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ABSTRACT 

The basic conceptions of the circulation theory of 

airfoils are reviewed briefly, and the mechanism by which a 

"wake" of vorticity is produced by an airfoil in non-uniform 

motion is pointed out. After a calculation of the induction 

effects of a wake vortex, it is shown hov; the lift and moment 

acting upon an airfoil in the two-dimensional case may be 

calculated directly from simple physical considerations of 

momentum and moment of momentum. Formulae for the lift and 

moment are then obtained which are applicable to all cases of 

motion of a two-dimensional thin airfoil in which the wake 

produced is approximately flat; i.e., in which the movement 

of the airfoil normal to its mean path is small. 

The general results are applied first to the case 

of an oscillating airfoil, and vector diagrams giving the 

magnitudes and phase angles of the lift and moment are obtained. 

The results of a sudden change of angle of attack are then de­

termined, and a general method for handling transient cases is 

set up. This method is applied to the calculation of the lift 

and moment acting on an airfoil entering sharp-edged and graded 

gusts. The case of a series of sinusoidal gusts is also considered. 

A method of calculating the distribution of forces 

over the airfoil chord is then shown, and it is applied to the 

steady-state oscillation. The paper concludes with a discussion 

of the applicability of eertain results to the explanation of 

observed phenomena beyond the stall. 
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I. INTRODUCTION 

The theory of airfoils in non-uniform motion has 

several practically important applications, especially in 

connection with problems of wing flutter and of aircraft flying 

through gusts. It has been developed by a number of writers 

(see Bibliography); however, many of their works suffer trom a 

certain lack of clarity, especially since the physical principles 

underlying the mathematical treatments have not always been 

pointed out. The present paper is the result of an attempt to 

obtain the more important results of the theory by the applica­

tion of fundamental physical principles and to present them in 

forms suitable for direct application to certain flutter and 

gust problems. 

It is advisable to review briefly the fund.amentai 

concepts of the circulation theory of airfoils in the case of 

two-dimensional motion, i.e., of infinite aspect ratio. The 

airfoil, when initially put into motion relative to the fluid, 

creates a vortex at its trailing edge due to the presence of a 

sharp corner there. According to the principle of conservation 

of angular momentum, a.n equal and opposite circulation develops 

around the airfoil. As the airfoil continues its motion, the 

"starting vortex" is left behind in the fluid. If the relatively 
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slow displacement of this vortex in a direction perpendicular 

to the direction of flight is neglected, it can be assumed 

that this vortex remains stationary at the place where it 

was created. 

If the subsequent motion of the airfoil is uniform, 

i.e., if its velocity and angle of attack remain constant, 

the effects of the starting vortex on the flow at the airfoil 

become very small and can be neglected after the airfoil has 

travelled a great distance from the starting point. However, 

if the motion of the airfoil relative to the fluid is 

variable, a continuous succession of starting vortices will 

be shed at its trailing edge, and the effects of this 

"wake" of continuously distributed vorticity must be accounted 

for in calculating the forces and moments acting on the air­

foil. These effects can be evaluated by the use of the re­

sults of the following Section. 
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II. CALCULATION OF THE EFFECT OF THE WAKE VORTICES 

The effects of the wake vortices are here calculated 

for the simple, two-dimensional case illustrated in Fig. 1. 

In accordance with th.e usual theory of thin airfoils the air-

foil is considered to be made up of a vortex sheet,, i.e.,. 

a series of infinitesimal vortex lines lying in the direction 

of the span, with a continuous distribution of vortex strength, 

or "vorticity", across the chord. The chord of the airfoil 

is taken equal to 2, so that all lengths are measured in 

half-chords. It is assumed, moreover, 

(a) that the vertical displacement of any point of the 

airfoil from the mean flight path is small, so 

that the airfoil and the trail of wake vortices 

which it leaves behind may be considered to lie 

upon the x-axis; 

(b) that the theory of thin airfoils may be applied to 

the calculation of the :forces; in particular that 

the total circulation about the airfoil at any 

instant is such as to produce tangential flow at 

the trailing edge. 

The effect of an element of the wake vorticity, (": 

located at a distance f from the center of the airfoil IJ1.ay be 

calculated with the aid of the conformal transformation pictured 
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in Fig. 2. The transformation relating the two planes is 

2~= ~'+1/-x' (1) 

Since the airfoil lies on the X-axis between x = -1 and x = l 

in the z-plane, it is transformed into the unit circle in the 
I 

z•-plane. In the z•-plane the vortex - r is placed at x' = l/f 

to make the unit circle a streamline of the flow, by the. usual 

method of "images". This means that the resultant velocity in-

duced by the two vortices is tangential at all points on the 

circle. Its magnitude is given by 

r'j-'-
211 -::X..' -( ?. ' 

r' I 
2-rr 

(2) 

From the equation of the transformation, (1), '7J + 1// - 2 ( 

and / - 1// = 2 j ( 2 - l~ Using these relations,. the 

magnitude of the tangential velocity becomes 

r' 2J{
2

-1 ! 
Ve, =- :<1T e;z.;_e _2( ei..G+ I 

(3) 
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In particular, the veloci~ at the trailing edge, 
r' f +I 

where cos 8 = 1, is equal to 2 rr ~- 1 • In accordance 

with assumption (b) above, a circulation arises which is just 

great enough to cancel this velocity. Hence a second, uniform 

. r' {{+! 
velocity, v62 = - ~·. \) f=/ , is added to v81 • Then the 

total tangential velocity becomes 

(4) 

The relation between the velocity v8 and the vorticity 

distribution over the airfoil, °¥(x), is given by the .formula 

'((x) = -2vefsin e. * Thus, from (4) it follows that· 

r' I lf+I 
¥(x) = ;r ~ e V (=I 

or, since cos e = x and sin e = 

1 __ r_' {!!;/ [ + 1 _ '((x,)= -
11 (-X- [-/ 

*cf. von Karman and Burgers, Ref. l, p. 46, noting that their 
transformation differs by a factor 2 from the one given in 
equation (1). 
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This vorticity distribution on the airfoil is plotted in 

I 
Fig. 3 in terms of the wake vortex strength, r , for several 

values of f . It is seen that a wake vortex located one half'­

chord length or more behind the trailing edge induces a vorticity 

distribution which is similar to the well-known one produced by 

a small angle of attac~, while a vortex placed very close to the 

airfoil induces a much stronger vorticity over the chord, with a 

definite peak near the trailing edge in addition to that at the 

leading edge. 

The total circulation about the airfoil due to the wake 

vortex is obtained by integration of (5), and is 

r- r:{xJtl~ = r/ rr+iff' x, cl~ -JO 1r VH. l+-;t £_'\/ 
-1 5 -/ s r-

;' /~~; [J;'._;!~f-K) -[/-:~1f-x) J 
r'.{fi/[ I +/·-- Yt=t {f'L_ I 

r j 
r' [ft~ - If (6)* 

If the wake behind the airfoil consists of a continuous 

distribution of small vortices whose strength is given by the function 

'( ( f) , the effects of the pa;rt of the wake lying between f and 

*The evaluation of the definite integrals involved in th.is reduction 
is given in Appendix4fl at the end of the paper. 
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r + d.[ Can be calculated by replacing /'I in equations 

( 5) and ( 6) by '( { f) J ( . Then, since the wake extends from 

the trailing edge ( ( = 1) to some value of f which corres-

ponds to the beginning of the motion, and beyond which ¥' ( f) = .o, 

the vorticity and circulation induced on the airfoil by the entire 

wake can be obtained by integration, i.e., 

i(x)-:- _I ~1= '((() f7+I ,,/_[ (7) 
'TrV/H, f-X Vh 

I 

and 

(8) 
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III. GENERAL FORMULAE FOR THE LIFT AND MOMENT. 

In this Section, general formulae for the lift and 

moment acting on a thin airfoil in non-uniform. motion are 

derived from the simple physical conceptions of momentum and 

moment of momentum. The values of these quantities are first 

determined for a two-dimensional system of vortex pairs. 

The momentum. of a vortex pair is given by the product 

of the fluid density, the circulation, and the distance between 

the vortices. The total momentum of a system of vortex pairs 

is equal to the aum of the momentums of the pairs which constitute 

the system. Thus, if all the constituent vortices can be assumed 

to lie along the X-axis, and if the strength of a particular 

vortex is denoted by r'i' its X-coordinate measured from an 

arbitrary origin by~, and the density of the fluid by p ii the 

total momentum of the system is 

(9)* 

Because of the symmetry of the individual vortex pairs, this 

momentum is directed perpendicular to the x-axis. The -0ondition 

z ri = o expresses the ract that the total circulation or the 

system does not change. The rate of change of the total momentum 

at any instant is equal to the force being exerted on the fluid 

(e.g. by an airfoil). 

------------------* cf. Ref. 1, p.325 
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In a similar manner the total moment of momentum 

of' the fluid with respect to a suitably chosen point may be 

expressed. If' the strengths of the two vortices of a particular 

vortex pair are denoted by ± ~' and the x-ooordinates of the 

two vortices by x2 and~, then the momentum is p /__,(x2 - x1), 

and the line of action of the momentum, due to symmetry, is given 

by x = (x1 + x2)/2. Consequently the moment of' momentum With 

respect to the origin of the coordinate system is Pr ex{ - x{ V2,, 
and it is seen that the total moment of momentum of the system of 

vortex pairs is given by 

(10) 

The rate of change of this quantity at any instant gives the moment 

acting on the fluid, referred to the origin of' coordinates. 

and 

Hence the two equations 

L=-r~Ir: X· 
l. 

M - _!_ p cl <:::] ,--._ x: . 2 
~ r;lt~ l L 

determine the lift and moment acting on the airfoil. 

- 9 -
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These results can now be applied to the case of any 

thin airfoil of infinite aspect ratio with a wake consisting 

of a plane vortex sheet. The chord of the airfoil is again 

taken as 2, so that all distances are measured relative to the 

half-chord length. All forces are calculated for a unit length 

in the spanwise direction. The symbol x is used for the X-coordinate 

between the leading edge (x = -1) and the trailing edge (x = 1), 

and the symbol ~ is used in the wake. Hence the vorticity bound 

to the airfoil is denoted by "(((x) and that in the wake by '<(tJ. 
The vorticity ~(x) is composed of two parts: 

a) the vorticity, /(
0 

(x), which would be produced,· 

according to the thin airfoil theory, by the 

motion of the airfoil or the given velocity 

distribution (gust) in the air, if the wake had 

no effect. 't
0

(x) is called the "quasi-steady" 

vorticity distribution; 

b) the vorticity, ~1(x), which is induced by the 

wake, as calculated in the preceding Section. 

The circulation resulting from. a) is denoted by f:, and that from 
0 

b) by ~1 ; the total circulation about the airfoil is then 

r = ~ + rl. According to the basic conceptions explained 

above, the total circulation of the whole system must be zero, 
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hence 
= 

r + jo'(fJ elf'= o 
I 

The circulation, r
1

, induced by the wake, is just 

the circulation calculated in equation (8). Hence the total 

circulation about the airfoil at any instant is given by 

(13) 

From equation (13) it is apparent that the following relation 

exists between the vorticity in the wake and the quasi-steady 

circulation: 

0 
(15) 

This relation will be used later in the paper. 

