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ABSTRACT

The basic conceptions of the circulation theory of

airfoils are reviewed briefly, and the mechanism by which a
"gake" of vorticity is produced by an airfoil in non-uniform
motion is pointed out. After a calculation of the induction ;
effeéts of a waké vortex, it is shown how the 1ift and moment
‘acting upon an airfoil in the two-dimensional case may be
‘calculated directly from simple physical considerations of
momentum and moment of momentum. Formulae for the liff and
moment are then obtained which are applicable to all cases of
motion of a two-dimensional +thin airfoil in which the wéke
produced is approximately flaf; i.e., in which the movement
of the airfoil normal to its mean path is small.

The general results are applied first to the case
of an oscillating airfoil, and vector diagrams giving thé i
‘magnitudes and phase angles of the lift:and homent are obtained.
The results of a sudden change of angle of attack are then de~
termined, end a general method for handling transient ceses is
set up. This method is applied to the calculation of the 1ift
and moment acting on én airfoil entering sharp-edged aﬁd graded
gusts. The case of arseries of sinusoidal gusts is also considered.

A method of calculating the distribution of forces
over the airfoil chord is then shown, and it is applied to the
steady-state oscillation. The paper concludes with a discussion
of the applicability of certein results to the explanation of

observed phencmena beyond the stall.
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I. INTRODUCTION

The theory of airfoils in non-uniform motion has
several practically important applications, especially in -
connection with problems of wing flutter and of aircraft flyiﬁg
throﬁgh gﬁsts. It haé.been developed by a number of writers
(see Bibliography); however, many of their works suffer from a
.certain lack §f clarity, especially since the physical principles
underlying the mathematical treatments have nét alwaysAbean
pointed out. The present paper is the result of an attempt to
" obtain the more important results of the theory by the éppiica-
tion of fundamental physical pfinciples snd to present them in |
forms suiteble for direct application to certain flutter and
gust problems,

It is advisable to review briefly the fundamenfal
concepts of the circulation theory of airfoiis in the case of
two-dimensional motion, i.e., of infinite aspect ratio. The‘
airfoil, when initially put into motion relative to the fluid,
creates a vortex at its trailing edge due to the presencevof a
sharp corner there. According to the principle of con&ervation,
of angular momentum, an equal and opposite eirculation develops
around the airfoil, As the airfoil continues its motion, the

"starting vortex" is left behind in the fluid. If the relatively



slow displacement of this vortex in a direction perpendicular
to thé direction of flight is neglected, it can be assumed
that this vortex remains stationary at the place where it
was creafed.

If the subééquent motion of the airfoil is uniform,
i.e., if its velocity and angle of attack remain constant, .
the effects of the starting vortex on the flow at the airfoil
become very small and can be neglected after the airfoil has
travelled a great distance from the starting point. chéver,
if the motion of the airfoil relative to the fluid is
variable, a continuous succession of sterting vortices will
be shed at its trailing edge, and the effects of this .
"wake" of continuously distributed vorticity must be accounted
for in calculating the forces and moments acting on the air-
foil. These effects can be evaluated by the use of the re-

‘sults of the following Section.



II. CALCULATION OF THE EFFECT OF THE WAKE VORTICES

The effects of the wake vortices are here caloulated
for the simple, two-dimensional case illustrated in Fig. 1.
-In'accofdance with tﬁe usual theory of thin airfoils the air-
foil is considered to be made up of é vortex sheet, i.e.,.
a series of infinitesimal vortex lines lying in the direction
of the span, with a continuous distribution of vortex strength,
or "vorticity", across the chord. The chord of the airfoil
is taken equal to 2, so that all lengths are measured‘in
helf-chords. It is assumed,‘moreover,
(a) that the vertical displacement of any point of the
airfoil from the mean flight path is small, so
that the airfoil and the trail of wake vortices
which it leaves behind may be considered to lie
upon the X-axis; |
(b) that the theory of thin airfoils may be applied to
the calculation of the forces; in particulﬁr that
the total circulation about the airfoil at ahy |
instent is such as to produce tangential flow at

the trailing edge.

!
’

The effect of en element of the wake vorticity, [
located at a distance f? from the center of the airfoil may be

calculated with the aid of the conformal transformation pictured



in Fig. 2. The trensformetion relating the two planes is
2z=z'"+/1/2 (1)

Since the airfoil lies on the X-axis betwéen x = =1 end x ———11

in the z-plane, it is transformed into the unit circle in the
z'-plane.- In th‘e' z'=plane the vortex - F' is placed at x* = 1/7 |
to make the unit circlé e streamline of the flow, by the u_sual
method of "images". This means that the resultant velocity in-
duced by the two vorticeé is tengential at all points on the

circle, Its magnitude is given by
’

. I l / ‘
Ve, = am | 2/ ”7 B 2’-—//’7 - ot®
— | 2= e
r’ =1/ @)
P 026 (7+//7)6L6+/
From the equation of the trensformation, (1), ’7 + 1/’7 = 2¢
and 7 - 1//7 = 2 \)fz- 1. Using these relations,. the
magnitude of the tangential welocity becomes
y ' 2JE%-1
e, — - ;
: { 2
~ [—J ? = | | ,(3) .

21 é———o,ome



' In particular, the velocit at the trailing edge,
' " fE+
where cos 6 = 1, is equal to 211“ £—1 - In accordance
with assumption (b) above, a circulation arises which is just

great enough to cancel this veloecity. Hence a second, wniform

£+/

:Z'H“ f ;e is added to vel. Then the

velocity, Vez

total tengential velocity becones
= V, v
Vo e, v Y6,

I JERL [E+ €+/ &~
R g__m@ E— (Tar »;-C—/ £-coab

- _r /?5‘/ J—eon O
2 5—/ g—me ‘ (4)

The relation between the velocity vg and the vorticity

distribution over the airfoil, \/(x), is given by the formula

h/(x) = -Zve/ sin 0,* Thus, from (4) it follows that
()C) -‘_’ / { £+ |~ coa O
T Al B ‘g;" / §:~m9
or, since cos ® = x eand sinez\/l-xz,
_ /_&:/, 6
¥ix)= \//+7é &

*of, von Karmen end Burgers, Ref. 1, p. 46, noting that their
transformation differs by a factor 2 from the one given in
equation (1).



This vortiecity distribution on the airfoil is plotted in
Figs 3 in terms of the wake vortex strength, /ﬁ,, for several
values of §r » It is seen that a wake vor;ex located one half-
chord length or more behind the trailing edge induces a vorticity
distribution which is similar to the well~known one produced by
a small angle of éttack, while a vortex placed very close to the
aiffoil induces a muchbétronger vorticity over the chord, with a
definite peak near the trailing edge in addition to that at fhe
leading edge. ”

The total eirculation ebout the airfoil due to the wake

vortex is obtained by integration of (5), and is
/ / /
_ I (EH [ =
= /z((x)p(z = = ?:/ i
ﬁ*/ [ x
= [1-x* (5 £) S =2+ (§-%)
(E=7 (€27

_ / §?7L / L | 1 (6)*
a £—7 / - 6

If the wake behind the airfoil consists of arcontinuous

1

distribution of small vortices whose strength is given by the function

K’(éi), the effects of the part of the wake lying between f: and

*The evaluation of the definite integrals involved in this reduction
is given in Appendix #l1 at the end of the paper.
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V§T7Lb¢f? cen be calculated by replacing I in equations

(5) and (6) by Xzéi)ﬂﬁf . Then, since the wake extends from

the trailing edge ( §?== 1) to some value of é? which corres-

ponds to the beginning of the motion, and beyond which ¥ (£)= .0,
ﬁhe vorticity and circulation induced on the airfoil by the éﬁtire

weke can be obtained by integration, i.e.,

— (&) [E4T 4o
¥ix) = frr\/ ’/+7c/§‘ x VE-y X o
and ' oo '
[M= //G/(@ \f;i—ii/ — /}J{ o ®)



III. GENERAL FORMULAE FOR THE LIFT AND MOMENT.

In this Section, general formulae for the lift and
moment acting on a thin airfoil in non-uniform motion are
derived from the simple physical conceptions of momentum and -
moment of momentim. Tﬁe values of these quantities are first
determined for a two-~-dimensional system of vortex pairs.’

The momentum of & vortex pair is given by the product
of the fluid density, the circulation, and the distancé between
the vortices. The total momentum of a éystem of vortex pairs
is equal to the sum of the momentums of the pairs which constitute
the system., Thus, if all the constituent vortices can be assumed
to lie along the X-axis, and if the strength of a particular
vortex is denoted by fﬂi, its X~-coordinate measured from an
arbitrary origin by x;, and the density of the fluid by (9{ the

total momentum of the system is
I=p 27 % (o)

Because of the symmetry of the individual vortex pairs, this
monmentunm is directed perpendicular to the X-axis. The condition
2251/_; = 0 expresses the fact that the total circulation of the
system does not change. The rate of change of the total momentum.
at any instant is equal to the foree being exerted on the fluid

(e.g+ by an airfoil),

- - —— -

* of, Ref, 1, p.325



In a Similar manner the total moment of momentum
of the fluid with respect to a suitably chosen point mey be
expressed. If the stréngths of the two vortices of a particular
vortex pair are denoted by T [, and the X-coordinates of the
two vortices by x, and x, then the momentum is p [ﬁ(xz - x),
and fhe line cf‘action~of the momgntﬁm, due to symmetry, is given
by x = (xy —E xzb/é. Consequently the moment of momentum with
.respect to the origin of the coordinate system is P F (xz2 - xlz )/2 s
and it is seen that the total moment of momentum of thé system of

vortex peirs is given by

| 2 |
M :EPZFLXL (10)

m

The rate of change of this quantity at any instant gives the moment
acting on the fluid, referred to the origin of coordinates.

Hence the two equations
A | -
L=-psr 7 7% | (11)
and

oL - -
M = {if)oé_tzlixiz - (12)

determine the 1ift and moment acting on the airfoil.



These results can now be applied to the case of any
thin airfoil of infinite aspect ratio with a weke consisting
of a plane vortex sheet. The chord of the airfoil is again
taken as 2, so that all distances are measured relative to the
half-chord length. All forces are calculated for a unit length
in the spanwise direcfion. The symbol x is used for the X-coordinate
between the leading edge (x = =~1) and the vtrail:’mg edge (x = 1),
and the symbél Sg is used in the wake. Hence the vor{:icity boi.u:id
%o the airfoil is denoted by ¥ (x) and that in the weke by B/(icj.
The vorticity ¥ (x) is composed of two parts:
a) the vortiecity, }(o(x), which would be produced,
according to the thin airfoil theory, by the
motion of the airfoil or the given velocity
distribution (gust) in the air, if the weke had
no effect, - Yo(x) is called the "quasi-steady"v
vorticity distribution; ' |
b) the vortiecity, Xl(x), which is induced by thé
weke, as calculated in the preceding chtion.
The circulation resulting from a) is denoted by f:, ’ -a.nd that from

b) by | .; the total circulation about the airfoil is then,

M= [_c; -+ /'_' 1° According to the basic conceptiéns explained

above, the total circulation of the whole system must be zero,



hence ’ ;
F+I/a’(§)o/§c =0 s

The circulation, /—i, induced by the wake, is just
the circulation calculated in equation (8). Hence the total -

circulation about the airfoil at any instent is given by

r-r +/;?g)/‘/:§?7~//&/§° N - (14)

From equation (13) it is apparent that the following relation

exists between the vortieity in the wake and the quasi-steady

circulation:

r+/m (L2

(15)

This relation will be used later in the papere.

