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ABSTRACT 

 

Examination of the transcriptional messages encoded in the manifold of mRNA 

molecules within a cell is a central task of molecular biology and functional genomics.  

This examination can be broken down into two parts: collection of gene expression data, 

and analyses of those data.  Here, a new method for collecting gene expression data, and 

two new methods for analyzing those data are presented. 

A new method for quantifying gene expression denoted as the Mass-spectrometric 

Analysis of Gene Expression (MAGE) is developed. MAGE relies on novel conjugates of 

DNA oligonucleotide 30-mers; each unique sequence is conjugated via photolabile linker 

to an N-substituted glycine oligomer (peptoid) of unique mass.  Deuterated bromoacetic 

acid is incorporated into some peptoids yielding two chemically identical probe 

conjugates of different molecular weights for each nucleic acid sequence of interest.  

Mixtures of these probes, along with 3' adjacent biotin-labeled oligonucleotides, are used 

to interrogate a target mixture of cDNA.  Following hybridization, the two adjacent 

probes are ligated to enhance the specificity of the identification, and to enable the use of 

a biotin-affinity column for removal of confounding peptoid tags.  The resulting mixture 

is exposed to longwave ultraviolet light to release the peptoid tags, that are quantified 

using MALDI-TOF mass spectrometry using the isotopically labeled peptoids as internal 

standards.  These individual components of MAGE are demonstrated.   

 A strategy for simplification and visualizing of high-dimensional gene expression 

data, as well as a strategy for inferring the presence of clusters within those data, is 
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formulated and implemented.  In order to visualize high-dimensional gene expression 

data, principle components analysis is used with subsequent mapping of the data onto an 

orthogonal set of basis functions known as Andrews curves.  This analysis method is 

demonstrated by visualizing of breast cancer tumor data and yeast sporulation data. In 

order to cluster gene expression data, the expectation-maximization algorithm is 

employed to optimize the parameters of a mixture model of Lorentzian distributions.  The 

difference between Lorentzian and Gaussian mixture models is first demonstrated with 

artificial data, and then applied to yeast sporulation data.  The results indicate that 

mixtures of Lorentzian distributions may have significant utility for gene expression 

analysis. 

The tools demonstrated here offer unique advantages when compared to the 

current suite of experimental and analytical tools employed by investigators of functional 

genomics. 
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1.1 Introduction 

 

Gene expression analysis is the examination of the transition of information 

encoded in nuclear DNA to the collection of proteins that are the ultimate product of that 

DNA.  The central dogma of molecular biology, Figure 1.1, describes the flow of cellular 

information in general terms, originating in the genome where information is encoded in 

DNA molecules.   

 

Figure 1.1: The central dogma of molecular biology. This schematic representation of 
the central dogma suggests the importance of studying the transcriptome. 

 



 3

In the nucleus, DNA is transcribed into a complementary manifold of mRNA 

molecules, known as the transcriptome.  These messages are subsequently transported to 

ribosomes where transcripts are translated into proteins.   The transcriptome is not a copy 

of the genome, because only portions of the genome are transcribed.  The selection of 

which and extent to which genes are transcribed is largely a function of the state of the 

proteome, which acts in part to regulation of gene expression.  The state of the 

transcriptome is thus a function of the basic information content of the genome, the 

regulatory action of the proteome, and also the proteome-mediated degradation of 

transcripts.  Finally, the state of the proteome is a function of, among other things, the 

transcripts that reach the ribosomes.  The proteome, which harbors the enzymes that 

catalyze the reactions inside the cell, is also subject to self-modification and modification 

from information inputs from outside the cell. 

A basic experimental need of functional genomics is the ability to measure the 

abundance of identifiable sequences of either mRNA or DNA derived from mRNA.  

Although the relationship between the transcriptome and its product, the more 

functionally diverse proteome, is not yet fully understood1-3, it has been repeatedly 

demonstrated that even in isolation, the transcriptome is an information-rich molecular 

phenotype.   

Recently, transcriptome analysis has been applied to the classification of breast 

cancers4, prostate cancers5, adult acute myeloid leukemias6, and follicular thyroid 

tumors7, where significant clinical factors such as time to distant metastasis and overall 

survival are correlated to the abundances of a subset of the transcriptome.  Another class 

of studies has sought to infer relationships among genes or proteins by examining 
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changes in gene expression for a particular organism or tissue across a relevant range of 

conditions.  This has been the aim of studies of yeast sporulation8, stress response in 

human cell culture9, and C. elegans development10.    Another intriguing class of studies 

seeks to determine the quantitative behavior of subsets of the transcriptome11-15.  Unlike a 

general classification or identification analysis, efforts to model gene regulation networks 

demand highly quantitative data on a gene-by-gene basis.  This demand is often met by 

using large-scale data to initiate a framework for analysis, and then conducting as many 

lower-level analyses using more precise, but time-consuming, methods as are practical16.   

Sequence-specific nucleic acid detection has been a fundamental technique of 

molecular biology for decades17,18.  The current state-of-the-art techniques that are 

designed to be quantitative can largely be categorized into several classes: PCR-based, 

sequencing-based, and microarray-based.  Because they incorporate exponential 

amplification, PCR-based methods, such as real-time PCR and competitive PCR, are 

currently the most sensitive techniques available.  The sequencing-based methods, such 

as serial analysis of gene expression (SAGE) and differential display, are principally 

advantageous when the genes or sequences of interest are not known before the 

experiment.  Microarrays require advanced knowledge of sequences of interest, but they 

make practical the simultaneous analysis of thousands of sequences.  Of these methods, 

only SAGE is inherently quantitative, but it cannot be applied to rarer transcripts in a 

statistically robust manner with today’s sequencing technology.  Thus, clever methods of 

normalizing the other technologies have been devised in order to provide quantitative 

data. 
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In order to make PCR quantitative, the sequence of interest (SOI) is amplified 

along with a sequence of known initial abundance.  In the case of real-time PCR19-21, the 

focus is to eliminate all of the variability in PCR that comes after the exponential phase, 

by employing fluorescent labels to monitor the PCR reaction kinetics and using an 

intermediate, exponential-phase abundance for the calculation.   In a simple example, the 

sample to be analyzed is divided into two aliquots, and in one aliquot the SOI is 

amplified, and in the other aliquot an endogenous comparator sequence is amplified.  The 

comparator sequence is chosen to have a constant abundance across all of the samples to 

be analyzed.  So-called housekeeping genes are generally candidates for comparator 

sequences. 

In competitive PCR22,23, the comparator sequence is exogenous, and is exactly the 

same as the SOI with the exception of a one-base mismatch.  The SOI and a known 

amount of comparator are co-amplified by the same primers in the same reaction, and 

because of their similarity, they are amplified at the same rate as long as their starting 

concentrations are fairly similar.  Here, the difficulty lies in quantifying the relative 

amounts of two nearly identical sequences.  The most sophisticated way to do this yet 

proposed is the method of Ding and Cantor23, where a base extension reaction is used to 

produce two small oligodeoxynucleotides (ODNs) of different masses in known 

proportion the relative abundances of the two amplified sequences.  These ODNs are then 

quantified by MALDI-TOF mass spectrometry.  This technique does not require the 

expensive fluorescent tagging systems that real-time PCR does, but neither PCR-based 

technique is suitable for significant multiplexing in a laboratory of typical resources. 
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Serial analysis of gene expression (SAGE) employs enzymatic techniques to 

create short tags from a pool of cDNA that are subsequently concatenated, cloned into 

plasmids, and sequenced24.  SAGE is inherently quantitative, and thus very well suited 

for multi-laboratory collaboration.  However, due to the fundamental statistics of gene 

expression, Table 3.1, even if 105 tags are sequenced, rare transcripts are not reliably 

quantified.  Differential display, unlike the other methods discussed here, does not 

require expensive consumables or equipment.  Differential display functions by using 

PCR primers designed to hybridize to a small fraction of the sequences in a typical cDNA 

sequence, and amplify only those25,26.  The typically 50-100 products are displayed using 

gel electrophoresis, and sequences that are differentially displayed between two samples 

can be isolated and sequenced.  Depending on how rigorously the labeling process is 

handled, this method can determine relative abundances of SOIs, but it cannot approach 

the reliability of the low-throughput PCR methods. 

 

 Copies per Cell 
of Each mRNA 

sequence 

 Number of Different 
mRNA Sequences in 

Each Class 

 Total Number of mRNA 
Molecules in Each Class 

Abundant 
class 

12,000 X 4 = 48,000 

Intermediate 
class 

300 X 500 = 150,000 

Scarce class 15 X 11,000 = 165,000 
Table 1.1: Distribution of mRNA in a cell.  In a typical cell, the majority of genes are 
expressed as scarce transcripts.  A single scarce gene might only make up .001% of the 

total transcript population27. 
 

 Microarrays are surfaces onto which probe sequences are spatially arranged at 

high density.  Labels are incorporated into the target sequences, and then the targets and 

probes are contacted and allowed to hybridize.  After washing, the microarray is 
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visualized, and the resulting display in combination with the spatial map of sequences on 

the surface indicates which sequences were present in the target.  A carefully controlled 

system of fluorescent labeling can confer quantitativeness to microarray methodologies.  

Three types of microarrays account for the majority of studies: short-ODN, long-ODN, 

and cDNA.  Short-ODN microarrays28,29 are composed of multiple different probe ODN 

sequences for each target SOI.  Because the length of the probe ODNs is typically no 

more than 25 nucleotides, single-base mismatch controls and sophisticated statistical 

techniques are employed to produce aggregate quantitative figures.  Long-ODN 

microarrays rely on probe ODNs that are composed of at least 50 nucleotides, and thus 

have fewer problems with cross-hybridization compared to short-ODN microarrays.  The 

longer ODNs can be synthesized in situ30, non-specifically immobilized31, or covalently 

attached32 to the surface.  Most microarray studies rely on robotically spotted cDNA 

microarrays8,33, where the probes are either full-length cloned cDNAs or large PCR-

amplified fragments that are robotically deposited on the surface in a non-specific 

manner.  Typically, the target mRNA pool from one of two samples being compared is 

labeled during reverse transcription with the dye Cy3, and the other with Cy534.  The two 

target samples are simultaneously hybridized to the same probe array, and the intensity of 

each spot is measured at wavelengths appropriate for each dye.  The relative abundance 

of the target SOIs is inferred from these intensities.  Recently, a method has been 

developed to combine stringent labeling procedures with printed dye calibration spots in 

order to produce absolute abundances from microarray data35. 

 Microarray experiments do not include an inherent amplification step, however a 

variety of global amplification schemes have been tested with varying degrees of success.  
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Two of the most popular methods are linear amplification schemes that offer significantly 

more reproducibility than global PCR-based schemes: in vitro transcription36 and the 

aRNA-based method of Eberwine37-39.  Using these methods, the minimum starting 

material requirement for microarrays can be lowered to about one µg of total RNA, or the 

amount found in 105 to 106 cells, which is still far more than is required for PCR-based 

methods. 

 Microarrays are most often employed as screening tools.  Successful studies have 

sought to use the aggregate data for broad classification40 or to identify genes with 

behavior worthy of further investigation41. In either case, false information will generally 

not confound the overall result of a meaningful classification or a collection of genes of 

interest.  Improving microarray methodology in order to maximize reproducibility42-44, 

and formulating statistical models to extract the maximum amount of relevant 

information from each experiment45-47 are major areas of research.  This work is hindered 

by an incomplete understanding of the physics of hybridization between free ODNs and 

tethered ODNs48-50, as well as the sources of noise in gene expression analysis51-54.  

Because of this, it is common for studies to verify particular microarray results with low-

throughput, high-fidelity methods, most commonly real-time PCR55.  These subsequent 

studies are often critical because many significant biological processes are affected by 

relatively small changes in abundance of relatively scarce transcripts.  Another reason 

that PCR methods are important supplements to microarray studies is that although 

fluorescent detection systems in principle operate over 4-5 orders of dynamic range, in 

practice microarrays experience signal compression, signal deterioration, and floor 

effects when operated beyond 2-3 orders of dynamics range56,57. 
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 There remains a need for new methods for gene expression analysis, or the more 

general problem of sequence-specific nucleic acid quantification, especially for 

addressing the problem of efficiently collecting very reliable, unambiguously quantitative 

data for 5-50 SOIs, with the sensitivity and dynamic range of PCR-based methods.  Such 

a methodology would be ideally suited for medium-scale modeling of gene regulation 

networks. 

 

1.2 Objectives 

 

For functional genomics studies, there is a need to first quantify the state of these 

groups of molecules and then extract from this mass of data functional information about 

either the correlation between the measured state and some other phenotypic 

characteristic, or more profoundly, the fundamental interactions, control loops, and 

kinetics at work.  Thus, gene expression analyses comprise two major efforts: the 

collection of useful information from the transcriptome, and the processing of data in 

some meaningful way.  This thesis introduces a new method for collecting data in 

Chapter 3, and two new methods for processing data in Chapter 4.  One of the key 

components of the new method of data collection is a class of sequence-specific 

heteropolymers that contain conjugates of DNA oligonucleotides and peptoids.  During 

the course of investigations, I compiled a collection of synthetic tools for engineering the 

peptoids (N-substituted glycine oligomers), and I present these tools first in Chapter 2. 
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1.2.1  Collecting Gene Expression Data 

 

The number of transcripts that exist from a particular gene at any time is a 

measure of how actively that gene is being transcribed and how quickly the transcript is 

subsequently being degraded.  Although there is not a 1:1 correlation between transcript 

abundance and protein abundance, measurements of mRNA species are considered to be 

measures of the extent of gene expression.  The transcriptome contains a wide variety of 

mRNA species.  The majority of genes in the genome are expressed in very small 

quantities, Table 1.1.  Furthermore, many of the very tightly regulated genes that are of 

great interest, are in this scarce category.  This distribution must be taken into account in 

the design of any transcript quantification method. 

 Transcripts are molecules of mRNA, and the goal of transcript quantification is to 

create an inventory listing transcripts by what protein they code for, and the abundance of 

each of these species.  Some methods inventory only one transcript at a time, some 

inventory a large, predefined list, and still others inventory all transcripts, even those that 

code for genes that have not been identified.  Quantification methods also vary in their 

sensitivity, reproducibility, dynamic range, and ease of use.  Many of the methods can 

only quantify a particular transcript relative to some other transcript.  Other methods 

measure the abundance of transcripts irrespective of a comparator nucleic acid, but no 

method can simultaneously compare nucleic acid concentrations from more than two 

samples. 

 The fundamental property used for the identification and quantification of mRNA 

molecules is each molecule’s sequence.  The sequence of an mRNA molecule is 
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complementary to that of the gene it was transcribed from, so in this manner it can be 

identified with a particular gene. Also, either in its native form or reverse transcribed into 

cDNA, the sequence of the molecule can be put to use by probing for it with a labeled 

complementary nucleic acid, whether it be cDNA (complementary DNA), RNA, or even 

PNA (peptide nucleic acid).  Every assay for mRNA relies on identification by sequence, 

either through hybridization or through direct sequencing. 

 In Chapter 3, I present a method for quantifying the absolute abundance of nucleic 

acid species of a pre-identified sequence using mass spectrometry.  I denote this 

methodology mass-spectrometric analysis of gene expression as MAGE.  Because 

nucleic sequences cannot be discriminated by their mass, I introduce a system of 

hybridizable oligodeoxynucleotide probes conjugated reversibly to peptoid labels serving 

as mass tags.  I engineer the peptoid tags to be optimally suited for mass spectrometric 

quantification.  MAGE is designed to minimize potential sources of error, and rely on 

controllable physical processes, and be parallelizable up to about 50 sequences of 

interest.  Such a method would be useful for medium-scale studies of groups of related 

transcripts, especially for quantitative modeling. 

 

1.2.2  Analyzing Gene Expression Data 

 

 For the past ten years, investigators have been employing new methods of gene 

expression data collection to simultaneously measure the abundance of thousands of 

different species of mRNA.  A typical experiment might measure the abundance of 

transcripts corresponding to 8,000 genes in 20 different biological samples.  Data on this 
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scale are not amenable to conventional statistical tests of significance.  Furthermore, 

many of the hypotheses tested by gene expression experiments are complex or 

unconventional.  At the far extreme of this are experiments designed to suggest 

hypotheses for further testing, when the analytical question becomes “what patterns are 

present in the data that are worth investigating?”  Two major challenges of analyzing 

highly multivariate gene expression data such as these are first to present, or visualize, 

the data in an informative manner, and second to robustly identify patterns, especially 

clusters, in the data.   In Chapter 4 of this thesis, I present one solution to each of these 

problems. 

 Visualization of data becomes a problem when each element of data, or vector, 

grows beyond 2 dimensions; the central issue is mapping vectors in multidimensional 

space onto 2 dimensions.  My solution to this problem is to first apply a method of data 

reduction known as principle components analysis (PCA), and follow that by mapping 

the data onto an orthogonal set of basis functions known as Andrews curves.  This serves 

to convert each high-dimensional vector to a two dimension wavy line.  Two vectors that 

are close to one another in high-dimension space will become two lines with a similar 

wave pattern. 

 Clustering is a task that derives from several basic hypotheses that are frequently 

tested in large-scale gene expression experiments.  One is that genes that have similar 

expression patterns over a range of samples or conditions are likely to be biologically 

related.  Another is that biological samples that have similar patterns of gene expression 

are likely share in some other phenotypes.  Either hypothesis leads to the analytical task 

of clustering, which seeks to identify vectors in high dimensional space that are close to 
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one another.  Our solution to this problem is to apply the expectation-maximization 

algorithm to optimize the parameters of a mixture model.  A mixture model is a 

hypothesis that the data were generated by a linear combination of probability 

distribution functions.  The majority of such models that have been previously studied are 

based on normal distributions, but I present results that indicate that mixtures of 

Lorentzian distributions may have significant utility for gene expression analysis. 
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2.1  Introduction 

 

Peptoids, Figure 2.1, are N-substituted glycine oligomers, and have become a 

significant class of peptidomimetics1. 
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Figure 2.1: Schematic illustrations of peptoids and peptides. Compared to 
peptides such as oligo-alanine, upper, peptoids, such as oligo-sarcosine, lower, lack 

stereochemistry and sites for hydrogen bonding, but retain a similar spacing and overall 
structure. 

 

Originally proposed by Zuckermann et al.2 as a strategy for synthesizing diverse 

libraries of lead compounds for drug discovery, peptoids have since been designed to 

form stable secondary structures3, including a family of α-chiral-side-chain substituted 

peptoids that form stable helices4-7.  Several studies have shown that peptoids8 or peptoid-

peptide hybrids9,10 can be designed to act as protein ligands in the nanomolar to 

micromolar affinity range.  Kodadek et al. are currently developing methodologies for the 

synthesis of large peptoid libraries and subsequent screening and isolation of peptoid 

ligands from those libraries11. 
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 A number of studies have demonstrated the use of peptoids in other biomimetic 

and biotechnological roles.  Peptoid nucleic acids extend the biomimetic role of peptoids 

beyond that of peptide mimicry12,13.  Peptoids have been designed to serve as cell 

penetrators14,15 and gene delivery vehicles16.  Several studies have demonstrated peptoids 

with antimicrobial properties17,18, including helical mimics of magainin-2 amide19.  

Helical peptoids have also been designed to mimic lung surfactant protein C20, and a 

series of trialkylglycine peptoids have been shown to have analgesic effect by blocking 

VR1 channels21.  Peptoids were also applied as uncharged, water-solubilizing caps for 

use in membrane-interactive peptides22. 

