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THE CONTINUOUS SPECTRA OF HYDROGEN LIKE ATOMS

INTRODUCTION:

As is well known, the Bohr-Sommerfeld quantum theory of atomic
phenomena and structures provided, in itself, no explanation of the inten-
sities of spectral lines or of the probabilities of transition between the
stationary states. The theory of these problems had its origin in the
additional postulate made by Bohr in 1918, which is called the Correspondence
Principle.

The Correspondence Principle states that in the limit of
large quantum numbers, or in the limit as h is made to approach O, the in-
tensities and polarization of the radiation emitted by’a mechanical atomic
system, when considered quantum mechenically, is to be the same as that
which weuld be predicted for the same mechanical system by classical electro-
dynemics. It postulates, in addition, that this correspondence is approx-
imetely maintained even when the gquantum numbers are not large.

Altho this principle has offered a very powerful method for
the investigation of meny atomic phenomena, it has suffered from two funda-
mental difficulties. The first mey be explained as follows. Classically,
the intensities of the radiation frequencies emitted by an electron moving
in an orbit is determined by the amplitudes of the Fourier comp&hents into
which the electric moment of the electron may be resolved. Quantum theoret-
' ically, radiation is emitted only as the result of a transition between two

stationary states., The Correspondence Principle offers no unique way of
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deciding, in general, which is the state, final or initial, whose amplitudes
are to determine the radiation, or a method of averaging the\amplitudes of
the two states, if that be the reasonable procedure. Indeed, for large
quantum numbers it makes little difference which of the two states is chosen,
or what averaging process is used, but, in principle, the ambiguity still
persists even in these regions. Only when the amplitudes for both states,
and those intermediate, are 0, is the unique prediction made that these
transitions do not occur and that hence the intensity of the corresponding
radiation is also 0.

The other difficulty lay in the ambiguity arising when the
atomic system is degenérate, as is the case for the Kepler hydrogen problem.
Here, as for a given energy state there is & multiplicity of equivalent
orbits, the question must be answered as to which orbit of this manifold is
to be resolved into Fourier components to determine the intensities of the
rediation, The Correspondence Principle, as stated, does not .supply the
answer, However, this difficulty may be avoided, in some cases, if the de-
zenerate system is considered as the limit of a perturbed system in which
the'degeneracy is removed.

It is one of the significant achievements of the Theory of
Quantum Mechanics that it does remove these ambiguities characteristic of
the Correspondence Principle, as statedby Bohr. And this simply. consists
in giving a precise definition of the electric moment to be associated with
the electron, while computing from it by the classical electrodynamical
formlae the radiation that is to be emitted.

In the language of the Wave lMechanics, this definition may be
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stated as follows: If the two states, defined by the quantum numbers n, m,
have associated with them the normalized eigenfunctionsquland‘qam, the matrix

element of the coordinate q for the transition between these states is given by
1 = *
(1) m LYn YT

where the integration is to be extended over the space for which the eigen-
functions were defined, which may be three dimensional or not, and where *
designates the conjugate valme, in case the Y's are complex. The "moment"
corresponding to this transition is then given by:

(1a) . Mnm } qnme_zg_l;(ﬁn'Em) t

where En, Em are the energies or eigenvalues corresponding to the states.

And the electric moment which is to determine the radiation by the classical
electrodynamical formmulae is obtained by multiplying Mﬁm by e, the charge of
the electron.

The precise definition (1) obviously removes the first diffi-
culty, mentioned above, of the older quantum theory. And when the system is
degenerate, under the assuwnaption that the various comporents of the degenerate
state act independently, or inéoherently, the total intensity of the transition
from E, to Ep is given by swmming the individual intensities for the possible
transitions between the various pairs of components, each corresponding to
ar . (n m) transition for the energy. Thus the second difficultx is resolved
also,

When the Schrodinger wave equation for the atomic system per-
mits a continuous as well as a discrete set of eigenvalues, as does the Kepler
problem, the definitions (1), (la) are still valid., In this case, one or

both of the indices (n m) are no longer integral, but may assume a continuous
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range of values. When only one is non-integral, the metrix element Uy COT
responds to & transition between a discrete state and a continuous state, or
between a quantized elliptic and an unquantized hyperbolic state, in the language
of the old Bohr model. Such transitions give rise to continuoué spectra, each of
which begins at the limit of the discrete spectrum, the transitions of which

have as a final state, for emission, the same as that of the particular contin-
uous spectrum, This type of continuous spectrum is sometimes called the "affin-
ity"™ spectrum of the atomic or molecular system,

When neither of the indices (n m) is integral, the transition is
that between two hyperbolic unquantized states, and the spectrum is the general
continuous spectrum with no definite limits. The interpretation, given here, of
the origin of the continuous spectra was first proposed by Bohr 1 .

It must be stated that altho, formally, the definition (1) is
maintained also for the continuous specira, it may happen that the integral does
not converge, thus making the definition meaningless. Hence, in general, ﬁhe

integrals (1) for continuous spectra are r%?laced by the expressions:

(1b) U ZE}?HSEE ayy [J‘I— 'l )dvl at

where m. is the discrete integar and E represents the eigenvalue of the continuous
range., And if m is also non-integral, but corresponds to the continuously vary-

ing eigenvalue, (1) is always dlvergent and it must be replaced by:

(1le) gy = lim 1 _ ff (15!")‘*(}&%&( .

dfﬁo 4Ep€
In almost all cases, however, the convergence of (1b) permits the change of the
order of integration and removal of the limiting process; then (1b) becomes iden-

tical with (1). This actuslly occurs in the present provlem. (c€. (5) below.)
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STATZIENT OF THE PROBLIM,

Altho the definition (la) is common to all the equivalent
forms of the Quantum Mechanics, the definition of the matrices qnm by (1)
is that to’be applied only in the wave mechanical itreatment of the atomic
problem. In the Matrix Mechanics, the qnm are evaluated directly by
algebraical processes from the matrix formulation of the problem. 4nd in

2) 3)

fact, Schrodinger and Eckart were led to the wave mechanical definition

(1) by the requirement that their definition must be equivalent to that which
would be implied by the postulates of the Matrix Mechanies.

However, these derivations by the Matrix llechanics break
down in case either or both of the indices (n m) refer to a continuous range

of eigenvalues, The operatoér method of Born and Wiener4)

was then devised
to take care of these cases; but, as yet, no problems of significance have
been solved in this way. In general, too, the processes of analysis in-~
volved in the wave mechanical treatment of the quantum theory seem less
abstruse, altho they are often quite complicated. Hence this method, and

definition (1) will be adopted here.

The intensities of the line spectra of hydrogen have been

5) 6) 7)

calculated by the wave mechanics by Schrodinger , Epstein , Sugiura s
and Kupper 8). The matrices for the continuous spectrs have as yet not been
satisfaetorily treéted, except as noted below,

As these continuous matrices are necessary for the treatment
of other phenomena, as the photoelectric effect, rates of recombination,

intensities of X rays, as well as for the study of the continuous spectra

themselves, the present investigation for their evaluation was undertaken.

-5 =



In particular, only the matrices corresponding to transitions between a
discrete and continuous state in a hydrogen like atom are hefe evaluafed.
This problem has been generally trezted by Oppenheiumer 9), but his final
results are not satisfactory for detailed discussion. And Sugiura 7) has
given the matrices for the special cases where the discrete state ig the
lowest of the lyman, Balmer and Paschen series of levels. The present an-
alysis yields general formulae and such as are convenient for numerical
conputation.

