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ABSTRACT

i‘he recent experimental deteminations of the radius of the nuclear
charge distribution all tend to give an approximate value of R = roAl/ 3
with r_ = 1.2 x 10713 em, However, the theoretical work of Schawlow
and Townes on the effect of the finite nuclear size on the Lyr-L ;o
X.ray level splitting, through a comparison with already existing
X.ray data, yielded a value of r 0= 2el x Z*..O"l3 cme This thesis dese
cribes an experimental determination of the I'II'LIII splitting for six
of the heavy elements based on two-crystal spectrometer measurements
of the Bragg angles of the Ly and Lﬁl Xaray lines of W, Pt, Bi, Th,
U, and Pu. The Bragg angles gf these lines, corrected for vertical
divergence, temperature, and crystal diffrac:t.ion pattern asymmetry,
are reported with a mean standard deviation of about 042 second of arc,
The values of the LII'LIII splitting calculated from the wavelengths
of the lines have a relative accuracy of about 50 parts per million.
When the experimental splittings are compared to the thearetical values
which include the miclear size effect, a value of r, = 1.07 x 107> em
is obtaineds The suggestion is made that inaccuracies in the previous
measurements of the L, wavelengths for several high Z elements might
have contributed to the large value of T, obtained by Schawlow and
Towunese When the theoretical splitting is calculated with corrections
for vacuum polarization a.nd a nuclear radius constant of Ty = 1.2 x Il.()"]'3
em, a comparison with experiment shows that a discrepancy remains which
is then used to evalnate an empirical correction terme The sign,
magnitude, and Z-dependence of this term suggest that the remaining
discrepancy might arise from the Lamb shift effecte.
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PART I
INTRODUCT ION

During the past few years, considerable effort has been expended
toward getting as many facts as possible about (1) the size of the
nucleus and (2) the nature of its charge distribution. That these
two problems are intimately related is evident, for the word %size"
presupposes some sort of boundary, and the type of boundary is
dependent upon the nucleon distribution. Certain experiments are
more sengitive to the distribution of nucleons while others reveal
more information about the distribution of charge. Among the former
we would piace neutron and proton scattering experiments and «-deéay
lifetime measurements. Among the latter are measurements of isotope
shifts, X-ray level splitting in heavy elements, mesonic X-rays,
electron scattering by nuclei, f-decay, and nuclear Coulomb energy.
It is therefore important that we distinguish between the radius of
the distribution of charge and the radius of the distribution of
nucleons, for these radii may be significantly different. (1) Hence-
forth, we usually shall have reference to the former unless otherwise
stated.

Recent experiments in high energy electron scattering (2), (3)
and mesonic X-rays (L) have indicated that the proton distribution
probably consists of a central region of uniform density with an
extended "tail" at the periphery of the latter and with a root mean
square radiug of R = rQA:I'/3 where A is the atomic mass nmumber and
ro®* 1.2 x 1013 cm. This value of Ty is significantly smaller than
the usually accepted value, ro = 1.5 x 10~13 em. Cooper and Henley (5)



and Ford and Hill (6) have compared thess and the other methods yielding
information on the charge distribution and find, with one exception,

- that the results of the various experiments are consistent with the
smaller imclear radius. |

This exception is the value of r, as deduced by Schawlow and
Townes.” (7) Briefly, their theory is based on the fact that in the
heavy elements the finite extent of the nucleus causes a perturbation
of the energy levels of those electrons whose wave functions are
different from gzero in the region of the nucleus. This perturbation
is small for the 2pq /2 electrons and negligible for the 2p; /2
electrons. Thus the Lyy - Ly level splitting is subject to a small
change due to nuclear size which is shown by Schawlow and Townes to
increase rapidly with atomic number. By comparing their theoretical
calculations with existing X-ray data on the Lty - I'III level splitting
in heavy elements they find that in order to get reasonable agreement
a value of r, = 2.1 x 1013 cm (assuming a fictitious wniformly charged,
sharply bounded nucleus) is required.

Before this discrepancy became apparent, the present work was
planned as an attempt to improve on the precision of the X-ray measure-
ments which enter into the Schawlow-Townes theory. As other experiments
began to suggest a smaller value of r,, it became clear that highly
precise X-ray measurements were necessary to eliminate a possible source

of the discrepancy.

¥ This reference to the work of Schawlow and Townes was not published
until after the major portion of the present work was completed.
Professor Townes had kindly supplied us with the unpublished
manuseript, however, which formed a basis for planning portions of
this experiment.
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The Lyt - I‘II_[ energy level difference can be measured in several
different ways, each having its own peculiar set of experimental
- difficulties. This study is concerned with a two-crystal spectrometer
determinétion of the wavelengihs of the L°<2 and the L 91 lines of

six of the heavy elements, Pt, 83Bi., 90'1‘11, U, and 9hPu. The

W' 78 92

energy difference of these two lines is that of the Lyt and LIII
levels. The advantages of using these particular lines to obtain the
level splitting will be discussed later.

Part II preseﬁts a synopsis of the theoretical work that has been
done in evaluating the effect of the finite extent of the nucleus on
the atomic electrons.

Part III gives a brief survey of the theory of X-ray reflection
from a single crystal and then applies this theory to the operation of
the two-crystal spectrometer in the absolute determination of Bragg
angles.

Part IV presents an analysis of the effect of "vertical divergence®
of the X-ray beam on the shape and position of the spectral line. The
wavelength shift of an observed line due to absorption and due to
asymmetry in the crystal diffraction patterns is also discussed.

Part V gives a description of the experimental apparatus.

Part VI describes the experimental procedure and presents the
results of the measurements along with a discussion of their precision.
A comparison with the Schawlow-Townes theory is made, and the possible
significance of the results is discussed.



PART II
SYNOPSIS OF THE NUCLEAR SIZE EFFECT THECRY

A considerable amount of theoretical work has been done in
attempting to evalunate the effect of the spatial extent of the nucleus
on the energy levels of the atomic electrons. Most of this work has
been carried out by investigators in the field of optical spectroscopy
who have been interested in giving a quantitative interpretation of
the phenomenon known as isotope shift.

Inasmch as additional neutrons inanucleus cause a slight change
in its size and charge distribution, one might expect those atomic
electrons most strongly affected by nuclear size to undergo small
changes in their energy levels from isotope to isotope. This nuclear
volume effect has been treated by first-order perturbation theory,
and while in considerable error for the heavy elements, the theory
serves as a convenient vantage point from which to survey the more

exact approach discussed in Section B.

A. First-Order Perturbation Approach
The central problem of the perturbation method is the evaluation

of the integral

R
AE = j P(r)(V + 2e2/r) h'rrr2 dr (2.1)

o

where AE is the shift in energy level of an atomic electron,

P(r) is the probability density of the electron in the
vicinity of a point nucleus,



R = radius of nucleus (more precisely, that distance beyond
which the potential V = - Ze2/r).

- Rosenthal and Breit (8) have calculated an expression for AE starting

with the Dirac radial wave equation for a central field. Since it is

of some interest to compare and contrast the perturbation method with

the more exact method, we shall consider briefly their approach. The

two-component relativistic wave equations may be written™

dr 13 1 E-V
'&?"Ji"f?(l';;'i)(}

(2.2)
G 6 1 E-V
- (14Xl
Fry -t DT
with y = 2Zr/a, ,
Y-NZ

a, is the first Bohr radius for hydrogen,

o is the fine structure constant, .

Jj is a quantum number taking on values -1, +1, =2, «es
for s%, p%, P

3
Assuming that V is constant for y <y, (which implies that the charge

/2° +ees States respectively.

resides entirely on the nuclear surface) and making the approximation
E = mc2, the solutions of (2.2) for the region inside the nucleus are

in terms of Bessel functions of the form

J|3:%|(YJ v(v - 2)/2Y)

# The notation has been changed slightly to conform to more prevalent
usage.



6

where v = V/nc? is a constant. Since y is small and if \v| is not too
large (=20 £ v €20), the Bessel functions can be represented by

- their first term to a sufficient degree of accuracy; the solutions
of (2.2) can be expressed in the form:

k2(2-V)yj+1
F=kjyl; G= i>o
2Y (23+1)
(2.3)
1+ 13l
y
e A
2v(1#2)31)

kl and k2 are constants,

Outside the mucleus, V = -Zez/r = -2mc272/y; and with the

approximation E = mc2, the equations (2.2) become

@& _JF_,_7C
dy ¥ y
(2.4)
@, 8. L,Y
T Ji" G+ r
The solutions of (2.};) are
F/" =Cl IJZT (@%) + 02 J_zg- (Zy%)] *
(2.5)

L 1
¢ =0y [a,q (2r®) * 0y a,g (D)

with the abbreviations:
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1
By = (3-0)ye+5° Jpga

- 1
Aoy = (3 -0)_p0- 32 Log-1 (2.6)

Y

Cy a.nd C, are constants.

For a point nucleus (2.5) must be valid down to y = 0; and because
of the behavior of negative order Bessel functions for small values of
the argument, the constant C, must be set equal to zero. It is clear
therefore that the finite nuclear size affects the wave functions
through the constant C,e TIts value for a finite mmcleus can be
determined by matching the solutions (2.3) with the solutions (2.5)
at the boundary of the nucleus y = y,. The result is:

F/¥G - J
02 - 26 (207)

J-—2c - (F/VG)A_2¢

- where the argument of the Bessel functions is 2y°':1e', and F/¥G is
determined from (2.3) with y = y,.