Since the total circulation of the system consisting 

of the airfoil and wake is zero, according to equation (13), 

the system can be considered as being composed of vortex pairs, 

and, since the wake is supposed to lie entirely along the 

x-axis, equations (11) and (12) can be applied to the caloula-

tion of the lift and moment. According to the principles 

described above and the result given in equation (9), the total 

momentum per unit span of the system of continuously distributed 
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vortices is 

Putting ~ (x) = ¥
0

(x) + ¥1 (x) and using formula (7) f'or 

C(l(x), 

(16) 

I fl! /JI hQ? ~'If!["-I }t(~Jxl~ = ~ fx)x ix+ _!_ 0-X x dir O'{f_,; ~ dr'f c
17

) 

I 
0 rr v l+X (- x E-1 

- -) -/ J 

If' the integration with respect to x in the last term is carried 

* out , the term is reduced to 

/OJ/ f -1+f- r"'j({-11"/{(fJotf' 
; (f~I ff"!_! f-1 

c;;() 

= j¥'(fJ(.ff~I - F) cLf' 
I 

and therefore, putting the result into equation (16), the 

momentum becomes 
I /.co 

T = p J dx)xdx + f) <s'{f) / f'2._t df' 
-I I 

Now it is desired to differentiate this expression to 

obtain the lift, but since ar(f .fGr may be discontinuous at 

certain points in the wake (e.g., the case considered in 

~----------------
*see Appendix =1/:1. 
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Sections V - VII of this paper), the use of an integration 

by parts (as employed in Ref. 1, P• 301) is not allowable 

in the evaluation of the second term. Since a similar 

problem is encountered later in calculating the moment, it 

is desirable to consider a general integral of the form 

A =jl<fJf{f")clf 
I 

The wake vorticity, ((, according to the assumptions already 

made, is stationary relative to the fluid. Hence if X is the 

distance of an arbitrary wake vortex from a fixed origin, say 

from the location of the center of the airfoil at the instant 

t =- t, then )( is a fmiction of X only. The integral con-

sidered can therefore be written 
oO 

A =-)a<X)f(F)clf 
I 

If A is the value of this integral at the time t and A+ LJ A 

the value at the time t + L3t, and if account is taken of the 

fact that the airfoil has moved through a distance U · .6 t during 

this interval, where U is the velocity of flight, so that 

f = x+ U·~t (cf. Fig. 4), it is seen that 
00 

A+L1A = f<XJf(X1-ULJt)clX 
1-ULJt 
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Neglecting terms of second order and higher, 

.6A =fi(xHrxJ dX + ULJtjK'(X) f 1 
(X) dX 

1-ULJt I 

Now if ( (X) is finite in the interval and if f(l) = 0, 

then in the limit ~t ~ 0 the first term vanishes, and, 

replacing X by f in t)le second term, 

Applying this result to the differentiation of the 

second term of (18), the lift becomes 

(19) 

Using the relation (15), the last integral may be related to the 

quasi-steady circulation: 

J'lr.tJ fcf_f" _ r;;f) f /(+I _ I }df 
I (f-1 -1 u ( ~ ~-/ {F2-t J 

00 

= - ;--. -f't'(fJ . otr 
0 

I rr~ r 

Therefore the lift may be written as 

- 14 -
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Thus the lift consists of three parts: 

I 

(a) L1 :::: - p oft }o (x)x dt, which will be 
. -I 

called the contribution of the apparent 

mass, for reasons to be explained later; 

(b) L
0 

= f Ula , the quasi-steady lift; 

(c) 
~ df 

L2 = f U fi (f ).{-;::::==== 
1 vf'2._ I • This is the 

only contribution which depends explicitly 

on f (f}, the vorticity distribution in the 

wake,, and it will be shown later that this 

portion of lift actually represents the 

entire effect of the wake. 

In a similar manner, the moment can be calculated 

from the moment of momentum, referred to a fixed axis. If 

the center of the airfoil is imagined to be at a distance s 

from the fixed axis, the moment of momentum (of. equation (10)) 

is 
I . 

M..,= ~pf(x)(x.+sfJx+d1!lfJ(f+s)2,,(f (22) 

where x end ~ are again measured from the center of the airfoil. 

The moment, M, acting on the airfoil, referred to its midpoint, 
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is then given by the value of dl\/dt for s = o. Carrying 

out the differentiation and taking into account that 

ds/ dt =- -u, where U is the velocity of flight of the air-

where I is the total momentum as calculated in equation (18). 

A diving moment is here considered positive. 

(23) 

Now substituting again ((x) = ((
0

(x) + ¥1(x), 

and using equation (7) for ¥ 1 {x), the moment is 

M =c-~p cl~ {f (x))'.~Jl+ ;[~ f~~ f;);:~: df 

+f~(f)f2c1f'j +VI 

= - ; pd~ {f:fr) ~'-dx+ f'lfJ6;;_,'- --{+j +[:_ {;:J~ df 

+ /ifrf J f" 2df} + UI (24•l* 

=-di' ft {f:(x)x'-clx +;f~)(J +; df 

+ (;;f'JF (f"~ I df'j + UI (24J 

*The integration with respect to x is again carried out with the 
aid of Appendix =/fl. 
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Now the second integral in the bracket is equal to - f1of2 
I 

or - ~~'/f 0(x)dx by equation (15), and the differontiation 

-I 

of the third integral can be carried out by the method of 

equation (19). Then. substituting for I from equation (18), 

Therefore the moment also consists of three parts: 

(a) 11_ =-; P ftf.1

()'.){x'-4)Jx, analogous to ,, 
L

1
• This will be called the apparent-mass 

contribution to the moment. 
I 

(b) M
0 

= f U /,'li'o fr) X Jx , the quasi-steady 

moment; 
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Ir. CJ() H 
( c) ~ = - ;ff U ~ i { f J { f~ I • By comparison 

with equation ( 21),, it is seen that M2 = -L:/2, 

i.e. 1 the lift L2 produced by the wake always 

acts through the quarter-chord point of the 

airfoil (x == -l/2). 

The physical significance of the three parts of the 

lift, as given in equation (21), and of the moment, equation 

(25), will now be explained briefly. 

Considering first the lift, let it be assumed that 

the airfoil carries out its motion without producing circula-

tion. Then the quasi-steady lift, L1 ,, is zero, and, because 

obviously no wake is produced,, the part called L2 also vanishes. 

It is known from general principles that in such a case the 

only forces acting on a body moving in an ideal fluid are 

those corresponding to the apparent mass of the body. These 

can be obtained by integrating over the surface of the airfoil 

the so-called "impulsive pressures", p d<f/dt, where f is the 

velocity potential of the circulationless flow. Hence,, if C 

indicates a path of integration starting at some point A on 

the airfoil and going completely around the airfoil profile 
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back to A, the lift is 

L= pf:~ ds 
c 

where s represents the distance along the surface. Now the 

velocity potential, <p , can be taken equal to zero at an 
poiMi) 

arbitrary~ say at the trailing edge, x =:: 1. Then its value 

. at any point x is given by <p (x) = /:Cs)ds, where u is the 
I 

velocity of the fluid along the surface. Since the velocities 

on the upper and lower surfaces of a plane airfoil are equal 

and opposite, it is seen that <p (x) also has equal and' 

opposite values on the two surfaces at any point. Therefore 

the integration over C can be transformed into an integration 

over the chord, i.e., I 

L= p}}c/<f!{s)ds = 2p~~fa{x) dx. 
c -/ 

I I 

-<'.t°a~[Cf·xf_,-J~~ xdxj 
-/ 

The first term obtained in the integration by parts vanishes 

because if 'fJ(l) = O, as assumed above, 1J (-1) must also be 

equal to zero, since there is no circulation, and therefore the 

values of <p on the upper and lower surfaces at the leading 

edge must be the same. Also d<{JfaX, which is the velocity 
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along the surface, is equal to ¥' (x)/2, because (( (x), 
0 0 

the vorticity at x, is the difference between the upper and 

lower surface velocities. Hence, the lift in this case is 

simply 

L 

which is exactly the term called L1 above (equation (21)). 

Therefore, the term L1 gives correctly the lift due to the 

apparent mass in the case of the airfoil without circulation. 

Now the addition of circulation increases the .function '( (x) 
0 

by a term equal to _L ~ , which is the vorticity distri-
'Tr "L 

bution of a pure circulation about a plane airfoil. It is 

seen by considerations of s~etry tha.t this term does not 

contribute to the integral L1, i.e., L1 is again the lift due 

to the apparent mass. 

Turning now to the corresponding term, M1 , in the 

expression for the moment, in the case of flow without cir-

culation the moment can be calculated by integrating over 

the surface of the airfoil the moments of the impulsive 

pressures, an.d again the contour integration can immediately 

be ~1ritten as an integration across the chord, i.e., / 

M = p /tf xJs = p;ft_fa(s}xds = Zp f:-t fatx) Kh 
c -/ c 
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The rest of the integral 
I 

because /'¥'
0

(x)dx =- o. 
-1 

called M1 in equation (25) vanishes 

Again the addition of the circulation 

term to t 0 (x) does not change the value of the whole integral, 

r: for this term is and 
'Jr {1-y'L , 

r.J' x"'-t/z o/,,: ~ o . 
.,, _, {1-xi 

Hence it is found that the contributions L1 and M1 

are equal to the force and moment which the airfoil would 

encounter in a flow without circulation, due to the reaction 

of the accelerated fluid masses. We call these terms in both 

cases the "apparent mass contributions". It should be noted 

that the determination of ~0(x) involves only the solution 

of steady-flow problems and can be done in any given case by 

the use of known formulae of the stationary airfoil theory. 

The second terms of equations (21) and (25), the 

lift L0 and moment M0 , are easily interpreted. They represent 

the force and moment which would be produced if the instantaneous 
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velocity and angle of attack of the airfoil were permanently 

maintained. · The calculation of L0 and M
0 

also requires only 

the solution of steady-flow problems by the usual methods. 

The third contributions, L2 and ~' represent the 

influence of the wake. Their interpretation is simplified 

by considering a case in which quasi-steady lift and moment 

(i.e., the angle of attack or speed) undergo a sudden change 

at the instant t ==- 0 and are kept constant for t > o. In 

this case L1 = M1 = 0 for t > o, and the lift and moment 

are given by 10 + t 2 and M0 + M2• For t == co the final 

values of lift and moment will be L
0 

and M
0 

because the 

conditions of the "stationary" case are approached. It is 

seen that L2 and M2 give the difference between the transient 

and final values of lift and mement. Hence -L2 and -M2 can 

be called the "deficiencies" due to the non-uniformity of the 

motion of the airfoil or of the wind velocity encountered by 

it. 

Before proceeding to the next Section, it should be 

pointed out that the general formula, (21) and (25), developed 

in this Section can be applied to the case of any thin airfoil 

with arbitrary shape, performing an arbitrary (accelerated, 

oscillatory, or uniform) motion, provided only that its deviation 

from a straight path is small, so that the assumption of a wake 

distributed along a straight line is justified. 
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IV. APPLICATION TO THE CASE OF STEADY STATE OSCILLATIONS 

The theory of steady-state oscillations of an airfoil 

is closely related to the practical problem of wing flutter. 