Specifically then, the problem here investigated is the
evaluation of the Schrodinger matrices for the affinity spectrum of hydrogen
like atoms, This is an e=ssentially analytical problem., And for completeness,
the derivation of some results, as the normalization of the eigenfunctions
and the integrals of the Spherical harmonics, thzt have been previously given
by others, ﬁill be derived here, too.

As gifren by Schrodinger, the wave equation for =n unperiurbed

non-relativistic hydrogen like atom of atomic number &, is :
(2) vzll, + 2MB + Zez)\r = 0,
K= ‘'r

Here,‘;, is the amplitude function,,&, e, the mass and charge of the electron,
XK= hiZW, h is Planck's constant, r is the distance of the electron from the
nucleﬁs, taken as at rest, and E is the energy constant of the atomic system.
When this equation is separated in the polar coordinates (r, O, &), the
solution is given by:

(2) Yy - PE_1 (cose) 532 K (r)

where



(4) &K +« z2al + (248 + 2z - (k-1)k )L = o.
drs r dr K= RBr re

In (3) and (4), k)1, and is integral; 04 m¢ k-1, and m is integral also;
Pﬁ;l(cose) is the associsted spherical harrmonic of degree k-1 and order m.
Both ccsmm’and sinmd satisfy the Schrodinger conditions of peridiocity in
%, and hence either may be used, excepting the case for which m = 0, when
only the former is not trivial. Thus, it may already be noted that with the
exception of this case the system has a two fold degeneracy with respect bo
the quantum number m.

Referring now to (1), the essential problem 6f this inves-
tigation is the evaluation of the matrix integrals:
(5) a(n, k,mjnt,k*,u) = ]q'\'a(n,k,m)‘f‘*(n',k',m')df ,
where n, n' are parameters, defined exactly below, for the eigenvalues of
Z; q is & coordinate; either x, y, or z; d€= r®sin6dedddr, and the in-

tegration is extended over the whole coordinate space.



PROPERTIES OF TR WAVE FUNCTIONS.

Before proceeding with the solution of the problem, just stated,
it will be well to analyze‘some of the properties of the‘eigenfunctiong)((r),
and also to obtain their asymptotic expansions. Thruout these conéiderations,

6)

the notation of Epstein will be used.

Bquation (4) was studied by Schrodinger in his first paper lO).
To satisfy the requirements of single-veluedness, continuity and finiteness
for\f', and hence for )C(r), Schrodinger found the following to be true. Such
solutions,)[(r), exist for all values of E for which E0. These values of E
correspond to the hyperbolic orbits in the old Bohr model of the hydrogzen like
atom. And as all such E's are allowed, they are said to form a continuous
spectrum of energy states.

If, however, the value of E corresponds to an elliptic orbit,
i.e. if ELYD, solutions W, satisfyinz the requirements, exist only if E

satisfies the relations:

(6) Me2Z = -n = - (sek); o2 = -248 ,
K2 & K=

where n is a positive integar 1. (6), when rearranged, gives directly the
Bohr expression for the amergy of the stationary states of the hydrogen like
atom. {(6) also serves to define the parameter s, which is integral if n is
integral. s corresponds to the radial quantum number, whereas K.corresponds
to the azmimuthal quantum number of the older qﬁantum theory. The series of
integars n defines the discrete spectrum of energy states.

It is convenient to use the notation of (6) also for the case

where E20, Then, ¢f , and n are imaginary, and s is complex.
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10)

Schrodinger has given the explicit solutions of (3) as
polynomials multiplied by exponentials, for the discrete eigénfunctions,
and as contour integral expressions for the continuous eigenfunctions. For
the present investigation it will be more convenient to use the general
representations and method of Epstein 6).

Thus, the dependent variableX(r) is first changed to ii(s,2k,r)
by the substitutions

(7) X(r) = rk-le"rM(r).

M(r), then, satisfies the equation:

(7a) M + 2(d +k)AM - 2«s K = 0,
a r dr r

using the notation of (6). The solution of this, satisfying the condition

of finiteness, is directly seen to be:

(8) . M(s,2k,r) =1 + _s (28Ar) + s(s-1)(2Ar)® + ....

lizk 212k(2k+1)

This can be expressed as the following limiting form of a hypergeometric

Tunetion:

(8a) M(s,2k,r) = lim F(-s,? ,2k, =2 X) .
x40 ; (> 9o
932: r

It may be noted, here, that if s is an integar, (8) reduces to
a polynomial which is easily shown t0 make (7) equivalent to Schrodinger's
expression for the discrete X(r). Otherwise, (8) is an infinite series.

By means of (8a) a recurrence relation for the fuﬁctions M
may be readily obtained. For it may be easily verified that:
(b-c+l)zF(a,b,c,z) - (c-lj(l—z)F(a,b,c-l,z) + (c=1)F(a-1,b,c-1,2) = O,

Proceeding to the limits as indicsted in (8a), the relation follows:
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(9) 2dri(s,2k,r) = (2k-—l)lM(s+l,2k-l,r) -M(s,.%k-l,r)] .
This formula will be of use later. It holds for the M's representing both
the discrete and continuous eigenfunctions.

As noted sbove, for the continuous spectrum, olis imaginary
and s is complex. The question then suggests itself as to the complex nature
of the functions X(r). It will now be shown that the X(r) are real. It is
first convenient to introduce the notation:

(6a) n =ik= -t ; Eiy; n' = - t.
oL A'

Now it is well known 11) that the hypergeometric functions

F(a,b,c,z) can be represented by the definite integral:

!
-1 c-a-1 =b
Fla,b,c,z) = [(c) [ta (1-t) (1-2zt) dt.
ﬂa)%(c-a ;

Applylng this to (8a), and notlng that lim(1+x/w = —x X(r) takes the form:
(16) = k-lf’ 2k) f (2t-1d rtk-n-l(l 'b)k+n-ld‘t.
)P {k-n
Meking the change of variables: t O’-y /2)/ x becomes:
k
(11) )C(I') = l,'(zk I(F-yz cos(ry + Alogu s
- k-1 =
' k n,s 2{ r-y

which is obviously a real expression.
The real character of ¥ (r) appears in a somewhat different way
in the follo;ving derivation of its asymptotic expension. If in (10) the

integral from O to 1 is divided as P

j[ ]dt j[ ]d-c /[ Jat

and if in the latter 1ntegral the change of varlables W= 1 t is made, then:

(12) X(r) = rk-(-ll{f‘g,)al'czlj‘ (l-.at)/r gX-n-1(1- t)k+n-l ]’(21; l)‘rtkm’l(l t)ﬁ—n-l i)
-n
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As the expression within the brackets is the sum of two conjugates, this again

shows that the)((r) are real, altho (12) does not give the real part in the ex-

plicit form of (11).

