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ABSTRACT

Examination of the transcriptional messages encoded in the manifold of mRNA
molecules within a cell is a central task of molecular biology and functional genomics.
This examination can be broken down into two parts: collection of gene expression data,
and analyses of those data. Here, a new method for collecting gene expression data, and
two new methods for analyzing those data are presented.

A new method for quantifying gene expression denoted as the Mass-spectrometric
Analysis of Gene Expression (MAGE) is developed. MAGE relies on novel conjugates of
DNA oligonucleotide 30-mers; each unique sequence is conjugated via photolabile linker
to an N-substituted glycine oligomer (peptoid) of unique mass. Deuterated bromoacetic
acid is incorporated into some peptoids yielding two chemically identical probe
conjugates of different molecular weights for each nucleic acid sequence of interest.
Mixtures of these probes, along with 3' adjacent biotin-labeled oligonucleotides, are used
to interrogate a target mixture of cDNA. Following hybridization, the two adjacent
probes are ligated to enhance the specificity of the identification, and to enable the use of
a biotin-affinity column for removal of confounding peptoid tags. The resulting mixture
is exposed to longwave ultraviolet light to release the peptoid tags, that are quantified
using MALDI-TOF mass spectrometry using the isotopically labeled peptoids as internal
standards. These individual components of MAGE are demonstrated.

A strategy for simplification and visualizing of high-dimensional gene expression

data, as well as a strategy for inferring the presence of clusters within those data, is
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formulated and implemented. In order to visualize high-dimensional gene expression
data, principle components analysis is used with subsequent mapping of the data onto an
orthogonal set of basis functions known as Andrews curves. This analysis method is
demonstrated by visualizing of breast cancer tumor data and yeast sporulation data. In
order to cluster gene expression data, the expectation-maximization algorithm is
employed to optimize the parameters of a mixture model of Lorentzian distributions. The
difference between Lorentzian and Gaussian mixture models is first demonstrated with
artificial data, and then applied to yeast sporulation data. The results indicate that
mixtures of Lorentzian distributions may have significant utility for gene expression
analysis.

The tools demonstrated here offer unique advantages when compared to the
current suite of experimental and analytical tools employed by investigators of functional

genomics.
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1.1 Introduction

Gene expression analysis is the examination of the transition of information

encoded in nuclear DNA to the collection of proteins that are the ultimate product of that

DNA. The central dogma of molecular biology, Figure 1.1, describes the flow of cellular

information in general terms, originating in the genome where information is encoded in

DNA molecules.
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Figure 1.1: The central dogma of molecular biology. This schematic representation of
the central dogma suggests the importance of studying the transcriptome.



In the nucleus, DNA is transcribed into a complementary manifold of mRNA
molecules, known as the transcriptome. These messages are subsequently transported to
ribosomes where transcripts are translated into proteins. The transcriptome is not a copy
of the genome, because only portions of the genome are transcribed. The selection of
which and extent to which genes are transcribed is largely a function of the state of the
proteome, which acts in part to regulation of gene expression. The state of the
transcriptome is thus a function of the basic information content of the genome, the
regulatory action of the proteome, and also the proteome-mediated degradation of
transcripts. Finally, the state of the proteome is a function of, among other things, the
transcripts that reach the ribosomes. The proteome, which harbors the enzymes that
catalyze the reactions inside the cell, is also subject to self-modification and modification
from information inputs from outside the cell.

A basic experimental need of functional genomics is the ability to measure the
abundance of identifiable sequences of either mRNA or DNA derived from mRNA.
Although the relationship between the transcriptome and its product, the more
functionally diverse proteome, is not yet fully understood'”, it has been repeatedly
demonstrated that even in isolation, the transcriptome is an information-rich molecular
phenotype.