In the earliest flutter theories it was assumed that the actual 

forces and moments on the wing could be approximately replaced 

by the portions referred to in the preceding Section as 

quasi-steady forces plus some damping forces applied rather 

arbitrarily on the basis of a few wind tunnel experiments. 

However, the difference in phase between the actual forces 

and the quasi-steady components was not accounted for, and 

the effects of the apparent mass were also neglected. The 

theory of the oscillating airfoil now opens the way to a more 

systematic analysis of the problem. To be sure, the assumption 

of infinite aspect ratio restricts the accuracy of purely 

theoretical predictions regarding the flutter of wings of 

finite span, but in any case the results obtained from the 

theory aid in scientific analysis of experimental data obtained 

in the laboratory and with actual airplanes in flight. 

" Experimental work done by Kussner and others has 

shown that the so-called "reduced frequency" (i.e., the product 

of half-chord and vibration frequency divided by the flying 
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speed) is the most adequate parameter for the discussion of 

flutter data. The following analysis, based on the results 

of the preceding Section, leads to simple formulae and 

diagrams showing how the magnitude and the phase of the 

actual lift and moment depend on the reduced frequency. 

If the motion of the airfoil is periodic, the 

resulting quasi-steady circulation is also periodic and, 

using the complex variable notation, may be written 

(._ )"> t:. 
lo =- Go ~ 

where G
0 

is a constant. 

If the motion has been occurring so long that 

(26) 

transient phenomena have disappeared, it may be assumed that 

the vortex strength in the wake can be expressed as 
L_v (t:-f' /u) 

i(f) = 0 e_ (27) 

where g is also a constant and U is the mean horizontal velocity, 

which is assumed to be constant in this case. 

Then the total circulation about the airfoil is given 

(from equation (14)) by 
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Hence r is also a periodic function of the time, and, 

because the wake vorticity is produced by the changes of 

circulation of the airfoil, the increment of circulation, 

(d r/dt)dt, must be equal and opposite to the circulation 

in the wake between f = 1 and f = 1 + Udt. Consequently 

( dfj'dt)dt = - t (l)Udt• By differentiation of {28) and 

substitution of d r/dt = - ~(l)U, a relation between G0 and 

g is obtained: 

U 
i_y(t-1/u) oe = 

or 
-G 

Q -J(J,t:+I v· -ivf/u, lJ - ---le ol/~'+-f-1 ~ •y 
I L 

-iv/U 
e 

The right side of (29) can be expressed as the sum of two 

modified Bessel functions of the second kind of the argument 

. . ~'/U 1 K (. ) 1:-~z-f cf_(' and 1Z = 1 v , name y ~O 1Z = e [ '2.. 

1 r f -I 

K1(iz) = -K
0

' (iz) (cf. Ref. 2, p. 50, eq. (29) and p. 22,, eq. 

(19)). This identification can be accomplished without en-

countering convergence difficulties by the following method: 

from equation (29), 

(29) 

- Go ;;= j ? I) -~"]:f -L

0

Z 

=J,{rp; + {f~I -f;e elf'+ ,e? J 

Jrc:XJ p ~ • ,,r::- -i7: .r -c. -Z.t e 
f( (i~) + ( "2. -/ e d:'f + -·. - (so) 

o . I f-/ l"2: 
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Now K
0
(iz) can be written in the form 

ao oo a.I 

K /· )-Je-i.r-f elf' - f-i.~ffi +j-ii: fi 
o u.2 - e ( .,_ ;e f t 

I f-J I z 

because the su:in of the last two terms vanishes identically. 

Differentiating with respect to iz, then, 

-iZ 
e 

+i~ 

This identifies the second and third terms of (30) and the 

relation between the quasi-steady circulation and the wake 

vorticity becomes, in this case, 

- Go 

ef 
.V' ( i.V) +Ir: { '~) 
1Lo U I U 

or ~= (31) 

In any given case of periodic motion, Y
0

(x) and 

f'
0 

can be easily calculated, and they determine directly 

the first two terms of the expressions for lift and moment, 

equations (21) and (25). After substitution of 't(f) from 

(27) and g from (31), the third term of (21) becomes 
Gt:> 

L == - lj Goe. (.~t ~ _,·.yf/U df 
2 p K:, ( "',;) + k; ( 'J') ~- f;; ( {' i_ I 
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or 

The corresponding moment is 1J!i = -L2""2• 

These results will now be applied to the case of an 

airfoil performing (1) tre.nslatory oscillations normal to the 

flight direction, and
0

(2) rotational oscillations around its 

midpoint. 

Case 1: Translatory Oscillation 

For this case the vertical velocity of every point of 

the airfoil can be written as 

(32) 

A U 
z.vt 

w = e. 
. 0 ( 33) 

where A0 is a constant and w is taken as positive downward. The 

quasi-steady portion of the vorticity depends only on the in-

stantaneous relative velocity of the air and the airfoil, and 

therefore the quasi-steady quantities can be calculated by the 

formulae of Ref. 1, Chapter 2, by replacing vy by -w •. For the 

present case (from Ref. 1, P• 38, equations (7.8) and (7.9), 

putting c = 2) 

·-vt 
~=- 2rrUAoe.L 

. _, t: I /"") 
"" = ""')UA el...Y -~a 
oa ,,,(_. o ~e 

- 27 -

(34) 



The three parts of the lift, as in equation (21), 

are therefore 
2 ;_ ..,,t:-

Lo=- 2rrp U Ao e 

i vt- (;( 1T ll 
L = -2p u Ao L i.>e J( /-~ e,;Cff;l, e dB 

I o 

UA . i.Vt 
= 1Tf ol ve 

a:nd, from (32), 

2 /I z. v t Ko { 7f) 
L 2 =- -21Tp U r--1() e !<,,(if)+~ (jJ) 

The total lift is therefore 

{35) 

It is seen that L1 is equal to the product of the acceleration, 

t_vt 
A

0
U i J.>e , and the apparent mass of a flat plate of length = 2, 

which is equal to np • 

The apparent-mass contribution to the moment, M1, 

vanishes in this case, since the motion is purely translatory 

and the apparent-mass lift acts through the center of the airfoil. 

This can be verified by substituting ~(x) from (34) into the first 

term of (25) and integrating. The quasi-steady lift in this case 

- 28 -



acts at the quarter-chord point (x = -1/2), as does L2• 

The total moment is therefore 

Case 2: Rotational Oscillation 

In this case the vertical velocity.of any point 

of the airfoil at any instant is proportional to the dis-

tance,, x~ of the point from the midpoint. Since x = c·os 9,, 

the vertical velocity may be written 

(37) 

where A1 is a constant. In this case the formulae of Ref'. 1 

lead to the following expressions for the quasi-steady 

quantities: 

~ y t. . 
Y=-4UAe ~e o I 

By substitution into (21) and (32), then, 
. "t rn-

L =-4pUA1i.\)e'- J~2B ~e ,le 
I o 

(38)* 

0 

*The details of the calculations leading to equations (38) are 
given in Appendix ://:2. 
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2A ·v-t: l<o {fl) 
L'J = -2flf U / e..... -------

A- f<o{i;)+l<,('J) 

so the total lift in this case becomes 

- · U2 A. '- ~r- I<, ( 1f) 
L- 2n p ,e. I( {CU)+ K, (LJ) (39) 

Also, by substitution into (25), 

Therefore, the total moment is 

(40) 
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In a similar manner,, the lift and moment on the 

airfoil may be calculated for the cases of periodic de-

formations represented by higher values of n in the general 

expression for the vertical velocity of any point of the 

airfoil:* 

°" 
w ( e) - u "-' ~ t [Ao+ z ,6. A~ .,,,,, " e J < 41 l 

The results, including those of Cases 1 and 2 above, agree 

with those obtained by K~ssner in Ref. 3. ** 

The physical significance of the complex forms 

of (35), (36), (39), and (40) may be clarified by means of 

"vector diagrams" which show the phase relationships of the 

quantities involved as well as their magnitudes. Each of 

these results may be abbreviated as 

(42.) 

where f(t) represents the lift or moment; F is a constant in­

volving only the dynamic pressure,, f u2/2, and the amplitude of the 

* These calculations are carried out in Appendix =/1=5. 

**In comparing Kllssner•s results, it should be noted that 

'TT H ~) (~) = Z i (n+i) Kn (ti) 

" Also Kussner' s (-i W) is the same as (-V /u) here, and, because 
of the difference in definition of e, his pn is (-)n~ of the 
present paper. 
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oscillation; and r1 and r2 are real functions. The real 

part of this expression (which is the actual force or 

moment) may be written as ] 

O([flt)] = F · [ f, ~ vt - f2 ~ v-f: 

F· Jf,2 +fi.2 ~(l)t + tp) 

where f = tan-1(r2fr1). Thus, in vector representation, the 

lift or moment vector has the magnitude F-Jr1
2 + r2

2 and 

leads the vector of the oscillating velocity, w, by a phase 

angle, ? . In Fig. 5 is given an example, taken from Case l, 

above, which shows schematically how the total lift vector is 

composed of the vectors L
0

, L1, and L2 for a certain value of 

J.J /u. The quasi-steady part, L0 , being in phase with the 

velocity, appears as a horizontal vector, while the vector, L2, 

tends to diminish the lift and cause it to lag behind the 

velocity. The apparent-mass lift, L1 , being proportional to 

the acceleration, is directed vertically, i.e., leads the 

velocity by 90°. The total lift, L, is the sum of these three 

vectors, and has the phase angle <p. 
In Fig. 6 are plotted "vector diagram.an which give 

the magnitudes of the lift and moment together with their phase 
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angles for various values of the reduced frequency -v/u 

* (or c -v/2u for an airfoil of chord =- c) • In these 

diagrams the length of the vector drawn from the origin to 

the appropriate value of c v/2U on the curve gives the 

maximum value of the total lift or moment (referred to that 

of the corresponding quasi-steady quantity, L0 or M0 ), an4 

its angle with the horizontal axis gives the phase angle 

relative to w. It is seen that as the frequency of the · 

translatory oscillation (Case 1) is increased from c--zJ/2U = 0 

(uniform motion) the maxim.um value or amplitude of the lift at 

first steadily decreases, and the lift vector lags slightly 

behind the vertical-velocity vector, w. These effects are pro-

duoed by the wake contribution, L2• With further increase of 

the frequency, however, the apparent-mass contribution, t 1, 

which is proportional to the acceleration6 becomes very large, 

and the lift vector leads the velocity vector. In the limit 

c -V/2U -- oo the sum (L0 + L2) is equal to half of L
0

, but 

L
1
-+ GO • and the lift vector leads w by 90°. Since the apparent­

mass lift, L1, acts through the midpoint of the airfoil in this 

ease, the limiting value of the moment is also half of its 

*Kllssner (Ref. 3, p. 416), gives a table of Bessel functions 
involved in the calculation of Fig. 6. 
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steady-motion value. In the rotational case (Case 2) the total 

lift behaves exactly like the moment of Case l as the frequency 

is increased, while the apparent-mass moment contribution, 

M1 , increases proportionally to the frequency. 

It is believed that the method of representation of 

lift and moment by vector diagrams will be useful in the dis­

cussion of flutter problems because both the elastic restoring 

forces and the inertia forces of the wing can be introduced 

in such diagrams. 

