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THE CONTINUOUS SPECTRA OF HYDROGEN UKE ATOMS 

INTRODUCTION: 

As is well known, the Bohr-Sommerfeld quantum theory of atomic 

phenomena and structures provided, in itself, no explanation of the inten

sities of spectral lines or of the probabilities of transition between the 

stationary states. The theory of these problems had its origin in the 

additional postulate made by Bohr in 1918, which is called the Correspondence 

Principle. 

The Correspondence Principle states that in the limit of 

large quantum numbers, or in the limit as h is made to approach O, the in

tensities and polarization of the radiation emitted by a mechanical atomic 

system, when considered quantum mechanically, is to be the same as that 

which would be predicted for the same mechanical system by classical electro

dynamics. It postulates, in addition, that this correspondence is approx

imately maintained even when the quantum numbers are not large. 

Altho this principle has offered a very powerful method for 

the investigation of many atomic phenomena, it has suffered from two funda

mental difficulties. The first nay be explained as follows. Classically, 

the intensities of the radiation frequencies emitted by an electron moving 

in an orbit is determined by the amplitudes of the Fourier components into 

which the electric moment of the electron may be resolved. Quantum theoret

ically, radiation is emitted only as the result of a transition between~ 

stationary states. The Correspondence Principle offers no unique way of 
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deciding, in general, which is the state, final or initial, whose fu~plitudes 

are to determine the radiation, or a rr~thod of averaging the 'amplitudes of 

the two states, if that be the reasonable procedure. Indeed, for large 

quantum numbers it makes little difference which of the two states is chosen, 

or what averaging process is used, but, in principle, the ambiguity still 

persists even in these regions. Only when the amplitudes for both states, 

and those intermediate, are 0, is the unique prediction ma.de that these 

transitions do not occur and that hence the intensity of the corresponding 

radiation is also o. 

The other difficulty lay in the ambiguity arising when the 

atomic system is degenerate, as is the case for the Kepler hydrogen problem. 

Here, as for a given energy state there is a multiplicity of equivalent 

orbits, the question must b.e answered as to which orbit of this manifold is 

to be resolved into Fourier components to determine the intensities of the 

radiation. The Correspondence Principle, as stated, does not ~upply the 

answer. However, this difficulty may be avoided, in some cases, if the de

generate system is considered as the limit of a perturbed system in which 

the degeneracy is removed. 

It is one of the significant achievements of the Theory of 

Quantum Mechaaics that it does remove these ambiguities characteristic of 

the Correspondence Principle, as stateclby Bohr. And this simply.1 consists 

in giving a precise definition of the electric moment to be associated with 

the electron, while computing from it by the classical electrodynarnieal 

formulae the radiation that is to be emitted. 

In the language of the Wave W~chanics, this definition may be 
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stated as follows: If' the two states, defined by the quantum numbers n, m, 

have· associated with them the normalized eigenfunctions ·'fl n and 'f'm' the matrix 

element of the coordinate q for the transition between these states is given by: 

( 1) 

where the integration is to be extended over the space for which the eigen-

functions were defined, which may be three dimensional or not, and where * 

designates the conjugate value, in case the~' s are complex. The "moment" 

corresponding to this transition is then given by: 
27ri (En-Era) t 

(la) Mnm = qmnen-

where En, Em are the energies or eigenvalues corresponding to the states. 

And the electric moment which is to determine the radiation by the classical 

electrodynarnical formulae is obtained by multiplying I~ by e, the charge of 

the electron. 

The precise definition (1) obviously removes the first diffi-

culty, mentioned above, of the older quantum theory. And when the system is 

degenerate, under the assumption that the various components of the degenerate 

state act independently, or incoherently, the total intensity of the transition 

from En to Em is given by summing the individual intensities for the possible 

transitions between the various pairs of components, each corresponding to 

an. (nm) transition for the energy. Thus the second difficulty: is resolved 

also. 

When the Schrodinger wave equation for the atomic system per-

mits a continuous as well as a discrete set of eigenvalues, as does the Kepler 

problem, the definitions (1), (la) are still valid. In this case, one or 

both of the indices (n m) are no longer integral, but may asswne a continuous 
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range of values. When only one is non-integral, the matrix element qnm cor-

responds to a transition between a discrete state and a continuous state, or 

between a quantized elliptic and an unquantized hyperbolic state, in the language 

of the old Bohr model. Such transitions give rise to continuous spectra, each of 

which begins at the limit of the discrete spectrum, the tr.ansitions of which 

have as a final state, for emission, the same as that of the particular contin-

uous spectrum. This type of continuous spectrwn is sometimes called the "affin-

i ty" spectrum of the atomic or molecular system. 

When neither of the indices (nm) is integral, the transition is 

that between two hyperbolic unquantized states, and the spectrum is the general 

continuous spectrum with no definite limits. The interpretation, given here, of 
1) 

the origin of the continuous spectra was first proposed by Bohr • 

It must be stated that altho, formally, the definition (1) is 

maintained also for the continuous spectra, it may happen that the integral does 

not converge, thus making the definition meaningless. Hence, in general, the 

integrals (1) for continuous spectra are rel/tied by the 

qEm = lim l f q "t [ Jt ( '1 ) d '11 d "( 

expressions: 

(lb) 
tJ E.., 0 t1E m i \ (~ 

where m. is the discrete integar and E represents the eigenvalue of the continuous 

range. And if m is also non-integral, but corresponds to the continuously vary-

ing eigenvalue, (1) 

(le) 

is always diver~·e:~t andif'iif!f;st be replaced by: 

= lim _1_ Jq 'f ('J)dl( "f() )~ dT. 
dF-to IJE/Jf. I 

4<" .. o £ E 
In almost all cases, however, the convergence of (lb) permits the change of the 

order of integration and removal of the limiting process; then (lb) becomes iden-

tical with (l}. This actually occurs in the present problem. (c~. (5) below.) 
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STATET'/011NT OF THE PEOBLEM. 

Altho the definition (la) is common to all the equivalent 

forms of the Q.uantum Mechanics, the definition of the matrices q by (1) 
nm 

is that to be applied only in the wave mechanical treatment of the atomic 

problem. In the I'viatrix Mechanics, the q are evaluated directly by 
nm 

algebraical processes from the matrix formulation of the proble1n. And in 

fact, Schrodinger 2 ) and Eckart 3} were led to the wave mechanical definition 

(1) by the requirement that their definition must be equivalent to that which 

would be implied by the postulates of tho Matrix Mechanics. 

However, these derivations by the Matrix Mechanics break 

down in ease either or both of the indices {nm) refer to a continuous range 

of eigenvalues. The operator method of Born and Wiener4 ) v.ras then devised 

to take care of these cases; but, as yet, no problems of significance have 

been solved in this way. In general, too, the processes of analysis in-

volved in the wave mechanical treatment of the quantum theory seem less 

abstruse, altho they are often quite complicated. Hence this method, and 

definition (1) will be adopted here. 

The intensities of the line spectra of hydrogen have been 

calculated by the wave mechanics by Schrodinger 5 ), Epstein 6 ), Sugiura ?), 

and Kupper S). The matrices for the continuous spectra have as yet not been 

satisfactorily treated, except as noted below. 

As these continuous matrices are necessary for the treatment 

of other phenomena, as the photoelectric effect, rates of recombination, 

intensities of X rays, as well as for the study of the continuous spectra 

themselves, the present investigation for their evaluation was undertaken. 
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In particular, only the m.atri ces corresponding to transitions between a 

discrete and continuous state in a hydrogen like atom are here evaluated. 

This problem has been generally treated by Oppenheilaer 9), but his final 

results are not satisfactory for detailed discussion. .And Sugiura 7) has 

given the matrices for the special cases where the discrete state is the 

lowest of the LT.illan, Balmer and Paschen series of levels. The present an-

alysis yields general formulae and such as are convenient for numerical 

corn:putation. 

