PROTEIN ENGINEERING VIA SITE-SPECIFIC INCORPORATION OF NONNATURAL AMINO ACIDS

Thesis by

Inchan Kwon

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007

(Defended January 19, 2007)

© 2007

Inchan Kwon

All Rights Reserved

Acknowledgments

I would like to acknowledge my thesis advisor David Tirrell. I still remembered Dave's research presentation in my first year at Caltech. I was captivated by his clear presentation and fascinating research area, which influenced me to join his lab. During my days in his lab, I was deeply impressed by his endless curiosity in science and his systematic approach to solve problems with deep knowledge and strong enthusiasm. Without his timely advice and guidance throughout my PhD program, most of my projects would not have been successful. Dave was very supportive of my future career in all aspects.

I also would like to acknowledge other committee members, Prof. Frances Arnold, Prof. Dennis Dougherty, and Prof. Christina Smolke. They also served as my candidacy committee and provided me with many comments and much help since then. I appreciate their time and efforts to review my thesis as well as their great support for my career development.

I am grateful to all former and current Tirrell laboratory members. I was very lucky to work with such wonderful colleagues. In particular, Pin, Jamie, and Rebecca helped me a lot to settle down when I joined Tirrell laboratory. They knew everything I needed and were always willing to assist me. Three postdoctoral fellows, Kent, Jinsang, and Jin impressed me deeply with their commitment and enthusiasm to pursue science. They were also willing to share their experience and helped me to go through many non-scientific issues. They were invaluable role models as young scientists. I thank Caglar and Kimberly for their efforts and time reviewing my writing many times as well as for their helpful discussions on diverse topics. I appreciate Julie and Jamie for sharing their experience in career development.

Finally, I wish to thank my wife Junghi and my son Hyungju for their continual support and encouragement throughout my PhD program. My daughter Suah, who was born recently, has added great pleasure to my life.

Abstract

Nonnatural amino acid incorporation has been one of the most important protein engineering techniques. Particularly site-specific incorporation of nonnatural amino acids would allow design of artificial proteins containing a nonnatural amino acid with minimal perturbation of their native properties. Site-specific incorporation of phenylalanine (Phe) analogs and tryptophan (Trp) analogs, such as *p*-bromophenylalanine (pBrF), *p*iodophenylalanine, p-azidophenylalanine, 6-chlorotrytophan, 6-bromotryptophan, 5bromotrytophan, and benzothienylalanine, into proteins in Escherichia coli has been realized by E. coli strains outfitted with a mutant yeast phenylalanyl-tRNA suppressor (ytRNA^{Phe}_{CUA}) and a mutant yeast phenylalanyl-tRNA synthetase (yPheRS (T415G)) with a point mutation in the active site of the enzyme. In order to reduce Trp and lysine (Lys) misincorporation at an amber codon, the ytRNA^{Phe}_{CUA_UG} containing the optimized sequence and the yPheRS (T415A) showing higher specificity toward pBrF were developed. Combining ytRNA^{Phe}_{CUA UG} and yPheRS (T415A) allowed incorporation of pBrF into murine dihydrofolate reductase in response to an amber codon with at least 98% fidelity.

Re-assignment of degenerate sense codons offers the prospect of a substantially expanded genetic code and a correspondingly enriched set of building blocks for natural and artificial proteins. Here we describe the use of a mutant yeast phenylalanine transfer RNA (ytRNA^{Phe}_{AAA}) containing a modified anticodon to break the degeneracy of the genetic code in *E. coli*. By using an *E. coli* strain co-transformed with ytRNA^{Phe}_{AAA} and a mutant yPheRS (T415G), we demonstrated efficient replacement of Phe by L-3-(2-naphthyl)alanine (2Nal) at UUU, but not at UUC codons.

However, this method had two limitations. First, the yPheRS (T415G) also activated Trp, which led to Trp misincorporation. Second, 2Nal was misincorporated at UUC Phe codons, due to the relaxed codon recognition of AAA anticodon in the ytRNA^{Phe}_{AAA}. High-throughput screening of a yPheRS library led to a more selective yPheRS variant (yPheRS_naph). The rationally designed ytRNA^{Phe}_{CAA}, which has the CAA anticodon recognizing only a UUG (Leu) codon, allowed incorporation of 2Nal only at UUG codon. Combined use of yPheRS_naph and ytRNA^{Phe}_{CAA} achieved multiple-site-specific incorporation of 2Nal into proteins. These results illustrate a general method for increasing the number of distinct, genetically-encoded amino acids available for protein engineering.