The results presented in Fig. 6 are applicable 'to 

cases of bending-torsional wing flutter. The calculation of 

aileron or rudder flutter requires the expression of the non­

steady forces acting on the aileron or rudder in a similar way. 

The aileron or rudder constitutes one portion of a wing or a 

fin, while the equations presented in this Section give only 

the lift and moment acting on the wing as a whole. However, by 

determining the vorticity distribution produced by the wake, 

similar equations can be deduced for the non-steady normal 

force on the aileron and for the non-steady hinge moment. 
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V. THE FUNDAMENTAL TRANSIENT CASE; 

THE LIFT AND MOMENT RESULTING FROM A SUDDEN CHANGE 

OF ANGLE OF ATTACK 

There are many cases in which knowledge of the 

forces produced by a transient phenomenon is of practical 

interest. Examples of such oases are the reaction of an 

airplane to certain control operations (aileron or rudder 

deflection, etc.), and the behavior of an airplane en­

countering gusts. In the second case, an estimate of 

the forces acting on the wing is of importance, as well 

as the reaction of the airplane as a whole, in view of 

strength requirements. The results of the preceding 

Section, which was concerned only with steady-state 

problems, can be used to calculate the lift and moment in 

the fundamental transient case; i.e., the case of a sudden 

increment in f'0 , the quasi-steady circulation. Since the 

quasi-steady circulation, as given by the stationary airfoil 

theory, is proportional to the product of the velocity and 

the angle of attack of the airfoil, the increment applied 

to ro may be supposed to represent either a sudden in­

crease of angle of attack while the airfoil moves at a 
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constant velocity or a sudden change of velocity with 

the attitude being unchanged. 

Since the quasi-steady quantity r
0 

and the 

wake vorticity function ~( {) are related by equation 

(15) (page 11), the present problem might be attacked 

directly by attempting to solve this integral equation 

with the specified behavior of' ro. This, in fact, is 

the method used by Wagner (Ref. 4), who obtains an ap-

proximate solution which is valid for small values of s, 

the distance travelled by the airfoil after the sudden 

disturbance, and is also the method used in Section VI 

and Appendix #3 of' the present paper. The method used 

II 
here is equivalent to that used by Kussner (Ref. 3), 

although there is a certain difference in interpretation, 

as will be pointed out later. 

The chord of the airfoil is again taken equal 

to 2, and it is supposed that the velocity of flight, U, 

is constant. The angle of attack is increased suddenly, 

at the instant t = 0, from zero to a constant value; 

i.e., if w is the normal velocity of the airfoil relative 

to the fluid, as in the preceding Section, then w =- 0 
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f'or t <. O, and w = w
0 

(a constant) for t / o. This 

discontinuous function of' the time can be expressed by 

means of the Dirichlet 11 disoontinuous factor" in the 

form 

w(t) = { fi oo J ~" t-
w . J_ + -1 ~ ci-v 

0 2 -rr iv 
0 

. (44) 

In this expression the complex-variable notation has been 

employed, as in the preceding Section, i.e., the real 

part of' the integral represents the desired discon-

tinuous angle-of-attack function, and the imaginary part 

will be discarded in the final results. 

In equation (44) the function w(t) has been 

expressed in a form which is equivalent to the superposition 

of a constant normal velocity, wof2, and an infinite number 

( ) 
Wo t.\>t: 

of sinusoidal velocities of the f'orm w t = 1T iv e. , 

with all frequencies between 0 and 00 • Hence the results 

of the case of translatory oscillation in the last Section 

can be applied to the calculation of the lift and the 

moment. By comparison of equations (33) (page 27) and (44), 

it is se~n that in this oase the total lift, from (35), 
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becomes in this case 

This can be written 

where L
0 

= 2-rr p Uw
0

, the quasi-steady lift. 

_ J_ _g__ f\...1Cu j ~v-C-6 J/ /iV) ) 

F( t) - Tr o i. Y l<o (1}}+k/-fJJ cf.v 

00 'feut- LY 1 L1(t)=-- ----o<.Y 
7T t. v 2U 

0 

, the lift 

arising from the apparent mass. 

It is apparent that L1(t) is indeterminate in the 

form above, but it can easily be shovm that this portion of 

the lift vanishes for t > 0 by consideration of the corres-

ponding part of the total momentum, which is given by the 

first term of the right side in equation (18) (page 12). 

This contribution is equal to I 1 = r:./,~(x)xdx, and, 
-I 

substituting t
0 

for the case being considered (or. equation 

- 38 -

(46) 



(34)) this becomes 

I = r/~tx)Ydx 
I -I 

(47a) 

If t > O, the real part of this expression is simply 

(47} 

which is independent'of the time, and therefore L1 = o. 

Hence there remains only the problem of evaluating 

the function F(t) in equation (46). Introducing Ut ==- s, 

the distance travelled after the change of angle, and then 

replacing v/u by z, this becomes 

Following KUssner, we may write 

(48) 

f0 (i:;;-)-f<o{i;t) = T(~) - T'{~) +l T"(~) (49) 
J<, (i~) +IL';, (i~) 

where T'(z) and T"(z) are real functions. If this sub-
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stitution is made, the function F(s) becomes 

F(s) = 2~ /F;"['+T'f~)+ c T"r>-Jd" (so) 
0 

and the real part, which is to be determined, is 

(i(_[Ffsj/ = 2~ /!Z+ T'tr!J~sx + T"N)c,n,n} ~,_ 
0 ' 

I I (j
00

1 . 11 ) , ) c/::;. 
-:;;- + 2.,,. j (_ T (;J_-J ~s~ + T (~ ~ sz_; z:-

0 

This infinite integral is found to be rapidly convergent, 

and has been evaluated approximately for several values 

of s by planimetry*, using the values of T' and T" tabulated 

in Ref. 3. The resulting curve for the total lift, L, 

as in equation (46), is presented in Fig. 7. 

In Fig. 7 it is seen that the lift attains half 

of its final, or quasi-steady, value instantaneously, and 

then gradually approaches the final value as the distance 

s increases. When s = 10, i.e., when the airfoil has 

*K~ssner (loc. cit.) has evaluated an infinite integral 
analogous to that in (51) above by a very elegant series 
expansion. 
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progressed 5 chord lengths after the sudden disturbance, 

the lift has attained 87% of the quasi-steady value. The 

lift curve is in good agreement with the corresponding 

result in Wagner's classical paper (loc. cit.) and wi"bh 

the function obtained by Jdlssner (loc. cit.) for the lift 

due to circulation. K~ssner does not consider the apparent­

mass contributions, which have been shown here to vanish 

for s > O. 

Since L
1 

= 0 for s :;;> 0, the entire lift acts 

at the quarter-chord point of the airfoil in this case' 

(cf. pp. 28 and 29), and the moment about the center of 

the airfoil is given by M = -L/2 where L is the lift as 

calculated above. 
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VI. A GENERAL ME'l'HOD FOR TRANSIENT CASES 

A general method of attacking transient 

problems may be developed once the effects of a sudden 

disturbance have been.calculated. Although the results 

obtained in Section V will be employed ultimately, it 

is desirable at this point to consider the sudden-disturbance 

problem from the standpoint of the integral equation, (15). 

If the velocity of flight, U, is constant, and the quasi­

steady circulation ro is suddenly increased at the instant 

t = 0 from zero to unity and then held constant, the wake 

extends only from ( = 1 to f = 1 + Ut, and equation (15) 

becomes 

l+Ut 

r: =' -- fiw It: "'re 
I 

(52) 

The vortex strength in the wake is a function of 

the distance s from the endpoint of the wake 

s = 1 + Ut - ~ , hence it may be written as 

. (({)= f'- (!+Ut -f). Equation (52) represents an 

- 42 -



integral equation for r- in the form 

I 

or, introducing the variable s, 

I (53} 

The function ~(s) has been determined by Wagner (Ref. 4). 

For the following applications, the main p~oblem 

is the calculation of L2, the contribution of the wake. 

For the case being considered, L2 is equal to (from equation 

{21)) 

J-f ut-

=- p Ufa (1+ U t. -f) df 
I (f?=_f 

where the function p--<s) is again the solution of the 

integral equation (53). The function 

1+Ut 

~(ut:) = -Jf'A-u+ut-f) ff~~1 
I 
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will be called the lift deficiency function. Since 

p U ~ represents the difference between the instantaneous 

and final values of' the lift in the case of sudden unit 

increase of the quasi-steady circulation, ~ is obviously 

the difference between unity and the function L/2rrpUw0 

plotted in Fig. 7. It is a function of' the distance Ut 

travelled by the airfoil since the change of circulation 

took place. 

It is evident that the function ~ can be used 

to calculate the lift acting on an airfoil which is sub-

jected to an arbitrary transient variation of the quasi­

steady circulation r:. Assuming that ro changes at the 

instant rr by the increment ~ro= ro'('L)~T, the deficiency 

in lift at t = t, i.e., after the airfoil has travelled 

a distance U(t - T),will be ro'(T)· ~[U(t-'L)] ·L::.TJ 

and the total deficiency in lift will be given by 

-L
2 

= f U [/': 1(-r:).;f[U(t-L[} d-c 

In this equation it is assumed that r0 (0) = O. If, at 

the instant t = 0, r;, is suddenly increased from 0 to 

r: (0), a term equal to r: {O)·i (Ut) is to be added 

to the right-hand side of equation (56). 

(56)* 

*This is an example of the so-called DuHamel "superposition" 
integral. 
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Since the elementary case of a sudden increment 

in ro has already been treated, and the function 1 - ~ 

is known, the lift and moment can be calculated by (21) 

and (25), for a given 'l(0 (x,t) distribution, because 

L
0

, L1 , M
0

, ~ are determined by ~ 
0 

and its time 

derivative, L2 is given by (56), and M2 = -12/2. 

The function ~ (Ut) has not been obtained in 

analytical form.; however, it can be fairly closely 

approximated by the following relatively simple 

formulae which are chosen so as to facilitate subsequent 

calculations: 

a) for 0 ~ er .c:: 2 the following power series can 

be used:* 

I a- <!" '2. '3 
~(er)=- - - + - - o.oossi./. er 
~ 2 8 32 (57) 

b) for 0 ~ u ~ 10 

\ -<r/J._ \ ) -O. tl5"<r 
°!(<r):::. 4 e. + 'f (1+0.1.gs-cr e (58) 

For the actual calculations 1 - i is used, and since iC<r) 

is very small for <l'"" .> 10, equation {58) can be applied 

for 0 ~ <> ~ CO without introducing appreciable errors. 

*Formula (57) has been obtained by an approximate solution 
of equation (53). The details are presented in Appendix :f/=3. 
It will be noted that the form of (58) has been chosen to 
agree with (57) in initial slope; i.e., -i '(0) = -1/8 
(which is found in Appendix #3 to be the correct value). 
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In Table 1 the approximate values f'or ~ (<r) 

are shown in comparison with those given by Wagner 

(Ref. 4), which are assertedly correct in the f'irst 

four digits f'or 0 ~ er ~ 10. 

