parts
Setsit~5 1.5 parts

AZ-64 is a dispersion prepared by Aztec Chemical Division of American
.Mineral Spirits Company, Los Angeles. It consists of five parts of zinc
oxide, two parts of sulfur and two parts of Wingstay-L antioxidant. The
rubber and the disperéion were stirred for about fifteeo minutes and the
slurry-like mixture was dried under vacuum for two days. Setsit-5, sup-
plied by Vanderbilt Chemical Corporation, Bethel, Connecticut, was used
as an accelerator. It was millod into the dry mixture which was cured
in the mold for eight hours at 95°C. Ring specimens of 1.5 in. outer
and 1.35 in. inner diameters were cut from a 0.175 in. thick sheet.

The density of the rubber at 23°C was 0.921 gm/cc. The average
4

cross-link density was determined by swelling in benzene as 3.46 x 10

moles/cc.
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4.2 Ring Specimens

Before describing the experimental procedures for the determina-
tion of the four coefficients in Eq. 3.8), it is important to define the
manner in which stress and strain are calculated from the measured vari-
ables, force and displacement, in a ring specimen. Let the ring specimen

have the following dimensions

t, = initial thickness of the sheet from which the ring is cut
W, = initial width of the ring = (D0 - Di)/2

D0 = outside diameter of the ring

Di = inside diameter of the ring

The stress, o, based on the undeformed cross-section of the ring is given

by

f
g = T (4.1)
oo

where f is the observed force.

At any extension, the shape of the deformed ring is as shown

in the following figure

AN

-

kdké;g o

Here, L represents the separatlon of two hooks holding the sample and
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d is the diameter of these hooks. We will use the extension ratio based

on the average diameter of the rings. This is given by

=<
Aavg = c (4.2)

where ¢ and <, are the average circumferences of the deformed and the

undeformed ring, respectively. From inspection of the figure

c=2L + 7(d + w) (4.3)
and

c, = nDa | (4.4)
Thus,

A _2L +n(d+ w)

(4.5)
avg nDa

where Da is the average diameter of the ring and w is the width of the
deformed specimen. In practice, it is not always possible to measure
the width of the deformed sample. In such a case, one may safely resort
to the assumption of incompressibility (36, 37) to obtain an expression
for w. However, In our case, we will use Eq. (4.5) as such, since the

dimensions of the deformed sample will be measured. The stretch ratio,
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A, referred to in the remainder of the text denotes the average value
given by Eq. (4.5). Since it is common practice to plot stress as a
function of strain, henceforth we will consider the stress coefficient

rather than the force coefficients,

4,3 Stress-Temperature Coefficient

To estimate the stress-temperature coefficient, the changes in
force with temperature at various elongations are measured. A ring speci-
men was pulled to a desired elongation at room temperature in the Instromn
Tensile Tester. The initial force was allowed to come to an equilibrium
value, and the output corresponding to this value was then suppressed
electronically so as to observe the force changes on a more sensitive
scale. The temperatu%e of the system was now raised to 60°C and again
the force was alloﬁed to relax. The temperature was then lowered in
steps of 10°C, and the relaxed force recorded at each temperature inter-
val. This procedure was repeated at various elongations, both in cooling
as well as heating cycles. In general, it took two to three‘hours to ob-
tain equilibrium at a given temperature. A plot of stress against tem-
perature at various elongations is shown in Figure 1. The data are also
given in Table 1. The solid lines represent the least squares fits.

The slopes of these lines are the stress—temperature coefficients, shown
in Figure 2.
To check the predictions of the new strain energy function, a

cross—plot of Figure 1 1s shown in Figure 3. The solid lines are ob~ .
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tained from Eq. (3.30) with J =1 and n = 1.64 for all temperatures. The
results of the stress temperature experiments once again confirm (38, 39)
that only the modulus in the new strain energy function depends upon tem-
perature. The variation in modulus with temperature is linear (Figure 4)

and the slope, dG/dT, of the line is 13 x 1073 bars/°C.

4.4 Pressure-Temperature Coefficient

Two experimental procedﬁres for determining the pressure-
temperature coefficient have been described in the literature. Allen
et al. (14, 15) have calculated YV,L from the ratio of KL’T and BL,P
which were determined using a special dilatometer. Bianchi and Pedemonte
(40) ﬁave measured the internal pressure for elastomers from which the
pressure-temperature coefficient was estimated. Here we employ an
entirely different technique. A highly sensitive thickness sensor based
on the Hall effect measures the width of the specimen as a function of

temperature and pressure at constant length. is calculated from

Ty,L

the width-temperature and width~pressure coefficients, both at constant

lengths

ow ow
Y - ] = (4.6)
v,L oT P,L P T,L _

The theory and experimental details concerning the thickness sensor are
given by Yagii (37) and by Okuyama, Yagii, Sharda and Tschoegl (33).

To demonstrate briefly the working of the sensor, a typical
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arrangement is shown in Figure 5. Here, S is the specimen, H is the Hall
device and M is a small but powerful magnet. The whole assembly is held
by a spring (Sp). The clamp (C) installs the device on the specimen.

The thickness sensor was constructed from a F. W. Bell, Inc. Model BH-700
Hall effect device. A constant input current (Ic) was supplied to the
Hall device from a Hewlett-Packard Model 6218A power supply. The set-up
is shown in Figure 6. The output voltage ffom the Hall device is directly
recorded, and may be suppressed using the voltage suppressor (SUP). The
experimental procedure consists of placing the thickness sensor across the
specimen and supplying a constant input current to the Hall device. After
an initial start-up period of about 30 minutes, fhe output voltage can be

recorded.

4.41 Calibration of the Hall device

Before measurements can be made, the distance between the Hall
device and the magnet must be calibrated against the Hall output voltage.
Since the Hall output voltage also depends upon the conditions of the
environment, the calibration needs to be carriéd out at various tempera-
tures and pressures. The calibration is made with the use of ph&sphor
bronze blocks, whose thickness was known accurately to one ten-thousandth
of an inch. The expansion and the compressibility of the phosphor bronze
blocks are neglected as compared to the rubber.

To obtain the required temperature calibration, the thickness

sensor was placed on the parallel surfaces of a phosphor bronze block
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which was suspended from the upper hook of the Instron Tensile Tester.
The temperature of the chamber was now brought to 60°C and the initial
Hall output voltage was recorded. This value was suppressed with the aid
of the voltage suppressor. The changes in the Hall output voltage were
now measured. The temperature of the Instron chamber was lowered in
steps of 10°C down to 0°C, and the changes in voltage at each temperature
was recorded. This procedure was repeated for the nine blocks ranging

in thickness from 0.0391 in. to 0.08 in. A plot of the thickness against
the Hall output voltage for seven temperatures is shown in Figure 7. The
s0lid lines are lines of best fit. The data are well represented by a
straight line relationship.

The pressure éalibration of the thickness sensor was conducted
in the Pressurized Tensile Tester (PTT), which has been described else-
where (41). A calibration block with the thickness seﬁsor was suspended
inside the PTT chamber. This was then pressurized to about 138 bars |
(2000 PSI) and the temperature of the environment was brought to 25°C.
The initial Hall output was again suppressed and the voltage changes were
recorded in decreasing steps of 34.5 bars (500 PSI). The results of the
pressure calibration are shown in Figure 8. The solid lines are drawn

using a_least squares fit. A horizontal shift is employed for clarity.

4.42 Expansion coefficient at constant length

A ring specimen was pulled to the highest exteﬁsion (x = 3.0)

in the Instron Tensile Tester. The thickness sensor was carefully placed
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across the width of the specimen. The temperature of the environment was
brought to 60°C. The initial Hall ouput voltage was recorded and then
suppressed. The temperature was now lowered to 0°C in steps of 10°C and
the output voltage was recorded at each temperature. To achieve a steady
output, it was found necessary to allow 10 to 15 minutes at each tempera-
ture.

After having completed the measurementé at one extension ratio,
the specimen was brought to a lower extension and the same procedure was
repeated. During the experiment it was observed that the specimen in the
vicinity of the Hall device was being heated due to excessive input current.
An input current of 160 mA prﬁduced a large énough change in output voltage
so that amplification of the signal was not needed. Amplification had been
tried previously, but was found to be impractical sinée the output of the
amplifier could not be kept steady over the long period of time required
to conduct this experiment. The slight‘rise in the temperature of the
sample at the point of contact with the Hall device was calibrated by in-
serting a thermocouple between the specimen and the Hall device. The out-
put of this thermocouple was then compared with the output of the thermo-
couple in the environmental chamber. The difference in the emf of the two
thermocouples was added as a correction to the emf values of the environ-
mental thermocouple. No heating was detected in the case of phosphor
bronze blocks where the excessive heat was apparently quickly dissipated
through the metal.