Recently, transcriptome analysis has been applied to the classification of breast
cancers®, prostate cancers, adult acute myeloid leukemias®, and follicular thyroid
tumors’, where significant clinical factors such as time to distant metastasis and overall
survival are correlated to the abundances of a subset of the transcriptome. Another class

of studies has sought to infer relationships among genes or proteins by examining



changes in gene expression for a particular organism or tissue across a relevant range of
conditions. This has been the aim of studies of yeast sporulation®, stress response in
human cell culture’, and C. elegans development'®.  Another intriguing class of studies
seeks to determine the quantitative behavior of subsets of the transcriptome'' ™. Unlike a
general classification or identification analysis, efforts to model gene regulation networks
demand highly quantitative data on a gene-by-gene basis. This demand is often met by
using large-scale data to initiate a framework for analysis, and then conducting as many
lower-level analyses using more precise, but time-consuming, methods as are practical'®.
Sequence-specific nucleic acid detection has been a fundamental technique of

molecular biology for decades'”"®

. The current state-of-the-art techniques that are
designed to be quantitative can largely be categorized into several classes: PCR-based,
sequencing-based, and microarray-based. Because they incorporate exponential
amplification, PCR-based methods, such as real-time PCR and competitive PCR, are
currently the most sensitive techniques available. The sequencing-based methods, such
as serial analysis of gene expression (SAGE) and differential display, are principally
advantageous when the genes or sequences of interest are not known before the
experiment. Microarrays require advanced knowledge of sequences of interest, but they
make practical the simultaneous analysis of thousands of sequences. Of these methods,
only SAGE is inherently quantitative, but it cannot be applied to rarer transcripts in a
statistically robust manner with today’s sequencing technology. Thus, clever methods of

normalizing the other technologies have been devised in order to provide quantitative

data.



In order to make PCR quantitative, the sequence of interest (SOI) is amplified
along with a sequence of known initial abundance. In the case of real-time PCR'*?', the
focus is to eliminate all of the variability in PCR that comes after the exponential phase,
by employing fluorescent labels to monitor the PCR reaction kinetics and using an
intermediate, exponential-phase abundance for the calculation. In a simple example, the
sample to be analyzed is divided into two aliquots, and in one aliquot the SOI is
amplified, and in the other aliquot an endogenous comparator sequence is amplified. The
comparator sequence is chosen to have a constant abundance across all of the samples to
be analyzed. So-called housekeeping genes are generally candidates for comparator
sequences.

22,23 - -
R“>*°, the comparator sequence is exogenous, and is exactly the

In competitive PC
same as the SOI with the exception of a one-base mismatch. The SOI and a known
amount of comparator are co-amplified by the same primers in the same reaction, and
because of their similarity, they are amplified at the same rate as long as their starting
concentrations are fairly similar. Here, the difficulty lies in quantifying the relative
amounts of two nearly identical sequences. The most sophisticated way to do this yet
proposed is the method of Ding and Cantor™, where a base extension reaction is used to
produce two small oligodeoxynucleotides (ODNs) of different masses in known
proportion the relative abundances of the two amplified sequences. These ODNs are then
quantified by MALDI-TOF mass spectrometry. This technique does not require the

expensive fluorescent tagging systems that real-time PCR does, but neither PCR-based

technique is suitable for significant multiplexing in a laboratory of typical resources.



Serial analysis of gene expression (SAGE) employs enzymatic techniques to
create short tags from a pool of cDNA that are subsequently concatenated, cloned into
plasmids, and sequenced24. SAGE is inherently quantitative, and thus very well suited
for multi-laboratory collaboration. However, due to the fundamental statistics of gene
expression, Table 3.1, even if 10° tags are sequenced, rare transcripts are not reliably
quantified. Differential display, unlike the other methods discussed here, does not
require expensive consumables or equipment. Differential display functions by using
PCR primers designed to hybridize to a small fraction of the sequences in a typical cDNA

2326 The typically 50-100 products are displayed using

sequence, and amplify only those
gel electrophoresis, and sequences that are differentially displayed between two samples
can be isolated and sequenced. Depending on how rigorously the labeling process is

handled, this method can determine relative abundances of SOIs, but it cannot approach

the reliability of the low-throughput PCR methods.