Specifically then, the problem here investigated is the 

evaluation of the Schrodinger matrices for the affinity spectrmn of hydrogen 

like atoms. This is an essentially analytical problem. And for completeness, 

the derivation of some results, as the normalization of the eigenfunctions 

and the integrals of the spherical harmonics, thc:_t have been previously given 

by others, will be derived here, too. 

As given by Schrodinger, the wave equation for an unperturbed 

non-relativistic hydrogen like atom of atomic number .Z, is : 

( 2) v 2"' + 
~(B + Ze2)f = 
K2 I r 

o. 

Here, f'' is the amplitude function, r' e, the mass and charge of the electron, 

K = h/2Ti, h is Planck's constant, r is the distance of the electron from the 

nucleus, taken as at rest, and E is the energy constant of the atomic system. 

When this equation is separated in the polar coordinates (r, e, m), the 

solution is given by: 

(3) 

where 
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(4) d2.X. + E.. 4 + 
dr2 r dr 

- (k-l)k )j. = o. 
r2 

In (3) and (4), k)/l, and is integral; O~ m~ k-1, and mis integral also; 

m 
Pk_1 (cos9) is the associated spherical harmonic of degree k-1 and order m. 

Both cosm~ and sinm! satisfy the Schrodinger conditions of peridiocity in 

m, and hence either may be used, excepting the case for which m = 0,-when 

only the former is not trivial. Thus, it may already be noted that with the 

exception of this case the system has a tv,-o fold dege:neracy with respect to 

the quantum number m. 

Referring now to (1), the esseDtial problem of this inves-

tigation is the evaluation of the matrix integrals: 

(5) q(n, k,m;n • ,k' ,m•) = j q"f'(n,k,ml'f *(n' ,k' ,m' )d-C , 

where n, n' are parameters, defined exactly below, for the eigenvalues of 

E; q is a coordinate, either x, y, or z; d-C= r2sin9d9dmdr, and the in-

tegration is extended over the whole coordinate space. 
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PROPERTIES OF THE WAVE F0~CTIONS. 

Before proceeding with the solution of the problem, just stated, 

it will be well to analyze some of the properties of the'eigenfunctions_x(r), 

and also to obtain their asymptotic expansions. Thruout these considerations, 

the notation of Epstein 6 ) will be used. 

= ti (A) t d' d b ~ l di • h' f' t lQ) l?.iqua on f'J: was s u ie y 0c,·1ro nger in is irs paper • 

To satisfy the I'equirements of single-valuedness, continuity and finiteness 

for 'f , and hence for j., ( r) , Schrodinger found the following to be true. Such 

solutions,,.((r), exist for all values of E f'or which E 70• These values of E 

correspond to the hyperbolic orbits in the old Bohr model of the hydrogen like 

atom. And as all such E's are allowed, they are said to form a continuo•_-;,s 

spectrum of energy states. 

If, however, the value of E corresponds to an elliptic orbit, 

i.e. if E(.0, solutions 'f, satisfying the requirements, exist only if E 

satisfies the relations: 

(6) ~e2 Z = - n = - ( s • k) ; 
K241( 

where n is a positive integar,/l. (6), when rearranged, gives directly the 

Bohr expression for the anergy of the stationary states of the hydrogen like 

atom. (6) also serves to define the parameter a, whioh is integral if n is 

integral. s corresponds to the radial quantum number, whereas kJcorresponds 

to the azisuthal quantum nurnber of the older quantum theory. The series of 

integars n defines the discrete spectrum of energy st~tes. 

It is convenient to use the notation of (6) also for the case 

where E ,0. Then, el., and n are imaginary, and s is complex. 
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Schrodinger lO) has given the explicit solutions of (3) as 

polyno~:1ials multiplied by exponentials, for the discrete eigenfunctions, 

and as cont8ur integral expressions for the continuous eigenfunctions. For 

the present investigation it will be more convenient to use the general 

representations and method of Epstein o). 

Thus, the dependent variable 'J. (r) is first changed to Ivl( ~' 2k, r) 

by the substitution: 

(7) j.. (r) k 1 -'r r - e"" M(r). 

then, satisfies the equation: 

(7a) 2(o( + k )!M -~ M = o, 
r dr r 

usigg the notation of (6). The solution of this, satisfying the condition 

of finiteness, is directly seen to be: 

(8) M(s,2k,r) = 1 + _s_(2ol r) 
112k 

+ s s-1)(2olr)& + •••• 
212k(2k+l 

This can be expressed as the following limiting form of a hypergeometric 

function: 

(Sa) M(s,2k,r) = lim F(-s,, ,2k,-2« x). 
x .. o; ()./llf/~ 
fx: r 

It may be noted, here, that it s is an integar, (8) reduces to 

a polynomial which is easily shown to make (7) equivalent to Schrodinger's 

expression for the discrete,.X(r). Otherwise, (8) is an infinite series. 
J 

By means of (Ba) a recurrence relation for the functions M 

may bf readily obtained. For it may be easily verified that: 

(b-c+l)zF(a,b,c,z) - (c-1)(1-z)F(a,b,c-l,z) + (c-l)F(a-1,b,c-l,z) = o. 

Proceeding to the limits as indicated in (Sa), the relation follows: 
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(~) 2otrM(s,2k,r) = {2k-l) {M(s+l,2k-l,r) - M{s,2k-l,r)j • 

This formula will be of use later. It holds for the lvl' s representing both 

the discrete and continuous eigenfunctions. 

As noted above, for the continuous spectrum, o'-is imaginary 

and s is complex. The question then sugi;ests itself as to the com;ilex nature 

of the functions "/.(r). It will now be shown that the ~(r) are real. It is 

first convenient to introduce the notation: 

( 6a) n !! i~ !! - t . _, 
o( 

n' e! - t 
<A' 

Now it is well known ll) that the hypergeometric functions 

F(a,b,c,z) can be represented by the definite integral: 

t1 ['a-1 c-a-1 -b F(a,b,c,z) = / ~c) . t (1-t) (1-zt) dt. 
jf (a) ( c-a) 

A:pplying this to (Sa), and noting that lim(l+x/w)-w = e-x,J.(r) takes the form: 

I
' w...,of> 

110) j(r) = rk-lf!2k) e-( 2t-l)Gf rtk-n-1(1-t )k+n-ldt. 
Jl1(k-n I 2 

., 

:Making the change of variables: t = 'f-y)/2Y ,j(r} becomes: 

(11) fa (r) = rk-l /1(2k) jff2-y2 tc~s (ry +).log i!l_) dy 
ff'1{k-n)f a (2()2k-l-f y-y 

which is obviously a real expression. 

The real character of !(r) appears in a son~what different way 

~ 

in the following derivation of its asymptotic expansion. If in (10) the 

integral from O to 1 is divided as: 

l'L Jdt = Jt Jdt - Jf'' Jdt. 
o o I 

and if in the latter integral the change of variables w = 1-t is made, then: 
•fd c.00 1 

(12) ;(r) = ~-11(2k)l ci(l-2t),lrtk-n-l(l-t)k+n-ldt + (e(2t-l),lrtk+n-l(l-t)k-n-ldt • 

tf"(k-n)r J. J. 
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As the expression within the brackets is the sum of two conjugates, this again 

shows that the j.(r) are real, altho (12) does not give the real part in the ex

plicit form of (11). 

The asymptotic expansion forl(r) follows after expanding the 

term (1-t)k+n-l as: 

k+n-1 ~ m 
( 1-t) = e,1 rm t + R. ( t) , 

ct J 

( ) ( )k-n-1 in which !im Rj t = O, if \tl.(. 1, and similarly for 1-t o As, here, 
J""tol' -

It l is not always i. l, the series obtained by the formal expansion 2!i fmtm is 
C> 

divergent; still, it gives in Poincare's sense, the asymptotic expansion for 

~(r) when substituted in the integrals of (12). This is now explicitly obtained 

by setting t = - iy and noting that the resulting integrals a.re Garmna functions. 