 One of the most attractive features of peptoids is the ease with which diverse, 

relative pure oligomers can be synthesized.  Although several methods for peptoid 

synthesis have been proposed2,23-25, the solid-phase, submonomer method of Zuckermann 

et al.26,27 is the most widely replicated.  The central advantage of the submonomer 

method (Fig. 2.2) is that the growing chain of the peptoid is extended by repeated 

applications of a single linking chemistry, and that the submonomer providing diversity is 

a primary amine (Fig. 2.3).  Perhaps the greatest disadvantage of the submonomer 

method, the requirement of on average 3 hours of reaction time per monomer added to 

the growing chain, has recently been eliminated by Olivos et al.28, who demonstrated 

microwave-assisted synthesis of peptoids of approximately 1 minute of reaction time per 

monomer added. 
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Figure 2.2: The solid-phase submonomer method of peptoid synthesis. This 
method is executed by repeated, alternating rounds of bromoacetylation and primary 

amine substitution.  Commonly, the finished chain is cleaved by trifluoroacetic acid to 
form a C-terminal amide cap. 
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Figure 2.3: Primary amines used for peptoid synthesis.  Peptoid diversity is 
generated through the choice of primary amines (R-NH2 in Figure 4.2).  Some commonly 

used classes include aromatic, aliphatic, heterocyclic, cationic, anionic, bulky, small, 
hydrophobic and hydrophilic. 

 

 The submonomer synthesis has been extended to allow for a variety of primary 

amine submonomers29, including unprotected heterocycles30.  Depending on the linker 

chosen, peptoids can be produced with either C-terminal acids31 or amides32.  A variety of 

chemoselective functionalities33 can be incorporated into peptoids either along the 

backbone or at the N-terminus, such as aminooxyacetamides, N-

(carbamoylmethyl)acetohydrazides, mercaptoacetamides, 2-
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pyridinesulfenylmercaptoacetamides, maleimides34, and aldehydes.  Analysis of peptoids 

is commonly accomplished by RP-HPLC, mass spectrometry35, and capillary 

electrophoresis36,37.  Once synthesized, peptoids can be sequenced by Edman 

degredation38.   

 Here, I seek to further expand the toolkit for peptoid synthesis while staying 

within the submonomer synthetic methodology.  First, I demonstrate a simple method for 

introducing 2:1 branch into the growing peptoid chain.  This would allow the rational 

synthesis of branched or multiply branched structures, and it could also be incorporated 

into a parallel synthesis to generate libraries of branched structures.  Second, I 

demonstrate a simple method for capping the growing peptoid chain.  Capping is a 

standard step in the protected-monomer synthesis of DNA, and caps have found 

application in peptide synthesis as purification tags39-43.  If a particular primary amine 

submonomer had a low rate of substitution during peptoid synthesis, that step could be 

immediately following by the addition of a high-substituting cap.  By doing this, that 

chain would never grow any longer and would not result in a potentially confounding 

single-deletion sequence.  Third, I demonstrate several useful N-terminal modifications, 

including two types of haloacetamides, two types of carboxylic acids, and two types of 

primary amines.  Fourth, I demonstrate a straightforward technique for peptoid 

macrocyclization that is chemically orthogonal with many potential peptoid sequences.  

Because many macrocyclic peptides have potent biological activity44-47, a general method 

for peptoid macrocyclization would expand the potential applications of peptoids.  Fifth, I 

demonstrate the synthesis of two different peptoids incorporating four adamantine 

moieties.  Adamantyl species have not yet been reported as peptoid submonomers 
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because when attached proximal to the growing chain, it can severely hinder chain 

extension.  In my syntheses, adamantane moieties are attached via two different spacers.  

Finally, I demonstrate a new method for conjugating peptoids and DNA 

oligodeoxynucleotides (ODNs).  Peptoid-ODN conjugates have been applied to 

demonstrate a drag-tag methodology for electrophoresis34, but they have not yet been 

applied to biological studies as many peptide-ODN conjugates have. 

 

2.2  Experimental 

 

 2.2.1  General Peptoid Synthesis 

 

Peptoids were synthesized manually using the method of Figliozzi et al.27  The 

synthesis is described here using 100 mg of resin, but up to 250 mg have been 

successfully used in the same size synthesis vessel by scaling all other reagents linearly.  

100 mg of rink amide MBHA resin (Novabiochem, La Jolla, CA) was loaded into a 10 

mL peptide synthesis vessel that had been modified to improve agitation by adding a 

small pocket on the wall of the reaction chamber.  The resin was first washed several 

times with N,N-dimethylformamide (DMF, Aldrich Chemical Co., Milwaukee, WI).  All 

solvents were purchased anhydrous and kept as dry as possible by careful handling and 

storage with molecular sieves (3A, EM Industries, Gibbstown, NJ).  The resin was 

agitated by an upward directed flow of argon.  A wash step refers to adding 1-2 mL of 

solvent, agitating for 30 seconds, then draining the vessel under aspirator vacuum.  
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 After the initial washing to swell the resin, the DMF was drained and the Fmoc 

groups protecting the resin free amines were removed by adding 2 mL of 20% piperidine 

in DMF, agitating for one minute, draining, and adding another 2 mL of 20% piperidine.  

The second solution was agitated for 15 minutes and then drained.  The resin was washed 

with DMF six times before peptoid synthesis. 

 From here, repeated rounds of a single linking chemistry were used (Table 2.1 

and Fig. 2.2).  First, the free amines were acetylated by adding 850 µL of 0.6 M 

bromoacetic acid (BAA, Aldrich Chemical Co., Milwaukee, WI) and 200 µL of 3.2 M 

diisopropylcarbodiimide (DIC, Aldrich Chemical Co., Milwaukee, WI). The slurry was 

agitated for 30 minutes, drained, and an identical solution was added for a further 30 

minutes of agitation.  Following this, the mixture was drained, washed twice with DMF, 

and once with N-methylpyrrolidone (NMP, Aldrich Chemical Co., Milwaukee, WI). 

 The nucleophilic substitution of a primary amine is the second half of a round of 

synthesis.  The primary amine of choice was dissolved at around 1.5 M in NMP and 1mL 

of this solution was added to the vessel.  The mixture was agitated for two hours, drained, 

and the resin is subsequently washed twice with NMP and once with DMF.  Amines in 

acid salt form were first neutralized by the addition of 95% the stoichiometric amount of 

KOH (Aldrich Chemical Co., Milwaukee, WI).  The organic layer was separated and 

used for the synthesis. 

 Once the peptoid was completed (generally by adding the final primary amine) 

the resin was washed thoroughly with DMF (four to six washes) and then 

dichloromethane (four to six washes), and allowed to dry for about an hour in the reaction 

vessel.  Following this, the peptoid was cleaved from the resin by placing the resin into a 
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glass vial containing 5-10 mL of 95% trifluoroacetic acid in water (TFA, Aldrich 

Chemical Co., Milwaukee, WI).  This mixture was stirred for 30 minutes, filtered, and 

washed with further TFA and water.  The resulting solution was diluted with water and 

dried using a rotary evaporator or with a stream of dry nitrogen, subsequently frozen and 

lyophilized.  The dried material was resuspended in one of water, dimethylsulfoxide, or a 

mixture of water and acetonitrile and placed into a tared cryovial for final lyophilization 

and storage. 

 

Step  Reagent Reaction 
Time 

Volume 
(µL) 

Repetitions 

1 BAA 
Addition 

0.6 M bromoacetic acid 
in DMF 

- 850 - 

2 Activation 3.2 M 
diisopropylcarbodiimide 
in DMF 

- 200 - 

3 Acetylation  30 min  2 
4 Wash DMF 

NMP 
30 s 
30 s 

2000 
2000 

2 
1 

5 Displacement 1.5 M primary amine in 
NMP 

2 h 1000 1 

6 Wash NMP 
DMF 

30 s 
30 s 

2000 
2000 

2 
1 

Table 2.1: Peptoid synthesis single linking chemistry scheme of Figliozzi et al., for 
100 mg of resin.  These steps are repeated for each monomer addition. 

 

 

2.2.2  Specialized Syntheses 

 

I introduced branches by incorporating 1,4-diaminobutane (Aldrich Chemical Co., 

Milwaukee, WI) during the primary amine substitution step.  Two secondary amine 

capping agents were tested, piperidine (Aldrich Chemical Co., Milwaukee, WI) and N,N-
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diethylamine (Aldrich Chemical Co., Milwaukee, WI).  These are also introduced during 

the normal primary amine substitution step. 

The N-terminal modifiers were incorporated by making the final step of peptoid 

synthesis an acetylation, and the modifiers included bromoacetic acid (Fluka, via Aldrich 

Chemical Co., Milwaukee, WI), iodoacetic acid (Fluka, via Aldrich Chemical Co., 

Milwaukee, WI), diglycolic acid (Aldrich Chemical Co., Milwaukee, WI), succinic acid 

(Aldrich Chemical Co., Milwaukee, WI), FMOC-γ-aminobutyric acid (Novabiochem, La 

Jolla, CA), and FMOC-alanine (Novabiochem, La Jolla, CA). 

Macrocyclization was accomplished by creating a free amine near the C-terminus 

of the peptoid using mono-trityl 1,4-diaminobutane acetic acid salt (Novabiochem, La 

Jolla, CA).  The peptoid N-terminus was modified by diglycolic acid, and the post-

cleavage macrocyclization is effected by 3 equivalents of PyBOP (Novabiochem, La 

Jolla, CA), 10 equivalents of DIPEA (Aldrich Chemical Co., Milwaukee, WI) in 97:3 

DCM:DMF (both solvents from Aldrich Chemical Co., Milwaukee, WI) at room 

temperature for 12 hours. 

Adamantane-containing peptoids were synthesized in one of two ways.  First, by 

incorporating mono-trityl 1,4-diaminobutane, deprotecting it with 95:4:1 

water:triisopropylsilane:trifluoracetic acid (TIS, Aldrich Chemical Co., Milwaukee, WI), 

and coupling 1-adamantanecarboxylic acid (Aldrich Chemical Co., Milwaukee, WI) with 

4 equivalents of DIC.  Second, by coupling 1-adamantanecarboxylic acid with an excess 

of 2,2′-(ethylenedioxy)diethylamine (Aldrich Chemical Co., Milwaukee, WI) using  1-

Ethyl-3-(3-dimethyllaminopropyl)carbodiimide hydrochloride (EDC, Novabiochem, La 
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Jolla, CA) to form 1 (Fig. 2.4).  This adamantane-spacer-amine was then substituted into 

a peptoid synthesis in the normal manner. 

O

H2N
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O
NH2

HO

O
H2N

O
O

H
NEDC

1
 

Figure 2.4: Schematic of how adamantane is incorporated into peptoids by 
first synthesizing (1). 

 

 Peptoid-DNA oligodeoxynucleotide (ODN) conjugates were synthesized first 

preparing N-iodoacetyl peptoids, as described in this work.  ODNs with 5′ C6 disulfide 

modifiers were prepared commercially (formerly, Beckman Institute Biopolymer 

Synthesis Facility, Pasadena CA, presently, Qiagen, Valencia, CA).  These were 

resuspended at 50 µM concentration in pH 7.2 100 mM NH4HCO3 (Aldrich Chemical 

Co., Milwaukee, WI) in DNase-free water (Gibco, via Invitrogen, Carlsbad, CA).  To 

this, a 20-fold excess of tris-carboxyethylphosphine (TCEP, Pierce Biotechnology, 

Rockford, IL) was added, and immediately followed by a 40-fold excess of N-iodoacetyl 

peptoid.  The mixture was placed under argon and gently mixed for 72 hours.  The 

product was purified using reverse phase HPLC over a Zorbax 300Extend-C18 column in 

an Agilent 1100 system.  The peaks were eluted with a linear gradient of 1-70% B in A 

over 50 minutes at 0.3 mL/min (solvent A=100 mM TEAA (Fluka, via Aldrich Chemical 

Co., Milwaukee, WI) in 100% water, solvent B=100 mM TEAA in 90% acetonitrile, 

10% water). 
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 2.2.3  Analytical Procedures 

 

 Analysis of peptoids was accomplished by reverse phase HPLC over a Zorbax 

300Extend-C18 column in an Agilent 1100 system.  The peaks were eluted with a linear 

gradient of 0-75% B in A over 50 minutes at 0.3 mL/min (solvent A=0.1% TFA in 100% 

water, solvent B=0.1% TFA  in 100% acetonitrile).  The column was held at 30 °C, and 

detection was accomplished by means of a diode array detector at 220 nm.   

Analysis of ODNs and peptoid-ODN conjugates was accomplished by reverse 

phase HPLC over a Zorbax 300Extend-C18 column in an Agilent 1100 system.  The 

peaks were eluted with a linear gradient of 1-70% B in A over 50 minutes at 0.3 mL/min 

(solvent A=100 mM TEAA in 100% water, solvent B=100mM TEAA in 90% 

acetonitrile, 10% water).  The column was held at 30 °C, and detection was accomplished 

by means of a diode array detector at 220 nm and 260 nm. 

Mass spectrometry of crude samples and HPLC fractions was accomplished by 

matrix-assisted laser desorption spectrometry with time-of-flight analysis (MALDI-TOF) 

on an Applied Biosystems Voyager-DE PRO BioSpectrometry Workstation firing a 337 

nm nitrogen laser.  Peptoids were generally analyzed with a matrix of α-cyano-4-

hydroxycinnaminic acid (Aldrich Chemical Co., Milwaukee, WI), formulated at 10 

mg/mL with 0.1% TFA in 50:50 water:acetonitrile.  ODNs and peptoid-ODN conjugates 

were generally analyzed with a matrix of 3-hydroxypicolinic acid (Aldrich Chemical Co., 

Milwaukee, WI), formulated at 5 mg/mL with 0.05 mg/mL dibasic ammonium carbonate 

(Aldrich Chemical Co., Milwaukee, WI) in 90:10 water:acetonitrile. 
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2.3  Results and Discussion 

 

2.3.1  Branched Peptoids 

 

The branched structures BR1, BR2, and BR3 (Fig. 2.5) were synthesized using 

the submonomer method with the primary amine sequence shown in Table 2.2. 

BR1 BR2 BR3 
Benzylamine Benzylamine Benzylamine 
Diaminobutane Benzylamine Benzylamine 
Benzylamine Diaminobutane Diaminobutane 
 Methoxyethylamine Methoxyethylamine 
 Methoxyethylamine Propylamine 
  Diaminobutane 
  Benzylamine 
  Methoxyethylamine 

Table 2.2: Primary amine submonomers used for syntheses of branched 
peptoids BR1, BR2, and BR3. Branches are introduced by diaminobutane incorporation. 

 
Following the incorporation of diaminobutane, the next bromoacetylation step 

creates a peptide bond that may not be desirable depending on the application.  

Successful synthesis of these example sequences is indicated by MALDI-TOF, (Fig. 2.6).  

RP-HPLC analysis indicated an average of 90% yield, as exemplified by the data shown 

in Figure 2.7. 
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Figure 2.5: Schematic illustrations of three branched structures of increasing size.  
Synthesis methods are detailed in Table 2.2. 
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Figure 2.6: MALDI-TOF spectra of three branched structures of increasing 

size, BR1 (a), BR2 (b), and BR3 (c).  The masses of the three peptoids are visible as H+ 
adducts.   
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Figure 2.7: RP-HPLC separation and detection at 220 nm of as-made 

branched peptoid BR2.  Analysis indicated approximately 90% yield of the desired 
product. 

 

 

2.3.2  Peptoid Capping 

 

Peptoid capping was demonstrated by synthesizing two peptoids (Fig. 2.8) using 

the submonomer method with the primary amine sequence shown in Table 2.3. 

CP1 CP2 
Methoxyethylamine Methoxyethylamine 
Methoxyethylamine Methoxyethylamine 
Methoxyethylamine Methoxyethylamine 
N,N-Diethylamine Piperidine 
Methoxyethylamine Methoxyethylamine 
Methoxyethylamine Methoxyethylamine 
Methoxyethylamine Methoxyethylamine 

Table 2.3: Primary amine submonomers used for syntheses of capped 
peptoids CP1 and CP2. 

 
Three complete rounds of synthesis were executed after the addition of the 

capping secondary amine.  In the case of CP1, MALDI-TOF (Fig. 2.9) indicates that the 
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N,N-diethylamine largely blocks extension of the peptoid chain, where as in CP2, 

piperidine fails to block extension of the peptoid chain. 
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Figure 2.8: Schematic illustrations of two capped peptoids, CP1 and CP2. 
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 (b) 
Figure 2.9: MALDI-TOF spectra of product of two attempts to cap the 

peptoid growing chain.  In (a), CP1 largely blocks chain extension, where as in (b), CP2 
fails to block chain extension.  The masses of the peptoids are visible as H+ adducts. 

 

2.3.3  N-terminal Modifications 

 

Normally, the final addition to the peptoid growing chain in the submonomer 

synthesis is a primary amine, leaving a secondary amine N-terminus.  In these six 

examples, Figure 4.10, the final step was an acetylation using one of the acids in Table 

2.4.  The calculated masses of these peptoids are evident in MALDI-TOF spectra (Fig. 

2.11).  The yields of these peptoids varied from at least 85% up to greater than 97% as 

measured by RP-HPLC, with a typical analysis shown in Figure 2.12. 
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Structure Code Final acetylation step submonomer 
NT1 Bromoacetic acid 
NT2 Iodoacetic acid 
NT3 Diglycolic acid 
NT4 Succinic acid 
NT5 Alanine 
NT6 γ-Aminobutyric acid 

Table 2.4: Acetylating submonomers used to modify the N-terminus of 
peptoids NT1-NT6. 

 

N
N

O

O
N

H2N

O

N
O

O

O

O

N

O

O

O

Br
O

N
N

O

O
N

H2N

O

N
O

O

O

O

N

O

O

O

O
O

N
N

O

O
N

H2N

O

N
O

O

O

O

N

O

O

O

I
O

N
N

O

O
N

H2N

O

N
O

O

O

O

N

O

O

O

O

N
N

O

O
N

H2N

O

N
O

O

O

O

N

O

O

O

NH2

O
N

N

O

O
N

H2N

O

N
O

O

O

O

N

O

O

O

O

OH
OH

O

O

NH2

NT1
C27H49BrN6O11
Mol. Wt.: 713.62

NT2
C27H49IN6O11

Mol. Wt.: 760.62

NT4
C29H52N6O13

Mol. Wt.: 692.76

NT3
C29H52N6O14

Mol. Wt.: 708.76

NT5
C28H53N7O11

Mol. Wt.: 663.76

NT6
C29H55N7O11

Mol. Wt.: 677.79

 Figure 2.10: Schematic illustration of six peptoids with alternative N-termini. These 
were formed by terminating the growing peptoid chain with an acetylation step instead of 

the usual substitution step. 
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Figure 2.11: MALDI-TOF spectra of six N-terminal-modified peptoids, NT1-

NT6.    For NT1, (a), two groups of peaks represent the Na+ and K+ adducts, and 
incorporation of bromine accounts for the peak splitting within each of the two groups.  
For NT2, (b), NT3, (c), NT4, (d), and NT5 (e), the Na+ and K+ adducts are evident.  For 

NT6, (f), the H+ adduct is visible as well as the salt adducts.  
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Figure 2.12: RP-HPLC separation with detection at 220 nm of N-iodoacetyl 

peptoid NT2 indicating over 95% yield. 
 