Copies per Cell Number of Different Total Number of mRNA
of Each mRNA mRNA Sequences in Molecules in Each Class
sequence Each Class

Abundant 12,000 X 4 = 48,000

class

Intermediate 300 X 500 = 150,000

class

Scarce class 15 X 11,000 = 165,000

Table 1.1: Distribution of mRNA in a cell. In a typical cell, the majority of genes are
expressed as scarce transcripts. A single scarce gene might only make up .001% of the
total transcript population®’.

Microarrays are surfaces onto which probe sequences are spatially arranged at

high density. Labels are incorporated into the target sequences, and then the targets and

probes are contacted and allowed to hybridize. After washing, the microarray is




visualized, and the resulting display in combination with the spatial map of sequences on
the surface indicates which sequences were present in the target. A carefully controlled
system of fluorescent labeling can confer quantitativeness to microarray methodologies.
Three types of microarrays account for the majority of studies: short-ODN, long-ODN,
and cDNA. Short-ODN microarrays*** are composed of multiple different probe ODN
sequences for each target SOI. Because the length of the probe ODN:ss is typically no
more than 25 nucleotides, single-base mismatch controls and sophisticated statistical
techniques are employed to produce aggregate quantitative figures. Long-ODN
microarrays rely on probe ODNs that are composed of at least 50 nucleotides, and thus
have fewer problems with cross-hybridization compared to short-ODN microarrays. The
longer ODNGs can be synthesized in situ®’, non-specifically immobilized®', or covalently
attached’” to the surface. Most microarray studies rely on robotically spotted cDNA
microarrays™>, where the probes are either full-length cloned cDNAs or large PCR-
amplified fragments that are robotically deposited on the surface in a non-specific
manner. Typically, the target mRNA pool from one of two samples being compared is
labeled during reverse transcription with the dye Cy3, and the other with Cy5**. The two
target samples are simultaneously hybridized to the same probe array, and the intensity of
each spot is measured at wavelengths appropriate for each dye. The relative abundance
of the target SOIs is inferred from these intensities. Recently, a method has been
developed to combine stringent labeling procedures with printed dye calibration spots in
order to produce absolute abundances from microarray data®.

Microarray experiments do not include an inherent amplification step, however a

variety of global amplification schemes have been tested with varying degrees of success.



Two of the most popular methods are linear amplification schemes that offer significantly
more reproducibility than global PCR-based schemes: in vitro transcription®® and the
aRNA-based method of Eberwine®’’. Using these methods, the minimum starting
material requirement for microarrays can be lowered to about one pg of total RNA, or the
amount found in 10° to 10° cells, which is still far more than is required for PCR-based
methods.

Microarrays are most often employed as screening tools. Successful studies have
sought to use the aggregate data for broad classification® or to identify genes with
behavior worthy of further investigation*'. In either case, false information will generally
not confound the overall result of a meaningful classification or a collection of genes of
interest. Improving microarray methodology in order to maximize reproducibility****,
and formulating statistical models to extract the maximum amount of relevant
information from each experiment®™ ™’ are major areas of research. This work is hindered
by an incomplete understanding of the physics of hybridization between free ODNs and
tethered ODNs**™°, as well as the sources of noise in gene expression analysis® ",
Because of this, it is common for studies to verify particular microarray results with low-
throughput, high-fidelity methods, most commonly real-time PCR™. These subsequent
studies are often critical because many significant biological processes are affected by
relatively small changes in abundance of relatively scarce transcripts. Another reason
that PCR methods are important supplements to microarray studies is that although
fluorescent detection systems in principle operate over 4-5 orders of dynamic range, in
practice microarrays experience signal compression, signal deterioration, and floor

effects when operated beyond 2-3 orders of dynamics range™™’.