The asymptotic expansion forl(r) Tollows after expanding the

)k+n-l

term (1-% as:

;
k+n=-1 _ m .
(1-t) . z‘;m £ ¢ R(4),

in which lim RJ(t) =0, if \t|<¢ 1, and similarly for (1-t g)k-m-1 As, here,
,r9=’

|t) is not always {1, the series obtained by the formal expansion En e £ is

°
divergent; still, it gives in Poincare's sense, the asymptotic expansion for

X(r) when substituted in the integrals of (12). This is now explicitly obtained
by setting t = - iy and noting that the resulting integrals are Gamma functions,

-

The result is:

» o0
(13) I(r f'(2k _ Et fml (m+k-n) + complex conjugate] .
k-n/zr (2)“‘n Y

(2dr)

Leaving aside the tems in (13) for which m) O, the asymptotic expansion for

X(r) may be written as:

(14) j(r)w 2f'§2k) (s cos§ - T sind ), where:

TA
(14a) J={r+,\logr; S + iT = 1 ; SR + T2 = e-’r .
T (kc+n) sz)k'n ' 'F(k+n)'2i2y)2k

It is interesting to note that the asymptotic exparnsion for X(r)
may also be obtained readily by beginning directly with the ‘double loop contour
integral expression, about (1,0) for the hypergeometric function. 1) This may
then be expressed linearly in terms of the single loop contours ak;out t = 0 and

11)

t = 1, respectively , for which the asymptotic expansions are already given

by Schlesinger, page 220. The equations are the following:

- 11 -



X(r S-1 &Iy 2k) £X-n- 1 (1-t)E+n-1 e=2ATtat/(1-6 21"in o27in)
N (k-n) i ’

= k-l AT z{-n-l k+n=1 .4241-1; Z’Fin
TEE ,’Z%ki k+n-l[ f =) /(1"

- [Em 1(t_l)k+n-l 2drtdt/(l_e 2’71n)]

W)
AT M) k+n—1[( ~1) KB\ i) o mRAT (Lo gp) TK-D

o=

- (-1 P (n) (~2ar) © (-1)k+n“l}

= f‘gzk) e‘rrn)§k-n) + complex conjugate (,
\ (k-n)'er (2d)k-1

which is the value found &bove in (13).
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NORMALIZATION

As mentioned above,; in order for the integrals:‘
(5) a{n,k,mjn*,k*,m*) = fq\}c(n,k,m)‘f*(n',k',m')df
to be physically interpretable as the eguivalents of thg gquantum mechanical
matrix amplitudes, the eigenfunctions of the integrand must be normalized
eigenfunctions, This means that the functions Y‘of (3) must be multiplied by

such factors as will make
(15) f‘P(n’k’m)\/‘(n' ’k"m')dt = J.nn'J kk'Jmmv ’

0 1= .
where S 15 = 1 £ ,é j o In the usual manner, the requirement is made that the
functions of r, 8, ad ¥ be normalized separately. This obviously satisfies the

general condition (15). To effect the normalization, then, the integrsls:

(15a) Ng(n,k) = rexz(n,k,r)dr ,
0
(15b) N‘é(k-l,m) = [Pl,z_l(cos ngsin 8de,
© 2%
(15¢) N2 (m) = J oo ogomd Ad ,
0

are evaluated and the normalized eigenfunction is then written as:

(16) '\,', = Xn k,r) _1(cos 6) sinmd |
n,k,m N.(n,k) Ng(k-1,m) Ng(m

In (15) and (15a) the conjugate notation has been omitted for as has been shown
above the j(r) are real.
Clearly, by the sbove definitions:

7, mg# 0
21I: mé 0 -

(17) @

(18) Mg (k-1,m) = 2(m+k-1) ! .
' (8k-1) (k-m=1)¢
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In the evaluation of Ni(n,k) the case in which}((r) refers to
the discrete spectrum must be distinguished from that in which it refers to
the continuous spectrum. In the former case, the evaluation has been carried
thru by Epstein 6), among others, with the result that:

(19) N.(n',k) = 2n'T2-1]1(n'-k)}
' (nt+k-1) 3 (-2")

2k+1

It mey be noted that the quite different expressions given by others, as for
example, by Sommerfeld in his Erganzungsband p. 77, is due to the different
definition, with respect to the arbitwary constant coefficient, of the
functions)((r). When this is taeken into account, the apparently different
values of Nr are readily seen to be identical.

However, when the')ﬁr) refer to the continuous spectrum, for
which n is imaginary, the normalization cannot be carried out directly. TFor
from the asymptotic expansion (14) it is seen that for large values of r,
}ln,k,r) behaves as 1/r, and hence the integral.ligx%(n,k,r)dr does not coan~-
verge. The theory of the normalization uhder the;e circumstances has been
worked out by Fues .), and his method will be applied here.

Formally, the normaslization and orthogonality conditions for

a system of discrete and continuous eigenfunctions, as stated by Fues, and

13)

based on the researches of Weyl , are:
(20) f DU U, dx = §1
(20a) jDUkﬂanx = 0 ,
(20b) 1 IDlnFQanx =8

AnE

where D represents the usual density factor, and x is a symbol for all the
integration variables, LEE, Amr are "eigen differentials', defined by:

(21) B.F = ‘é U(E,x)dE = f*(E)u(E,x)dE .
dnt,
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U{E,x) =. l’—(E)u(E,x) is the normalized eigenfunction for the continuous range,
and\’-(E) is the normalizing factor equivalent to l/NrNeNa of (;6). Uk’ U, are
the normalized eigenfunctions for the discrete range, ﬂnE is the o™ infini-
tesimal interval of the infinity into which the continuous range of eigenvalues
is sugiosed to be divided., EHere, the eigenvalues for two states will be de-
noted by the letters E, £. As a whole, for the normalization of the continuous
eigenfunctions the eigen differentials play the role of the eigenfunctions
themselves,

In (20b) the order of integration may be changed for one of the
an ( this obviously cannot be repeated for the second dm‘j‘, as the divergent

integral will then be obtained); the result is that:

AnE ‘[ID\‘-(C)u({,X ‘(\F(E Ju(E,x dEdet 3‘

Sun €
This, however, can be true for any arbitrary interval 4 p;. only if:
_ ’ 0
(22) fD\f(t)u(t,x)f‘l'(E)u(E x)dEdx = 1

as € belongs or does not ‘belong to the intervald .

An equivalent but much more useful form of the normalization
condition is derived by Fues as follows: Let the original Sturm Liouiville
equations for E and € be:

L [U(E,x)_] + DEU(E,x) = 0 ,

L [U(c,x)} + DEU(g,x) = O ,
where L is the self-adjoint differential form: L(y) = (Py')' - Qy, If these
ere multiplied by U(g) and ~-U(E), respectively, and added, the equation results:

U(g,x)lPU'(E,x)}' - U(E,x)[PU'(g,x]} * = (€-E)DU(E,x)U(g,x) .
If this be now divided by € -E, integrated with respect to E over the rangeﬂ ,

and then with respeet to x over the domain, the right hand side becomes the
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- integral of (22) and the left side gives the equivalent condition, namely:
(23) fdx j}tg ig [I u(E,x){Pu'(i,x)f' - u(;,x){Pu'(E,xy JdE/( =
as ¢ lies o d,oes not lie ing.

It should be noted that (23) gives the normalization of u(x)
for the scale of eigenvalues, E. But by (4) and (6), the true eigenvalues of
the%(r) functions are (=)®) rather than the energies E themselves, Hence if
(23) be appliedt%he ‘,((r) functions with E, dE referring to the energies, and
if the normalization is to be obtained for the scale of energy values, as is
desirable for the physical interpretation of the problem, the integral of (23)
should be given the value d (-42) = 2M instead of the value 1.