For a given temperature and extenslon ratio, the Hall output
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voltage is easily converted to width with the aid of the calibration
curve (Figure 7). Thus, the width of the specimen at various tempera-
tures and extension ratios was computed. A plot representing the change
in width with extension ratio at 25°Cbis shown in Figure 9. The data lie
on a smooth line with negligible scatter. The change in width with tem-
perature at various elongations is plotted in Figure 10, where Vi is the
width at the lowest temperature. The data have been shifted vertically
by 0.1 units per successive elongation for clarity. The slopes of the
lines in Figure 10 represent the linear expansion of natural rubber at
constant length. The linear expansion coefficients at constant length
as a function of extension ratios are given in Table 2, The results

1 9w

imply that strain has no effect on the value of-; ST , at least up to

P,L
about A = 3.0 for NR. The standard deviation for the values of the ex-
pansion coefficient is 4.5 x 10-6/°C and the average over the range of

(1.0 to 3.0) is 3.48 x 10~%/°c.

4.43 1Isothermal compressibility at constant langth

The procedure‘followed to measure the changes in width of the
specimen with pressure was quite similar to the one described in the pre-
vious section. This experiment was conducted in the Pressurized Tensile
Tester. The Hall voltage was recorded as a function of pressure at
various elongations, while the temperature of the pressurized chamber
was maintained at 25°C. The width of the specimen was then computed

from the Hall voltage using the pressure calibration curves (Figure 8).
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The results are plotted as changes in width against pressure in Figure 11.

The values of - %'%% are given in Table 2. Similar to the linear
: T,L

expansion coefficient, the linear compressibility is also independent of
strain. The average of the values in Table 2 is 32 x 10—6/bars and the
standard deviation is 0.6 x 10—6/bars.

The pressure-temperature coefficient at constant length is now
obtained from the ratio of the linear expansion coefficient and the linear
compressibility, both at constant 1eng£h. This yields a constant value
of Yv,1L = 10.8 bars/°C for NR over the range of the extensions (up to
A = 3) studied. This supporfs the original contention of Flory (5) who
regarded the ratio of the expaﬁsion coefficient and the isothérmal com-
pressibility of amorphous cross-linked polymers to be independent of
strain. The data on YV,L also support the predictions of the BST conm-
pressible strain energy function. Equation (3.42) implies that at
ordinary pressures the pressure-temperature coefficlient at constant
volume énd length is independent of length. These results are also in
agreement with the published dilatometric data of Allen et al. (14, 15).
They observed the same behavior up to an extension of about 2.0. We have
studied the behavior up to an extension ratio of about 3.0 which, inci-
dentally, is a very convenient stretch ratio for NR. Beyond this value,
this particular rubber starts crystallizing and the stress—temperéture
behavior is no longer reversible (Figure 1). Also, the one-term BST
strain energy function adequately describes the stress-strain hehavior

within this range.
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4.5 Stress-Pressure Coefficient

The experiments on the stress-préssure coefficients at constant
length were conducted using the Pressurized Tensile Tester (Figures 12,
13). The apparatus consists of a chamber which can be pressurized to
about 2000 PSI using silicqne oil as the pressurizing fluid. Unlike
changes in force with temperature, changes in force with pressure are
quite small. To amplify the signal from a %oad cell, a Daytronic Model
300-D Transducer—amplifier is used. This is fitted with a suppression
module where the initial value of the force may be suppressed. The
changes in force can be detected on a very'éensitive scale.k

Before conducting the force pressure experiment, the effect of
pressure on the various measuring devices in the pressure chamber was
determined. It was observed by Lim, Sharda and Tschoegl (42) that there
was no effect of pressure on the thérmocouple readings at the pressures
employed (< 2000 PSI). The thermocouples are housed in a metal sheath.
These were checked by inserting one of the thermocouples inside the cooling
coil in a spot'where it saw essentially the same temperature as the other
which remained at atmospheric pressure at all times. No change in the
thermocouple readings could be detected in this way. The output from
the load cell showed good linearity, reproducibility and no drift. The
zero shift of the load cell due to the applied hydrostatic pressure was
small, but not negligible. A correction of 1.61 x 10—4N/bar was sub-
tracted from the observed load.

The experimental procedure for determining the force-pressure
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coefficient cdnsisted of the following. A ring specimen was pulled to
the highest extension ratio and allowed to stand for over a week at room
temperature and atmospheric pressure. This allowed sufficient time for
the initial load to relax to an equilibrium value. The system was now
pressurized to 138 bars'(2000 PSI). The temperature in the pressurized
chamber was controlled at 25°C. The system was maintained at this tem-
perature and pressure until an equilibrium value of the force waé
achieved, at which time the load was recorded and then suppressed. The
pressure was now decreased, usually in steps of 34.5 bars (500 PSI). At
- each pressure the temperature was’closely controlled at 25°C and the
force was allowed to come to an equilibrium. In general, it took about
two hours at each pressure. It was not found necessary to conduct the
whole experiment for increasing pressure cycle since the force value
could be checked from time to time for an intermediate pressure. After
the force pressure experiment was completed af one extension ratio, the
ring specimen was brought to a lower extension and the same procedure
was repeated. The results of the change in stress with pressure at a
given extension are given in Figure 14. The experimental data are also
given in Table 3. The stress pressure coefficients are simply the initial

slopes of the curves in Figure 14.

4.6 Intermolecular Interactions

The stress-pressure coefficients provide a way of estimating the

contributions of intermolecular interactions in the elastomer network.
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The thermoelastic equation (Eq. 3.37) based on the statistical equation

of state assumes that the modulus of ﬁhe elastomer can bebrepresented by
Eq. (3.14) so that G only depends on temperature. As previously mentioned,
Tobolsky and Shen (30) postulated for the first time that the shear modulus
in fact has a slight volume dependence. This idea seems to have been over-
looked in the literature. We will show that this indeed is a significant
contribution in the field of rubber elasticity. Although the postulate of
Tobolsky and Shen is empirical, nevertheless, it allows one to correctly
evaluate the effect of pressure on the retractive force in rubbers.

Fquation (3.40) is rewritten here as

1 of n
- = -y (4.7)
el Pl 20302 gy
Figure 15 is a plot of 1 af against 11/2()\311/2 - 1) from which a
fx oP
T,L T,L
value of v = ~ 0.2 for NR is obtained. The same data are plotted in

Figure 16 to show the importance of y. In the same figure the predictions

of the statistical theory (Flory's eq.)

1 of 1

— = « ' (4.8)
fepor Ploy 23 -1

are also shown together with Eq. (4.7) with and without the parameter vy.
Unlike Tobolsky and Shen, we have not incorporated y in the statistical
theory since the effect of y would be to render the statistical theory

empirical. It should be noted, however, that the FCH-equation comes
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close to the predictions of the BSTz—equation if the factor y is incor-
porated.
The force-pressure coefficients can also be transformed into

the dilation coefficient by

S =2 (4.9)

Combining Eqs. (4.7), (4.9) and (3.31) and integrating the resulting

equation yields the relative change in volume as

AV _ 26 _ -n/2 _y (0 -n/2 _
Vo = ~;FL,T [} A - O+ 2 3)]’ (4.10)

To derive Eq. (4.10) we have set J = 1, i.e., we have, in effect, neglected
terms of the order AV/VO as compared to unity (43). Also, combination

of Eqs. (4.8), (4.9) and (3.31) [with J =1, n= 2, and y = 0], gives

) (4.11)

The results of Eq. (4.10) and (4.11) are plotted in Figure 17. The data
points are obtained by graphical integration of data in Figure 16. Once
again the results demonstrate the significance of the parameter y. The
deviations from Flory's equation have also been reported in the litera-

ture. Christensen and Hoeve (44) and Allen et al. (15) bave measured
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dilation coefficients and observed similar behavior. It can be easily
shown that their data can be represented by Eq. (4.7). Recently Goebel
and Tobolsky (45) have fitted the data of Christensen and Hoeve based on
Eq. (4.7) but with n = 2.

To further interpret the parameter y, we note that the volume
dilates on extension in a real elastomer. To maintain the volume constant
it is necessary to apply hydrostatic pressure. In a rubbery network, an
applied pressure changes the average distance between the chains, thus
altering the interchain forces that keep them apart. The statistical
forces do not acqount for the changes in the interchain interactions and
cannot be expected to describe the effect of pressure>on the elastic

force. The parameter y is an indirect measure of these interactions.

4,7 Thermodynamic Equation

Table 2 lists experimental data calculated from the thermodynamic
equation, Eq. (3.8). The results of Table 4 are plotted in Figure 18,
where the stress, 0, and its energetic and entropic components, 9 and
o> are shown. The circles and squares on the o-curve represent stresses
measured in the stress-temperature (Section 4.3) and the stress-pressure
(Section 4.5) experiments, respectively. Evidently, most of the restoring
force in natural rubber comes from the entropy, but a significant part
also comes from the internal energy. The data indicate that the relative
internal energy is, within the limits of the experimental error, a constant

independent of the strain (A < 3). The average value for natural rubber
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in this region is 0.23, with a standard deviation of 0.02. Before com-
paring these results with the existing literature values, we will compare

the predictions of the statistical and the phenomenological theories.

4.8 Range of Validity of the Statistical and BST Equations

In Chapter 3 we have shown that fe/f may be determined from

three sets of relations which are tabulated below for convenience.