<r 

0 

1/2 

1 

2 

4 

10 

20 

TABLE 1 

Approximations to ~ 

Wagner Eq. (57) 

1/2 1/2 

0.4443 0.4446 

0.3994 0.4008 

0.3307 0.3307 

0.2418 

0.1255 

0.0679 

Eq. ( 58) 

1/2 

0.444 

0.398 

0.329 

0.242 

0.114 

0.029 

The approximations given in (57) and (58) 

will be used in the application of the next Section. 
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VII. APPLICATION TO THE CASE OF A SHARP-EDGED GUST 

The results of the preceding Section may be 

applied to the problem of a flat-plate airfoil entering 

a sharp-edged vertical gust. The flow in this case is 

not a potential one because the gust boundary itself 

constitutes a vortex sheet. It will be assumed that in 

spite of this fact the thin-airfoil theory can be applied 

to the calculation of the quasi-steady quantities )"'
0

(x) 

and r'
0

• This corresponds to the assumption that the 

principle of superposition of flow patterns is applicable. 

Strictly speaking, this is only the case for potential 

motions; however, the method yields results which are 

probably sufficiently exact in the present case, provided 

that all additional velocities are small so that the. 

deformation of the vortex sheet can be neglected. 

Suppose that the leading edge of the airfoil 

reaches the gust boundary at the instant t ~ O. Then at 

the time t, the relative transverse velocity is equal to 

V (cf. Fig. 8) between x • -1 and x = -1 + Ut, and it is 

equal to zero for x > -1 + Ut. ·The vorticity dis­

tribution (
0

(x) produced by these velocities 
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is the same as that of the broken-line airfoil represented 

in Fig. 8 in a parallel stream. Applying the equations 

of the thin-airfoil theory to this case, the following 

formulae are obtained:* 

where cos 8 · = x and 

!
'ff 

4-V -
ak =---;;r ~e 

cc-:L, 1(Ut-1) 

ke olB 

and 

r:tt) 2V1~1{1-Ut} - {Wt- U1t 2
} 

These formulae apply to the interval 0 ~ Ut ~ 2 during 

which the airfoil crosses the boundary of the gust. For 

Ut > 2 the airfoil is entirely within the gust, the 

transverse velocity is constant, and 

r: J'-~, 
~ 

0 
( x) = 1r 1 -+ y. , both independent of the time. The 

. (59) 

(60) 

(61) 

*The details of the calculations leading to equations (59)-(61) 
are included in Appendix =!fl,. 
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two ranges are now considered separately: 

a) 0 ~ Ut ~ 2 

The apparent-mass terms are readily obtained 

Hence, from (61) and (62), the sum of the first two terms 

of the lift, equation (21), is 

&}' Lo -+ l I =- - f d f ¥'o (-x.) X. Jx + f U ~ 
-1 

(63) 

vuS ' + /2u!:-LJ"lt.l. - {ut-') 2... 

- P LJ:2Ut- LJl.t'l. · {~vt- LJ'ltl. 

+ :2 ~1 
(1-Ut) - ~ J::i.u~- U' f• j 
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_, 
eo-t.. (I- Ut) (64) 

~d, from (62) and (63), the sum of the first two 

terms of the moment, equation (25)1 is . 

M +M = -lp .l ~' (-xX_x'-i_) ck + p U (;.fr) y)JL 
I o ~ cit: J <Io j ~ 

-I -I 

= pU v [ (U~ -M:iut- u'P -"""'-' (1- u-t.) 

-(Ut-1)flU!:-U'P J 
= - pUV ~-1 

( 1-Ut.) 

It is seen irmnediately that M0 + Mi = -(L0 + Li)/2, 

and since it has already been proved that M2 = -Li/2, this 

means that the total lift acts at the forward quart~r­

chord (x = -1/2) at every instant. This result was pre­

dicted by Knssner (Ref. 3) and verified experimentally by 

him (Ref. 5), but he was unable to prove it theoretically 

because of an error in his fundamental equation for waves 

progressing over the airfoil. Because of an error in sign 

(Ref. 3, p. 420, eq. 60), these disturbances move over his 
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airfoil from rear to front, which, of course, confuses ·the 

results. 

The calculation of L2 is carried out by intro-

ducing ~ from ( 57) and r;, ( t) from ( 61) into ( 56). This 

leads to the elementary integrals 
Ut · 
IC r"'clr 

0 ~-:Z-::Z:: for n = 0, 1, 2, and 3. 

Hence L2 is easily calculated,* and when the result is 

combined with L0 + Li from (64) the total lift becomes 

L = 2pUV f ~.2103 + 0.2603(Ut)- o.0562(Ut)2 + o.0055(Ut)~ ooa-1 (1 - Ut) 

+ ~· 7897 -0.1637(Ut) + o.0247(Ut)2 -0.0014(Ut)3J l/2ut- u2t2] ( 66) 

where 0 ~ cos-1 (1 - Ut) ~ 1T. The result, ( 66), is plotted 

in Fig. 9. 

b) Ut > 2 

In this regime, since the airfoil is subjected to a 

constant transverse velocity, V, it is seen illllllediately that 

L1 = M1 = 0, L0 = 2 7r pUV, and Mo = -Lo/2. Hence the lift 

again acts at the quarter-chord point. In the calculation 

of L2 by means of equation (56) the function ~ is taken from 

*The details of the calculation are given in Appendix #4· 
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(58) and the value of ro'(~) is that obtained from 

(61) :ror 0 ~ Ut f; 2 and is equal to zero for greater 

values of Ut. Hence the integrals which arise in this 

case are the following: 

where In(a) is a modified Bessel f'unction of the first 

kind (Ref. 2, p. 46). The total lift in this range is 

L0 + L2, which finally becomes 

L - 2 7rpUV [ 1 - o. 3304 .-(ut - l )/2 - ( 0.1917 + 0.0510 t)e-0.1B5(Ut -1)] ( 67) 

This result is also plotted in Fig. 9. It is seen 

that the lift on the airfoil increases rapidly after the 

entrance of the leading edge into the gust (Ut = 0), and 

is equal to 55% of its final value when the trailing edge 

reaches the gust boundary (Ut = 2). The increase then be-

comes progressively slower, and when the leading edge has 

progressed five chord-lengths into the gust (Ut = 10) the 

lift is 86% of its final value. Thus, for a wing of chord 
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equal to 20 ft., flying at 200 m.p.h., the lift would 

reach 55% of its final value in 0.07 sec. and 86% of 

its final value in 0.34 sec. It should be noted that 

for Ut ::> 10 the lift is in error due to the approximation 

involved in the expression used for ~ , equation (58) .. 

The dotted curve in Fig. 9. which will be explained in· 

Section IX, below, may be used for large values of Ut. 

It is known that the vertical gusts which actually 

occur in the atmosphere are not exactly sharp edged, but 

consist of a smooth, although rapid, transition of vertical 

velocity. The rate of increase of lift on an airfoil 

entering such a smoothly-graded gust can easily be cal­

culated by means of another "superposition" integral using 

the curve of Fig. 9 for the response of the wing to a 

sudden disturbance. An example of such a calculation is 

given in the following Section. 
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VII!. EXTENSION TO TEE CASE OF A GRADED GUST 

In this Section the results obtained in the 

preceding pages will be employed in the calculation of 

the lift produced by an airfoil flying through the 

boundary of a gust which more closely resembles actual 

atmospheric gusts, i.e., in which infinite velocity 

gradients do not appear. 

The graded gust may be considered to be comP,osed 

of a continuous succession of small sharp-edged gusts. 

Making use of the "superposition" integral again, the lift 

may be written in the form 

L (s} = f ;'(<r) _f (s-u-) "'1-
o 

(68) 

where s = the distance travelled by the airfoil after 

the leading edge reached the boundary of the 

gust. The velocity of flight, U, is assumed 

to be constant, so that s = Ut. 

F(s) = the "gust velocity profile"; i.e., the 

function giving the vertical gust velocity 

at s. It is assumed that the gust velocity 

at any point is small compared to the velocity 

of flight, U. 
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..f (s) =the lift resulting from the entrance of 

the airfoil into a unit sharp-edged gust. 

It is obvious that, if the chord is again taken 

equal to 2, the function ..f (s) is exactly L(Ut) of 

formulae (66) and (67), as plotted in Fig. 9, for the 

gust velocity V = 1. tt It has been suggested by Kussner 

(Ref. 3) that for the gust function F(s) the results of 

Tollmien (Ref. 6) be used. These results give the 

velocity profile in the "mixing regionu between a uniform 

jet and the surrounding stationary fluid according to 

Prandtl 's theories of turbulent mixing.* It is believed 

that gusts of this type constitute the most logical available 

approximation to actual atmospheric gusts. Atmospheric 

gust profiles have been observed (e.g., Fig. 1 of Ref. 7) 

which are definitely similar to Tollmien' s velocity profiles. 

Tollmien's results are given by K~ssner in a 

form equivalent to the following, which is convenient for 

the present application: the gust pro.file is 

F(s) ==- Wo f(h) 

*Calculations of the lift for such gusts have been carried " . out by Kussner (loc. cit.), but they are based on the 
erroneous results for the sharp-edged gust mentioned on 
page 50. 
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where w0 is the maximum vertical gust velocity, i.e., 

the jet velocity, f is a function such that f(O) = 0 

and f(l) = 1, and b is the breadth of the mixing region. 

The gust profile, F(s), has been plotted in Fig. 10 for 

b = l and b = 2. 

By differentiation of equation (69) one obtains 

I / f/(S) / ( S_) 
F(s)=/;Wo /;, =TwoG b/ (70) 

where f' = G, the function tabulated in Table 4 of Kussner's 

paper (Ref. 3). The lift, from equation (68) is then 

LfsJ:; Wo j G([-) _,{(s-cr} drr (71) 
.b 0 

This expression has been evaluated by graphical 

integration for several values of s for two values of b. 

The results are presented in Fig. 10. It is seen that the 

initial rate of growth of the lift after the entrance of 

the leading edge into the gust is considerably less than 

in the case of the sharp-edged gust, but that as s increases 

the curves for the graded gusts are similar to the curves 

for the sharp-edged gust, the only appreciable difference 

being a slight displacement along the scale of abscissae. 
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Klissner (Ref. 5) has published experimental 

results obtained by dropping a model wing into the jet 

of a small wind tunnel and observing photographically 

its resulting motion. .An attempt was made to verify 

the theoretical results for the rate of growth of the 

li~ by comparing experimental and theoretical values 

of the radius of curvature of the path of the model 

airfoil. As has already been mentioned, Kllssner's 

theoretical calculations are erroneous, and it is in-

teresting to compare his experimental results with the 

results obtained here. In the experiments the value of 

b for the jet-boundary profile was 1.4. The theoretical 

values of L/rr pUw0 are obtained from Fig. 10 by inter­

polation, and Kllssner's calculated radii of curvature 

(Table 4, Ref. 5) are increased in the ratio of Kllssner's 
• 

g2(S° s) to L/11' pUw
0

• The· results are presented in Table 2 

below. It is seen that the theoretical radii are less 

than those observed by an amount (11%-18%), which is 

probably attributable to effects of the finite aspect 

ratio of the model. 
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TABLE 2 

s, measured in half-chords l.05 

g2 (q s) (K{lssner) 

Theo. radius of curv. 
(K.:lssner), cm. 