Since the total circulation of the system consisﬁing_
of the airfoil and weke is zero, according t§ equation (13),
the system can be considered as being composed of vortex pairs,
and, since the wake is supposed to lie entirelytalong_the‘
X-axis, equations (11) and (12) can be appliedvto the caloula-
tion of the lift and moment. According to the prineciples
described above and the result given in equation (9), the total

momentum per unit span of the system of continuously distributed

-11 =



vortices is ‘
/ oo
T = IO_, v () x olx + lg‘//‘cY(f)g‘a/f (16)

Putting ¥ (x) = }(;(x) —+ B{l(x) and using formula (7) for

2{ (x)s

| »/((x)xa/x ﬂ[x)x A + = //—;L—xa/ W{)/E?o/f (7)

If the integration with respect to x in the last term is carried

out*, the term is reduced to

[ 15 - p T v

Syt COFET ~ &) df

and therefore, putting the result into equation (16), the

momentum becomes

/ef () x Ax +/o/a/(f) JE£ o/f (18)

Now it is desired to differentiate this expression to
obtain the 1lift, but since anggﬁsf.may be discontinuous at

certain points in the wake (e.g., the case considered in

*see Appendix #1.
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Svecti.ons V - VII of this paper), the use of an integration
by paerts (as employed in Ref. 1, p. 301) is not allowable
in the evaluation of the second term. Since a similar

problem is encountered later in caleculating the moment, it

is desirable to consider a general integral of the form

, o

A= [3E)f(E) L

/ )

The wake vorticity, b/ » according to the assumptions already
made, is stationary relative to the fluid. Hence if X is the
distance of an arbitrary wake vortex from a fixed origin, say
from the location of the center of the airfoil at the instant

t = t, then Y is a function of X only. The integral con-

sidered can therefore Boe written
_ €) o
A - // ¥ (X) F(E) LE

If A is the value of this integral at the time t and A—}—v JAYY
the value at the time t+ At, and if accrount'is teken gf the
fact that the airfoil has moved through a distance U: A+t during
this interval, where U is the veloeity of flight, so that

52 X+ U-A+t (cf. Fige 4), it is seen that |

N A = [y OO0 £ XU LE) X

/- UAEF



Neglecting ternis of second order end higher,

AA = [FOOF)AX + Ut / v OC) F(X) AX
‘ /- Ut
Now if b/(x) is finite in the interval and if £(1)= O,

then in the limit At — 0 the first term venishes, and,

replacing X by g in the second term,

LA _ el FIE) A€
At 2

- (29)

Applying this result to the differentiation of the |

second term of (18), the lift becomes

7 EAE
L_— z(__ _‘/Da(i‘ A/(X)Xa{x —IDU/G/(g)\r?—T (20)

Using the relation (15), the last integral may be related to the

quasl-s’ceady circulation:

/6”(5) f%g /r(@/ﬁ @T a/f

A
— X(A‘C)“——*’—
VECh-=

Therefore the lift may be written as

/ co |
. . A
LZ*PEﬁ(X)X&[X*/‘IOU/o "",Duﬁ(fc)@ (21)




Thus the 1ift consists of three parts:

/
(a) Ly = ~pﬁﬁo ()x Ax , which wil1 ve
called the contribution of the apparent
. MASS, for reasons to be explained later;
(®) 1, = pU T, , the quasi-steady 1ift;

ey oL
gc) L, = pUﬁ(f)\éczl:—j; . This is the

only contribution which depends explicitly
on ¥ (€), the vorticity distribution in the
wake, and it will be shown later that this
portion of 1lift actually represents the

entire effect of the wake,

In a similar manner, the moment can be calculated
from the moment of momentum, referred to & fixed axis. If‘
the center of the airfoil is imagined to be at a disténce s
from the fixed axis, the moment of momentum (cf. equation (10))

is

/ |
M, = Lo ﬁ(x)(ws)’“xw ;p/iéwﬂ s) dE
=~/ /

where x and jg‘are again measured from the center of the airfoil.

The moment, M, acting on the airfoil, referred to its midpoint,

-15 =

(22)



is then given by the value of dif /dt for s = 0. Carrying
out the differentiation and teking into account that
ds/dt = =-U, where U is the welocity of flight of the air-

foil, this becomes

M=-4p<; {ﬁ(x) Xy +ﬁ(§)§%f}

—-4p /a/(X)ZO&%/(QS‘CO(S‘Cf'/“ o4 (23)

where I is the total momentum as calculated in equation (18).
A diving moment is here considered positive.
Now substituting again ¥ (x) = b/ (x) + ¥. 1(x)»

and using equation (7) for ¥ (x), the moment is

pﬂ{/ooﬁ)x o+ f_? ’“’"ﬁcﬁ“) et

+/h§§uﬂﬁ+ur

= J’Odt ﬁ(z) zlo/x+ﬁ(ﬁ/@—/—f 57— (—f\/gjo(f
+fo’(f) ECZD(S‘C)}‘* Uz (24a)*

‘“P;{é{ﬁ’ () x ol + ﬁ/(f/ ﬁL 26
-@Gm@@5_4¥+Uf<w

*The integration with respect to x is agein carried out with the
aid of Appendix #1.

- 16 -



Now the second integral in the bracket is equel to = T’O/Z
/

or - = / ¥ (x)dx by equation (15), and the differentiation
~/
of the third integral can be carried out by the method of

equation (19). Then, substituting for I from equation (18),

the moment becomes

M = 2,@# ﬁ (X)Xlall——ﬁ’ (x)a/xj

5P U a/({‘)/f‘ +r__/c[f+,oU/ﬁ/ () xel %Tf}/o‘?}_/ 047

- —3p (x)(x Dol z,au af(f)(/:z/?f%@ SAE
+PU/* () xdx +/0(//7§C)/s€z AE

zP;t/ A/(X)/X~ /)a/x +/0Uﬁ (K)Xa/x
"PU/"/(@@?—,‘ | (25)

Therefore the moment elso consists of three parts:

(a) ¥, “““‘— /%:D(X)(X )XX, anelogous to |

L This will be called the apparent-mass

1'

contribution to the moment.
/
(b) M, = /0[//6/0 (X)XJX » the quasi-steady
~/

moment;

-17 =



0
(e) X, =—24/O U/X(?),;ﬁ « By comparison
! (€27
with equation (21), it is seen that My = —L2/2,
i.e., the lift L2 produced by the weke alweys

acts through the quarter-chord point of the

airfoil (x = -1/2).

The physical significance of the three parts of the
1lift, as given in equation (21), and of the moment, equation
(25), will now be explained briefly.

Considering first the 1ift, let it be mssumed that
the airfoil carries out its motion without producing cifcula-
tion. Then the quasi-steady 1lift, Ll’ is zero, and, because
obviously no weke is produced, the part called L2 also vanishes.
It is known from generel principles that in such a case the
only forces acting on a body moving in an ideal fluid are
theose corresponding to the apparent mass of the body.. These
can be obtained by integrating over the surface of the airfoil
the so-called "impulsive pressures”, [)<9¢%4§f} where 90 is the
velocity potential of the circulationless flow., Hence, if C
indicates a path of integration starting et some point A on

the airfoil and going completely around the airfoil profile

- 18 =



back to A, the lift is

L=, 3 fy = p 2 [t
C

where s represents the distance along the surface. Now the
velocity potential, %J, can be taken equal to zero at an
omt N
arbitrarya say at the trailing edge, x — l. Then its value
X

‘at any point x is given by y?(x)==‘//;(s)ds, where u is the
/

velocity of the fluid along the surface. Since the velocities
on the upper and lower surfaces of a plane airfoil are equal
and opposite, it is seen that g7(x) also has equal and
opposite values on the two surfaces at any point., Therefors
the integreticn over C can be transformed into an integration

over the chord, i.e.,

/ = P&t/(?D(S)a(S 2/05?/;0(74) A

=2p§£[$”'x , */_5% X“/")]

~/
The first term obtained in the integration by barts venishes
because if yj(l) = 0, as assumed above, 99(-1) must also be
equal to zero, since there is no ce¢irculation, and therefore the
velues of 99 on the upper and lower surfeces at the leading

edge must be the same. Also 59%74%(, which is the velocity

- 19 -



along the surface, is equal to E;(x)/z, because ?(;(x),
the vorticity at x, is the difference between the upper and
lower surface velocities. Hence, the 1lift in this case is

simpl /

i L:—F-ﬁ‘ XO[X)XQIX

which is exactly the term called L, above (equation (21)).

‘Therefore, the term Ly gives correctly the 1ift due to the

apparent mess in the case of the airfoil without eireculation.

Now the addition of circulation increases the function X/o(x)
fo

by a term equal to —L--———~*-, which is the vorticity distri-
m §/l-x*

bution of a pure circulation about a plene airfoil, It is
seen by considerations of symmetry that this term does not
contribute to the integral Ll, lee, Iq is again the 1lift due
to the apparent mass.

Turning now to the corresponding ternm, Ml’ in the
expression for the moment, in the case of flow without.cir-
culation the moment can be calculated by integrating over
the surface of the airfoil the moments of the impulsiﬁe
pressures, end again the ocontour integration can immediately

be written as en integration across the chord, i.e.,

/
M:pjfg—ieonS :/o(;% sp(s)xo{/:s :2/0 c%ﬁo(x)x/%
C C -/
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and, .aga‘.in integrating by parts, /
2 [qx|" o+ X"
M:‘QF@{_—{CP“{ , .,2/ O/"j
= '_fgi/op(é/x (X)ZZG//L/

The rest of the 1ntegral called M; in equation (25) vanishes

.because / ¥ (x)ax = 0. Again the addition of the circulation

term to ¥ o(x) does not éhange the value of the whole integral,

',"7
for this term is — —>— , and
™ vl
i 4
I / z
~/7/2
e X1/ dx = 0.
v p I— X~

Hence it is found that the contributions L; end My
are equal to the force and moment which the airfoil would
encounter in a flow without circulation, due to the reaction
of the esccelerated fluid masses. We call these terms in bc;’ch '
cases the "epparent mass contributions". It should bé‘ noted
that 'Ehe determination of Xo(x) involves only the solutién
of steady~flow problems and cean be done in any igiven .case by
the use bf known formulae of the stationary airfoil theory.

The second terms of equations (21) and (25), ‘che‘
1lift L, and moment M , are easily interpreted. They represent

the force and moment which would be produced if the instanteneous
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velocity and engle of attack of the airfoil were permenently
maintained. ' The caloulation of L, and M, also requires only
the solution of steady-flow problems by the usual methods.

The third contributions, Lz and Mé, represent the
influence of the wakef Their interpretation is simplified
by cbnsidering a case in which quasi~steady lift and moment
(i.e., the angle of attack or speed) undergo a sudden chéngé
‘at the instent t = 0 and are kept constant for ¢ > 0. In
this case Iy = ¥4 = 0 for t > 0, and the lift and m@ment
are given by Lo + L, and M, + My. For t =“° the final
values of 1lift and moment will be L, and M, because the |
conditions of the "stationary" case are approached., It is
seen that Ly end Mp give the difference between the transient
end final values of lift and moment. Hence ~L, and =M, can
be called the "deficiencies" due to the non-uniformity of ﬁhe
motion of the airfoil or of the wind velocity encountered by
it.