There remains a need for new methods for gene expression analysis, or the more
general problem of sequence-specific nucleic acid quantification, especially for
addressing the problem of efficiently collecting very reliable, unambiguously quantitative
data for 5-50 SOIs, with the sensitivity and dynamic range of PCR-based methods. Such
a methodology would be ideally suited for medium-scale modeling of gene regulation

networks.

1.2 Objectives

For functional genomics studies, there is a need to first quantify the state of these
groups of molecules and then extract from this mass of data functional information about
either the correlation between the measured state and some other phenotypic
characteristic, or more profoundly, the fundamental interactions, control loops, and
kinetics at work. Thus, gene expression analyses comprise two major efforts: the
collection of useful information from the transcriptome, and the processing of data in
some meaningful way. This thesis introduces a new method for collecting data in
Chapter 3, and two new methods for processing data in Chapter 4. One of the key
components of the new method of data collection is a class of sequence-specific
heteropolymers that contain conjugates of DNA oligonucleotides and peptoids. During
the course of investigations, I compiled a collection of synthetic tools for engineering the

peptoids (N-substituted glycine oligomers), and I present these tools first in Chapter 2.
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1.2.1 Collecting Gene Expression Data

The number of transcripts that exist from a particular gene at any time is a
measure of how actively that gene is being transcribed and how quickly the transcript is
subsequently being degraded. Although there is not a 1:1 correlation between transcript
abundance and protein abundance, measurements of mRNA species are considered to be
measures of the extent of gene expression. The transcriptome contains a wide variety of
mRNA species. The majority of genes in the genome are expressed in very small
quantities, Table 1.1. Furthermore, many of the very tightly regulated genes that are of
great interest, are in this scarce category. This distribution must be taken into account in
the design of any transcript quantification method.

Transcripts are molecules of mRNA, and the goal of transcript quantification is to
create an inventory listing transcripts by what protein they code for, and the abundance of
each of these species. Some methods inventory only one transcript at a time, some
inventory a large, predefined list, and still others inventory all transcripts, even those that
code for genes that have not been identified. Quantification methods also vary in their
sensitivity, reproducibility, dynamic range, and ease of use. Many of the methods can
only quantify a particular transcript relative to some other transcript. Other methods
measure the abundance of transcripts irrespective of a comparator nucleic acid, but no
method can simultaneously compare nucleic acid concentrations from more than two
samples.

The fundamental property used for the identification and quantification of mRNA

molecules is each molecule’s sequence. The sequence of an mRNA molecule is
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complementary to that of the gene it was transcribed from, so in this manner it can be
identified with a particular gene. Also, either in its native form or reverse transcribed into
cDNA, the sequence of the molecule can be put to use by probing for it with a labeled
complementary nucleic acid, whether it be cDNA (complementary DNA), RNA, or even
PNA (peptide nucleic acid). Every assay for mRNA relies on identification by sequence,
either through hybridization or through direct sequencing.

In Chapter 3, I present a method for quantifying the absolute abundance of nucleic
acid species of a pre-identified sequence using mass spectrometry. I denote this
methodology mass-spectrometric analysis of gene expression as MAGE. Because
nucleic sequences cannot be discriminated by their mass, I introduce a system of
hybridizable oligodeoxynucleotide probes conjugated reversibly to peptoid labels serving
as mass tags. I engineer the peptoid tags to be optimally suited for mass spectrometric
quantification. MAGE is designed to minimize potential sources of error, and rely on
controllable physical processes, and be parallelizable up to about 50 sequences of
interest. Such a method would be useful for medium-scale studies of groups of related

transcripts, especially for quantitative modeling.