The result is: 

(13) j(r) ,.U Jl2k) /etrr~ ~ fm Ccm+k-n) 
/(l(k-n)/2 r (2A) -n , (2,lr)m 

# 

+ complex conjugate~ , 

Leaving aside the terms in (13) for which m)O, the asymptotic expansion for 

~(r) may be written as: 

(14) 

(14a) 

j (r)N 2/12k) (S cosl - T sin[ ) , where: 
r 

J' = Yr + 1'log r; S + i T = 1 • s2 + T2 = I' ( k+n) ( 21A) k-n' 

-'ITA 
e • II' (k+n) J 2 ( 2f) 2k 

It is interesting to note that the asymptotic exparision for j(r) 

may also be obtained readily by beginning directly with the double loop contour 

11) 
integral expression, about (l,O) for the hypergeorr~tric function. This may 

then be expressed linearly in tenns of the single loop contours about t = O and 

t = 1, respectively ll), for which the asymptotic expansions are already given 

by Schlesinger, page 220. The equations are the follovring: 
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+ complex conjugate~· 

which is the value found above in (13). _ 
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NORMALIZATION: 

(5) 

As mentioned above, in order for the integrals: 

q (n,k ,m;n' ,k' ,m') = f q '+I n,k,m)"j* ( n' ,k' ,m') d T 

to be physically interpretable as the equivalents of the quantum mechanical 

matrix amplitudes, the eigenfunctions of the integrand must be normalized 

eigenfunctions. This means that the functions 'f ot (3) must be multiplied by 

such factors as will make 

( 15) J,L(n,k,m)''·(n' ,k' ,m' )dL' = C r ' T T Onn'<' kk'Omm'' 

where 
0 i = j 
1 i ~ j • In the usual Ir.anner, the requirement is made that the 

functions, of r, e, a.'?ll m be normalized separately. This obviously satisfies the 

general condition (15). To effect the normalization, then, the integrals: 

s ~~2(n,k,r)dr , (15a) N2(n,k) 
r 

' 
(15b) ~(k-1,m) ,. J1P:_1 (cos e~ 2sin 9d9, 

() 2'( 

(15c) 1~(m) J. cos cos di = 
0 

sinmm sinmm 

are evaluated and the normalized eigenfunction is then written as: 

~ 
y m CQSnd 

(16) = ~{n,k,r)Pk-1(cos e) sin • 
n,k,m Nr(n,k) Ne(k-1,m) Nm(m) 

In (15) and {15a) the conjugate notation has been omitted for as has been shown 

above the ~(r) are real. 

(17) 

(18) 

Clearly, by the above definitions: 

N2(m) 
I 

= 1f, m /= • 0 = 21f, m = O • 

N~(k-1,m) = 2{m+k-1)! 
(~-1) (k-m-1) l 
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In the evaluation of Nr(n,k) the case in which_x'(r) refers to 

the discrete spectrum must be distinguished from that in which it refers to 

the continuous spectrum. In the former case, the evaluation bas been carried 
6) 

thru by Epstein , arrcng others, with the result that: 

( 19) 
_..R, 2 

N (n',k) = 2n'(2k-l)Z(n'-k)1 
r (n'+k-1}1(-2w(')2k+l 

It may be noted that the quite different expressions given by others, as for 

example, by Sommerfeld in his :Erganzungsband p. 77, is due to the different 

definition, with respect to the arbitrary constant coefficient, of the 

functions~(r). When this is taken into account, the apparently different 

values of Nr are readily seen to be identical. 

However, when the j(r) refer to the continuous spectrum, for 

which n is imaginary, the normalization cannot be carried out directly. For 

from the asymptotic expansion (14) it is seen that for large values of r, 

fJn,k,r) behaves as 1/r, and hence the integral ~~2 (n,k,r)dr does not con

verge. The theory of the.normalization under these circumstances has been 
12) 

worked out by Fues , and his rr.ethod will be applied here. 

Formally, the normalization and orthogonality conditions for 

a system of discrete and continuous eigenfunctions, as stated by Fues, and 

13) 
based on the researches of Weyl , are: 

( 20) 

(20a} 

(20b) 

Jnuku1dx =lk1 

J DU~n_Fdx = 0 

~fnvva.x =Snm, 
~nE 

where D represents the usual density factor, and x is a symbol for all the 

integration variables. /JnF, 4m_F are "eigen diff'erentialstt, defined by: 

(21) /JnF a L U(E,x)dE a ff(E)u(E,x)dE • 

An ""' 
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U{E,x) =· 1/1E)u(E,x) is the normalized eigenf\lnction for the continuous range, 

and'f-(E) is the norinalizing factor equivalent to l/NrNe1~~ of (16). Uk' u1 are 

the normalized eigenfunctions for the discrete range. IJ nE is the nth infini

tesimr-1 interval of the infinity into which the continuous range of eigenvalues 

is su~osed to be divided. Here, the eigenvalues for two states will be de-

noted by the letters E, (. As a whole, for the normalization of the continuous 

eigenfunctions the eigen differentials play the role of the eigenfunctions 

themselves. 

In (20b) the order of integration may be changed for one of the 

dnF ( this o~viously cannot be repeated for the second /Jrrf, as the divergent 

integral will then be obtained); the result is that: 

....L([fIJi<t)u({,x) J.,.(E)u(E,x)dEdjdt =S nm • 
~nE) 6 t 
" ' .. This, however: can be true for any arbitrary interval 4 E only if: 

n 

(22) Jn'#{ C)u(t ,x) f'''(E)u(E,x)dEd.x = ~ 
as t belongs or does not belong to the interval4 • 

An equivalent but much more useful form of the normalization 

condition is derived by Fues as follows: Let the original Sturm Liouiville 

equations- for E and ( be : 

L [ U(E,x)j + DEU(E,x) = 0 

L tu(t,xlJ + DEU(t,x) • 0 

where Lis the self-adjoint differential form: L(y) =(Py')' - QyJ' If these 

are multiplied by U(t) and -U(E), respectively, and added, the equation results: 

U(£ 1 x)lPU'(E,x)J' - U(E,x)[PU'(t,x))' = (f-E)DU(E,x)U(f',x) o 

If this be now divided by E -E, integrated with respect to E over the rangeJ, 

and then with respect to x over the domain, the right hand side becomes the 
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integral of (22} and the left side gives the equivalent condition, n&~ely: 

(23) f a:x}jy. (E~~(: l [ u(E,xl{Pu' (f. ,xl/' - u(r. ,xl{Pu • (E,xj j dF.} = ~ 
as f. lies J~ does not lie in4 • 

It should be noted that (23) gives the normalization of u(x) 

for the scale of eigenvalues, E. But by (4} and (6), the true eigenvalues of 

thej(r) functions are (-,(2 ) rather than the energies E themselves. Hence if 

(23) be appliedtihe~(r) ~~nctions with E, dE referring to the energies, and 

ir the normalization is to be obtained for the scale of energy values, as is 

desirable for the physical interpretation of the problem, the integral of (23) 

should be given the value ~(-J.2) = ~ instead of the value 1. 
dE K2 

This may also be effected by making the change of variable in 

(4) as: f= ~ r, at the very beginning of the anazysis. Then the energy E 

will appear thruout as the eigenvalue itself. However, in this case, the co-

ordinate matrices must be integrals with respect to~, instead of r, arrl the 

dx in (23) will be CJ.;:' also. The normalization factors will appear to be quite 

different in the two cases, but the final ma.trices, which alone are of physical 

interest, will be fully equivalent. In fact, the above change of variable will 

simply replace in all the equations of the present analysis rJ. by /-E~ and it is 

not difficult to show from this that the final matrix amplitudes obtained by 

the two methods are actually equivaient. 