Before proceeding to the next Section, it should be
pointed out that the general formula, (21) and‘(25), developed
in this Section can be applied to the case of any thin airfoil
with arbitrary shape, performing an arbitrary (acceierafed,
oscillatory, or uniform) motion, provided only that its deviation
from a straight path is small, so that the assumption of a wake

distributed along a straight line is justified,
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IV. APPLICATION TC THE CASE OF STEADY STATE OSCILLATIONS

The theory of steady-state oscillations of an sirfoil
ié closely releted to the practical problem of wing flutter,
In the earliest flutter theories it was assumed that the actual
forces and moments on the wing could be approximetely replaced
b‘by the portions referred to in the preceding Section as
quasi-steady forces plus ‘some damping forces applied rather
arbitrerily on the basis of a few wind tunnel e.xper:iments.r
However, the difference in phase between the actuasl forces:
and the gquasi-steady components was not eccounted for, and
the effects of the apparent mess were also neglected., The
theory of the oseillating eirfoil now opens the way to & more
systematic analysis of the problems To be sure, the assumption
of infinite aspect ratio restricts the accuracy of purely Z
theoretical predictions regarding the flutter of wings“of
finitev span, but in any case the results obtained from the.
theory aid in scientifiec analysis of experimenté.l data obtained
in the laboratory and with actual airplanes in flight, -

Experimentel work done by Kussner and others has |
shown that the so-called "reduced frequency” (i.e., the product

of half-chord and vibration frequency divided by the flying
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speed) is the most adequate paremeter for the discussion of
flutter data. The following analysis, based on the results
of the preceding Section, leads to simple formulae end
diagrems showing how the magnitude and the phase of the
actual lift and momént depend on the reduced frequency.

| If the motion of the airfoil is periodiec, the
.resulting quasi-steady circulation is also periodic and;

using the complex variable notation, may be written

ot |
ro o 60 e (26)
where Go is a constant.
If the motion has been occurring so long that
transient phenomens have disappeared, it may be assumed that

the vortex strength in the wake can be expressed as

Y (i‘“é-'/(/)
Y(€) = g € ' (27)
where g is also & constant and U is the mean horizontal veloeity,
which is assumed to be constent in this case,

Then the total cireculation about the airfoil is given

(from equation (14)) by

- e"’t[ 6°*3j( S ) e
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Hence | is also a periodic function of the time, and,
becguse the weke vortieity is produced by the changes of
circulation of the airfoil, the inerement of circulation,
(arl’ /d'b)dt, .must be equal and opposite to the circulation
in the wake between ? = 1 and €= 1+ Udt. Consequently
(d!“/at)dt = -X(l)nat;- By differentiation of (28) and
substitution of d [’ /at = - ¥(1)U, a relation between Goi and

g is obtsined:

U%e;y(f_//u): ‘_veLvt[G+ //gsr, )-,.yg/a
o ) 1 U

The right side of (29) can bé expressed as the sum of +wo

or

(29)

modified Bessel functions of the second kind of the argument

iz = iv/v, namely Ko(iz)=/\e-£}§% and

K;(iz) = -Ko'(iz) (ef. Ref. 2, pe 50, eq. (29) and p. 22, eqe.
(19)). This identification can be accomplished without en-
countering convergence difficulties by the following method:

from equation (29),

*G"i/((?‘ }/%T /) ch—/’

= K (2) +/(r~— ) L2§C 'z.} (30})
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Now K,(iz) can be written in the form

-l ::.'02 —Tf
K. (iz)= / "CJF e f’};}{fﬂ‘% —;é—

Z

because the sum of the last two terms vanishes identically.
Differentiating with respect to iz, then,

[, (iz) = K, (iz)

- [ e o £

This identifies the second and third terms of (30) and the
relation between the quasi-steady circulation and the wake

vorticity becomes, in this case,
(&) +6 ()
3 = U

or -GO .
&= Tk (2

(s1)

In any given case of periodic motion, 'X;(x) and
r; can be easily calculated, and they determine directly
the first two terms of the expressions for 1ift and moment,
equations (21) and (25). After substitution of 3159 from

(27) and g from (31), the third term of (21) becomes

6 e /-LVf/U a/fb
P w)+/«( #) (€7

12 = -—IOU
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or

| = Uur, .ki; (Jifi).
AR AT R (2

The corresponding moment is M, = -L2/2.

These results will now be applied to the case of an
airfoil performing (1) tremslatory oscillations normal to the
flight direction, and (2) rotational oscillations around its
midpoint.

Case l: Translatory Oscillation

For this case the vertical velocity of every point of

the airfoil can be written as

cvE
w = AoUe‘ (33)

where A, is a constant and w is taken as positive downward. The
gquasi-steady portion of the vorticity depends only on the in-
stanteneous relative velocity of the air and the airfoil, and
therefore the quasi-steady quantities ocan be calculated by the
formulae of Ref. 1, Chapter 2, by replacing Ty by -w. For the
present case (from Ref. 1, p. 38, equations (7.8) and (7.9),

putting ¢ = 2)
|1=:2WUAOQJ

;vf /—cde@

t

¥,=2UA, e

(34)



The three parts of the 1lift, as in equation (21),

are therefore

cvE
L, = 2mp UZA. e

L, =-2pUA., ive o/(/*m 8)coa O L8

= 7T/0UAOL. )’e,,:\)t
and, from (32),
vt /((f/_\’)
= 2,0l A0 et
Le=—2met Aee U b KT
The total 1lift is therefore
vt < (4__9_) .
= U2 o \%./__L/____ 4 _‘;_2
L 2mp A,e I () + 1, (& 2l (35)

It is seen that Ll is equal to the product of the acceleration,

AoUifPein, and the apparent mass of a flat plate of 1éngth = 2,
which is equal to 7L .,

The apparent-mass contribution to the moment; My,
vanishes in this case, since the motion is purely translatory
and the apparent-mass lift acts through the center of the airfoil.,
This cean be verified by substituting ¥,(x) from (34) into the first

term of (25) and integrating. The quasi-steady 1lift in this case
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acts at the quarter-chord point (x =--l/2), as does L2’

The total moment is therefore

M :‘—iz“ L0+L2)

2z vt K (Lu‘J
Ko(%)+,<t(%) (38)

Case 2: Rotational Oscillation

In this case the vertical wvelocity of any point
of the airfoil at any instant is proportional to the dis-
tance, x, of the point from the midpoint. Since x = cos 8,

the vertical velocity may be written

vE

w(0) = ZUA,e‘ cor O (37)

where 4 is a constant. In this case the formulae of Ref. 1
lead to the following expressions for the quasi-steady

-quantities:

[, = Z'}TUA/ eévt

vt | *
Y024UA,ev Al O (26)

By substitution into (21) and (32), then,
=~-4pUA ive“f//ﬁ‘:nZG . 6 A8 =0

*The deteils of the celculations leading to equations (38) are
given in Appendix #2.
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ot
.Lo:.zﬁp[/ﬂ%e

LZ: FZ?'/‘/)U‘ZA/ lJ) -

so the total lift in this case becomes

, 12 ot f(f (éli
| = 27TPU. A/\}ve /(( }+/f( (39)

Also, by substitution into (25),
vt 7 |
P/] = ——:2f>L//Q, (ve g/(;ibuzéa (;01:269""‘) A8

—Z/DUA (,Ve.gpt[i— /l

vt

— 4 IDUA/ L\)e

M, = <4p L/ /? "Vil//ﬂ 20 con O o6 = O

Therefore, the total moment is

L U%A cvté !?o(%v‘) _ _L_vf
M=mes e T B K &) 4

(40)



In a similar manner, the 1ift and moment on the
airfoil may be calculated for the cases of periodic de-
.formations represented by higher values of n in the general 7
expression for the vertical velocity of any point of the |

airfoil sk . .
vt " B
W(@): Ue {A(‘"ZZA” coL @} v (}41)

The results, inecluding those of Cases 1 and 2 above, égree
with those obtained by Kissner in Ref. 3,**

The physical significance of the complex forms‘
of (35), (36), (39), end (40) may be clarified by means of
"vector diagrams" which show the phése relationships of the

quantities involved as well as their magnitudes. Each of

these results may be abbreviated as :
vt V. . v o
f(t) = Fet’ iﬁ(U) *‘Lf;(U)} o (42)

where £(t) represents the 1ift or moment; F is a constanf in-

volving only the dynamic pressure, ()Uz/?, and the amplitude of the

* . : . .
These calculations are carried out in Appendix #5.

**In comparing Kussner's results, it should be noted that

T Hf:)(z) _ ZL,(?H—/)KH ([Z)

Also Kussner's (-iw) is the same as (7 /U) here, and, because
of the difference in definition of @, his P, is (=)PA_ of the
present paper.
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oscillation; and fl and fg are real functions., The real
part of this expression (which is the actual force or

moment) may be written as

RLFEY) = F - [fenvt - £y abon vt ]

= B [F (vt y)

where (P:=;tan'1(f2/fl). Thus, in vector representation, the

1ift or moment vector has the magnitude Fw/fla + fzz and
leads the vector of the oscillating velocity, w, by a phese
angle, ‘? o In Fig., 5 is given an example, taken from Césevl,
above, which shows schematically how the total 1ift vector is
composed of the vectors Lo’ Ll’ and Lz for a certain value of

/0. The quasi-steady part, L,, being in phase with the

velocity, appears as a horizontal vector, while the vector,LLz, v

tends to diminish the lift and cause it to lag behind the
veiocity. The apparent-mass 1ift, Ly, being proportional to
the acceleration, is directed vertically, i.e., leads the
velocity by 90°. The total 1ift, L, is the sumvof these three
vectors, and has the phése angle . |

In Fig. 6 are plotted "vector diagrams" which give

the magnitudes of the lif't and moment together with their phase

(- 32 -
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angles for various vaiues of the reduced frequency 1{/U

(or c‘R/ZU for an airfoil of chord = c).* In these

diagrams the length of the vector drawm frém the origin to

thé appropriate velue of 0'2/2U on the curve gives the

© maximum value of tﬁe total 1ift or moment (referred to that

of the corresponding qu#éi-steady quantity, Lo or‘MO), and

its angle with the horizontal axis gives the phase angle
relative to w. It is seeﬁ that as the frequenecy of the -
translatory oscillation (Case 1) is increased frbm.c‘v/?U”=AO
(uniform motion) the meximum value or amplitude of the lift at
first steadily decreases, and the lift vector lags slightly
behind the vertical-velocity vector, w. These effects are pro-
duced by the wake contribution, Lo. With further increase of
the frequency, however, the apparent-mass contribution, Ly, .
which is proportional to the acceleration, becomes very largé,
and the 1ift wvector leads the velocity vector. In the iimit |
¢ V/2U —~ 00 the sum (Lo + Ly) is equal to half of L, but
L 9 , and the 1ift vector leads w by 90°, Since the apparent-
mass 1lift, Ly, acts through the midpoint of the airfoil in this

cage, the limiting value of the moment is also half of its

*gussner (Ref. 3, p. 416), gives a table of Bessel functions
involved in the calculation of Fig. 6.
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steady-motion value, In the rotational case (Case 2) the total
1lift behaves exactly like the moment of Case 1 as the frequency
is increased, while the apparent-mass moment contribution,

iy, increases propprtionally to the frequency.

It is believed that the method of representation of
1lift and moment by vector diagrems will be useful in the dig-
cussion of flutter problems because both the elastic restoring
forces and the inertia forces of the wing cen be introduced
in such diagrams.