 
 

2.3.4  Macrocyclic Peptoid 

 

Peptoid macrocyclization was demonstrated by first synthesizing a 

difunctionalized free-acid free-amine peptoid CY1 (Fig. 2.13) using the submonomer 

method with the primary amine sequence shown in Table 2.5.  The peptoid was 

terminated with diglycolic acid.  Following this, the peptoid was cyclized (Fig. 2.14), to 

form CY2.  The loss of water during the cyclization is evident in the MALDI-TOF, 

Figure 2.15.  The two species are difficult to separate using RP-HPLC, with retention 

times differing by less than 30 seconds in our methods.  The pre- and post-cyclization 

RP-HPLC analyses are shown in Figure 2.16.
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CY1 
Methoxyethylamine 
Methoxyethylamine 
Mono-trityl 1,4-diaminobutane 
Methoxyethylamine 
Methoxyethylamine 
Methoxyethylamine 
Methoxyethylamine 
Methoxyethylamine 
Methoxyethylamine 
Methoxyethylamine 
Methoxyethylamine 
 

Table 2.5: Primary amine submonomers used for syntheses of macrocyclic 
precursor peptoid CY1. 
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Figure 2.13: Schematic illustrations of the synthesis of CY1 free-acid free-amine 

peptoid for cyclization. 



 44

N
N

N
N

N

O

O

O

O

N
N

N
N

N
N

O

O

O

O

O

O

OOOOO

OOOOO

NH2

O
O

OH

O
H2N

O

N
N

N

O
P+

N

NN

PF6
-

N

97:3
DCM:DMF (PyBOP)

N
N

N
N

N

O

O

O

O

N
N

O

O

OO

OOO

HN

H2N

O

CY1

O

O

O

O

O
N O

N
N N

O
O

O

O

O O

CY2
C60H107N13O24

Mol. Wt.: 1394.56

 
Figure 2.14: Schematic illustration of cyclization of CY1 into CY2 using peptide 

coupling reagents PyBOP and DIPEA. 
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Figure 2.15: MALDI-TOF spectra of free-acid free-amine peptoid, CY1, (a), 

and the cyclized product, CY2, (b).  In (a), the H+ adduct is evident, while in (b), the 
H+, Na+ and K+ adducts are evident. 
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(b) 
Figure 2.16: RP-HPLC separation with detection at 220 nm of pre- and post-

cyclization peptoids CY1 (a) and CY2 (b). 
 

2.3.5  Oligo-Adamantane Peptoids 

 

Two tetra-adamantyl peptoids (Fig. 2.17) were synthesized using the submonomer 

method with the primary amine sequence shown in Table 2.6.  AD2 required no 
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additional modifications after chain synthesis using 1, Figure 2.4, but AD1 required a 

deprotection step following by a peptide coupling step, Figure 2.18.   The calculated mass 

of AD2 is evident in MALDI-TOF spectra, Figure 2.19, but it may be that the synthesis 

of AD1 resulted in an unexpected outcome.  

 

AD1 (precursor) AD2 
1 Mono-trityl 1,4-diaminobutane 
Propylamine Propylamine 
1 Mono-trityl 1,4-diaminobutane 
Propylamine Propylamine 
Propylamine Mono-trityl 1,4-diaminobutane 
1 Propylamine 
Propylamine Mono-trityl 1,4-diaminobutane 
1  

Table 2.6: Primary amine submonomers used for syntheses of adamantyl-
peptoids AD1 and AD2. 
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Figure 2.17: Schematic illustrations of AD1 and AD2 tetra-adamantyl peptoids. 
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Figure 2.18: Schematic illustration of the process for deprotecting pendant amines 
and conjugating adamantane carboxylic acid to AD2. 
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Figure 2.19: MALDI-TOF spectra of tetra-adamantyl peptoids.  AD1, (a), is 

evidence by the H+ adduct.  In (b), the spectrum indicates H+ and Na+ adducts that are 
somewhat different from the theoretical mass of AD2. 

 
 

2.3.6  Oligodeoxynucleotide-Peptoid Conjugates 

 

The 5′-disulfide ODN IC1 was combined with an excess of TCEP, immediately 

followed by an excess of N-iodoacetyl peptoid in ammonium bicarbonate buffer, (Fig. 

2.20.  The three steps of the reaction are tracked with RP-HPLC (Fig. 2.21) and the 

predicted masses are confirmed by MALDI-TOF (Fig. 2.22).  The reaction generally 

proceeds to greater than 98% yield by ODN. 
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Figure 2.20: Schematic illustration of process for conjugating N-iodoacetyl peptoids 
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Figure 2.21: RP-HPLC separation and detection of commercially prepared 5′ 

disulfide ODN IC1, (a), TCEP-reduced ODN IC2, (b), and peptoid-ODN conjugate 
IC3, (c). 
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Figure 2.22: MALDI-TOF spectra of commercially prepared 5′ disulfide 

ODN IC1, (a), TCEP-reduced ODN IC2, (b), and peptoid-ODN conjugate IC3, (c).
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2.4  Summary 

 

This work has demonstrated several new methodologies that can expand the range 

of applications for peptoids.  I show that (i) branched peptoids can be synthesized by 

incorporating an unprotected diamine submonomer, (ii) that N,N-diethylamine can 

effectively cap the peptoid growing chain, (iii) that six N-terminal modifications for 

peptoids, including two haloacetamides, two acids, and two amines can be prepared, (iv) 

that peptoids can be macrocyclized by incorporating a C-terminus-proximal pendant 

amine, terminating the growing chain with an acid, and using peptide coupling reagents 

to complete the cyclization, (v) that adamantane can be incorporated into peptoids by 

including short spacers between the main peptoid chain and the pendant adamantyl 

moiety, and (vi) that peptoid-oligodeoxynucleotide conjugates can be produced in high 

yield by combining N-terminal iodoacetyl peptoids and 5′ thiol ODNs. 
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3.1  Introduction 

 

 The mass-spectrometric analysis of gene expression (MAGE) methodology is 

designed to unambiguously quantify one or more nucleic acids simultaneously in 

multiple samples, using mass spectrometry for the means of ultimate detection.  An assay 

that makes use of mass spectrometry is desirable because in recent years mass 

spectrometer sensitivity has reached the zeptomolar region and below, and dynamic 

ranges in excess of six orders of magnitude; these capabilities could relax the dynamic 

range restrictions and decrease nucleic acid material requirements inherent in current 

methods for studying gene expression. MALDI-TOF has been demonstrated to detect as 

little as 2 attomoles of peptides near 1000 Da in the standard format, and as little as 42 

zeptomoles in a microspot format 1.  It is theorized that MALDI-TOF systems and 

MALDI-TOF/TOF systems are capable of even greater sensitivity, but the field is 

currently limited by a poor understanding of the origin of noise present in all MALDI-

TOF spectra 2.  Isotopic dilution has been demonstrated to function over 4 orders of 

magnitude in MALDI-TOF systems 3,4. Further, MAGE relies on solution-phase 

hybridization for target recognition, a practice thought to contribute to the greater 

reliability of many single-transcript methods (e.g., real-time PCR) as compared to high-

throughput methods (e.g., cDNA microarrays). 
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 Mass spectrometry alone cannot be used to quantify specific sequences in a 

mixture of nucleic acids.  This is not only because many different sequences can share the 

exact same mass, but also because many constitutively different nucleic acids can have 

nearly identical masses.  Furthermore, the detection of nucleic acids becomes 

increasingly difficult as their masses increase5, and lastly, even if a particular sequence 

could be identified in a mixture, it would not be straightforward to determine its molar 

abundance.  MAGE establishes a one-to-one relationship between nucleic acid sequences 

of interest and small, inert tag molecules that can be distinguished and quantified using 

mass spectrometry.   The MAGE methodology is outlined in Figure 3.1, and involves the 

following five steps: (1) Add probe molecules to unknown cDNA mixture and allow 

them to hybridize; (2) Ligate hybridized ODNs; (3) Separate Biotin-ODNs from mixture; 

(4) Cleave peptoid tags from ODNs and recover peptoids; (5) Add "heavy" peptoids as 

internal standards and perform mass spectrometry. 

The MAGE methodology can be viewed as a version of a ligase detection 

reaction6,7 where the ligation step serves to covalently attach two entities, biotin and a 

peptoid, when the target SOI has been successfully detected.  By making use of a 

thermostable ligase, the detection phase of MAGE (steps 1 and 2) can be executed close 

to the melting temperature of the probes and target, thus minimizing spurious detection 

events.   
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Figure 3.1: The MAGE methodology. The method uses a ligation step to create 
molecules with both peptoid mass tag and biotin moieties in one-to-one proportion with 

sequences of interest.  The peptoids are subsequently cleaved, and quantified using 
isotopic dilution mass spectrometry. 
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The engineering of the ODN-mass tag conjugates is central to MAGE.  The inert 

tags must be chemically compatible with all of the assay steps, they must facilitate 

quantification, and they must be available in a wide variety of masses.  I chose N-

substituted glycine oligomers, or peptoids, to serve as mass tags.  Peptoids are 

synthesized by solid-phase methods with a simple submonomer chemistry, where 

alternating submonomers are primary amines8.  Because there are hundreds of suitable, 

commercially available amines, a large variety of oligomers can be synthesized.  They 

can be produced on an individual basis either manually or in a modified peptide 

synthesizer, or they can be produced in parallel using a mix-and-split method.  Peptoids 

are stable under a variety of thermal, chemical, and biological stresses; for instance, they 

are not subject to proteolytic degradation.  Furthermore, since they are nonnatural, it will 

be easier to distinguish them from any contaminating cellular components that might be 

in the target mixture of nucleic acids.  The peptoids are chosen to represent a suitable 

distribution of masses, and they can be designed to offer other properties, such as a 

chromatographic property set useful for the separation stages of MAGE.  Generally, 

submonomer amines are selected that yield water-soluble, non-cationic peptoids, such as 

methoxyethylamine and glycine. The peptoids, which are produced typically in greater 

than 95% yield and purity, can be purified further using HPLC methods similar to those 

used to purify peptides.  Further details on peptoid synthesis can be found in Chapter 2 of 

this thesis. 

 Once the peptoid tags are constructed, they are conjugated to DNA 

oligonucleotides of length 20 to 50.  A synthetic method was developed that allows 

functionalization of the N-terminus of the peptoid that is stable to cleavage from the 
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peptoid synthesis resin.  Using this method, peptoids with N-terminal iodoacetyl groups 

are produced.  The oligonucleotide is commercially produced with a 5′ disulfide modifier.  

Once reduced, the 5′ sulfhydryl oligonucleotide reacts with the N-iodoacetyl peptoid to 

form a thioether bond. 

Though thioether bonds are not reversible within the conditions used for MAGE, I 

used a commercially available phosphoramidite that contains a photolabile 

orthonitrobenzyl group.  This bond is stable to acid and base, but cleaves quantitatively 

when exposed to long-wave UV light for 5 minutes9-13.  This phosphoramidite is added to 

the 5′ end of the complete oligonucleotide, and is followed by the 5′ disulfide.  Then, 

when the conjugate is formed, the photocleavable bond is later be used to separate the 

DNA portion of the conjugate probe from the mass tag (step 4). 

The last major challenge is quantifying a mixture of dilute oligomeric species of 

unique mass using mass spectrometry (step 5).  For this, I made use of isotopic internal 

standards.  Isotopic dilution is not only convenient for MAGE, but it has also been shown 

theoretically to be the most accurate and sensitive method of mass spectrometric 

calibration4.  It has also been demonstrated for use in proteomics studies14-17.  For each 

peptoid mass tag in our detector library, we make a chemically identical species that has 

an isotopic shift by using D3 bromoacetic acid as a replacement submonomer during 

peptoid synthesis.  Each time the deuterated species is substituted, 2 Da are added to the 

molecular weight of the peptoid (the third deuterium is lost).  This can be repeated 

several times to separate the "heavy" peptoid from its isotopic standard in the mass 

dimension. Because the tags are chemically identical, they will ionize to almost exactly 

the same extent, and they will emerge from a chromatographic pre-separation at nearly 
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the same time.  The ratio of the peak sizes of the two species is used to determine their 

relative quantity.  This could be used to determine exact concentrations, or, by 

hybridizing the two libraries of probes to two different samples, the relative amounts of 

the target species in the two samples could be determined. 

To summarize, the method requires that at least one pair of ODN-cleavable 

linker-peptoid conjugates be created for each sequence of interest. These probes, along 

with 3′ adjacent biotin-labeled ODNs of equal length, are used to interrogate a target 

mixture of cDNA (step 1).  Following hybridization, the two adjacent probes are ligated 

to enhance the specificity of the identification (step 2), and to enable the use of a biotin-

affinity column for removal of non-hybridized peptoid tags (step 3).  The resulting 

mixture is exposed to longwave ultraviolet light to release the peptoid tags (step 4), 

which are quantified using MALDI-TOF mass spectrometry using the isotopically 

labeled peptoids as internal standards (step 5).
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3.2  Experimental 

 

 3.2.1  Oligodeoxynucleotide Probes 

 

 Oligodeoxynucleotides (ODNs) with 3′ BiotinTEG modifiers and 5′ chemical 

phosphorylation were prepared commercially (formerly, Beckman Institute Biopolymer 

Synthesis Facility, Pasadena CA, presently, Qiagen, Valencia, CA).  Peptoids were 

synthesized using the method of Figliozzi et al.8, as detailed in Chapter 2 of this thesis.  

For MAGE, peptoid 5-mers synthesized uniformly of methoxyethylamine submonomers 

(Aldrich Chemical Co., Milwaukee WI) were terminated by a final acetylation with N-

iodoacetic acid (Fluka, via Aldrich Chemical Co., Milwaukee WI).  Isotopically modified 

peptoids were produced by repeated incorporation of D3-bromoacetic acid (Cambridge 

Isotopes, Andover MA). 

ODNs with three consecutive 5′ modifiers were prepared commercially (formerly, 

Beckman Institute Biopolymer Synthesis Facility, Pasadena CA, presently, Qiagen, 

Valencia, CA).  From 3′ to 5′, the modifiers (Glen Research Corp., Sterling VA) were 

Dabcyl-dT, PC-spacer, and C6-Disulfide.  These were resuspended at 50 µM 

concentration in pH 7.2 100 mM NH4HCO3 (Aldrich Chemical Co., Milwaukee, WI) in 

DNase-free water (Gibco, via Invitrogen, Carlsbad, CA).  To this, a 20-fold excess of 

tris-carboxyethylphosphine (TCEP, Pierce Biotechnology, Rockford, IL) was added, and 

immediately followed by a 40-fold excess of N-iodoacetyl peptoid.  The mixture was 
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placed under argon and gently mixed for 72 hours.  The product was purified using 

reverse phase HPLC over a Zorbax 300Extend-C18 column in an Agilent 1100 system.  

The peaks were eluted with a linear gradient of 1-70% B in A over 50 minutes at 0.3 

mL/min (solvent A=100 mM TEAA (Fluka, via Aldrich Chemical Co., Milwaukee, WI) 

in 100% water, solvent B=100 mM TEAA in 90% acetonitrile, 10% water). 

 

 3.2.2  MAGE Methodology 

 

 Target DNA was suspended in 1x ligation buffer for T4 DNA ligase, 66 mM Tris-

HCl, 5 mM MgCl2, 1 mM dithioerythritol, 1 mM ATP, pH 7.5 (Roche Applied Science, 

Indianapolis, IN).  To this, an-approximately 2-fold excess of 5′-peptoid and 3′-biotin 

probes were added and vortexed briefly.  The mixtures were then annealed by heating to 

94°C and gradually cooling to room temperature, at which time T4 DNA ligase was 

added at approximately 1 unit of ligase per 7 pmol of final product.  The mixture was 

ligated at 16°C for at least 12 hours.  Following this, Neutravidin (Pierce Biotechnology, 

Rockford IL) resin was added in approximately 4-fold excess to biotin probes and gently 

mixed for at least 3 hours.  The resulting suspensions were filtered using 0.22 µm 

Ultrafree-MC centrifugal filters (Millipore, Billerica, MA) and the resin washed several 

times each with phosphate buffered saline (Gibco, via Invitrogen, Carlsbad, CA),  

followed by NH4HCO3, 100 mM pH 8.2 (Aldrich Chemical Co., Milwaukee WI), 

followed by DNase-free water  (Gibco, via Invitrogen, Carlsbad, CA).  The resin is then 

resuspended in DNase-free water and exposed while stirring to longwave UV light from a 

B-100AP lamp (UVP Inc., Upland CA) for 20 minutes.  Following this, the solution is 
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removed from the resin using 0.22 µm Ultrafree-MC centrifugal filters, and the resin is 

washed twice with DNase-free water.  The filtrates are pooled and concentrated by 

lyophilization, then analyzed by MALDI-TOF mass spectrometry. 

 

 3.2.3  Analytical Procedures 

 

Analysis of peptoids was accomplished by reverse phase HPLC over a Zorbax 

300Extend-C18 column in an Agilent 1100 system.  The peaks were eluted with a linear 

gradient of 0-75% B in A over 50 minutes at 0.3 mL/min (solvent A=0.1% TFA in 100% 

water, solvent B=0.1% TFA  in 100% acetonitrile).  The column was held at 30° C, and 

detection was accomplished by means of a diode array detector at 220 nm.   

Analysis of ODNs and peptoid-ODN conjugates was achieved by reverse phase 

HPLC over a Zorbax 300Extend-C18 column in an Agilent 1100 system.  The peaks 

were eluted with a linear gradient of 1-70% B in A over 50 minutes at 0.3 mL/min 

(solvent A=100mM TEAA in 100% water, solvent B=100mM TEAA in 90% acetonitrile, 

10% water).  The column was held at 30° C, and detection was accomplished by means 

of a diode array detector at 220 nm, 260 nm and 450 nm. 

Mass spectrometry of crude samples and HPLC fractions was accomplished by 

matrix-assisted laser desorption spectrometry with time-of-flight analysis (MALDI-TOF) 

on an Applied Biosystems Voyager-DE PRO BioSpectrometry Workstation firing a 337 

nm nitrogen laser.  Peptoids were generally analyzed with a matrix of α-cyano-4-

hydroxycinnaminic acid (Aldrich Chemical Co., Milwaukee, WI), formulated at 10 

mg/mL with 0.1% TFA in 50:50 water:acetonitrile.  ODNs and peptoid-ODN conjugates 
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were generally analyzed with a matrix of 3-hydroxypicolinic acid (Aldrich Chemical Co., 

Milwaukee, WI), formulated at 5 mg/mL with 0.05 mg/mL dibasic ammonium carbonate 

(Aldrich Chemical Co., Milwaukee, WI) in 90:10 water:acetonitrile. 

 

3.3  Results and Discussion 

 

 3.3.1  Oligodeoxynucleotide Probes 

 

 In order to demonstrate the synthesis and subsequent cleavage of a peptoid-ODN 

conjugate, the conjugate PC3 was synthesized, Figure 3.2. 
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 Figure 3.2: Schematic illustrated of the preparation of conjugate PC3.  The peptoid-
ODN conjugate PC3 is synthesized by first reducing the 5′ disulfide of PC1 and then 

conjugating an N-iodoacetyl peptoid to PC2. 
 

The dabcyl label immediately 5′ of the main sequence of PC1 is a strongly absorbing 

chromophore at 450 nm, and it serves in this system to facilitate the tracking and 
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purification of the peptoid fragments using RP-HPLC.  The conjugation reaction 

proceeded to approximately 50% yield as indicated by RP-HPLC (Fig. 3.3) which was 

unusually low relative to tests without the dabcyl label. 

