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ABSTRACT

The theory of the design of instruments suitable for the measure-
ment of the acceleration-time history of a transient motion is considered.
It is assumed that the primary purpose of the acceleration-time record
is the calculation of structural response. As a criterion of instrument
behavior,_it is proposed that the correct reproduction of the response
spectrum of the transient motion be adopted. The application of this re-
sponse spectrum criterion to some selected acceleration pulses indicates
that the optimum instrument parameters for & transient measurement are
essentially the same as for the measurement of periodic motions.

A general theory for the multiple degree of freedom seismic acceler-
ometer characteristics is established. The particular case of a two de-
gree of freedom accelerometer is studied and it is shown that the sensi-
tivity to acceleration can be increased to about five times that of a
gsingle degree of freedom instrument having the same useful frequency
range.

An instrument which can be used to obtain structural response infor-
mation directly, without the necessity of an acceleration-time recording
is studied. This instrument, the reed gage, gives directly information
concerning the transient response of a single degree of freedom systenm
or of individual modes of a complex structure. The total response of a
complex structure can be determined from reed gage information by the
superposition of the maximum responses in the individual modes. An analy-
sis is made of the errors in total response inherent in this superposition
process. It is found that in wmany practical problems the distribution of
mode frequencies and the form of the excitation 1s such that the total

error due to superposition is not a significant factor in the problem.



FPART

ONE
I.
1T.
ITI.
Iv.

TWO
I.
iI.
I1T.

TABLE OF CONTENTS

TITLE

General Introduction

Introduction, Part One

Steady-State Characteristics of the
Single Degree of Freedom Acceler-
ometer

Optimum Characteristics for Transient
Measurements

Response Spectrum Criterion for Qualifi-
cation of Accelerometer Design

Multiple Degree of Freedom Accelerometer
A, Static Sensitivity

B. Useful Frequency Range
Summary and Conclusions, Part One
Introduction, Part Two
Response Spectrum from Reed Gage Data

Structural Response Based on Spectrum
Data

Error Investigation for Half-Sine Pulse
of Acceleration

Summary and Conclusions, Part Two

References

Appendix I

Appendix II

Nomeneclature

PAGE

12
1k

26
28
38

50
52

54
57

60

71
13
™

78



-1 -

GENERAL INTRODUCTION

Transient motions have been measured and studied for many years.

The measurements have been made with various forms of instrumentation (1)
and have been motivated by varicus objectives. These notions arise from
such phenomena as earthquakes, explosions, collisions, ard operation cf
machinery.

Any instrumentation system will involve, in addition to the motion
sensing instrument, a complete system of amplification, transmission, and
recording of the information. The specific choice of the system in any
particular application depends on many factors. These are concerned with
the accuracy of the result and the practicability of the entire process.
This thesis will be concerned with the wmotion sensing instrument itself.

An important reason for measuring transient motions or forces is
that from such measurements, calculations of structural response can be
made. TIn terms of the form of the recorded inforwation, there are two
types of instrumentation systems that are useful for response analysis.
The first of these types attempts to record the true time history of the
excitation. This measured excitation 1s then applied to the structure
as a forcing function either by a computational process or by electric
analog simulation. An instrumentation system of the second type records
structural response information directly. The first type is more frequent-
ly used, but there has receﬁtly been interest in the more direct measure-
ment of system response afforded by the second type.

The first part of this thesis will be concerned with vibration pick-
ups of the seismic type. Such vibration pickups consist of a mechanical

seismic system and a transducer which converts the motion of the seismic
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mass re;ative fo the instrument case into a signal which can be recorded.
There are two distinct frequency ranges of operation of the seismic pick-
up. For frequencies high in comparison to the natural frequency, the
piékup operates in the vibromefer or amplitude measuring range. TFor
frequencies low compared to the natural frequency, operation is in the
accelerometer or acceleration measuring range.

The accelerometer is often the type of instrument used under field
conditions. This 1s due in part to the great usefulness of the data in
the form of load information. An additional advantage is that, because
of its aigh frequency, the accelerometer can be fabricated in compact
form of high mechanical strength. In accelerometers, viscous damping is
intentionally introduced to increase the useful frequency range of oper-
ation. This is feasible for all except the very high frequency instru-
ments (such as, for example, the piezoelectric type), for which adequate
damping is difficult to attain.

Specifically, Part One of this thesis will treat the design of the
dawmped mechanical spring-mass system as an accelerometer. The.basis of
the treatment will be the need for a recorded acceleration-time history,
which, when applied as an excitation to structures, will have an effect
equivalent to that of the original excitation.

The seismic pickup, in the past, has been intentionally designed as
a single degree of freedom system. The first consideration in this the-
sis will be a determination of the optimum damping of a single degree of
freedom accelerometer for transient measurements. It will be indicated
that the steady-state characteristics are a complete description of the
response of a linear system to transient as well as periodic motions.

Hence it will be possible to describe the operation of a transient
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meesuring accelerometer in terms of its steady-state characteristics.

After the optimum-conditions for a single degree of freedom system
have been established, a multi-degree of freedom seismic system will be
investigated for use as an improved accelerometer. It will be shown
that the pickup sensitivity can be significantly increased over that of
a single degree of freedom instrument having the same useful frequency
range.

in Part Two of this thesis the second general class of instruments
will be considered. It is assumed that the prime reason for making the
measurement is to obtain a forcing function from which structural re-
sponses can be calculated. One way ask if it is possible to record infor-
mation concerning structural response without the intermediate step of
recording the excitation itself. From this point of view the instrument
should consist of a simple mechanical model of the structure. This is
most completely accomplished by a relatively new instrument known as the
reed gage (2). In this instrument the peak responses of essentially
single degree of freedom structures called reeds are mechanicaily recorded*.
These peak motions are proporticnal to the peak normal mode responses of
an actual structure. Failures due to transient excitation are normslly
not of a fatigue type, and hence the interest in such a problem is in
peak structural response. This makes the reed gage useful even though
the information derived from it is not complete.

The advantages of the reed gage as a rugged, self-contained, peak-

Peak reading devices may also be considered to be instruments which
give response information directly. To the extent that they are single
degree of freedom linear mechanical systems, they actually serve the
same purpose as does a single reed. These devices are usually intended
to have a natural frequency high enough sc that they respond in a static
manner to the excitation. The peak instrument response is then pro-
portional to the peak value of the measured acceleration.
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reading device have been-gained at the expense of lost time information.
The relative times of occurrence of the peak reed responses are not known.
For this reason, answers from reed gage data for other than single mode
responses are necessarlly approximate. As an example of the magnitude

of the error which might be introduced by the lack of tiwme data, an analy-

sis is carried out for a typical single pulse shock.
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' Part One
INTRODUCTION

The design considerations to be treated below are applicable to any
instrument governed by a second order linear differential equation with
constant coefficients operating in the "accelerometer" frequency range.
The pfessufe pickup and the galvanometer are examples, in addition to
the fibration pickup, which is the primary consideration in this part of
the thesis.

In general, the response of a linear system to an arbitrary excitation
has a different shape than does the excitation. However, there exists
one unique excitation, namely sinusoidal, for which the shape is not
changed and only two parameters are required to express the relation of
steady-state output to input. The response is s sine wave differing from
the input only in amplitude and phase. These alterations give rise to
the amplitude and phase shift characteristics normally referred to as the
steady-state characteristics*.

The steady-state characteristics of an accelerometer depart from the
ideal at frequencies above a certain fraction of the instrument natural
frequency. The sensitivity of the instrument (mechanical motion per unit
acceleration) is inversely proportional to the natural fr;huency squared.
Hence as one increases the instrument natural frequency, it becomes capa-
ble of recording higher frequency motions, but its sensitivity rapidly de-
creases and the transducer becomes incapable of producing signals large

enough for accurate measurement. Thus in general one designs the instrument

*
Various synonyms for the steady-state characteristics in the termi-

nology of the electrical engineer are the filter characteristics,
admittance, and transfer function of a linear network.
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to be useful to as high a frequency as is consistent with the desired
signal level,

| The characteristics required of an accelerometer to measure periodic
motions are well understood. For the single degree of freedom instrument,
the steady-state characteristics have been derived and plotted in standard
texts on vibrations. A more complete discussion is given by Weiss (3)
and Draper, McKay; and Lees (4). Dawping in the range of 60 to 7O percent
of critical is found to result in an instrument whose characteristics de-
part least from the ideal (within reasonable engineering accuracy) over
the largest frequency range. The Fourier components of a measured peri-
odic motion lying in the useful frequency range of the instrument are repro-
duced without significant distortion.

The accelerometer design required for the measurement of a transient
acceleration, however, is not so well understood. Through a limiting
procedure of the periodic case, it can readily be shown that a transient
notion can be represented by a continuous spectrum of harmonic components
(5, pg. 388; 6, pg. 44k4). This consideration leads to a critérion of
instrument design which requires that a significant portion of the har-
monic content of a transient lies in the useful frequency range of the
instrument. This 1s clearly a different criterion than one which requires that
a specific parameter of the motion be recorded accurately. In the past,
the peak value criterion has been used. The reascn for this choice of
criterion is quite apparent. It is the most susceptible to theoretical
treatment. The error in the reproduction of the peak value of single
pulses of acceleration has been determined as a function of the instru-
ment damping and the ratio of instrument natural period and pulse duration.