The results presented in Fig. 6 are applicable to
cases of bending~-torsional wing flutter. The calculation of
aileron or rudder flutter requires the expression of the non-
steady forces acting on the aileron or rudder in a similar way.
The aileron or rudder constitutes one portion of a wing or a
fin, while the equations presented in this Section give only
the 1ift and moment acting on the wing as a whole. However, by
determining the vorticity distribution produced by the wake,
similar equations can be deduced for the non-steady nofmal

force on the aileron and for the non-steady hinge moment.
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V. THE FUNDAMENTAL TRANSIENT CASE;
THE LIFT AND MOMENT RESULTING FROM A SUDDEN CHANGE

OF ANGLE OF ATTACK

There are many cases in which knowledge of the
forces produced by a transient phenomenon is of practical
interest. Examples of such cases are the reaction of an
airplane to certain céntrol operations (aileron or rudder
deflection, ete,), and the behavior of an aifplane en- |
countering gusts. In the second case, an estimate of
the forces acting on the wing is of importance, as well
as the reaction of the airplane as a whole, in view of
strength requirements. The results of the preceding
Section, which was concerned only with steady-state
problems, can be used to calculate the 1ift and momént iﬁ
- the fundamental transient case; i.e., the case of a‘sudden
incfement in f;, the quasi-steady circulation. Since the
quasi=steady circulation, as given by the stétionafy airfoil
theory, is proportional to the product of the velocity énd
the angle of attack of the airfoil, the increment applied
to Fg mey be supposed to represent either a‘sudden in-

crease of angle of attack while the airfoil moves at a
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constant velocity §r a sudden change of velocity with
‘the attitude being unchzinged.

Since the quasi-steady quantii:y M, and the
.wake vorticity function X(§ ) are related by equation
(18) (page 11), .fthe present problem might be attacked
directlyrby at’cemptiﬁé to solve this integral equetion.
with the specified behavior of PO. This, in fact, is
the method used by Wagﬁer (Ref. 4), who obtains an ap-
proximete solution whieh is wvalid for small vé.lues of s,
the distance travelled by the airfoil after the sudden
disturbance, and is alsoc the method used in Section VI
and Appendix #3 of the present paper. The method used
here ié equivalent to that used by Kussner (Ref. 5)»,
although there is a certain difference in interpretation,
as will be pointed out later.

The chord of the airfoil is again taken eqﬁa.l
to 2, and it is supposed that the velocity of flight, U,‘.
is constant. The angle of attack is increased suddenly,
at the instent t = 0, from zero to a constent valu.e;'
i.e., if w is the normal velocity of the airfoil rel&tive‘

to the fluid, as in the preceding Section, then w = O
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for t < 0, and w = w, (a constant) for t > O. This
discontinuous function of the time can be expressed by
means of the Dirichlet "discontinuous factor" in the

form

| Dot
wt)= Wo —'2—+';/‘L.”v A (44)

o
In this expression the complex-variable notation has been
employed, as in the preceding Section, i.e.,. the reai
part of the integral represents the desired discon~
tinuous angle-of-attack function, and the imaginary part
will be discarded in the finel results.

In equation (44) the function w(t) has been
expressed in a form which is equivalent to the superposition

of a constant normal velocity, wb/z, and an infinite number

Wo ivt

of sinusoidal velocities of the form w(t) = e e s

with all frequencies between O and OO . Hence the results
of the case of translatory oscillation in the last Section
can be applied to the calculation of the lift and the
moment. By comparison of equations (33) (page 27) and (44),

it is seen that in this case the total lift, from (35),
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becomes in this case

“_’t
) [eT K ) ;
L:QWPUWO S+ = [ ( p)olv (45)

C v K(“’)+K(v) “2U

(o]

Thié cen be wriften
L= L[5 +F®]+1,@) e

where Lo = 27rp Uwo, the quasi-steady 1ift.

ne) = / (/{(c”)#{( )&(’)

L)’f
Ly ()= — = LYy , the lift
T A L\) ZU

arising from the apparent mass.

It is apparent that Ly(t) is indeterminate in the
form above, but it can easily be shown that this por‘bion of
the lviftvvanishes for t > 0 by consideration of the corres-
ponding part of the total momentum, which is g’iven by ‘the
first term of the right side in equatio? (18) (page 12).
This contribution is equal to I =/0//‘Xo(x)xdx, and,

substituting Xo for the case being considered (cf. equation
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(34)) this becomes oo

[3

. T
/ =z ‘vi‘ .
I/:ﬁJXD(Z)Y«G{X = }—%F e‘) Q{V (/—Caﬂ.@)m@o(@

c
o0
: cvt
~, ) L= o/)’
= ,“_M/o P‘[C A

[o]

(47a)

If + > 0, the real part of this expression is simply

OE(I/) = —%P Wo

(47)

which is independent ‘of the time, and therefore Ll = )O.F
Hence there remainé only the problem of evé.luating
the function F(t) in equation (46). Introducing Ut = s,
the distance travelled after the change of angle, and then
replacing ‘l)/U by z, this becomes |

isz g /{(:'z) | ) | )
F ( e ] . v
| (s) T ¢Z kg (c2)+hG (e2) L= | ()

Following Kussner, we may write

/(//L‘})ff(‘,.((’i-)
K (e2) + o, (22)

where T'(z) and T"(z) are real functions. If this sub-

=T(z) =T =z)+iT"(z) (49
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stitution is made, the function F(s) becomes
00’ .
— _ e“>? 1, . /"
F{(s) ZW/T%— [/—/—7‘ (2)+ 7 " (2) ;/% - (50)
o

and the real part, which is to be determined, is

CE?Z?‘/S#Z ——~J/C&Z}4—7r (Eij244A4,832 + [/ (é;)coi,szs 61%?

a(é

= ”“/“‘"//7—(3)/.!4/1432‘ +/ (z)ccnss '(51)

This infinite integral is found to be rapidly convergént,
and has been evaluated appréximately for several vaiues
of s by planimetry®, using the values of T' and T" tabulated
in Ref. 3. The resulting curve for the total 1ift, L,
as in equatioﬁ (48), is presented in Fig. 7. |

In Fig. 7 it is seen that the 1ift attains half
of its final, or quasi-steady, value instantaneously, end
then gradually approaches‘fhe final value as the distance

s increases. When s = 10, i.e., when the airfoil has

*Kussner (loc. cit.) has evaluated an infinite integral
analogous to that in (51) above by a very elegant series
expansion.



progressed 5:chord lengths after the sudden disturbance,
the 1ift has attained 87% of the quasi-steady value. The
1lift curve is in good agreement with the corresponding
fesult in'Wagner's classical paper (loc. cit.) and with.
the function obtained by Kussnmer (loc. cit.) for the lift
due to ciroulation. Kussner does not consider the apparent-
mass contributions, which have been shown here to vanish
for s > 0. |

Since Ll = 0O for s > 0, the entiré 1ift acts‘
at the quarter-chord point of the airfoil in this case
(cf. pp. 28 and 29), and the moment about the center of

the airfoil is given by M = -L/2 where L is the lift as

calculated above.
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VI. A GENERAL METHOD FOR TRANSIENT CASES

A general method of attacking transient
problems may be developed once the effects of a sudden
disturbance have been .calculated. Although the results
obtained in Section V will be employed ultimately, it
is desirable at this point to consider the sudden~disturbance
problem from the standpoint of the integral equation,A (15).
If the velocity of flight, U, is constant, and the quasi-
steady circulation rlo is suddenly increased at the iﬁstant
t = 0 from zero to unity and then held constant, the wake
extends only from f =1 to €= 1 + Ut, and equation (15)

becomes
+yt

et == e [E] 4 (s2)
I .

The vortex strength in the wake is a function of
the distance s from the endpoint of the wake

s=1+7t - g’-: s hence it may be written as

Zf(g—‘)=,u (/"’Ut ‘;é‘). Equation (52) represents an
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integral equation for rL in the form

[+UE

/,Amut L oLs =

or, introducihg'the‘variable s,
V2+Ut =S :
_/ (S) ds =/ (55)
l/t' S
fs)
The function FL(S) has been determined by Wagner (Ref. 4).
For the following applications, the main problem
is the calculation of LZ’ the contribution of the wake.

For the case being considered, Ly is equal to (from equation

(21))
1+ UE )+ Ut

Pufa/(g‘)@__i—— ,DU/‘;(’*U’E ;5)@;—,4 {54)

where the function }L(s) is again the solution of the

integral equation (53). The function

1+Ut E o
Fon = futroep L

/
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will be called the lift deficiency function, Sinece

pU§ represents the difference between the instantaneous
end final values of the 1ift in the ca.se of sudden unit
increase of the quasi-steady circulation, ?‘é is obviously
the difference between unity and the function L/ZW(:UWO
plotted in Fige 7. It is a function of the distance Ut
travelled by the airfoil since the change of circulation -
took place.

It is evident that the function & can be used‘
to calculate the lift acting on an airfoil which is sub-
Jjected to an arbitrary transient variation of the quasi-
steady circulation (5. Assuming that [, changes at the
instant T by the increment Dl o= ,_(;’('E)AT, the deficiency
in lift at + : t, i.0., after the airfoil has travelled )
a distance U(t - T ) will be [o'(T)- 2[U(t-T)]- A,

and the total deficiency in lift will be given ‘by
, £ / GZ |
_LZ: /oU[/o ('E)%[U(ffi)] T . (56)*

In this equation it is assumed that [, (0) = 0. 1If, at
the instant t = 0, [, is suddenly increased from 0 to
[ (0), & term equal to [, (0)-d (Ut) is to be added

to the right-hand side of equation (56).

. T D - o

*This is an example of the so-called DuHemel "superposition"
integral. ‘ N '
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Since the elementary case of a sudden increment
in FO has already been treated, and the function 1 =- 5
‘is known, the 1ift and moment can be calculated by (21)
and (25), for a given ¥ ,(x,t) distribution, because
Lgs Iy , M, M ere d’gtermined by ¥, and its time
derivative, Lp is given by (56), and My = -LZ/Z.

The function_ & (Ut) has not been obtained in
analytical form; however, it can be fairly closely
approximated by the following relatively simple
formulae which are chosen so as to facilitate subsequént
calculations:

a) for 0 £ & = 2 the following power series can

be used:™
Oz B
| a o 3 '
§(G’) ~§-§+§E-O.OOS‘S40’ (57)

b) for 0 £ G £ 10

-aln ~0.
§(¢)~ :b_—e +2}-(l+0.185'¢’ eomm (58)

For the actual calculations 1 - § is used, and since é_(W)
is very small for T > 10, equation (58) can be applied

for 02 G £ 0 without introducing appreciable errors.

*Formula (57) has been obtained by an approximate solution
of equation (53). The details are presented in Appendix #3.
It will be noted that the form of (58) has been chosen to
agree with (57) in initial slope; i.e., & '(0) = ~1/8
(which is found in Appendix #3 to be the correct value).
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In Table 1 the approximate values for & ()
are shown in comparison with those given by Wagner
(Ref. 4), which are assertedly correct in the first
four digits for 0 £ ¢ = 10.

o TABLE 1

Appr oximetions to §

o Wegner - Eq. (57) Eq. (58)
0 1/2 1/2 1/2
1/2 0.4443 ~ 0.4446 0.444
1 0.3994 ' 0.4008 0.398
2 0.3307 0.3307 0. 329
4 0.2418 - 0.242
10 0.1255 - 0.114
20 0.0679 - . 0.029

The approximations given in (57) and (58)

will be used in the application of the next Section,
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VII, APPLICATION TO THE CASE OF A SHARP-EDGED GUST

The results of the preceding Section may be
applied to the problem of a flat-plate airfoil entering
a Sharp-edged vertical gust. The flow in this case is
not a potential one because the gust boundary itself
constitutes a vortex sheet, It will be assumed that in
spite of this fact the thin-airfoil theory can be applied
to the calculation of the quasi-steady quantities )/o(x)
and fﬁo. This corresponds to the assumption that the
principle of superposition of flow patterns is applicable,
Strictly speaking, this is only the case for potential
motions; however, the method yields results which are
probably suffieciently exact in the present case, provided
that all additional velocities are small sé that the
.deformation of the vortex sheet can be neglected.