‘This may algf be effezci:ed by making the c‘hange of variable in
(4) as:f?= @ r, at the very beginning of the analysis. Then the energy B
will appear thruout as the eigenvalue itself, However, in this case, the co-
crdinate matrices must be integrals with respect tolo, instead of r, anl the
dx in (23) will be df also., The normalization factors will appear to be quite
different in the two cases, but the final matrices, which alone are of physical
interest, will be fully equivalent. In fact, the above change of variable will
simply replace in all the equations of the present analysis A by J-E; and it is
not difficult to show from this that the final Iﬁatrix amplitudes obtained by
the two methods are actually equivalent,

Here, the first of the above methods will be applied; hence, (23)

takes the form, for ’che[(r functions:

(23a) 2& = 1;1:1/]«}5 E):ﬂe)dE jII(E r) 1;( (;_,r} ](g,r {P_I (E,r} gdr
K= T -
= hmJ. Erf:)dul P//((E,ru'(i,r —] <, r,r(u,& ]Z .
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As by (4), P = 7 for ‘bheI(r) funetions, the integrand venishes at r = 0; and
as r may be teken arbitrarily large, the asymptotic expansion for X (r) may be
used at the upper limit.
Thus by (14), the value of the above bracket at the upper linmit is:

4T(2E) | cosJ(E)cosJ(s)[ T(2)5(¢)§"(5) - TEIS(EN" )]

+ sinf(E)sing(g) {Tm)s(s)s’(z) - T(g)8(2)§" ()

- sin[f(3)+§(¢)] {T(E)T(t) - S(E)s(g wﬁ' (E) ;J'(i){l

+ staff(2)-f(0)f [n(E)T(E) + SIS (1 (z) + eV |7

By (l4a), for large r, J‘ =Yr + ANog re)r; F'=r- )/r va/ and by (6),

)’= -i&"fE‘,(. o Thus S, T, and it may be assumed also for the functions yW(E),
) \}({), are slowly varying functions of E, €, while if r is large f varies rapidly

with B, ¢ ;’ hence in the integration of (23a) with respect to E, the t rigono-
metric functions oscillate very rapidly, so that unless E~¢€ the integration
will give a value which vanishes as r-2¢.

On the other hend, iff-?E and r-»e®, all the terms, except the
last, in the above bracket remain finite when divided by E-€ Hence their in-
tegration over the infinitesinal non-vanishing range of T will actually wvanish

as ¢ E, However, as to the_ last term, the result is different, for:

smmgl-g(e)?[w(mm rsEse)f £ f 6 ) 2 ,ch (@) m)f

Hence this term must be actually integrated. Therefore the normalization

requirement reduces to: i"”'l .
2H= 4"(21:)1’2@){ TZ(E)+32(Ey }/(E)j sin[r g_rt_(l‘é-ti) + tK log v (1 - IBGE
Ke P o (e r g

Setting: x = r[;‘f?.Egﬁf -f§); b= 1tg2 log r , then, as log T -3 0 as r=9e°,
' K

T :

b is very small and may be considered as relatively coustant, althe E does vary,



Also, dE/(E-{) Ndx/’:ﬁ the limits, for r~?¢, beccme -eo and +of , and the
A

integral becomes: Jsin]x—bx)é}: = m, as |bl{1, in the limit., Hence,
-7 X ‘

finally, the normslization factor YI(E) is given by:
() _1__ =y=(®) = L = pe ) Yen))e
W% (n,k) 4ﬁK2r(E){T2(E)+Se(E2[W TER [} 2K)

It may be noted that (24) differs in two respects from the

normalization factor (19) for the discrete spectrum, which may now be written as:
2k+2

(24a) 1 E\NP(EY) = (' n'+k) .
K2 (n',k) qtﬂ(n'-k+1)ﬁ2k)2
In the first place, (24a) refers to the intensity of a single
line, (An' = 1), while (24), as remarked above, refers to the density of in-

tensities in the energy scale 4E = 1. This involves the factor dn = -xt ,

A& Ko
by (6) and (6a). Multiplying (24) by this factor and then rearranging it so
ki
as to have the form of (24a), it is found that the remaining ratio is (-1) e

-5 2sinh 73
= {-1) o This factor is essentielly due to the fact that the definitions of
2 sinh T\
[,(r) by the series (8) involves a contour about (0,1) for the continuous eigen-
functions, while it involves simply a circuit about t = O for the discretex(r),
( ef. (14a) ). However, aside, i,e, as E0, the above factor becomes 1, and

then (24) and (24a) become formally identical, as they should at their common

limit,
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EVAIUATION OF THE MATRIX INTEGRAIS.

It follows directly from the definition of the échrodinger
matrices (5), that all the matrix elements involve the evaluation of an
integral of the form:

(25)  X(m,k;n',k*) =l(r’éXn,k,r)X(n',k',r)dr .

Epstein 6), among others, has evaluated these integrals for
the case where n and n' are integars, i.e, for matrix elements corresponding
to transitions between two discrete states, His method consisted essentially
in the following: +the evaluation of the above integral is first reduced to
the evaluation of the integrals:

‘ ¥
(26) R(s,s*) =jr1(s,k,4,r)1(s',k,.tv,r)ar,
where s, s' are give; by (6). A differential equation was then deduced which
R(s,s') satisfied, and this was explicitly solved. The same method has been

14)

used by Epstein to compute the intensities of the eomponents of the Stark
effect patterns for hydrogen like atoms.

However, for the case whgn one of the functionsJ[(r) in (25)
refers to a continuous state, the evaluation of the integrals X hawe been
given by Oppenheimer 9), but not in a satisfactory form, and by Sugiura
for particular values of the discrete parameters. Iqﬁthe following, these
integrals will be computed for general values of the diserete and continuous
parameters, and they will be expressed in a form useful for numerical ccm-
putation and discuésion.

. As here, too, only the evaluation of the integrals (26) is

carried thru directly, the reduction of (25) to the integrals (26) will be

given for completeness, altho it is outlined in Epstein's paper.
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Because of the selection rules, which will be given below, the
only transitions normally permissible are those which have the values of k differ
by 1. Thus the only integrals that need be considered, are: |

X(n,k+1,d3n0,k,A1) = Es/f(,(,ktl,r)}((,(',k,r}dr.

Applying (7) ard (9) twice to the integrand, it follows that:

X(n,k+1,4; n',k,d') jrs wrol)r Ku(s,2ke2,r)c5 (e, 2k, 7 )dr

= 2k(8k+l ak», lral s+2,%,7) - 2){s+l,k,x) + [(s ,k,r]/((ﬁ: Jk,T)ar.

If now (4) be multiplied by r%Xi&‘,r) and if from it is subtracted the corres-
ponding equation for‘}kx',r), multiplied by r%lb(,r), and the result integrated
with respect to r from 0 topl, the relation follows, thab:

(27) (J.z—)\"?yo‘r‘?xgs,d,k,r)ﬂs',&',k,r)dr + 21(34-}:),{ - (s'+k),{']ﬂ(s,s',k) = 0,
where R(s,s') i; given by (26), and the notation of (6) is introduced. Apply-
ing this to the above and noting that by (6) and (6a) s+k+l = =1; s'+k = -1,

o «’

the reduction formula desired ds obtained:

(28)  X(n,k+l,din',k,d!) = 2k(2k+1) [ R(s+2,s',k) - R(s,s',k)] .
2A(gr2=42)

It should be noted that the s, s' occuring on the right side are related o
the n, n' of the left, by the relations: s = n-k-l; and n' = s'+k, Thus the
problem is reduced essentially to the evalustion of the integrals R{s,s').
In this evaluation, and thersafter, for definitegess, the primed letters will
refer to the discrete and unprimed %o the continuous states.