Here, the first of the above methods will be applied; hence, (23) 

takes the form, for the f.. ( r) functions: .{ 

(23a) ; = lim j"f1E)y(.; )dE Jlj(E,r)i:~· {i_.r)} • - J<r.,rl/Pj• (E,rl} 'Jdr 
K2 r~J'D E-C 

0 
{ 

= lim f"f-(E)i-(( )dE \ PJjJ.E,rlf• {f. ,r) - j(C,rl.1' (E,r lj r • 
I'V E-£ L t' C> a 
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As by (4), P = r2 for the_J'(r) functions, the integrand vanishes at r = O; and 

as r may be taken arbitrarily large, the asymptotic expansion ~or,X(r) may be 

used at the upper limit. 

Thus by ( 14) , the value of the above bracket at the upper lird t is: 

4r(2ki [ cosJ'(E) cosJ'(f) J T(E)S(£ ld• (E) - T(f)S(E)J'• ((. y 
+ sint(E)sil\{(f.) lT(E)S(£)8'(£) - T(f)S(E}S'(E)j 

- sin[S!El+!(tlJ {T(E)T(C) - S(E)S{£lj{/'(E) ;J•!tl} 

+ sinf .f (E)-f (Clf [ T(E)T( () + S(E)S(f J[ J• (E) ; J'• {t ljJ . 
By (14~), for large r, S = )'r + >J..og r"')'r; f' = t + )/r v ¥' and by (6), 

'(= -iJ. 1111 /E,<i,. Thus S, T, and it may be assumed also for the functions¥{E}, 

'f({), are slowly varying functions of E, (.,while if r is large /varies rapidly 

with E, ~ ; hence in the integration of (23a) with respect to E, the t rigono-

metric functions oscillate very rapidly, so that unless E """! the integration 

will give a value which vanishes as r -?of'. 

On the other hand, if' £-IP E and r-'> oO, all the terms, except the 

last, in the above bracket remain finite when divided by E- (. Hence their in-

tegration over the infinitesirual non-vanishing range of E will actually vanish 

as (.-=t E. However, as to the_ last term, the result is different, for: 

sihft(E)-frq/{T(E)T({) + S(E)s(rj/ ['(E) +s[·~ iJ ~ /'ri(~(E)+S2 (El} 
E- £ 2 ) (JJ f K2 

Hence this term must be actually integrated. Therefore the normalization 

requirement reduces to: f-t'1 

fil!• 4t'f2kifCElf ~(E)+S2(Ej Y(E)J sin[rf~(IE-ftl 
~ E ~ 

Setting: x = EfiftfE -fil; b = t;i log r 
K 2rffi r 

+ tK log r • ( l - 1J1 dE 

12;' " If J 
then, as log r ..., O as r-1.P, 

r 

b is vecy small and may be considered as relatively constant~ al tho E does '!fO.."',:;r. 



Also, dE/ (E-(} ~ dx/x; the limits, for r ..:P', become -o-0 ar1d +°"' , and the 
-tf1' 

integral becomes: 1 sin(x-bx)dx = 1T, as \bill, in the limit. Hence, 
_..., :s: 

finally, the norw..alization factor ~(E) is given by: 

(24} 1 :: t2(E) 

It may be noted that (24) differs in two respects from the 

normalization factor (19) for the discrete spectrum, which may now be written as: 

( 24a) l :: '\L,2 (E' ) 
N¥-(n',k) l 

• 

In the first place, (24a) refers to the intensity of a single 

line, (An'= 1), while (24), as remarked above, refers to the density of in-

tensities in the energy scaleAE = 1. This involves the factor dn = -~t , 
dE ~3 

by (6) and (6a). Multiplying (24) by this factor and then rearranging it so 
k 1rA 

as to have the form of (24a), it is found that the remaining ratio is (-1) e 
-s 2sinh 1rl 

= (-1) • This factor is essentially due to the fact that the definitions of 
2 sinh Ti) 

J._(r) by the series (8) involves a contour about (0,1) for the continuous eigen-

functions, while it involves sirnply a circuit about t = 0 for the discrete_;{(r), 

( ct.. (14a) ) • However, as)..,_,, i.e. as E-=,o, the above factor becomes 1, am 

then (24) and (24a) become form.ally identical, as they should at their comrnon 
/ 

limit. 
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EVALUATION OF TIE :MATRIX IlrrEGRALS. 

It follows directly from the definition of the Schrodinger 

matrices (5), that all the matrix elements involve the evaluation of an 

integral of the form: 

(25) X(n,k;n' ,k') = f Jn,k,rJl(n' ,k' ,r) dr • 

Epstein 
6

), among others, has evaluated these integrals for 

the case where n and n' are integars, i.e. for ma.trix elements corresponding 

to transitions between two discrete states. His rethod consisted essentially 

in the following: the evaluation of the above integral is first reduced to 

the evaluation of the integrals: ., 
(26) R(s,s') =Jr /Js,k,J.,rlfCs' ,k,.I. ',r) dr, 

• 
wheres, s' are given by (6). A differential equation was then deduced which 

R(s,s') satisfied, and this was explicit·J.y solved. The same method. has been 

used by Epstein l 4 ) to compute the intensities of the eomponents of the Stark 

effect patterns for hydrogen like atoms. 

However, for the case when one of the functions j(r) in (25) 

refers to a continuous state, the evaluation of the integrals X h~e been 

. 9) . 7) 
given by Oppenheimer , but not in a satisfactory form, a.~d by Sug1ura 

for particular values of the discrete para.i.~eters. In the following, these 

integrals will be computed for general values of the discrete and continuous 

para.meters, and they wi 11 be expressed in a form useful for numerical com-

putation and discussion. 

As here, too, only the evaluation of the integrals (26) is 

carried thru directly, the reduction of (25) to the integrals (26) will be 

given for completeness, altho it is outlined in Epstein's paper. 
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Because of the selection rules, v1hich wi11 be given below·, the 

only transitions normally permissible are those which have the values of k differ 

by 1. Thus the only integrals that need be considered, are: 

X(n,k±l,.J. ;n' ,k,j. •) = fa i.CA,k±l, r iJ. (;.' ,k ,r) dr, 

Applying ( 7) and ( 9) twice to the integrand, it follows that: 

X(n,k+l,~; n' ,k,cl..') = r 3 e r .M(s,2k+2,r)r M{s' ,2k,r}dr 1"' ~+ -'' )r k k-1 

tP 0 

= 2ki:;+l) ! r2 .i (s+2,k,r) - 2)$s+l,k,r) + J<s,k,r§ ,.(( s' ,k,r )dr, 

If now (4) be multiplied by r2~(d_',r) and if from it is subtracted the corres

ponding equation for j("' ,r), multiplied by r2J~,r}, and the result integrated 

with respect to r from 0 tooD, the relation follows, that: 

(2'7) (.l..2 -).' 2 i""r2j{s,cL,k,r)J(s',J.',k,r)dr + 2f(s+k),l - (s'+kJ.t•_j'R(s,s•,k) = o, 

where R(s,s') is given by (26), and the notation of (6) is introduced. Apply-

ing this to the above and noting that by (6) and (6a) s+k+l = -t; s'+k = -t, 

°' ;/" the reduction formula desired ms obtained: 

(28) X(n,k+l,ol;n',k,c).!) = 2k(2k+l) t R{s+2,s',k} - R(s,s',k)"'l. 
2J-..(q.t2,,t2) J 

It should be noted that the s, s' occuring on the right side are related to 

then, n' of the left,. by the relations: s-= n-k-1; and n' = s'+k. Thus the 

problem is reduced essentially to the evaluation of the integrals R(s,s'). 

In this evaluation, and thereafter, for definiteness, the primed letters will. . ~ 

refer to the discrete and unprimed to the continuous states. 

By the definition of the Bessel functions, th0 following 

equation may be set up: 

(29) J J (2\2Rrt)t-k-s-1/2e-ytdt = fm 
2k-l '-

c 

- 20 -
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15) 
Here, C is the Hankel contour for the Gamma function , if s = s is complex. 