The results of such investigations indicate that a very wide range of
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damping is satisfactory. No attempt has been ma@e to generalize the
results to more complicated transients. It will be pointed out below
that the peak value criterion is not generally useful if the measurewment
is to be used as a forcing function, and a different criterion for this
purpose will 6e proposed.

Once the optimum design for the single degree of freedom system has
been obtained, it is natural to ask if further improvement can be made
by tﬁe use of a more complicated seismic systen. Therefore, a multiple
degree of freedom system will be treated with the purpose of optimizing
the steady-state characteristics for use as an accelerometer. With the
resulting increase in the number of instrument parameters at our disposal,
it is expected that an improvement can‘be made. It’then becomes a matter

of balancing the possible improvements and the practicality of the design.
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L. STEADY-STATE CHARACTERISTICS OF THE SINGLE DEGREE
OF FREEDOM ACCELEROMETER

In this section the performance of the single degree of freedom ac-
celerometer is analyzed. The analysis is a summary of the steady-state
response theory which is included to serve as a basgis for the extension
to transient excitation analysis. It will also serve to establish a no-
tatiog and a technique that will be used to analyze the multiple degree
of freedom accelerometer.

The single degree of freedom seismic system is shown in figure 1.

Resulting from a frame motion y(t) is the absolute motion of the mass X

L4 LL and the relative motion #Z. The me-
y(t)
— Y chanical output is proportional to = .
T The system parameters are the mass
kg L= C
z y X .
™, the linear spring constant K,
X
m and the viscous damping coefficient
C . The differential equation of
motion is
Figure 1. Single Degree mX + c(x~-y)+ k(x-y) =0.

of Freedom Seismic System
Substituting the quantity #Z=x- Y o

we have
mE+CZ+kz = —-my
or
Z+2gpE+pz=-y, (1)
where

e = c/2VKm' , fraction of critical damping

P =Vk/m , natural frequency.
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Thus the response is the same as if the base were fixed and the mass
were excited by an acceleration -y or a force -my. If y(t) =Asin wt,

the steady-state solution may be written in the form

-ZA- = G gip [wt - cp(w)] ) (2)

~ where

2 -2
6w = {[I-—(wlp)z]a +[ze w/P]}

_ - 2pw/p
P = tan e

A plot of G(w) versus w/p (fig. 2) is cowmonly referred to as the
amplitude characteristic; ¢ (w)) versus w/P (fig. 3) is the phase
shift characteristic. These two characteristics completely define the
steady-state response to harmonic excitation.

For distortion-free superposition of any harmonic components of an
input function, the amplitude characteristic must have a constant ordi-
nate and the phase shift characteristic must be linear over the frequency
range in guestion. To see this mcre clearly let us consider a periodic
excitation whick may be considered to be a superposition of a series of
harmonic waves or Fourier components. The amplitude and phase shift
effects brought about by the accelerometer on each component in the peri-
odic excitation to be measured can be stated wmathematically as follows:
From the input acceleration component Ai_s'mw{t results the output rela-

tive displacement component
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FIGURE 2. Single Degree of Freedom Amplitude Charsascteristic.
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FIGURE 3. Single Degree of Freedom Phase Shift Characteristic.
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where

w; = frequency of component under consideration
l\¢:= peak acceleration of the w component
Eigfgf5= peak relative amplitude of accelerometer mass due to Aj

PZ

¢(0h)= phase lag between the response and input.

The quantity 4)((»;,) / W represents the time lag of the 'Lth com-
ponent through the accelerometer. Unless this quantity has a value inde-
pendent of L, each of the components will be shifted in time by a differ-
ent amount and their resultant will be a distorted version of the input
wave form. Thus if ¢(uu)/lul = to in a given frequency range, each
input component in this range will be delayed t., seconds by the acceler-
ometer. The combination of flat amplitude characteristic and linear phase
shift will result in undistorted accelerometer response. The instrument
only operates without distortion where both conditions are satisfied.

Figures 2 and 3 show that the characteristics in the range 8 = 0.6
to 0.7 provide a large useful range. For P = 0.707 the second deriva-
tive of the amplitude characteristic is zero at zero frequency, thus giv-
ing the "flattest"” curve*. The phase shift for @ = 0.707 is very
nearly linear. A little less damping produces a slight hump in the ampli-
tude characteristic giving a somewhat longer useful amplitude range if a

few percent error is tolerated. The phase shift is not quite as linear

The odd derivatives are all zero at zero frequency.
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as for € = 0.707, but is still satisfactory. Therefore, for the
largest useful range with respect to the natural frequency, a single de-
gree of freedom seismic accelerometer should be damped in the range

@ = 0.6 to 0.7.

IT. OPTIMUM CHARACTERISTICS FOR TRANSIENT MEASUREMENTS

It is not obvious that the steady-state characteristics defined
above have direct quantitative application to the measurement of transi-
ent accelerations. If a sufficiently large range of the frequency spec-
trum of the transient lies in the range of ideal steady-state character-
istics, the output will closely duplicate the input. This can always be
accomplished by using a sufficiently high natural frequency instrument.
Two problems then arise. The first is how to build a very high frequency
single degree of freedom system with sufficient damping. The second is
to find a transducer with sufficient sensitivity. The mechanical system
should be designed to alleviate these difficulties.

Mechanically the problem is to deterwmine, given an accelercmeter
natural frequency and hence a sensitivity, what value of damping will
give the "optimum" response. It is apparent that the definition of
"optimum" might affect the result. For some definitions, the flat ampli-
tude and linear phase shift.characteristics are not the most satisfactory.
As a matter of fact, the result depends on the particular transient chosen
for study, as well as the criterion for optimum response.

Quantitative treatments of accelerometer design for transients have
all been based on the reproducibility of the peak value of the transient

(3, 7, 8). This has been the sole criterion for satisfactory response.
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Single spock pulseé of the half-siﬁe, triangular, and square types have
been treated. The results of these studies have not been generalized
to produce design criteris for the measurement of wore complex transient
acéelerations. The conclusion.reached was: for five percent accuracy
in the measurement of the peak value of acceleration pulses having the
general character of triangular or sinusoidal pulses, the natural period
of the accelerometer must be less than 1/3 of the pulse duration and the
instfument damping should be 40 to 7O percent of the critical value (7).
The questionable usefulness of the peak value criterion and the ina-
bility to generalize the results suggest a closer look at the problem. As a
first step, a more useful criterion for satisfactory response is necessary.
Given a tolerable error, each of the foliowing criteria (in order of
decreasing severity on the accelerometer design) is reasonable, depending
on the use to which the measurement is to be put:
1. Undistorted reproduction of transient in both magnitude
and time;
2. Undistorted reproduction in wmagnitude, allowing time delay
due to instrument phase lag;
3. Response spectrum* of accelerometer output to be an undis-
torted version of the response spectrum of the transient;
4., Magnitude of peak acceleroumeter response to equal peak
value of transient;
5. Accurate reproduction of the area under the accelerstion-

time history (velocity change for impulsive loading).
»

The response spectrum of an acceleration-time history gives the re-
lationship between some maximum response parameter of a single degree
of freedom system, and the natural frequency of the system. In this
discussion the ordinate is an equivalent static acceleration, which is
that value of acceleration statically applied to deflect the system
to the peak dynamic displacement.
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Criterion 3 is suggested as the most useful one, in view of the
very common use of transient measurements to calculate the response of
structures to the excitation. If this be the case the peak value cri-
terion 4, the only one considered previously, ignores all those systems
whose natural frequencies lie outside the static region of the response
spectrum (where the peak value is of prime importance). Actually the
last two criteria are included as special cases of the third one. The
static portion of the response spectrum is a function of the magnitude
of the peak excitation, the constant slope portion for low frequency
systems i1s a measure of the area under the acceleration-time history.
Hence a study of criterion 3 will also give results for criteria L and
5.

In conclusion, for those cases where the transient measurement is
required in order to predict the peak response of single degree of free-
dom systems (or tﬁose systems for which the single degree of freedom ap-
proximation is valid (9)), the response spectrum approach for qualifying
the acceptabllity of the measurement is certainly the most logical one.
Also, insofar as the response spectrum values can be applied to normal
mode responses in multi-degree of freedom structures, this criterion is

a useful one.

I1I. RESPONSE SPECTRUM CRITERION FOR QUALIFICATTION
OF ACCELEROMETER DESIGN
Instead of. using the entire response spectrum in the qualification of ac-
celerometer measurements, it is found that three principal parameters
from the response spectrum of an acceleration pulse determine its essen-

tial features. These are represented by the symbols A, B, and C
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in figure L.

Equivalent
Static
Acceleration -
5 T
c l A
. _1
Pulse Duration CC/T)

Response System Period

Figure 4. Response Spectrum for Single Pulse of Acceleration

This is the type of spectrum obtained for acceleration pulses not con-
taining infinite rates of acceleration (10). The value A is the peak
acceleration in the transient; B is the peak of the spectrum; C is the
slope at ¢/T equals zero.