Figure 3.3: RP-HPLC chromatogram of crude PC3 product.  RP-HPLC separation 
with detection at 260 nm of the crude PC3 product indicates approximately 50% yield.  

The conjugate PC3 elutes earlier than the starting material PC1. 
 

RP-HPLC was used to separate the desired product from the starting material, and 

MALDI-TOF mass spectrometry confirmed the expected masses of the two species, (Fig. 

3.4).  Because the MALDI-TOF fires a 337 nm laser, the two species were visible in 

MALDI-TOF spectra in both their full-length and fragmented states (Fig. 3.5 and Fig. 

3.6). 
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Figure 3.4: MALDI-TOF analysis of the two main peaks of the RP-HPLC 

separation of crude PC3.  For each fraction, two MALDI-TOF peaks were detected 
because the photocleavable bond is fragmented by the MALDI laser.  The masses of the 
two main peaks agreed with the expected products of (a), Figure 3.4, and (b), Figure 3.5.  
The smaller peaks in (a) and (b) are identical because only the 5′ side of the PC1 material 

was modified in the reaction. 
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Figure 3.5: Schematic illustration of how exposure to longwave UV light by a lamp 
or MALDI laser resulted in the creation of two fragments PC4 and PC5 from the 

PC3 material. 
 

S
5'

OO P
O

O-CH3

NO2

H
N

O
P

O

O

O- TTTGTGTGTTGTTTGTAAAGCTGCCGCCTG

HN
O

O

N

O
H

O

H

H

H

H
O
P
O

O-O

H
N

O
NH

O

N
N

N

3'

S

5'

O

CH3

NO

H
N

O
P

O

O

O-

HN
O

O

N

O
H

O

H

H

H

H
O
P
O

O-O

H
N

O
NH

O

N
N

N

PC5
MW = 9321 Da

OHO P
O

O-
TTTGTGTGTTGTTTGTAAAGCTGCCGCCTG

3'

Longwave UV Light

PC1
MW = 10620 Da

S

S
HO

HO

PC6
C58H79N9O17P2S2

2-

Mol. Wt.: 1300.38

 
Figure 3.6: Schematic illustration of how exposure to longwave UV light by a lamp 
or MALDI laser resulted in the creation of two fragments PC6 and PC5 from the 

PC1 material. 
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 Following purification (Fig. 3.7(a)) the PC3 conjugate was intentionally cleaved 

by 10 minutes of exposure to longwave UV light, and the resulting mixture was analyzed 

by RP-HPLC (Fig. 3.7(b)).  The large DNA fragment, PC5, was detected at 260 nm, 

while the smaller peptoid fragment, PC4, was detected at 450 nm.  The peptoid fragment 

was visible in a number of smaller peaks, possibly due to rearrangement during the 

photocleavage.  The calculated area under the several peaks shown in Figure 3.7(b, 

bottom) is within 95% of the area under the single peak shown in Figure 3.7(a, bottom).  

The expected masses of PC4 and PC5 are observed when they are collected by RP-HPLC 

and analyzed by MALDI-TOF (Fig. 3.8). 
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(b)
Figure 3.7: RP-HPLC chromatogram of cleavage process.  The purified PC3 peptoid-
ODN conjugate was analyzed by RP-HPLC with detection at 260 nm (a, top) and 450 nm 

(a, bottom).  Exposure to longwave UV light resulted in cleavage of PC3 into PC4 and 
PC5.  The DNA fragment PC5 post cleavage is visible at 260 nm (b, top), while the 
peptoid fragment PC4 is visible at 450 nm (b, bottom) because of the dabcyl label. 
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Figure 3.8: MALDI-TOF analyses of cleavage process.  After exposure to longwave 
UV light, the cleavage products of PC3 were collected and analyzed by MALDI-TOF.  
The fragment visible in 260 nm (a) had a mass that agreed with PC5, and the fragment 

visible in 450 nm (b) had a mass that agreed with PC4. 
 

 3.3.2  Mass-Spectrometric Quantification 

 

 Two 5-mer uniform methoxyethylamine peptoids were synthesized to 

demonstrate quantification using isotopic dilution MALDI-TOF (Fig. 3.9).  Following 

post-synthetic lyophilization, the two peptoids were dissolved in water at equal molar 

concentrations, and combined at specific volumetric fractions.  The resulting mixtures 

were analyzed by MALDI-TOF, and three spectra were recorded for each mixture.  

Because of naturally occurring 13C isotopes, as well as hydrogen incorporation into ID2 

due to impurities in D3-bromoacetic acid, it was necessary to calculate the area under a 
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curve spanning several Dalton (Fig. 3.10).  The ratios of the areas corresponding to ID1 

and ID2 were calculated and compared to the volumetrically measured mole fractions 

(Fig. 3.11 and Table 3.1).  An example spectra for a 1:1 mixture of the two peptoids ID1 

and ID2 (Fig. 3.9).    The method was tested over 5 orders of magnitude.  It is observed 

that the method functions optimally within 2.  This is due to a combination of noise from 

impurities in the peptoid solutions as well as noise inherent to the MALDI process.  A 

useful feature of isotopic dilution is that the amount of standard can be adjusted so that 

the comparison measurement is made within an optimal range. 
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Figure 3.9: Schematic illustrations of ID1 and ID2 syntheses.  Isotopically-shifted 
“heavy” peptoids such as ID2 are synthesized by incorporating D3-bromoacetic acid. 
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Figure 3.10: MALDI-TOF spectrum of 1:1 mixture of ID1 and ID2. 
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Figure 3.11: Measured mole fractions compared to predicted mole fractions.  

Peptoid ID1 and 10-fold deuterated peptoid ID2 were mixed in various proportions, and 
analyzed by MALDI-TOF.  The areas under the curves respective to each peptoid were 

used to estimate the relative mole fractions and compare those estimates to the 
volumetrically measured mole fractions. 
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Volumetric   MALDI-TOF Prediction Volumetric   MALDI-TOF Prediction 
ID1 ID2 ID1 ID2 ID1 ID2 ID1 ID2 

0.001 0.999 0.005 0.995 0.500 0.500 0.505 0.495 
0.001 0.999 0.004 0.996 0.500 0.500 0.501 0.499 
0.005 0.995 0.009 0.991 0.600 0.400 0.603 0.397 
0.005 0.995 0.008 0.992 0.600 0.400 0.644 0.356 
0.010 0.990 0.016 0.984 0.700 0.300 0.696 0.304 
0.010 0.990 0.014 0.986 0.700 0.300 0.681 0.319 
0.010 0.990 0.050 0.950 0.750 0.250 0.665 0.335 
0.010 0.990 0.060 0.940 0.750 0.250 0.639 0.361 
0.010 0.990 0.026 0.974 0.800 0.200 0.764 0.236 
0.050 0.950 0.062 0.938 0.800 0.200 0.737 0.263 
0.050 0.950 0.053 0.947 0.900 0.100 0.841 0.159 
0.100 0.900 0.074 0.926 0.900 0.100 0.863 0.137 
0.100 0.900 0.082 0.918 0.900 0.100 0.874 0.126 
0.100 0.900 0.178 0.822 0.900 0.100 0.785 0.215 
0.100 0.900 0.115 0.885 0.900 0.100 0.876 0.124 
0.100 0.900 0.134 0.866 0.950 0.050 0.933 0.067 
0.200 0.800 0.197 0.803 0.950 0.050 0.922 0.078 
0.200 0.800 0.229 0.771 0.990 0.010 0.980 0.020 
0.250 0.750 0.340 0.660 0.990 0.010 0.984 0.016 
0.250 0.750 0.223 0.777 0.990 0.010 0.978 0.022 
0.300 0.700 0.281 0.719 0.990 0.010 0.946 0.054 
0.300 0.700 0.293 0.707 0.990 0.010 0.984 0.016 
0.400 0.600 0.438 0.562 0.995 0.005 0.986 0.014 
0.400 0.600 0.400 0.600 0.995 0.005 0.982 0.018 
0.500 0.500 0.501 0.499 0.999 0.001 0.973 0.027 
0.500 0.500 0.472 0.528 0.999 0.001 0.982 0.018 

Table 3.1: Measured mole fractions compared to predicted mole fractions. Peptoid 
ID1 and 10-fold deuterated peptoid ID2 were mixed in various proportions, and analyzed 

by MALDI-TOF.  The areas under the curves respective to each peptoid were used to 
estimate the relative mole fractions and compare those estimates to the volumetrically 

measured mole fractions. 
 

 

 3.3.3  MAGE Methodology 

 

In order to test that the MAGE methodology can discriminate targeted sequences 

from incorrect sequences, four target mixtures were analyzed for a 60mer sequence from 

mouse muscle cells:  
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(A) 0.5 nmol 60-mer ODN of antisense myogenin 

(B) 1.0 pmol APETALA cDNA 

(C) 1.0 pmol each APETALA and Myogenin "full length" cDNA 

(D) 1.0 pmol Myogenin "full length" cDNA 

Here, cDNAs were random-primed first-strand syntheses of clones from mouse 

C2C12 tissue culture (Myogenin) or Arabadopsis thaliana (APETALA).  Target A 

represents a high-concentration positive control, target D represents a negative control, 

and targets B and C are intermediate points.   The sequence of target A is: 5′ AAA CAC 

ACA ACA AAC ATT TCG ACG GCG GAC TGG TTC CAG AGG ACA CGA CTA 

CTA TGG CCC 3′. 

 To interrogate these targets, the probes M1 and M2 were prepared (Fig. 3.12).  

M2 is a 30-mer ODN that is 5′ phosphorylated and immediately 3′ of the 30-mer ODN 

M1.  The combined 60-mer sequence is exactly complementary to the ODN target A, and 

is also complementary to sequences found within the majority of the random-primed 

myogenin cDNA targets. 
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Figure 3.12: Probes M1 and M2.  Probe M1 is a 30-mer ODN 5′ reversibly conjugated 
to a peptoid. Probe M2 is a 30-mer ODN that is 5′ phosphorylated and 3′ biotinylated.  
When arranged 5′ M1 M2 3′, they form a 60-mer probe for the mouse gene myogenin. 
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 The MAGE assay was executed on each sample.  After the photocleavage stage, 

those target mixtures where M1 and M2 were ligated (indicating a successful detection 

event) should contain the peptoid fragment M1P (Fig. 3.13).   At the quantification stage, 

no isotopic standard peptoid was added; only the presence of the correct probe was 

sought. 
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Figure 3.13: Release of M1P tag.  During MAGE, the successfully ligated M1-M2 
probes are captured by Neutravidin resin.  The peptoid fragments M1P are freed by 

exposure to longwave UV light. 
 

 MALDI-TOF mass spectrometry showed the presence of the expected peptoid 

fragment MP1 only in target mixture A, the higher-concentration ODN target (Fig. 

3.14(a)).  In the other mixtures, no signal was detected (Fig. 3.14(b)). 
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Figure 3.14: MALDI-TOF analysis of M1P tag.  The MAGE methodology was 

employed to detect a 60-nucleotide segment of the myogenin gene in four mixtures.  
Mixture A contained 500 pmols of a synthetic ODN myogenin target, Mixtures B and C 

contained 1 pmol of myogenin cDNA, and mixture D contained only cDNA from the 
APETELA gene.  MAGE detected the target in mixture A, (a), but did not in mixtures B, 

C or D (representative spectrum, b). 
 

 

A second test of the MAGE methodology employed six target mixtures of two 

synthetic 60-mer anti-sense ODNs, T1 and T2;  T1 is from mouse myogenin, T2 is from 

mouse paraoxonase.  The six mixtures combine the two ODNs in various proportions as 

shown in Table 3.2. 
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 pmols T1 pmols T2 
A 250 0 
B 125 125 
C 25 225 
D 2.5 247.5 
E 0.25 249.75 
F 0 250 

Table 3.2: Relative amounts of T1 and T2 in targets.  The targets for experiment 2 are 
mixtures of anti-sense oligonucleotides representing mouse myogenin and mouse 

paraoxonase in various proportions. 
 

The sequence of the T1 target is: 5′ AAA CAC ACA ACA AAC ATT TCG ACG 

GCG GAC TGG TTC CAG AGG ACA CGA CTA CTA TGG CCC 3′, while the 

sequence of the T2 target is: 5′ CCG TGA CAC AAG GTG TTT CGA GAA ATG ACA 

CTA GAC ACT GTT CGG TCG ACG TGC GTG CAG 3′. 

 To interrogate these targets, the probes M3 and M4 were prepared (Fig. 3.15).  

M3 is a 30-mer ODN that is 5′ phosphorylated and immediately 3′ of the 30-mer ODN 

M4.  The combined 60-mer sequence is exactly complementary to the ODN target T1, 

and is also complementary to sequences found within the majority of the random-primed 

cDNA targets. 
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Figure 3.15: Probes M3 and M4. Probe M3 is a 30-mer ODN 5′ reversibly conjugated 
to a peptoid. Probe M4 is a 30-mer ODN that is 5′ phosphorylated and 3′ biotinylated.  
When arranged 5′ M3 M4 3′, they form a 60-mer probe for the mouse gene Myogenin. 

 

The MAGE assay was executed on each sample.  After the photocleavage stage, 

those target mixtures where M3 and M4 were ligated (indicating a successful detection 

event) should contain the peptoid fragment M3P (Fig. 3.16).   At the quantification stage, 

no isotopic standard peptoid was added; only the presence of the correct probe was 

sought. 
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Figure 3.16: Release of M3P tag. During MAGE, the successfully ligated M1-M2 
probes are captured by Neutravidin resin.  The peptoid fragments M1P are freed by 

exposure to longwave UV light. 
 

MALDI-TOF mass spectrometry showed the presence of the expected peptoid 

fragment MP3 in mixtures A, B, C, D, and E (Fig. 3.14(a-e)).  In the negative control, 

mixture F, the peptoid MP3 was not detected, (Fig. 3.14(f)).  During the course of the 

MALDI-TOF analysis, the settings of the spectrometer were altered to obtain the best 

possible signal for each sample.  Thus, the relative peak sizes in Figures 3.14(a-e) are not 

indicative of the abundances of T1.  Furthermore, since the kinetics of hybridization 

between the probes and targets used in this experiment were not studied independently, 

and the hybridization conditions were fixed across mixtures A-F, it is not possible to 

deconvolute the effect of slower hybridization from the effect of lower target 

concentration. 
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Figure 3.17: MALDI-TOF Detection of M3P tags. The MAGE methodology was 

employed to detect a 60-nucleotide anti-sense ODN of the myogenin gene in six 
mixtures.  Each mixture contains 250 pmols of ODN.  Mixture A contains entirely T1, 
mixture F contains entirely T2, and B-E are intermediate amounts listed in Table 3.3.  

The correct expected mass of the peptoid fragment MP3 was detected in samples A-E (a-
e), but not clearly in F (f). 
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3.4  Summary 

 

 A methodology for measuring the absolute abundances of specific nucleic acid 

sequences by means of mass spectrometry has been developed.  The method involves 5 

steps: (1) add probe molecules to unknown cDNA mixture and allow them to hybridize; 

(2) ligate hybridized ODNs; (3) separate Biotin-ODNs from mixture; (4) cleave peptoid 

tags from ODNs and recover peptoids; (5) add "heavy" peptoids as internal standards and 

perform mass spectrometry. 

 The chemistry of the reversible peptoid mass tag-ODN probes has been 

demonstrated in detail using a dabcyl label to facilitate RP-HPLC purification of the 

photocleavage fragments.  The effectiveness of isotopic dilution for quantitative MALDI-

TOF has been demonstrated over several orders of magnitude.  Finally, the complete 

MAGE methodology has been executed on two sets of target mixtures.  The results show 

that MAGE may be capable of discriminating correct sequences from incorrect 

sequences, but further study is necessary to determine is MAGE can function 

quantitatively.
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4.1 Introduction 

 

 In their most general form, gene expression data are one or more measurements of 

the extent to which one or more genes of interest are being transcribed in a sample of 

tissue or cells.  In simpler examples of gene expression analysis, such as Northern blots1, 

one or several genes are studied at one or several conditions.  In these cases, sufficient 

analysis comprises simple estimations of confidence intervals2.  Recently, techniques 

such as hybridization-based microarrays have been developed that can simultaneously 

measure the expression levels of thousands of genes of interest3,4.  Data such as these are 

not easily visualized in a helpful way, and significant analysis presents a further 

challenge.  Once the data have been cursorily screened for genes of exceptional interest 

or outlying points, investigators must turn to more sophisticated techniques for locating 

statistically significant information within their data. 

 The unit of gene expression data presented for analysis is a matrix described by 

several features.   Each element of the matrix is the value assigned the expression of a 

particular gene in a particular condition.  The matrix can be viewed as a set of column 

vectors, with each vector carrying either the data for one gene at all conditions of interest, 

or the data for all genes of interest at one condition.  In the first case, the gene vectors 

exist in a potentially reducible condition space of a number of dimensions equal to the 

number of conditions of interest.  In the second case, the condition vectors exist in the 
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potentially reducible gene space where the number of dimensions is equal to the number 

of genes of interest.  The actual value stored at a given location in the matrix could 

describe the gene expression in a variety of ways.  Most commonly, the value is a 

positive function of the number of mRNA transcripts of the gene of interest found in a 

sample of tissue or cells at the condition of interest5.  The nature of this function is a 

combination of the choice of gene expression data-collection method and the 

preprocessing steps that are applied to the raw data.  Often, the contribution to this 

function from the controlling physics of the method of choice is unknown6. 

 Several pioneering studies of large-scale gene expression analysis generated data 

describing the expression of several thousands of genes over 5 to 100 conditions7-9.  In 

some of these studies, the investigators examined the relative locations of the gene 

vectors in condition space.  An example of this was the study by Chu et al. of the 

transcriptional program of sporulation in budding yeast7, which sought to identify related 

or coexpressed genes, and hypothesized that such genes would be represented by gene 

vectors somehow close to one another in condition-dimensional space.  It remains a 

subject of great interest how best to define close, and how best to determine statistically 

significant groups of close genes.  In other studies, the investigators examined the relative 

locations of the condition vectors in gene space.  An example of this was the study by 

Sorlie et al. of human breast tumors9,10, which hoped to correlate some reduction of the 

gene expression data with the outcome of the diseased patient, and hypothesized that the 

condition vectors associated with tumors from patients with similar outcomes would be 

similarly close to one another in gene-dimensional space.   
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A significant and currently unavoidable challenge of large-scale gene expression 

analysis is that because thousands of genes are simultaneously analyzed, and each 

experiment represents a significant cost, the matrix of data presented for analysis will be 

highly rectangular; the genes dimension will be much larger than the conditions 

dimension11.  In the Chu et al. example, the space for analysis is extremely rich, and 

highly unlikely to be degenerate.  The Sorlie et al. example, and those like it12,13, on the 

other hand, presents a very sparsely populated space.  It is far more difficult to analyze 

the Sorlie space using robust techniques of linear algebra and multivariate statistical 

inference, not only because the vectors fail to fully define the space, but also because so 

many analytical techniques suffer from what is known as the curse of dimensionality14.  

The curse is a catch-all term for problems arising from the fact that the volume, and 

computational complexity, of a space grows exponentially with the number of 

dimensions. 

Two important goals of an analysis like those employed in the canonical studies 

discussed above are to produce intelligible visual representations of the high-dimensional 

data, and to develop and apply algorithms capable of identifying significant correlations 

in the data that investigators could not easily notice without this aid.  These algorithms 

might be designed to search the data for correlations that support a predetermined 

hypothesis, or they might be designed to find unspecified correlations that might aid the 

investigator in creating testable hypotheses.  The most common type of analysis applied 

to gene expression data is some form of clustering algorithm designed to identify subsets 

of data that are similar. 