The point nucleus wave functions F, and G, (with Co = 0) can be
used to evaluate P(r) in the integral (2.1). If we require the
normalization

00
j (F2 +6G2) ar =1, (2.8)

o

(2.1) may be written
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R

AE = f (V + Ze2/r)(F,° + Go2) dr . (2.9)

0

- Since y = 2Zr/a, is small over the range of integration (4 0,05), F02

2

and G, may be represented hy the first temm of an expansion in powers

of ys o5
20125(3- T)y

F 2 +G,2 = (2.120)

reze+ 1)

Assuming a constant value for V » v mc?, the integration yields:

AE = 226202 _3(3-0) 1 o .27, (2.11)
I ey |20 ey °

Rosenthal and Breit have investigated the wvalidity of the per-
turbation method and have found that (2.11) gives values which should
be multiplied by a factor between 0.5 and 1.0. The correction they
have worked out depends on the sizes of Cs, and ve Some typical values

for Z = 81 and v = ~20 (representing a spherical shell of charge) are:

State J Cop Correction to AE
sl -1 0,004k 0.81

L +1 0.0005 0.82

p3 /2 -2 negligible 1.0

It is significant that the finite nucleus perturbs the p3 /2 state
to a negligible extent. This fact is of considerable importance because
it allows the entire calculated shift of the Lyy level to represent the
change in the doublet splitting due to nuclear size.

The normalization constant C, appearing in (2.11) may be evaluated
in terms of hA?, the fine structure splitting, when the principal
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Quantum number is large enough so that relativistic effects can be
neglected. Using Sommerfeld!s doublet splitting formmla and making
the approximation |
Y=0
where ¥ is the Schroedinger nonrelativistic wave function, Rosenthal
and Breit obtain the following equation for Cy<:
2
‘312- - hd¥/Ze
i x
[(e+ 12 -¥2]5 1. 232

(2.12)

It is worth noting that the requirement that V be constant in the
perturbation integral (2.9) is not necessary. In a note in proof in
reference (8) Rosenthal and Breit show that the use of the general

potential form for r4£ R

2
v-[_.‘!i'.].-.-c-l(r)n?_e_
n n R R

requires that AE be multiplied by the factor

ntl
26 (26+1) (26+n+1)

rather than by the factor

L, o _
20 2y<(26+1)

as in equation (2,11). Here n is a parameter which can range from -1
(charge concentrated at r = 0) to + © (charge concentrated at r = R),
With n=2 (uniform charge distribution) and with v = -2 Yefy o (charge

on surface of nucleus), comparison of the two factors shows that AE
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‘for the shell modél is about 1.5 times that for a uniform model.
Ford and Hill (6) have shown that the perturbation formula can

- be expressed as

OE = ¢(Z)_ <r2>Av

where <r2¢)Av is the aferage value of 2’ defined by

: frz‘rf (r)4 Trdr F
: <r26> = - = (ze)™t 1?9 (r)lte2ar
Av N

ffn(n)mr r2dr o (2.13)

and f 1q(r) is the nuclear charge density. Using electronic computer
techniques they have evaluated (r®%),  for several different types of
charge distributions. Their results will be useful in modifying the
exact calculations of AE to conform to different muclear models.

B. More Exact Calculations

A rather ingenious method of calculating AE without using the
usual perturbation techniques has been developed by Broch. (9) Equation
(2.2) for a point nucleus may be written

&F, F, 1  EgV,
(2.14)
&G, 36, 1 E -V
0 o 0o "0
e LA

Multiplying the first of the above equations by -G, the second by F,
the first of (2.2) by G,, and the second of (2.2) by -F,, we obtain
by addition
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2 (ro, - F o) =O0V=BE (FF_+G G,) (2.15)
dy. 2)'mc2 °

~ where AV =V - V, and AE = E - E,. Integrating this equation from
Yo to o, noting that AV = 0 outside the nucleus and that the wave
functions vanish at ©, we get

@

(FG, - F )y, = AE 5 f (FF, +GG)dy. (2.16)
2 me

Yo

A very good approximation to the integral in (2.16) can be made by

ass‘tming*

00 00 [v3)
o - 2Z 24 2
f (F F G G )dy = f (F F G G )dy Foy f (F 4G, )dr = _i_?_
Yo J

0
(2.17)

since y, is very small compared to atomic dimensions; hence
AE = fe(FC, - FG), . (2.18)

o

F and G in this expression are given by (2.5) .a.nd F, and G, are the

same functions with C, = 0. The value of C, is given by (2.7), but

it must be pointed out that the quantity F/¥ G appearing therein must

be calculated separately for sach type of potential function used.
Broch's paper is concerned with deriving an accurate correction

factor for Rosenthal and Breitts perturbation formula; however,

Schawlow and Townes use Broch!'s expression for AE rather than

#* Actually Broch assumes f (Fozﬁ}oz)dy = 1, but Schawlow and Townes

adhere to Rosenthal and Breit!s normalization (2.8) since C, and C,
are used in this more exact treatment,
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' correct,ing the perturbation calculations. Substituting the various

quantities into (2.18) we obtain

20,2
AE = Ze“Cq Czyo (J2°_+1 26'*J20‘J—26'-1) (2.19)

1
where the argument of the Bessel functions is 2y,2. This can be

simplified by using properties of the Bessel functions:

AE = - 2202C.°C . 2420
*%1% r?uzﬂ 7 (1-20) (2.20)

An approximate expression for 012 is given by (2.12) which is not too
accurate for the Iyy - LIII splitting. Schawlow and Townes point out
that more accurate values of 012 can be obtained if Dirac wave functions
with an appropriately screened nuclear charge are used rather than the
Schroedinger wave functions used by Rosenthal and Breit. Actual cal-
culation using a screening constant of 5.5 shows that C12 as given by
(2.12) should be multiplied by 0.76.

Substituting (2.12) into (2.20) and dividing by hA? we obtain as

the fractional change in fine structure splitting due to nuclear size

2Cz T
T
¥9% 1- 4% -¥%)F [(e20)r (1 - 20)

AE _ _
B A3 [Re1)2 -
(2.21)

where C, is calculated from (2.7).

Schawlow and Townes have used the above formula to calculate
AE/hAY for a 2p;, electron for 5 values of Z between 60 and 95 assuming

2

a nuclear radius of 1.5 x 10~1331/3cm and either a uniform model or a

shell model for the charge distribution. The results appear in Table I.
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Table T
/A Uniform Model Shell Model
60 1.09 x 107k 1,73 x 1074
70 2.51 x 1071 3.92 x 107k
81 6.35 x 1074 9.56 x 1074
90 1.38 x 1073 2.03 x 1073
95 2.17 x 1073 3.01 x 1073

The values of AE/hAV in Table I can be conveniently represented by the
expression

‘,‘?[Ea - Deb(Z--éO)

where Dy = 1.09 x 10'1*, by = 0.0858 for uniform model

(2.22)

D, = 172 x 1074, b, = 0,0817 for shell model

The values of Table I need to be corrected for the error in the nor-
malization constant 012 , but whatever correction is used, it would
be the same for each value listed and wounld not change the functional
dependence on Z. In Part VI we will make the appropriate corrections
to the values listed above, both for normalization and for smaller
muclear radius.

Comparing the ratios of the values of AE for the two different
models as predicted by the methods of Section A and this Section we

find that for Z = 81:

Perturbation method: A E(shell -_ 3 = 1.5
AE(wmiform) 2¢ + 3

Exact method: AE(shell) . 9.56 x 107 . 1.51 .

AE(uniform) 6'35 x lo‘h




1,

‘The close agreement between these two factors indicates that the per-
turbation method, while in error in predicting the size of AE, is
- probably valid for estimating its variation with the assumed nuclear

model,

Co Theoretical Calculation of the LIgpy - I‘III Ievel Splitting

The energy difference between the Zp%_ and 2p3 /2 levels of an
electron in the Coulomb field of a point nucleus is given by the well-
mown Sommerfeld formula

2 iy 1
AE, = 94;—-[]11 -2 | [2 +2 1 -oc?]z} = e s(az).
) (2.23)
This energy difference expressed in Rydbergs is
A 2
= 3 S(o¢ Z) (2.24)

where R = ®me®/2h ,

Equation (2.2}i) must be corrected to take into account the inter-»
action between the various atomic electrons. Christy and Keller (10)
have made a calculation of this type allowing for the interactions of
the electrons of the K and L shells and the effect of the M shell on
the 21:%_ and 2p

3
to (2.24) is of the form

/2 states. They show that the correction to be added

- 2a2g3 £ (etz) + B 22 (2.25)

where f(etZ) = 212 ( WEZ))
oz mczotzz

and B is an undetermined constant. W(et Z) has been calculated in
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units of mczocZZ'for 6 values of ®Z and is given in Table II of
Chris‘ty and Keller's paper. This table is reproduced below along
with the corresponding values of £{«Z) calculated using the wvalue
1A = 137.0373s (11) The calculation of W(«Z) is subject to a small
error of the order of one per cent due to the neglect of outer shell
electrons and higher order terms in the interaction Hamiltoniane
Christy and Keller have estimated a correction term for the latter

which we shall incorporate into the calculations of Part VI,

Table II

First three columns taken from Christy and Keller. (10) W(dZ) in units

of me® 2z,
1 - a2z Z{approx.) W(X2) £ Z)
1.00 0 0400000 (indeterminate)
0096 38 0.03995 04509566
0,91 57 009508 06553112
0486 70 015666 04601613
0482 78 0421110 0.6L1,383
0476 89 030256 0.716288