1.2.2 Analyzing Gene Expression Data

For the past ten years, investigators have been employing new methods of gene
expression data collection to simultaneously measure the abundance of thousands of
different species of mMRNA. A typical experiment might measure the abundance of

transcripts corresponding to 8,000 genes in 20 different biological samples. Data on this
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scale are not amenable to conventional statistical tests of significance. Furthermore,
many of the hypotheses tested by gene expression experiments are complex or
unconventional. At the far extreme of this are experiments designed to suggest
hypotheses for further testing, when the analytical question becomes “what patterns are
present in the data that are worth investigating?” Two major challenges of analyzing
highly multivariate gene expression data such as these are first to present, or visualize,
the data in an informative manner, and second to robustly identify patterns, especially
clusters, in the data. In Chapter 4 of this thesis, I present one solution to each of these
problems.

Visualization of data becomes a problem when each element of data, or vector,
grows beyond 2 dimensions; the central issue is mapping vectors in multidimensional
space onto 2 dimensions. My solution to this problem is to first apply a method of data
reduction known as principle components analysis (PCA), and follow that by mapping
the data onto an orthogonal set of basis functions known as Andrews curves. This serves
to convert each high-dimensional vector to a two dimension wavy line. Two vectors that
are close to one another in high-dimension space will become two lines with a similar
wave pattern.

Clustering is a task that derives from several basic hypotheses that are frequently
tested in large-scale gene expression experiments. One is that genes that have similar
expression patterns over a range of samples or conditions are likely to be biologically
related. Another is that biological samples that have similar patterns of gene expression
are likely share in some other phenotypes. Either hypothesis leads to the analytical task

of clustering, which seeks to identify vectors in high dimensional space that are close to
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one another. Our solution to this problem is to apply the expectation-maximization
algorithm to optimize the parameters of a mixture model. A mixture model is a
hypothesis that the data were generated by a linear combination of probability
distribution functions. The majority of such models that have been previously studied are
based on normal distributions, but I present results that indicate that mixtures of

Lorentzian distributions may have significant utility for gene expression analysis.
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2.1 Introduction

Peptoids, Figure 2.1, are N-substituted glycine oligomers, and have become a

significant class of peptidomimetics'.

H o o
O O

| T | i
<VN?NKNKNK> Peptoid

Figure 2.1: Schematic illustrations of peptoids and peptides. Compared to
peptides such as oligo-alanine, upper, peptoids, such as oligo-sarcosine, lower, lack
stereochemistry and sites for hydrogen bonding, but retain a similar spacing and overall
structure.

Originally proposed by Zuckermann et al.” as a strategy for synthesizing diverse
libraries of lead compounds for drug discovery, peptoids have since been designed to
form stable secondary structures’, including a family of o-chiral-side-chain substituted
peptoids that form stable helices*’. Several studies have shown that peptoids® or peptoid-
peptide hybrids”™'® can be designed to act as protein ligands in the nanomolar to
micromolar affinity range. Kodadek et al. are currently developing methodologies for the

synthesis of large peptoid libraries and subsequent screening and isolation of peptoid

ligands from those libraries'".



23

A number of studies have demonstrated the use of peptoids in other biomimetic
and biotechnological roles. Peptoid nucleic acids extend the biomimetic role of peptoids

12,13

beyond that of peptide mimicry ~'°. Peptoids have been designed to serve as cell

penetrators'*'* and gene delivery vehicles'®. Several studies have demonstrated peptoids

17,18 including helical mimics of magainin-2 amide'’.

with antimicrobial properties
Helical peptoids have also been designed to mimic lung surfactant protein C*°, and a
series of trialkylglycine peptoids have been shown to have analgesic effect by blocking
VR1 channels”. Peptoids were also applied as uncharged, water-solubilizing caps for
use in membrane-interactive peptides™.