Visualization Strategies 
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By far the most common visualization strategy for gene expression data is to 

simply depict the relevant portion of the data matrix with each element colored to 

represent the value of the element7,9,15-17.  This method has the main advantages of being 

easily implemented and spatially compact; it is a simple task to locate data of interest.  

However it does not offer what many modern multivariate data visualization techniques 

offer, which is either some mathematical consistency, such as projection onto orthogonal 

basis functions18, or a representation that is especially suited for analysis by the human 

brain, such as Chernoff faces19,20. 

Andrews proposed to plot multivariate data in two dimensions by mapping the 

data vectors onto a simple trigonometric polynomial basis function21.  If each vector is 

represented as ),...,(~
1 nvvv = , where n is the number of dimensions, then the Andrews plot 

of the vector is generated by the function 

...)2cos()2sin()cos()sin(
2

)( 5432
1 +++++= tvtvtvtvvtFv    (Eq. 4.1) 

over the domain )( ππ <<− t . 

Andrews curves allow multiple points of multivariate data to be plotted in a single 

two dimensional space simultaneously, and allow clusters to be visually distinguished.  

The reason for this clustering behavior is that Andrews curves, like all orthogonal basis 

functions, preserve the means, distances, and variances of untransformed data.  In 

particular, the Euclidian distance between any two vectors is proportional to a 

straightforward view of the distance between two corresponding transformed functions. 

( ) dttFtFuv uv∫
−

−∝−
π

π

22 )()(~~       (Eq. 4.2) 
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Andrews curves have been applied to data of biological interest such as pharmaceutical 

formulation data22 and psychiatric data23, and they have been generalized with wavelet 

theory18.  Here, I present the application of Andrews curves to the Chu et al. data set and 

the Sorlie et al. data set. 

Data Reduction Strategies: Principal Components Analysis 

 Even though Andrews curves can map vectors of any length to two-dimensional 

space, they generally lose meaning as the number of dimensions increase; the curves 

become confusing rather than elucidating21.  Further, since the first, low frequency, terms 

in the Fourier series have the most influence on the visual appearance of the plot, some 

preprocessing of the data is helpful.  Andrews and others24 suggest that the data be 

subjected to a deterministic data reduction strategy such as principal components analysis 

(PCA) in order to both reduce the number of dimensions and to sort the dimensions in 

order of importance.  In algorithmic terms, PCA identifies the direction of greatest 

variance in a set of vectors, ranks this as the first eigenvector, and then proceeds to 

iteratively identify the direction of next-greatest variance that is orthogonal to all those 

eigenvectors previously identified.  The algorithm can be terminated by design, if only a 

small number of eigenvectors account for a satisfactory fraction of the variance, or it is 

terminated by necessity when the number of eigenvectors reaches whichever is smaller, 

either the number of vectors, or the length of the vectors.   

PCA has been successfully applied to gene expression data to differentiate 

between eigenvectors associated with artifacts, noise, and biological processes25-27.  PCA 

is simple to execute computationally using singular value decomposition (SVD)28, but it 

is limited by its linear nature.  This is illustrated by two examples of two-dimensional 
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data, Figure 4.1a where PCA reduces the data to a single dimension successfully, and 

Figure 4.1b where PCA finds the variance to be equally accounted for by any choice of 

two eigenvectors; the simple nonlinear pattern is not extracted.  Attempts have been made 

to design non-linear feature extraction algorithms29, which often rely on transforming the 

data into a set of distances between the input vectors, and subjecting those distances to a 

linear analysis.  In this work, I apply PCA to reduce unwieldy data sets for visualization 

with Andrews curves. 
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Figure 4.1: Two example data sets illustrating effective use of PCA.  PCA is capable 
of extracting a linear pattern such as in (a), where the variance in the data exists almost 

entirely along one eigenvector, but it is not capable of extracting a nonlinear pattern such 
as in (b), where PCA would report a roughly equal amount of variance along any two 

eigenvectors. 
 

Data Reduction Strategies: Model-Based Clustering 

Another challenge of gene expression analysis is performing computational tasks 

in a manner that is robust to noise, especially noise arising from the chosen method of 

gene expression data collection.  Cellular circuitry is subject to noise of biological origin, 

and sometimes relies on it for critical operations30.  It is a daunting challenge to separate 

the sources of noise in a complex process such as a gene regulation network, and 

although a number of sophisticated statistical tests have been proposed to help separate 
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machine noise from biological noise in gene expression studies31-35, a central goal of 

investigators is to develop methods for analysis that penetrate all types of noise to infer 

persistent correlations from the data.  The two general categories of noise that confound 

analytical techniques are strong outliers, which are small numbers of points that are 

relatively distant from associated points, and dense noise, which describes data where 

persistent corollaries are obscured by closely associate data that is easily confused for the 

feature of interest. 

The primary analytical method employed in the studies of Chu et al., Sorlie et al., 

and many other studies is a clustering algorithm that recursively binds the two vectors 

with the highest Pearson correlation coefficient into nodes until a single node is reached, 

resulting in a binary tree, or dendrogram15.  Such dendrograms can also be generated by 

top-down recursive bisection36.  Another common clustering algorithm that does not rely 

on multivariate statistics is k-means37.  K-means, after an initial set of cluster centroids is 

provided, alternates between assigning vectors to the nearest centroid and recalculating 

the values of the centroids from the vectors assigned to it, until convergence.  All of these 

heuristic methods are computationally efficient, parallelizable, and avoid pitfalls such as 

over-fitting and the curse of dimensionality.  However, these methods are not statistically 

robust. 

A variety of more sophisticated alternatives have been proposed that employ 

model-based clustering38-46, where the vectors are assumed to have been generated by 

some combination of probability distribution functions, and an algorithm is applied to 

compute one or more such combinations that aptly describe the data.  Although these 

methods can be very powerful, they challenge the investigator with new problems.  For 
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example, whereas the method of Eisen et al. is deterministic, most model-based methods 

are probabilistic searches for local extrema.  Furthermore, these methods require care to 

avoid overfitting and require significant preprocessing to help reduce the computational 

time for high-dimensional data. 

Mixture modeling is not widely applied to gene expression data.  In general, the 

technique is more suited to classifying genes than it is to classifying conditions, such as 

in the Sorlie et al. study.  The reason for this is that when classifying conditions, there are 

a small number of vectors (representing, e.g., 10-102 tissues) in a high-dimensional space 

(103-104 genes), and the large nondiagonal covariance matrices used to describe the 

clusters in this space will frequently become singular during the EM estimation.  Thus, 

without further modification, mixture modeling is best suited to cluster a large number of 

low-dimensional vectors, such as those from the Chu et al. data. 

A common, widely applied strategy for model-based clustering is to assume that 

the data arise from a linear combination of multivariate Gaussian distributions38,42,47, and 

employ an algorithm such as expectation-maximization48 to calculate the parameters of 

such a combination that maximize the probability that the model generated the input data.  

This method of clustering allows the investigator to use knowledge of inherent physics or 

experimental experience to select a model that will produce the most informative results 

for the data of interest.  Furthermore, because these methods are based on well-studied 

statistical models, other analytical problems such as selecting the number of clusters can 

also be approached from a fundamental statistical perspective.  Because Gaussian 

distributions will model data that lacks inherent Gaussian behavior poorly, investigators 
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have applied a number of heuristic methods for accounting for non-Gaussian behavior 

such as strong outliers32,40.   

McLachlan et al.  has proposed making use of mixtures of T-distributions (MoT), 

with multivariate form 
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in order to model data that are significantly more noisy than those which are likely to be 

created by Gaussian distributions39,49,50.  In a T-distribution, the parameter ν is known as 

the degrees of freedom.  As this approaches infinity, the T-distribution tends to the 

Gaussian distribution (Fig. 4.2d), whereas in the limit of ν=1, the T-distribution tends to 

the Lorentzian, or Cauchy distribution (Fig. 4.2a). 
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Figure 4.2: Univariate T-distributions at several degrees of freedom.  This illustrates 
that as the number of degrees of freedom increase, the distributions become more 

Gaussian, and less permissive to outliers. 
 

Studies suggest that gene expression data generated by cDNA microarrays have a 

generally Gaussian distribution51.  The standard method of preprocessing popularized by 

Brown actually yields Lorentzian distributions because the final data is what is termed 

“ratio of medians,” and involves dividing one Gaussian-distributed data set by another 

(see Appendix A).  Despite this, it remains unknown what models serve to extract the 

most useful biological clusters from gene expression data.  Even if machine noise were 

entirely eliminated, investigators would still choose different models depending on the 

information they hope to gain.  Tolerance to outliers and dense noise remains a critical 
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requirement of any gene expression data clustering technique.  This work describes 

making use of Mixtures of Lorentzian distributions (MoL) to consistently identify 

persistent clusters despite the presence of both types of noise. 

 

4.2  Experimental 

 

 4.2.1  Algorithm for Clustering by Expectation-Maximization 

 

  Clustering algorithms that make use of expectation-maximization (EM) rely on 

Baye’s rule, 

dxxpxdpdp
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     (Eq. 4.4) 

as their fundamental basis.  Heuristically, Baye’s rule updates a prior hypothesis with 

posterior experimental knowledge.  The EM algorithm is designed to continuously 

improve the likelihood of the data over a set of model parameters by alternating between 

two steps.  The E-step calculates the log-likelihood of the full data set over the proposed 

parameters, and the M-step calculates a new set of parameters that maximize the log-

likelihood of the E-step.  This can be applied to optimize the parameters of a finite 

mixture of k Gaussian distributions (MoG) of weight π (MoG), 
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where µi is the mean and Σi is the covariance of the ith D-dimensional Gaussian 

distribution, 
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The E-step, which is a form of Eq. 4.4, requires calculating the posterior probability τ 

representing the responsibility for each point of each of the k Gaussian distributions, 
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updates the parameters over all data N, which are the means and covariances of the k 

Gaussian distributions, as well as the weighting factors, π.  Convergence is measured by 

the fractional change in the log likelihood of the complete model over the data; it tends to 

zero as the algorithm reaches a maximum log likelihood.  Initial values for the model 

parameters are provided either randomly or strategically by the investigator, and the 
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choice determines whether the EM algorithm will eventually reach a local or global 

maximum log likelihood. 

 The algorithm for Mixture of Lorentzians (MoL), adapted from McLachlan et 

al.,39 differs slightly from that of MoG (Eqs. 4.7-4.10).  The E-step requires calculating 

the posterior probability, τ,  and a second weighting factor, u, which is a function of δ, 

the Mahalanobis squared distance between x and µ. 
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Once these are computed for the kth iteration, the M-step is performed to update the mean 

and scatter.  The weighting vector π is updated in the same manner as MoG. 
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The method of McLachlan et al. was further adapted by adding a heuristic cluster 

deletion algorithm to handle a problem of EM clustering of multivariate data.  In both 

MoG and MoL, the covariance matrix must be inverted, and if the covariance of a 

distribution has become close to singular, the calculation will fail.  This problem most 

commonly arises when the observations assigned to one cluster form a lower-dimensional 
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linear subspace. In order to overcome this, in our algorithm, when a cluster is nearly 

singular, it is deleted and the weighting factors for the remaining clusters are recomputed.  

This has the consequence of allowing the log likelihood to decrease between steps of the 

EM algorithm.  I refer to these algorithms as adaptive mixture of Gaussians or mixture of 

Lorentzians. 

 

 4.2.2  Computational Methods 

 

All experiments were conducting using MATLAB Release 13 (The Mathworks, 

Inc.), on one of several machines: Macintosh G4 running System X, IBM Pentium M 

running Windows XP Pro, Dual Pentium III running Redhat Linux, or Sun Ultra 60 

running Solaris 8.  Complete code for the Adaptive Mixture of Lorentzians, Adaptive 

Mixture of Gaussians, and utility software are in appendix B.   

 

 4.2.1  Sources of Data 

 

 All the data analyzed in this study were obtained from the Stanford Microarray 

Database (http://genome-www5.stanford.edu/).  In particular, the yeast data of Chu et al.7 

served as an example of a richly populated, low-dimensional space, and the extensive 

study of human breast cancer first described by Perou et al.52  served as an example of a 

sparsely populated, high-dimensional space.  Specifically, the breast cancer data were 

taken from Sorlie et al.10, supplemental table 6, and the yeast data was taken from the 
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entire data set of Chu et al.  No preprocessing beyond that embodied by particular 

algorithms was applied (for example, PCA requires centering of data). 

 

4.3  Results and Discussion 

 

 4.3.1  Andrews Curves 

 

 The study of Chu et al. uses cDNA microarrays to measure the expression of 

6118 genes of Sacchraromyces cerevisiae at seven time points during sporulation: 0, 0.5, 

2, 5, 7, 9, and 11 hours.  The genes that showed the greatest induction or repression 

during the experiment were classified into seven groups: Metabolic (52 genes), Early I 

(62), Early II (47), Early-Mid (95), Middle (158), Mid-Late (61), and Late (5).  For each 

of these classes, a subgroup of representative genes was used to create average expression 

patterns for the class (Table 4.1).   

Metabolic Early I Early II Early-Mid Middle Mid-Late Late 
ACS1 ZIP1 KGD2 YBL078C YSW1 CDC27 SPS100 
PYC1 YDR374C AGA2 QRI1 SPR28 DIT2 YKL050C 
SIP4 DMC1 YPT32 PDS1 SPS2 DIT1 YMR322C 
CAT2 HOP1 MDR1 APC4 YLR227C  YOR391C 
YOR100C IME2 SPO16 KNR4 ORC3   
CAR1  NAB4 STU2 YLL005C   
  YPR192W YNL013C YLL012W   
Table 4.1:  Genes used by Chu et al. to create average expression patterns for each 

of seven classifications. 
 

  I process the data in their entirety using principal components analysis (PCA) 

implemented by singular value decomposition (SVD).  In this case, the data are 

represented by 6118 vectors in 7-dimensional space.  The PCA analysis does not reduce 
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the length of the vectors.  The resulting 7 orthogonal subspaces are ranked in order of the 

fraction of the variance they account for in Figure 4.3. 
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Figure 4.3: The full data of Chu et al. is processed by PCA implemented with SVD.  
The resulting eigenvalues are used to show the fraction of the total variance explained as 

more principal components (eigenvectors) are included. 
 

 Chu et al. present the seven-dimensional data using the method of Eisen et al. 

described earlier, by assigning the expression level a color on a map from red (induced) 

to green (repressed) with black indicated an unchanged expression level.  Our alternative 

to this using Andrews curves maps the PCA-arranged vectors for the genes of interest 

onto an orthogonal Fourier subspace that preserves the mathematical relationships 

between the original vectors and allows viewers to properly infer the distance between 

vectors as the distance between lines on the Andrews plot. 
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 The first visualization task is to distinguish clustered vectors from unclustered 

vectors.  This is demonstrated in Figure 4.4, where six clustered metabolic genes (ACS1, 

PYC1, SIP4, CAT2, ORF YOR100C, CAR1) yield proximal Andrews curves, and three 

randomly selected, unclustered genes (ORFs YAR052C, YAR053W, YAR060C ) do not.  

This visualization can be accomplished with as few as three principal components (Fig. 

4.5).   
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Figure 4.4: After PCA processing, the data of Chu et al. is mapped onto the 
Andrews space and plotted. In black, six genes designated as belonging to the 

metabolic class (ACS1, PYC1, SIP4, CAT2, ORF YOR100C, and CAR1), and in red, 
three random genes (ORFs YAR052C, YAR053W, and YAR060C).  Here, all seven 

principal components are used for the Andrews plot. 
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Figure 4.5: After PCA processing, the data of Chu et al. is mapped onto the 
Andrews space and plotted. In black, six genes designated as belonging to the 

metabolic class (ACS1, PYC1, SIP4, CAT2, ORF YOR100C, and CAR1), and in red, 
three random genes (ORFs YAR052C, YAR053W, and YAR060C).  Here, only three 

principal components are used for the Andrews plot. 
 

 The second visualization task is to distinguish one group of clustered vectors from 

another similarly clustered group.  In Figure 4.6, Andrews curves are used to distinguish 

3 metabolic genes (ACS1, PYC1, SIP4) from 3 middle genes (YSW1, SPR28, SPS2). 
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Figure 4.6: After PCA processing, the data of Chu et al. is mapped onto the 
Andrews space and plotted. In black, three genes designated as belonging to the 

metabolic class (ACS1, PYC1, SIP4), and in red, three genes designated as belonging to 
the middle class (YSW1, SPR28, SPS2).  Here, all seven principal components are used 

for the Andrews plot. 
 

 The effect of altering the number of principal components used for Andrews plot 

is illustrated in Figure 4.7, where a different, but usable perspective is presented using 

between 4 and 7 principal components.  It is especially helpful to examine a range of 

principal components when distinguishing between groups of proximal vectors.  For 

example, if three genes from the middle class (ORC3, ORF YLL005C, ORF YLL012W) 

are compared to three genes from the mid-late class (CDC27, DIT2, DIT1), the resulting 

Andrews plots vary widely in their usefulness across the range of 4 to 7 principal 

components (Fig. 4.8).   
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Figure 4.7: After PCA processing, the data of Chu et al. is mapped onto the 
Andrews space and plotted. In black, three genes designated as belonging to the 

metabolic class (ACS1, PYC1, SIP4), and in red, three genes designated as belonging to 
the middle class (YSW1, SPR28, SPS2).  Here, the data are plotted for four choices of 

number of principal components. 
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Figure 4.8: After PCA processing, the data of Chu et al. is mapped onto the 

Andrews space and plotted. In black, three genes designated as belonging to the mid-
late class (CDC27, DIT2, DIT1), and in red, three genes designated as belonging to the 
middle class (ORC3, ORF YLL005C, ORF YLL012W).  Here, the data are plotted for 

four choices of number of principal components. 
 
 

  I also apply the method of Andrews to the reduced breast cancer data of Sorlie et 

al., which are represented as a set of 122 vectors in 552-dimensional space.  All of the 

microarray analyses conducted using the 122 tissue samples measured the expression 

level of many thousands of genes, but the data were subsequently reduced to a subset of 

552 genes that met Sorlie et al.’s definition of “intrinsic.”  Briefly, these genes’ 

expression levels vary greatly among patients, but minimally between pairs of samples 

drawn from the same patient.  The investigators robustly cluster the tumor data into five 

classes: Normal, Luminal A, Luminal B, Basal, and ERBB2+.  These classes strongly 
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correlate with patient outcome as measured by time to distant metastasis.  Outcomes are 

best for patients whose tumors are classified as Luminal A, and become progressively 

worse for Luminal B, Basal, and are the worst for ERBB2+. 

 The 122x552-dimensional space is sparsely populated, and cannot support more 

than 122 independent linear subspaces.  Further, it will be necessary to reduce the number 

of dimensions to fewer than 10, the point where Andrews curves become intelligible.  

Thus, for these data, PCA will accomplish significant dimensional reduction, as well as 

ordering the eigenvectors in order of statistical importance.  Compared to the data of Chu 

et al., the Sorlie et al. data is much less easily explained by a small number of principal 

components (Fig. 4.9). 