If s = s' and is real and integral, C is a circuit about the plile t = o. T£1en, 

for the first case, {29) becorres: 

J:r 2k-l (2r2Jirt )t-k-s-l/26 -ytdt = 21 (-l) s+lyS+k-1/2( 2,lr) k-1/2 sinTis 

c 

For the second case, (2~) takes the form: 

J :r 2k-l (2r2.l. •ytiJ t -k-s •-1/26 -yt dt = (-ll s' 2'lfi (M 'rlk-1/2y s •+k-1/2 

' e (2.l!r)m • r (m+ 1)(1( 2k+rn) ( s '-m) 1 

Now b7 (?) and (8), the jJr) may be expressed for the two cases as: 

;l. k-1"'r11 ~ m (30) (s,tA,r) = r e u2k) c -2olr) m-s), 
f'(-s) f (m+l) (2k+m) 

and 

j. k-1 cl~f' ~ m ( 30a) ( s' ,J...' , r) = r e ( 2k) s' l c_.. (&J.'r) • 
rcm+l)(7(2k+m) (s'-m) 1 

Hence, it follows that for either case: 

(31) jJ.s.~,r) = e ('it'r-7riS)('(1+SJ'j2k)r-!JJ2k-l (2f z,iyrt )t-k-1f-l/2e-yt dt. 
2~i(Z1)k-4Ys+k-~ 2 

t 
In these expressions the parameter y must have a positive real 

part; otherwise it drops out of the result and is arbitrary. 

Now from the theory of Bessel functions le), it may be proved that: 
of) 

(3 ... 2) j:rp(2 (iirlJp(2(ilr)e-crdr = c-1e:x:p1- a+b - ~J Jp(2i@l • 
0 ' c - c 

In this expression the real part of c )O. So substituting for the j{r) in (26) 

the expressi~s of (31), interchanging the order of integration-~ permissible 

beeause of tm convergence of the resulting integrals and of the original one--

so as to integrate with respect tor first, then with the aid of (32), the restlt 

is: 
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R(s,s') = f(l+s)f{l+s, )~)e;-'1Ti(s+s '+k-l/2);t-s-k-l/2e-yt + f!Ayt/ (.(+-l') dt 
4112(,(+fl!) (4,Y.' )k-17:zys+s 1+2k-1 

. ( 

Jv-s '-k-1/ 2e-yv + 2J.. 'yv / ~ + ~ ) :r 
2
k-l ( -4iyfZi.t'tv) dv. 

"'+-"' t. 
Setting: u =-l-~•, and carrying out the integration with respect to v accord-

J:+Zf 
ing to the formulae deduced from (29), R(s,s') takes the form: 

~ i( k 1) 31i. ,k-1/2 s'+k-1/2 R(s,s') = l'(l+s)r(1+s•)r'(2k),e-1f s+ - f 11y(1-u2) {uy) 
21T(~+.t.') (4 .t.tl' )R-1/ ~s+s 1 +2k ... 1 u 

~' 31ri 1 2 m Jt-s+m-1 uytdt c: e r -u. e • 
u (m+1)r(2k+m) (s'-m}l . c 

To ensure the convergence of the integrals in this last expression for R(s,s'), 

the imaginarJ part of y has to be so chosen so that the real part of uy is less 

than O; this is clearly permissible, for thus far only the real part of y has 

been restricted. If the y is so chosen, the above integrals are essentially 

Garmna functions. When they are evaluated and the result reduced, the summation 

turns out to be a hypergeometric function, and the final value of R(s,s' ). 

becomes: 

(33) 

can be 

(33a) 

R{s,s',k) 

As s' is real positive and integral, the hypergeometric function 

trank'ormed so that 
15

) : 

-s~r s+s' R( s, s' ,k) = ,(-1) f'l2k)(2k+s+s' )u F( .;;;s,-s' ,-s-s '-2k+l, 1). 
P(2k+s)r(2k+s') (L+J.' )2k u2 

In the special case when the parameter s is also real, this expression becomes 

identie·a1 with the value derived by Epstein 6 ) for this case. 

With the aid of (28) the explicit expression for the integrals 

X may now be given; it is: 

(34) X(n,k+l,~;n',k,~'} = /1(2k+2)(-lf8u8
+

8
' 2k{F(-s,-s',2k,1-.JJ - u2F(-s-2,-s',2k,zJ~~ 

Zit ~2- J.. '2) (A +A') u2 
where z = 1 - 1 
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COMPLETE EXPRESSIONS FOR 1IB SC!ltlODINGER III.A.THI C:SS. 

In the notation of (16) the complete Schrodinger matrices may 

be written as: 

( 35) q ( n, k, m; n' , k ' , m' ) 

(36b) 

(36c) 

• (37) 

(38) 

COSmmC9Sm'm 
sin sin 
Nm (m)Nm (m') 

• 

• 

0 

M.(m, ,m' )1= 12( cos cosm'm/cos~ d~ 
sin mm sin sin !it N(m,m') ----~~~~~-

• 
«> Nm {m)Nm (m') 

Thus in terms of these integrals the matrices n:ay be written as: 

q = z = rcosf' z(n 'Ir m·n' k' m') , . .,., ' ' ' = I(n,k;n',k')J(m,k-l;m',k'-l)L(m,m'}, 

x = r9.ta0cosm x( k , , , ,, 
q = y = rsinesinm:y n, ,m;n ,K ,m J ( , '} ( ·' , )M(m,m') = I n,k;n ,k K m,k-l;m ,k -1 -r.r( _,), 

.1.~ :m., Dl 

where the I(n,k;n',k') are defined by: 

(37a) I(n,k;n' ,k') = "t ~,k)'f(A' ,k' )X(n,k,A ;n' ,k' ,~'). 

Tho the integrals (36) have been evaluated by othe:t's, their 

values will be derived here, too, for completeness. 

It is to be noted, first, that the a~biguity in the functions of 

~ in ( 35) and in the integrals ( 36b), ( 36c) is sirr~ply the analytical expression 
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for the fact that the hydrogen like atom is inherently degenerate. Furthermore, 

t~-iis dege:rceracy associated with the quantum nllillber rn is not essentially removed 

by such perturbations as occur in the Stark effect, till the se,:;ond order per-

turbations are considered, as is seen from the analysis of the Stark effect 
14) 

theory, (cf. ~pstein , for example). 

This degeneracy with respect tc1 mmay also be expressed, as has 

imm been done by others, by writing e for thew function in (16) aEd permitting 

m to assume nega.tiYe as well as positive values. 

Recalling ( 1'7), and the definition ( 36b) , it follows directly that: 

(39) L{m,rn') = G , rmn 

It should be noted, however, that for m = m' /: o, the transition 

indicated in (.35) may occur in two ways, i.e. as cosm~_.,cosm'm, or sin.'11~_....sinrn'!Ii, 

and. hence it must be counted twice in computing the intensities. For m = = 

it is clear t'':u .. :; :1n.,.~, one such t:r·ansi tion is possible. 

Similarly, it may be easily seen from. their de:fini t ions that: 

(40) f. o, only when m ~ m' = 1. 
N(m,m') 

When m, m' do satisfy the aboYe relation, the :following analysis 

rnay be made as to their :particular values: 

m = O; m' = l; tm,m')l = 1/ 2 ,_ with only one transition; 
m = l; m' = O; N(m,m') 

(40a) 
t(m,m•) = 1/2, with two equivalent transi ti:Jns; 

m.-m' = +l; 
N{m,m'.) = t.1/2, each with a single transition.; 

T''(rr m') = 1/2, with two equivalent transit ions; 4'1.I. J. , ... 

m-m' = -1; 
~-J ( Yl'< 71·, f ) = ;l/2, each with a single transition. ..1. Lh,~ .. .:.. 
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Taking into account the degeneracy of the states for which 

neither m, m' are 0, with their different valu.es f'or M(m,m'), N(n,m'), it 

follows directly that when the M(m,m') and N(it;m') are squared and surn:ced 

over the possible combinations for (m,m'), each such combination will con-

tribute l/2whether one of the m's is 0 or not. And by (.39), D?(m,m') will 

contribute 2 for all m = m' -/: O, and 0 for m = m' = o. 