To apply this criterion an electric analog was first used to obtain
the accelerometer response to an input function*. The input function
and the response were then spectrum snalyzed (1l1). From these spectra
the ratios of the quantities shown in figure 4 for the input and response
were plotted. This was done as a funetion of ¥/T for L0, 60, 70 and 100
percent of critical damping in the accelerometer for the half-sine and
the triangular acceleration pulse. The results are shown in figures 5 -
10. The subscripts v and i refer to the accelerometer response and in-
put respectively.

For the curves of A./A. (figs. 5, 5) a number of interesting obser-
vations may be made. In the first place, the results of Levy and Kroll (T7)
may be plotted on these curves. These are tﬁe points denoted by X's

obtained by numerical integration for "F/WE values of 0.2, 0.3, and 1.0

See Appendix I,
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at 40, 70, and 100 percent of critical damping. The correspondence to
the analdg results is seen to be reasonably good. An interesting point
‘1s to notice the position of the points given by Levy and Kroll for the
40 percent damping with the triangular input. Their calculations were
for points on either side of a hump in the curve and hence indicated a
flatter frequency response than seems to exist.

The case of the half sine pulse shows a behavior of the F\rﬁAL
curves similar in appearance to the steady-state amplitude character-
isties. The TO percent dawping curve has the longest flat range, to
about O.8'T/‘E. The triangular input shows a different behavior with
none of the damping values chosen giving a large flat region. Here is
seen a reason for the statement made earlier concerning the fact that the
conclusions as to acceptability of a measurement may differ for different
transients. In the case of the triangular output, for example, 50 per~
cent damping appears best for the /\T/V\; parameter. Qualitatively, this
is due to the fact that some of the low frequency content is amplified,
while the high frequency content is attenuated by the instrumeﬁt, result-
ing in a good value of peak response. This is illustrated by one of the
figures in Levy and Kroll's paper. In this paper figure 6, curve (2)
shows an accurate peak value, but the high freguency content in the input
does not appear in the output which has a nicely rounded peak. Thus, de-
pending on the harmonic content of the transient, different values of
accelerometer damping may prove best, if the peak value 1s the sole cri-
terion.

The set of curves for B,/B:i (figs. 7, 8) shows a more consistent
behavior with regard to damping. 3Bcth inputé give a large rise (25 per-

cent for triangle, 30 percent for half sine) in the value of Br/B'L at
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40 percent damping between T/7C values of 1.0 and 1.4. The reason for
this behavior is réadily apparent when viewing the accelerometer response.
‘At 40 percent damping, a decaying tail involving the damped natural
frequency of the accelerometer appears. A spectrum analysis of such a
response shows that systems having a natural frequency near the frequency
in the tail are somewhat resonated. This then clearly indicates one rea-
son why such a low value of damping is undesirable. Harmonic content
near the accelerometer damped natural frequency is introduced into the
response with sufficient magnitude to give highly erroneous results for

a large range of response system periods. With 60 percent or more damp-
ing no trouble of this nature arises.

Cne technique of record improvement wmenticned by Levy and Kroll in-
volves fairing a line through oscillations in the record occurring near
the accelerometer natural freguency. This requires that some information
about the shape of the transient be known. Otherwise one cannot be sure
that the slight wiggles are not actually in the input function. Secondly,
it may be that for more complicated transients, these wiggles are complete-
ly indistinguishable from other features in the motion. Only in the case
of a relatively high frequency accelerometer with almost no damping,
wherein the response clearly oscillates about the input function, can
this technique be generally employed. Hence for damping as high as 40
percent, one must expect not to be able to rid the record of oscillation
at the damped natural frequency of the accelerometer. Consequently the
record vill give erroneous results of the type shown in figures 7 and 8.

Figures G and 10 showing the reproducibility of the impulsive charac-
ter of_the transient have considerable practical importance. This pa-

rameter is much less sensitive to damping than is A or B . Good results
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are obtained over a large reéponse period range. -Therefore, if only the
impulsivé nature of the transient is desired, a much lower frequency ac-
‘celerometer is required than any other criterion might indicate. The
curves of Cnﬂsi are limited to the T/T values shown by the lowest fre-
gquency obtainable on the spectrum analyzer.

The purpose of studying these simple pulses is to point out the impli-
cations of the stétements of other investigators concerning these cases
It ié also important to generalize the results in order for them to be
applicable to more complex transients. The only conclusion that can be
drawvn from the data presented is that if the reproducibility of the re-
sponse spectrum ig the criterion for satisfactory accelerometer response,
the instrument damping must be such as to give flat amplitude and linear
phase shift chéracteristics.

For the single degree of freedom accelerometer, damping at T0.7 per-
cent of critical results in an amplitude characteristic having a zero
second derivative at zero frequency. Since the amplitude characteristics
always have a zero slope initially, this value of damping prodﬁces the
"flattest" amplitude characteristic. Zero or 86.6 percent damping re-
sults in a zero second derivative in the phase shift characteristic at
zero frequency. These values of damping produce the most linear phase
shift characteristic. If an estimate is made of the relative importance
of maintaining the ideal conditions in the amplitude. and phase shift

characteristics, it is found that the instrument accuracy is more dependent

*
The undamped accelerometer (such as the piezoelectric type) causes

difficulty because of rescnance of harmonics in the neighborhood of
the natural frequency. This effect is minimized if eilther the input
containg no harmonic content or the output is attenuated in this fre-
quency range. This latter is accomplished by use of a low-pass filter
if the accelerometer signal is electrical in nature.
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on the amplitude characteristic. This can be seen by observing that the
phase shift characteristic departs from its initial slope at 70.7 percent
damping by only about 2.5 degrees at half the natural frequency. This
corresponds to a time shift betﬁeen & harmonic of low frequency and a

" harmonic at half the accelerometer.natural frequeney of 1.4 percent of
the period of the higher freguency harmonic. The magnitude of the error
thus introduced in the phase shift is & small price to pay for the useful
frequéncy range gained in the amplitude characteristic (see fig. 2).

If we consider a complex transient as being composed of pulses, the
sharpest pulse {highest important frequency components) will determine
the natural frequency required for the accelerometer. If this pulse is
satisfactorily reproduced, a significant portion of its harmonic content
must have been in the useful range of the accelerometer. The other pulses,
having less high frequency content, will have been reproduced even more
accurately. ©Since the phase shift characteristic is linear in the useful
range, no significant phase distortion will have been introduced between
the pulses. Figures 5 to 10 show that the accelerometer period‘must te
less than about C.4 of the period of the sharpest pulse to cbtain at least
5 percent accuracy in the principal features of the response spectrum of
the measured transient.

As a point of interest it is noted that the requirement that there
be no phase distortion between the pulses in the transient is not neces-
sary for reproducing its impulsive nature. This is true since only the
area under the acceleration-time history and not the specific shape is
required. Therefore, the curves of (:r/CL are only dependent on the
amplitgde characteristic,and 60 to 70 percent of critical damping must

be the most desirable range.
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In generai, one does not know £he ghape of the transient to be mea-
gsured. Hernce one cannct know its harmonic content. Therefore it appears
evident that any attempt which wakes use of other than the essentially
ideél steady-state accelerometér hharacteristics cannot have general
gpplicability. The only general approach must attempt to reproduce a
certain portion of the harmonic content of the transient with a small
error. The extent of this range is determined by the use to which the
measurement is to be put.

As previously discussed, 1f the measurement is to be used to predict
the response of any structure, the entire response spectrum must be repro-
duced. The natural frequency of the accelerometer required is thus de-
termined by the harmonic content in the transient and the accuracy desired.
However, there is another important case that must be considered. It may
be that the measurement is made for the response analysis of a specific
structure. Harmonic content in any excitation in the frequency range
where the amplitude characteristic of the structure is extremely small
will not have a significant contribution to the structural response. For
this situation the accelerometer natural frequency may be determined by
the structure itself, since only harmonic content in the transient to
which the structure will respond with significant amplitude need be re-
corded. In conclusion, either the harmonic content of the transient or
the characteristics of the structure on which the transient will act may
determine the required range of the accelerometer. The consideration

which gives the smaller range would, of course, be the determining factor.
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IV. MULTIPLE DEGREE OF FREEDOM ACCELEROMETER

It has been deterﬁined thatkthe optimum steady-state accelerometer
éharacteristics for transient ag well as periodic motions are the flat
amplitude and linear phase shift characteristics. This will insure that
the motion will be reproduced sufficiently well to allow accurate determi-
nation of peak structural response from the recorded accelerstion-time
history. Having the optimum eonditions for a single degree of freedom
system, it is now logical to consider a more complex system to see if
improvement in overall characteristics can be attained.

Taylor (12) and Manildi (13) have treated a specific example of a
two degree of freedom system for use as an improved accelerometer. They
considered an ordinary simple seismic system, spring coupled to s rotary
mass. In both treatments only the rotary mass was damped and the instru-
ment output was proportional to the angular position of the rotary mass.