20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

%
 o

f V
ar

ia
nc

e 
E

xp
la

in
ed

 b
y 

pr
in

ci
pa

l c
om

po
ne

nt
s 

1 
th

ro
ug

h 
12

2

Principal components used

Figure 4.9: Plot of analysis of PCA reduction of data of Sorlie et al. implemented 
with SVD.  The resulting eigenvalues are used to show the fraction of the total variance 

explained as more principal components (eigenvectors) are included. 
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PCs Percent of total variance explained 
1 4.20 
2 6.92 
3 9.31 
4 11.5 
5 13.5 
6 15.3 
7 17.0 
8 18.7 
9 20.3 
10 21.9 

Table 4.2:  The reduced data of Sorlie et al. is processed by PCA implemented with 
SVD.  The largest number of principal components (PCs) that can realistically be 

visualized with Andrews curves accounts for approximately 21.9% of the variance in the 
data. 

 

 Despite the limited explaining power of 1-10 principal components for the Sorlie 

et al. data, Andrews curves can still helpfully visualize tumor classes.  When applied to 

three tumors from the Luminal A class (Norway FU15-BE, Norway FU37-BE, Norway 

FU16-BE) and three tumors from the ERRB2+ class (Northway FU18-BE, Norway 

FU04-BE, Norway 65-2ndT), the resulting Andrews curves vary in usefulness over the 

range from 4 to 7 principal components used (Fig. 4.10); notably, 5 principal components 

(Figure 4.10c) may offer more visual appeal than 4, 6 and 7.  Similarly, in Figure 4.11, 

three tumors from the Normal class (Benign STF 37, Benign STF 20, Benign STF 11 can 

be distinguished from three from the Basal class (Norway FU12-BE, Norway FU23-BE, 

Norway FU39-BE), but most easily with 4 principal components (Fig. 4.11d). 
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Figure 4.10: After PCA processing, the data of Sorlie et al. is mapped onto the 
Andrews space and plotted. In black, three tumors designated as belonging to the 

Luminal A class (Norway FU15-BE, Norway FU37-BE, Norway FU16-BE), and in red, 
three tumors from the ERRB2+ class (Northway FU18-BE, Norway FU04-BE, Norway 

65-2ndT).  Here, the data are plotted for four choices of number of principal components. 
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Figure 4.11: After PCA processing, the data of Sorlie et al. is mapped onto the 
Andrews space and plotted. In black, three tumors designated as belonging to the 

Normal class (Benign STF 37, Benign STF 20, Benign STF 11), and in red, three tumors 
from the Basal class (Norway FU12-BE, Norway FU23-BE, Norway FU39-BE).  Here, 

the data are plotted for four choices of number of principal components. 
 

 4.3.2  EM Clustering of Synthetic Data 

 

 In order to illustrate the differences between the MoG and MoL algorithm, 

experiments were conducted on a series of strategically designed artificial 2-dimensional 

data sets.  The first of these, Artificial Data Set 1 (ADS1), uses the data depicted in 

Figure 4.12 to illustrate the difficulty MoG has in locating the mean of a persistent cluster 

of points when noise is present.  The MoG result shown in Figure 4.13(a) is a large 

Gaussian distribution with a mean far from the mean of the main cluster of points.  This 
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happens because the Gaussian distribution pays a large likelihood penalty for distant 

outliers.  On the other hand, the MoL result shown in Figure 4.13(b) correctly identifies 

the mean of the persistent cluster. 
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Figure 4.12: Artificial Data Set 1, which contains one persistent cluster and a small 
number of outliers. 
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(a)

(b) 
 

Figure 4.13: Artificial Data Set 1, after execution of the EM-MoG (a) or EM-MoL 
(b) algorithm.  In (a), the probability density function for the Gaussian distribution must 
be quite large in order to explain the distant points, where as the Lorentzian PDF in (b) 

located the mean of the persistent cluster and ignores the distant points. 
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 The second artificial data set (ADS2, Fig. 4.14) is designed to further illustrate the 

manner in which the MoG algorithm is confounded by a small number of outliers.  In this 

case, it is clear to the naked eye that there are two clusters.  In 100 trials, the MoG 

algorithm failed to find the true clusters every time, as shown in Figure 4.15(a), whereas 

the MoL algorithm successfully found the true clusters every time, as shown in Figure 

4.15(b).  The plots of the PDFs indicate that the MoG algorithm (Fig. 4.16(a)), is forced 

to include all of the outliers in one extremely diffuse cluster in order to account for them, 

whereas the MoL algorithm (Fig. 4.16(b)) results in two tight PDFs. 
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Figure 4.14: Artificial Data Set 2, which contains two tight clusters and a small 
number of outliers. 
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 (b) 
 

Figure 4.15: Artificial Data Set 2, after execution of the EM-MoG (a) or EM-MoL 
(b) algorithm.  In (a), the MoG algorithm is confounded by the outliers and reaches a 
maximum likelihood at two clusters with their means (black circles) between the true 

clusters. In (b), the MoL algorithm correctly identifies the true clusters. 
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Figure 4.16: Artificial Data Set 2, after execution of the EM-MoG (a) or EM-MoL 

(b) algorithm.  In (a), the PDFs of the two Gaussian clusters overlap along the centerline 
of the data, whereas in (b) the PDFs are small and centered at the true clusters. 
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 The third artificial data set (ADS3, Fig. 4.17) is designed to illustrate the 

confounding effect of dense noise on the MoG algorithm.  Unlike ADS1 and ADS2, the 

non-deterministic nature of EM-MoG and EM-MoL is an important factor for ADS3.  

Depending on the initial choices for the mean and covariance, the EM algorithm will 

converge to a variety of local maxima.  For ADS3, each algorithm was executed 100 

times with random initializations.  The most probable outcomes (Fig. 4.18) are successful 

identification of the “faint” clusters by MoL, and complete failure by MoG.  The PDFs 

corresponding to these outcomes (Fig. 4.19) verify that MoL correctly identifies the 

persistent clusters and MoG is confounded by the dense noise. 
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Figure 4.17: Artificial Data Set 3, which contains three faint clusters and a large 

amount of dense noise. 
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(b) 
Figure 4.18: Artificial Data Set 3, after execution of the EM-MoG (a) or EM-MoL 
(b) algorithm, with the most probable outcome shown.  In (a), the MoG algorithm is 

confounded by the noise and provides three clusters with incorrect means (black circles). 
In (b), the MoL algorithm correctly identifies the true clusters, although the assignment 

of points near the borders is heuristically arbitrary. 
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(a)

(b) 
Figure 4.19: Artificial Data Set 3, after execution of the EM-MoG (a) or EM-MoL 
(b) algorithm.  In (a), the PDFs of the three Gaussian clusters spread across the data in 

an unintuitive manner, whereas in (b) the PDFs are small and centered at the true clusters. 
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 ADS3 also provides an opportunity to test the robustness of the EM-MoL and 

EM-MoG algorithms to random initial conditions.  This may be especially important for 

gene expression data, when unsupervised clustering is often done in the absence of prior 

information for the initialization.  In 100 trials (Fig. 4.20) the MoL algorithm identifies 

the correct clusters nearly every time (Fig. 4.21(a)), whereas the MoG algorithm rarely 

identifies the correct clusters (Fig. 4.21(b)).  
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Figure 4.20: Artificial Data Set 3, after execution of the EM-MoG and EM-MoL 
algorithm over 100 trials.  The data points are the black dots, the means proposed by 

MoG are the blue circles, and the means proposed by MoL are the red crosses.  
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Figure 4.21: Artificial Data Set 3 was processed by 100 trials of the EM-MoG (a) 
and EM-MoL (b) algorithms.  The means of the proposed PDFs were binned into a 

histogram.  Because the y-coordinates of the means of two of the true clusters are very 
similar, the y-coordinate histogram of (b) has a 200-count bin.  
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In most artificial data sets, the MoL algorithm not only produces heuristically 

superior results, but it also produces higher values for the log likelihoods of the proposed 

models when compared to MoG.  This may not be a good way to compare the relative 

performance of MoG and MoL across all data sets.  The Gaussian distribution gives very 

large likelihood bonuses to points near its mean, since the distribution is quite peaked.  

Thus, even for clusters with outliers, the MoG likelihood may be higher than the MoL 

likelihood, even when the means are mislocated. 

 

4.3.3  EM Clustering of Gene Expression Data 

 

  I also test the performance of the EM-MoG and EM-MoL algorithms on a 

reduced form of the data set from the Chu et al. study.  The data were limited to 477 

genes that were identified by Chu et al. as belonging to one of the seven temporal classes 

defined by a common time of induction.  The seven true clusters are numbered from 1 to 

7, Metabolic, Early I, Early II, Mid-Early, Middle, Mid-Late, and Late.  Mixture models 

will not be able to mimic this classification perfectly without further preprocessing, 

because two genes with similar times for induction may have quite different overall 

temporal profiles, and thus distant vectors in seven-dimensional space.    

With this potential limitation in mind, the algorithms were executed with 2 

randomly initialized clusters, with the hope that the algorithms would classify the points 

into two groups, an early-induction group and a late-induction group.  In both algorithms, 

after the criteria for maximum likelihood is reached, the algorithm-assigned labels of 477 

genes are plotted in a confusion matrix against the true labels.  In the case of seven 
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clusters, if the data are perfectly classified, then each rank or file of the confusion matrix 

will have genes in only one file or rank.  In the case of two clusters, as in Figure 4.21, a 

qualitatively correct proposed cluster would contain one or more adjacent true clusters.  

In Figure 4.22(a), the MoG algorithm yields proposed cluster 1 that contains more than 

half of the true cluster 1 (Metabolic), but also a significant amount of true cluster 6 (Mid-

Late) and all of true cluster 7 (Late).  This may be analogous to the effect seen in Figure 

4.15(a), where the Gaussian distribution is unable to partition two clusters surrounded by 

a great deal of noise.  By comparison, the MoL algorithm (Fig. 4.22(b)) yields two 

clusters well relatively well defined boundaries.  Proposed cluster 1 contains most of the 

Middle to Late genes, whereas proposed cluster 2 contains the early genes, with the 

exception of true cluster 7 (Late), which was improperly grouped with the early genes. 
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(a) 

(b) 

Figure 4.22: Confusion matrices for results of 477 pre-classified genes from the data 
set of Chu et al. analyzed by EM-MoG and MoL with 2 randomly initialized 

clusters.  In (a), MoG proposes two relatively diffuse clusters, whereas in (b), MoL 
proposes two clusters that more precisely partition the true clusters. 
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 When the EM-MoG and EM-MoL algorithms seek seven clusters to match the 

seven temporal classes, the results are not easily distinguished from one another (data not 

shown).  Neither algorithm reproducibly generates qualitatively accurate confusion 

matrices.   

Another problem of mixture modeling approaches to clustering is selecting he 

optimal number of clusters.  In some cases, such as with Chu et al., there is an established 

classification scheme.  In other cases, the number of clusters must also be hypothesized.  

Here, I make use of the minimum description length (MDL) term53 to penalize the 

likelihood of the mixture model as the number of parameters increases.  For this case, the 

MDL penalty reduces to subtracting half of the number of parameters times the log 

likelihood from the as-computed likelihood.   I then executed the MoG (Fig. 4.23(a)) and 

MoL (Fig. 4.23(b)) algorithms on the full Chu et al. data set, and applied the MDL 

penalty term.  The results are also tabulated in Table 4.3. 
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Figure 4.23: Plot of the likelihood of fit of full data set of Chu et al analyzed by EM-
MoG (a) and EM-MoL (b) with 1 to 30 randomly initialized clusters, with and 

without the inclusion of the MDL penalty term.  With the penalty term, both clustering 
methods find 7-9 clusters to be optimal, which agrees well with the 7 classes of Chu et al. 
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Cluster Size Mean for MoL St. Dev Mean for MoG St. Dev.
2 -63644 2.9 -61886 0.4
3 -63385 42.8 -61383 87.0
4 -63217 38.3 -61079 55.7
5 -63095 54.9 -60912 52.2
6 -63035 48.5 -60833 45.5
7 -63003 45.3 -60797 32.2
8 -62973 39.0 -60787 41.2
9 -62990 29.2 -60807 49.7

10 -63015 35.8 -60807 30.1
11 -63058 28.9 -60851 25.2
12 -63088 27.5 -60892 44.8

Average Standard Deviation  39.0  46.4
Table 4.3: Likelihoods of fit for the full data set of Chu et al analyzed by EM-MoG 
and EM-MoL with 1 to 12 randomly initialized clusters, with the inclusion of the 
MDL penalty term. For each choice of cluster size, each algorithm was executed 30 

times to generate the statistics shown. 
 

 The behavior of the two algorithms can be illustrated by examining the PDF of 

one of the proposed clusters.  In Figure 4.24(a), a representative cluster from the MoG is 

shown in seven panels where each panel is a histogram of the nth-dimension value of 

each vector assigned to that cluster.  The data in the cluster is distributed in a roughly 

Gaussian fashion, as shown by the fits.  The MoL algorithm similarly finds Lorentzian 

distributions (Fig. 4.24(b)), but qualitatively generates clusters that are more 

characteristically Lorentzian.  
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Figure 4.24: Histograms of cluster fits for the full data set of Chu et al analyzed by 
EM-MoG (a) and EM-MoL (b) with 7 randomly initialized clusters.  One of the 

clusters was broken down into its seven dimensions, and each dimension was binned into 
a histogram and fit by the appropriate PDF. 
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4.4  Summary 

 

 I have demonstrated the combination of principal components analysis and 

Andrews curves for the visualization of gene expression data.  The combination method 

was applied to visualizing gene vectors in condition space using data from the study of 

Chu et al., as well as to visualizing condition vectors in gene space using data from the 

study of Sorlie et al.  The method is based in well-studied linear algebraic theory, and 

results in heuristically useful depictions of multivariate gene expression data.  Using this 

method, clustered vectors can be distinguished from both unclustered vectors and 

differently clustered vectors. 

  I have implemented the expectation-maximization algorithm to optimize a linear 

mixture of Lorentzian distributions for clustering.  When compared to the equivalent 

algorithm for Gaussian distributions, the EM-MoL algorithm offers several advantages 

when applied to artificial two-dimensional data.  The EM-MoL algorithm more 

accurately calculates the means of clusters it identifies, it is more robust to far outliers, 

and it robustly identifies persistent clusters in a field of dense noise. 

  I have further compared the EM-MoG and EM-MoL algorithms by clustering the 

data of Chu et al.  Neither algorithm consistently replicates the classifications of the 

original study, however when tested with two clusters, the EM-MoL algorithm reliably 

partitions the data into earlier-induction and later-induction groups, whereas the EM-

MoG algorithm does not.  I applied the minimum description length penalty term to show 

that both algorithms estimate that there are between 7 and 9 clusters in the Chu et al. 
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data.  Lastly, I showed that the algorithms generate clusters that are well modeled by their 

respective probability distribution functions, and that with the Chu et al. data, EM-MoG 

forms more irregular clusters than EM-MoL. 



 138

 

4.5  References 

 

 

1. Alwine, J. C., Kemp, D. J. & Stark, G. R. Method for detection of specific RNAs 

in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with 

DNA probes. Proc. Natl. Acad. Sci. USA 96, 6745-6750 (1977). 

2. Taniguchi, M., Miura, K., Iwao, H. & Yamanaka, S. Quantitative assessment of 

DNA microarrays-comparison with Northern blot analyses. Genomics 71, 34-39 

(2001). 

3. DeRisi, J., Iyer, V. & Brown, P. Exploring the metabolic and genetic control of 

gene expression on a genomic scale. Science 278, 680-686 (1997). 

4. Chee, M. et al. Accessing genetic information with high-density DNA arrays. 

Science 274, 610-614 (1996). 

5. Quackenbush, J. Microarray data normalization and transformation. Nature 

Genetics Supplement 32, 496-501 (2002). 

6. Churchill, G. A. Fundamentals of experimental designs for cDNA microarrays. 

Nature Genetics Supplement 32, 490-495 (2002). 

7. Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 

282, 699-705 (1998). 

8. Perou, C. M. et al. Molecular portraits of human breast tumors. Nature 406, 747-

752 (2000). 



 139

9. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor 

subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869-10874 

(2001). 

10. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent 

gene expression data sets. Proc. Natl. Acad. Sci. USA 100, 8418-8423 (2003). 

11. Slonim, D. From patterns to pathways: gene expression data analysis comes of 

age. Nature Genetics Supplement 32, 502-508 (2002). 

12. Lapointe, J. et al. Gene expression profiling indentifies clinically relevant 

subtypes of prostate cancer. Proc. Natl. Acad. Sci. USA 101, 811-816 (2004). 

13. van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of 

breast cancer. Nature 415, 530-536 (2002). 

14. Murtagh, F., Starck, J.-L. & Berry, M. W. Overcoming the curse of 

dimensionality in clustering by means of the wavelet transform. The Computer 

Journal 43, 107-120 (1999). 

15. Eisen, M., Spellman, P., Brown, P. & Botstein, D. Cluster analysis and display of 

genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868 

(1998). 

16. Alon, U. et al. Broad patterns of gene expression revealed by clustering analysis 

of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. 

Acad. Sci. USA 96, 6745-6750 (1999). 

17. Bullinger, L. et al. Use of gene-expression profiling to identify prognostic 

subclasses in adult acute myeloid leukemia. The New England Journal of 

Medicine 350, 1605-1616 (2004). 



 140

18. Embrechts, P., Herzberg, A., Kalbfleisch, H., Traves, W. & Whitla, J. An 

introduction to wavelets with applications to Andrews' plots. Journal of 

Computational and Applied Mathematics 64, 41-56 (1995). 

19. Chernoff, H. Ues of faced to represent points in K-dimensional space graphically. 

Journal of the American Statistical Association 68, 361-368 (1973). 

20. Hamner, C. G., Turner, D. W. & Young, D. M. Comparisons of Several Graphical 

Methods for Representing Multivariate Data. Comput. Math. Applic. 13, 647-655 

(1987). 

21. Andrews, D. F. Plots of high-dimensional data. Biometrics 28, 125-136 (1972). 

22. Horhota, S. & Aitken, C. Multivariate cluster analysis of pharmaceutical 

formulation data using andrews plots. Journal of Parmaceutical Sciences 80, 85-

90 (1991). 

23. Cairns, V. Plotting n-dimensional psychiatric data in 2 dimensions using 

Andrews' method. Psychological Medicine 12, 169-176 (1982). 

24. Chang, W.-C. On using principal components before separating a mixture of two 

multivariate normal distributions. Applied Statistics 32, 267-275 (1983). 

25. Holter, N. S. et al. Fundamental patterns underlying gene expression profiles: 

Simplicity from complexity. Proc. Natl. Acad. Sci. USA 97, 8409-8414 (2000). 

26. Alter, O., Brown, P. & Botstein, D. Singular value decomposition for genome-

wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA 97, 

10101-10106 (2000). 

27. Raychaudhuri, S., Stuart, J. & Altman, R. B. Principal components analysis to 

summarize microarray experiments: application to sporulation time series. (1999). 



 141

28. Lay, D. C. Linear algebra and its applications (Addison Wesley, Reading, MA, 

1996). 

29. Tenenbaum, J. B., de Silva, V. & Langford, J. C. A global geometric framework 

for nonlinear dimensionality reduction. Science 290, 2319-2323 (2000). 

30. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415-418 

(2004). 

31. Kerr, M. K. & Churchill, G. A. Bootstrapping cluster analysis: Assessing the 

reliability of conclusions from microarray experiments. Proc. Natl. Acad. Sci. 

USA 98, 8961-8965 (2001). 