By the definition of the Bessel functions, the folluwing
equation may ve set up:
(29) J JZk_l(zf.zTyE)t‘k"E“l/ae'y

C
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Here, C is the Hankel contour for the Gamma funciion s 1f 8 = 38 is complex.
If § = s' end is real and integral, C is a circuit about the pdle t = 0. Then,

for the first case, (29) becomes:

J et 2[""—' 47km8=1/ 20Ty o g1 (-1) %Ny SR R ) 12

E (- g; !]m—-s
I(m+ 1)/ 2k+m)
For the second case, (29) takes the form:
kmgfol /o =y k-1/2 st+k-1/2
J 2k- 1(2%)1: o8 1-1/2 V0 = (-1) 2?'1(2&’1') "V, /

¢ (2d7)" :
P (m+ 1)/ 2k+m) (s *-m) §

Now by (7) and (8), the X(r) mey be expressed for the two cases as:

(30) i(s,dk,r) = p51 &rﬂzk -2dT) Rm—s and
l ﬂ?-s) E\f& m+1) T 2k+m) :

k l &r m
(30a) X(std',r) = MN2k)s*y 'r) .
1 zuﬁ(mﬂ 1(2k+m) (st=m) §

Hence, it fecllows that for either case:

(31) )C(‘é‘,,f,r) = e(zr-wi-g)f'gl-l-'s?)f’;:zk)r-% /.Tgk..l(z 2dyTt)t
2mi( f,zys - ’

In these expressions the parameter y must have a positive real

-—1{-3—1/ 2e-yt ab.

part; otherwise it drops out of the result and is arbvitrary.

16 :
Now from the theory of Bessel functious ), it may be proved that:

o
(32) j:rp(z [EF)Tp(2for)e ar = e-lexpl— atb - p;g_i_} Tp(2if8B) .
A . ¢ B c

In this expression the real part of ¢ 0. So substituting for the ,((r) in (28)
the expressiQns of (31), interchanging the order of integration -- permissibl
because of the convergence of the resulting integrals and of the original one--
so as to integrate with respect to r first, then with the aid of (32), the resglt
is:
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. . )
R(s,s') =/ (l+s)l'(1+s')ﬂ—z"é)gﬂl(ysuk-l/z)_/ §msk-1/2,rt + 2art/er)
EFSTR =T

4rR (L+ &) (444! )5/ =y <
j v=8'=k=1/24-yv + 2d'yv/ et )y, (—aiylL V) dv.
A +A?
C
Setting: u = L-d', and carrying out the integration with respect to v. accord-
L

ing to the formulae deduced from (29), R(s,s') takes the form:

R(s,s') =["(1+s)P(1ss )r"g‘ﬁ =i (s+k-1) 1,571, (1 ug)lk-l/z(uy)swk-l/z
2 +d !} (u.c)f-i/c;yml

E‘ ‘ [l-u?%e j ~s+m-1 uytdt
(m+1)(2k+m) (s*~m) §

To ensure the convergence of the 1ntegrals in this last expression for R(s,s'),

the imaginary part of y has to be so chosen so that the real part of uy is less
than O; this is clearly permissible, for thus far only the real part of y has
been restricted., If fhe ¥ is so chosen, the above integrals are essentially
Gemma functions, When they are evaluated and the result reduced, the summation
turns out to be & hypergeometric function, and the final value of R(s,s')
becomes:

(33)  R(s,s',k) = (-17°0(2k)u®*S" P(-s,-s',2k,1-1/u®) .
(a+d?)=x

As s8' is real positive and integral, the hypergeometric functicn

15)

can be tran®formed so that

(33a) R(s,s',k) = —l IQ ) [(2k+s+s! us+s’ F(-s,-s',~s-s'=-2k+1, 1),
P(2k+s M(2k+s’ )(L+,v 2K e

In the special case when the perameter s is also real, this expression becomes
identidal with the value derived by Epstein 6) for this case, /

With the aid of (28) the explicit expression for the integrals
X may now be given; it is:

-

(34) X(n,k+1,4;n',k,d") P(z&az;(—l)Z“:S’ [F(-s,-s',fﬁk,l—_g._) - u2F(-s-2,-s§,2k,zjg
2& 2-—& 02 + ] up
where z = 1 - 1
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COMPLETE EXPRESSIONS FOR THZ SCHRODINGER LATRICEE.

In the notation of (16) the complete Schrodinger matrices may
be written as: pr)

21
= Mn,k,r)A{n',k* r) 7 coss)P '~¢ c0s®)sind

(55) Q(n’k;m;n"k"m') = J
(n,k)N (n*,k*) Ng(k-1, m)Né(&'-l m*}

(VK4

SO maloem's drdeds .

Nﬁim}N@Zm’s

It is now convenient to introduce the following notation:

(36) JT(m,k-l;m*,k*-1)

L
J’Pg;q(cosS)Pﬁr-l(cose)cosesinede °
o Ny (k-1,m) Ng(k'~1,m")

: N
(36a) K(m,k-1ljm',k*-1) = { PE_1(cos8)PEr_1(cosd)sin?eae .
N (K-1,m)Ng (K '=1,m")
G S. C
(36b) Lim,m') = | of 0200 m'gag .
(~]

qgm (m?)

M{m,m")

(36¢) cos co (cosa aa .

N{1m,m*) sin sin sin
®  Ng(m)Ng(m')

Thus in terms of these integrals the matrices may be written as:

14
(37) q =12 =rcosf : z(n,k,m3nt,k',m') = I(n,k;n',k")T(m,k-1;m*,k?*-1)L{m,m*),
= \ M{m !
(88) q = I o Ismgcost X (n,k,mpnt k! ) = I(n,k;n',k')K(m,k-l;m',k'-l)yg’i,g,
A\ 3~

where the I(n,k;n',k') are defined by:
(37a) I(n,k;n',k') = Y 6 KIWUAT k)X (n,k,A5n, k"4 ).

Tho the integrals (36) have been evaluated by others, their
values will be derived here, too, for completeness.

It is to be noted, first, that the ambiguity in the functions of

3 in (38) and in the integrals (36b), (36¢c) is simply the analytical expression
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for the fact that the hydrogen like atom is inherently dezenerate. Furthermore,
this degenersacy associated with the guantum nuzber m is not essentially removed
by such perturbations as cccur in the Stark effect, till ths second order per=
turbations are considered, as is seen from the analysis of the Stark effsct
, o 14)
theory, (cf. Epstein , for example),
This degeneracy with respect +o Jmay alsc be expressed, as has

img . . o s
T ror the & function in (16) ard permitting

been done by others, by writing e

m to assume negative as well as positive valiuves.

Recalling (17), and the definition (36b), it follows directly that
L{m,m*) = 6

It should be noted, however, that for m = n' f 0, the transition

[}
[3e]
~—

ol

indicated in (33} may occur in two ways, i.e. as cosng-—?cosn'd, or sinmd —»sinn'd,
3 hence it must bs counted twice in computing the intensities. For w = m' = (,
it is clear that on'y cone such itransition is possible.
Similerly, it may be easily seen from their definitioms that:
N(m,m?}
4 /
(40) # 0, only when m&nt =1,
N{m,m®)
When m, m* do satisfy the sbove relation, the following analysis

ney be made as to their particular values:

m=0; m' =1; (Mnmn') !
= 1/ 2 , with only one transition;

m=1; m'=0; [ N(mm")
4

n,m') = 1/2, with two equivalent tramsitions;
(40a) mem? = { ’

N(m,m') = £1/2, eack with a single tramsitlion;

. M(m,m‘) = 1/2, with two equivalent transitions;
m=mt = , :
u(m,u') = zi/2, each with a single transitioun.
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Taking into account the degeneracy of the states for which
neither m, m' are O, with their different values for M(m,m'), N{m,m*'}, it
follows directly that when the M{m,m') and N(M,m') are squ&red and swmied
over the possible combinations for (m,m?), each such ccmbination will con-
tribute 1/2 whether ome of the m's is O or not. And by (39), IR(m,m') will
contribute 2 for all m = m* % O, and O for m = m* = O,

The values of the intesrals (36a) may be derived quite simply
in the following way. From {(38) and (40) it is seen that the only integrals
of interest are those for which |m % m" = 1, For this case, using the
notation: w = cos®, and the well known orthogonality properties and recurrence

relations for the P?, it folloqa that:

!
J ~(cos8 )Py o0 =[NTw=Bl(meL (v) +me‘€1) ?)" e (e
P _(cos8}P cos0)sine -waP,(w w w w)dw
4 s 4 e
m+1 - m+l om
= | Te) T dn (L1 [aB (W) - &B _ (wN aw
_! . awl | 2o+l [aw * s 1
+
1
(41) - JPI:T )[Rt - nﬁ%(w)] aw =0, it |r-a| # 1,
2n+l
a
= {n+m+2) 8 , if r = n+l,
(2n+l (2n+3) (n-m)}
{41a)
= -2 (n+m) § , if r = n-1.