In actual computations, f£(dZ) for a given value of Z must be inter-
polated or extrapolated from the values given in Table II, It was
found that a plot of log f(¥Z) against 1 =y 1 = o!.222 was nearly
linear; Lagrange interpolation can therefore be used with a reasone-
able degree of accuracye

The complete expression for the theoretical value of the fine
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structure splittihg including the Schawlow-Townes correction factor

(2.22) lfor nuclear size is.
%Z’. L.‘?g 8(¢2) - 2e2735(ecz) + 3221 [1 N Deb(z'éo)_] . (2.26)

The values calculated using (2.26) are compared to the measured values,
and B and D are adjusted to minimize the mean square error. Using
existing X-ray data compiled by Cauchois and Hulubei, (12) Schawlow
and Townes have calculated (AV, - Avexp)/m’t]Cl with and without the
nuclear size correction. The value of b used in this calculation was
0.0837 which is midway between the value for a uniformly charged
nucleus and that for one with a surface charge only. The sign and
magnitude of D obtained in minimizing the errors(d = -1.42 x 10-4)
corresponds to a decrease in the doublet separation and a nuclear
radius of R = 2,1 x 10‘13A1/ 3@81, assuming that a normalization
correction factor of 0.76 is applied to the values in Table I. The
results are shown in Figure 1, the (a) part of which indicates that
a systematic error at large Z exists which cannot be interpreted as
simply experimental error. Part (b) shows that by including the nuclear
size correction factof, the large errors are reduced, and the residual
scatter of the points can probably be attributed to experimental errors.
It is evident from Figure 1 that more definite conclusions could
be drawn from the Schawlow-Townes theory if the precision of the X-ray
measurements could be improved. In considering the experimental aspect
of the problem at this point and the question of precision, it is
necessary to investigate the various ways of determining the LirLy1T

level difference and the problems associated with each.
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Figure 2 is an X-ray energy level diagram (not drasm to scale)
showing the various pairs of transitions giving rise to the Ly7 - LT
. difference and their approximate energies for tungsten. The relative
intensities for the L series \lines are given, based on a relative
intensitj of 100 for L o> the strongest line of the series. Another
possibility not indicated in the figure is that of the direct deter-
mination of the Lyy and Lyyy energies by absorption measurements, Of
these seven possibilities s the one representing the least amount of
experimental difficulty and hence the greatest possibility for pre-
cision is the measurement of the L 2 and L ,1 lines. The rest of
the I-lines are so weak that precise measurements would require an
inordinate amount of time., Absorption edge measurements sometimes
give misleading results because of the difficulty of interpreting the
shape and structure of the observed "edge". The much larger energies
of the K-lines introduce several complications into an experiment;
and the fact that these lines are roughly four times broader than
L series lines also places limitations on their usefulness as a pre-
cision measure of the doublet splitting.

Let us now assume that the wavelengtls of the L,‘2 and Lpl lines
of several heavy elements are to be measured by means of the two-
crystal spectromster using calcite crystals. ILet us further assume
that the degree of precision required is one-tenth of the predicted
fine-structure shift due to nuclear size., We wish to find the
corresponding accuracy required in the determination of the Bragg
angles. Using (2.22) with D = 1.42 x 1074 and b = 0.0837 and the
experimental values of A¥Y/R we obtain the following approximate values
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for the nuclear size effect expressed in Ryd'bergs:

VA Deb(z°6°) (A'xJ/R)exp A= (A'IJ/R)Deb(z"&)
7 h58 x 1070 98.3 0,045
ol 2,32 x 1074 309.6 0.75
Now .
gj'i}' (ii_l ; 7-\%(2- - 2§dl (sinle,l } sir11 e.‘z) (2.27)

where d1 is the grating space of caleite for first order. Differen-
tiating the above expression, assuming that © is the average value of
) 81 and O oy and that both angles can be measured with the same

precision, we obtains
Jo = [J‘E Rd sin © tan @ (2.06x10"'5)] d (ﬁl‘) (2.28)

where the factor 2..06:(.105 converts radians to seconds of arc. If we
let & (AY/R) = B/10 we obtain the following values for d46:

Z=Th d0 = 0,2 seconds

Z = Sh | 46 ® 1,2 seconds.
Inasmach as the preciéion attainable on the two-crystal spectrometer is
roughly independent of wavelength over this particular spectral region,
it is clear that if the figure of #0.2 seconds can be attained in the
measurements on tungsten, the nuclear size effeet can be measured with

an accuracy of about 2 per cent in the case of plutonium.
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'PART III
BRIEF THEORY OF THE TWO-CRYSTAL X-RAY SPECTROMETER

The subject of X-rsy reflection from crystals has been treated
extensively by many authors and some have extended the theory to cover
the case of the two-crystal X-ray spectrometer. The text of Compton
and Allison (13) gives a fairly comprehensive analysis of the theory
of the instrument, but with somewhat greater emphasis on its use in
the investigation of crystal properties rather than its usé in the
precise measurement of X-ray wavelengths. It is therefore necessary
to investigate in somewhat greater detail the theory of the instrument
ag it pertains to the latter usage.

We will assume that the X-ray reflection properties of the cal-
cite crystals used in this measurement are reasonably well represented
by the theory described in the text mentioned. The validity of such
an assumption can and should be subjected to experimental verification;
but since such a procedure is quite involved and time consuming we will
abide with the initial assumption and justify it later with several

gualitative arguments.

A, X-ray Reflection From a Single Crystal

The dynamical theory of I-fa,y reflection in crystals, as it was
developed in its more simple form by Darwin, (14) does not take into
consideration the effect of the absorption of the X-rays as they
penetrate the crystal. Nevertheless, the theory is sufficiently
adequate so that certain salient features of the crystal "diffraction

pattern" may be obtained from it. The term t*diffraction pattern* is
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the name commonly 'given to the curve of the ratio of reflected to
incident intensity versus the angle of the reflected beam measured
.relative to the surface of the crystal. Under the assumption that
the incident _radiation consists of plane, polarized, monochromatic
waves, where both the electric vector and the atomic reflecting planes
are parallel to the crystal surface, the equation for this curve, as
derived by Darwin, may be expressed in the form®

ID - F/2 2 (3.1)
e .

The quantities appearing in this equation are defined as follows: the
variable,Q is proportional to the difference between the angle of
reflection ¥ and the corrected Bragg angle € and is given by the rela-

tion

L=(¥-9) i"ﬁ".‘.‘i (3.2)

where § = 1 - p is the unit difference of the refractive index. By
“eorrected Bragg angle" we mean the usual Bragg angle which has been

corrected for index of refraction effects, namely
1 25771
=gin " {BX [y _hdd (3.3)
2d n A2

where d = actuwal grating space of the crystal
n = order of reflection

A= wavelength of incident radiation.

# We use here the notation of Compton and Allison
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Referring to (3.1) again, the quantity Z represents the number of
electrons in the unit cell of the crystal and for calcite is equal
‘4o 100, F is the crystal structure factor which is the ratio of the
amplitude scattered by the unit cell in the direction & to the ampli-
tude scattered by a single electron in that same direction. F, for
a given set of crystal planes, is a function of Aand 6 and takes into
account the phase difference of the waves scattered from the different
elecfrohs of the unit cell., The ratio F/Z is always less than or equal
to 1; for the cleavage planes of calcite at A= C.708 Angstrom units,
F/Z = 0,516,

A plot of T°() for calcite at a wavelength of 0.708 A is shown
in Figure 3. A scale of ¥ - @, expressed in seconds of arc is placed

immediately below the A axis, The angle 8, is the uncorrected Bragg

angle, and the separation of the two lines Amoand ¥= 8, shows
the effect of the index of refraction correction in (3.3).

One of the noteworthy features of the Darwin theory is that it
predicts a small angular region of width L= 2F/2 over which the
crystal reflects 100 per cent of the incident intensity. Another
feature is the steepness of the sides of the pattern; the width at
half maximum is only 6 per cenf greater than the width at the top.

While the Darwin diffraction pattern neglecting absorption gives
us a first approximation to the solution of the problem of X-ray
reflection from crystals, it becomes decreasingly useful for the
longer wavelengths for which the absorption in the crystal becomes
appreciable. Although Darwin introduced the effect of photoelectric
absorption as a correction into his theory, a somewhat more general

and satisfactory analysis was given later by Prins (15) who treated
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the effect of absorption by considering the crystal to be a dispersive
medium with a complex index of refraction. The resulting expression
‘for the ratio of reflected to incident intensity has a form comparable

to that of the Darwin formmla:

(D + iB)/g ‘2
-1 Pf5 ¢ {(2-18/5 2. (o + iB)/sz}%
(3.4)

I(2)

where B = ( 'X/h'rf)pi (includes effect of absorption)
P¢ = linear absorption coefficient for the crystal
D+#iB = (§ + ip)F/z .
It is readily seen that when ﬁ- 0 (negligible absorption) the above
expression reduces to the Darwin formia.

Calculations based on (3.4) are quite laborious, but Allison (16)
and Parratt (17) have published curves and tables of values of I() for
calcite at various wavelengths. Figure L shows a plot of I(Q) for
2.299 A, a wavelength considerably longer than that encountered in the
present work but one for which the effect of absorption is clearly
shown. The marked asymmetry is an important characteristic, and its
effect on precision wavelength measurements will be discussed later.