Teylor's analysis aimed at increasing the rate of cutoff of the ampli-
tude characteristic of the system to increase its effectiveness as low-
pass filter. He considered both the amplitude and phase response of the
system, varying the parameters until the best design was obtained.

Manildi showed three types of improvement over the cmventional single
degree of freedom design. The first was an increase of the "flat response”
range with respect to the natural frequency of the non-rotary spring-mass
system in the two degree of freedom accelerometer. Secondly the rate of
cutoff was increased. Finally, the system was shown tc be a better filter
at high frequencies. It was indicated that the amplitude characteristic
falls off as the fourth power of frequency of harmonic excitation, instead

of the second power as it does for the single degree of freedom instrument.
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These studies show that the additional parameters of a multiple degree
of freedom system can be used to improve its characteristics as an ac-
celercmeter.

These previous studies coﬁfined themselves to a particular combi-~
nation of a linear and a rotary element. It is the object of the present
worx to investigate a more general theory of the multiple degree of free-
dom system as an accelerometer. The single degree of freedom system has
a seﬁsitivity of Glw)/p? (displacement per unit acceleration),
where Q(w) = 1 at zero frequency. As shown above, the static sensitivi-
ty can be maintained over a large frequency range by the use of proper
aamping. In the multiple degree of freedom case P(ua)/ Pf shall be
used for the acceleration sensitivity. The static sensitivity is then
o /P. 2 , where [, is I'(0) and P, 1s the first natural frequency.
In the multiple degree of freedom case, as in the single degree of free-
dom system, damping will be introduced to extend the static sensitivity
to as large a range as possible.

To gain an insight into the general features of the problem, an
electric analog system of a two mass mechanical oscillator was set up and
the damping coeffiéients were adjusted to maximize the region of flat re-
sponse. It was experimentally observed that the obtainable length of the
flat smplitude characteristic was principally determined by the first
natural frequency. Thus a logical approach is to first maximize the
static sensitivity /o , treating an undamped system, and then to intro-
duce damping into the system to maximize the region of flat amplitude and
linear phase shift. This approach limits the nuwber of parameters that

ruust be considered at one time.



A. STATIC SENSITIVITY

Consider the spring-mass system
shown in figure 11. The absolute dis-
placement of the " mess is denoted

by Xi. Applying Newton's Second Law

of Motion, the equations of motion for

the masses are Figure 11. Multi-Degree of

Freedom Seismic System.

m X, + Ko (X,-y) + K (x,-%2) = O
"‘“2"62 + Ka{Xz-%) + kaz(xz-x3) = O
miXi + Kii(xi-xia) + Kiin (xi-xw) = 0
MaXn + Kpoyn (Xn=%Xn2) = O

If the relative displacements between the masses and the base are denoted

by &, so that Z{ = Xi-Y , the equations become

m B+ K B+ kyp (2,-2,) = Ly

mzia“‘ kll(zz"z|) + kzg(iz-z3) = *Yﬂz'y.

(3)
Mz F ko i(Zio-2a) F R (- 2w 2 oy
mr\%h"- kn—l,n(zn"zn-m = ”mn.\]-
Letting vy (%) = Ysin wt , Z{ = Zisnwt is obtained under

steady-state conditiong. The following matrix equation describes this

steady-state excitation.
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This équation may be written in the abbreviated form

(K - Ml ?) {g} = (m}A,

where _
rkcn’""‘nz Ky Q 0
-kiz Ktk  -kas o
[K] = o 'k'f.z Ko vy - 0 o
| 0 o o o kn—l,?\_J
[Yn, 0 o ... 0] i.\ f“"“
Q h‘z o - O 22 ml
M |0 o mecol El=de i fmyqm
(0 0 0 .. My ZEn "

S

>3

(o )

(&)

\"™"™

(&)

:"’sz'

The characteristic equation for the determination of the natural

frequencies of the system is

W - Mw?| - o

(5)
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For cases of practical interest this determinant will have n distinct,
positive solutions 'P;Z. (v = 1, 2,...n). Hence it must be possible

to write the determinant in the equivalent form

I[K] _[M] w2| = a(wz'P\z)(‘“a"P:) oo (et P“a_).

Since the W term in the expansion of equation 5 comes from the product

of the diagonal terms, we see that & = mywn, - - - wm,. Thus

[T - IMlw?| =TT i ("= PO). (6)
In particular for w = 0O
[l = " T 2. &

=t

If this system is to be used as an accelerometer, taking the rela-
tive displacement of the nth mass (Z.) as the response quanti;by, we nust
solve for the output per unit acceleration under static conditions. We
have denoted this by [o /P‘Z which must equal E,,/A at w = 0. Solv-

ing equation 4 we have

km“'k)z "k\z o _ S A4 T
~Kie Kutk,s “Kes o g
Zn _ M _ 8
IK,"A— = lK“P_z' - o ~Kaz kz3+k‘s'~l- SR (8)
w=0 i
(o} O 0 ™M
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It will now be shown that the determinant on the right hand side of
equation & is exactly equal to the negative of the coefficient of w? in
the.ex_pansion of the characteristic equation 5. In a determinant, any
column may be added to another column without changing the value of the
determinant. If in the determinant of equation 5 each of the first n -1

columns is added to the n th column, the equation has the form

2
Ko, +kyz-mw ~ka o C e mvawta Ko,
2
- kn. K\l‘l' kl3—mlw -kl_s ... _mlwa_
T -
o 'ku kz}“"k;q ~m3wz A -, W = 0.
LN
(0] 0 (6] e -, w

It is noted that all terms in the last column contain an w?® factor ex-
cept for the Ko, term in the first row. The coefficient of the w? terr
in the expansion of this determinant by the n th column without the kg,
term is clearly seen to be equal to the negative of the right hand sige
of equation 8. It can be readily shown that the K,, term produces no w?
terms in the expansion. Thus it has been shown that —|K| I"g,/|:>|2 equals

2

the coefficient of w® in the characteristic equation.

In the expansion of the characteristic equation in the form
" .
2 2 —
ﬂ— W\-“ (UJ - PL) = O‘
L=)

1)
. (2R 21
the coefficient of w® is equal to (~1) II‘- BRaat times the sum of

11 possible products of the Piz values taken n -1 at a tiwe. Sywboli-

this coefficient is



(—-,—l)nﬂ(ﬂ|mk) -i‘(;r‘-l;' P:) for n>1\.

j‘\:s*‘:
- ou n

A special case occurs at wn = l, where this is egqual to wm, P,‘Z . For
N =2, this gives —mwm,(P*+ ) 5 for vi= 3, m . m (P porpipie PP

and so on. Equating this coefficient to ——IKlr'./P‘Z , and using equation 7

L N
P = R PP P
or
Pl Pl Pl )
R = | + — + — + - - - 4 —_ . (9
e P:‘ sz P“Z

Obviously the nth order system shown in figure 11 is not the most
general type. No springs between non-adjacent masses and no springs to
the base (except for nnl) are included. It so happens that if any of
these terms are included, negative quantities containing these spring
constants will appear in the quantity le . However it is desired to maxi-
mize o and these negative terms would decrease its value. From this
consideration the choice of the form for the system shown in figure 11 as
the optimum form of seismic system can be justified.

As an example of the form of these negative terms due to other springs,
consider the system of figure 12. Using éa for the response guantity,
the sensitivity is

ﬂz Koz

kN
R ",
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Yo
ml koz EZ
k\l
™,
Figure 12

Thus if two systems have the same set of natural frequencies, one with
the springs indicated in figure 11 and the other containing some other
springs, the type of figure 11 will have the higher static sensitivity
to acceleration.

The quantity [y is then a factor of merit for the accelerometer.
The larger its value, the more output per unit acceleration will be ob-
tained for equal first natural frequencies.' Equation 2 shows that
F'e = G(O) = 1 for the one degree of freedom system. For a two degree
of freedom gystem, the value of [ = 2 will be approached as P:—Jr P'z .
It can be shown that to make pzz/P,z have a value near one in a two

degree of freedom system, the follcwing should be true:

Kot k|1. y m2<< W\I.

A plot of how Mg and p,ff vary with the paraweter wa, fen,, which equals
kie / Koy 5 is shown in figure 13.

The results indicated by this figure can be extended to the m degree

Kot K ks w2
of freedom system. In figure 14, if we let — = —— = — = ... =
¥ g 3 . o . P
and Totvs g | , each of the k;--,i/m;. systems has the same natural

L

frequency P* » and is only negligibly affected by the systems below it.

The result is that the natural frequencies of the system taken as a whole

are close together, which gives rise to a large value of Mo (eq. 9).
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Figure 13. Static Level of Amplitude Characteristic and Natural
Frequency Ratio for Two Degree of Freecow Systeuw.
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Tapered Multi-Degree of Freedom Seismic Systen

For example with nn =

*2

P

Kot

m,

K.z

™me

2, if

- 35 -

characteristic equation becomes

solution is

g<<li,

hence

p' - (2+ 8PP 4P = 0.

pr = [+ S x(er £)*]p.