32. Li, C. & Wong, W. H. Model-based analysis of oligonucleotide arrays: 

Expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 

98, 31-36 (2001). 

33. Tseng, G. C., Oh, M.-K., Rohlin, L., Liao, J. C. & Wong, W. H. Issues in cDNA 

microarray analysis: quality filtering, channel normalization, models of variations 

and assessment of gene effects. Nucleic Acids Research 29, 2549-2557 (2001). 

34. Brown, J. S., Kuhn, D., Wisser, R., Power, E. & Schnell, R. Quantification of 

sources of variation and accuracy of sequence discrimination in a replicated 

microarray experiment. BioTechniques 36, 324-332 (2004). 

35. Lee, M., Kuo, F. C., Whitmore, G. A. & Sklar, J. Importance of replication in 

microarray gene expression studies: Statistical methods and evidence from 

repetitive cDNA hybridizations. Proc. Natl. Acad. Sci. USA 97, 9834-9839 

(2000). 



 142

36. Wang, R., Scharenbroich, L., Hart, C., Wold, B. & Mjolsness, E. Clustering 

analysis of microarray gene expression data by splitting algorithm. Journal of 

Parallel and Distributed Computing 63, 692-706 (2003). 

37. Selim, S. & Ismail, M. K-Means-Type algorithms: A generalized convergence 

theorem and characterization of local optimality. IEEE Transactions on pattern 

analysis and machine intelligence PAMI-6, 81-87 (1984). 

38. Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E. & Ruzzo, W. L. Model-based 

clustering and data transformations for gene expression data. Bioinformatics 17, 

977-987 (2001). 

39. McLachlan, G. & Peel, D. in Advanced in Pattern Recognition (eds. Amin, A., 

Dori, D., Pudil, P. & Freeman, H.) 658-666 (Springer, Sydney, Australia, 1998). 

40. Fraley, C. & Raftery, A. E. Model-based clustering, discriminant analysis, and 

density estimation. Journal of the American Statistical Association 97, 611-631 

(2002). 

41. Ben-Dor, A., Shamir, R. & Yakhini, Z. Clustering gene expression patterns. 

Journal of Computational Biology 6, 281-297 (1999). 

42. Ghosh, D. & Chinnaiyan, A. M. Mixture Modelling of gene expression data from 

microarray experiments. Bioinformatics 18, 275-286 (2002). 

43. Allison, D. B. et al. A mixture model approach for the analysis of microarray gene 

expression data. Computational Statistics and Data Analysis 39, 1-20 (2002). 

44. Domany, E. Cluster analysis of gene expression data. Journal of Statistical 

Physics 110, 1117-1139 (2003). 



 143

45. D'haeseleer, P., Liang, S. & Somogyi, R. Genetic network inference: from co-

expression clustering to reverse engineering. Bioinformatics 16, 707-726 (2000). 

46. Shannon, W., Culverhouse, R. & Duncan, J. Analyzing microarray data using 

cluster analysis. Pharmacogenomics 4, 41-52 (2003). 

47. Ouyang, M., Welsh, W. J. & Georgopoulos, P. Gaussian mixture clustering and 

imputation of microarray data. Bioinformatics 20, 917-923 (2004). 

48. Dempster, A. P., Laird, N. M. & Rubin, D. Maximum likelihood from incomplete 

data via the EM algorithm. Journal of the Royal Statistical Society. Series B 

(Methodological) 39, 1-38 (1977). 

49. McLachlan, G., Bean, R. W. & Peel, D. A mixture model-based approach to the 

clustering of microarray expression data. Bioinformatics 18, 413-422 (2002). 

50. Peel, D. & McLachlan, G. Robust mixture modelling using the t distribution. 

Statistics and computing 10, 339-348 (2000). 

51. Brody, J. P., Williams, B. A., Wold, B. J. & Quake, S. R. Significance and 

statistical errors in the analysis of DNA microarray data. Proc. Natl. Acad. Sci. 

USA 99, 12975-12978 (2002). 

52. Perou, C. M. et al. Distinctive gene expression patterns in human mammary 

epithelial cells and breast cancers. Proc. Natl. Acad. Sci. USA 96, 9212-9217 

(1999). 

53. Rissanen, J. Modeling by shortest data description. Automatica 14, 465-471 

(1978). 

 



 144

 
 
 
 

  
 
 
 
 

CHAPTER 5 
CONCLUSIONS AND RECOMMENDATIONS 

 
 

  

 

 5.1 Peptoid Synthesis .....................................................................................145  

 5.2 MAGE Methodology ...............................................................................148 

 5.3 Visualization and Model-Based Clustering .............................................152 

 5.4 Overall......................................................................................................154 

 5.5 References................................................................................................155 

 
 
 
 

 



 145

 

 

5.1 Peptoid Synthesis 

 

 I demonstrated several new synthetic strategies for expanding the versatility of the 

peptoid platform.  Three further areas may be worth investigation. 

The first area includes three new modifications for use in our MAGE assay, where 

I made use of peptoid-DNA conjugates that were formed by modifying the N-terminus of 

the peptoids with iodoacetic acid.  It would be useful to transfer two other features 

currently embedded at the 5′ end of the oligodeoxynucleotide in MAGE: a pendant 

visible dye, and a backbone photocleavable linker.  By moving these specialized 

functionalities from the ODN to the peptoid, it would increase the generality and decrease 

the cost of MAGE.  I have demonstrated (data not shown) a system where the dye is 

added at the N-terminus, and a pendant iodoacetyl group is used for subsequent 

conjugation to the ODN thiol, but the yield of the synthesis remains poor (Appendix C.1).  

Attempts to incorporate photocleavable units into the backbone with pendant 

orthonitrobenzenes and similar moieties have failed (Appendix C.2).  It is likely that a 

successful strategy will incorporate not only this functionality but also a bond that is 

more subject to photo-initiated degradation than the amide bonds in the peptoid.  Finally, 

because peptoids can incorporate great diversity through the amine submonomers, it may 

be possible to improve the mass spectrometric efficiency of the peptoids by carefully 

choosing submonomers.  For example, the extent of fragmentation could be reduced, or 

the ionization efficiency could be increased.  I synthesized a number of peptoids 
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incorporating polar, aromatic primary amine submonomers in an attempt to increase the 

MALDI ionization efficiency of the peptoid tags.  The motivation for this was that many 

MALDI matrices share structural features with the chosen submonomers.  There was no 

evidence that this tactic was effective (Appendix C.3). 

The second area is gene therapy.  Cationic peptoids have been studied for gene 

therapy1,2, but thus far the only cationic amine submonomers have been primary amines.  

The literature of gene therapy suggests that other charge centers, such as amidines, have 

intriguing properties3.  Because they are sequence-specific heteropolymers, peptoids 

would be an ideal platform for structure-function studies of oligoamines and 

oligoamidines.  Amidine groups could be incorporated into peptoids by making use of 

mono-protected diamines, deprotecting those amines at the end of the synthesis, and 

modifying them with a reagent such as ethyl acetimidate.  My work and the work of 

others4 has demonstrated a wide variety of chemoselective functionalities that can be 

incorporated into peptoids, so these oligomers could be conjugated to dyes and other 

entities of interest to gene therapy. 

The third area is extended molecular structures, exemplified by the work of 

Mirkin et al.5,6 In general, of the field of nanoscale assembly, Mirkin reports that “a 

major limitation in nanoparticle-based materials chemistry is the lack of suitable 

assembly methods for preparing extended two- and three-dimensional architectures with 

synthetically programmable building block and assembly parameters.”   He also claims of 

a system of DNA-block copolymer conjugates that “while interesting, these 

DNA/polymer hybrids are limited with respect to their degree of tailorability, ill-defined 

compositions, and poor solubilities and dispersities, as well as function.”  Peptoids could 
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be a suitable system for these types of investigations.  For example, to create extended 

molecular structures of peptoids and DNA, the branching scheme presented in this thesis 

could be combined with our method of peptoid-DNA conjugation.  By tailoring the 

structure of the peptoid, the properties of the resulting extended structure could be 

controlled.  It would also be possible to incorporate other nanoscale objects of interest 

into these scaffolds, such as large biomolecules, or quantum dots.  Quantum dots are 

themselves an interesting potential application of peptoids. Modifying the surface 

properties of gold and silver and other nanoparticles affects their behavior as light 

emitters, as well as their stability in solution.  Attaching peptoids to nanoparticles (e.g., 

via a thiol-based linker) gives a tunable way to modify the properties of the particles 

through the sequence of the peptoid. 
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5.2 MAGE Methodology 

 

 Each component of the MAGE methodology was demonstrated with elementary 

proof-of-principle experiments.  Currently, the major limitation of MAGE is that it can 

only be as sensitive as the mass spectrometer that is used for the final quantitation.  

Immediately stemming from the first experiments, I would suggest that (i) the 

hybridization kinetics of the MAGE probes and likely targets be studied, (ii) the 

quantitativeness of the ligation step be assessed, (iii) the ultimate sensitivity of peptoid-

containing MAGE fragments be studied in a variety of mass spectrometers, and (iv) 

“reversed” MAGE probes be tested to try to eliminate the multiple photocleavage 

products.  Experiments (i) and (ii) are critical for proving that MAGE establishes a 1:1 or 

other predictable relationship between mass tags and sequences of interest.  In particular, 

it might be especially important to identify an optimal time and temperature of 

hybridization for the MAGE probes and targets by tracking duplex formation for a 

variety of choices of target initial concentration, temperature, and time.  These studies 

might also determine what relative concentration of probes is necessary to ensure pseudo-

first-order kinetics.  Currently, it is unknown what effect the peptoid and biotin may have 

on the hybridization kinetics.  Experiment (iv) could be conducted with commercially 

available phosphoramidites from Glen Research, including 5′-biotin phosphoramidite, 3′-

thiol-modifier C3 S-S CPG, PC spacer phopsphoramidite, and 3′-phosphate CPG, 

resulting the new probes M3 and M4  in Figure 5.1.  This new configuration would mean 

that the peptoid fragment would carry the phosphate half of the photocleavage reaction 
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instead of the linker residue (Fig. 5.2).  The phosphate half did not show by RP-HPLC 

and MALDI-TOF the multiple products that the linker half did (Chapter 3). 
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Figure 5.1: Schematic illustrated of MAGE probes in different orientations.  Probes 
M1 and M2 are in the configuration used in this thesis.  By reversing the probes to the 
configuration shown in M3 and M4, the peptoid fragment of photocleavage would be a 

single species, instead of several as in this thesis. 
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Figure 5.2: Schematic illustrated of alternative MAGE peptoid fragments.  By 

reversing the configuration of the probes, the peptoid fragment of MAGE is changed 
from PF1, which was present in multiple products, to PF2. 
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Following these fundamental experiments, I would suggest attempting to (i) 

multiplex MAGE by synthesizing a small group of peptoid mass tags, (ii) compare 

MAGE measurements to those of competing technologies, (iii) test the discriminating 

power of the ligation step by using a thermostable ligase and probing for targets with 

slightly mismatched competitors present, and (iv) execute the final quantitation on more 

sensitive mass spectrometers than the one employed for our studies.   

Three other potential modifications of MAGE might be of interest.  First, the 

flexibility of the isotopic labeling system could be used to enable “multi-color” MAGE.  

Here, instead of comparing the sample of interest to a calibrated internal standard, two or 

more target samples are simultaneously interrogated by probes with peptoid tags of 

identical sequence but differing amounts of isotopic labeling.  For example, four peptoids 

could be synthesized, each different by six Daltons.  One of the four would be used for 

each of four different target mixtures, and the resulting cleaved tags would be mixed 

prior to mass spectrometry.  This would be especially useful for examining time-course 

gene expression data, and it would be the equivalent of a four-color microarray. 

Second, if the state-of-the-art mass spectrometry equipment does not yield 

sufficient sensitivity, amplification schemes should be considered.  The focus in the field 

of mass spectrometry has been mass accuracy, not sensitivity.  This is in part why two 

schemes of mass-spectrometric gene expression analysis have relied on amplification7,8.  

The most obvious choices for an amplification scheme for MAGE would be those based 

on the ligation detection reaction9-11.  The two common schemes both require adding 

additional cycles of ligation.  In the current implementation of MAGE, after the probes 
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have been annealed and ligated, the mixture could be melted and reannealed, and ligated 

again.  Assuming that an excess of probes was added, this would result in a linear 

amplification of the signal.  A more drastic step would be to add a second set of probes 

that are complementary to the first set (and thus, identical to the targets).  Here, repeated 

rounds of ligation results in an exponential amplification, known as ligase chain reaction 

(LCR).  In order to ensure that the signal is not confounded by blunt-end ligation, a gap 

could be left between the two probes instead of a nick12,13, known as Gap-LCR. 

Third, in order to decrease costs and increase reliability, the MAGE methodology 

could be implemented in a chip format.  All of the technological steps of MAGE have 

been demonstrated in some combination on chips, starting from the purification of 

mRNA from cell lysate14, and ending with mass spectrometry15. 
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5.3 Visualization and Model-Based Clustering 

 

Andrews curves are a mathematically rigorous, visually effective method for 

displaying multivariate data.  There are several key limitations that were evident in my 

work.  First, it is not effective to attempt to plot more than about 10 vectors 

simultaneously, because the plot becomes too densely packed to interpret.  Second, it is 

not effective to attempt to plot more than the first 7-10 terms of the Fourier series, 

because the curves become exceedingly squiggly.  Third, the terms of the Fourier series 

have a decreasing impact on the appearance of the plot16.  Because of these limitations, it 

is critical that some preprocessing step be applied to the high-dimensional gene 

expression data.  Principle components analysis (PCA) is effective, as I demonstrated, but 

it is not optimal in this application.  PCA creates a set of orthogonal linear spaces in 

decreasing order of their eigenvalues, serving to extract linear features from the data.  

There is some evidence suggesting that there are significant linear features within gene 

expression data17, and my results seem to suggest this as well.  Ultimately, because of the 

highly non-linear nature of massively-fedback networks such as those present in the cell, 

linear methods will fail to extract all of the significant features.  In further pursuit of this 

visualization method, non-linear preprocessing methods should be considered18-21. 

As evidenced by the proliferation of alternative methods, it is quite difficult to 

determine the most appropriate method for clustering analysis on gene expression data. 

The mixture of Lorentzians model I presented offers an extremely permissive set of 

clusters that avoids heuristic “outlier rejection” methods that are often employed.  The 



 153

advantages of my method are evident from artificial data, but it remains difficult to 

conclude that it represents a superior clustering algorithm for gene expression data in 

general.  Part of the reason for this is that it remains largely unknown what the true nature 

of the biological noise of transcription is, as well as the machine noise inherent to various 

types of gene expression analysis systems.  Currently, the most successful strategies seek 

to test a number of different clustering schemes in combination with non-parameterized 

statistical tests such as Monte Carlo cross-validation or bootstrap analysis22.  Another 

important feature of a fully-developed clustering scheme is a scheme for developing a 

hierarchy of clusters.  Superior hierarchical schemes are two-way, where each node in the 

hierarchy can have multiple children as well as multiple parents.  Further development of 

the mixture of Lorentzians algorithm should seek to include it in a hierarchical algorithm 

that includes a non-parameterized statistical test.  
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5.4 Overall 

  

 Studies of functional genomics draw from a diverse pool of experimental and 

analytical methods.  In recent years, investigators have demanded high quality data with 

robust statistical analyses to support their increasingly quantitative studies.  Here, we 

have offered a new method for unambiguously measuring the abundance of specific 

sequences of nucleic acids.  Because it is grounded in well-studied physics, and results in 

absolute abundances, the MAGE methodology is especially suited for these highly 

quantitative studies.  In order to meet the demand for new, statistically robust analytical 

methods, I have presented several new tactics for large-scale gene expression analysis.  

Used in combination, my methods allow investigators to reduce their expansive data to a 

more manageable subset using principle components analysis, visualize that data in a 

mathematically consistent and useful manner with Andrews curves, and cluster their data 

using noise-permissive Lorentzian distributions.
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APPENDIX A: DERIVATION OF A LORENTZIAN DISTRIBUTION FROM 
THE RATIO OF TWO INDEPENDENT NORMALLY DISTRIBUTED RANDOM 

VARIABLES 

 
 
 

 A.1 Derivation................................................................................................159 
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Let X and Y be two independent normally distributed random variables with mean zero 
and standard deviation 1, 
 
X=G(0,1); Y=G(0,1)  

 
 
Since X and Y are independent, their joint probability distribution function is the product 
of their individual probability distribution functions, 
 
 

 
 
Now we want to examine the probability distribution of their ratio.  Let z = x/y and w = 
y,  
 

 
 

 
 
Now we can obtain the probability distribution for z = x/y by integrating out the w 
dependence of  fzw 
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This is the form of the Lorentzian distribution with mean zero and spread 1, 
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B.1 Master algorithm function for generating Andrews curves 

 

 
function [] = Demon_Andrews(LabeledData,npcs); 
%Andrews Curve Demonstrator 
%LabeledData should have the data arrange in columns, so that the 
%number of rows is the number of dimensions, and the number of columns 
%is the number of samples.  The last row should contain labels, which 
are 
%integers from 1 up. 
%npcs is the number of principle components you wish to use.  This 
number 
%should be at least 1, and at most either the number of samples or the 
number 
%of dimensions, whicever is lower. 
 