Tt is necessary at this point to remark briefly about the question
of polarization. It will be recalled that the Darwin formula (3.1)
was based upon the assumption that the incident radiation was polarized
with the electric vector parallel to the crystal planes, In discussing
the other direction of polarization it is convenient to define a *plane
of incidence" which is that plane normal to the surface of the crystal

containing both the incident and reflected rays. The type of
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polarization already mentioned (electric vector parallel to surface
and perpéndicula.r .to ‘plane of incidence) is referred to as @-
' polarization. That type which has the electric vector lying in the
plane of incidence is referred to as T{-polarization. Completely
unpolarized radiation can be resolved into these two components, each
having an intensity equal to one half the total intensity of the
unpolarized beam.

| In the case of 1f-polarization it is evident that only the
component of the incident electric vector which is perpendicular to
the reflected ray will be effective in producing radiation in that
direction. Therefore in the Darwin formmla, F/Z must be replaced by
(F/Z) cos 2 8,3 in the Prins formula (D+iB)F/Z must be replaced by
(D+iB)(F/Z) cos 20,. The introduction of the cosine factor into the
formulae causes a change in the height and width of the diffraction
patterns; the T-curves are shorter and narrower than the corresponding
0 ~curves. The diffraction pattern for unpolarized radiation would be
given by |

IW) =3 Ig(R) + 3 I (R)

Parrattts work (17) includes calculations for both Iy (2) and I ()
for 1onger wavelengths, while Allison (16) lists only I 5(R) values
for the shorter wavelengths. Inasmuch as we are interested primarily
in determining a correction for the asymmetry effect as a function of
wavelength, the lack of published values of Iqr(£) for the shorter

wavelengths requires us to base the corrections on Iy (R) alone.
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B. The Two-Crystal Spectrometer

When a divergent X-ray beam which is also heterogeneous in wave-
- length is incident upon the surface of a crystal, the action of the
crystal is similar in result (though for a different reason) to that
of a prism placed in a beam of white light. The various wavelength
components of the original X-ray beam, upon reflection from the
crystal, are separated into bundles of nearly parallel rays, each
bundle having a different direction but obeying the Bragg law
A= 2d sin 8.% 1Iet the crystal be mounted on a pivot so that it can
be rotated about an axis lying in its reflecting surface and normal
to the plane of incidence of the X-rays. A second identical crystal
may now be placed in the reflected beam with its axis of rotation
Iying in its surface and parallel to the axis of rotation of the
first crystal. If the radiation of wavelength A makes an angle ©
with the reflecting planes of this second crystal such as to satisfy
the Bragg law, A= 2d sin O, the beam will undergo a second reflection.
Referring to the first crystal as crystal A and the second as. crystal
B, it is evident that B can have two positions with respect to A and
still satisfy the conditionsfor reflection of radiation. Figure 5
shows the basic arrangement of the two-crystal spectrometer as well
as the two possible positions of crystal B. The position in which
the planes of crystal B are parallel to those of crystal A (or very
nearly so) is called the parallel position; the other position, in
which the planes of B still make the angle 6 with the rzys from A
but with B turned through an angle of (180+20) degrees from the

# We shall consider only first order reflection, n = 1.
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 parallel position, is called the anti-parallel position. It is evident
that when the cryétals are in this position, the Bragg law requires
& ray to make the same angle (to a good approximation) with both
crystal surfaces in order that it may undergo a double reflection.
The various slit systems shown in Figure 5 serve only as rough stops
and shields and do not affect the precision of the angle measurements.
As a preliminary to the theoretical discussion, a brief description
of -the experimental arrangements and mode of operation is not out of
place. The crystals themselves are mounted in holders which can be
rotated about a vertical axis. We will assume that the crystal A
axis and the crystal B axis are parallel and that the crystal holders
have been adjusted so that the reflecting planes are parallel to the
axis of rotation. We will also assume that the source and detector
are maintained at their proper orientation by a suitable mechanical
gystem. In the application of the instrument to the precision measure-
ment of Bragg angles, crystal A is adjusted so that the desired
radiation is reflected approximately over the axis of crystal B;
crystal B is then rotated to the parallel position, the condition of
exact parallelism indicated by a maximum of intensity reaching the
detector. Without changing the position of crystal A, crystal B and
the detector are rotated around to the anti-parallel position and a
survey made of the variation of intensity with rotation of crystal B
about the spectral region of interest. It is clear that when the
crystals are exactly parallel the Bragg law can be satisfied for a
relatively large range of angles (determined by the rough slits used)

and hence a wide band of wavelengths., The parallel position is there-
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fore used as a reference point from which to measure angles and is
of no vﬂue in i‘héelf for the determination of wavelengths.

The theory of the instrument is conveniently separated into two
parts dealing individually with the parallel and anti-parallel positions.
The general problem is the following: knowing the theoretical single
crystal diffraction pattern and making certain assumptions about the
speciral distribution of the source radiation, to account for the
intensity curves which are observed experimentally. Certain additional
information about the limitations in angular spread of the X-ray beam
in the horizontal and vertical directions is also needed in order to
account for small asymmetries in the anti-parallel curve.

To make the problem a bit more graphic, typical parallel and
anti-parallel curves are shown in Figure 6., These curves are approxi-
mately those actually observed near a wavelength of 1 Angstrom, the
anti~parallel curve being the profile of a typical Lﬁt X-ray line.

It can be pointed out again that the angular width of the parallel
rocking curve 1s a function only of the angular width of the crystal
diffraction patterns and does not depend upon the spectral distribution
of the radiation coming from the source. The shape of the anti-parallel
curve, however, is almost entirely a function of the mammer in which

the intensity of the source varies with wavelength, that is, the
spectral distribution or line profile.

Compton and Allison” have presented the general theory of the
instrument as it pertains to the two positions under discussion in

sufficient detail so that thi s present treatment need be only an

¥* % Citc, PPe 709-7’.‘.00
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apj:lica,tion and/or extension of their theory. In accordance with
their terminology and notation we make the following definitions:

Central Ray - The central ray is that ray which passes through
the geometrical center of the horizontal and wvertical slit systems ,*
intersecting the axes of rotation of both crystalé.

Horizontal Divergence - The horizontal divergence of a ray is the
angle o between that ray and its projection on a vertical plane con~
taihing the central ray. A positive value of of means that the rgy
makes a glancing angle with the surface of crystal A which is larger
than that made by the central ray.

Vertical Divergence - The vertical divergence of a ray, measured
by the angle @, is the angle made by the ray with its projection on a
horizontal plane (Figure 7) that is to say a plane perpendicular to
the reflecting faces of both crystals. The angle of maximum vertical
divergence is given by @, = (h1+h2)/2L where hy and h, are the heights
of the vertical slits at the source and detector respectively and L
is the distance between them. |

Angular Pogitions of Crystal B - The rotation of crystal B is
measured by the angle § relative to a reference position. The
reference position for parallel operation is that position in which
the surface of B is exactly parallel to that of A, the central ray
thus making an angle © with the surface of B. The reference position

% The horizontal slits are formed by pieces of lead with straight
vertical edges which limit the angular spread of the beam in the
horizon plane, The vertical slits are formed by pieces of
lead with their edges horizontal limiting the vertical spread of
the beam. Taken together the system of slits forms two rectangular
apertures, one at the source and one at the detector.
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for ant.i~para11ei operation is that position in which the central ray
also makes an angle © with the surface of B (Figure 5).

At this point it is necessary to calculate the small change in
glancing angle, 8!, of an obiique rgy from that of the central ray. A
typical ray with vertical divergence @ is shown in Figure 7 as it is
reflected from one crystal to the other in the anti-parallel position.
From the triangles shown it is evident that

sin 8! = gin © cos @ (3.5)
from which "

ot ':9-%?.1;3119

since @ is ordinarily a very small angle (of the order of 10-2 radians).
An arbitrary ray passing through the system may be characterized
by the quantities (A, %, ), and the intensity reflected from crys-
tal B for a given value of § for values of these quantities in the
ranges (A, N+dN), (€ , xX+d %), (f, #rd@) is shown by Compton

and Allison to be given by

aP(B) = a(et, #) 3 (A=) I[x- 3¢° tan 6 - (A=A ))(20/0%,)]

I[ta;p-3 tane- AN )(30/02 )] axarag .
(3.6)
In this expression G(ol, @) is the functional dependence of the beam
intensity on geometrical factors such as the slit openings and the
distribution of intensity over the source. The function J(A - Ao
gives the spectral distribution of intensity as emitted by the source

with A o being some reference wavelength such as the center of a
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sﬁ:ectral line, The I functions are the theoretical single crystal diffrac-
tion patterns whose arguments are proportional to the variable £ defined in
(3.2). The upper signs in the argument of the second I function refer to
.the parallel position, while the lower signs refer to the anti-parallel
position. Crystal A is assumed to be set so that the central ray makes the
glancing angle 6(\,), in which case the term (A -\, )3 6/d\ appearing in
(3.6) is merely the difference between 8(A) and Q).