Suppose that the leading edge of the airfoil
reaches the gust boundary at the instant t = 0, Then at
the time t, the relative transverse velocity is equal to
V (cf. Fig. 8) between x = =1 and x = -1 + Ut, and it is
equal to zero for x > -1 + UL, "The vorticity dis~

tribution ¥ (x) produced by these velocities
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is the same as that of the broken-~line airfoil represented
in Fig. 8 in a parallel stream. Applying the equations
of the thin-airfoil theory to this case, the following

© .

. *
formulae are obtained:

. on = con kO
OO = e b e TR (s
k=/
where cos 6 = x and
m ' :
ak:_—‘ér-l—//MQMAQ A6 | (60)
co! (Ut-1)

and

[ () = ?l/[cn'/(/—ut} ——\fZUt—Uztz} (61)

These formulae apply to the interval O = Ut £ 2 during
" which the airfoil crosses the boundary of the gust. For

Ut > 2 the airfoil is entirely within the gust, the

transverse velocity is constant, and rlo = 27rv'and
'_., I—X .
¥ (x) = T+ v R both independent of the time. The

- 0 e 20 2 B A > et P e i e

*The details of the calculations leading to equatlons (59)-(61)
are included in Appendix #2.
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two ranges are now considered separately:

a) 0 £ vt £ 2

The apparent-mass terms are readily obtained

using (59)-(61). The 1ntegra1s are

/
fa@ (x) \(J,Z‘” =
1

tos (UE -1)

= =V [7‘ oo (Lll: )+ (Ut- t) [QU‘c U*ﬁlj (62)
/
fxo(x)(xl——;-)aly ,.ﬁ/ (8) 0220 4O
-1

27\’ Z’k/cmée o220 dO

_ IQ - v AAA«Q/MA«QQ A8
N eos! (UYt-1)

_ 2 2432
= S (2ut-ye)

(63)

Hence, from (61) and (62), the sum of the first two terms

of the 1lift, equation (21), i

LotLl, = —f) /o(x))éo()é -f/DUF

y
= PVU‘ / + J2Ut-ure — _________(Ut-:)
JiUt-U‘tl - ,[fz_m;—uw;1

+2 e,o-q:'U“Uf) -2 \IQUE-UIE" g
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=p UV co” (1-UL)  (s4)

and, from (62) and (63) the sum of the first two

terms of the moment, equatlon (25), is

M +Mo = —;llp‘o—%‘/; ( )(X- )0@16 +PU/D()C) }/o/)d
- pUV{(Ut-\)m* —eed (1-UL)

- (Uk-1) {rUt-ve

==~PUVQQJU~UU | (65)

It is seen immediately that M, + My = =(L, + Ll)/z, .

and since it has already been proved that Mg = -Lg/z, this

méans that the total 1ift acts at the forﬁard quarter-

chord (x = =1/2) at every instant. This result was pre-

dicted by Kussner (Ref. 3) and verified experimentally By

him (Ref. 5), but he was unable to prove it fheoretically'
because of an erroriin his fundamental equation for waves
progressing over the airfoil., Because of an errér‘iﬁ sign

(Ref. 3, p. 420, eq. 60), these disturbances move over his



airfoll from rear to front, which, of course, confuses the
results.

The calculation of Lo is carrbied out by intro-
.ducing $ from (57) and [ (t) from (61) into (56). This
leads to the elementary integrals

vt )
r T n 4 A
oV 2 -T z z forn = 0, 1, 2, and 3.

Hence Ly is easily calpulated,* and when the result is

combined with L, + Ly from (64) the total 1ift becomes
L = 200V {@.2103 + 0.2603(Ut) - 0,0562(Ut)2 + o.ooss(ut)‘i’]cos'l(l )
+ E).7897 -~ 0.1637(Ut) + 0.0247(Ut)2 -0.0014(Ut)5] Vaut - Uztz} (66)

where 0 < cos™l(1 - Ut) S 7. The result, (66), is plotted

in Fig. 9.
b) Ut > 2

In this regime, since the airfoii is subjep‘sed to é.
| constant transverse velocity, V, it is seen immedimtely that
Ly =My = 0, Lo = 27pUV, and My = -Lo/2. Hence the lift
again acts at the quarter-chord point. In ‘bhe calculativon
of L, by means of equation (56) the function P is ’car.ken,from

- S . o . - - - o -

*The details of the calculation are given in Appendix #4.
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(58) and the value of l"o'(t) is that obtained from
(61) for 0 € Ut £ 2 and is equal to zero for greater
values of Ut. Hence the integrals which arise in this

case are the following:

| /f;z? e - }1:0 (a)+T, (a)}
" e et A0 - T )

where I, (a) is a modified Bessel function of the first
kind (Ref. 2, p. 46). The total 1ift in this range is

Ly + Lp, which finally becomes
L= 27UV [1 - 0.5304 o~(UE=1)/2 _ (0.1917 + 0.0510 &)e=0-185(Ut - 1))? (67)

This result is also plotted in Fig. 9. It is seen
that the 1ift on the airfoil increases raﬁidly after the

| entrance of the leading edge into the gust (Ut = 0), and

is equal to 55% of its final value when the trailing edge

reaches the gust boundary (Ut = 2). The incfease then be=-

comes progressively‘slower, and when the leading edgé has

progressed five chord-lengths into the gust (Ut = 10) the

1ift is 86% of its final value. Thus, for a wing of chord
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equal to 20 ft., flying at 200 m.p.h., the 1ift would
reach 55% of its final value in 0,07 sec. and 86% of

its final value in 0,34 sec. It should be noted that

for Tt > 10 the lift is in error due to the approximation
involved in the exprégsidn used for §E s equation (58).
The dotted curve in Fig, 9, which will be explained in
Section IX, below, may be used for large values of TUt.

It is known that the vertical gusts which actually
occur in the atmosphere are not exactly sharp edged, but‘
consist of a smooth, although rapid, transition of verfical
veloecity. The rate of increase of lift on an airfoil
entering such a smoothly-graded gust can easily be cal-
culated by means of another "superposition" integral using
the curve of Fig. 9 for the response of the wing to a
sudden disturbance. An eiample of such & calculatiqn is

‘given in the following Section.
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VIII. EXTENSION TO THE CASE OF A GRADED GUST

In this Section the results obtained in the
preceding pages‘willkbe employed in the calculation of
the 1ift producéd bylan airfoil flying through the
boundary of a gust which more closely resembles actual.
atmospheric gusts, i.e., in which infinit? velocity
gradients do not appear.

The graded gust may be considered to be composed
of a continuous succession of small sharp-edged gusts.
Making use of the “"superposition" integral again, the lift

may be written in the form

s
L(s) = JFe) ds-o)de

(68)

'vwhere s = the distance travelled by the airfoil after
the leading edge reached the boundary of the
gust., The velocity of flight, U, is assumed
to be constant, so that s = Ut.

F(s) = the "gust velocity profile"; i.e., the
function giving the vertical gust velocity
at s. It is assumed that the gust velocity

- at any point is small compared to the velocity

of flight, T.
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J?(s) = the lift resulting from the entrance of

the airfoil into & unit sharp-edged gust.

It is obvious that, if the chord is again taken

| equal to 2, the function 4?(5) is exactly L(Ut) of

formulae (66) and (67), as plotted in Fig. 9, for the

gust velocity V = 1. It has been suggested by Kussner

(Ref, 3) that for the gust function F(s) the results of

Tollmien (Ref. 6) be used. These results give the

velocity profile in the "mixing region® between a uniform

jet and the surrounding stationary fluid according to

Prendtl's theories of turbulent mixing.* It is believed

that gusts of this type constitute the most logical available

approximation to actual atmospheric gusts. Atmospheric

gust profiles have been observed (e.g., Fig. 1 of Ref. 7)

which are definitely similar to Tollmien's velocity profiles.
Tollmien's results are given by Kussner in a

form equivalent to the following, which is convenient for

the present application: the gust profile is
s ) .
F(& = we F(T) (&)

*Calculatlons of the 1ift for such gusts have been carried
out by Klissner (locs cit.), but they are based on the
erroneous results for the sharp-edged gust mentioned on
page 50.
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where w, is the meximum vertical gust velocity, i.e.,

the jet velocity, f is a function such that £(0) =

~and £(1) = 1, and b is the breadth of the mixing region.

The gust profile, F(s), has been plotted in Fig. 10 for
~lendb=2

By differentiation of equation (69) one obtains
/.‘/s) _.Wo, /“)— WoQ(b) - (70)

where f' = G, the function tabulated in Table 4 of Kussner's

paper (Ref. 3). The 1ift, from equation (68) is then

L)= 2 [G(F) Lis-) Lo )

This expression has been evaluated by graphical
integration for several wvalues of s for two valueé ofvbf
The results are presented in Fig. 10.. It is seen that the
initial rate of growth of the 1ift after the entrance of
the leading edge into the gust is considerably less than
in the case of the sharp-edged gust, but that as s increases
the curves for the graded gusts are similar to the curveé
for the sharﬁ-edged gust, the only appreciable differenée

being a slight displacement along the scale of abscissae.
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Kussner (Ref. 5) has published experimental
fesults obtained by dropping a model wing into the jet
of a small wind tunnel and observing photographically
its resulting motion. An attémpt'was made to verify
the thebretical resuits for the rate of growth of the
1ift by comparing experimental and theoretical values
of the radiﬁs of curvature of the path of the model
airfoil. As has already been mentioned, KSSSner's
theoretical calculations are erroneous, and it is in-
teresting bo comparekhis experimental results with thé
results obtained here., 1In the experiments the value of
b for the jet-boundary profile was 1.4, The theoretical
values of L/ pUw, are obtained from Fig. 10 by inter-
polation, and Kussner's calculated radii of curvature
(Table 4, Ref. 5) are increased in the‘ratio of Kﬁésner's
vgz(g s) to L}w pUw.. The results are presented in Table 2
below., It is seen that the theoretical radii are lgss
then those observed by an amount (11%-18%), which is
probably attributable to effects of the finite aspect.

ratio of the model.
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TABLE 2

58, measured in half-chords 1.05 1.61 2.98
gé(g's) (Kissner) 0.41 0.83 1.28
Thgo. radius of .curv,

(Kussner), cm., : 28,4 14.25 9. 57
_L/erﬁwb (Fig. 10, inter- ;
‘polated for b = 1.4) - 0.35 0.72 1.15
Theo. radius of curv,

(Sears), Rtheo. ] cn, 53.5 . 16.4 10.6
Experimental radius of ,

ourv., Rgy, » om. 37.5 19.3 12,9
Rineo. Rexp. 0.89 0.85 0.82

Since it was found in Seetion VII that all the 1ift
produced by a sharp-edged gust acts at the quarter-chord point
of the eirfoil, it has been unnecessary>to consider the moment‘
dcting on the airfoil in the present Section., It is obvious‘
from the reasoning which led to equation (68) that the total
1ift will act at the quarter-chord point, regafdless of the
gust profile encountered, |