I. f

e T Bf’ T afi
—=1-<% - =Y ey (3.8)
£ EoT(, p ~ EVL ORI
f f 30 T
£ (Fem) = 1 - %—g—,—rf—l - (3.38)
L,P  A7-1
1. )
fe~(BS'17)2—1—19£| - L -yl 3T (3.36)
\ f f aT L,P 2()‘3n/2 -1 o
(£
e -1 _Tde _
Z(sB) =1-¢gp-al (3.37)
IIT. A
fe 1 T dG
L 5 (BST) =1 - Gdr - aoT(B - n - 3y) | (3.34)

Most reported data on fe/f have been obtained using the FCH-
equation. No attempt was made in earlier work (4, 46) to determine the
range of extensions over which thls equation would be valid. Tt would

therefore be of value to compare the range of validity of the FCH-equation,



110

derived from statistical mechanical considerations, with those of the
related, but phenomenologically derived BSTz-equation on hand of experi-
mental data calculated from the thermodynamic equation, Eq. (3.8). A
moment’'s research shows, however, that such a comparison is of little
value because the FCH - and BSTZ— equations both only estimate the last
term of the thermodynamic equation and share with this the numerically
larger second term containing the experimentally determined (Ban/BKnT)P’L
term. The comparison is particularly poor at moderate-to-large values
of X because the last terms in both equations rapidly decrease as A
increases.

To evaluate the relative merits of the statistical mechanical
and the phenomenological approach, one must therefore compare the SB -
and related BSTl— equations. To do this, we must decompose the measured
stress, 0, into its energetic and entropic components, ae and-cs, on the
grounds of the two theories. We use Eqs. (3.37) and (3.34) for 9, and
obtain g as 0 -0, where o = f/A0 and f is given by Eq. (3.31). Setting

J = 1 again because of its closeness to unity, we obtain

1_26 4o-1 1 |y _TdG _ - -

oe(BST) = (A An/z T 1) [1 G ar aoT(B n | 3y)}(4.12)
1_ 26 ,,n-1 1 . [Tadc o

OS(BST) == O An/2 T 1)[ G ar + uOT(3 n 3y)] (4.13)

from the phenomenological approach, and
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_ 1, , _TdG _

oe(SB) = G(A - xz) (1 G ar aoT) (4.14)
= A, I d6 | '

o (SB) = G(A -xz) G gt oD (4.15)

from the statistical theory, where n = 2, y = 0. Equations (4.12) through

(4.15) are plotted in Figure 19, together with
-2
o(STAT) = G(A - X ) (4.16)

and

1

- F/"é:;'i) (4.17)

o (BST) = 6(A"L
Figure 19 clearly shows that the statistical theory does not predict the
observed behavior beyond about 407 strain, whereas fhe BSTl—equation
does an excellent job over the entire range studied. The parameters used
in Eqs. (4.12) to (4.15) are assembled in Table 5. As previously men~
tioned, only the one-term BST strain energy function was needed to describe
these data. In the next chapter we shall demonstrate the application of
the complete BST equation in describing the thérmoelastic data on a

chlorinated ethylene-propylene copolymer rubber.
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5. MEASUREMENTS OF fe/f

In this chapter we shall compare the values of fe/f calgulated
from our experimental data on NR by the five equations listed in the
previous section. We shall then discuss literature data on a chlorinated
ethylene-propylene copolymer rubber which extend to much higher values
of A. The latter data are also interesting because the sign of fe/f is

positive for NR but negative for the copolymer rubbers.

5.1 Natural Rubber

The stress data calculated purely from experiments by the thermo~
dynamic equation, Eq. (3.8) were discussed in Section 4.7 and are tabu-
lated in Table 4 and shown in Figure 18. The data calculated from the
SB~ and the BSTl— equations are shown in Figure 19 with the parameters
given in Table 5. The data calculated from the FCH~ and the BST2~
equations are tabulated in Table 6 and shown in Figure 20. The results

obtained for fe/f at 25°C are summarized below.
fe/f

Equation Eq. #

I. Thermodynamic 0.23 (3.8)

II. FCH 0.28 (3.38)

BST? 0.24 (3.36)

II1I. SB 0.27 (3.37)
1

BST ' 0.23 (3.34)
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Tables 4 and 6 indicate that in the low to moderate strain region the
relative internal energy contribution to the elastic force is a constant
within experimental error. The predictions of the BST phenomenological
equatiohsvagree remarkably well with the experimental data [Eq. (3.8)].
The statistical theory, which should not be used beyond 407 strain, also
yields closely similar values for fe/f but these are higher than the
"experimental" value. The difference of about 0.04 arises solely from
the neglect of the volume dependence of the modulus in the statistical
theory. It is thus seen that’introduction of the parameter y into the
compressible BST strain energy function provides an important degree of
freedom in accounting for the interchain energy effects. The rather
small contribution which fhis term makes to fe/f suggests tﬁat the con-
tribution of the interchain interactions is quite small as compared to
the other componenis of the elastic force. |

Our experimental data also explain why the FCH equatiom, which
is based on the statistical theory, yields good values for fe/f at strains
where the statistical theory does not describe the deformation behavior.
From the results in Tables 4 and 6 , we conclude that as the étrain increases,
the force-pressure term in Eq. (3.8) becomes smaller and fe/f is well

approximated by the simple relation

=1 - %~§— (Large 1) (5.1)

£
Tly,p

o
Q
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Both the FCH-equation and the BSTz-equation reduce to Eq. (5.1) in the
limit of large A. Thus, it is not surprising that Eqs. (3.36) and (3.38)
describe the fe/f déta quite well. As previously mentioned, the results
of these equations should be cautiously interpreted. 1If the purpose is
to obtain fe/f values, these equations provide excellent results. However,
for the purposes of determining the shortcomings of these theories, we
must resort to equations of the type discussed in the previous section
[Eqs. (4.12) to (4.16)].

A further reflection of Eqs. (3.34) and (3.37) indicates that
fe/f is independent of strain in both cases. This is true for the statis-
tical theory over the entire range of strain and the BST strain energy
function up to the point (A < 3) where the parameters n and G adequately
describe the deformation behavior; As will be shown in the next section,
the BST theory predicts fe/f to be strain dependent beyond this point.

The values of fe/f calculated from Eq. (3.8) are compared in
Figure 21 with the existing data on natural rubber. With the exception
of the data of Allen et al. the published values were calculated by the
FCH-equation. Figure 21 shows three distinct regions of fe/f values for
NR. 1In the region of small strains_(} < 1.2) fe/f is a function of X;
in the region of moderate strains (1.2 < X < 3.0) fe/f is independent of
A and at large strains (A > 3.0) fe/f once again depends on the strain.
The data in the small strain region (31,‘46) do not agree with the pre-
dictions of either the SB- or the BSleequations, which we believe to be

correct in this region. In this region the FCH-equation requires
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extremely precise values of the force and the stretch ratio because of
their appearance in the denominators of the second and third terms,
respectively. As A3 - 1 goes to zero, so ddes f. Thus, at present, the
value of fe (and, therefore, fS) at A = 1 cannot be obtained by extrapo-
lation of data in the small strain region. Furthermore, there does not

seem to exist any theoretical argument from which it could be predicted.

5.2 Ethylene~Propylene Copolymer Rubber (C£ EPR)

In the case of natural rubber, only one term in the BST strain
energy function was necessary for an adequate representation of the data
since these did not exceed 200% strain. To check the applicability of
the two-term BST strain energy function, the data of Natta, Crespi and
Flisi, obtained on a chlorinated EPR (47) were used. These data extend
to an extension ratio of nearly 7.

The two-term equation corresponding to the BST14equation is

£
—% (BsT)> = 1 - (3-n-3y)a T

2T dG dB _m-1 m-2,. n,,.-n/
_n ar + mT aT IE - m(m—l)BaoIE (A +2) % (5.2)
26 | pr®l
n E

Equation (5.2) is obtained from the two-term analog of Eq. (3.30),

1

ox = JV (2G/n + mBI?‘ y 0" - Jn/Z/A“/z)

(5.3)
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and from that of Eq. (3.35),

n/2

anf| _ (/m)(dG/dD) + n(@/an1 ! - n@-13% % (%)
Tl 2G/n + nﬂ?.]:g'l
3n/2
4o B3 -mA" 7" = 3+ n/2) -
o A3n/2 -1

The data of Natta et al. are plotted in Figure 22. The solid
line through the experimental points represents the least squares fit

5 Kg/cm2 and G =

with the parameters n. = 1.71, m = 4.84, B = 6.47 x 10~
2.71 Kg/cmz. These parameters were then used in Eq. (5.4) to predict
the stress—temperature slopes shown in Figure 23. The values of dG/dT
and dB/dT were 14.2 x 1073 Kg/cm2°C and 5.54 x 1077 Kg/cm2°C, respectively,
as found from the initial slopes of the stress-strain curves at different
temperatures. Figures 22 and 23 indicate an excellent agreement of Eqs.
(5.3) and (5.4) with the experimental data.