(2n-1){2n+l) (n-m-2)} -
Stmilarly, because of (37) and (39) only the integrals (36)
nped be cconsidered for which m = m*, They m?y be evaluated as follows:

P, (WP, (w)waw = Jwea (P(w) PR (w) Jaw = 1](1-we)(§v“’p‘§ + 1 )am,
Ak T 2 daw 24 ’

H+l A
Using the recurrence relation: (l—wz)P% {(1—w2) v - mmPr , the

above reduces to:



+ +/

(42) }Pf(W)PI;(W)de = S mil)] (1-w2){P§(W)P§‘"’1(w) + Pf(v;)P§+l(mr‘)f aw,
et

-1
to which, now, (4la) may be applied.
Thus, by means of (18), (4la), and (42), the values of K and
J may be tabulated as i:ollews:
(k-1)® - »® k' = k-1,

4(k-1)2 - 1
(43) J(m,k=-1;m,k'-1) =

X -m k' = k+1,
4k2 < 1

(k1) frmrk—2)
4(k-1)2 - 1

~{(k=+1) (k-m) m' = m=1; k' = k+

(44) K(m,k-1;m’,kt-1) Foe -1

by

&
-
i}

m-1; k' = k-1,

¥
}-
L d

~f(k-m=1) (k=z=2) m' = m+l; k' = k-1,
I Z(x-1)z - 1

(ra+k+1) (mek) m' = m+l; k'
4kR - 1

k+1l,

I
L}

The selection rules may now be written down. By (39) and (40),
those for m are:
(45) q =2: Am = 0; q=x: 4qn =+t 1,

By (43) aad (443)7, the selection rule for k follows, It is that:
(48) Ok =t 1, in order that the matrices do not vanish,.

Now the actual intensities associated with iransitions between

the states (n,k,m) and (n',k',m') are proportional to the squares of the matrix

elements of (37) and (38). Thus they may be expressed as:

Iz(n,k,m;n',k',m') C‘z(n,k,m;n',k',m’)’z

i

I§(n,k,m;n',k',m’) C';(n,k,m;n',k',m')'z ,

where C is an appropriate constant.

However, when neglecting the relativity effect, the energy of
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the unperturbed hydrogen like atom depends only on n or n's Hence to obtain
the intensity of transitions for a given energy change, the .:qu&ed matrix
elements must be summed over all the (m,m') and (k,k') permissible for the
given (n,n'). This means that the intensities must be written as:
{47) I, (n n') =¢C 2 q®(n,k,m;n',k',m") .

In this summatlon it must be observed that the (n,k,m) and
(n',k',m') obey the inequalities: =n') k') m'+l; k) m+l, Carrying thru
the summation in this way, and recalling (37), (39), and (43), there result

the equations:

I (n,n') = GZ 12 (n,k;n’ ,k* )2 (m,k-1;m' k' =1)I2 (m,m*)
Z
=C 2' 12 (n,k; n',k'):r-?(m k-l sm,kt=1)
=C 7[12(11 Jgnt kel [z& (kB-n?) k?“)
Ze - 1 l
) = ¥ - 2]
+ I®(n,k;n',k-1)J2 ((k—-l ) + (k-1)
4(k-1)2 -1 é
(48) =C {‘klﬁ(n,k;n',kﬂ) + (k-l)IB(n,k;n',k-l)J
3
And similarly:
I(n,n') =G g Ie(n,k;n',k')xﬁ(m k=13m?,k*=1) .
v 2 -
=C I®(n,k;n',k=-1)Im (m+k-1) (m+k-2) + Jm (k—m—l)(k-m-z)}
E%;I 4(k-1)2 - 1 f Z@
+ Iz(ié;fv,ktlﬂig:n {k-m+1) (k-n) +§f§l(k+m-l)(k¢myl
(49) = C E[klz(n k;n',k+l) + (k=1)I% (n,k; n',k-l)} = I,(n,n')

It is thus seen that the values of I correspondlné, to the
three coprdinates x,y,z are all equal, so that to get the total intensity
any of them may be evaluated and the result multiplied by three. It finally

remains to give the explicit expressions for the functions I(n,kyn'%").
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By (37a) and (34), the required expression is:

)

(50) I{m,k+ljn',k) =(Aylr I, )M (2kr2) (-] 502" [F(=s,=57, 25,1~
BA2 — L =) (L+ A B

- WRBF(-8-2,-3',2k, 1- }

1
)

And as noted before, in this equation: s+k+1 = nj; 8'+k = n*,

With the same method by which (28) was derived, a relation

tetween X and K can be derivel lu wailzh X' = k+l; this leads do:
-5 5+8°
(51) I{n,k;n',k+l) = WAL KD (2x+2) (-1) u jz@*(-s,-s*,z‘zzz,ln_z_}
2&'(&"’ =dz2){od+ A') 5K u?

- uwF(-s,~8'-2,2k,1- 1)[ .
uR
And hbre, s+k = n; st+k+l = n?,

By {50) and (51) the values to be put intc (49) may be com-
puted without difficulty. Here, the cases will be given in which the discrete
level is either the Iymsen or Balmer state., These are obtained by letting the
s' in (50) and {51) be 0 or 1. The appropriate expressions will now be derived,
no restriction on n' being made at the present.

st = 0: I(n,k+l,n'k}: k =n'-s' =n'; s = n~k=-1 = n-n'~l = N-n'-1,

Putting in these values &and (24) and (18 ) into (50), the result is:
nt«4/2 7;)7"'2 -nén'+l n-n'-l

I(n,k+1;n',k) =f@] n'+n+l? -4d.rY) {(-1) u (1=-u2)
2 _‘lvg)K T ent+l (J,;.[s 2n°
2n' 2 'S . *ﬁ’ 1,3 T
(52) . ¢ 3/2_nt+2 -2han 2l LR ¥z fl,‘[\gwo '

Kt r}‘ (8n') srﬂlu,\‘ 2ep QL TR

In the last transz‘?@rma’sion use has been madse of the relations:
- ; =
oy = o EEER RYN L \Fn) =f 7/asinbid (cf. ¥
5' = 0: I{nm,k3n',k+1): k =n'-g?1l =n'-l; 8 = n=k = n~-n'+l,
Hence, by (51):

' n1-3/2 <nen'el pontae /
I(n,k;n',k+1) = #2'TNn'-1+n) ﬂan')(-«;:.\'r! [fyyeentsln-nrte1omd/z
Znt+l '

R(A7e 47 ) @A) 28 25

Zﬁ’“aj
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\F‘(-»s,ws',&h,l-:?) = URF(-3,-s8'=2, 2&,1-_%); .