 DuMond (18) has invented a method of graphical analysis of the opera=-
tion of the two-crystal spectrometer whiéh may be used here to facilitate
the interpretation of (3.6). The X-ray intensity reflected from the sur-
face of a single crystal is regarded as a function of the independent
variables A and © and can thus be represented as a surface above the N, ©
plane. To avoid three dimensional drawings, the height of the surface is

to be thought of as represented by the transparency of the diagramj the

regions where little or no intensity is reflected are regarded as opaque,
and the regions of maximum intensity, as completely transparent. The
transparent region is immediately adjacént to the locus on the diagram,

A= 2d sin €, and the decrease in transparency on either side of this line
is represented by the Prins single crystal diffraction pattern. The exten-
sion to one more crystal reflection is accomplished by superimposing another
appropriate diagram for crystal B on top of the diagram for crystal A« In
the case of the parallel position the crystal B diagram has its 6 axis in
the same direction as that for crystal A since an increase in 8, produces a
corresponding increase in 6 (see Fig., 5). In the case of the anti-
parallel position the crystal B diagram has its © axis in the opposite
direction to that for ecrystal A since an increase in €, produces a
corresponding decrease in €g.

Figure 8 is an attempt to apply the graphical technique to (3.6)
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in order to show the relationships of the arguments of the I functions
to eacﬁ.other. Unfortunately, the vertical divergence angle, g,
cannot be easily shown on this two dimensional representation; we will
therefore assume that the diagrams represent the conditions as they
exist in tl‘le horizontal plane only. Excluding the effect of the G
and J functions, the effective transparency of the double crystal

diagrams becomes

)
- - 8] 1[w-8- A-N) 8] 6.1

for the parallel position and

- -2 @] 1f-ep- -2 8] 6B

for the anti-parallel position. The argument of Ig for the anti-
parallel case mst be the negative of that shown on the diagram because
the abscissa of its diffraction pattern has been reversed in direction.
By means of several qualitative considerations based mainly on
the fact that the arguments of the I functions must be close to zero
in order to obtain appreciable intensity reflected from crystal B,
Compton and Allison show that the expression in (3.6) may be simplified

in the case of the parallel position to

g +o ®
p(R) = fm fm f dP(P) = K f (@) 1(f - Brak. (3.9)
“fn Amin ~%n

- 0

The constant K is proportional to the intensity of the incident beam
and results from the integration of the functions G and J over ¢ and
AN. The extension of the integration over & to infinite limits is

permissible because the actual range of o( is orders of magnitude



38

larger than the effective "width" of the I functions. The change of
variable from o to £ results in a convenient scale change for
- computational purposes. The important conclusions based on (3.9)
are that _the 'shape of the pa.fallel curve is independent of the slit
openings and of the spectral distribution of intensity of the source.
It is also clear that as long as the I functien of crystal A is
identical to that of crystal B the function P( ﬁ) will have an axis
of éyxmetry even though the I functions themselves are asymmstrical,

Allison (16) and Parratt (17) have evaluated the above integral
for calcite over a wide range of wavelengths assuming the Prins
diffraction pattern. The agreement between the theoretical curves
and those obtained by experiment was very good indicating that the
Prins formmla is probably valid for predicting crystal properties.
A point of comparison other than the general agreement of the shapes
of the theoretical and experimental curves is the width of the curves
at the half-maximum value., This quantity is obtained very easily
experimentally; the values measured in the present work are shown in
Figure 9 plotted against wavelength along with the curve predicted
by the theory (obtained from Allison's paper). The disagreement
suggests that the crystals used in this work differ slightly from
perfect crystals, but the difference is small enough so that the
theory may still be used to obtain semiguantitative predictions
about the performance of the spectrometer.

Turning now to the problem of the anti-parallel position, we
again use (3.6) with the lower signs. As is shown in Compton and
Allison, the terms involving A and @ appearing in the arguments

of the I functions cannot be integrated out as in the case of the
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parallel position. For this reason it becomes exceedingly difficult
to perform computations with the expression as it stands because of
the complicated nature of the I functions. By making certain approxi-
mations and assumptions, however, the complexity of the expression
may be reduced to a point where it will be possible to obtain usable
results in the form of curves representing the function P(ﬁ Ve

Let us first assume that the incident radiation is completely
monochromatic with A= X, and that the vertical slits are made
narrow enough so that (%);Zmztane is negligibly small. The expression

for P(B ) becomes
®

PiB) =K jz(n)m-n) & (o)

-00

where again the integration over ol has been extended to infinite

limits and the scale has been changed by employing R as the variable;
Ky is merely a constant of proportionality, and the subscript on the

P serves to distinguish this monochromatic case fromv’ohe more general
one., Comparing this expression to (3.9) it is evident that if the I
functions are symmetrical about R = 0, that is, I() = I(-R), then
(3.9) and (3.10) yield identical curves (except possibly for amplitude).
However since the theoretical diffraction patterns do not have an axis
of symmetry for the case of non-negligible erystal absorption it will
be necessary to investigate the effect of this asymmetry on the shape

of the curve representing Pl( }) as given by (3.10). Allison (16) has
evaluated P;(f ) by numerical integration using only the O -polarization
component of the I function for a wavelength of 1.537 R. His results

show that the main effect of the asymmetry is to shift the center of
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gravity of the resultant curve toward negative values of ﬁ (smaller
Bragg angle). This means that if the spectrometer could be used to
explore such a monochromatic spectral line the curve of intensity vs.
crystal B setting (angle ) would have the shape of P;(f) and would
be displaced toward smaller Bragg angles. The effect may be seen
qualitatively by noting that the top portion of the quasi-quadrilateral
region of intersection of the two curves of Figure 8b is more trans-
parent than the bottome Allison?s results also show that the
asymmetry of Pl( B8) at this Waveiength is not pronounced; Figure 10
shows a graph of P;(8) along with a plot of a witch® having the same
half-width. Although it is clear that the witch is a poor approxi-
mation to the curve for values of B larger than the half-width, the
approximate symmetry of Pl( B ) may be seen by comparison to the witch.
On the basis of the foregoing facts we will make the following
simplifying assumption: In the limiting case of zero vertical divergence
we will assume that the function Py(B ) may be approximated with
adequate precision by a witch whose axis of symmetry is at slightly
negative values of 8 . The main justification for such an assumption
is that it greatly reduces the complexity of the further analysis of
the anti-parallel curves and the corrections which must be. applied to

them. We may represent the curve, therefore, by the following formmla:

00

P(B)= A = P(p -x) §(x)ax (3.11)
Ly g2

-00

3 The witch (sometimes known as the Cauchy distribution) has the
formula y = (1 + x2/a2)~1 with a being the half-width at half
maximim.



Figure 10., Anti-parallel "monochromatic" curve as obtained by Allison
for 1.537 A. The dashed curve is a witch having the same half-width.
The axis of symmetry of the witch is shown at 8 = - €.,
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vhere A is the amplitude of the curve, b is the half-width at half
maximim, and B = - € is the axis of symmetry. The integral is
included to show that Pl( B) may be regarded as the fold of itself
into a Dirac delta-function (which represents the monochromatic
line); P;(B-x) is the window curve of the spectrometer and
corresponds to the transparency of the crossover region in Figure 8b
with the variable of integration x being measured along the \ axis.,

In order properly to extend the method of the fold integral to a
spectral distribution J(A- A,) we mist know the relationship of B
and A so that a transformation to a common variable may be made. The
required relation is shown by Compton and Allison to be given by the
equation

B=2Daff +D(x- Q) (3.12)

where D = 2 98(X )/ 3 A, for the anti-parallel position and D = 0
for the parallel position. The dispersion of the instrument in the

anti-parallel position when crystal B alone is rotated is therefore

— m ) = 1

3.13
da d cos Q(Xo) ( )

where we have evaluated 38(N )/@ X  from the Bragg ]av; The
guantity D may be regarded as a constant over rather wide ranges of
8; for example, at a Bragg angle of 15°, D = 70,5 sec/XU while
dD/de = 0.006 sec/XU/min. Under the assumption of zero vertical
divergence it is evident that there exists a simple proportionality
between ﬁ and A- A, and changes from one variable to the other
involve only the scale factor D.



L

In terms of wavelength (3.11) is therefore written

o o]
P (R-2,) = = on+ & " P (A= A1) § (-2, A,
%)
-0 ’ (30124)

and the extension to a distribution of wavelengths simply involves
replacing the delta-function with the distribution function J().!- 10) .
Now since we are primarily interested in X-ray spectral iinés which
.several investigators (19) have shown to have the shape of a witch,

we may conclude immediately that the output curve of the spectrometer
is also a witch having a width equal to the sum of the gidths of the
two original witches.” The axis of symmetry of the resultant witch

is, however, no longer at A= A,, but is displaced toward shorter
wavelengths by the amount €/D. The equation representing the

spectrometer output is therefore

D
J1(\ - Xo) - C - A B dane
- 2 2
ey 1l LI
-0 w
(3.15)

where a = b/D+w, with w being the half-width of the original X-ray line.