L/TrpUw
0 

(Fig. 10, inter­
polated for b = 1.4) 

Theo. radius of curv. 
(Sears), Rtheo.' cm.. 

Experimental radius of 
curv., Rexn, cm • ... . 

0.41 

28.4 

0.35 

33.3 

37.5 

0.89 

1.61 2.98 

0.83 1.28 

14.25 9. 57 

0.72 1.15 

16.4 10.6 

19.3 12.9 

0.85 0.82 

Since it was found in Section VII that all the lift 

produced by a sharp-edged gust acts at the quarter-chord point 

of the airfoil, it has been unnecessary to consider the moment 

acting on the airfoil in the present Section. It is obvious 

from the reasoning which led to equation (68) that the total 

lift will act at the quarter-chord point, regardless of the 

gust profile encountered. 

With regard to the applicability of these results 

to actual aeronautical problems, it should be pointed out that 

the most important effects which have been neglected here, in 
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addition to the effects of finite span., are those re­

sulting from the elastic deflections of the wing and the 

~otion of the airplane as a vmole after entering the gust. 

Calculations including both effects., but using Wagner's 

elementary function, 1 - ~"for the rate of build-up 

of lift (i.e., neglecting the fact that the entire chord 

does not strike the gust boundary at once), have been pub­

lished in Ref. 8. The results of the present paper now 

provide a better foundation for such calculations. 
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IX. THE LIFT AND MOMENT PRODUCED BY A SERIES 

OF SINUSOIDAL GUSTS; APPLICATION TO THE 

CASE OF A SHt\.RP-EDGED GUST 

A calculation of the lift and moment on an 

airfoil flying through a sinusoidal gust pattern has 

two possibilities of interest: first, there is the 

possibility that such a series of upward and downward 

gusts, occurring with the proper frequency, may produce 

large forces on the airfoil; and second, it leads to an 

alternative method of calculating the effects of sharp­

edged and graded gusts. The sinusoidal gust pattern is 

again not a possible potential motion, hence the assumption 

made at the beginning of Section VII (cf. p. 47), i.e., 

that the stationary airfoil theory is still applicable to 

the calculation of quasi-steady quantities, must also be 

made for this case. 

If x is the coordinate along the flight path, 

measured in the direction of the trailing edge from an 

origin fixed in the center of the airfoil, and U is the 

flying speed, supposed to be constant, the vertical gust 

velocity :may be written, in complex-variable notation, 
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in the form 

v{x/t) = We~.,,(!- x/u) 
(72) 

This equation expresses the fact that the sinusoidal gust 

pattern, with maximum up or down velocity equal to W 

(a constant), moves past the airfoil with the speed of 

flight, u. If the wave length of the gusts is LvV 

(measured in half-chords), ~e frequency, V, with which 

the sinusoidal waves pass any point of the airfoil is 

-v -== 2n- U /L w 

For -1 < x < 1, i.e. , on the airfoil, the 

coordinate x may be replaced by cos e, as before. Then, 

if the gust velocity, v(x,t), is positive upward, the 

relative vertical velocity of any point of the airfoil, . 

measured positive downward, is 

/ 'J W ,.,,t:: _,u·~ C4-0e 
w,e/ = e e. 

Now this may be put into the general form 

(73) 

(74) 

( 41) 
(cf. P• 31) 
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for which the lift and moment have been calculated in 

Appendix#5,_for 

e i~~e = J;, (i) + :<_ f i. 
11 J;, (:1:) e<r.L H 8 (75)* 

11~1 

and therefore, putting z = -r'/U, equation (74) becomes 

eo 

w (e)~ We .,,t {I;,(-~)+ 2,,!-/"J,,1-:J """11 GI j 

w ( e)~ We ,;,,t [ J;, ( ~) +:z fc-d J,, {U) u-a '18} c1s) 
n =- t 

The formulae for the lift and moment for w(e) 

as given by equation (41), above, are (from Appendix #5) 

*er. Ref. 2, p. 32, eq. (6). 

**This is apparent from the definition of Jn given in Ref. 2, 
P• 14, eq. (16). 
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By comparison of equations (41) and {76), it is seen 

that the lift and moment in the present case are 

{79) 

and 

/VI 
= _ u1A1 ,,,,t!J;, {(;)!<, fV)+iJ; (~)J<o(tf) 

rrp vve l<,l'J)+ l<of+f-) 

+ "'-~[j.J, t~ J-+'-:;; tt-J) +:r.. riJ j 
{80) 

Making use of the recurrence formula for Bessel :f'unctioris, 

(81)* 

one has 

, J; riJ (82) 

and 

(83) 

*Ref. 2, p. 16, eq. (26). 
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Hence (79) and (80) oan easily be reduced to 

L 
'"/ , ... t/.;;,tvJJ<,/if)+i.J;fvJ1<ot-tf-J J 84 

= :2TrpUyv,e J<, {';') + IG (4J-J j ( ) 

and 
M == _ _! l 

2 

which means that the lift acts through the quarter-chord 

point (x = -1/2) at all times. 

The lift, as expressed in formula (84), can be 

presented in the form of another vector diagram, anaiogous 

to those employed in Section IV (of. pp. 31·33 and Fig. 6). 

The necessary numerical calculations have been carried out, 

and the results are given in Fig. 11. It is seen that as 

the reduced frequency -V /u (or o -v/2U for a wing of chord 

= o) is increased from zero (i.e., as the wave length of 

the gusts becomes progressively shorter), the magnitude of 

(85) 

the lift vector decreases continuously, while the lift vector 

leads the gust velocity vector by a progressively greater 

phase angle cp. In fact, for c "1>/2U > 2, the phase angle 

is approximately proportional to the reduced frequency. It 

is obvious that there exists no "critical frequency" which 

produces abnormally large forces on the airfoil. 
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As an alternative to the method used in 

Section VII, the lift produced by a sharp-edged gust 

may be calculated from the result given in equation 

(84). Employing again the Dirichlet "discontinuous 

factor", the gust velocity may be written in the form 

Then, by comparison of (86) and (72), the lift can im-

mediately be obtained in the form of (84): 

Introducing again s = Ut, which in this case is the dis-

tance of the midpoint of the airfoil past the gust boundary, 

replacing v/u by z, and substituting for the K's in 

terms of T' and T" as in equation (49), the real part of 

this formula becomes, after a little calculation, 
a> 

<J2(L) = :Zrrp UV I;_, :i'tr //MiJ(!+T{il)j-f J,f.z) T"(.,j~srdr 

-f __!_ ~~(>)/t-T'Mj +J,; M T''f,,!} ":s;i c/;;j 
:<7T)t 

0 

(88) 
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But 

1T !AA .> - 2 ti'" s I 
(89a)* 

and a::> J J;!~) ~s~ c/;c =en ~-'s)= {1-s' -jn s ~I 
0 

=-0 ~ s>/ (89b)* 

He~ce the lift, equation (88), can be evaluated if the 

following integrals can be determined: 
00 • 

j{J;, (~) T 1(3=) +J; (a)T'1t~!}~s~ ol.t 
0 

tlO 

and /[ J; (~) T uf 2-)- J 1 (-z) Tr~!.}~ s~ d2 
D . 

The values of these integrals have been deter-

mined for a few values of s, talcing T' and T" from Ref. 3. 

The integrals are rapidly convergent, and have been evaluated 

graphically. Accounting for the difference in definition 

of t in the two cases, the lift from equation (88) is found 

to agree closely with that obtained from equations (66) and 

*Ref. 2, pp. 77, 78. 
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(67) in Section VII, excepting for large values of Ut, 

for which the approximation involved in equation (67) 

is not close. The values obtained from equation (88) 

for this region are shown by the dotted line in Fig. 9. 

It can be stated from the result of equation 

(85), without further calculation, that the entire lift 

acts at the quarter-chord point for a gust of any 

arbitrary profile. 
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X. CALCULATION OF THE PRESSURE DISTRIBUTION 

OVER THE AIRFOIL 

In certain problems of non-uniform motion it 

becomes necessary to calculate the distribution of the 

load over the chord of the airfoil. An example is the · 

problem of wing-aileron flutter, in which the non-uniform 

hinge moment must be determined. 

For the plane airfoil of infinite span which is 

being considered here, the force per unit area is given 

by the sum of the force arising from the vorticity, which 

is pU ~(x), and the difference between the "impulsive 

pressures", paf/at, on the upper and lower surfaces, 

where <p is again the velocity potential of the motion. 

Hence the total upward load per unit area may be written 

as 

where i(x) = the vorticity at x 

cp2 = the value of <{> on the lower surface at x 

f 1 = the value of tf on the upper surface at x 

and '(eff = the "effective vorticity distribution", which 
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is defined as 

Since c.p may be taken equal to zero at any 

desired point, suppose this point to be the leading edge, 

Then 'f 2 = J ~ dx and c{\ = Ju: dx, 
-/ -1 . 

where x = -1. 

where u2 and u1 are the velocities along the lower and 

upper surfaces of the wing, respectively. Hence, since 

u2 - ul is equal to the vorticity, ¥'(x), one can write 

cp .. -<f, =' j{ :2 -u.1 )clx 
-I 

~ fi~Y}d~ 
-I 

The effective vorticity at x is, therefore, 

I d (X I 
c( 1f = olx) -1- u dt j

1 
Ytx:J d~ 

The vorticity "f (x) in this expression can now be written 

as the sum of 0'
0 

(x) and ?s;_ (x), as before, and ~ 1 (x) 

can be obtained from equation (7); then 

('ft= 't0 (Y-) + ~ ft/~xJh + Y,fx) + ~ f.tj:,fxJ4 
-/ -1 

1 r+-JL. f ~(f) (ft- I ,,ff' 
where Yt(x) == .,,,.. l+)L j f- X f- / 5 

I 
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As an example, the case of any steady-state 

oscillation will be treated here. In this case (of. 

Section IV), one has 

and 

It is also apparent that the quasi-steady vorticity is . 

periodic and can be written as 

These quantities are to be introduced into equations (93) 

and (7). The analysis is simplified by the use of the 

variables e = cos-l x and a = oosh-l f . Introduction 

of (27) into (7) then gives the following expression for 

the induced vorticity: 

(26} 

(27) 

(31) 

(94) 

e.~"t 1-~e1~« +I -f:~« 
cs,(e)=~ . e ~ ee o4 (95) 

71'"' ~ ct-~ -
0 

In Appendix #=6 1 by means of a contour integration, it is 
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shown that 

(~o1.+1 )(1-~e) _ 
(~a-co-?e )~e 

Therefore, equation (95) can be written in the form 

t..,t £ .. I ~e ~ J 
lf1(0)== a: CQ• ~e +2 f:, QYI ~ 119 . (97) 

-where ~ is used as an abbreviation for the integral 
00 

Q K =- fe -<; cr.JllJ(-Y/«'. c/«_ (98) 

0 

It will be found later that only the integrals Q0 and Q1 

need be evaluated. 

The integral in equation (93) involving the in-

duced vorticity becomes, by application of (97), 

JfrxJc& = geL?tf Q.jt~"""e)dG +.,,-QI . 

