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Abstract 

Nonnatural amino acid incorporation has been one of the most important protein 

engineering techniques. Particularly site-specific incorporation of nonnatural amino acids 

would allow design of artificial proteins containing a nonnatural amino acid with minimal 

perturbation of their native properties. Site-specific incorporation of phenylalanine (Phe) 

analogs and tryptophan (Trp) analogs, such as p-bromophenylalanine (pBrF), p-

iodophenylalanine, p-azidophenylalanine, 6-chlorotrytophan, 6-bromotryptophan, 5-

bromotrytophan, and benzothienylalanine, into proteins in Escherichia coli has been 

realized by E. coli strains outfitted with a mutant yeast phenylalanyl-tRNA suppressor 

(ytRNAPhe
CUA) and a mutant yeast phenylalanyl-tRNA synthetase (yPheRS (T415G)) with 

a point mutation in the active site of the enzyme. In order to reduce Trp and lysine (Lys) 

misincorporation at an amber codon, the ytRNAPhe
CUA_UG containing the optimized 

sequence and the yPheRS (T415A) showing higher specificity toward pBrF were 

developed. Combining ytRNAPhe
CUA_UG and yPheRS (T415A) allowed incorporation of 

pBrF into murine dihydrofolate reductase in response to an amber codon with at least 98% 

fidelity.  

Re-assignment of degenerate sense codons offers the prospect of a substantially 

expanded genetic code and a correspondingly enriched set of building blocks for natural 

and artificial proteins. Here we describe the use of a mutant yeast phenylalanine transfer 

RNA (ytRNAPhe
AAA) containing a modified anticodon to break the degeneracy of the 

genetic code in E. coli. By using an E. coli strain co-transformed with ytRNAPhe
AAA and a 

mutant yPheRS (T415G), we demonstrated efficient replacement of Phe by L-3-(2-

naphthyl)alanine (2Nal) at UUU, but not at UUC codons.  
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However, this method had two limitations. First, the yPheRS (T415G) also 

activated Trp, which led to Trp misincorporation.  Second, 2Nal was misincorporated at 

UUC Phe codons, due to the relaxed codon recognition of AAA anticodon in the 

ytRNAPhe
AAA. High-throughput screening of a yPheRS library led to a more selective 

yPheRS variant (yPheRS_naph). The rationally designed ytRNAPhe
CAA, which has the CAA 

anticodon recognizing only a UUG (Leu) codon, allowed incorporation of 2Nal only at 

UUG codon. Combined use of yPheRS_naph and ytRNAPhe
CAA achieved multiple-site-

specific incorporation of 2Nal into proteins. These results illustrate a general method for 

increasing the number of distinct, genetically-encoded amino acids available for protein 

engineering. 
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