D=size(LabeledData,1)-1; 
N=size(LabeledData,2); 
X=LabeledData(1:D,:); 
 
if npcs>D 
 disp('Too Many PCs') 
 return 
end 
if npcs>N 
 disp('Too Many PCs') 
 return 
end 
 
%First we preprocess the data to reduce the data to the number of PCs  
%desired 
 
[ProcData] = preproc(LabeledData,X,npcs); 
size(ProcData) 
 
%We illustrate the effect of this processing 
 
[pc, explained, score, latent, tsquare] = MakePCA(X); 
 
sumexp(1)=explained(1); 
 
for i=2:length(explained) 
sumexp(i)=sumexp(i-1)+explained(i); 
 
sumexp 
end 
figure(1) 
clf 
plot([1:1:length(explained)],sumexp,'ko:'); 
%title('Cumulative explaining power of all principal components') 
ylabel('% of Variance Explained by principal components 1 through 122') 
xlabel('Principal components used') 
hold 
%line([npcs npcs],[0 100]) 
axis([1 length(explained) 0 100]) 
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%Now the data is processed using Andrews' Method 
%Andrews' Method is a simple mapping onto an orthogonal basis function 
that 
%preserves the mathematical integrity of the data 
 
for i=1:N 
    val(i)=norm(ProcData(1:npcs,i)); 
end 
 
ProcData(1:npcs,:)=ProcData(1:npcs,:)./repmat(val,npcs,1); 
 
ps=500; 
t=linspace(-pi,pi,ps)'; 
AndData=zeros(ps,N); 
AndData=repmat(ProcData(1,:)/sqrt(2),ps,1); 
for i=2:npcs 
 if mod(i,2) == 0 
 
 AndData=AndData+(repmat(ProcData(i,:),ps,1).*repmat((sin(i*t)),1,
N)); 
 else 
 
 AndData=AndData+(repmat(ProcData(i,:),ps,1).*repmat((cos(i*t)),1,
N)); 
 end 
end 
AndData; 
size(AndData) 
 
%Now we take the Andrews Method processed Data and show it 
%Note that the coloring and number of lines is data depedant here 
 
figure(2) 
clf 
hold 
plot(t,AndData(:,112),'k-') 
plot(t,AndData(:,113),'k-') 
plot(t,AndData(:,114),'k-') 
plot(t,AndData(:,21),'r-') 
plot(t,AndData(:,22),'r-') 
plot(t,AndData(:,23),'r-') 
%plot(t,AndData(:,117),'r-') 
%plot(t,AndData(:,40),'r-') 
%plot(t,AndData(:,54),'r-') 
%plot(t,AndData(:,375),'m-') 
%plot(t,AndData(:,192),'c-') 
%plot(t,AndData(:,2689),'y-') 
%title('Andrews Curve of your PCA Reduced Data Set') 
ylabel('F(t)') 
xlabel('t') 
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B.2 Utility for preprocessing data by PCA 

 
 
 
function [ProcData] = preproc(Labeled,X,npcs) 
 
assignedata=Labeled; 
D=size(X,1); 
N=size(X,2); 
 
%PCA 
A=MakePCA(X'); 
PCAdata=A*X; 
LPCA=zeros(D+1,N); 
for i=1:N 
   LPCA([1:D],i)=PCAdata(:,i); 
   LPCA(D+1,i)=assignedata(D+1,i); 
end    
ProcData=LPCA([1:npcs D+1],:); 
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B.3 Utility for implementing PCA algorithm with SVD 

 
 
 
function [pc, explained, score, latent, tsquare] = MakePCA(q); 
 
[m,n] = size(q); 
avg = mean(q); 
centerx = (q - avg(ones(m,1),:)); 
 
[U,latent,pc] = svd(centerx./sqrt(m-1),0); 
score = centerx*pc; 
explained=100*(diag(latent))/(sum(diag(latent))); 
 
if nargout < 4, return; end 
latent = diag(latent).^2; 
 
if nargout < 5, return; end 
tmp = sqrt(diag(1./latent))*score'; 
tsquare = sum(tmp.*tmp)';
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B.4 EM adaptive mixture of Lorentzians 
 
 
function [Likelihood, Mixture_coefficients, Means, Covariances] = 
MoL(X,K) 
 
% Initialization 
 
D=size(X,1); 
N=size(X,2); 
Norm=(gamma((D+1)/2))/(pi^(D+1)/2); 
 
for i=1:K   
    
 Mean(:,i)=randMean(D,1); 
 test=500; 
 while test>=100 
  Cov(:,:,i)=randCovariance(D,20); 
  test=cond(Cov(:,:,i)); 
 end 
 F(i)=1/K; 
    
end 
 
% E-step 
 
ITS=0; 
crit=1; 
ClusterFlag=0; 
 
while crit>=1e-5 
 ITS=ITS+1; 
  
 for i=1:K 
  U=X-repmat(Mean(:,i),1,N); 
  V=U.*(inv(Cov(:,:,i))*U); 
  M(i,:)=sum(V); 
 end 
 
 P1=Norm.*(1+M).^(-(D+1)/2); 
 
 for i=1:K 
    
  P1(i,:)=P1(i,:)*F(i)*(det(Cov(:,:,i)))^(-.5); 
 end 
 
 P=P1./repmat(sum(P1,1),K,1); 
 U=(1+D).*(1+M).^(-1); 
 L(ITS)=sum((log(sum(P1))),2); 
 CurrentIteration=ITS 
 CurrentLikelihood=L(ITS) 
 if ITS>1 
  crit=abs((L(ITS)-L(ITS-1))/L(ITS)); 
 end 
 ConvergenceCriteria=crit 
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 %M-step 
 R=P.*U; 
 S=sum(R'); 
 S1=repmat(S,D,1); 
 
 Mean=(X*(R'))./S1; 
 T=sum(P,2); 
 F=1/N*(sum(P,2)); 
 ClusterFlag=0; 
 for i=1:K 
 
  M1=repmat(Mean(:,i),1,N); 
  Y=X-M1;  
     R1=repmat(R(i,:),D,1); 
  Cov(:,:,i)=((Y.*R1)*Y')/T(i); 
   
  if cond(Cov(:,:,i))>=1e10 
   disp('Covariance Failure, eliminating') 
   ClusterFlag=i 
   PointsInCluster=N*F(i) 
  end 
   
 end 
 if ClusterFlag~=0 
  g=1; 
  for j=1:K 
   if j~=ClusterFlag 
    Mean2(:,g)=Mean(:,j); 
    Cov2(:,:,g)=Cov(:,:,j); 
    F2(g)=F(j); 
    g=g+1; 
   end 
  end 
  Mean=Mean2; 
  Cov=Cov2; 
  F=F2/sum(F2); 
  K=K-1; 
  clear M;clear U;clear V;clear R;clear P1;clear S; 
  clear T;clear M1;clear R1;clear Y; 
  end  
end    
 
Means=Mean; 
Covariances=Cov; 
Mixture_coefficients=F; 
Likelihood=L(ITS); 
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B.5 EM adaptive mixture of Gaussians 

 

 
function [Likelihood, Mixture_coefficients, Means, Covariances] = 
MoGF(X,K) 
 
% Initialization 
 
D=size(X,1); 
N=size(X,2); 
Norm=(2*pi)^(-D/2); 
 
for i=1:K   
    
 Mean(:,i)=randMean(D,1); 
 test=500; 
 while test>=100 
  Cov(:,:,i)=randCovariance(D,20); 
  test=cond(Cov(:,:,i)); 
 end 
 F(i)=1/K; 
    
end 
 
% E-step 
 
ITS=0; 
crit=1; 
ClusterFlag=0; 
 
while crit>=1e-5 
 ITS=ITS+1; 
  
 for i=1:K 
  U=X-repmat(Mean(:,i),1,N); 
  V=U.*(inv(Cov(:,:,i))*U); 
  M(i,:)=sum(V); 
 end 
 
 P1=Norm.*exp(-M/2); 
 
 for i=1:K 
    
  P1(i,:)=P1(i,:)*F(i)*det(Cov(:,:,i))^(-.5); 
 end 
 
 P=P1./repmat(sum(P1,1),K,1); 
 L(ITS)=sum((log(sum(P1))),2); 
 CurrentIteration=ITS 
 CurrentLikelihood=L(ITS) 
 if ITS>1 
  crit=abs((L(ITS)-L(ITS-1))/L(ITS)); 
 end 
 ConvergenceCriteria=crit 
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 %M-step 
 S=sum(P'); 
 S1=repmat(S,D,1); 
 Mean=(X*(P'))./S1; 
 F=1/N*(sum(P,2)); 
 ClusterFlag=0; 
 for i=1:K 
 
    
     R1=repmat(P(i,:),D,1); 
  Cov(:,:,i)=((X.*R1)*X')/S(i)-Mean(:,i)*Mean(:,i)'; 
   
  if cond(Cov(:,:,i))>=1e10 
   disp('Covariance Failure, eliminating') 
   ClusterFlag=i 
   PointsInCluster=N*F(i) 
  end 
   
 end 
 if ClusterFlag~=0 
  g=1; 
  for j=1:K 
   if j~=ClusterFlag 
    Mean2(:,g)=Mean(:,j); 
    Cov2(:,:,g)=Cov(:,:,j); 
    F2(g)=F(j); 
    g=g+1; 
   end 
  end 
  Mean=Mean2; 
  Cov=Cov2; 
  F=F2/sum(F2); 
  K=K-1; 
  clear M;clear U;clear V;clear R;clear P1;clear S; 
  clear T;clear M1;clear R1;clear Y; 
  end  
end    
 
Means=Mean; 
Covariances=Cov; 
Mixture_coefficients=F; 
Likelihood=L(ITS); 
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B.6 Mixture of Lorentzians with plotting for 2D data sets 

 

 
function [Likelihood, Mixture_coefficients, Means, Covariances] = 
MoL(X,K) 
 
% Initialization 
 
D=size(X,1); 
N=size(X,2); 
Norm=(gamma((D+1)/2))/(pi^(D+1)/2); 
 
for i=1:K   
    
 Mean(:,i)=randMean(D,1); 
 test=500; 
 while test>=100 
  Cov(:,:,i)=randCovariance(D,20); 
  test=cond(Cov(:,:,i)); 
 end 
 F(i)=1/K; 
    
end 
 
% E-step 
 
ITS=0; 
crit=1; 
ClusterFlag=0; 
 
while crit>=1e-5 
 ITS=ITS+1; 
  
 for i=1:K 
  U=X-repmat(Mean(:,i),1,N); 
  V=U.*(inv(Cov(:,:,i))*U); 
  M(i,:)=sum(V); 
 end 
 
 P1=Norm.*(1+M).^(-(D+1)/2); 
 
 for i=1:K 
    
  P1(i,:)=P1(i,:)*F(i)*(det(Cov(:,:,i)))^(-.5); 
 end 
 
 P=P1./repmat(sum(P1,1),K,1); 
 U=(1+D).*(1+M).^(-1); 
 L(ITS)=sum((log(sum(P1))),2); 
 CurrentIteration=ITS 
 CurrentLikelihood=L(ITS) 
 if ITS>1 
  crit=abs((L(ITS)-L(ITS-1))/L(ITS)); 
 end 
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 ConvergenceCriteria=crit 
 
 %M-step 
 R=P.*U; 
 S=sum(R'); 
 S1=repmat(S,D,1); 
 
 Mean=(X*(R'))./S1; 
 T=sum(P,2); 
 F=1/N*(sum(P,2)); 
 ClusterFlag=0; 
 for i=1:K 
 
  M1=repmat(Mean(:,i),1,N); 
  Y=X-M1;  
     R1=repmat(R(i,:),D,1); 
  Cov(:,:,i)=((Y.*R1)*Y')/T(i); 
   
  if cond(Cov(:,:,i))>=1e10 
   disp('Covariance Failure, eliminating') 
   ClusterFlag=i 
   PointsInCluster=N*F(i) 
  end 
   
 end 
 if ClusterFlag~=0 
  g=1; 
  for j=1:K 
   if j~=ClusterFlag 
    Mean2(:,g)=Mean(:,j); 
    Cov2(:,:,g)=Cov(:,:,j); 
    F2(g)=F(j); 
    g=g+1; 
   end 
  end 
  Mean=Mean2; 
  Cov=Cov2; 
  F=F2/sum(F2); 
  K=K-1; 
  clear M;clear U;clear V;clear R;clear P1;clear S; 
  clear T;clear M1;clear R1;clear Y; 
  end  
end    
 
%Now we will assign data to a particular cluster. 3rd row is 
clusternumber 
assigneddata=zeros(3,length(X)); 
assigneddata([1,2],:)=X; 
 
for i=1:N 
 [Y1,T1]=max(P(:,i)); 
 assigneddata(3,i)=T1; 
end 
 
%This part plots all the data, different colors for different clusters, 
up to 
%10 clusters... beyond that they'll repeat 
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colordef black 
clf 
figure(1) 
hold on 
for i=1:N 
 switch mod(assigneddata(3,i),10) 
  case 0, 
   plot(X(1,i),X(2,i),'c*') 
  case 1, 
   plot(X(1,i),X(2,i),'rd') 
  case 2, 
   plot(X(1,i),X(2,i),'gv') 
  case 3, 
   plot(X(1,i),X(2,i),'m+') 
  case 4, 
   plot(X(1,i),X(2,i),'bs') 
  case 5, 
   plot(X(1,i),X(2,i),'yo') 
  case 6, 
   plot(X(1,i),X(2,i),'wx') 
  case 7, 
   plot(X(1,i),X(2,i),'yp') 
  case 8, 
   plot(X(1,i),X(2,i),'r<') 
  case 9, 
   plot(X(1,i),X(2,i),'g>') 
  otherwise, 
   plot(X(1,i),X(2,i),'wh') 
 end 
end 
 
for i=1:K 
 plot(Mean(1,i),Mean(2,i),'yo') 
end 
 
Means=Mean; 
Covariances=Cov; 
Mixture_coefficients=F; 
Likelihood=L(ITS); 
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B.7 Utility for running multiple clustering experiments 

 

 
function [] = molexp(reps,m,n,fname) 
%molexp(reps,m,n,fname) 
%Reps is the number of times to conduct the MDL experiment 
%Experiment does MoG, m-n clusters, reps times 
%saves results as fname 
 
load chudata; 
f=1; 
 
for i=m:n 
 for j=1:reps 
  currentrepetition=j 
  currentcluster=i 
  [Likelihood, Mixture_coefficients, Means, Covariances] = 
MoLv4(X,i); 
  Results(f,1)=Likelihood; 
  Results(f,2)=length(Mixture_coefficients); 
  Results(f,3)=i; 
  Results(f,4)=j; 
  f=f+1; 
 end 
end 
 
Results 
save(fname,'Results'); 
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B.8 Utility for plotting T-distributions 

 
 
M=0; 
C=1; 
D=1; 
Z=linspace(-5,5); 
L=length(Z); 
 
 
for j=1:L 
 Y(j,1)=Tdist(Z(j),M,C,1,D); 
end 
 
for j=1:L 
 Y(j,2)=Tdist(Z(j),M,C,2,D); 
end 
 
for j=1:L 
 Y(j,3)=Tdist(Z(j),M,C,3,D); 
end 
 
for j=1:L 
 Y(j,4)=Tdist(Z(j),M,C,100,D); 
end 
 
clf 
colordef black 
figure(1) 
subplot(2,2,1) 
plot(Z,Y(:,1),'r-','linewidth',3) 
title('Lorentzian, F=1') 
subplot(2,2,2) 
plot(Z,Y(:,2),'r-','linewidth',3) 
title('T-Distribution, F=2') 
subplot(2,2,3) 
plot(Z,Y(:,3),'r-','linewidth',3) 
title('T-Distribution, F=3') 
subplot(2,2,4) 
plot(Z,Y(:,4),'r-','linewidth',3) 
title('Near-Gaussian, F=100') 
 
 
 
function y=Tdist(Z,M,C,F,D) 
 
%y=Tdist(Z,M,C,F,D) 
%Z=Data Point 
%M=Mean of Data 
%C=Scatter Matrix 
%F=Degrees of Freedom 
%D=Dimensionality of Data 
y=(gamma((F+D)/2)*(det(C))^(-.5))*(1/((pi*F)^(D/2)*gamma(F/2)))... 
*(1+((Z-M)'*(inv(C))*(Z-M))/F)^(-(D+F)/2); 
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B.9 Utility for plotting histograms of cluster values 

 
 
function [N,X,F] = Histosv3(Labeled,Mean,Cov,cn) 
 
g=1; 
for i=1:(length(Labeled)) 
 if Labeled(8,i)==cn 
  keep(:,g)=Labeled(:,i); 
  g=g+1; 
 end 
end 
figure(1) 
clf 
colordef black 
 
for i=1:7 
    
subplot(3,3,i) 
 
[N,X]=hist(keep(i,:),20) 
plot(X,N/(sum(N)*(X(2)-X(1))),'gx') 
hold on 
M=Mean(i,cn) 
C=Cov(i,i,cn) 
D=1; 
Z=linspace(X(1),X(20)); 
L=length(Z); 
 
for j=1:L 
 Y(j,1)=Tdist(Z(j),M,C,1,D); 
end 
plot(Z,Y(:,1),'r-') 
end 
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B.10 Utility for plotting cluster means and standard deviations 

 
 
function [] = Meanplot(Means,Covariances) 
 
clf; 
hold on; 
for i=1:8 
Upper(:,i)=Means(:,i)+abs(diag(abs(Covariances(:,:,i))).*Means(:,i)); 
Lower(:,i)=Means(:,i)-abs(diag(abs(Covariances(:,:,i))).*Means(:,i)); 
end 
A=[1 2 3 4 5 6 7]; 
Upper 
Lower 
plot(A,Means(:,1),'y-') 
plot(A,Upper(:,1),'y:') 
plot(A,Lower(:,1),'y:') 
plot(A,Means(:,2),'m-') 
plot(A,Upper(:,2),'m:') 
plot(A,Lower(:,2),'m:') 
plot(A,Means(:,3),'c-') 
plot(A,Upper(:,3),'c:') 
plot(A,Lower(:,3),'c:') 
plot(A,Means(:,4),'r-') 
plot(A,Upper(:,4),'r:') 
plot(A,Lower(:,4),'r:') 
plot(A,Means(:,5),'g-') 
plot(A,Upper(:,5),'g:') 
plot(A,Lower(:,5),'g:') 
plot(A,Means(:,6),'b-') 
plot(A,Upper(:,6),'b:') 
plot(A,Lower(:,6),'b:') 
plot(A,Means(:,7),'w-') 
plot(A,Upper(:,7),'w:') 
plot(A,Lower(:,7),'w:') 
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C.1  Peptoids incorporating fluorescent label and iodoacetamide 

 

 Two peptoids FI1 (Fig C.1) and FI2 (Fig. C.2) were synthesized by the methods 

described in Chapter 2 of this thesis.  The key steps are to (i) introduce a C-terminus-

proximal mono-protected diamine, (ii) terminate the growing chain with 2 successive 

peptide couplings of a hexyl spacer (Novabiochem, La Jolla CA) and a carboxy-

fluorescein (Aldrich Chemical Co., Milwaukee WI), and (iii) reveal the C-proximal 

primary amine and iodoacetylate it.   

 MALDI-TOF analyses of the two syntheses (Fig. C.3) indicate that minimal 

desired product was produced in the synthesis of FI1, while a mixture of the 

iodoacetylated and uniodoacetylated products were produced in the synthesis of FI2. 
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Figure C.1: Schematic illustration of fluoro-iodo peptoid FI1.  The iodoacetamide is 

added near the C-terminus for conjugation to 5′-thiol ODNs.
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C.2  Peptoids incorporating orthonitrobenzyl moiety 

 

 Two peptoids ON1 and ON2 (Fig. C.4) were produced by the methods described 

in Chapter 2 of this thesis.  They each incorporated the primary amine submonomer 

ortho-nitroaniline (Aldrich Chemical Co., Milwaukee WI) at the second position in an 

attempt to introduce a photocleavage site into the peptoids.  ESI-Quadrapole analyses of 

the product mixtures indicate incomplete yield (Fig. C.5 and Fig C.6(a)).  Exposure to 

broad-spectrum UV light for one hour resulted in no appearance of identifiable cleavage 

products (Fig. C.6). 
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Figure C.4: Schematic illustration of ortho-nitro aniline-incorporating peptoid ON1 
and ON2.  
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Figure C.5: ESI-Q analysis of ON1 peptoid. The spectrum indicates incomplete yield. 
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(a) 

(b) 

Figure C.6: ESI-Q analyses of ortho-nitro aniline incorporating peptoid ON2 before 
(a) and after (b) UV radiation.  
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C.3  Peptoids incorporating polar, aromatic side groups 

 

 A series of 11 peptoid 5mers (Fig. C.8) were synthesized by the methods 

described in Chapter 2 of this thesis.  Primary amine submonomers were chosen for these 

peptoids by comparing them to four common MALDI matrices (Fig C.7). 

HO
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OH
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COOH
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COOH

OHHO

OH

THAP

HO

COOH

CN

4-HCCA  

Figure C.7: Schematic illustration of four common MALDI matrices. 
 

The resulting peptoids were analyzed by MALDI-TOF mass spectrometry using several 

matrices to determine if they could be detected at lower concentrations than peptoids with 

non-polar, non-aromatic side groups.  The results did not show any sensitivity-enhancing 

effect of these submonomer choices (data not shown).  Two of the peptoids, P057 and 

P061, were conjugated to 5′-thiol ODNs and photocleaved (see Chapter 2, 3), but the 

resulting peptoid fragments could not be detected (data not shown). 
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Figure C.8: Schematic illustration of peptoids incorporating polar, aromatic side 
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