Pz ~ (1% aVé)‘D*E

(10)
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with the ‘resgult that

R | -
r*°=|+—Pta-: 2 (1-e"), <<

This same analysis could be applied to larger values of n » with the re-

sult that
lim  [o = wn , where Kot ke _
M m, 2
e~y O

A

A way of viewing this limiting value for Iy, is as follows: knowing
that a base acceleration A can be replaced by forces at the masses such
that the force on wm is m;_A , we can replace A with the loading shown
in figure 15. Now if the sum of the forces acting below any mass wm; is

negligible cowpared toc the external force wm, A | the displacement

LL02002000200 EL-Bi., = mi A
Key kl_"' ¢
m [ i A Then given that Wizl _ o*2
Kiz the displacement between any two
i bm.A adjacent masses is A/p‘a and P, = P*.
Kes
: ! These displacements add algebraically
. L L .
Kun-i,n until a value nA/p is attained for
™ L mn A the displacement between wn, and the
Figure 15. Multi-Degree base. Thus the sensitivity is |r\A/P"‘a
of Freedou Seismic System and [ is n .
In practice it is not possible to achieve the limit of I, = w since

this requires an infinite rate of taper ( € = 0). For W = 2 the rate of
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approach,to this 1iﬁit is given in figure 13. It 1s seen that a sig-
nificant gain can be obtained for a reasonable taper. For example, a
gain of 53 percent is obtained for € = 0.1. It may be of interest to
consider the effect of a taper on Iy for a distributed system. As an
example consider the case of the bending on a cantilever beam with a
constant height h, and a variable width b(x) = by (x/8)" , loaded by
a unit of acceleration (see fig. 16). The previous anslysis was made

for a system governed by a second
(¥ order differential equation, where-

as the first order beawm deflection

ANNANNNNNN
py
°

\\——E,IJa x4—J t is the solution of a fourth order
differential equation. However the

concept of using a tapered system

73

t0 bring the natural frequencies

Side
Q closer together in order to obtain
Figure 16. Tapered Cantilever greater values of My still may be

Beam. valid.

In this case FL/Faa is the static deflection per unit acceleration

at the end of the beam, where p, is the first natural frequency. The

differential equation for the bDean displacement is
d d*y (11)
Now
g(x) = pboh,(x/8)"
bo o n
Ly = === (x/8) .
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The solution for the deflection at the end is

£ 3
EhZ (ne(ne2)

y (o) = (12)
per unit acceleration.

Using the Rayleigh-Ritz or energy methed of obtaining the lowest
natural frequency (5, pg. 352), [, way be computed as y(O)F{Z . Figure
17 ié a plot of [» as a function of the parameter N, Theoretically
large values of [y could be attained for large n . However the practi-
cal limitation of an extremely thin section at the end of the beam limits
the extent to which one may go. Other effects due to the inadequacy of
the simple approach used in the calculations and the inadequacy of the
differential equation will become significant for large n. Something
between the linear tapered beam (n = 1) and the parabolic taper (n = 2)
appears guite feasible, 50 that a value of I, equal to approximately 2.5
is certainly attainable. The beam would then produce a displacement,
under a unlt static acceleration loading, of 2.5 times that of é one de-
gree of freedom system under the same loading, and having a natural

frequency equal to the lowest natural freguency of the beam.

B. USEFUL FREQUENCY RANGE

With the form of the undamped mechanical system required to maximize
the statlc acceleration sensitivity determined, damping may now be in-
serted into this system to increase the useful range of accelerometer
operaticn. From a practical aspect, the simplest design resulting in
significant improvement is desired. Hence the two degree of freedom sys-

tem shown in figure 18 will be considered.
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Figure 17. Static Level of Amplitude Characteristic
for Tapered Cantilever Beawus.
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yi8) f The equations of motion may be written in
T the form
[ kg de . »
' Lr ME +C2,+kE +atc(Z ~22)+ ek, ~2,)
L m . = -, 9
Zz, kB otc (13)
| Emia+bsc'zz+a£c('zz-z") + ek(z, -2,
m .
£ =-m, Y.
dybec
With an excitation of the form -y(%) =
Figure 18. Two Degree of A exp (iwt) , the steady-state solutions
Freedom Accelerometer. may be presented as

2, = Z, expli(wt+ ¢)],

Z;

Z, exp[i, (wt+ 4’2)]

With these substitutions the accelerometer response is

(z2+8—-13) + 12+ ot at)

Z, exp(idy)= L, aw

[a-n3) +i2gn(a+ B[+ e-rlz)+12§rl(|+ae)]- eflvi2g ,Lo;jz- ‘P:z ?
where

2 _ k < = W
Po = C 2tz M= P

The amplitude characteristic is given by Mw) = Zz (w) P,a , hence

Yo

2 2 2

ro= _._.___Mz * Na -EE- (15)
L™+ Q 2
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and the phase angle is

(16)

-1 LN —M

LM +NQ

where

M= 2+¢8—n°

N = 2gn(1+as+at)
(‘_,17.)2_ qg"’rf(o«\- brabe) —en?

2gq[0- D (+asbrabe)+ e(b-a).

Q

It is intended that a large flat region in the amplitude character-
istic be cbtained. Hence, as a first step, the relation among o, b,
and ¢ to give a zero value for dz%.f at W = O must be found. The odd
derivatives at n = 0 do not exist. This procedure gave p = 0.707 for
the single degree of freedom system. The corresponding value of p for

the two degree of freedom system is

\/2
z —
‘5* _ (2+e)[(2+e)%=1) T )

2(2+)*[(1+ a+brabg)*— 2(arbrabe)]-2(1+arac)?

For any choice of a and b , this relation yields the value of @ or ¢
resulting in an initially flat amplitude characteristic. If amplitude
characteristics corresponding to varicus combination of o, b, and p*
are plotted, one finds both longer and shorter flat ranges than one ob-
tains for the single degree of freedom case.

- In order to find those systems having superior amplitude character-
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istics, one may also set.d\'l"/clii' =0 at n =0 for =@ - The

condition for this to be true is

(2+ a)"’-{a v (2v ) - 8g*) +(arb)r(aib)e-26 (ot brab e)z]iq, (18)

The solutions of equations 17 and 18 may be given in the form of a family
of curves, Of versus b* , with the parameter € . This appears in figure
15. Any combination of a* and b* on one of these curves, with the
corresponding value of ﬁ*, results in an amplitude characteristic which

may be expressed in a Maclaurin series in n = w/P‘

»6 16 «8 @
*\ _ I O i _LJI" .
r‘("[) (o) _—6_!_——&{6 + Y d-fs .

=

e

Among the possibilities described by the curves in figure 19, those hav-
ing small values for the coefficient of vfb in the above expression will
have longer flat ranges. The values of this quantity appear in figure 19
as bracketed numbers near the points to which they correspond. | The wvalues
for O~* = 0 are seen to be small, in general, compared to the values for
the other points. Combining the notion that it is desirable from a practi-
cal viewpoint to have one damping parameter zero and the fact that one
wishes the flattest amplitude characteristic, subsequent considerations
will be confined to those points for which o¥- 0 ana b=b" .

Figures 20 and 21 are the amplitude and phase shift characteristiecs,
corresponding to the values of € in figure 19,for which o.*= 0. Posi-
tive values of the leading term in the expansion of the above series pro-
duce a hump in the curves for & = 0.1, 0.5, 1.0. This is especially

noticeable for & = 0.5. The point for & = 1l.4Lh is especially inter-



- 43 -

*1995W0JSTO00Y WOPSaL] JO 99a89(] OAf JOF SJIdjdmedsd Burdmeq

woo \LOO

9°0

G0

€0

*AT MNOTA

2°0

170

(€70 ] |

070 |

pu—

[ X(Z0°0)

I

B
(t0°0)

(co"0-)

T =3



*SI519WCIP[S0OY HODPsad JO 93I89 OM] JO0J SOTISTISNOBRIBIYD WUSPHHQSd» Q2 HaNOHIA

Ac\:av Kouanbaax,] TBIN3BN 3SITJ \ Kouenbaa, UoIIBITOXT

9°1 71 2°1 0°T

80 90 40 2°0
_ | ! _ ! | ~ |

N_L\A..:VL sTenbs e
UOT3RISTI00Y 1TUN
Jad queweovTdsi(| M

- 4h -

e —— — —

— — —— et g

%

(27070 =) 0°T =3

{(an1°0 u*n: §'0 =3

.m..

(2r€"0 =9) T°0 =3

€egn0 = q) <3

G0

o°T

().

61




- L5 -

* SI990W0I9TI00Y WOPasI] JO 99afe( OM] J04 S0T18TJI930BIVY) 3FTUS 28BUYd

E\BV Kouanbaag ToanysBN 3SITd \ Louanbaa,] uoT1BITOXA

7t 21 0T G0 90 7°0

*Tg HdNOId

91

_ | _ | !

T

0gT

(s93a89p) BeT aseyd ‘(m)



- 46 -

esting since both a® and b*'are zero. Figure 22 shows the effect of
slight changes in the parameters from @* and b‘. The sensitivity to

a change in @ is shown. It is seen that a 5 percent decrease in the

value of @ from the value @ ‘for € = 0.5 results in a maximum change
in the amplitude characteristic of about 2 percent and slight modifi-
cation to the phase shift in the region of interest. For € = 0.5 the
value of b was increased by 10 percent over b‘ and the corresponding

p* calculated. The result is only a slight modification to the character-
istics.