We have reached the important conclusion that under the assump-
tions of zero vertical divergence and a synmetrical.window curve, the
observed spectral line has a slightly greater width and a slightly
lower wavelength at its axls of symmetry than the original spectral
line. Corrections for these aberrations are straightforward pro-

vided € and b are known. In making the correction for the position

% We have used here the result of a well-known theorem on the fold of
two witches. For a proof of the theorem see, for example, W. J.
West, Thesis, California Institute of Technology, 1948.
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of the center of the original line, one may either add the quantity
€/2 to the observed Bragg angle or add e/b to the wavelength
calculated from this angle. It is more convenient, however, to
obtain the magnitude of € in terms of angular measure in which
case the correction of the Bragg angle rather than the Havelength
is easieres In Paft IV a method of obtaining approximate values of
€.ﬁﬁll be given along kith an extensive analysis of the effect of

vertical divergencee
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PART IV

ANATYSIS OF THE EFFECT OF VERTICAL DIVERGENCE AND OTHER CORRECT IONS

The experimental approach to the problem of precision X-ray
spectroscopy involves making a wise choice of each of the three major
. pieces of equipment that enter into the experiment. These items are
the source, the spectroﬁeter, and the detecting system. Some of the
factors that must be considered are (a) the source!s intensity,
stability, and versatility; (b) the spectrometer!s resolution and
Juminosity; (c¢) the detector's sensitivity and spectral response
characteristics. There is usually no problem associated with the
choice of a spectrometer; one uses the best available which in the
present work was a two-crystal spectrometer. With source and detector,
however, a certain latitude of choice exists; and since the character-
istics of each have a definite relationship to the calcuiations of
this Part we shall digress briefly to discuss the advantages and
disadvantages of various types.

As far as a source is concerned, one could use a conventional
X-ray tube whose t#rget is the element in question, or a demountable
tube with interchangeable targets, or a fluorescent source irradiated
with X-rays from a conventional tube. For intensity and stability,
the commercial sealed-off tube is the logical choice, but the number
of usable target elements in the high atomic number range is quite
limited. The range of target elements can be extended somewhat by
using a continuously pumped, demountable target tube, but its use
introduces the further complications of a vacuum system and instability

of operation. A compromise between stability and wide range of target
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materials lies in the fluorescent source, but the intensity of this
type of source is orders of magnitude lower than that obtained from
an X-rgy tube. Because of the success of Rogosa and Schwartz (20)
who used fluorescent radiation in an experiment similar in many
respects to the present one, it was decided to use this type of
source and to compensate partly for the lower intensity by using as
 broad a source as possible, -

The choice of detector is not necessarily contingent upon the
selection of the source; but in the case of a broad soufce it is
necessary to have a detector which has rather uniform response over
sufficient lateral extent so that full advantage is takeh of the
width of the source. Ordinary end-window Geiger counters are usually
satisfactory for this purpose providing the area of the window
accomodates the entire X-ray beam. However, the sensitivity of the
counter is not wniform over the area presented to the beam mainly
because of the necessity of having an insulating bead over the end of
the central electrode. For the purposes of calculation it is very
desirable to have the characteristic of uniform lateral sensitivity
in the detector; hence the Geiger counter was ruled out, and a thin
flat Nal crystal was used instead., A more detailed descriptian of
both source and detector will be given later, but for the purposes:
of this discussion it is necessary to point out that the extended
source which is necessary for sufficient intensity introduces the
complication of large vertical divergence. . In order to calculate the
effect of this divergence on the observed position and .ghape of an
X-ray line a knowledge of the intensity distribution over the source
and the response characteristics of the detector is required.
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A. The Geometrical Window Profile of the Spectrometer

In this discussion we shall assume that since vertical divergence
is known to produce only a small effect, it may be considered to give
rise to a geometrical window for the spectrometer which introduces
small aberrations into the spectrometer output. We shall assume
further that. the magnitude of these sberrations can be obtained by
evaluating the product integral of the geometrical window curve and
the spectrometer output curve for zero divergence.

We shall begin, therefore, by developing a suitable expression
for the function G(o¢, @) defined on page 3L, We note at the outset
that the extent of horizontal divergence (represented by the angle
on) has a negligible effect on the output curve of the spectrometer.
Allison (16) has shown this to be true in the case of a uniformly
intense source, so to avoid unnecessary complications we shall assume
that the source used in this experiment has a uniform intensity dis-
tribution in the horizontal direction. (Actual pinho_le photographs
of the source justify this assumption but indicate a slight variation
of intensity in the vertical direction.) We may therefore omit the
angle o« from the argument of G and confine our attentibn entirely to
the behavior of G(@) in the vertical plane.

We shall assume that the source, as seen by the spectrometer,
may be represented by a vertical plane perpendicular to the central
ray, each point of which emits radiation isotropically with an
intensity I(z) where z is measured in the vertical direction from
some horizontal reference line in the plane. For convenience we
shall choose this reference line to pass through the intersection of

the central ray and the source plane. Figure 11 shows a schematic
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diagram of the source and vertical slit system for the specific case
of equal soux;ce and detector slits and also serves to define certain
quantities which are used in the calculationse

If we let P(#) represent the power in the beam of width W which
passes through both slits in the direction ¢ and interpret G(¢) as
the ratio of P(#) to the maximum power that can get through, we may
then’write |

w=w 22 .
P(P) = G(¢)Pmax = f I(z)dw = j I(z)dz (Lel)
w=0 zl

where the approximation is valid because of the smallness of ¢ ¢ VWe
must now express the limits of the integral in terms of: ¢, and from

the diagram it follows that
h h

Z = (1+d)¢: 52‘-'-""5"‘ ¢ds 5= (L - £)¢ s

and therefore
= (B - '
2,-2, =Lf-@¢)=LP -F). - (ke?)
For a point source at z = 0, I(z) = Pmaxg(z) and therefore

G(@) = 1« The angular extent of G( @) for this simple case cannot
be ascertained from (le.1) but is clearly limited by the angle which
the second slit subtends at the sources For the more intez_'esting

case of a uniform source where I(2z) is a constant, (Lel) and (L.2)

yield
o(g = -] (he3)

where the absolute value signs are put in to include both plus and
minus values of ¢. Actual measurements indicated that the source used

in this experiment was not uniform but decreased slightly in intensity
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for both plus and minus values of z. The data suggested a parabolic
function for I(z) symmetrical about z = 0; the G function was cal-
culated for such a distribution, but it turned out to deviate from
G(@) for a uniform source by such a small amount that the extra

labor involved in further analysis did not seem worthwhile. We will
therefore let (4.3) represent the spectrometer window due to slit

and uniform source geométry. It is obvious that the assumption of a
uniformly sensitive detector greatly simplifies matters; a non-uniform
detector sensitivity could be included, of course, by multiplying the
appropriate response function into the integrand of (L4.1).

We now wish to express the function G(#) in terms of A since we
eventually must multiply it into the spectrometer output curve which
is expressed as a function of N . The required relationship between
# and N follows from writing the Bragg law for an oblique ray with
vertical divergence angle @, namely,

N »2d sin et
where the relation between ¢ and ©' is given by (3.5) which is
repeated here for convenience:

sin €' » gin @ cos @ . : (3.5)
From the above two equations and the Bragg law for the central ray

we obtain

_ LR
x;xt'smgmgme'_l_cos¢u% (4ol)

from which we may write

A a- 5 (1.5)

4 = J 222 | (1.6)
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dA! = - [2XIX-N) af . (ke7)

The physical interpretation of (L.h) is that for a given setting of
crystal B, a ray which passes through the system with vertical
divergence @ must have a slightly smaller wavelength than that of
the central ray. Thus the spectrometer has in addition to its wave-
length response curve in the horizontal plane, a wavelength response
curve in the vertical plane which cuts off at a maximm #avelength
of A . The shape of this curve is given by G(A!), and from con-

servation congiderations we may write

B(ADE N = - a(@)ag s
or, from (L.7),
s(an) = o) [aaon-a] F (1.9)

For a point source (4.9) becomes

(1) = [2x(x- 1) 3, Aa AMEX )
G(AY) =0, A LA 3 NN

where :
A, = NEZ B x | (b2

—

For a uniform source, combining (h.j), (L4L.6) and (4.9), welobtain

$ L 1
G( )~ ) - ilex‘_ -x') = k¢

m

(4.12)
G(NT) =0, AN < X35 ND>A.

# To avoid using another subscript we have used the letter m in two
senses thus maintaining the association between the maximum vertical
divergence angle ¢m and the corresponding minimum wavelength Xm‘
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We have not expressed ¢m in terms of l‘m since ¢h is already a con-
stant., Curves showing G(#) and G(A') for both point and uniform
sources are presented in Figure 12. It will be noted that G( A\?!)
has an infinite ordinate at A! = A; the area under the curve is,

however, finite.

B. The Effect of the Geometrical Window on a Spectral Line
We have seen that under the assumption of zero vertical diver-
gence the intensity output of the spectrometer as a function of

wavelength for an X-ray spectral line input is

G
Jl(x- XO) - 1+ (x__ xo* €/D )2 . ‘ (3015)
a .

Instead of using 7\0 as a reference wavelength, we shall find it
convenient to use the wavelength of the axis of symmetry of the observed
line (with zero divergence). The center of this observed line, which
will henceforth be referred to as the unmodified line, is at the wave-
length -

A= X - & (4.13)

(o}

In accordance with our initial assumption that the spectrometer output
in general is the product integral of the geometrical window profile

and the profile of the unmodified line we may write
A

N, N = j GIAIHRT-R AN . (b.1k)
A
We have evaluated G(A!) for both a point source and a uniform source,
but since the latter is more interesting we shall proceed no further

with the point source problem except to mention that it can be solved
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~as a special case of the uniform source problem.