With regard to the applicability of these results
to actual aeronautical problems, it should be pointed out that

the most important effects which have been neglected here, in
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addition to the effects of finite span, are those re-
sulting from the elastic deflections of the wing and the
motion of the airplane as a whole after entering the gust,
.Calculations‘ingluding both effects, but using Wagner's.
elementary function, 1- § » for the rate of build-up

of 1ift (i.e., neglecting the fact that the entire chord
does not strike the gust boundary at once), have been pub-
lished in Ref. 8, The results of the present paper now

provide a better foundation for such calculations,
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IX, THE LIFT AND MOMENT PRODUCED BY A SERIES
OF SINUSOIDAL GUSTS; APPLICATION TO THE

CASE OF A SHARP-EDGED GUST

A calculation of the lift and moment on an
airfoil flying through a sinusoidal gust pattern has
two possibilibies of interest: first, there is the
possibility that such a series of upward and downward
gusts, occurring with the proper frequency, may produce
large forces on the airfoil; and second, it leads to én
alternative method of calculéting the effects of sharp-
edged and graded gusts, The sinusoidal gust pattern is
again not a possible potential motion, hence the assumption
made at the beginning of Section VII (cf. p. 47), i.e.;
that the stationary airfoil theory is étili applicable to
‘the calculation of quasi-steady quantities, must also be
made for this case,

If x is the coordinate along the flight path,
measured in the direétion of the trailing edge from aﬁ
origin fixed in the center of the airfoil, and U is the
flying speed, supposed to be constant, the vertical gust

velocity may be written, in complex~variable notation,
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in the form

V(X,i') = We Ev(t-x/0) (72)

- This equation expresses the fact that the sinusoidal gust
pa’c’cern with maximum up or down velocity equal to W

' (a constan’c) moves past the airfoil with the speed of
flight, U. If the wave length of the gusts is Ly
(measured in half-chords), the frequency, ¥, with which

the sinusoidal waves pass any point of the airfoil is
v=2rU/L, - (73)

For -1 < x < 1, i.e., on the airfoil, the
coordinate x may be replaced by cos ©, as before. Then,
if the gust velocity, v(x,t), is positive upward, the
relative vertical velocity of any point of the airfoil,

measured positive downward, is

(vt L FceoO
w(@) = We ™ e ¥ (74)

Now this may be put into the general form

w(B8) = Uein[Ao"L'?”z;An cor # /2 (cf.(ﬁ):ﬁl)
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for which the 1ift and moment have been caleculated in

Appendix #5, for

e£2m8=l(2)+2 2" T (2) coan® (75)*

h=/

and therefore, ‘putting z = -+/U, equation (74) becomes

_ o |
w(6)= We”t[J;(-z%)u 2" T 2) mh@j
' n=/
or, since J,(-z) = (=) Jn(z)’** \
ot 4 ‘
w(0)= We*” fJ;{—&)+2Z(-z)”J;,{¢7”) mn@j (76)
ne1 -

The formulae for the 1ift and moment for w(e)

as given by equation (41), above, are (from Appendix #5)

: bt | () o o)
L= 2mpUe f/«, e e +2"J(”°"’=’f<">

' o U?- vl A /(/ A/K:["Ue) f

(78)

*of. Ref. 2, p. 32, eq. (6).

**This is apperent from the definition of Jy given in Ref. 2,
p. 14, eq. (18).
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By comparison of equations (41) and (76), it is seen

that the 1if't and moment in the present case are

‘ evt /(l{) v flal
L=?7r,oUWe )+ /({L p—[u) J( )]

R ]

(79)

end L

ot [T )k (F)+ T (G)RL(F
/(/53)-# a8 {é-'i) .

=, (s)ﬂfzu)jgxg)]

M = —ﬂ',oUWe

(80)

Meking use of the recurrence formula for Bessel functions,

2.7, (2) = I, )+ T 2) (81)"

one has | |
L[R@G+RE)] = @)
and

L[ TG (B)]=-T ()

L e T TP STy R Y



Hence (79) and (80) can easily be reduced to

Wt [TER(E) T )RS )
K () + 50 (5)

L:— ?F/OUWQ (84)

and o /7_‘
M= —5

which means that the 1ift acts through the quarter-chord

(85)

point (x = =1/2) at all times.

The 1ift, as expressed in formula (84), can bé
presented in the form of another vector diagram, anaiogbus
to those employed in Section IV (cof. pp. 31-33 and Fig. 6).
The necessary numerical calculations have been carried out,
and the results are given in Fig. 1l. It is seen that as
the reduced freguency <¥/U (or ¢ P/2U for a wing of chord
= ¢) is increased from zero (i.e., as the wave 1ength of
the gusts becomes progressively shorter), the magnifude of
thevlift vector decreases continuously, while the lift vector
leads the gust velocity vector by a progressively greater
phase angle (P. In fact, for ¢ /20 > 2, the phase aﬁgle
is approximately proportional to the reduced frequency. It
is obvious that there exists no "critical frequency" which

produces abnormally large forces on the airfoil,
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As an alternative to the method used in
Section VII, the 1lift produced by a sharp-edged gust
may be calculated from the result given in equation
(84). Employiﬁg aLgain the Dirichlet "discontinuous

factor®, the gust vélocity may be written in the form

P nlt-27Y) -
vix,t)=V/ 2 .7,-/ JV/ ~(86)

Then, by comparison of (86) and (72), the 1ift can im-

mediately be obtained in the form of (84):

(R TOREY 7y
LQ”PUV/z 7,- P AC IR Y47 v JeEn

Introducing again s = Ut, which in this case is thé dis-
tance of the midpoint of the airfoil past the gust boundéry,‘
replacing /U by z, and substituting for the K's’in

terﬁs of T* and T" as in equation (49), the real part of

this formula becomes, after a little calculation

@(L) = zrp UVX2 27[0(2)[/+/ /9)j+j‘(&) 7'z) ’“"s*o/z

4 5/% /L[-;; (2)f /—T?a)j + ()T ”/a)j “;si’ oz

(88)



But

Hence the 1ift, equation (88), can be evaluated if the |
following integrals can be determined:

/ﬁ )7 (2) +.j7/2) 7_'//2)]—43;—_55‘&0/3‘

(=]

= [[J:{a) 7'2)-J,(2)T () [-0232 ofz

The velues of these integrals héve been deter-
mined for a few values of s, taking T' and T" from Ref. 3.
The integrals are rapidly convergent, and have been evaiuated 7
graphically. Accounting for the difference in definition‘
of t in the two cases, the lift from equation (88) is found

to agree closely with that obtained from equations (66) and

*Ref. 2, pp. 77, 78.
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(67) in Section VII, excepting for large values of Ut,

for which the approximation involved in equation (67)

- is not close. The values obtained from equation (88)

for this region are shown by the détted line in Fig. 9.
| 1t éaﬁ be stated from the result of equation

(85), withqut further calculation, that the entire 1ift

acts at the quarter-chord point for a gust of any

arbitrary profile.
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X. CALCULATION OF THE PRESSURE DISTRIBUTION

OVER THE AIRFOIL

In certaiﬁ problems of non-uniform motion it
becomes necessary to calculate the distribution of the
load over the chord of the airfoil. An example is the -
problem of wing~-aileron flutter, in which the non-uniform
hinge moment must be determined.

For the plane airfoil of infinite siaan which is
being considered here, the force per unit area is givén
by the sum of the force arising from the vortieity, which
is pU ¥(x), and the difference between the "impulsive
pressures", po !P/at, on the upper and lower surfaces,
where (P is again the velocity potential of the motion.
Hence the total upward load per unit area may be written

a8

| PUX(X) —+ F%(@z"'ﬁ) = PU X% N Aa‘ﬁ)
where ¥(x) = th; vorticity at x

1

P

“Pl = the value of LP on the upper surface at x

the value of (,0 on the lower surface at x

and Y, .. = the "effective vorticity distribution", which
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is defined as

¥off = X(X)*"-L-‘J— %Wl‘“ﬁ) | (%0)

Since (P may be taken equal to zero at any

desired point, suppose this point to be the leading edge,
where x = =1, Then '(P2 =:/u2 dx and 301 =_/11 dx,

where up and uj are the velocities along the lower and

_ upper surfaces of the mﬁng, respectively. Hence, singce

us - up is equal to the vorticity, ¥ (x), one can write

X X
()02-90, =ﬁu2—d/)dy = ‘/;//Y/G//K (91)

The effective vorticity at x is, therefore,

b/% Yix) + 7 Z a/(x’) a/% o (92)

The vorticity X(x) in this expression can now be written
as the sum of b/o(x) and b/l(x), as before, and Xl(x)

can be obtained from equation (7); then

b/%: Y (X)-F-Udt/‘o(l/)ﬁ//z'f' {X)+Z/—Z_ X,(X)&& (93)

r—-—e “s(¢) |
where )//(;() = / f R X §+; Jf (7
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As an example, the case of any steady-state
oscillation will be treated here. In this case (cf.

Section IV), one has
r'o = G ei?-t '(26)‘
¥(§) = 8*'3- (27)

'a.nd — ‘Go '
I 7 KB (D) e

It is also apparent that the quasi-steady vorticity is.

periodic and can be written as

(vt
¥, (x) = golx) @ | (94)

These quantities are to be introduced into equations (93)
and (7). The analysis is simplified by the use of the

. -1 = -1 s
variables 8 = cos ~ x and o = cosh f . Introduction
of (27) into (7) then gives the following expression for

the induced vorticity:

wt * | ~Pemfl
- / A
/ c«p@Nq + u 0/0(

% (6) = 4= e

i YN ‘>Conchx—-emaCD

In Appendix #6, by means of a contour integration, it is
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shown that
(eaQoi +1 Y(1-e02.B) _ 1~cea 8
(cozlia- cos® ) 4L © A O

oo

n=/

Therefore, equation (95) can be written in the form
L\’t : , e
5 ~C5
as/l(e> { o MM-@ +2: Q I HG}
~ where Qq is used as an abbreviation for the integral

RN
<= & — N
anﬁ v a/c(
[~}

It will be found later that only the integrals Qo and Ql
need be evaluated.
The integral in equation (93) involving the in-

duced vorticity becomes, by a.ppllcatlon of (97),

X o e(.?
Jbﬂ/x)&& = @-7;_—— ! /E/ me)JQ +7r®

+2 e-ndzﬁ-l/"'l 2 (96)

(97)

(98)

g Zco /MQMHQCZHJ

vt

= ‘&ri zQ (“r 9+/.\.¢M6)+11—C,) +ZQ h(:i'e /w«(rlr)(i?

wt @ N
=4 {@ﬁ@'ﬁ-@i@«-fQuw)“m“@} )
h=} ‘

In Appendix #7 a recurrence formule for the integrals Q
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is found to be

. 2J4 —v/U
Qu~|-Qv\+| Ty (H QV\ - e ) -(100)

Hence (99) is

ot | "
ﬁwﬁ/x - {(Q"’LQX“"‘G)-% (na,-e MH"Q}

-

or, since 2 Z—'——?ﬂ—aﬂﬂ'— e

/ | oo |
/AXT(x)o[x = %:_— (Q0+Q )(r-e) -y an baa 08
~/ n= |

-itv/U
+ :%"Q (‘T- G)j (101)

Now, substituting ?{1(6) from (97) and using
(94) and (101), the effective vorticity, equation (93)

becomes T , h’t :
| | ¢ ™ I-cnD
Y= zro(e)+U‘3 ¥.(8) a0 40 4 %7% {QD ;ﬁn@

8

“’(me)[Q o+, +——; e'”/U]

(102)

But, referring to the definition of the integrals Q’n in

(98) and letting P/U = z, one can write



I

This expression can now be identified in terms of Bessel

functions, for, putting cosh o =f and noting that

e”C = f ‘)fz 1, it cen be written as

il

Ko(i3)+/(,(£3) (108)

by comparison with equations (29) and (31)., It is o'bvioué,

from the definition given on page 25, that Qg = Kn(.i'v/U).
Applying these results in (102), and s’ubstitﬁting

for g from (31), above, the final expression for the ef—

fective vorticity distribution becomes

g‘H = %,(0) + =7 f&(e)/w«éc%’

n K(—) 1-Co0® | v .
“T [R@)rk () 6 T T (v-e)

It has been verlfled by caleulation of the integrals

L= pr oly
Ufb’%xlx

(105)
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that equation (104) leads to the same results for the 1lift
and moment on the alrfoll as have already been obtained
in Section IV and Appendix 5.