The values of the integ:rals {36a) may be derived quite sL11ply 

in the following wa:y. From (38) and (40) it is seen that the only integrals 

oi' interest are those for which Im ± m•J = 1. For this case, using the 

notation: w = cose, and the well known orthogonality properties and rec1..4.rrence 

m 
relations for the Pr, it follows that: 

1 ~ ~· f 

J
" m m+l ~ m m+l J m+l ,r.:---i m+l rn ~ 
Pn(cose)Pr (cose)sin26de =J'l-w:aPn(w)Pr (w)dw = Pr(w)wl-vr) d Pn(w)aw 

0 ~ ... a.wm +1 , 

= Jp:+l(w) (fl-w2·)m+ldm ( _~_J.@n+l(w} - ~-l (w)lJ dw 
dwmL~ dw J 

-1 +• 
(41) = _1_J P:+

1
(w) r~a(w) - ~hwl] dw = o, if lr-n\ " 1, 

2n+l~ 

= 2 !n+m+2) 1 if r = n+l, 
{2n+l)(2n+3) (n-m) l 

(4la) 
= -2 n+m) l if' r = n-1. 

{2n-1)(2n+l} n-m-2 1 

S:i.l11i lar 1y, because of (37) and {39) only the integrals (36) 

need be considered for which m = m'. They~ be evaluated as follows: 

J
I -ti -f'f 

m m m m rm m 
Pk(w)Pr(w)wdw = -j ~(Pic(w)Pr(w) )dw = ~ J (1-we) (~k_ °Fr + *~)dw. 

-• , 2 dw 2 - _, 
Using the recurrence relation: 

m Pirn+l m. 
{1-we )P~ = {(l-w2) - mwP r , the 

above reduces to: 
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+• 
(42) j P:(w)P:(w)wdw = 

_, 

to which, now, (4la) may be applied. 

Thus, by means of (18), (4la), and {42), the values of K and 

J ~.ay be tabulated as follows: 

(43) J(m,k-l;m,k'-1) 

(44) K(m,k-l;m' ,k'-1) 

= 

'{;(k-1)
2 

- rrf? ~(k-1)2 - l 

= i m+k-1): :m+k-2) 
4(k-l e - 1 

• -/(k-m+l) (k-m) 
,. 4k2 - l 

= - k-m-1) k-:m.-2) 
4(k-l)2 - 1 

= 

m' 

m' 

m' 

m' 

k' = k-1. 

k' - lc+l. 

= ru-1; k' = k-1. 

= m-1; k' = k+l. 

:;:; m+l; k' = k-1. 

= m+l; k' = k+l. 

The selection rules may now be written down. By (39) and (40), 

those for m are: 
:x 

( 45) q = z: Am = 0 ; q = JJ m = ± 1. 
y 

By (43) a'l d (44), the selection rule for k follows. It is that: 

(46) /J k = ± 1, in order that the matrices do not vanish. 

Now the actual intensities associated with transitions between 

the states (n,k,m) and (n',k'~m') are proportional to the squares of the matrix 

elements of (37) and (38)o Thus they may be expressed as: 

Iz(n,k,m;n',k',m'} = ctz(n,k,m;n',k',m'))2 

It(n,k,m;n' ,k' ,m') = cJ;{n,k,m;n' ,k' ,m')'2 

where C is an appropriate constant. 

However, when neglecting the relativity effect, the energy of 
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the unperturbed hydrogen like atom depends only on nor n'. Hence to obtain 

the intensity or transitions for a given energy change, the squared matrix 

elements must be summed over all the (m,m') a.'11.d (k,k') permissible for the 

given (n,n'). This means that the intensities must be written as: 

(47) I (n n')· = C ~ q2(n k m•n' k' m') 
a ' , ' ' ' ' ,-... . m,K 

In this summation it must be observed that the (n,k,m) and 

(n',k',m') obey the inequalities: :&'qk'qm'+l; knm+l. Carrying thru. 

the su:..~.!.Dlation in this way, and recalling (3?), (39), and (43), there result 

the equations: 

I (n,n') = cZ I 2 (n,k;n',k'}J2 (m,k-l;m',k'-l)L2 (m,m') 
z m,k 

= C Tk I 2 (n,k;n' ,k' )J2 (m,k-1 ;m,k'-1) 
m, k-1 

= C 1:°[I2 (n k•n' k+l) 22i'i (~-m2) +If} 
k 4k2 - l ~ 

k-2 1 
+ ! 2 (n,k;n' ,k-1){ 2'h ( (k-1)2 - m2) + (k-1)21 

4(k-1)2 - l ~ 

(48) = C ~ \ kI2(n,k;n' ,k+l) + (k-l)I2 (n,k;n' ,k-l)J o 

3 
And similarly: 

= C I'k I2(n,k;n',k')~(m,k-l;m',k'-l) 
2 m, k-1 k-3 

= .£ 1: [I2 n k•n' k-1) ~ {m+k-l)(m+k-2) + !m (k-m-l)(k-m-2)1 
2 4(k-1)2 - 1 i 0 J 

+ I2(n,kjn' 1k+l)t ~1(k-m+l)(k-m) + ~1(k+m-l)(kfom)ll 
4k2 _ 1 I ~ 0 :.f .J 

(49) = .£ ~ [kr (n,k;n' ,k+l) + (k-1)!
2 

(n,k;n' ,k-l)J = Iz(n,n') 
3 J 

It is thus seen that the values of I corresponding to the 

three coordinates x,y,z are all equal, so that to get the total intensity 

any or them may be evaluated and the result multiplied by three. It finally 

remains to give the explicit expressions for the fUnctions l{n,k;n~{'). 
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By {37a} and (34), the required expression is: 

(50 ', 11 •s s+s' I(n,k+l;n' ,k) =i'(tA,k+l)!J,(~' ,k)1 ·(2k+2) (-1) u f F(-s,-~' ,2k,1-_j) 
!l(.J.2 -,.A •2) (ol + J.. ')"2k · u2 

- u2 F(-s-2,-s',2k,1-... ..!)J . 
u2 

And as noted before, in this equation: s+k+l = n; s'+k = n'. 

With the same method by which (28) was derived, a relatio·l 

t:etv·t.reen X and R can ,·t1·~, ~'1 k' = k+l; this leads to: 

r ·s s+s' 
I(n,lqn' ,k+l) ='¥-(,1.,k)j(A' ,k:+l} (21c+2) (-lk u ( :F'(-s,-s' ,2k,l- 1) 

2J.' (ol' 2 - oL. 2 )( o( + tA_' ) k l u2 

- u2F(-s,-s'-2,2k,l-_l)J • 
u2 

And. here, s+k = n; s '+k+l = n'. 

By ( 50) and ( 51) the values to be put into ( 4:9) may be com-

puted without difficuJ.tyo Here, the cases will be given in which the discrete 

level is either the 1-0'Trlan or Balmer state. These are obtained by letting the 

s' in (50) and (51) be 0 or l. The appropriate expressions will now be derived, 

no restriction on n' being made at the present. 

s' = O: I(n,k+l,n',k): k = n'-s' = n'; s = n-k-1 = n-n'-1 = i.A-n'-1. 

result is: 

In the last transformation use has been made of the :relations: .. 
2itan-~n'/~ nd 

-u = e r ; a : 

s' = O: I ( n, k; n', k+ 1) : k = n'-s'-1 = n•-1; s = n-k = n-n'+l. 