These parameters are now used to predict fe/f for the copolymer
rubbers. The results are shown in Figure 24 whereas the individual com~
ponents are given in Figure 23. It is seen that for this rubber fe/f is

negative. It stays constant up to an extension ratio of about 3.0 and

decreases beyond this point.

5.3 Comments on NR Chain Parameters

The value of fe/f for natural rubber is positive in contrast to

most rubbers. The sign of the internal energy contribution depends on
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the relative magnitude of the various rotational potentials. 1In the
following some comment will be made regarding these potentials in the
light of the experimental results presented here.

A convenient parameter in characterizing the configuration of a
polymer chain is the "characteristic ratio", <r2>0/n£2. This is defined
for a state of the molecule that remains invariant to the long range
effects of the hydrodynamic interaction, the external force etc., and is
subject only to the local constraints due to the bond structure (i.e.,
bond length, bond angle and rotational hindrance potentials). The charac-
teristic ratio is usually obtained from viscosity measurements. kWagner
and Flory (48) have determined a value of 4.7 for natural rubber.

In conjunction with the thermoelastic data we have obtained
the characteristic ratio can be used in obtaining parameters that charac-
terize the chain structure. From Eq. (3.15) we determine the temperature
variation of <r2>0 for NR to be

dfn<r?> f
0o -1

_ =3
i = 0.67 x 107~ deg

(5.3)

o

where we have taken the average of all published values of fe/f at 25°C,
0.2 (see Figure 21). We make use of these results to obtain rotational
energy parameters for the cis - 1,4-polyisoprene (cis~PIP) chain shown

below as Formula 1
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by two artificial bonds a and b obtained by extending bonds C~C to inter-
sect ét a point as shown in Formula 1I. This structuré splits the cis -
PIP unit into two parts: (1) the artificial bonds a and b whose rotations
are interdependent; and (2) the CH2 - CH2 bond, c, whose rotation is
independent of its neighbors.

The bond CH - CHi (a or b) is known to have distinct rotational
minima at + 60° and 180°, whereas the CHZ - CH2 bond (c) possesses minima
at 0° and * 120°. Since the rotational pairs a and b are interdependent,
the rotational state 180° must be excluded because the cis conformation
about these bonds resulté in largé steric hindrance. However,’intra-
molecular interactions between H and CH3 across the double bond give
rise to an additional minimum. Mark (49) has suggested that in the bond
pair a-b occurence of one bond in the state of +60° can give rise to an
effective minimum at 0° for the other bond. Thus, only 0°, * 60° and 0°
rotational pairs are available to bonds a and b. Let us assign the energy
EY to the rotational pairs *+ 60°, + 60° (or + 60°, + 60°). EY is relative
to zero for the rotational pairs 0°, + 60° and + 60°, 0°. Let us also
assign E0 to the gauche-rotational state + 120° relative to zero for the
trans-rotational state 0°. Our purpose is to calculate the energies EY

and E‘J which are consistent with the values:

<r2>o/nz2 = 4,7 (5.6)

dln<r?> _[dT = 0.67 x 1003 deg”t (5.7)
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Since the random coil configurations of the cis - PIP chain have been
computed by Mark based on the rotational isomeric model, we use the
published results to determine EY and Eg. The following figure (taken
from Mark, l.c.) gives the values of the characteristic ratio as a func-
tion of Eo for various values of Ey, based on the dimensions of the NR

chain given in Formula II for a degree of pressurization (DP) of 120.
7.0

I T T T T T T T T

4l
60 P

3.01-

<r2>, /ﬂ[2
~N

~hao sty /RT

Characteristic ratio of cis ~ 1, 4 - PIP chain

Also, the temperature coefficient of <r2>0 is given by

d£n<r2>0 3£n<r2>0 3£n<r2>0 .
=T g o T Ay (58)
where
0 = exp (—EG/RT) (5.9)

and
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Y = exp (—EleT) (5.10)

To satisfy Eqs. (5.7) and (5.8) we must have

E = - 0.5 Kcal/mole

EY = -~ 1.36 Kcal/mole
o= 2.72

y = 10

3£n<r2>0/3£n0 = - 0.0665
3fn<r?> /3oy = - 0.059

These values were obtained by trial and error. The second term in Eq.
(5.9) contributes nearly 75% of the temperature coefficient according to
these parameters. From this it may be concluded that the transition from
0°, * 60° to * 60°, + 60° (or *60°, + 60°) in bonds b and c in the natural
rubber chain are more effective in changing the dimensiéns of the chain
than the transition from 0° to * 120°. The two energy parameters £ and
EY calculated on the basis of rotational isomeric theory are consistent
with optical anisotropy data on cis - 1, 4 - polyisoprene (52).

From Eq. (5.9) it is evident that the positive slope of <r2>0
witﬁ temperature for NR results directly from the negative values for the
conformational energies Eo and EY' The negative yalue of EY implies that

the more extended conformation (0°, * 60°) around the CH-CH,-CH bond pair

2
has a higher energy than the conformatioms * 60°, * 60° (or & 60°, + 60°).
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Similarly, E0 implies that the trans-conformation (0°) about CHé—CH2

bond possesses higher energy than the gauche-conformation (+ 120°).
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6. DISCUSSION

In the discussion below, the results of this study are summarized

and suggestions for future work are given. The results of both Parts I

and II will be reviewed from a general standpoint.

6.1 Phenomenological Theory

A new elastic potential function for rubbery materials was intro-
duced. In Part I its gpplication in both homogeneous and inhomogeneous
deformation fields for two materials, natural rubber and styrene-butadiene
rubber was successfully demonstrated. The same set of parameters was used
in describing the behavior in various deformation fields (simple tension,
equibiaxial tension, pure éhear, torsion and torsion with extension) up to
the point of rupture. In Part II this strain energy function was modified
to account for the compressibility of the material. The compressible form
of the strain energy function fitted the thermoelastic data on natural
rubber and chlorinated ethylene-propylene copolymer rubber. For the
different types of experimental data considered up to now the parameter n
remained constant for a given rubber. The two moduli B and G depend on
the degree of cross-linking and the procedure employed in preparing the
samples, as expected. A study of the temperature dependence of the param-
eters based on two sets of data indicated that the moduli (G and B) were
linearly dependent on temperature while the constants n and m remained

unchanged over the range of temperatures studied.
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The development of this strain energy function has raised inter-
esting questions. The first important question that needs to be answered
at present is the origin of the parameters n and m. The fact that n
remains constant over the entire range of strain and over a large range of
temperature suggests that it may be possible to explain or at least inter-
pret this parameter from network or chain statistics.

A similar point may be made about the parameter y in the com—
pressible strain energy function. It was possible to relate y to the inter-
molecular energy effects.

A number of uses for the new strain energy function suggest them-
selves in other phenomena in elasticity (e.g., stress-optical coefficient,
failure data in filled and unfilled materials, swelling of rubbers, etc.).
The n-measure of strain also offers a challenge in other fields of continuum
mechanics (viscosity, viscoelasticity, etc.). A common problem in mechanics
of viscoelastic flow is the description of the shear and the normal stresses.
The success of the n-measure of strain in elasticity suggests employing

these concepts in the rate-of-strain measure.

6.2 Thermoelasticity

A new scheme for the thermodynamics of elastomers 1s proposed.
The newly introduced thermodynamic potential functions are given in terms
of the appropriate sets of independent variables. It was shown that the
decomposition into entropic and energetic components can be carried out

in terms of length as well as force. The choice depends on theoretical
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and experimental convenience.

A number of important results emerge from the thermoelastic
measurements on natural rubber. The relative internal energy component
of the elastic force remains constant up to an extension ratio of about
3.0. A contribution of 23 % is obtained for naturai rubber in this
range. The experimental data also indicates that the pressure-temperature
coefficient at constant V and L as well as the temperature coefficient of
<r2>0 remain constant in this region of strain.

The approach based on a compressible form of the Blatz—Sharda;
Tschoegl elastic potential satisfactorily predicted the experimental
results. It was also demonstrated that the statistical theory is appli-
cable only up to an extension ratio of about 1.4. A test of the statis-
tical theory based on the thermoelastic data is possible only through the
Shen-Blatz equation but not through the Flory-Ciferri-Hoeve equation. The
data clearly demonstrate the reasons for the validity of the latter equa-
tion beyond the range in which the statistical theory holds.