Table of Contents

Acknowledgments	iii
Abstract	V
Table of Contents	vii
List of Tables	xii
List of Figures	xiii
Chapter 1 Expansion of the Number of the Genetically Encoded An Acids in <i>E. coli</i>	nino 1
Abstract	2
Introduction	2
Site-Specific Incorporation	3
Orthogonal Pairs	4
Modification of Endogenous Orthogonal Pairs	5
Orthogonal Pairs Derived from Yeast	6
Orthogonal Pairs Derived from Archaebacteria	7
Substrate Specificity Change	9
Rational Design of the Active Sites of Aminoacyl-tRNA Synthetases	
Directed Evolution of Aminoacyl-tRNA Synthetase Substrate	12
New Codon-Anticodon Interactions	14
Nonsense Suppression	15
Breaking the Degeneracy of the Genetic Code	15
Frameshift Suppression	17
Conclusions	18
References	19
Chapter 2 Site-Specific Incorporation of Phenylalanine Analogs into Proteins in Vivo by an Engineered Yeast Phenylalanyl-th Synthetase	o 36 RNA
Abstract	37
Introduction	38
Materials and Methods	40
Materials	40
Plasmid Construction for Synthetase Expression	40

Synthetase Expression and Purification	41
Amino Acid Activation Assay	42
Plasmid and Strain Construction for in Vivo Incorporation Assay	42
Analog Incorporation Assay in Vivo	43
Composition Analysis of Mutant mDHFR	44
Results and Discussion	45
Rationales for Engineering the New Synthetase Specificity	45
Synthetase Expression and Purification	46
Amino Acid Specificity of Mutant Yeast PheRS	47
Site-Specific Incorporation of Phe Analogs into mDHFR	48
in Vivo Using a Phenylalanine Auxotrophic Strain	
Site-specific Incorporation of Phe Analogs into mDHFR	50
in Vivo Using a Phe/Trp Double Auxotrophic Strain	
Site-specific Incorporation of Phe Analogs into mDHFR	51
in Vivo Using a Phe/Trp/Lys Triple Auxotrophic Strain.	
Conclusions	52
Acknowledgments	53
References	53
Chapter 3 Design of a Bacterial Host for Site-Specific Incorporation of <i>p</i> -Bromophenylalanine into Recombinant Proteins	68
Abstract	69
Introduction	69
Materials and Methods	71
Materials	71
Plasmid Construction for Synthetase Expression	72
Synthetase Expression and Purification	73
Amino Acid Activation Assay	73
Plasmid Construction for ytRNA ^{Phe} Expression	74
In Vitro Transcription	75
Aminoacylation Assay	76
Strain and Plasmid Construction for in Vivo Incorporation of pBrF	77
In Vivo Incorporation of pBrF	77
Quantitative Analysis of pBrF Incorporation by Liquid	78
Chromatography Mass Spectrometry (LC-MS)	
Results and Discussion	79
Aminoacylation of ytRNA ^{Phe} CUA and ytRNA ^{Phe} CUA_UG with Lys	79
Occupancy of the Amber Site	80
Reduced Lys Misincorporation by ytRNA ^{Phe} CUA_UG	81
Redesign of Phenylalanyl-tRNA Synthetase	81
ATP-PPi Exchange and Aminoacylation of ytRNA ^{Phe} Catalyzed	82
by yPheRS Variants	~ -
High Fidelity Site-Specific Incorporation of pBrF	83
Conclusions	83

	ix	
Ackr	nowledgments	84
Refe	rences	84
Chapter 4	Site-specific Incorporation of Tryptophan Analogs into	
-	Recombinant Proteins in Vivo	96
Abst	ract	97
Intro	duction	98
Mate	rials and Methods	102
	Materials	102
	Amino Acid Activation Assay	102
	Strain and Plasmid Construction for in Vivo Incorporation Assays	103
	In Vivo Analog Incorporation Assays	104
	Quantitative Analysis of Analog Incorporation by Liquid	105
	Chromatography Mass Spectrometry (LC-MS)	
	Fluorescent Protein Isolation	105
	Characterization of Spectral Properties	106
Resu	lts and Discussion	107
	Rational Design of yPheRS and Choice of Trp Analogs	10
	Activation of Trp Analogs by yPheRS (T415G)	108
	Site-Specific Incorporation of Trp Analogs into mDHFR in Vivo	109
1	Spectral Analysis of Fluorescent Proteins	111
Conc	clusions	113
Ackr	nowledgments	113
Refe	rences	114
Chapter 5	Breaking the Degeneracy of the Genetic Code	127
Abst	ract	128
Intro	duction	128
Mate	rials and Methods	129
	Materials	129
	Strains and Plasmids	129
	Construction of Plasmid Carrying Mutant Yeast tRNA	129
	Construction of Plasmid Carrying mDHFR and Mutant Yeast Phenylalanyl-tRNA Synthetase	130
	Protein Expression and Purification	130
	Amino Acid Analysis	131
	MALDI-MS Analysis	131
Resu	lts and Discussion	132
Conc	elusions	137
Ackr	nowledgments	137
Refe	rences	137