_, w- a +~ .. ~Q~f;:._eµ.. .. ede j 
~~t[Q (1r- e +~e'+crr-Q + T,Q ~<~+1)e _~('tf- 1J<?7~ 

- u,,- 0 
. ') ' L"' "' [ 11+ I V1 - I J 

" K~I 

. \11:: a:> 

= ~ {cQ.+Q,X'IJ"-e)+ ~Q •• ,-Q.,,y~., .. e J 
(99) 

In Appendix #"! a recurrence formula for the integrals ~ 
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is found to be 

_ :< u ( Q -i.."/u) Q &IC.- I - Q ~ + I - - ~ "' ~ - e., 

Now, substituting (('1 (e) from (97) and using 

(94) and (101), the effective vorticity, equation (93) 

becomes 

But, referring to the definition of the integrals ~ in 

(98) and letting .,,/u = z, one ea.n write 
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1-eoe 
~e 

(102) 



This expression can now be identified in terms of Bessel 

functions, for, putting cosh a = f and noting that 

e-a = f -JJ 2 -1 , it can be written as _,·~ 
JL _,..,,;u - j:-/:tf tjf +1 - I )J,.c + ~ 

Qo + Q ' + i. l' e. - I l \ f-1 / S z 

by comparison with equations (29) and (31). It is obvious, 

from the definition given on page 25, that Q0 = Kn_(i ")) /u). 

Applying these results in (102), and substituting 

for g from (31), above, the final expression for the ef-

fective vorticity distribution becomes 

' }'ff lS'~. = ((o(e) + ~ 00 (e) ~ 9 di) 
e 

I: f Ko ( ~) 1-Q)-OE> ii.rrir-- -)·1 
- ~ l_t<o('t;')t-1<, lt'J .4-i-e + u lr e 

It has been verified by calculation of the integrals 

L= pU/~'H 4 

M = p u [t-1t x k 
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ths.t equation (104) lee.ds to the same results for the lift 

and moment on the airfoil as have already been obtained 

in Section IV and Appendbc ;y5. 

The final expression for (( r-r may be nut into 
8.L ~ 

a somewhat more convenient for::a for practical application 

by expressing the quasi-steady vorticity ((
0

(9) in series 

form. In Ref. 1, page 37, eq. (6.16), '((
0

(8) is g~iven in 

the form 

(106)* 

Hence 

(107) 

and the effecthre -vorticity, from (104) can be written in 

the form 

?SQM 
ro -+--··-·~~~<~--

r/~e 
~..; ~ooC ~/ctJ - k--------
u l't 

~-"'/ 

-- s~ k; Ct;') I - C@El 
-·-,--.. ·-.--~-~--- ~~.---.~~~----

1\ \c. ( ~i ) -+ 1c- l~ v -, ~ e 
I U o U) 

_ ~,, l ~) + lea (~cf) · ~ G 

k-l L \~) + K 0 (-"-u~) 
00 

~ L!k ~-t0 (108) 
k.:: I 

*The chant;es in notation from that used in Ref. 1 are obvious. 
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In order to satis the condi~ion of finite 

~veloc:~ t~ies at the trAj. lin::: edfe, 

to zero for 8 = O; hence, from (lOG), 
aD 

l=- I 

(109) 

The renults given in this Section orcrvide the 

aileron 

hinc:;e-;;1oment for the ste'ldy-state case of aileron 

flutter. ·r:c.o performance of the actual calcula.tions 

i.s left; fo1· a subse-:1uent paper, 
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The 8.irfoil -!:hc:iory for :'.lon-unif'orm motion 

sur.i;;o:ests a possibility of explainin<": various phenomena 

relatinE to the lift of airfoils above the stall; i.e., 

after the rate of chanGe of lift with respect to angle 

of att9.c1: becon1es net;ative. '.Vieselsberger, in Ref. 9, 

first proposed th8ct the ordinary theory of thin air-

foils be ~P?lied above the stRll. Although some of the 

asswn.ptions upon ',vhil'~h the theory is based are certainly 

violated i:::i this regL'Tle, it is believed that the results 

provide at least a crude first approximation to the true 

conditions. The general method of attack upon this 

problem is simply to replace the lift slope, which is 

21r in the case of an infinite thin airfoil, by the 

value 27T A , ';Vhere A is to have nee;ative values. The 

value as:::;umeJ for the factor ).. must, of course, be ob-

tained from experimental o'ose~·vations. 

If the li~ slope is altered i~ this manner, 

it is apparent that equation (8), vrhich 2) ve::; the total 

circulation induced by the vrake, must be rephi.ced by the 
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The relation analogous to (14) is then 

I= i'o+'>-[:Cf>[S{+~ - I ]Jf 
and since one may again. assume that the total circulation 

in the fluid is always zero, this becomes 

o. 

Now suppose, for example, that the airfoil is 

moving with constant velocity and at a constant angle of 

attack; i.e., that r
0 

is constant. It is interesting to 

investigate the possibility of a wake effect which would 

produce changes of the total circulation while ~ remains 

constant. It is sufficient to consider the case of 

ro = o, since the results can be superimposed upon a 

constant quasi-steady circulation. It will also be assumed 

that '(((~) can be expressed in the form 

ot.(t-f/U) 
~(t) = d e 
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where a may be complex. This form includes the various 

possibilities of a steady oscillation, a decreasing 

oscillation, and an exponential subsidence for the 

function ¥ ( f ). These would indicate a steady oscil-

lation, an increasing oscillation, or a divergence, 

respectively, as the behavior of the total circulation . 

about the airfoil. Then, with ~o = O, (112) becomes 

a> 

(Je ai>.J:-~f {{-;+ ', -1)J.f +ge"')e_-:rd.f = 0 
I ~ I 

If a > O, this may be simplified according to the results 

of equations (29) to (31); i.e., 

). G'o(~)+~ (~)- ~ e-<>CIUJ 
LJ -a/U 

+oz-e - o 

or 0 

This provides a relation between the li~-slope parameter, 

).. , and the exponent a. It has been determined that (115) 

cannot be satisfied for A <o for any purely imaginary 

values of a. It is satisfied, however, for a purely real. 
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For example, 

A = -1.49 ......., a/rr = 0.10 

).. = -0.89 ..__., a/rr = 0.50 

A= -0.56 c.....-.. a/rr = 1.00 

This means that the negative lift slope results in a 

divergent increase of the total circulation. 

The mechanism which produces this behavior is 

easily visualized. The condition ~ < 0 means that the 

downward velocities induced over the wing by a counter­

clockwise wake vortex (supposing the airfoil to be 

moving from right to left in our view) produce an in­

crease of circulation about the wing. This is accompanied 

by the shedding of more counter-clockwise vortices at the 

trailing edge, which induce more circulation, etc. 

Although the integrals in (114) do not converge for 

a < O, this physical reasoning shows clearly that a 

subsidence of the lift must also be possible, because 

the presence of a clockwise v.rake vortex would initiate 

an opposite sequence of events. 

In an actual case the slope 2 7T A would maintain 

over only a small range of angles of attack. Thus the 

divergence or subsidence of circulation would progress 
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only until the lift slope became positive. It is 

possible that the rapid fluctuations of lift often 

observed above the stall are produced by an alternate 

increasing and decreasing of the circulation over a 

region of negative slope. 

One of the questions suggested by this discussion 

is that of the significance of an experimentally observed 

negative li~ slope. Since the wing is necessarily tested 

in the presence of a wake, any such effects as have been 

indicated above must occur during the observations. Con­

sequently the true lift slope (if such exists) must be 

obscured by wake effects. 
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APPENDIX #1 

EVALUATION OF THE INTEGRALS 

1) n = 0: 

I J1 I 
(_ x: otr 

J ( f-x) { 1--,t,_ 
-I 

where a = - f and a 
2 <. 1 for f > 1. This is 

given in Ref. 10~ formula 859.2. The result is 

f t 4 7r I 

_, r.f-JCJfi-~l. = T n-a.,. -

2) n = 1: J I xcf~ 
( ~-K) (~l--"t-2.. 

-1 s-

7T 
(116) 

= 1r [-1 + ff} (117) 
(f7-/ 

3) n = 2: 

fl J ='fr[-f+ {f"=-1 (118) 
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4) n = 3: 

(119) 
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APPENDIX #2 

CALCULATION OF THE QUASI-STEADY QUANTITIES 

1. Rotational Oscillation (cf. page 29) 

The vertical velocity, taken positive when 

do~ward, is given by 

(120) 

In Ref. 1, p. 37, the vorticity distribution is 

expressed as 

c((e) = tr~e + (121)* 

where the upward velocity of the airfoil relative to 

the fluid is 

v!j =-w(e) (122) 

*Here a is put = 1/2 since, in Ref. 1. 0 is defined by 
x = 2a cos e. 
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The vorticity distribution becomes, therefore, 

In order to satisfy the condition of 

tangential flow at the trailing edge (e = 0), 

tr:<o) must vanish; hence 

r ,· v t-
~ -2 uA1 e =0 
1r 

and 

Putting this into (123), the final expression for the 

vorticity is 

r'o { e) - 2 u A I e:. ~t I-~ ':2.e 
~e 

2. Airfoil Passing Boundary of Sharp-Edged Gust 
(cf. p. 48 and Fig. 8) 

In this case 

w(9) = V for -1 < x < Ut - l 

w(9) = 0 for Ut - 1 < x <. l 

(123) 

(124) 

(125) 

(126) 

Applying (122) again, one has 
a> 

- 2 wte) ~ e = La."' ~ ke (127) 

k:=·/ 

- 84 -



By Fourier's theorem. 

a.k = - ;J~wteJ~e~kB dfJ 
0 

7r 

= _ ~v /~eM-kB J{) 
~-1 (l/t-l) 

Also,, putting YoCo) == O, from (121), the. 

total circulation is obtained: 
CIC) 

r;, = -1r La.1c: 
le:.! 