‘v&

The bracket expression may bs writtsn as:

oo
1 X(u—_]i)"'{s(l-s)-n(?,bl)} + n{2k+1)( l-u?‘)I = 41‘: (nR-n12) . e
2k (2k+1) u = R2-Q'2j2(2n=1)(n*=-1)n2nt3

Putting iu this value and redw ing, I(n,k;n',k+1) takes the "“@Wm

2'+12n'+5 141 7 - -1 {""
(53) I(”ﬁ’k;n”k-ﬁwlj IE n / n +1 'Tyg f)ta"l n' ] "( Py +r2) .

Ktzlﬁgﬁ' ) Slnh’i, (»24.31'2)11 *Y

8t = 1; I(njk+l;n',k): k = n'=l; 8 = nek-l = n-nt?,

- 1 —py ?
I(n,k+l;nt,k) at+n ' )n l/z m . ‘l/ (=13 nént n at+l
K(2n'=3) § f 70" 4A(d8-aA'2) (g+ £ ) °0 -7

JP(=s,-s* 2k, 1 1) - wBF(-s-2,-s3%,1- 1) ] .
wE u?
In this case, the bracket may be written as:

1fn(u-1)® + (k+l)(u2- 1)7 = _ 8t (se7n'e) .
2k u u? Zk(JB-)'2 )20 20

This gives for I(n,k+1l;n‘,k):
4n'+l/2 n'+2An'+2 ’"‘h/?» -2Man n /)

:{taf f'(zn'-l).einh'rx PerarE T

n-x

(54) I{n,k+l;n',k) =—ype | I

8' = 1; I(n,kjn',k+l)t k = n'=2; s = n-n'+2,

- n&n' n=-nt+3 7r)/ 2

I(n,k3n",k+l) = i (-1

[F(—s,-s*,zk,l-_;_) - UBF(~-8,-s'-2,2k,1- 1)
ue w
Ageain, the bracket may be reduced to:

1 1-n(3k2+6k+n3+2)(u-;_)3 -(k+1) (kR+3n2+2k) (u+l)® -4n(2’;1<2+3k+1)(u-_1_)
2k(2k+1) (2k+2)u u u u

+4(k+1)(k2+5n2+2k)(&+_3=)] = 16t gniz-ne)gm‘*-n'g-n n%-3n%) -
u &==A'2) un*9n*(2n*-4) (2n'-3) (2n'~2)

It now follows that:
2n'-1/2  nt pnt+2 mA/2_~2Atan tn'/A’ n
(55) I(n,k;n',k+1) = -2 jﬁn' A e e (n'3-nt®+nMR+3)° 2412 .

Kt= {M(2n'-1)sinh " (n'24p%)" 7
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APPLICATION TO THE LYMAN AND BAIMER SPECTEA:

These formulze, valid for all n', will now be applied to the Lyman
and Balmer continuous spectra, for which n' = 1 and 2, respectively.

As ﬂ'),k'),m'+l; k' )1, it follows that for the Lyman spectruum
n' = 1, k' = 1, s8* = 0, for the discrete termn and k = k'41 = 2 for itk contin-
uous state, so that (52) is to be applied in this case., (49) reduces to the

second tern, and the tctal intensity becomes, introdwe ing9= l/;\,
g 4 tan i(d

(56) IL = CkI®(n,2;1,1) = CE e D )
Fd Teg2) (e 19T

Cn the other hand, for the Belmer spectrum, n' = 2, Hence theare

are the possibilities for the discrete state: s' = 0, K' = 2, k = 3, 1; and

s*=1, k* = 1, k = 2, Thus, by (49) the intensity of the spectrum is given by:

I
B
Applying now (52), (53) and (54), this beccmes:
15 =401
(57) I =C 2 e o8 P_z,ﬂr (15 + z2p2 + 16f%).
B ETE(L40%) (1o QT

ClIz(n,l;z,Z) + 2I2(n,3;2,2) + I’a(n,E;E,l}—} .

It may be noted that by the definitions (6) and (&a):

¥ 4 ,
(55‘} @2 =x% = _E; k= 2r5Ae 72 = Rydberg's no: t = Z; a = h®/47°pe? = radius
. Eh ~h a »

of first Bohr circle, for hydrogen. As E is simply the positive energy of the
electron in the continuous state, the total energy with respect to the normal
state is E+Rh.

To determine the constant C, it is simply noted that by the
classical electrodynamics, the average rate of erdssion of energy by an cscil-
lator is:

(s9) -E = 2(zrW* P,

d 3 03"

of

where TZ is the average square of the electric moment of the oseillator. And if
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x is the amplitude of the motion, then, clearly, P2 = 6232/2. However, as a
Fourier component in the classical reaolution of the motion is related to the
quantum mechanical elementary oscillations as:

207 iVpnt 2riVo,t
" e T

it follows that the smplitudes sre Telated as 43/2 = 244 . But in the prod-

A cosanytY = Anm? s
uct AmnAnm both the {(n m transition and its inverse are inecluded; hence fur a
single process the quantum mechanical eqguivalent of xzfz will be simply

eg'th'a. It feollows, then, that for spontaneous emission C will have the value:

4,
(59a) C = 327 9%1? .
3¢S

The average number of elementary processes per second, which for
spontanecus emission is the first of Einstein's coefficients, is given by di-

viding CI® by h , so that:

, 4
(60) Ayyoy = cI° = 327 e2y3I2(nsn').
h - 3e3h

It should be mentigned that the e in (58), (59a) and (60) refers
to the charge of ;;e electron,

Fron an experimental point of vkew, it is almost impossible to |
observe rates of spontaneocus emission as such, because of the fact that in any
practical experimental arrangement the observed emitted intensities depend,
perhaps primarily, upon the conditions of excitation, temperature and other
perturbing effects, whereas the Einstein ccefficient refers to an intrinsic
property of the atqm that is emitting the radiation.

The intensities of absorption, on the other hand, msy, in
principle, be more easily anelyzed experimentally. For, certainly for the

absorption processes beginning in the normal state, no external excitation
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conditions are necessary to make the sbsorption possibls., But unfortunately,
in this case, too, experimental studdes are hardly more than possible, since
Lhydrogen exists normelly in the molecular state and either high temperatures
or external excitation are necessary for its dissociation inte atomns, te which
alone the present theory of atomic continuous affinity spectra is applicable,
&nd in fact, no quantitative data has as yet been obtained on the absorpticn
intensities for the affinity spectra of hydrogen., Stark 17)has observed then
in canal ray studies, and Yuls) in photographs of stellar spectra. But these
are not suited for amy close comparison with the deductions that may be mads
from the theoretical formulse derived in this investigatioun.

Nevertheless, it is of interest to at least give explicitly
some of the features which the theory does predict, altho they will noct be
apalyzed from an experimental point of view, at present., TFor this purpose,
Einstein's abscrption coefficient willbe computed. As is well known, it is

related to the coefficient of spontaneocus emission by the relation:

- 3 3 " iced i ner oIn s
Bn'-',n = ¢ An-‘m’ o« This gives for the coefficient of abserption per atom:
arhys
(61) ,L = Bh = 47%/e?I®(u,n') .
¢ 3he

It is convenient, in méking physical interpretations 10 c;-n—
sider oly as a function of ‘V/'yo, where \é is the limiting frequency of the
corresponding discrete speftrum., Thus for the Lyman spectrum, léf R; and
for the Balmer spectrun, 1& = R/é:,; on the other hand, refsrs to the freguency
that would be emitted or absorbed in a transition corresponding to the can-
finuous spectrum. Hénce for the ILyman continuous spectrum,y = E+ih;

h
Vyo = l+92; and for the Balmer continuous spectrum, 3/= E+Rh/4; while
h
"%/o = 1+4$2; since E represents only the positive emergy of the electron in
’
the continuous state,