Hence, by ( 51) : 
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\FC-s,-s',2k,l- 1) - u2 F(-s,-s'-2,2k,l- l)J • . 7 7:2' 
~ 

The bracket expression may be written as: 

____ l_.,..\ (u-1) 2 ls(l-s)-n{2k+l)l + n(2k.,.1} ( l-u~·)1 = 4t4 (n2-11 • 2 ) .. • 
2k ( 2k+ l) u 1 I ~ ...,.(ol-2---~-, 2.....,....) 2-,-, ~-,n--',--_-l .... )_(_n_, .... _-1 .... )-n2oi!!ior-1-, 3-

Putting in thi.s value and redw ing, I (n,k;:n' ,k+l) takes the form~·----

2n'+l/2 n'+3 n'+l 11&/2 -2Atan"'"1n' /A 
(53) I(n,k;n' ,k+l) = - 142 n' e ·7 e • en t) sinh'1r~ (~2+11 12) 

a' = l; I(~+l;n' ,k): k = n'-1; s = n-k-1 = n-n'. 

I(n,k+l;n' ,k) 

l:E'(-s,-s' ,2k,l-_J) - u2:f(-s-2,-s',~,l-... 1.>J • 
u2 u2 

In this case, the bracket ~ASY be written as: 

_dtn(u-1) 2 + (k+l) (u2-_JJ7 = 8t
4 

n2-n 12) • 
2k( u u2 ) 2k(L2-1•2 2n'2na 

This gives for I(n,k+l;n',k): 

(54) • 

s' = l; a = n-n'+2. 

I{n,k;n' ,k+l) 

l F(-s -s' 2k 1- 1) - u2F(-s -s '-2 9 """ 1- l)J • 
' ' ' - ' ,....,,,,.., """"X" u2 ui;;;; 

Aga~n, the bracket may be reduced to: 

1 l-n{8k2 +6k+n2 +2) (u-1) 3 -(k+l) (k2+3n2 +2k} (u+1) 3 -4n(2lc
2
+3k+l) (u-1) 

-2k-.( 2-k-+""""'l~)..,.(-2k-. +-2~)-u u u u 

l6t 
6 

(n •2 -n2 )~n•3-n•2-n •1f'-3n2 ) ' 
(l. 2~.l'2 )3un t5n ( 2n '-4) ( 2n '-3) ( 2n' -2) 

It now follows that: 
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APPLICATION TO THE LYMAN .. AND BALlvIER SPECTRA: 

These formuJa e, valid for all n', will now be applied to the Lyman 

and Balmer continuous spectra, for Which n' = 1 and 2, respe\;ti,vely. 

As li'~k'~m'+l; k' )1, it follovrn that for the Lyman spectrum 

n' = 1, k' = 1, s' = o, for the discrete term a."1.d k = k'-tl = 2 for tl:e contin-

uous state, so that (52} is to be applied in tlis case. (4~) reduces to the 

second ter:;"c' and the total intensi 'tiJ becomes, in troduc i:ng q, = 
.-.. 4 tan-1 "' 2 0 --- ... , ... 

(56) I_= Ck! (n,2;1,1) = C2~e 0 ._ r,, • 
J.., K2t (l•t2 P'<1-e zi'.'9T 

On the other hand, for the Balmer spectrum., n' = 2. Hence there 

are the possibilities for the discrete state: s' = O, If' = 2, k = 3, l; and 

s' = 1, k' = 1, k = 2. Thus, by { 49) the intensity of the spectrum is gi ~J"en by: 

IB = c lr2 (n,1;2,2) + 212{n,3;2,2) 

Applying now (52), (53) and (54), 
15 -it -l2t 

(57) I = C 2 e ~~an ' 
B K.2t4(1+4f2 )''(1-e -~/~T 

ttis beccmes: 

&4 (15 + 32f'2 + 16r ). 

It may be noted that by the definitions (5) and {6a): 

(5~"· 11.2 = 1 = _!; R = 2TI~e4Z2 =Rydberg's no: t = ~; a= h2/4'fr2~2 = 
~ • ~ Rh · h3 a 

radius 

of first Bohr circle, for hydrogen. As E is si1:Jply the positive energy of the 

electron in the continuous state, the total energy with respect to the normal 

state is E+Rh. 

To determine the constant C, it is simply noted that by the 

classical electrodynamics, the average rate of en:uission of energy by an oscil-

lator is: 

(59) - dE = -dt 

where ~ is the average square of the electric moment of the oseillator. And if 
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:x: is ·the arnplitude of the rnotion, then, clearly, p2 = e2x.2/2. However, as a 

Fourier component in 'the classical resolution of the r:1otion is related to the 

quantum mechaaical elementary oscillations a.s: 

2'H1)1, t 2'JTilJ llilI t 
A cos21r),t-C = Amue mn + Arnne .· · , 

it follows that the amplitudes are related as A~/2 = 2A .A • 
nm n:in 

But in the prod-

uct l~~n both the (nm) transition and its inverse are included; hence for a 

single process the quantum mechanical eq_ui Valent of r /2 will be simply 

e•Jx 12 nm • 

(59a) 

It follows, then, that for spontaneous emission C will have the value: 

C = 4 2 4 32Tr e v • 
3c3 

The average number of elementarJ processes per second, which for 

spontaneous emission is the first of Einstein's coefficients, is given by di-

Viding CI2 by h , so that: 

(50) 
2 

A ~ , = CI n,n --
h 

= 
4 

327r e2!jI2(n;n•). 
· 3c h 

It should be mentioned that thee in (58), (59a) and (60) refers 

• to the charge of the electron. 

Fron an experimental point of view, it is almost impossible to 

observe rates of spontaneous emission as such, because of the fact that in any 

practical experimental arrangement the observed emitted intensities depend, 

perhaps primarily, upon the conditions of excitation, temperature and other 

perturbing effects, whereas the Einstein coefficient re:fers to a•1 intrinsic 

propertj' of the atam that is emitting the radiation. 

The intensities of absorption, on the other hand, mey, in 

principle, be more easily analyzed experi::n.ent ally. For, certainly for the 

absorption prp ceases beginning in the norn1al state, no external excitation 
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conditions are necessary to make the absorption possible. But unfortunately, 

in this case, too, experimental studdes are hardly more than possible, since 

hydrogen exists normally in the molecular state and either high temperatures 

or external excitation are necessary for its dissociation into atoms, to Yh ich 

alone the pres.ent theory of atomic continuous affinity s]:.."'ectra is a:pplicable. 

And in fact, no quantitative data has as yet been obtained on the absorption 

intensities for the affinity spectra of hydrogen. Stark 17 )has observed t.hem 

in ·canal ray studies, and Yu lS) in photographs of stellar spectra. But these 

are not suited for any close comparison 'Ni th the deductions that rray be mad.e 

from the theoretical formulae derived in this investigation. 

nevertheless, it is of interest to at least give explicitly 

some of the features which the theory does predict, altho they will not be 

analyzed from an experimental point of view, at present. For this purpose, 

Einstein's absorption coefficient willbe computed. As is well known, it is 

related to the coefficient of spontaneous emission by the relation: 

B , = c3 An~n' • This gives for the coefficient of abaerption pel"' atom: 
n _,, n errws 

(61) ~= Bh = 4~e2I2 (n,n') 
c 3hc 

• 

It is convenient, in making physical interpretations to con-

sider oly as a function of V/y , where V is the lirni ting ireque:rK~)' of the 
. 0 0 

corresponding discrete speftrum. Thus for the Lyman spectruin, lt = R; and 
0 ,r 

for the Balmer spectrum, ~ = R/4; on the other hand, refers to the frequency 

that would be emitted or absorbed in a transition corresponding to the con-

tinuous spectrum. Hence for the cyman continuous spectrum, Y = E+R.11; 
h 

= l+t'12; and for the Bal.mer continuous spectrum, ,/= E+IDi/4; while 
l" h 

= 1+4f; since E represents only the positive ener~r of the electron in 
, 

the continuous state. 
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and f err· the 

(63) J..,,, 
B 

= 

the Y/w1 fo:r the 
'o 

l. 

against 

spectra; in bot~ ~are divid.ed the corn.r:10 n 

15 2 
factor: c' = ·'if32 e R ; furthermore, the scales are in the ratio f 10 to i; 

9~t4ch . · 
1.e., for exaJr:ple, at V/y = 1, the act:u:al values are ~/c' = l.'717 

0 ~ 

~ J -3 
virhile Cl'-1.f / c' = 15 .CCf6 10 • 

B 
F::oa these ct:.rves it is seen scale 

of equiva.lentY/1".'. the 
0 

~I of absorption from the Balmer level is a.p-

proximately nine times that of 

is roughly r:w.intained thruout the range of th curve. 