The final expression for Keff may be put into
a somewhat more convenient form for practical application
by expressing the quasi-steady vorticity Ko(e) in series

form, In Ref. 1, page 37, eq. (6.16), ¥ (8) is given in

the form
I S e
0)= i * %Ck P (106)"
=
Hence

T - .
1 ) - r:'_ - /J—(Mif@
/(0(9//4—(./'«9649~ :ﬁ:(ﬂ'e) ZEL“"T (107)
e k=1

and the effective vorticity, from (104) cen be written in

the form o
e~ i Se, ko
W= e L0 - ZQ
k=1 b= |

ké ’}i) | -em®
L( 3+ lk( \ A, ©

N P ~J+l< (W—)'me
T ac. © ) K (_“k

4 ZC C® lc@ ZC &MLQ o

TR o s R e e N S STw e oo T T

* s s . N
“The changes in notation from that used in Ref. 1 are obvious.
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in order To satisfy the condision of {inlte

velocibies at the tralling edre, X%(@

to zero for & = 03 hence, {rom (106),

he non-steady allsron

W)

method for the caleulation of

hinge-moment for the stesdy-state case of ailesron

jeda

Tlutber. The performance of the actual calculation

)

is left for a subsequent paper,

i
]
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XI, APPLICATION TO COHDITIOHS BEYCHND THE STALL

The airfolil theory for non-uniform motion
sugeests a possibility of explaining varilous phenomena
relating to the 1ift of airfolls above the stall; i,e.,
after the rate of change of 11ift with respect to angle
of attaclk hecomes negabive, Wieselsberger, in Ref, 9,
first provosed that the ordinary theory of Thin air-
foils be applied above the stall, Althourh some of the
assumptions uvon which the theory 1s based are certainly
violated in this regime, it is believed that the results
provide at least a crude first spproximation to the true
conditions., The general method of atbtack upon this
problem is simply to replace the 1ift slope, which is
2m in the case of an infinite thin airfoll, by the
value Zﬂ'k s where >. is to have negelive values. The
value assumed for the factor k must, of course, he ob-
tained from experimental observations,

If the 1ift slope is altered in this manner,
it is apparent that equation (8), which zives the total

circulation induced by the wake, must be replaced by the



follcw1ng‘

r= X zr(f) | ff _y oy

The relation analogous to (14) is then

r=rz+xf;f){fg~' £

and since one may again assume that the total circulation

in the fluid is always zero, this becomes

I+ ((JQ)IFT I)zadf -l—ﬁz)&f =0 (u2

Now suppose, for example, that the airfoil is
moving with constant veloecity and at a constant angle of
attack; i.e., that r; is constant, It is interesting to
investigate the possibility of a wake effect which would
produce changes of the total circulation while (; reme.ins
constant, It is sufficient to consider the case of
r; = 0, since the results can be superimposed upon a
constant quasi=-steady circulation. It will also be assumed

that X(§.) can be expressed in the form
«(t-EU)
Y(§) = % e | (113)
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where o may be complex, This form includes the various
possibilities of a steady oscillation, a decreasing
oscillation, and an exponential subsideﬁce for the
fm}ction ¥ (§) These would indicate a steady oscil-
lation, an increasing oscillation, or a divergence,
respectively, as the behavior of the tobtal circulation

about the airfoil. Then, with r‘o =

N / uf[(?f_z.. df +ge / LG .

If ¢ > 0, this may be simplified according to the results

(112) becomes

of equations (29) to (31); i.e., L
~a/U ~-a@ /U
)[:Ko("’)H(( U J+%e =0

—a/ o
)[K:(%) ++(|(%)J+(|‘)\)g‘ U=, 0 (115)

This provides a relation between the lift-slope parameter,
N, and the exponent a, It has been determined that (115)
cannot be satisfied for >\<O for any purely imaginary

values of ao. It is satisfied, however, for o purely real,

- 78 =



For example,:

X = -1,49 = o/y 0.10

X - -0.89 <« a/U = 0.50

>\=. -0,56 < a/U

1,00
This means that the ﬁegative 1ift slope results in a
divergent increase of the total circulation,

The mechanism which produces this behavior is
easily visualized. The condition A< 0 means that the
dovmward velocities induced over the wing by a counter-
clockwise wake vortex (supposing the airfoil to be .
moving from right to left in ‘our view) produce an in;-
crease of circulation about the wing., This is accompanied
by the shedding of more counter=-clockwise vortices at the
trailing edge, which induce more circulation, etec. |
Although the integrals in (114) do notrconﬁerge for
va < 0, this physical reasoning shows clearly that a
subsidence of the 1ift must also be possible, _becauge
the presence of a clockwise wake vortex would initiate
an opposite sequence of events. |

In an actual case the slope Z‘IT)\ would maintain
over only a small range of angles of attack, Tﬁus the

divergence or subsidence of circulation would progress
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only until the 1ift slope became positive. It is
possible that the rapid fluctuations of‘lift often
observed above the stall are produced by an alternate
inereasing and decreasing of the circulation over a
region of negative siqpe.

One of the questions suggested by this discussion
is that of the significance of an experimentally observed
negative 1ift slope. Since the wing is necessarily tested
in the presence. of a wake, any such effects as have been
indicated above must occur during the observations. Con-
sequently the true 1ift slope (if such exists) must be

obscured by wake effects,
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APPENDIX 74

EVALUATION OF THE INTEGRALS

"2 ol
4 (£x) (-x~

’ | [ dx a{é
L m=o: /Wﬁ‘f— I+ e B Qf/+am@

=/

where a = -;E—/.— and ‘az £ 1 for f > 1. This is

given in Ref. 10, formula 859.2., The result is

" e R .
4 EX)E T F (ar (27 (116)

f'Xc/z _ oy LE o&
Ve S EneE e )

=T 4 —

— (117)
'f"—/

ot r:[ ! ﬁ/
co. [ CX [ Xdk
}onre -—//(;-“-x)(“"n-xz = f r—‘w +, (fx)r—‘r =

£°
= ﬂ‘[—fﬂ" {?T? (118)
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n=

- e

A _
1) (=%

1 _
.
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APPENDIX #2

CALCULATION OF THE QUASI-STEADY QUANTITIES

Rotational Qscillat

ion (ef. page 29)

The vertical velocity, taken positive when

downvward, is given by

w(6)=2U4

/eivtm o

In Ref. 1, p. 37, the vorticiby distribution is

expressed as

I

5,(6) =

7 2 O e

a0

+ Do, Lmko

Ata B

(120)

(121)*

where the upward velocibty of the airfoil relative to

the fluid is

b R
iz ’ ALov\L:C)
e/

Equating w(8) from

X
ZEZELL A k
ke=/

e et i . G TP YO S s o G o

(120) and (122), one has

(122)

O = —4U,4,32P?W Q/MA‘Q

vt -
= ~QUA,e"" 1

20

*Here a is put = 1/2 since, in Ref. 1, © is defined by

x = 2a cos 9.
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The vorticity distribution becomes, therefore,

o ‘vt
¥.(0) = :,'FCZZ—é —RUA,e Y -?—-A%Q (123)

In order to satisfy the condition of
* tangential flow at the trailing edge (8 = 0),

X,(O) must venish; hence
v =
—‘ﬂ_—' -2 UA) e =0

. . .
and 77,-‘—277"(/4/ e’ (124)

Putting this into (123), the final expression for the

vorticity is 9
vt /- e 0
X, (8) = QUAe =

4/U/4,e Me

(125)

2. Airfoil Passing Boundary of Sharp-Edged Gust
(ef. p. 48 and Fig. 8)

In this case

Veor-1< x< Ut -1

w(e) , .
(126)

w(@) =0 for Ut - 1< x< 1

Applying (122) again, one ha.s

- 2Aul(8) 1O = ZQ4 A '49 (127)
/(-
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By Fourier's theorem,

-2 7 . .
a, = — ;F:vﬁfaz?PV1@9) /L“‘tg Au%“éég 2t
w

— ___"ﬂf__‘_/ Mé’/ul\/(g A6 (128)
o | o' (Ut-1)

Also, putting §,(0) = 0, from (121), the

total circulation is obtained:

/1: = - ;j??CLL:

fal ww
41/2//‘[‘;;,)/““

/a—u.(é /}a' 2 e (bir)a
52'/{ Z h+/ /
(where o = cos l(Ut - 1))

= ‘QV([W—OK-MO‘/

_ 2 V/i/‘- o (Ut-1) ~ \/-?Uf‘Ultlj

=2V cn"(/-ut)*ﬁ‘/f*l/zt‘j |

(129)
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APPENDIX #3
APPROXTMATE SOLUTION OF THE INTEGRAL EQUATION:

FOR THE CASE OF A SUDDEN CHANGE OF ANGLE

For the case of a sudden unit increment in
[", at the time t = O, the contribution of the wake to .

' the 1lift is, from equations (53) to (55),

Lo ()= ’/O.Ué_(a')  (150)

where E-E(a-) = fﬂ(s) (é{} . | (131),

q
]

Ut
1+0 - f

and ,,L(s is the solution of the integral equation : ‘
g? + / |
/:“(S) s (152)

Equation (131) can be written in the form

§(¢)———/ﬂ”{@ \/: -
PE[rOfE A e

by the use of the relation (132).

0
"

It
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Now it is permissible to differentiate with
respect to @ wunder the integral sign in the second term

of (133) since this integral is not improper®. There-
| s / (-7
g) = -L ( -
, [E+1 /f‘
___ﬁ(,(S)/ E-/ 4/ (§+/)3/2

I
= _——_/,:4(3) £ /JS-—-/ &,);/z’[ (134)

where (132) is again applied in the last step. Differen-

fore

1

tiating agein,

$ (e)= f/m)/r,__ (F+1)* |
2 (s / 3(5-/
8/ fl [mf)ri-‘ - (f*/)s"’j? 4
| [E41 £-/ @Z“
J /L((S)/ E__ _2 f././ (f_f_/JZ/).