Chapter 6	Breaking the Degeneracy of the Leucine Codons in <i>Escherichia coli</i>	14
Abst	ract	14
Intro	duction	14
Mate	rials and Methods	15
]	Materials	15
]	Preparation of <i>E. coli</i> hosts	15
]	Plasmid Construction for Reporter Gene Expression	15
(Construction of yPheRS Library	15
	Construction of Expression Library	15
	Screening of yPheRS Library	15
(Characterization of the Isolated Clones	15
	Amino Acid Activation Assay	15
(Construction of Plasmids and Expression Hosts for Incorporation of 2Nal at Phe Codons	15
]	Residue- and Site-Specific Incorporation of 2Nal into Recombinant Proteins	15
(Construction of Plasmids and Expression Hosts for 2Nal Incorporation at Leu Codons	15
]	Expression of mDHFR Variants and GFP Variants in Vivo	16
	Quantitative Analysis of Codon Occupancy	16
Resu	lts and Discussion	16
]	Misincorporation of Trp into Recombinant Proteins in Response to UUU Codons	16
(Construction of yPheRS Library	16
]	High-throughput Screening of yPheRS library	16
(Characterization of the Selective yPheRS Variant	16
	Amino Acid Activation Analysis by yPheRS_naph	16
]	Elimination of Trp Misincorporation at UUU Codons by yPheRS_naph in Vivo	16
]	Residue- and Single-Site-Specific Incorporation of 2Nal in Vivo	16
	Single-Site-Specific Incorporation of 2Nal into GFP in Vivo	16
]	Misincorporation of 2Nal at Unwanted Sites (UUC Codons) in Vivo	16
]	Breaking the Degeneracy of the Leucine Codons	16
1	UUG Codon-Specific Incorporation of 2Nal	17
]	Minimal Perturbation of Native Properties of GFP upon Incorporation of 2Nal	17
Conc	lusions	17
Ackn	owledgments	17
Refer	rences	17
Appendix A	A Plasmid Information	18
A	2 Markor Protoin Information	20

Appendix C Names and Sequences of PCR Primers

215

List of Tables		Page	
Table 2.1	Kinetic parameters for ATP-PPi exchange of amino acids (1-7) by the mutant yeast PheRS	61	
Table 3.1	Occupancy of amber sites and expression yields	93	
Table 3.2	Kinetic parameters for ATP-PPi exchange of amino acids by the wild-type yPheRS, yPheRS (T415G), and yPheRS (T415A) variant	94	
Table 4.1	Kinetic parameters for ATP-PPi exchange by the yPheRS (T415G)	124	
Table 4.2	Occupancy of amber sites and mDHFR expression yields	125	
Table 4.3	Spectral properties of CFP6 variants	126	
Table 5.1	Molar masses and numbers of 2Nal residues observed for mDHFR samples prepared under various conditions	140	
Table 6.1	Kinetic parameters for ATP-PPi exchange of amino acids by the yPheRS (T415G) and yPheRS_naph variants	187	
Table 6.2	Occupancy of UUU and UAG codons by various amino acids	188	