Substituting from (4.12) and (3.15) into (L.1lL) we obtain

A
, Ca ! 1 Cd At
F(x ) - L= 21 5 ) (hols)
2 Ny . =y [1 +(_75.-_a_7‘£)] E;nx 1+(x;5:)2
m m . _
and if we make the substitutions
x-’.‘.'_?n, i-%}g, k-?‘_’_’_‘m_-ﬂm_z_ | ' (4.16)

a 2a

the expression for F(X, X ) simplifies to

t t
ce, dx ce, dx
F(t,k) = 20 T - -1t (Le17)
t-k

t-k

The physical interpretation of the quantities x, ¢, k follows easily
from (h.16)k. The half-width a of the unmodified line ié chosen as a
unit of wavelength, and deviations from the wavelength ﬁf the center of
the unmodified line are measured in terms of a. The variable t is the
difference expressed in units of a between the spectrometer setting A
and the reference wavelength kc. The parameter k is the_ratio of
the wavelength width of the geometrical window to the half-width of
the unmodified line. The elimination of the common factor .Of,/2
from (L.17) affects only the amplitude of F(t,k) and does not change
its general appearance. In the subsequent treatment we shéll assume
that this factor is dropped. |

The second integral in (L4.17) is elementary, but the first one is
not usually encountered in the tables and could be done by partial
fractions. Fortunately, however, the extensive tables of Grobner and

Hofreiter (21) 1ist an integral (231-23a) which is similar in form,
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s0 we may consider the integration in (4.17) as accomplished. The
algebraic details giving rise to the solution as well as the expression
for F(t,k) itself are complex enough to be uninteresting and have been
relegated to Appendix A.

Actual calculation of a curve of F(t,k) involves knowing the
appropriate value of k which is really not a constant since it depends
on A, the.spectrometer setting, which changes as a spectral line is
explored. However, we make very little error (less than 3%) by
assigning to k its average value, namely,

2
k = )~c¢m
2a

(4.18)

We still are unable to evaluate k with any degree of precision because
the value of a, the half-width of the unmodified line, is unknown and
cannot be measured directly. It would be possible to calculate a if
b, the crystal window width, and w, the original spectral line width
were known. Even if w were known accurately (rather improbable) the
value of b for a given spectrometer is largely a matter of speculation.
Tt is theoretically possible to solve for the values-of t at the half
maximuﬁ points of F(t,k) thus obtaining the ratio of the modified
width to the unmodified width, but since F(t,k) contains t in the
arguments of several transcendental functions, this method is a
practical impossibility.

Instead of evaluating F(t,k) for a particular spectral line, we
may estimate the range of k likely to be covered.in the experiment and
then plot curves of F(t,k) for a number of different values of k. By
this graphical technique it is possible to obtain a fairly complete

knowledge of the effect of vertical divergence.
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Because of the complexity of the expression for F(t,k), ordinary
hand computation of just a few points on one curve involves many hours
of desk calculator work. It therefore was decided to have this series
of calculations done by the electronic digital computer method. Eleven
different curves were computed for values of k ranging from 0.1 to 1.5,
eaéh curve consisting of 65 peoints in the range -5€t <5, It is of
some interest to note that these 715 separate calculations, which took
about one hour of machine time, would require an estimated three and
one-half months using a desk calculator.

The eleven graphs of F(t,k) were plotted and the following measure-
ments taken off the graphs: (1) the maximum and half maximum values;
(2) the values of t corresponding to the half maximum value (tq, a
negative number and t2, a positive number). From the two values of t

obtained above we can compute two more quantities of interest:

§= bt

2
Tstrh o (La9)

2
where 4 represents the deviation of the midpoint of the line joining
the half maximum values of the curve from the line t = O and hence is
a measure of the shift in wavelength of the observed spectral line,
while T is the half-width at half maximum of the curve F(f.,k). The
quantities T and § are shown on Figure 13 which is é graph of F(t,k)
for k = 1; shown also is the original witch so that the effect of
vertical divergence on the width and position of the unmodified line
can be easily seen. The quantity T-1 is the relative increase in
half-width since the half-width of the original line is 1. Graphs

of & and 100(T -1) are shown in Figure 1l; as functions of the
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parameter ke It is interesting to note that § is directly propor-
tional to k while T is a function of some higher power of ke An
attempt was made to find a simple analytic expression which would
fit the T graph, but it was without success. The § graph, however,
can be expressed quite accurately by the equation
§ = Kk/6 © (he20)

From the above relation it is possible to derive a simple formula
which gives the angle to be subtracted from the observed Bragg angle
ﬁhen the latier is determined from the center of the observed spectral
line. The shift in wavelength is found by multiplying § by a, the
half-width of the unmodified line; from the differential of the Bragg
equation we obtain

§ tan ©
Ae =22 22170
v Ao

where AOv"is the increase in observed angle because of vertical divere
gence and therefore must be subtracted from the observed Bragg angles
Combining the sbove expression with (lLe18) and (4.20) we obtain

2 .

A®, =15~ tan © (ko21)
which gives us the desired correction in terms of the maximum vertical
divergence anglee

Other investigators have derived similar expressions; Spencer (22)
obtained 1/6 as the coefficient in (Le21) rather than 1/12, while
Williams (23) gives as a correction formula

2 2

bt
21,12
which reduces to (L.21) if h, = hye The solution of the problem of the

AOV’-'-' tan ©
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effect of vertical divergence for unequal slit heights by the method of
this Part is straightforward but is made mich more complicated by the
additional parameter required. In practice the slit heights were made
unequal in order to realize a greater intensity; the difference in Ov
as given by the above two formulae is negligiblee

The determination of a, the half-width of the unmodified‘line,
can be obtained from a', the halfewidth of the modified line, by using
the curve in Figure 1lbe The correct value of k to use in reading the
curve is obtained from (L.18) which, unfortunately, contains a, the
quantity soughte A good approximation to k may be found, however,
by noting that k', calculated using a', is smaller than k by the same
factor that a' is larger than a. This approximation to the true value
of k is therefore

k=k'T o (Lhe22)

One further point which is of interest is the overall distortion
of the unmodified line by the geometrical window of the spectrometer.
To show this we have drawn the theoretical profile F(t,k) for the
extrenme case‘of k = 1.5 and have fitted a witch with the same width
and height to this curve, matching the two at the half maximum values.
These curves are shown in Figure 15 along with a witch representing
the unmodified line for comparisone This value of k is over twice as
large as the highest value encountered in the preseht experiment, so
as far as L X.ray lines are concerned, a witch is probably an excellent
approximation to the modified linees For measurements on the K lines
of some of the lighter elements which have larger valuesof A/2a,
the parameter k could conceivably have a value of 1 or larger

depending on the amount of vertical divergences
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Ce. The Effect of Differential Absorption of a Spectral Line

When an X-ray spectral line of full width 2a and wavelength )\o
passes through an absorber, the longer wavelength portions of the line
are absorbed more than the shorter wavelength portions because of the
cubic dependence of the absorption coefficient upon wavelength. We
wish to find the shift in the center of the line due to this non-
symmetric absorption.

Assume that the profile of the line before absorpti§n is given by

Y =A [1 + (N- 10)2/a2] -1 and that after absorption it is given by

. A e-p(k)x
y m ‘ (L.23)

where x is the thickness of the absorber and ).1( A) is its linear
absorption coefficient. We shall assume that A is far enough from
any absorption discontinuities of the absorber so that the approximate

cubic dependence of p(X) upon A may be assumed, We may then set

pOAY =gy v (A-ag 2P
Xo

by a Taylor expansion about the point Xo. The amplitude of the line
after absorption may be found to sufficient accuracy by setting A= 7\0
in (L4.23); the shift in wavelength of the center may be found by solving
for the values of N corresponding to one-half this peak value of y.

We obtain therefore

o~ (M%)3 pox/a
_%)2

1+ ()‘a

wj-

which can be simplified by replacing the exponential by its

expansion:
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19 1-3pox(X=-2%0)/%,
1+ (Ao X ))2/,2

(Le2k)

The expression (4.2))) can be reduced to a quadratic in (N- Xo)/a

which has the solution

A-X
0._3}1()1(& R (3)10X3)2+1 .
a XO - —r—o

If the second order term in the radical is neglected, the two wvalues

of A corresponding to the half maximum points on the line are given

b
v 2

7\0
from which we obtain for the relative shift in wavelength of the

absorbed line:

M 2

The correction to be applied to the observed Bragg angle is therefore
a0 = + 3 px(£5)2 tan ®

which should also be expressed in seconds in order to compare it to
the required precision of measurement. If a is expressed in milli-

angstroms and A is expressed in angstroms, the correction angle is

A9 = 0.6 )nc(%)2 tan © seconds. (4.26)
The quantity A changes with wavelength more rapidly than any other
quantity in (L4.26), so the evaluation of A© at the longest wave-
length would give its highest valus. Since (a/ 7\)2 is approximately

a constant equal to 0.2 for most L lines and tan © at the longest
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wavelength of 1.5 £ is approximately 0.25, (L.26) reduces to

A6 = 0.03 px seconds . (Le27)
The correction would have to be 0.1 sec or greater to be considered
non-negligible, in which case the px values for the various absorbers
in the path of the beam should add up to about 3.3 or more. The ab-
sorbers which contribute significantly to Zpx are

| air path px = 0.8

various windows® px = 0.6,
énd these evidently give rise to a negligible correction.