""° 1r 
~ 4V L j~B~kBUJ 

/r:.1 ~ {Ut-t) · 

(128) 

- v {7T- ~~ {k-1)~ ~~ {~-11)ct} 
;(_ .L k-1 + L k I 

k=-1 I f 
Ill::./ 

(where a == cos-1 (ut - 1)) 

- ";< v [ 1T - o(- ~at} 

= ;:( v I tr- CC<-_, ( Ul-t)- / :2Ut-U 2 t) 

= ~ V {~'(1-ut)- fwt -u 2 t.') 
(129) 
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APPE1IDIX ffe3 

APPROXIWJ.A.TE SOLUTION OF THE INTEGRA.L EQUATION 

FOR THE CASE OF A SUDDEN CHANGE OF ANGLE 

For the case of a sudden unit increment in 

('
0 

at the time t = O, the contribution of the wake to . 

the lift is, from equations (53) to (55), 

where 

<r = Ut 

s =i+cr--f 

and fA-(s) is the solution of the integral equation 

(130) 

(131) 

r(/ (f+T 
I = - )_µts) i ~-I els (132) 

0 

Equation (131) can be written in the form 

1jv- [fT+/ ~J~ ~{er)= - :2 o µ(s)l~FI - V Ff s 

(133) 

by the use of the relation (132). 
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Now it is permissible to differentiate with 

respect to <I" under the integral sign in the second term 

of (133) since this integral is not improper*. There-

fore 

~'{er)= ..L. ( :CsJf- I 
4 ~I l (f7._ I 

- ds {f-/ J -
( f-f I )'3/2 

r.<r ,; (f+I I ff-I . ff-I. I 
-:- ~~ µ.fs)( }_ ff~ - 2 ff+j - { f 1-1 P'J .ls 

0- ff[. fa- IC7" I J f- I I f f- / J. = - - - - f,,ts) T Js - - ~(s) )'fl. s(l34) 8' 8' jf' s-+I 4/- (f+I 
0 0 

where (132) is again applied in the last step. Differen-

* ( f - 1 = 0 when s = CJ • 
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_ _ I + _!_ fµ%J(l-t cl~ +-1 f~s) /T-1:/ els 
/(o l<o)"' f+I &7) 1 (f+l)-s 2 

0 0 

3 }~s) {f-I ds + ~ jA- (ff-1) S/2.. 
0 

From equations (133), (134), (135), noting that 

{ f - 1 = 0 when CJ = 0, one has 

~(o) = -!z 
I 

~'to)=- - 8' 

T"fo) = _I 
5£. /~ 

Hence, forming a Taylor's series, 

r ( o--) = _[_ - .1 <r -4- -' c::r '2. + 
~ 2 8 . 3".l 

The next term in the series (136) can be de-

(135) 

(136) 

termined by a procedure analogous to that used above. The 

:;rlll 
result obtained is ~ (0) = -7/128. However, it is 

preferable to adjust the coefficient of <r3 to make the 

approximate expression for ~(q-) agree with Wagner's 

value (cf. Table 1, page 46) for <J = 2. When this is 

done, the expression for ~{~ to be applied in the range 

0 ~ (J"" ~ 2 becomes that given in equation ( 57). 
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APPENDIX :j/:4 

CALCULATION OF L2 FOR THE CASE OF A SHARP-EDGED GUST 

The expression for L2 in terms of the "lift 

deficiency" function l and the quasi-steady circula­

tion ('0 is given in equation (56). The two ranges 

of Ut are now considered separately. 

a) 0 ~ Ut ~ 2 

Introducing ~ from (57) and r;, from (61) 

into (56), one has i: 

-L
2 

= pUf r;,'r-rJ-~[U(l:-t:))· /z 
0 t 2 2. u2vj u-r:. /_!_- u<1:-·tJ + u (i-?:J 

:2.p o J~U-r.- u2r.'l. ~ 8 3<. 

- o. ooss,/ LJ3(t--r-)1 olr 

or, putting Ut = s and U 1: = er 

!..ljs a- da- - ._!_ r_!s-a-J cr ofv-
- L2 = '2f> UV :2. 0 {~cr-cr2. 8' J f 2cr-cr"L 

1 Jr~-cr)'l.cr 11 : . __ ,,c!-o-)3 
<r c1ij 

-1- - c:Jt<J 0. 0055 ..,_ { 
3:2. o (~o--<r-z. o . ':l<r- cri. 

s 

= :2f> u v fr j - ;, -1 3~ 
2 

- o. oo 5 ::;¥ s1J/f :z':cr- d r:r 

+ ( _J_ - 2-. -1- 0 O/(,f12 s'l.)~ (~ (JJ<:r 
~ /ft:, . 'j\}-:i-<r 

0 
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s f r~~cs d<J = Ctr-J-'o- s)- t:is - s"2 
0 

!. s ~ cs'"clo- =~ml{/-~ -(..f + -s-5 ~ 3'5Jf5s-s2 
y~ 2 & 

0 

3 

JS~ '3S -'/ J [3.s- 3S 7 2 s)(: ~ cr-sJa- =-Ca"::> cl-s - - +-s +-.-s -1- 2s-.s4 
::2-<T . 8 8" :l'/- /2 'l-

o . 

If these formulae are employed in (137) and terms are 

collected, a result for L2 is obtained which, upon 

combining with L0 +LI from (64), gives the formula 

(66). 

b) 2 ~ Ut ~ oo 

In this regime the formula (58) is used for 

~ , and r
0 
t~(U 'r) is given by 

r;/(u-c} = :<u v U--c 
J~u-z: - LJ'2. i:'l.. 

for 0 ..::.. U "t. ~ 2 

= 0 for U'L:' ) 2 

Hence, from equation (56), introducing again the variables 

s and er as above, 
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I --· 

The values of the integrals involved are given on page 52. 

Their evaluation, with the aid of the tables of Bessel 

functions in Ref. 2, leads to a result for L2, which, 

added to the constant 1 ift L0 = 2 7T p UV, gives the re.Sult 

stated in (67). 
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APPENDIX #5 

CALCULATION OF LIFT AND MOMENT FOR 

PERIODIC DEFORMATIONS OF THE AIRFOIL 

The general expression for the vertical 

velocity, w(e), of any point of the airfoil is given 

in equation (41). The calculations of the lift and 

moment for the cases where A0 and A1 1 respectively, 

are different from zero, all other Au's being equal 

to zero, are carried out in Section IV. The lift and 

moment for higher values of n are needed in Section IX. 

The quasi-steady circulation and vorticity in each case 

are determined from the relation (from Ref. 1, P• 37) 

· (cf. also eq. (106), Section X of the present paper) 

where -w(e) = v,j = 

and ro is determined by the condition ((0(0) = 0 in 

(139). Consider the general case 

. "t 
w(B) = :2 A,, U e." e<ro "'e 

where n ::> 1. Combining (140) and (141), 
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Hence 

Ck = O for k 7'= n - l or n + l 

Putting these into (139), one has 

and, applying the condition 

r_ = 0 
0 

The three parts of the lift, from equations 

(21) and (32), are, therefore, 
'A 

L, = -p :fc f. fe)t.c e ,.,.:..e d!J 

(143) 

0 1-f/,.. 
= - 2p An u L1 ye..~ vf-J(m ('h-1)(} -~(>tt-1)~ J °"° e de 

0 

if n = 2 

= 0 if n = 3, 4, 5, ••• 
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(25), 

t1, 

The three portions of the moment, from 

are, similarly, _. 
/( 

= _ ~ P ~j'threJ(en:).e -j_ )~ e t1.e 
0 

u -

= _ p A,, U i,, e ~ Aj! w.>(h-,Je - -.(n-11)e} ( &> '-i;i -{) dfJ 
0 

·.yt 
7T A (/' '" = -
4 

/' /-1 3 L >' e if n = 3 

= 0 if n = 2, 4, 5, 6, ••• 

"iT 

= p U/Y'ofa)~e,a;,._eH; 
l> 

2 c_vt 
=- ff p 4 2 U e if n = 2 

- 0 if n = 3, 4, 5, ••• 

Hence the total lift and moment for all 

values of n > 1 in equation ( 41) are 

A U . (.iJt 
L == - lTf> 2 i.. Ye 

2 '- ..;t I A - (.. 'Y 4 ) M = rr p U e ( H-;i 4-t.I 3 
(144) 

If these are combined with the lift and moment for n = 0 

and 1, from formulae (35), (36), (39), and (40), the total 

lift and moment for the general oscillation represented 

by w(e) in (41) are seen to be 
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APPENDIX/6 

SERIES EXPANSION OF (co sh CE+ 1)(1 - cos e) 
(cosh 6 - cos 9)sin e 

The expression can first be put into a 

somewhat simpler form for expansion, for 

{~a:-11 J1-~e) 
{~q_ -e,.r.J e)~e 

1-eo-oe 
~e 

{t+ 

By use of the substitution ei9 = z, this becomes 

a -,,, -
- _I ;r2-2-1Xz 11--i:-~A 

:;;n- / ~ -ct -1) i. "i. c (e --,ie --z:--z 

where the contour C consists of a complete circuit of the 
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unit circle in the z-plane. The integrand is regular 

at all points of the unit circle except z = O and 

z = e-«, where it has poles of order (n + 1) and (1) 

respectively. Hence the value of the contour integral 

is 21Ti l (Residues), or 

a.,,, = ~. f("il) I + ~- 1r~J / _ Q'. (150) 
~=O ~=e 

where (151) 

The residue at the simple pole is easily 

evaluated. It is 
1. x 111 ) (;t - I ~ - I 

~ .1 (-:t) /... -« 
~,.e {~ -e°') :i: vr-fl 

(152) 

The residue at z = 0 is found by expanding 

f(z) in a power series. One has ( ~)-'(· 
2 

)-/ 

f{:t-)= ;e-"'-' (2:.1)(~2"'-1)(1- e°' /- e-« 

( 
11-1-I 11-I 

- ;l -3- -
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Since n ~ 11 the coefficient of z-1 in this expansion 

is 

Putting m + 1 = q in the first summation1 one has 
n- 1 n 

r I ~ tn-29)r;<. '); {11-'J.""")ot.. 
fu. rf3-)f~-=-o = - Le o + L Q 

3=-1 H-t=-o . 

110f. -M Q:'. 

e +e 

By substitution of (152) and (153) into (150), 

the final value of ~ becomes 

- J10( a,,,= 2 e 

This result 1 applied in (147) gives the series expansion 

employed in Section X, equation (96). 
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APPENDIX #7 

RECURRENCE FORJvHJLA FOR THE INTEGRALS ~ 

In Section X, equation (98), the integrals 

(n = l, 2, 3, ••• ) 

Making the substitution t =ea, this ea.n be written lli 

the form. 
(<XJ - (.~ (l::+t-') 

Q == j e :iu t -J.J-1 olt-
11 I 

Now consider the integral 

j :1-/e -;; {t+t-')-t_-"} dt 
I 

_,:..,/u 
=-e 

or, performing the differentiation indicated, 

/{,<~ (1-r2)r>1_ i1 F 11 )e -15 (t+r~ 
I 

By comparison with (156), this is seen to be 

L.v { Q } -L.v/U - 3. U Q .,._, - n+1 - 11 Q n = - e 

(155) 

(156) 

(157) 

which is the same recurrence formula as equation (100) in 

Section x. 
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FIGURE 5 
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FIG-TJI<E 9 

THE LIF'T OH Al'J AIRl<'OIL Du'RING AND F'OLLOWTNG 
ITS ENTRANCE IN'.I'O A Slfl.RP-EDGED GUST 

(Airfoil chord = c) 
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BOUNDARY, 
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20 

The solid curve is obfai:c.ed by the od of Section VII; the dotted curv-c1 by t:be method of Section IX. 
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FIGURE 10 

THE LIFT ON AN AIHF'OIL DURING AND FOLLOWING ITS ENTRANCE INTO 
A GRADED GUST, FOR T'NO VALUES OF b, 1'HE WIDTE OF TF..E !HXING REGION 

(Airfoil chord = o) 



.25 

' 4.0 
4.5 0 

.50 

5 

.25~ 

FIGURE 11 

L 
Lo 

/.0 
.B 

6~·· 
4 ·. vc:: 6~ 

. . 2U 

. 2. .10 .04 

VECTOH DIAGRAM FOR THE LIFT ON AN AIP.FOIL FLYING TEROUGH A SERIES 
OF SINUSOIDAL GUSTS, AS A FillJCTION OF TEE REDUCED FREQUENCY. 

L0 is the corresponding quasi-steady lift. 

(Airfoil chord = c, wave length of gusts = Lw,'Y = 2 7r U/Lw , 

thus .Yc/2U "' 1rc/L) 
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