xii

List of Figures		Page
Figure 1.1	Nonnatural amino acids that have been genetically incorporated into proteins in bacteria, yeast or mammalian cells.	28
Figure 1.2	Structures of yeast tRNA ^{Phe} and <i>E. coli</i> tRNA ^{Phe} .	29
Figure 1.3	Anticodon-loop tRNA library, all-loop tRNA library derived from <i>M. jannaschii</i> tRNA ^{Tyr} _{CUA} and a general selection scheme for suppressor tRNAs that are orthogonal to <i>E. coli</i> endogenous systems and charged efficiently by a cognate synthetase.	30
Figure 1.4	Crystal structure of the <i>T. thermophilus</i> PheRS (<i>t</i> PheRS, pdb 1B70) in ribbon model and sequence alignment of PheRS from 21 different organisms.	31
Figure 1.5	A Phe substrate and four residues within 7 Å of the <i>para</i> -position of phenyl ring of a Phe substrate inside the binding pocket of a homology model of yPheRS structure, and a screening scheme of yPheRS library.	33
Figure 1.6	A schematic diagram describing the concept of breaking the degeneracy of the genetic code.	35
Figure 2.1	Sequence alignment of PheRS variants from <i>Thermus thermophilus Escherichia coli</i> , <i>Saccharomyces cerevisiae</i> and stereoview of active site of PheRS from <i>T. thermophilus</i> .	r, 59
Figure 2.2	 Amino acids involved in this study. (1) phenylalanine; (2) <i>p</i>-bromophenylalanine; (3) <i>p</i>-iodophenylalanine; (4) <i>p</i>-azidophenylalanine; (5) tyrosine; (6) trytophan; (7) 3-(2-naphthyl)alanine; (8) L-lysine. 	60
Figure 2.3	Amino acid sequence of marker protein mDHFR (38Am).	62
Figure 2.4	MALDI-MS of proteolytic peptide fragments derived from mDHFR (38Am) expressed in media supplemented with 7 or 2 .	63
Figure 2.5	The tandem mass spectrum of Peptide A (NGDLPWPPLRNEZK) derived from mDHFR (38Am) expressed in AF strain in media supplemented with 7 .	65
Figure 2.6	MALDI-MS of proteolytic peptide fragments of mDHFR (38Am) expressed in AFWK strain in media supplemented with 2 or 3 .	66

Figure 3.1	Aminoacylation of $ytRNA_{CUA}^{Phe}$ and $ytRNA_{CUA_UG}^{Phe}$ with Lys by eLysRS.	88
Figure 3.2	LC-MS chromatograms of tryptic digests of mDHFR.	89
Figure 3.3	Charging of Phe and Trp by wild-type yPheRS, yPheRS (T415G), and yPheRS (T415A).	91
Figure 4.1	 Amino acids involved in this study: (1) tryptophan, (2) phenylalanine, (3) 6-chlorotryptophan, (4) 6-bromotryptophan, (5) 5-bromotryptophan, (6) benzothienylalanine. 	118
Figure 4.2	A hypothetical model for the adaptability of Trp analogs to the binding pocket of eTrpRS.	119
Figure 4.3	SDS-PAGE analysis of mDHFR_38Am expression.	120
Figure 4.4	Tandem mass spectrum of the peptide (NGDLPWPPLRNEZK).	121
Figure 4.5	Crystal structure of enhanced cyan fluorescent protein and chromophores of CFP6 variants containing 1 , 3 , 4 , and 6 .	122
Figure 4.6	Absorption and fluorescence emission spectra for CFP6 variants containing different Trp analogs at the Trp66 position.	123
Figure 5.1	A strategy for multi-site incorporation of 2Nal into recombinant proteins by breaking the degeneracy of the phenylalanine codons.	141
Figure 5.2	SDS-PAGE analysis of mDHFR prepared in minimal media supplemented with 3 mM 2Nal and free of exogenous Phe.	142
Figure 5.3	Replacement of Phe by 2Nal can be detected in MALDI-MS spectra of tryptic fragments of mDHFR.	143
Figure 5.4	Tandem mass spectrum of Peptide 1 _{UUU} (Nal) YKF*EVYEK.	145
Figure 6.1	LC-MS chromatogram of tryptic digests of mDHFR.	176
Figure 6.2	Phe substrate and four residues within 7 Å of <i>para</i> -position of the phenyl ring of the substrate inside the binding pocket of a homology model of yPheRS structure.	178
Figure 6.3	A screening scheme for yPheRS library.	179

Figure 6.4	Fluorescence intensities of cells containing GFP6 expressed in minimal medium without or with 2Nal.	180
Figure 6.5	Fluorescence intensities of cells under uninduced conditions.	181
Figure 6.6	UUC and UUU codon occupancy by Phe and 2Nal.	182
Figure 6.7	Fluorescence intensities of cells expressing GFP3_WC and GFP3 expressed in minimal medium without or with 2Nal.	183
Figure 6.8	LC-MS chromatogram of tryptic digests of mDHFR.	184
Figure 6.9	Fluorescence intensities of cells containing GFP3 (158UUG) expressed in minimal medium without or with 2Nal.	186