The new elastic potential function results in another important
conclusion. This is that intermolecular interactions play a small but not
negligible part in the flexibility of macromolecules. This 1s an encour-
aging observation since it indicates that in the development of a more
general theory of rubber elasticity these interactions will not be
particularly crucial,

The magnitude of the conformational energies E0 and EY’ as

previously explained, account for a positive value of the temperature
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coefficient of the unpertuibed dimensions of NR chains. It is also con-
cluded that in natural rubber chains the conformations about the CH—Cin—
CH bond pairs are more effective in changing the dimensions of the chain.
Finally, this work has provided a complete phenomenological
description of the elastic retractive force in rubbers. Fﬁr the first
time the effects of strain, temperature and pressure (in turn volume)

have been described with the aid of a single potential function.
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APPENDIX

The mathematical equality of mixed second derivatives gives rise
to the useful Maxwell relations. The relations for elastomers are listed

below.
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Stress—-Temperature Data
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TABLE 1

A= 1.250 }K = 1.491 A= 1.713 1.776
T g T g T ag T g
°C Bars - °C Bars °c Bars °c Bars
5.5 3.129 19.5 5.164 -1.0 7.015 -1.5 7.533
20.0 3.207 31.5 5.292 8.0 7.170 9.0 7.694
35.5 3.282 41.5 5.383 18.0 7.350 18.0 7.845
50.25 3.353 50.5 5.496 29.5 7.476 26.5 7.954
35.0 3.280 61.0 5.589 39.5 7.647 30.0 8.053
19.5 3.200 50.5 5.505 49.0 7.806 39.5 8.210
5.0 3.126 41.5 5.410 60.0 7.952 50.0 8.368
31.5 5.300 60.0 8.558
19.5 5.164

(continued)



TABLE 1 (continued)
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A= 1,925 A = 2.300 A = 2.586 A = 3.083
T ! T T T
°c Bars °c Bars °c Bars °C Bars
-1.5 8.560 1.0 10.038 -1.5 11.092 -2.0 12,280
8.0 8.750 11.0 10.230 8.5 11.425 8.0 12.900
18.5 8.940 25.5 11.560 24,5 11.862 18.0 13.290
26.5 9.100 42.5 11.000 31.5 12.050 26.0 13.590
39.5 9.440 49.5 11.250 39.5 12.322 39.0 14.020
50.0 9.642 59.5 11.532 49.0 12.593 60.0 15.500
60.0 9.858 59.5 12.880 49.0 14.900
49.0 12.790 39.0 14.480
39.0 12.490 27.0 13.890
27.0 11.980 18.0 13.650
17.5 11.720 8.0 13.220
8.0 11.430 ~-2.0 12.350
-2.0 11.100
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TABLE 2

12w 1w
w oT P,L w oP T,L
A /°c A Bars
1.094 3.45 x 107% 1.276 32.3 x 10°°
1.252 3.53 1.535 31.3
1.501 3.51 1.792  31.9
1.746 3.54 2.051 31.6
1.996 3.44 2.312 31.7
2.242 3.46 2.573 31.3
2.490 3.45 2.836 32.9
2.736 3.43 3.097 32.8
2.983 3.53 »
Av 32.0 x 10
Av 3.48 x 107*
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TABLE 4

Thermodynamic Equation

% T 30 5 T 3% fe %
4 o 3T G 3T ® o Yv,L 3P Fory
P,L P,L T,L g T,L
x 10° x 10°
Bars Bars/°C
1.250 | 3.228 5.00 0.460 30.4 0.300 0.24
1.491| 5.225 10.45 0.596 26.3 0.160 0.24
1.713 | 7.426 15.41 0.624 23.9 0.102 0.27 | o
1.776 | 7.961 16.66 0.648 23.2 0.091 0.26 | o
1.925 | 9.105 21.40 0.700 22.9 0.084 0.22 | "
2.300 | 10.600 25.70 0.724 22.1 0.066 0.21 | 2
2.586 | 11.880 29.20 0.735 22.0 0.057 0.234
3.083 | 13.720 35.0 ¢ 0.760 22.2 0.050 0.19
T = 25°C

]

10.8 bars/°C
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TABLE 5

Values of Parameters

N CLEPR ™
T 25°¢C 15°C
n 1.64 1.71
m ces 4.84
B e 6.47 x 107°
e 5.87 2.71
dG/dT 13.0 x 1073 14.2 x 107
dB/dT e 5.54 x 1077
Y -0.2 .

Units are Bars or Bars/°C

Kk
Units are Kg/_cm2 or Kg/cm

2;C
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PROPOSTITION I

A NEW KINETIC MODEL FOR

THE GLASS TRANSITION INTERVAL IN POLYMERS



Abstract

A new kinetic model for glass transition in polymers is pro-
posed. This describes the sudden change in heat capacity of the
polymer in the glass transition interval. The effect of heating rate

on the glass transition temperature is studied.



1. Introduction

This proposition presents a model for the change in heat
capacity of polymers in the glass transition interval. The heat capa-
city of a polymer shows a sudden change in value when the material is
heated or cooled through the glass transition. The range of temperature
in which this change occurs varies with the heating or the cooling rate.
The rate dependence of glass transition suggests that the phenomenon
can be described by a kinetic rate process. A kinetic description of
the glass transition has been presented in the literature (1, 2). This
regards the vitrification process (or conversely the softening process)
as a first order chemical reaction. It assumes that.two energy levels
are available to the material near the glass transition temperature.
The process of vitrification is accomplished by passage of kinetic
particles from one energy state té the other. The theory involves two
parameters:> (1) the difference in the energies of the two states, and
(2) a single relaxation time (of a rate constant). No relation exists
between the structure of the polymer and these parameters. Thus, the
theory applies to any substance independent of its structure.

In this work, a new kinetic model of glass transition in
polymers'is proposed. This‘is'based on the various rotational states
available to a polymer molecule. A polymer molecule has associated
with it a nﬁmber‘of sbatial conformations, which are due to rotation
around single bonds in the chain backbone. A simple molecule such as
'polyethylene is characterized by threé rotational energy minima around
the CH,-CH, bond. For more complex molecules such as polyisoprene,

2 72

polybutadiene etc., other such minima exist due to different



bonds in their chain structure. The conformation of a polymer chain

thus arises from a mixture of these rotational states. In this model

it is postulated that as the polymer passes from a rubber to a glass

or vice versa, the distribution of these rotational states changes

(i.e., thé numbef of conformations in different energy states pass

from one rotational state to the other). The redistribution is accom-

plished by a kinetic rate process. The rate of change of the ﬁumber of

conformations in various states and the difference in rotational energies
of these states determine the changes in heat capacity of the polymer.

This model differs from the previous model in a number of
important aspects:

1) The number of reactions 1is given by the number of rotational states.
In the previous model, only one reaction exists.

2) The various rotational states are determined by the structure of
the polymer chain, whereas the structure plays no part in the
earlier model.

3) The differences in the enérgies of the various rotational states
now become the structural parameters and can be compared with
similar parameters obtainea from other studies, such as diffusion,
spectroscopy and thermoelasticity, etc.

. However, the fundamental principle underlying the two models
remains the same. 1In both the glassy state is distinguished from the
.rubbery state by the fact that internal chemical equilibrium is not
established. In the glassy state the mqlecules vibrate relative to one

another but do not rotate (so called "frozen'" state). 1In the rubbery



state, the rotation increases as the temperature rises. The trans-
formation from vibrational modes to rotational modes accounts for the
change in various thermodynamic properties in the glass transition
interval. This transformation or the change in the internal config-
uration of the s?stem can be described in terms of some reaction
coordinate which at any time gives the concentration of the rotating
units. |

In the discussion below, the heat capacity of the polymer is
expressed in terms of the change in the internal configuration of the
system. In Section 2, a kinetic model with three rotational states is
considered, which is then modified to any number of energy statesf in
Sectién 3, a sample calculation is preseﬁted showing that the model
indeed describes the sudden changes in heat capacity. The effect of
different rates of heating 6h the glass transition temperature is
shown. This gives rise to a simple relation between the rate of heat-
ing and the temperature at which the heat capacity shows a ﬁaximum.

In Section 4, the results of this study are summarized.



2. Theory

In order to develop a general kinetic theory of glass transi-
tion, it is desirable to start with a simple three rotational state
model. Let the potential energy curve for a given polymer be repre-

sented by three rotational minima:

1

Y

1’ N2 and N3 are the

numbers of conformations in states 1, 2 and 3, respectively. For the

The three energy states are designated 1,.2, 3. N

purpose of discussion, these conformations are referred to as chemical
species. As the polymer is heated or cooled through the glass transi-
tion, the number of conformatioﬁs in states 1, 2 and '3 change. It is
convenient to assume that the redistribution is accomplished by a first
order reversible reaction. For a chemical reaction of this type, the

general kinetic scheme can be represented by (3)

IT




where kij are the rate constants. Let X, be the composition of the

various chemical species:
x; =N/ } N, i=1, 2, 3 (1.1)
Also,

Xixi =1 (1.2)

Since the difference between Ei and H, is small (of the order of

i

RT), the enthalpy of the reaction system may be written as

H = ZixiEi (1.3)
Assuming that the Ei remain constant over the range of temperature
in which the glass transition is observed (about 10°), the heat

capacity of the system at constant pressure is given by

aHl
c,h = 2= (1.4)
P OT|,
Bxi
= L% 5 (1.5)




A convenient way of representing E. is by considering the state 2 (or

i
the state with the lowest energy) as the reference state. Thus, the Ei are
then replaced by E2 and AEi (i # 2). 1If the change in composition of

the various chemical species is known as a function of temperature,

Eq. (1.5) can be ﬁsed to determine Cp.