Let us now compare the characteristics of these two degree of free-
dom instruments with those obtainable in & single degree of freedom sys-
tem. It is seen in figure 20 that the amplitude characteristics, especi-
ally for the larger values of & , are far superior to those in figure 2.
However the phase shift characteristics are more non-linear in figure 21
in the range where the amplitude characteristic is Ilab than those in
figure 3. In order to evaluate the gain made by the use of the two degree
of freedom system, we must consider the relative importance of ﬁaintain-
ing the flat amplitude characteristic as opposed to maintaining the linear
phase shift characteristic. This can be done very simply as follows:
Consider the curve in figure 21 for & = 1.0. This is the most non-
linear in the range of flat amplitude characteristic, which in this case
exists up to about 1.4 times the first natural frequency. If the super-
position of any two harmonics in an excitation to be measured in this
range is considered, the non-linearity of the phase shift characteristic
will cause a relative shift of these harmonics by the accelerometer of .
about 20 degrees in the motion of the higher harmonic, in the worst case.

This corresponds to a relative time shift of about 5 1/2 percent of the
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period of the ﬁigher frequency harmonic. In terms of usual engineering
accuracies, deviations in linearity which are usually much smaller than
this value of 20 degrees may be ignored. Conclusions as to usable fre-
quency ranée can therefore be Eased on the amplitude characteristic alone.
Arbitrarily, the amplitude characteristic for 65 percent of critical
damping in the single degree of freedom case will be used as a reference.
Based on a total spread of the amplitude characteristic {see fig. 23) of
2.5 pércent, the usable range is 0.62 of the natural frequency. If the
damping is modified slightly for

the curves if figure 20 to obtain

Spread about the same order and type of
.____==:::::::::=*_&::::T spread (+ 1.25 to -1.25 percent

approximately), the usable ranges

shown in Table I are obtained. As
<— Usable Range

a bagis for compariscn, the sensi-

Accelerometer Response

Frequency tivity to acceleration for equal
Figure 23. Usable Range usable frequency ranges will be
of Accelerometer considered.

For a single degree of freedom accelerometer to be usable over the
same frequency range as a superior two degree of freedom instrument, its
natural frequency p' must be higher than the first natural frequency of
the two degree of freedom instrument. The sensitivity of the single de-
gree of freedom instrument is then I/WDIZ. The sensitivity of the two
degree of freedom ac_celerometer is r'o/P.a . Thus if S is defined to be
the gain in sensitivity; its value will be [ pla/ P‘a . Values of S

also appear in Table I.
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TABLE T
- Ussble Rangé P'
€ First Watural Frequency B o S
0.1 0.97 1.57 1.5333 3.8
0.5 1.27 2.05 1.250 5.3
1.0 1.35 2.18 1.146 5.4
1.1;44’ 1.25 2.02 1.102 k.5

Hence it 1s possible to increase the accelerometer sensitivity from 3.8

to 5.4 times for the same useful frequency range by use of a two degree

of freedom instrument.
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 Part One
SUMMARY AND CONCLUSIONS

Any transient can be considered as a superposition of a continuous
distribution of harmonics. The steady-state characteristics of an ac-
celerometer describe the manner in which each of these harmonics is al-
tered by the instrument. An ideal accelerometer must have an amplitude
charaéteristic which has a constant value, and a phase shift character-
istic which has a constant slope, in the frequency range in which har-
monics in the excitation exist.

The correct reproduction of the peak value 0of a transient has often
in the past been used as a measure of the accuracy of an instrument. Appli-
cation of this peak-value criterion to acceleratior pulses shows that the
"optimum" accelerometer design may not be the one whose characteristics
closely apprcximate the ideal over the largest frequency range. The peak
value criterion has merit only if the measurement is to be used to de-
termine the peak response of a structure which responds staticaily to the
excitation.

To the extent that one is interested in the peak response of single
degree of freedom structures, or the peak response of normal modes of
complex structures, the correct reproduction of the response spectrum of
the excitation is a reasonable criterion for instrument design. The re-
sponse spectrum criterion permits a quantitative evaluation of the degree
to which the accelerometer characteristics approximate the ideal.

The reguired useful accelerometer frequency range need not always
be based on the harmonic content of the excitation. The extent of this

range may be, in some cases, modified by the sensitivity to harmonics of
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particular frequencies. Harmonics to which the structure will not sig-
nificantly respond heed ﬁot be recorded.

Treatment of a multiple degree of freedom seismic system leads to
the result that significant improvement can be attained in the two degree
of freedom case. The sensitivity to acceleration can be increased to
about five times that of a single degree of freedom instrument having
the same useful fréquency range. It is shown for the systems treated
that the phase shift characteristic is not as significant as the amplitude

characteristic for determining the useful frequency range.
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Part Two
INTRODUCTION

The theoretical foundation.of the reed gage rests on the possibility
of dynamic similarity between a complex linear system and a series of
simpie systems*. For a simple structure dynamic modeling i1s accomplished
merely by employing a single degree of freedom system having the same
natural frequency and damping. A complex structure can usually be con-
sidered in terms of its normal modes, each of which responds in a manner
characterized by the mode frequency and damping. It is not always possi-
ble to consider a damped structure in this menner, but for wost cases of
practical interest, the damping is either small enough Tor the modal
analysis to be approximately correct or the damping is of a special form
for which the modal analysis is strictly applicable (14, pg. 130; 15).

The individual reeds of a reed gage should ideally be single degree
of freedom systems. In any practical situation a reed is designed so
that it responds predominantly in its first mode. The first consideration
of Part Two of this thesis will be an investigation of the means of cor-
recting the response of a reed to obtain the response of the ideal single
degree of freedom system for which the reed is a model.

If one has complete knowledge of a particular structure whose peak
response to an excitation is desired, the reeds can be constructed as
models to the normal modes of the structure. In a more typical case, how-
ever, one wishes to investigate the peak responses of various structures
to excitations. This includes an important use of reed gage information

as a basis for the design of a structure to best withstand the excitation.

The word simple implies single degree of freedom.
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In this regard it is wmore general to view the reeds, nect as dynamic models,
but as providing the data required to estéblish the character and magni-
tudé of the response spectrum of the excitation in the frequency range of
intérest.

The usefulness of the response spectrum as obtained from the reed
gage or from an acceleration-time record has only been recently appreci-
ated. This type of information has been found so useful that special
equipment has been constructed for the sole purpose of obtaining the re-
sponse spectrum of a recorded acceleration-time history (11, 16). The
response spectrum can be expressed in terms of various parameters. Dis-
placement, velocity, and acceleration in terms of absolute or relative
motions are all possibilities. The quantities which are most useful for
reed gage application are the relative displacement or absolute acceler-
ation due to prescribed base motions.

In the past there has been some uncertainty as to the quantitative
usefulness of the reed gage and its general applicability. The analysis
in this second part of the thesis will show the use of reed gage'infor—
métion to calculate an approximate peak response of a complex structure.
Such results are necessarily conservative due to the fact that the peak
responses in each of the modes are added algebraicélly to obtain the over-
all peak response, even though they do not occur at the same instant of
time. An investigation of the magnitude of the error in such a process
will be carried out for a typical form of shock excitation. The object
will be to determine the relationship between the response system parame-

ters and the errors, for cases of practical interest.
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I. RESPONSE SPECTRUM FROM REED GAGE DATA

In this section the quantities which may be calculated from reed
- gage data will be given and the manner in which the response spectrum
can be determined will be outlined. Consider the ideal simple system

in figure 2L.

y(t)

Figure 24. Reed and Ideal Simple System Configurations

Its motion is expressed by the equation

é°+ PZEO = —.); . (19)
where

PZ: k/m.

The cantilever system in figure 24 1s the basic reed configuration. It

is designed with an end mass in order to make its response in all modes
above the first insignificant compared to its response in the first mode
for_inertia loading. It is egsentially a single degree of freedom system
whose natural frequency is P, > the first mode fregquency of the canti-
lever system. If P = P (and the damping in both systems is the same),

both will respond in the same fashion. The magnitude of the response,
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however, will di:f‘fef by a constant, 2(t) = x Z,(t). This constant

is a function of the geometry of the cantilever system. Since this con-
gtant is independent of the type of excitation, it may be determined
from a static test. If § is the displacement Z per unit acceleration
y for the cantilever, 1/Pz is the correspcnding quantity for the lumped
system. The geometric factor is thus given by o = pz' 6 . With this
definition of & , all information can be referred to the response of the
lumped system.

For reed gage application, two quantities are found most useful to
express the response of the simple system. FEach may form the basis for
a response spectrum to a motion y (%) . The first type of spectrur is
formed from the extreme values of Ro . This can be termed the relative
displaceuent spectrum for acceleration loading. The second possibility
is based on the extreme values of *o , which equal —szo . These
generate an absolute acceleration response spectrum for acceleration
loading.