It is of interest to note the behavior of the at the 

series lirr:.i ts. It is easily verified from the above and IL# ,,.. B 

t~i,at, at least for the Lyma.iJ. and. Balmer the curves the aJti .s: 

)f~:) = 1, n:)t ·with an infinite slope but Yri a definite • 

In general, at the series lim.i ts, E~e>, so that.I.., o, and u -P -1. As was noted 

before, (cf. (33a) ), when is also real and , the on 

for R(s,s') and tence for Xreduces to the fo:rrn valid for the discrete 

It was also {cf. (24a) } , t:lat as E ~' the norrnalizatL:r:::. factors for 

di:::H:~rete and c.::.ntinuous rar.ges become f'o:rr:ially identical, when referred 

sa..r'ne scale. Hence the values of I ana for the series 1L;1i t from the rliscrete 

de will also be ontamed lettirw~-"O, E-,o, u.,-1, tho to be exact, they 

would approach it discontinuously up to the vocr·y· Hmi t. it 'is 
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the limit as app:roacherl from the continuous ran e is equal to that obtained 

when it is approached from the discrete side, so that there is therefore a. 

(':Ontinuous tra.11si tibon at these limits which represent ionization of the atom ·· 

by the absorption of radiation. 

Formulae for the li~~t values of I(n,k+l;n' ,k) and I(n,k;n' ,k+l), 

easy to apply for s' small, ~ be deri vea with out difficulty for general values 

of n' • The method is as follows : 
k.+1/2 

By ( 24) and. ( 6a) : lim'/'( /.,k+ 1) = ( 2*) {2E. 
-2n' o(..,o K~2k+2) s+s' 

also: lim (-u) 
,J.-=t 0 

lim]:.lR(s,s',k) -
D(..:tfo ti.. 

= e ; and by (33) 

-n'+k -2n' 1 R( s+2,s' ,k)7 = (-1) e C( 2k) lim ( l-u2) 
) ,( t 2k f(-90 tA.. 

~lit r...f 

+ if _l ( -4) r 1f ( s '-m) 
~ rJ \ji) ._~• (2k+m) 

Um i.-lj 1f (-t -k-m-1) - ~ (-t -k-m+11J 
~ Q (,,.= • ,J,. "'g.\) '" 

No.ff lim ( l-u2 ) = 4/rJ.'; and: 

• 

.,..,o "- r-4 

lim r 1 ff ( -t -k-m-1i - 7f (.:.t -k-m+ l) 7 = 
J...11J 0 '-ht .. 0 (}. ,..'!. J.. ) I 

!:;J ,. ... , 

(-t)r-l ~(-k-m-1) - ];(-k-m+l) J 
'b. -> 

·v. 1 = (-2,)(-t)~-. Hence, finally: 

t k-n'+l -2n' k+2 '-''.?+"' 
(64) lim I(n,~;n',k+l) = (-1) e n' 2~~ ~ 

t2 (2k) K 
"'~tt·r ;e 

\1 + 2 ~ (-4n• )r 7fJ7'-k-9!,) 7 • 
l 

0 
r1 b \2k+m) J 

Vfnen s' = o, the sunmation is to be omitted. 

In an exactly sL111ilar manner it nay be shown that: 

(65) lim I(n,k;n',k+l) = (-l)k2~ rk+n'-1) n'y~le-Bn' 
(2k)t2K (n'-k) 

"lte·' r rr-f M'4.K'f'/ "!" r r-' 

[ ~(-1) (4n')7f(li'-k-l-m) - 1;:(-1((4n') 7j(n'-k+l-m) J 
!:. r 1 \ 2k+m) f.:._ r 1 ( 2k+m) 

' 0 • b 

, Here, when s' = O, the first sumrnat ion is to be omitted. 
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The variation of the coefficients with atomic n'JJ 1be1• 

Z can be· obtained from ( 62) and { 63), for the Lyman and 3almer spectra. By U58), 

nv z2 , while t = z/a. Hence for sh:n:"t wave 
5 -.....; z and. 

o(y 
B 

5 
v Z , also. .J.~t the se~cies limits, on the 

iation of the abaarption coeff'ic,ente with Z is quite differ·:;;nt; in fact, 

rna.y altJO be 

and J...,, ,.-v l/Z2 , at the series limi 
B 

The variation of the absorption coefficients with the wave 

easily obtaine,.1 from (62) and. {e3}. Thus ~that 

I 

1~7~';: 

for large y, both of the coeffi.cients, for bo·th series, vary as lfv"' '" as 

On the other hand, at the ser:ies limits, both~ 
L 

aril ,< .. _ ,... B vary as 

or as) J.;
1• For intermediate ranges of V , the vari a.ti on of ab-

coefficients ca.n, at least approxL:;a tely, be o bta:tneit withD ut arr,}" 

difficulty from the formulae as 

The experi:nental data for the of X rays :is 

not at all as meagre as that fo!"' the af'fini of itself. 

Still, it would take a rather careful s of the i:lata and of the va.L-

idi of the approximation involved in the above :formulae to X rays, 

before any sw~h test of the formulae ar:.d would of cance. 

As this is a in itself, it will not' here, a.n.d. tJ:1e -for--

for 1e tions or 

of 

~~owever, J. t 2:1ey be me:n.t ioned, in 

invest bave applicability on.ly· to questio11s 

such as electrcm 

elec~tric SSi(lHe It s esser1tially a n:at;ter ical ion 
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of the formul~e already derived, to apply them to these other problems. 

'rhis research was carried out under the direction of Dr. 

Paul s. Epstein. It is a pleasure to acknowledge his continued assistance 

and encouragement; in fact, the general method of the evaluation of the 

matrix integrals was developed by hire. Without his aid this investigation 

could not have been carried to co~npleticm. 
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Su"'11..w\Y: 

This investigation consists of a theoretical study, by the Vlave 

Mechani·os, of the intenai ties of the affinity spectra of hydrogen like atoms. 

The main properties of the eigenfunctions for the contirrucus 

range of eigenvalues are inYestigated. 1rhey are shown to ·oe real, and their 

asymptotic expansions are derived. The theory of the normalization of contin

uous eigeni'u...11ctions is applied, and their norn:e.lization factors a.re obtained. 

The integrals for the coordinate matrices corresponding to trans

itions from the continuous states to the discrete levels are then evaluated. It, 

then, is shown that the squares of the complete Schrodinger matrices for the 

three coordinates :x:, y, and z, are equal, their corm1on value being derived. 

The general formulae a.re applied to the special cases of the 

continuous spectra associated with the IQ.man and Balmer discrete levelse The 

absorption coefficients of these spectra, as a function of the frequency, are 

deduced and plotted. It is found that for equivalent ratios of the absorbed 

frequency to the critical ionization frequency of the a.iscrete level, the 

probability of absorption from the Balmer level is approximately nine times that 

from the I¥man level. 

The values of the matrices, for any discrete state, are given 

for the long wave length limit of the continuous spectra. Finally, the var

iation with wave length and atomic nUDber of the absorption coefficients for 

both the long and short wave leng,-th limits of the I¥man and Balmer continuous 

spectra are briefly discussed. 
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