One of the most attractive features of peptoids is the ease with which diverse,
relative pure oligomers can be synthesized. Although several methods for peptoid
synthesis have been proposed”**, the solid-phase, submonomer method of Zuckermann
et al.?*? is the most widely replicated. The central advantage of the submonomer
method (Fig. 2.2) is that the growing chain of the peptoid is extended by repeated
applications of a single linking chemistry, and that the submonomer providing diversity is
a primary amine (Fig. 2.3). Perhaps the greatest disadvantage of the submonomer
method, the requirement of on average 3 hours of reaction time per monomer added to
the growing chain, has recently been eliminated by Olivos ez al.”®, who demonstrated

microwave-assisted synthesis of peptoids of approximately 1 minute of reaction time per

monomer added.
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Figure 2.2: The solid-phase submonomer method of peptoid synthesis. This
method is executed by repeated, alternating rounds of bromoacetylation and primary
amine substitution. Commonly, the finished chain is cleaved by trifluoroacetic acid to
form a C-terminal amide cap.

NHtrt
HZN/\/\ H2N/\/\/ HZN/\/OH
(o)
HoN ~
OtBu 2
HQN/\/O\ HQN/I o/
/O

HN\
=
H2N/\)\/ _N

Figure 2.3: Primary amines used for peptoid synthesis. Peptoid diversity is
generated through the choice of primary amines (R-NH; in Figure 4.2). Some commonly
used classes include aromatic, aliphatic, heterocyclic, cationic, anionic, bulky, small,
hydrophobic and hydrophilic.

The submonomer synthesis has been extended to allow for a variety of primary
amine submonomers”, including unprotected heterocycles®. Depending on the linker
chosen, peptoids can be produced with either C-terminal acids®' or amides™. A variety of
chemoselective functionalities™ can be incorporated into peptoids either along the

backbone or at the N-terminus, such as aminooxyacetamides, N-

(carbamoylmethyl)acetohydrazides, mercaptoacetamides, 2-
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pyridinesulfenylmercaptoacetamides, maleimides®*, and aldehydes. Analysis of peptoids
is commonly accomplished by RP-HPLC, mass spectrometry’”, and capillary
electrophoresis®®*’. Once synthesized, peptoids can be sequenced by Edman
degredation’®.

Here, I seek to further expand the toolkit for peptoid synthesis while staying
within the submonomer synthetic methodology. First, I demonstrate a simple method for
introducing 2:1 branch into the growing peptoid chain. This would allow the rational
synthesis of branched or multiply branched structures, and it could also be incorporated
into a parallel synthesis to generate libraries of branched structures. Second, I
demonstrate a simple method for capping the growing peptoid chain. Capping is a
standard step in the protected-monomer synthesis of DNA, and caps have found

application in peptide synthesis as purification tags™ *

. If a particular primary amine
submonomer had a low rate of substitution during peptoid synthesis, that step could be
immediately following by the addition of a high-substituting cap. By doing this, that
chain would never grow any longer and would not result in a potentially confounding
single-deletion sequence. Third, I demonstrate several useful N-terminal modifications,
including two types of haloacetamides, two types of carboxylic acids, and two types of
primary amines. Fourth, I demonstrate a straightforward technique for peptoid
macrocyclization that is chemically orthogonal with many potential peptoid sequences.

Because many macrocyclic peptides have potent biological activity***’

, a general method
for peptoid macrocyclization would expand the potential applications of peptoids. Fifth, I

demonstrate the synthesis of two different peptoids incorporating four adamantine

moieties. Adamantyl species have not yet been reported as peptoid submonomers
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because when attached proximal to the growing chain, it can severely hinder chain
extension. In my syntheses, adamantane moieties are attached via two different spacers.
Finally, I demonstrate a new method for conjugating peptoids and DNA
oligodeoxynucleotides (ODNSs). Peptoid-ODN conjugates have been applied to
demonstrate a drag-tag methodology for electrophoresis™*, but they have not yet been

applied to biological studies as many peptide-ODN conjugates have.