To use response spectrum data one would prefer some type df equiva-
lent loading rather than a resulting displacement or acceleratiocn. This
can be accomplished by defining an equivalent static acceleration./\e%(l7).
This is that value of acceleration, statically applied, which would de-
flect the system to its peak dynamic displacement. A spectrum of this
type is shown in figure 25. The solid line represents the peak motion
in an assigned positive direction; the dotted line, the peak motion
in the opposite or negative direction. Positive values are assigned to
Ae% , negative to Ag%, . This is the spectrum for a half sine pulse

of acceleration (10).
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Figure 25. Equivalent Static Acceleration Spectrum

For Half-Sine Acceleration Pulse

For example, assume a reed with a natural frequency p, having a
static sensitivity to acceleration 8 . That is, it deflects § inches
for each acceleration of gravity applied, at the position where the reed
regponse is recorded. If a half-sine pulse of acceleration were applied
to the reed, it would deflect Zn, and z,g' in the positive and negative
directions respectively. The spectrum values are thus AAe%==ZLn/5 and
Aeqol =2m,/8 , as shown in figure 25. A nuwmber of reeds, in the fre-
quency range of interest, are used to define the spectrum in such a
region.

The response quantitiesg previously described are all derivable from
the equivalent static acceleration. The relationship among these quanti-

ties is
Ae% = Zm/s = PZEOM = —.20\"'\ b (20)

It should be noted that essentially similar curves are given different

names in the literature. For example, amplification factor curves,
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maximax and residual displacement curves (10), and dynamic load factor

curves (9) have been used to refer to the response spectruam.

II. STRUCTURAL RESPONSE BASED CON SPECTRUM DATA

The reed gage has as its primary function the recording of infor-
maticn concerning an excitation from which peak structural response to
that excitation can be determined. Another possible function might be
to obtain information concerning the excitation itself. Although one may
imply from large reed resonances that strong harmonics exist in the exci-
tation, i1t does not appear that any general statement can be made about
the actual time history. An attempt to correlate the response spectrum
with its corregponding single pulse excitation has been made with sowme
success. However, the results are not applicable to other than those
pulses treated (2).

To treat the problem of obtaining structural response information
from the reed gege, a base acceleration A() will be assumed. The reed
gage will respond to this acceleration allowing the response spectrum of
A(t) to be obtained. The response of the normal modes of a structure to
A(t) will then be considered. In the previous section it was shown that
the reed response to the excitation is proportionsal to the lumped simple
system response, which is given by

t
—eplt-1) |
A(x) e eP sinp(t-<t)d~. (21)

[»]

2.(t) = 2

This is the form of the Duhamel integral for a single degree of freedom

slightly damped oscillator having a natural frequency p and a fraction
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of critical dampiné e (5, pg. 403). A time dependent equivalent static
acceleration may be defined as A“\,(Pat) = pa Z, (t) . The equivalent
static acceleration l\e% equals the maximum value of this quantity,
AQ%(p)==plZ°w,. Thus
® —eplt-7)
Ae%(p) = pS‘A(ﬂe e sinp(t-v)d . (22)

o MmaK.

The value of Ae%(P) in the positive and negative directiocns, with respect
to the reed gage block, are the ordinates of the response spectrum.

The first step toward obtaining structural response is to determine
the mode frequencies and shapes of the structure. This can be done by
various analytical or experimental methods. Next the influence function
A(:(S) must be found. This is the value of the response guantity R
at the position $ in the i.th mode due to a unit static base acceleration.
R can refer to any response quantity desired. Examples are displacement,
stress, bending moment, shear force, and acceleration. This function can
be analytically derived* or it can be experimentally deter’mined. by load-
ing the structure with that portion of the inertis loading due to a unit
base acceleration, which excites the mode \ only.

At the position S the response can he expressed as a sum of normal

mode responses

i)
R(s,t) = =R (st). (23)
[

Given the influence function at S, it is seen that

See Appendix IT.
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t
i W -G P (x-T)
R (s,t) = A, (s) gPiA(T)e ¢ Sin p(t-v)d~.  (a21)
o de

The maximum response in the i.th mode is thus
W \) A
Rm (s) = AR (s) e%(PL) (25)

where Aq%(&) refers to either cf the spectrum values at the frequency
Pt . Up to this point the thecry is exact. No approximations have been
made to obtain the peak response in each of the normal modes at S . The
peak response R,.(S) is the desired end result. However, no informaticn
is available on the time of occurrence of the peak response in each mcde.
Hence only an estimate of peak response 1s possible. A conservative esti-
mate would be Lo merely add the peak mode responses. Such an addition
should be made in each of the response directions. The sign of the product
of A (S) and Ae%( Pi.\ defines the direction of response.

The final result in the two directions will be given by tlie spectral

maximum values

Rsm (S,+) Z RM (S +) Z A (S)Ae%(P\ + ZA (5) Aet(PJ)
or (26)

vhere the + sign Indicates the positive direction chosen arbitrarily and

the — sign indicates the negative or opposite direction., The A (S)
)

are those with positive sign and the A (S) are those with negative

sign.
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ITII. ERROR INVESTIGATION FCR HALF-SINE PULSE OF ACCELERATION

Admittedly the reéult of a peak response analysis from reed gage
data is always conservative. In many cases of practical interest, how-
ever, the error in the analysis is well within engineering accuracy.

For example, for base shear loads in a uniform Tive story structure

(see Appendix II), the influence coefficient in the second mode is only
about 10 percent of that in the first mode. Hence one would not expect
much error in the spectral analysis. A rather complete analysis was
carried out by Clough (17) on an actual building. The average results
for the pase shear load due to an earthquake excitation showed that the
spectral maximum was of the order of 5 - 6 percent above an actual maxi-
mum.

As an example of the errors that might occur in the application of
the above theory, a study of the errors in the spectral analysis for a
half-gine pulse of acceleration will be made. The purpose of this study
will be to indicate the magnitude of the errors and the regions in which
large errors occur. It is assumed that two undamped modes contribute to
the response. This minimizes the number of structural parameters that
must be considered, while retaining the essential features of the approxi-

mations. The response is given by

R(s,t) = R"(s.t) + R (s,t)
t

= A(:: (s)‘(pl A(T) sinp (t-t)d «

- t
+ A(;\(S)fPZA(t) Sin Pz(t—':)cl'r, ’ (27)
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where

At = sin wt , 0 <t < T/w

:O Y t)Tr/LAJ-

The actual maximum response is given by the maximum of R(s,t) in time or

R,. (S). The spectral maximum is given by

")) 2)
Rea (5) = A_A_ (P + A (VA ey (p2) - (28)
The error in the analysis is | —[RM(S)/RS...\(S)], where
t A(Z,;(s t
SP‘A(x)sin p -tV + —— pA('c)sinpz(t—'l:\dt
Rm(3) _ Do Br 3 Jo° dmox, (29)
T orre z) ) Y 7
Rsw(35) SP‘A(’:\ Sinp, (£-)d A:‘i zA(‘r\Siv\pl(t—"c)c\’\:
N AR )
)
— max o X

Since A(t) is given, the error is a function of three parameters.
This may be taken to e p,/w , P, fw , and ¥ . Where ¥ is defined
as AQ;(S) /A:)(S) and PL/P‘ > | . The results of this error study
may be given in various forms. Perhaps the most revealing are piots of
the percentage error contours for P./U" versus p, /w for constant values
of ¥ (fig. 26 to fig. 30). Since the largest errors cccur when the
static contributions in each mode are of the same order, the values ¥ =
l/it, 1/2, I, 2, 4 are considered. Negative values of ¥ are not con-
.sidered gince they imply a subtraction of wmode responses for this type

of excitation wherein the peak response always occurs in the direction of
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application of the pulse. This assumes that the main infterest in this
analysis lies in the estimation of the largest response of the structure
and hence will occur where the modes add. The response spectrum of the
half-sine pulse is drawn along.the axes of the figures to aid in the
orientation of the wodes. Bach spectrum is drawn in proportion to tpe
static contribution of the mode corresponding to the axis on which it

is drawn.

Since the modes are undamped, the lower limit to the peak response
is the sum of the residual responses in the modes. These are the ampli-
tudes of sinusoidal motion remaining after the pulse has acted. ZEventu-
ally this motion in the two modes will be in phase, s0 that the peak dis-
placement will at least be the sum of the residual values. Hence no error
is obtained when both modes lie in the region where the peak responses in
each motion are in the residual motion. This is true in the triangular
region for P, ’w < 1 in figures 26 to 30. Also in the limiting
case where the two modes have the same freguency (FE_/Fa = 1), exact
results are expected from the spectral analysis. In all other.cases,
conservative results are obtained.

The errors are largest when one mode is in the impulsive region and
the other is in the static region of the response spectrum. Ir the former
the peak motion occurs in the residual motion and the response at the
time of peak excitation is small. For the static mode the reverse is
true. This situation can only occur for relatively large values of fi/fﬂ.