The rate equations for the various chemical species in Formula

II are given by

dxl/dt = - (k21 + k31)x1 + k12x2 + k13x3 (1.6)
dx2/dt = RZle - (kl2 + k32)x2 + k23x3 .7)
dx3/dt = k31xl + k32X3 ' - (kl3 + k23)x3 .(1.8)

If © is the rate of temperature change
6 = dT/dt : (1.9)

Eqs. 6, 7 and 8 are rewritten as

_ -1 ) -1 -1

dxl/dT = ) (k21 + k31)xl + 6 k12X2 + 0 k13x3 (1.10)
a1 _ oL -1

dx2/dT = 6 k21x1 0 (k12 + k32)x2 + 6 k23X3 (1.11)
_ -1 -1 _ a1

dx3/dT = 0 k31xl + 6 k32X2 ) (k13 + k23)x3

(1.12)

.Thus, the heat capacity is determined .by combining Eq. (1.5) with Egs.
(1.10 to (1.12). Since kij depend on temperature, these may be obtained

from the Arrhenius equation or the equation (4)



o .0
k,, = k,.T" exp(- E,/RT 1.13
13 = k34T exp(~ E,/RT) (1.13)
where k;j are the frequency factors and o is usually of the order 1.

For the Arrhenius equation o is zero. Thus the problem has been reduced
to solving Eq. (1.5) with the aid of Egs. (1.10), (1.11), (1.12), (1.13)

and the initial conditions:

At t=o0, T=T , (1.14)

X, = X, (1.15)

All the quantities in Egqs. (1.5) and (1.10-1.13) are in terms of Ei and
T. These sets of equations may be solvedvnumerically. Before demon-
strating a sample calculation, the structure of these equations leads
to an easy generalization to n component system.

Equations (1.5) and (1.13) hold for the n éomponent system

whereas the rate equations may be written in a matrix form as follows:

=)

= Kx | (1.16)

-
where x is the composition vector

= ’ (1.17)



and K is a matrix given by

T q —~
- ¥ ke, - k) S
i=1 il ii 12 1n
n
k21 h Zl(kiz " kyg)- * Kon
K= 4 . . . . _ >(1'18)
. . n .
k Ko oooooooo o .—'Z (ky o = kyy)
N i=1 .

It is being pointed out that the kinetic scheme II is the most general
three rotational state scheme. This would imply an unrestricted rota-
tion. The problem simplifies if the rotation is hindered, since in

that case the number of reactions may be reduced (see below).
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3. Calculations

The potential curve considered in I is the most general three
point rotational curve. For a sample calculation it is convenient to
consider a polymer with rotational minima at say * 120° and 0°, where the
energies df the + 120° states are equal. To simplify these sample
calculations, it is assumed that the kinetic particles may not pass
from the + 120° rotational state to the - 120° rotational staté or

vice versa. Thus, only the following reaction scheme is allow d:

ko1 Y
1 — ) = 3 111
®. k. ‘
12 23

where 1 and 3 are the * 120? states and 2 is the 0° state. Also, we set
kl2 = 332 = { (say) and k21 = k23 = m (say). This is quite reasonable
since the passage of kinetic pérticles from state 2 to 1 or 3 now have
to overcome the same energy barrier. This is also true for the kinetic
particles in states 1 and 3. Thus, the kinetic scheme III simplifies

to the following rate equations:

-1
dxl/dT =0 (Q.X2 - mxl) , (3.1)
-1
dxz/dT = f (mxl + mx, = 2£x2) (3.2)
R i
dx3/dT = § (sz mx3) | (3.3)

"If the initial concentrations of the chemical species 1 and 3 are the

same, the three rate equations uncouple:
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- - g1 -
‘ dxlldT = dx3/dT =0 (sz mxl) (3.4)
- -1 _
dxz/dT = ~ 26 (sz mxl) (3.5)
Using
2xl + X, = 1 (3.6)
Eqs. (3.4) and (3.5) become
dx. /dT = - L dx,/dT = dx./dT = 87 1[8 - x. (22 + m)] (3.7)
1 2 2 3 1 '
From Eq. (1.13), the rate constants % and.m(a = 1) are
% = 2T exp (- E,/RT) (3.8)
m=mT exp (- El/RT) | (3.9)

Thus, Eq. (3.7) becomes

dx L 24

1_ 41 o - - -9 -
T 0 mOT exp ( El/RT) n exp (- AE /RT) X 1+ n exp ( AE/RTﬂ
(3.10)
with initial condition
at T = To, X; = Xqq (3.11)
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Also, from Eq. (1.5)

]

- 22 951

CP dT

(3.12)

where AE = E2 - El

Now Egs. (3.10) and (3.12) may be solved numerically. This
involves solving the differential Eq. (3.10) and substituting the values
in Eq. (3.12). There are four parameters in the present example.
These are 20, m s E1 and AE. The difference in rotational energies is
of the order of one or two Kcal/mole for most polymers. A convenient
way of determining the other parameters is to curve fit the Cp measure-
ments ﬁsing differential thermal analysis‘(DTA). Since the number of the
parameters is large, it may be necessary to conduct the experiments ét
a number of heating or cooliﬁg rates. However, an initial guess for
El’ 20 and m_ may be obtained from the liquid hole theory. The value
of E1 chosen here is compérable to the hole energy for polystyrene (2).

The results for four heating rates ranging from 0.000i°C/sec
to 0.1°C/sec are plotted in Figure 1. Table 1 lists the values of the
varioﬁs parameters. The initiél starting temperature for the four
heating rates is T = 365°K. It is desirable that the initial condi-
tion be picked close to the start of the heat capacity peak since it was
assumed previously that the ene;gies_Ei do not depend on T over the
small range of the glass transition. The curves shown in Figure 1 are
plotted as the change in heat capécity. Since the DTA data is in

arbitrary units, one is only interested in the change in the heat
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capacity. In this particular example, the material is glassy at

T .
o

The maximum of the curves in Figure 1 can be described by a

-simple relation.

Tm =a log 6+ D (3.13)

where a and b for this particular example are 3.2°C and 384.9°C,

respectively. Tm for various heating rates are also given in Table 1.
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4. Results and Proposal

The glass transition in polymers is discussed in terms of a
kinetic rate process. The objective of the calculation given in Section
3 was to establish the feasibility of the proposed kinetic scheme. A
sample calculation based on three rotational energy states predicted
the shape of the heat capacity curve of polymers in the glass transition
region (5). The temperature corresponding to the maximum heat -capacity
was shown to increase with increase in the heating rate. This is similar
to observed behavior in polymers (2).

Based on the preliminary success of this model, a researéh
project is proposed. The aim of this proposal is to experimentally
verify the model. This can be achieved in the following manner. A
polymer with known rotational energy states should be chosen for the study.
The heat capacity measurements atvvarious heating and cooling rates can
be made using a differential thermal analyzer. The parameters in the
model are then determined by curve fitting the data for a single heating
or cooling rate. These parameters should predict the heat capa;ity

data at other heating or cooling rates.
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TABLE 1

& = 0.0001, 0.001, 0.01, 0.1 °C/sec
T = 365°K
0
Xy = 0.7
E =1 K cal/mole
El = 300 K cal/mole
= 1.06 x 10”110
m = 0.2 x 10110
o
T °K
0.0001 °C/sec 378.5
0.001 381.7
0.01 384.0

0.1 B 388.3
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PROPOSITION II

A MODIFICATION TO THE PRESENT

SCORING SYSTEM IN BRIDGE



*
A Modification to the Present Scoring System in Bridge

Abstract

A modification designed to correct the drawbacks of the
present scoring system in bridge is proposed. This assigns 30 points
for the first trick and 20 points for the subsequent tricks in the
minors. The modified scoring system is shown to be more competitive

and fair,

%
- A summary submitted for publication in the bulletin of American

Contract Bridge League.



Introduction

In this proposition a modification to the existing scoring
system in bridge is suggested. The need for a modification arises from
realizing that the present scoring system does not provide for the
higher difficulty factor in making higher level contracts. In certain
situations, the scoring system is even unfair and discourages competition.
Also, there does not exist any clear scoring order in this system.

A highly desirable feature of any scoring system is the sim—
plicity with which it can be used. It is an important criteria since
the majority of the bridge players would not accept or approve any
complex system, however fair and competitive it may be. It is perhaps
possible to devisé a very sound scoring system but it is very doubtful
that such a system would be simple and easily adaptable. Thus, with
simplicity as the most important objective, a modification to the present

scoring system is being proposed.



Present Scoring System

This scoring system is based on the following. It assigns
1) 20 points for each trick* in the minor suits, i.e. in Clubs (C) or
Diamonds (D):
2) 30 points for each trick* in the major suits, i.e. in Hearts (H)
and Spades (S) and
3) 30 points for each trick* in no trump with the exception of the
first trick which is assigned 40 points.
The steps 1, 2 and 3 are based on the ranking in the order
Clubs, Diamonds, Hearts, Spades and No Trump, with the Clubs assigned
the lowest rank. The following table gives a part of the scoring

gsystem of interest here:

Table 1
# of

Level Tricks Minors Majors No Trump

1 7 20 30 40
T

2 8 40 60 70

3 9 60 90 100
4 10 80 1 120 130 II

5 11 100 150 160

& 12 120 180 190
111

7 13 140 210 220

The first column in this table gives the level at which the contract is

Points are counted for tricks over a minimum of six.



being played, the second column gives the number of tricks required in
a given level and the remaining three éolumns give the scores depending
on the sult in which the contract is being played. For the purpose of
this discussion, bonuses, penalties, etc. will be omitted since these
remain unchanged in both the present and the modified scoring systems.