2.2 Experimental

2.2.1 General Peptoid Synthesis

Peptoids were synthesized manually using the method of Figliozzi et al.”” The
synthesis is described here using 100 mg of resin, but up to 250 mg have been
successfully used in the same size synthesis vessel by scaling all other reagents linearly.
100 mg of rink amide MBHA resin (Novabiochem, La Jolla, CA) was loaded into a 10
mL peptide synthesis vessel that had been modified to improve agitation by adding a
small pocket on the wall of the reaction chamber. The resin was first washed several
times with N,N-dimethylformamide (DMF, Aldrich Chemical Co., Milwaukee, WI). All
solvents were purchased anhydrous and kept as dry as possible by careful handling and
storage with molecular sieves (3A, EM Industries, Gibbstown, NJ). The resin was
agitated by an upward directed flow of argon. A wash step refers to adding 1-2 mL of

solvent, agitating for 30 seconds, then draining the vessel under aspirator vacuum.
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After the initial washing to swell the resin, the DMF was drained and the Fmoc
groups protecting the resin free amines were removed by adding 2 mL of 20% piperidine
in DMF, agitating for one minute, draining, and adding another 2 mL of 20% piperidine.
The second solution was agitated for 15 minutes and then drained. The resin was washed
with DMF six times before peptoid synthesis.

From here, repeated rounds of a single linking chemistry were used (Table 2.1
and Fig. 2.2). First, the free amines were acetylated by adding 850 uL of 0.6 M
bromoacetic acid (BAA, Aldrich Chemical Co., Milwaukee, WI) and 200 uL of 3.2 M
diisopropylcarbodiimide (DIC, Aldrich Chemical Co., Milwaukee, WI). The slurry was
agitated for 30 minutes, drained, and an identical solution was added for a further 30
minutes of agitation. Following this, the mixture was drained, washed twice with DMF,
and once with N-methylpyrrolidone (NMP, Aldrich Chemical Co., Milwaukee, WI).

The nucleophilic substitution of a primary amine is the second half of a round of
synthesis. The primary amine of choice was dissolved at around 1.5 M in NMP and ImL
of this solution was added to the vessel. The mixture was agitated for two hours, drained,
and the resin is subsequently washed twice with NMP and once with DMF. Amines in
acid salt form were first neutralized by the addition of 95% the stoichiometric amount of
KOH (Aldrich Chemical Co., Milwaukee, WI). The organic layer was separated and
used for the synthesis.

Once the peptoid was completed (generally by adding the final primary amine)
the resin was washed thoroughly with DMF (four to six washes) and then
dichloromethane (four to six washes), and allowed to dry for about an hour in the reaction

vessel. Following this, the peptoid was cleaved from the resin by placing the resin into a



28

glass vial containing 5-10 mL of 95% trifluoroacetic acid in water (TFA, Aldrich
Chemical Co., Milwaukee, WI). This mixture was stirred for 30 minutes, filtered, and
washed with further TFA and water. The resulting solution was diluted with water and
dried using a rotary evaporator or with a stream of dry nitrogen, subsequently frozen and
lyophilized. The dried material was resuspended in one of water, dimethylsulfoxide, or a
mixture of water and acetonitrile and placed into a tared cryovial for final lyophilization

and storage.

Step Reagent Reaction | Volume | Repetitions
Time (uL)
1 BAA 0.6 M bromoacetic acid | - 850 -
Addition in DMF

2 Activation 32M - 200 -
diisopropylcarbodiimide
in DMF

3 Acetylation 30 min 2

4 Wash DMF 30s 2000 2
NMP 30s 2000 1

5 Displacement | 1.5 M primary amine in | 2 h 1000 1
NMP

6 Wash NMP 30s 2000 2
DMF 30s 2000 1

Table 2.1: Peptoid synthesis single linking chemistry scheme of Figliozzi et al., for
100 mg of resin. These steps are repeated for each monomer addition.

2.2.2 Specialized Syntheses

I introduced br