For large F&/F: and ¥ & 1, the errors are largest when the peak
responses in each mode have approximately the same wagnitude and the re-
sidual response in the higher mode is small. This is especially pro-

nounced rear p,_/P' = 3. The zerces in the residual amplitudes only
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occur in the manner shown for symmetrical pulses (10). Any lack of
symmetry in the pulée tends to smooth out the residual amplitude or
peak negative response curve of the spectrum. The half-sine pulse is
perhaps an unfortunate choice in this respect, but a qualitative state-

ment can stlll be made for non-symmetrical cases.
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Part Two
SUMMARY AND CONCLUSIONS

In the actual design of the reed gage the individual reeds will in-
evitably depart slightly from the ideal shgle degree of freedom system
assumed in the theory of the instrument. A method of making a correcticn
for this departure and hence arriving at an equivalent single degree of
freedom system is described.

A method is cutlined for treating a complex structure in terms of
its normal modes in such a way that the calculation of peak response can
be expressed as a superposition of peak single degree of freedom responses.
This makes reed gage data applicable to the determination of tne response
of complex structures.

The calculation of the maximum response of a complex structure from
reed gage data can only be approximate since the phase relationships be-
tween the peak responses in the various modes are unknown. It is shown
that a direct superposition of the maximum motions in each mode will give
an upper bound to the system's maximum response and hence as a design
procedure, the approximation wculd always be on the conservative side.

To investigate the errors in a specific case the response of a two degree
of freedom undamped system to a half-sine pulse of acceleration is studied.
The folloﬁing conclusions are reached:

1. Errors are largest when the two medes lie in different regions
of the response spectrum, e.g. one mode lies in the impulsive and the
other in the static region of the response spectrum.

2. Tor a single pulse type excitation, it is unlikely that the most

unfavorable error situations will often occur. In most practical probleus
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the distribution of wmode freqdencies and the form of the excitation is
such that‘the totalberror due to superposition is probably not greater
then ten percent, In view of the inaccuracies inherent in the reed gage,
it appears that superposition errcrs are not usually significant.

3. The superposition errors mentionec in cornclusion one above
assume that nothing is known about the specific shape of the excitation
function. If some information of this nature is available, corrections
to the maximum response should be possible. There does not appear to be
any general correction procedure that can be based on response spectrum

information alone with an assurance of conservative results.
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" Appendix I

ELECTRIC ANALOG STUDIES

A. Two Degree of Freedom Accelerometer

©

—mﬂ‘d‘—'——

L— e L feLz cz’

D)

R\?. 2 Ra

Figure 31

Electrical Equations:

Yy
‘\/‘ =Asinwt
—¥
Tl |
my,
lﬂz% HC 2,
™y

L,E%).-l- R.‘L,i- —(‘?.%' + Rlz(‘i,u‘"%z) + —C‘.—a(%'—ll) =

LG, + Ry, + € %ot Ra(am g0 T (Gt = ele.

Mechanical Equations:

ME R+ K2+ G (B, -2,)+ K, (-2 -m Y

M E kG b ke, G (-2 ) + K (m2) = mem, Y

Comparison of the differential equations in the two systems shows the

following relationships:

L. ~™nm R~ c -e~$} =As'\“w't.

|
g ~ K L~ 2
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The voltage across (, 1is measured as being proportional to =, , the

accelerometer output.

B. Opectrum Analysis Cowmparison of Accelerometer Response and Input

Excitaticn

| . R Ro

€ o | Spectrum|—o
EL: Accelerometer (& e, and Oscilloscope
Analog ]L{ eoo_.Analyzer L o

AW
and /\

Figure 32

The response of a single degree of freedom accelerometer is found
for half-sine and triangular pulses of acceleration by the loop analog
shown in figure 32. The resistor, Ry , is used to damp out the response
between repetitions of the input. The accelerometer response aﬁd the in-
put execitation are then spectrum analyzed. The spectrum analyzer (11)
is an electric analog of a single degree of freedom mechanical coscillator
with provision for maintaining constant damping for a sequence of frequen-
ciles. Peak responses read off an oscilloscope face provide points on

the response gpectrum of the function being analyzed.
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 Appendix IT

EXAMPLE OF CALCULATION OF INFLUENCE COEFFICIENTS

In this section the influence coefficients for a specific case are

~calculated to indicaté the steps required in this type of analysis. A

- structure consisting of repeated identical elements is chosen to permit

a concise presentation of the mode shapes and fregquencies.

Consider the five mass system shown in figure 33. For use in the

discussion of errors in a spectral analysis, this system is viewed as

a model for a five story bullding deflecting in shear. The response

quantity chosen for this computation is the base shear force ( k x, ).

This is a gquantity of interest in an earthquake excitation of a building.

wm ———+X5
k
m —-—>xq_
"k
Caa) —r Xy
K
[aa) —r X,
K
[aay —X,
k
7777777777
Figure 33

irf P; are the natural frequencies of the structure, the application

of finite difference analysis gives (5,pg.453)

.

P. = 2A/k/m Sin[(‘t—‘/z\ﬂ/i\‘l- (30)

The same analysis ylelds the mode shapes for

the jth mass and the Lth mode

o = sin(iju/n). (31)

In watrix notation the relation between the mass displacements (X ) and

the normal modes (%) is

x] = (o104}, : (32)
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which expresses the equations

W
Xj = Z 05 91 -

L

The results of matrix theory applied to modal analysis (equivalence of
work in the two coordinate systems) show that the generalized forces are

given by

fQl = (=1 [, (33)

where [a]T is the transpose of [al) and [#] is the matrix of the forces
acting on the structure at the mass positions.

Consider a one gravity (g ) static acceleration applied to the base
of the structure. This is equivalent to the set of forces mq acting at
the masses. The matrix (4} is then a unit column matrix times v q. The

normal mode responses are given by
. 2
Q= Gu/Mipd, (34)
. «th , . .
where M is the 1\ generalized mass and is given by
M, = Zwm[a¥] (35)
(. 3 3 :

The influence coefficients in this case are the base shear forces in each
of the modes per 9 of base acceleration. That is

()

A= X qi, for (8] = |1 wmg. (36)

- ——
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The result of this computation is

)

A= 1,399 ™q
(2)
D= 0.436 ™9

A 0,121 vaq

A 6,038 mq
A‘SL 0.008 wq.

In this case all the A 's are positive, a result of the uniformity of
the structure. A less uniform structure may give rise to A's of both

signs.
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NOMENCLATURE
A peak acceleration of harmonic or transient motion (9, 15)*
/\e% equivalent static acceleraticn (55)
B peak of response spectrum (15)
C slope of respcnse spectrum at /T =0 (15)
64 capacitance (73)
E Young's Modulus (37)
G (W) auplitude characteristic for single degree of freedom
accelerometer (9)
T(x) noment of inertia of tapered cantilever beam (37)
(] spring constant matrix (29)
L

inductance (73)

LMIN,Q algebraic quantities (L41)

v mass matrix (29)
My it generalized mass (76)
Qi L th generalized force (76)
R resistance (73)

R(s,t) response quantity (58)
R (5) wmaximum response (59)

Rsn(S)  spectral waximum response (59)

S sensitivity gain (48)

T response system period (15)

Y amplitude of harmonic frame motion (28)

Z amplitude of harmonic relative displacement (28)

a,b numerical factors (40)

a’,b’ values of @ and b to make dqr'/d Y'Lq =Cat n =0
| for g =" (42)

Cf? mode shape for | th pags and LR wode (75)

b (x) width of cantilever beam (37)

C viscous damping coefficient (8)

c* value of C corresponding to @* (Lo)

Numbers in parentheses refer tc the page on which the quantity
first appears or is defined.
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e voltage (73)

(f] force matrix (76)

g9 acceleration of gravity (76)

h(x) height of cantilever beam (37)

L " index (11), subscript denoting input (15)
i index (32)

K spring constant (8)

L length of cantilever beam (37)

™ nass (8)

{T‘n} mass column matrix (29)

n index (28), exponent of beam taper (37)

P natural frequency (8)

P, t th natural frequency (30)

P* ki /mi (33

P' natural frequency of single degree of freedom system having
same useful frequency range as two degree of freedom system (48)

P, Vk/m for two degree of freedom system (LO)

% charge (73)

q, (x) distributed loading on cantilever beam (37)

[‘L] normal mode displacement matrix (75)

r subscript dencting response (15)

S position (58)

T time (8)

X distance along cantilever (37)

x (t) absolute displacement (8)

ix] wass displacement matrix (75)
y (X) deflection of cantilever (37)
vy (1) frame motion (8)

Z (1) relative displacement (8)

{Z& relative displacement column matrix (29)

I (w) ~ cdefined to be the amplitude characteristic of a multiple
degree of freedom accelercmeter, where the acceleration
sensitivity is r'(w\/P‘z' (27)

r, value of M(w) at w =0, i.e. static sensitivity (27)

A influence function (58)
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constant, of proportionality (55)

fraction of critical damping or c</2Vkm (8, ko)
value of @ making clal"/t.:lrl_z =0at n =0 (41)
ratio of wode contributions under static loading (61)
displacement of reed per unit acceleration (55)

ratio of masses and spring constants in two degree of
freedom system (35)

- ratio of excitation frequency to @, (40)

ratio of excitation frequency to P, (42)
density (37)

time duration of pulse (15)

phase shift characteristic (9, 41)
frequency (9)