In order to realize the drawbacks in the present scoring system,
it is convenient to divide Table 1 in three sections. In section I the
scores are less than 100 and are called "part scores'". In section II
the scores are equal to or greater than 100 and are called "game scores®.
In section III the scores are also greater than 100 but are called
“slams" and are assigned high bonus points. Since in the new system
the significant differences lie only in sections I and II, the discussion
for section IIT will be omitted.

Considering the part scores first, an order based on the

increasing scores may be writtem (m = Minor, M = Major and N = No Trump):

Order: 1m M 1N 2m 2M 2N 3m 3M 4m

Score: 20 30 40 40 60 70 60 90 80

As is evident from A, the order breaks down beyond 2M. For
example, a 4m contract is worth less points than a 3M contract, although
one requires an extra trick to fulfill the 4m contract. This is like a
double penalty. The 4m contract not only requires an extra trick, it is
also worth 10 less points. A difference of 10 points may not make any
difference in rubber (social) bridge but may result in getting a top

score or a bottom score in the duplicate (competitive) bridge. The



same arguments apply when one compares the 3m contract with the 2N
contract.
Thus, from I it is observed that there are two drawbacks as
far as the part scores are concerned. These are the lack of any specific
order and the neglect of the higher difficulty factor.
Nﬁw considering the game scores, the following order similar
to A exists:
Order: 3N 4M 4N 5m 5M SN ; ,
Score: 100 120 130 100 150 160 g
In addition to lack of order, these scores have one major
drawback. This is seen by comparing 3N and 5m, which are the minimum
game scores. This system discourages playing the contracts in 5m. As
a matter of fact, whenever possible it is preferred to play in 3N rather
than 5m. No incentive or award is given for making two extra tricks in
Sm.

Modified Scoring System

This scoring system is based on the following. It assigns
1) 20 points for each trick in the minor suits except the first trick
which 1Is assigned 30 points;
2) 30 points for each trick in the major suits and
3) 30 points for each trick in no trump with the exception of the first
trick which is assigned 40 points.
A comparison with the existing scoring system reveals that
the difference in the two systems exists only in step 1. The first

trick in the minors is now assigned 30 points instead of 20 points.



Thus, in the modified system the format of the minor suits is made the
same as the format of the ﬁo trump.

This modification originated when it was realized that im most
bidding systems 1C and 1D (i.e. lm) bids are artificial. Even when these
are not artificial, very few contracts, if any, are ever played at the
one level in the minors. As a matter of fact, in ccmpetition or duplicate
bridge contracts of 1 in the minors or 1 in the majors are extremely
rare. This implies that nothing will be lost if one were to modify the
scoves for the tricks at the first level. This observation suggests the
modification proposed here.

The following table gives the modified scores. The c¢ld scores

are given in parenthesis for comparison.

Table 2
# of

Level Tricks Minors Majors No Trump
1 7 30(20) 30 40

2 8 50(40) 60 70

3 9 70(60) 90 i 100
4 10 90(80) ' 120 130 11

S |

5 11 110(100) 150 160

6 12 130(120) 180 190
111

7 13 150(140) 210 220

Once again considering the part scores first the following order is

obtained:



Order: 1m m 1N 2m 2M 2N 3m 3M 4m !
} C

Score: 30 30 40 50 60 70 70 90 90

Comparing A and C reveals that the drawbacks in A are corrected in C as
far as the order in the part scores are concerned. Unlike the present
scoring system this does not penalize twice. The scores are still gimple to
work with and always increase or remain equal to the scores at a lower
level.
Another very interesting feature of the modified system is that

it provides more competition in the following contracts:

L 1N against 2m.

23 2M against 3m.
Such a competition does not exist in the present scoring system. There
iz no incentive for playing the more difficult 2m or 3m contracts at
present , Thus, the modified system attempts to correct this unfairness.

Now considering the game scores the following oxder may be

written:
Order: 3N 4M 4N 5m 5M 5N |
Score: 100 120 130 110 150 160
Similar to B the order in the game scores Qn D is still not correct,
but it does attempt to correct the drawback as far as the minimum game
scores are concerned. It suffices to say that there is more competition
between 3N and 5m. The higher difficulty factor in 5m is now awarded
an additional 10 points.

In summary, the modification suggested here is an extensive



improvement on the existing scoring system. In addition to being fair
and more competitive it maintains the simplistic nature of the present

system,



PROPOSITION TIII

APPLICATION OF THE HEIL-PRAUSNITZ SOLUTION
THEORY TO OSMOTIC PRESSURE DATA



Abstract

The solution theory of Hell-Prausnitz is applied
to osmotic pressure data in polymers., A comparison with
the well known Flory-Huggins theory is made. It is
demonstrated that the Heil-Prausnitz theory applies
over a much wider range of concentrations., It is also
shown that unlike the parameter in the Flory-Huggins
theory the parameters in the Heil-Prausnlitz theory do

not depend on concentration.



Introduction

The lattice theory of fluids has been derived for
liquid mixtures where the molecules of the components of
the mixture are approximately of the same slze, One of the
most useful applications is 1ts extension to polymer solutions.
The most widely known tfeatment of polymer solutions was
derived independently by Flory(1,2) and Huggins(3,%4,5).
This theory has found wide applications in the physical
chemistry of macromolecules. The basic concepts of the Flory-
Huggins theory are quite similar to that of the 1att1ce thebry
except that here the polymer molecule is assumed to behave
like a chain consisting of a large number of segments, each
segment being cequal to the size of a solvent molecule, The
theory itself suffers from objections arising out of physical
considerations, since it does not account for 1ntermoleculér
forces,

Many modifications(6,7,8) to the Flory~Huggins theory
have been suggested, but the complexities of the results
render them difficult to use, In addition, these require
extensive data to determiné numerous paraueters. Reccntly -
Heil and Prausnitz(9,10) have derived a two parameter semi-
empirical equation. The main objective of'this work was to
obtailn an improved description of the thermodynamic properties
of binary polymer solutions which would employ a relatively
small number of parameters and could easily be extended to

describe multicouponent behavior. No data were presented
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coméaring thelr results with other theories., At present, an
obvioﬁs advantage of this treatment 1s a description of
multicomponent systems based entirely on the knowledge of
binary systems.

In this paper a study of the osmotic pressure of polymer
solutions 1is intended and the existing data will be utilized

to compare the Flory-Huggins and Heil-Prausnitz theories.,

Flory-Huggins Theory

The polymer molecules in solution may be several
thousand times larger than the sovent molecule. The Flory-
Buggins theory assumes the polymer molecule to consist of s
chain segments such that each segment occupies one site in
the lattice. Thus ﬁhe total nunmber of sites are nitsns,
where ny and n, are number of solvent and solute molecules.,
The main idea here is to calculate first the total configur -
ational entropy of thé polymer solution arising from the .
number of possible lattice configurstions for a mixture of
polymer molecules occupying s sites each and solvent molecules
occupying single sites. Flory and Huggins have developed a
theoretical expression for entropy of mixing: |

ZSSm = ~R(n;Indy+ nyIndg,) (1)
where ¢, and QS;are volume fractions of the solvent and the
solute respectively. To obtain the free energy of mixing a
semlempirical formula was assumed for heat of mixing

AH@ =% ¢ ¢ (ng + sny)RT '(2)
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where‘%,is called the Flory interaction parameter. Equations
(1) and (2) yield an expression for Gibbs free energy of
mizing

AG, = RT(nllnq’)i%- n,ln qé_j‘ x¢1¢énl + sn, ) (3)
The ma;n reason for the wide use of this expression 1is its
simplicity coupled with‘only on¢ experimentally determinable
parameter., The theory requires that all the polymer molecules
be ldentical with respect to the chzain length, or moleccular
weight, This is hardly the case in most polymers. Also Flory
and Huggins originally implied that the parameter:x{had a
single value for a particular system, Since then it has been
realized that a unlque value for the parameter ¢ may not be

used due to its strong dependence on polymer concentration.

Heil-Prausnitz Theory

As already mentioned the theory of Flory-Huggins
does not consider the intermolecular forces. In order to
describe the properties of a solution in which the components
differ not only in molecular size but also in intermolecular
forces Wilson(11l) developed the concept of local volome
fractions. This idea was recently used by Hell and

Prausintz to develop a semi-empirical solution theory.

The local volume fractlion of solvent molecules about

& central solvent rolecule is
E. X
11 Xl ’}‘ f& X?