/ L g+ _ L [E/ §-/ 3(F-/
‘Eﬁ“)/# &7 (57 =2 (e (ﬁ/)"’jaﬂ
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= /e /‘;(5)/’—‘415‘ + //a/s)(f;/za/

3 A
/u() ff—/)s/" o

(135)
From equations (133), (134), (135), noting that
Jf—-1=0when =0, 6nehas
$(0)= £
/
d'lo)= "%
$7(0) = -~
Hence, forming a Taylor's series,
=1 _J Loty ..,
E(G’) 257 _.‘_312 T+ (136)

The next term in the series (136) cen be dée
termined by a i)rocedure analogous to that used above. T;he
 result obtained is & (o) = -7/128. However, it is
preferable to adjust the coefficient of % to make the
approximate expression for i(“‘) agree with: Wagner's |
value (cf. Table 1, page 46) for & = 2. When this is
done, the expression for ér@') to be applied in the range

0 £ o £ 2 becomes that given in equation (57).
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APPENDIX #4

CALCULATION OF Lp FOR THE CASE OF A SHARP-EDGED GUST

The expression for L, in terms of the "lift
vdeficiency“ fun?;tion & and the quasi-steady circula-
tion Fo is given in“equation (56). The two ranges
of Ut are now considered separately.

a) 0£ut £

Introducing @ from (57) and rq ffom (61)
into (56), one has 4
= pU [re): gg[z//é z)]- dz
t 2 2
2 g (e N Vi G
= 2/°U V JQUI Uc? / 32
— 0.00554 (/3/£- z-) fo/‘[

or, putting Ut = s and UT =

Y _ (sr)o—
Ly =2plV /z¢ ol {ﬂ?‘}/r

3
/ (s-a) @ ~ _@_i)__cﬂr
-/(53:? o - 00053¢ (et

+

=200V ——é—+§3—aoo5s—¢s3’/_?_ do

(% -7 +o. o/c(.,zs)/‘2 = oda

+ (.;’%—0.0/6(.2 s)/'/,—.“—; “-L"["~+0~00 51[//— }137)
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Now S'G_ | 1 -
f(sfc—r do = cos (I-s)—(2s-s
[»]
s
- e
f,/{f——o—_ cdo = %ml(/-s)’“(i* 53)425'5,-2
[ ' . .
[l - Seri -9~ (+ 55+ S
/ 2"‘_’2‘_6‘ 0'—5&0’@ 27 3 »
‘ 3
j,/ 3,10-—- —‘CGO //— 35— 32-5 +/?7Sz+5-)/:>s~s’-

If these formulae are employed in (137) and terms are
collected, a result for L, is obtained which, upon
combining with Ly + Ly from (64), gives the formula
(66).

b) 2 Lyt Loo

In this regime the formula (58) is used for

$ , end r’o"(U‘l') is given by

/
o(uz)= Quv Ut for 0 < £ 2

Ly o
’QU‘C—U"'CI .

=0 for UT > 2

Hence, from equation (56), introducing again the variables

s and O as above,
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-s/. -
~L, QP(/V/ 7 e /za/r
(/4 055 s)e_o /as‘s//"" 6.185 T

2
, ~0./85 S po o8 o ,
- Z 0./85 e I F e T AT
o

(138)

The values of the integrals involved are given on page 52.
Their evaluation, with the aid of the tables of Bessel
functions in Ref. 2, leads to & result for Lé, which,
added to the constent 1ift L, = 27 pUV, gives the result

stated in (67).
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APPENDIX #5
CALCULATION OF LIFT AND MOMENT FOR

PERIODIC DEFORMATIONS OF THE AIRFOIL

The generé.}]r. expression for the vertical
velocity, w(©), of any point of the airfoil is given -
in equation (41). The calculations of the lift and
moment for the cases where A, and A;, respectively,
are different from zero, all other A,'s be:’mé equal
to zero, are carried out in Section IV. The 1ift and
moment for higher velues of n are needed in Section IX.
The guasi~steady circulation and vorticity in each case
are determined from the relation (from Ref. 1, p. 37)

* (cf. also eq. (106), Section X of the present paper)

CG31ké; g
= lo -+ E - (139)
B/o [9/ . /<

where ~w(6) = vy = ZC‘: ?;ﬁg - (140)

and /-'o is determined by the condition B/O(O) =0 in

(139). Consider the genersal case
vt
w(8) = QA,,(/e”' eoo nO (141)

where n > 1. Combining (140) and (141),
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70?/“;&49 = -4A, Ue""tc«a n 6 A O

= -24., l/eé”él;i/w/)e-m&—/]@]

Hence

ZAnUei vt

it

-2ALUe
Ck =0 for k 74 n=1lorn+1

Putting these into (139), one has ‘
l’1 -1 )0~ ee>(n+1)08

_,_2,4(/ vl coa(m

(6)’ Wz (142)
and, applying the condition K;(O) =0,
[.=0 o (143)
The three parts of the lift; from equations
(21) and (32), are, therefore,
-p;’; x/@/weﬂ.;gaw
- _QPA U”,e_“’i://m/%-/j9 m/uu/éfcmea{@
vt
= -mpA,Uive’ ifn=2
= 0 ifn =3, 4, 5,...
Lo = 9]
Lz = 0
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The three portions of the moment, from

(25), are, similarly, -

M, __194/33/@/(%‘9— )M@&a

=-ph, Ucive® /?coo/h )@ - m[»w)@/(e@ 6 ~< )8
vt
:“g/”/)su",”e ifne=s5

= 0 if n= 2, 4, 5, 6’000

pufr/e)memga@
vk :
=ﬂ'/>f42U€ ifn=2

=] O if n = 3’ 4’ 5’000

Hence the totel lift and moment for all

values of n > 1 in equation (41) are

. ‘it
| = —7/"043 Ucret
_ 2 (vt (144)
M=mple (4, ¢y43) |
If these are combined with the 1lift and momen'b forn =0
and 1, from formulae (35), (36), (39), and (40), the total
lift and moment for the general oscillation représented-

by w(®) in (41) are seen to be

- 04 -



2 ot ft/(u——L‘Y‘) ' %
= U e ,' 4 - Ao /4/ = Ao"Az ’
Laren 2/(;(%,—74/4/5—“ (At )5 ¢ | )}w)

M = -7 Uleav{:{Ao((((%)-—A, l(o(t——l_\li)

< (5D + K () (e
— 4‘; (AI’A3) - '4‘2
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APPENDIX #6

SERIES EXPANSION oF {cosh @+ 1)(1 - cos ©)
(cosh & - cos 8)sin ©

The expression can first be'put into a

somewhat simpler form for expansion, for

lecbats J1-e8) _ /-m@ ([/ w6+/
(corha — s B)sec O toalla —er O
[-coo & At O

A B eeal o -eco B

—Cpa O = .
—L% + ZQ,HMHQ (147)

il

where, by Fourier's theorem,
AT

J B0 n O 20 :
X< 7 echa- cowO (148)
o -
By use of the substitution e® = z, this becomes
- -n
a. = - (z2-2"Xz"-2"") Lz
n" - N -
ML (e -z-7") (2

L)) dz
< A (z-efz-e % 2" (149)

where the contour C consists of a complete circuit of the
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unit eircle in the z-plane. The integrand is regular
at all points of the unit circle except z = 0 a.ndv

2z = ™%, where it has poles of order (n + 1) and (1)
respectively. Hence the value of the contour integral

is 2mi Z(Reéidues), or

a, = Mo F/z)/ + e, 7‘73)/ -« (150)
‘ 2=0 2=e '
2 n
~ 2 -
where f{;) = (2 I)/ ﬂ):) (151)
(e z-e"Y 2
The residue at the simple pole is easily
evaluated. It is an
j (Rx/ X2 -1)
fas . ffa)/aw”d  gee (2-e%) Z S
-nhd n :
= e —< (152)

The residue at z = 0 is found by expanding

f£(z) in a power series. One has

flare 2 @)~ 2 ) (- 2)”
O Y
m=o r=0

=, £

-] - -y~ (p-2m )
(reia™ ) ) g et
#.’.‘,O =0 .

m

h

]
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Since n _?_ 1, the coefficient of z"Ll in this expansion
is . -2 ‘ 7]
(n-2-2m ) & (h-2mne )
R f2)) = - Je + e
| ?:a m=o =0 . .

Putting m + 1 = q in the first summation, one has
n-1 "

(n-29)d [n-'.'lm‘/c(
Bo. f(3)],_, =~ Z; 57+ Z;— |
Z:’ m=o ‘
na -hno
=e +e - .(15%)

By substitution of (152) and (153) into (150),

the fina;l. value of a, becomes
ol

-4 v
a,=2e - (154)
This result, epplied in (147) gives the series expansion

employed in Section X, equation (96).
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APPENDIX #7

RECURRENCE FORMULA FOR THE INTEGRALS Q,

In Section X, equation (98), the integrals

Qn are deflned as .
—“’om&a( -n« o
Q. / 2z (155)

(n = l, 2, 3,..0)

Meking the substitution t = €%, this can be written in

s

the form
({-‘*flj -n-1 '
Q,= /e ” s

Now consider the integral

aé[ 22 (eet) }6& =‘e-zv/U'

or, performing the differentiation indicated,
Py 21,1 -n-/ '_«f‘[‘; (t+t7Y) _v/U
ZC'——'(OL-t ,)é —‘K7f' e ’ At = — e
) 2U .
By comparison with (156), this is seen to be

—L)’/U

% (Qﬂ-l - Qn.” ) Q (157)

which is the same recurrence formule as equation (100) in

Section X.
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FIGURE 2

CONFORMAL REPRESENTATICN OF THE AIRFOIL AND A WAKE VORTEX
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FIGURE 3
VORTICITY DISTRIBUTIONS INDUCED BY A WAKE VORTEX
AT VARIOUS DISTANCES FROM TEE MIDPOINT OF THE ATRFOIL
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FIGURE 4

AUXTILIARY DIAGRAM USED IN THE CALCULATION OF TEE

TIME DERIVATIVES OF INTEGRALS OVER THE WAKE

- 105 =



FIGURE o

TYPICAL VECTOR DIAGRAN FCR THE LIFT OF AN OSCILLATING AIRFOIL
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FICURE 6
VECTOR DIAGRAMS FCR THE LIFT AND MOLENT OF
CSCILLATING AIRFCILS, AS FUUCTICNS OF TEE REDUCED FREQUENCY.
Ly and ¥, are the respective quasi-steady values.
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FIGURE 7

THE LIFT ON AN AIRFOIL FOLLOWING A SUDDEN
CHANGE OF ITS ANGLE OF ATTACK
(Airfoil chord = c¢)




FIGURE &

THE ANALOGY BETWEEY AN ATRFOIL ENTERING A

SHARP-EDCED GUST AWD A& BROKEN-LINE ATRFOIL
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FIGURE 9

THE LIFT OH AN ATIRFOIL DURING AWD PCLLOWING
ITS ENTRANCE INTC A SHARP-EDGED GUST
(Airfoil cnord c)
The solid curve is obtained by the method of Section VII; the dotted curve by the method of Section IX.
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FIGURE 10

THE LIFT ON AN AIRFOIL DURING AND FOLLOWING ITS ENTRANCE INTO
4 GRADED GUST, FOR TWO VALUES OF b, THE WIDTH OF THE MIXING REGION

(Airfoil chord = c¢)
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FIGURE 11

VECTOR DIAGRAM FOR THE LIFT ON AN AIRFOIL FLYING TEROUGE A SERIES
OF SINUSOIDAL GUSTS, AS A FUNCTION OF TIE REDUCED FREQUENCY.
Ly, is the corresponding quasi=-steady lift.

(Airfoil chord = ¢, wave length of gusts = L, V= 2T U/ Ly »

thus Y¢/2U0 = MTe/L) ’
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