We have not yet considered the effect of the absofption of the
X-rays in the source itself. Because of the difficult nature of this
problem we can only hope to obtain an order of magnitudé for the
correction for this effect. While a more detailed description will be
given later, for the purposes of this discussion the source may be
considered to be a flat strip of metal inclined at 30° to the
horizontal. The exciting radiation is provided by an X-ray tube
placed immediately above the source, and the fluorescent radiation
as seen by the spectrometer emerges in a horizontal direction. We
shall make the following simplifying assumptions:

(a) parallel incident radiation

(b) semi-infinite source with surface perpendicular ﬁo incident

rays

(c) parallel radiation only accepted by spectrometer.

# The windows referred to here are the various absorbers through
which the beam must pass before it enters the Nal crystal detector
such as the beryllium cover for the crystal and the black paper
light shield over the opening in the detector housing.
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| Figure 16 shows the geometrical configuration of the source and the
incident and fluorescent beams. The quantities used in the subse-
quent treatment are defined in this figure.

Per unit width of the source, the poﬁer arriving at the volume

element dV for a wavelength )\1‘ is

: - p.r

dP =TI e S

 where I o is the intensity in the incident beam. Since
r sin (f -«) = 5 sin ot

with
dr sin § = dy, ds sin @ = dt,

we may write
- pir
dP = I_ e P1Y sin g ds .
Now the fluorescent X-rays from dV in the horizontal directiqn have a

power proportional to the amount of absorption in the path dr:

dPp = cIoe- mr pydr sin @ ds

(L.28)
- - Bsb (
cl e p,ldyds :
where ¢ is a qonstant of proportionality and
p = Sinx (1.29)

sin(g-o¢)

The intensity of the fluorescent X-rays at the surface is obtained
by integrating (4.28) from s = 0 to s = oo and dividing by dy:

00}
- b+ cI, p
e S( )11 ,10) dS orl

Plb* By

Ip = cly py (L+30)
0

where p, is the linear absorption coefficient of the source for the
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Figure 16. Schematic diagram showing relationship of
incident and fluorescent beams of radiation.
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- fluorescent radiation. If Po = O the fluorescent intensity would be

cI
e

and the ratio of If/If' is therefore a measure of the effective
absorption of the source material. We may define an effective depth

of emergence, X,by the equation

ReX  Ir b 1 |
Ir ROt B, 1+ po/ pob |
so that _
BoX = {n(1+ »o/ pqb)
(Le32)

= Ln(1+2 n,/ py)
where we have substituted the angles ®= 30° and g -olm 90° in
(4.29) to evaluate b.
Even though (4.32) is valid for only one value of wavelength of
the incident radiation, it may be used to obtain an estimate for Box
providing a judicious choice can be made for Xl and“hence Pl" The

range of N._ effective in producing fluorescent radiation is from the

1
critical absorption wavelength of the source to the short wavelength
limit of the continuous spectrum of the exciting radiétion, while "M
varies roughly from a maximum to a minimum in this range of wavelength.
We shall obtain the largest value of )1032 by choosing the smallest

value of "M and the largest value of Pos experimentally this corresponds
to measurements on W which has a mass absorption coefficient of 159 |
at the L,,‘2 wavelength and 6.9 at the short wavelength limit of the

continuous spectrum of the incident radiation. For this case

PoX = 3.8, and when this value is combined with the Z px value for
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.4 "_the other absorbers (which totals l.l4 for this same wavelength) the
| Bragg angle correction as given by (L4.27) amounts to about 0.15 seconds
which is on the borderline of being significant.

It is believed that the above estimate of p X is pessimistic
enough so that the correction due to differential absorption of
spectral lines may be neglected i‘or wavelengths below 1.5 K buis‘ should
 be .considefed if fluoreé;cent measurements above this wavelength were

undertaken.

D. Correction for the Effect of Crystal Diffraction Pattefn A‘symnetry
In Part IIT we have shown that the asymmetry of the Prins single
crystal diffraction pattern introduces a small shift toward smaller
Bragg angles of the axis of symmetry of the observed spectral line.
The amount of shift was designated by the letter € which is an angle
measured in the same units in which the rotation of crystal B is
measured. In order to calculate a correction which can be added to
the observed Bragg angle the function Py ( ﬂ )’, which was defined by (3.10)
and which represents the spectrometer output for a monochromatic input,
should be graphed for a sufficient number of wavelengths so that the
dependence of 7€ on N could be determined. |
The single crystal I functions, from which Py( ﬁ) is obtained,
are of such complexity, however, that it is not feasj.ble to calculate
Pl( ﬁ ) for many wavelengths. We have already mentioned the fact that
Allison (16) and Parratt (17) have made several contributions along
these lines, Allison having published a curve of P( ) for A=1.537%
and Parratt having published a table of values of I¢g @) for £=2.299%.
Since the asymmetry of the diffraction pattefn becomes ‘negligible as

\ approaches zero, it is evident that €(N) is zero at N= 0j
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we will attempt to estimate its functional behavior for X\ >0 by
evaluating it at *= 1,537 and X = 2,299%.

Careful measurements made on Allison'!s curve (see Figure 10)
indicate that € has a value of about 0.5 sec at A= 1.5378. In order
to obtain € at the longer wavelength it was necessary to perform the
integration indicaited in (3.10) by numerical methods. Measurements
_ off the resulting curve of P1(B) vield a value of € = 1.1 sec at
A= 2,2998. If we assume a power law dependence of € on X; the
above two values of € may be used to evaluate the constants in the

equation € = AN, The approximate result is

€ = 0.22% seconds . - (4.33)
The size of this correction var‘ies from about 0.5 sec for WL e 5 |
to about 0.1 sec for PuLSl. For the purposes of the present work
it is more important to know accurately the differences between the
various correctibns applied to the I.°,~2 and L B1 angle measurements
rather than to know the absolute value of a given correction wiih high

accuracy.
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PART V

DESCRIPTION OF EXPERIMENTAL APPARATUS

Several references have been made already to the three major
components of the experimental apparatus, namely, the X-ray source,
the spectrometer, and the detector. In this Part a more detailed
descriptibn will be given, with emphasis on those features which are
considered unique or which tend to aid in the obtaining of maximam

precision.

A, The X-ray Source

We have limited the term source to mean the piece of metal which
gives rise to fluorescent radiation when irradiated with X-rays of
sufficient quantum energy. We shall include in this discussion,
however, the X-ray tube which provides the exciting radiation as
well as the high voltage power supply. | A

The six elements studied in this work, namely, W, Pt, Bi, Th,
U, and Pu, are all available in metallic form and hence are quite easy
to mount on a source holder of almost any design. The design chosen
was quite similar to that used by Rogosa and Schwartz (20) which held
the plane of the source material at an angle of 30° with the horizontal.
In order to facilitate the monitoring of the intensity of the source,
the mounting plane of the source holder was tilted so that the surface
of the fluorescent material could be seen both by the spectrometer
and by a monitoring Geiger counter placed on the horizontal line
passing through the source approximately at right angles to the

central ray.
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The source holder was machined from a rectangular aluminum bar
and mounted on a steel plate which could be moved parallel to the
central ray and fastened securely in any position. Aluminum was
selected rather than some heavier metal because its own fluorescent
radiation is so soft that most of it is absorbed by the air. Alumipum
clamps are providéd on the mounting surface to hold the vaiioué :
flﬁorescent materials in place. A perspective view of the source
holder is shown in Figure 17. |

The exciting radiation was obtained from a Machlett type OEG~-50T
high intensity X-ray tube. This tube has a single beryllium window
and a tungsten target, is provided with water cooling, gnd is capable
of ruming continuously at 50KV, 50ma input. The tube was positioned
over the source so that the normal through the center of its window
was normal to the plane’of the source and intersected this plane at
the same point as did the central ray. The surface of each source,
regardless of the thickness, could be brought into the proﬁer ppsition
with respect to the X-ray tube and the central ray by merely sliding
the source holder backward or forward as indicated in the figure.

The source, X-ray tube, and monitor with its shielding were
mounted on a thick steel base plate and enclosed in a 1ead51ined box.
The box was provided with adjustable vertical and horizontal slits
immediately in front of the source holder. The base plate itself was
fastened to a steel frame with adjustable screws for leveling purposes,
and the whole assembly was rigidly fastened to a concrete bench.

The X-ray tube was powered by a Phillips water cooled diffraction
unit which could provide a full-wave rectified output, variable from

0 to 60KV peak. The voltage regulation of this unit is quite good,
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Figure 17. The fluorescent source holder.
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but to insure greater stability of operation of the tube, the pri-
mary voltage was regulated with a Sorensen 2.5KVA regulator.

As an additional check on the stability of source intensity
during measurements on a spectral line, the total number of counts
recorded by the monitoring Geiger counter could be watched for
significant variations. The radiation input to the counter was
adjusted by a series of'apertures to a high enough value so that
the relative statistical fluctuations in the counting rate wére
small. The input to the monitor was also filtered by means of a
critical absorber whose K absorption edge was slightly on the short
wavelength side of the L line undergoing measurement. In this way
the monitor was more sensitive to changes in intensity of the
fluorescent line than it would have been without the filter, since
mach of the continuous radiation from the tube is scattered by the
source material and could be picked up by the monitor.

An electronic system was developed which allowed the integrated
monitor output to control the length of time that counts from the
X-ray detector would be recorded. Counts from the monitor were
scaled down and stored in an electro-mechanical register which auto-
matically turned off both monitor and detector scalers when a
predetermined number of counts was reached. Thus if the source
intensity dropped slightly during measurements at a particular
spectrometer setting, the detector scaler would remain on for enough

additional time to compensate for the decreased intensity.

B. The Two-Crystal Spectrometer
The spectrometer 