()



5

The local volume fraction of polymer scgments about

a central polymexr segment Iis

€ o - (5)

3 Xl + X2

The local volume fraction of solvent molecules about

22 &

a central polymcr sesment is
B x
1

512 = e (6)

B xq + X,
The local volune fraction of polymer segments about
a central solvent molccule is

A x :
€, = 2 _. (7)

where A and B are glven by
(Vz/Vl) exp (~(g1p = ©11)/37) (8)

A

{I

1 and x2 are the mole Tractions of solvent and solute

respectively. V1 and V2 reprecsent the molar volumes of the

solvent and solute respectively. The quantity gy is the
< e
molecular interaction energy between an 1-j pair. These

and x

interaction energies give rise to two adjustable parameters

for each binary system. These are (g12-g11) and (g12-822).

For convenience the following parameters will be used

here:

i

Gq (510 = 811)/3T (10)
G, = (81, = 822)/RT (11)

]
Bell and Prausnitz ¢xpected the interaction energlies to be
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very weak functions of temperature and polymer concehtratlon,
but this has never been shown. However, it was found(9,10)
that these two barameters were independent of polymer
molecular weight. A new equation for the Gibbs free energy of
mixing was proposed, based on the concept of local volune
fraction |
AG, = BRT(ng 1n£11‘+ € np In £22 + (1-s) n, Ind, + ny 621(;1
+ 8 1n, €4, Gy) (14)
Values of interaction energles gij are reported for a large
number of systems. The above expression was proposed to meeﬁ
the following requirements:
1) It was expected to give a reasonably acourate description
of the chemical potential relative to polymer concentration.
2) It may be easily extended to polymer solutions of mixed
solvents,
3) The parameters were'expected to be uniquely defined and
might be used over a wide range of polymer concentrations,
Hell end Prausnlitz have extended the theory to multi-
component behavior and have provided experimental data to meet
the second requirement. The remaining objectives of this
theory need to be assessed., Thls proposition yields information

towards fulfilling the third requirement,



Daté Analysis

| A comparison of the aforementioned theories will be
made utilizing osmotic préssure data of Flory and Krigbaum(12)
- for fhe polystyrene-toluene system., The chemical potential of

the soclvent on mixing is related to the osmotle pressure Tr

by
From the definition
246,
Af“'l =( 2Ny )T Pynp (16)

theoretical expressions for chemical potential may be easily
obtained:
A. Flory-HUggins Theory

opr = -y = Bfin (dp) + G- ) 6, gl] (7)
B. Heil-Prsusnitz Theory

Xl AXZ SBX2
apy = -TV1 = RTEn + -
x1 + AXZ Xl + sz Bxl + x2
X,V AG,x
+ (s-1) ——>2t + 172
xlv1 + x2V2 X4 + sz
- +
(xq + sz)2 (Bxq + x3)
. 2 ’
B G,LrxX. X
. 271 22] (18)
(Bx1 + zz)

The nunmerical evaluations made in this proposition consist

of two major steps:
1. Evaluation of parameters in equations (17) and (18),

2., Use of these parameters for calculating the osmotic



pressure curves,

The parameters (glz-gll) and (g12~g22) for the polystyrene-
toluene system have been reported by Heil and Prausnitz(9).
Being independent of molecular welght, these parameters may
be applied to different molecular welght samples of poly-
styrene in toluene, The values for (glz—gll) and (812'822)
were obtained as follows, The vapor pressure of the solvent
in solution is related to its chemical potential by

P B
1 0
Al,,n,l = RT[]_n --l;%]). + R (Pl - Pl )] (19)

where P1 = observed vapor pressure of the solvent in
solution at equilibrium.
P = vapor presure of the pure solvent

B1 = second virlal coefficient

Equations (18) and (19) yield an expression which contains
only two parameters at a constant temperature. Heil and
Prausnitz used the vapor pressure data of Bawn and Freeman
(13) to determine the two parameters, The data are shown in
figure 1. The'range of concentration for which the data were
fitted are glven in a later section. The same data are being
used in this work to determine the Flory interaction parameter
x. From equations (17) and (19), one gets

1n e TN ;.f.l. (B1=P?) = 1n (1-%,) + (1- é--)¢2 + ¢ (20)

Pg RT 2

This equation may now be used to solve for . The results

are given in figure (2). Contrary to the original theory(l)
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)gis a very strong function of the polymer concentration in
solution. The parameters so obtalned are now used to illustrate
the abllity of equations (17) and (18) to represent the
experimental data,

Flory and Krigbaum (12) obtained osmotic pressure data
on various molecular weight sanples of polystyrene in toluene,
It 1s customary to present the osmotic. pressure data as a
plot of the quantity fr/C, against Cp, where C, is the polymer
concentration, The numerical procedure conslists of picking
different values of C2 forn the original'data of Flory and
Krigbaum and then evaluating 7T/C2 using equations (17) and
(18). As far as the Heil~Frausnitz theory is concerned the
calculataions are trivial if we assume that the theory involves
unique parameters., On the other hand in Flory-Huggins theory
where the interaction parameter<tis a known function of &,
(figure 2), one of the following proccdures may be used.

1. For each value of Cp a different value of xis employed
according to figure 2,
2. Since the purpose of the calculaion is of a comparative
nature, the limiting values of ¢ may be used,
~ The values of C2 considered here correspond to a
polymer fraction of less than 0.1. The value of X 1s almost
constant in this range (fig. 2) and is approximately the
maximum value of x . Hence,the second procedure, may be
used since it will also give the information that would be
obtained from the first.
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Figures 3 to 5 were constructed in thils manner for
various molecular weilght samples of polystyrene in toluene.
A complete tabulation of all variables desired for the

numerical calculation is provided in table 1.
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Results

The results calculated for six different polystyrene
samples are shown in figures 3,4 and 5, The dotted lines
result from the Flory-Huggins theory for the limiting
values of interaction parameter X « The experimental results
of Flory and Krigbaum(l2) are represented by the points,
through which a smooth curve has been drawn. The remaining line
has been ébtained from Heil-Prausnitz theory.

Hell and Frrausnitz had expected thelr parameters to
be independent of polymer concentration. As stated earlier,
this has never been shown. The parameters for polystyrene-~
toluene system have been taken from the original work(9).
These parameters wers fltted for the concentration range of
0.26 to 0,89 weight fraction of the polystyrene in toluene,
-The sanme values are being used here to describe a concentration
range of less than 0.1. Figures 3,4 and 5 clearly indicate
that the parameters in the FHeill-Frausnitz theory may be
used for any concentration range with a reasonable reliability.
The theory yields siwilar results in all six cases investiga=-
ted. This enphasizes the generality of parameters in fHeil-
Prausnitz equation. On the other hand, the Flory-Huggins
equation, where the concentration dependcence of 7 has been

taken account of, does not glve a good quantitative

deseription of the osmotic pressure data. A value of the

interaction parametex~ x lying between the liriting values
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might fit the experimental data, but would have no physical
significance. Such a<va1ue wlll ignore the concentration
dependencé of ¢ and consequently would become a function of
polymer moleculzar weight, since in such a case, different
fractions of the polymer will require differenty values and will
be a contradiction of thé original Flory-Huggins theory.

It should also be realized thét the same parameters
in both théories vyield similar results for different polymer
" molecular welzghts. For the success of any polymer solution
theory, it is desirable that the paraneters be eilther
independent of the size of the polymer molecule or a very weak
function of it.The authoy does not know of any work where -~
was reported to be a function of the‘molecular welght,
Concerning the parameters in Heil-Frausnitz theory, these
have been sho'm independent of polymecr molecular weight(9).
This work supports the original conclusion.

In summary, the definite advantage of the Heil-Prausnitz
theory over the Flory-Huggins thecory has been demonstrated.
It was also shown for the first time that the parameters in
Heil-Preusnitz theory may be reliably used to describe the

solution behavior over a wide range of concentrations,
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Table 1

Polvstyrene-toluene system

T = 30%

(815-841) = =53.03 cal/g.-uwole

(812-822) = 158,4 cal/g.-nole

51 = 0.857

e = 1,083

P = 1 atn,

vy = lol. wt. of solvent/J]

v, = Mol. wt. of polymer/%,

s = ¥ol. wt. of polymer/Mol. wt., of
repeating unit

R = 1,987 cal/(g.~mole)(OK)

Concentration range for which (glz-gll) and (312-322)
vere fitted = 0,26 to 0.89 weight fraction of the

polystyrene in toluene?
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Notation
1 = subscript for solvent
2 = subscript for polymer
¢ = volwne fraction
X = Flory interaction parameter
Egz local volume fraction
f- = chenical potential
77 = osmotic pressure
Ff = density

By= second virial coefficient
C = concentration
H = heat of mixing
Sp = entropy of mixing
G_ = Gibbs energy of mixihg
. P = pressure
Py= observed vapor pressure of solvent in equilibrium
with the solution
Pi: vapor pressure of pure solvent
= energy of i-J molecular interaction
V = molar volume
T = temperature
X = mole fraction
R = universal gas constant
8 = number of segments per polysegmented molecule

n = number of molecules
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