- B2 =



By {58), (58) and (81), the value of for the Lywan spectrun is:
10 o V(B tanfERe
ezRe

B -
{5;&) JVL = EE} .2@2 hw ) -::ﬁ ) v
and for the Balmer spectrum: —— ,r'f,‘,
vo tanm !V°

15 -5
(63) JVB - y:gga%chﬁ,?gvu e—'ﬂ'/;% ¢ (%d b4 2) (V/)/o ‘f y)

In the curves on the next page ,{V and a(v are plotted ageinst

gspectra; in botk

/
%}mV/‘yO for the *+ c A are divided by ths common

15 2
factor: et =& 722 e R ; furthermore, the scales are in the ratlo of 10 to 1
9RR+ ¢k
Ei%ch

- 3
1e8., for exaupls, at Vh{) = 1, the asctural values are OL.fE_‘,’ic' = 1,717 107,

& scale

£y

while d‘ij!c' = 15,096 10"%,  From these curves it is seen that in t
of squivale an/V the probability of absorptlon from the Balmer level iz ap-
proximately nine times that of absorptiocn from a Iymar level; alsc, this ratio
is roughly maintained thrucout the range of the curve,.

It is of interest to note the hehavior of the abscorption at the
series limits., It is easily verified from the above formulae ford,l and /yg
taat, at least for the Iymen and Belmer specira, the curves approach the axis:
W\,g = 1, not with an infinits slope but with a dsfinite non-vanishing anglea,.

In gensral, at the series limits, EDO » thatd ¥ 0, and u-P -1, As was noted
bvefore, (ef. (33a) ), when @ is also real and integral, the general expression
for R(s,s') and hence for X reduces to the form valid for the discrete specird.
1t was alsc shown, {cf. (24a) ), that as Z-90, the normalization factors for the
digerete and continuous ranges become formally identical, when referred to the

same scale, Hence the values of I and for the ssriss limit from the discrele

to be exact, they

o

side will a&lszo be obtained vy lettingd®» 0, E-20, u¥-1, th
is ohvious that

would approach it discontinucusly up to the very limit, Thus, I
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the limit as apprgached from the continuous ran e is egual to that obtained
when it is spproeched fmmm the discrete side, so that there is therefore a
zontinuous transitdon ab these limits which rspresent i@nizati@ﬁ of the atom -
by the absorption of radiation.

Formulae for the limiting velues of I(n,k+l;£',k) and I{(n,k;n',k+l),
easy to apply for s' small, mmy be derived without difficulty for gemersl values

of n's The method is as follows:

x+1/2
By (24) end {6a): lim}{Ak+l) = (2§) fep s
g+s! -2n! *%s KA 2k+2)
also:i._i?m (-a) =g ; and by (33)
o
, -1t k -2
lim 1\ B(s,s7,k) - R(s+2,8%,K)7 = (=1) " e P (e | 1im (1-ue)
Mo ,L ,('51‘1 %% &
»!
} 1 gs'-m .le& T’_(-‘t =kem=1) = ﬂ—(-_t_ -k:-m-s-i?} .
‘ ri (2k+m o X ) [ & o 20 d.

“@ow hm !l-—uel = 4/4"; and:
.

1 = = —_
j:%zg’\ ]sT (%s “k=-r=1) - —[(-'t -}c-m-l)} = \-t)r [b(-k-m—l) —Z,(-—g:-—zmi)f
r=-1

“nxd Mo 1Y Ky

= (~2p) (-f . Hence, finally:

k-n'+l ~2n* k+2 2v.z
(64) Tim I(nlksn ,k+1) = (=1) B BB (G

. $2 (2k) K o lﬂ(n'-}:-!-l)
- n=%1{ r
l1+2 (‘4n') {(nt'-k-m) .
l ' z.; r} ﬁ (2k+m) K

When s8' = O, the summation is to be omitied.

In an exactly similar manmner i% rfay be shown thatb:

P
Sy
- A

(65) lim I{n,kin',k+1) = (-1) 2KE\ P%‘:*-n’—l n'

(2k)t=K (nr-%}
MOK-"I
Zg-l) (4n') ™y (H'-k=1-m) g-—l! {4n') Th'—k+l-‘m}
T {2k+m) {2k+m)

,ﬁere, when s' = 0, the first suzmatlon is to be omitied.
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1,

The variation of the absorpbion coefficients with the atomic namber

? e

7 can be obtained from {62) and (63), for the Lyman and Balmer spectra, By (58},

- . N / : . ]
REv 7%, while t = Z/a. Heurce for short wavelengths, large Vv, Ay ~zZ ; and

-

5
Xy Vv Z , also. At the sevies limits, on the otherhand, as Yy 2y, the var-

et

£y
Las

lation of the aveerption cosffickents with Z is guite differsut; in

L

’

;

g . - .
~ Y2 and fy, 2 1/ZR, at the series limits,
B

%

Y -

T
ot

The variation of the absorpiion coefficients with the wave

may alsc be sasily obtalned from (£2) and (82). Thus it is esen direcily that

e

B - . N
for large Y, both of the coefficisents, for both ssries, very as j‘./’y’f o &

'7/’.‘2 L o
) o On the other hand,

1

t the series limits, both 4 and A, _ vary as
L
e 4 - s
jy~ or as) o For intermediste ranges of g/, the variation of the ab=-
orption coefficienls caun,at lesast approximately, be cbiained withouwt any
difficulty from the formlae as ziven,

The experimental data for the absorpition zpectra of X rays is

not at all as meagre as that for the affinity spectra of hydreogen itsslf.

S%111, it would take & rathsr careful analysis of the data and of the val-
idity of the approximation involved in applying the above formmlae to X rays,

before any such test of the formulae and theory wowld be of significancsa,

As this is a problem in itself, it will no¥ be attempted here, &nd the for-

e
jt

malae willl not be furthar apalyzed for possible predictions or explanations
of experinentsl phencomena.

Towever, it msy be mentioned, in conclusion, that the forrmlee
derived in ths pressent investigation have applicability not only o quesiions

Cof atonde speetra, bubt also to probleme such as electron capture amd photo-

H * P O 1 . iy et N S AT s - 42
electric smission. It is essentially a oabtlier of physical interpretation



£ the formulge already derived, to apply them to thesze other prohlems.
This research was carried out under the direction of Dr.

Paul S, Ipstein. It is a pleasuré to acknowledge his continued assisbance
and encouragement; in fact, the zsneral method of the evaluation of the

nabriz integrals was developed by him, Without his aid this investigation

could not have bheen carried to completion.
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This investigation consists of a theoretical study, by the Wave
ligchanics, of the intensities of the affinity spectra of hydrogen like atoms,

The main properties of the eigenfunctions for the continuous
range of eigeunvalues are investigated. They are shown %o be real, and their
asymptotic expansions are derived., The theory of the normalization of contin-
uous eigenfunctions is applied, and their normelization factors are obtained.

The integrals for the coordinate matrices corresponding to trang-
itions from the continuous states to the discrete levels are then evaluated. It,
then, is shown that the squares of the complete Schrodinger matrices for the
three coordinates x, y, and z, are equal, their common value being derived.

The general formulese are gpplied to the special cases of the
continuous spsctra asscociated with the Lyman  and Balmer discrete levels, The
absorption coefficients of these spectra, as a function of the frequency, are
deduced and plotted. It is found that for equivalent ratiocs of the absorbed
frequency to the critical ionization frequency of the discrete level, the
probability of absorption from the Balmer level is approximately nine times that
from the Iyman level.

The values of the matrices, for any discrete state, are given
for the long wave length limit of the continuous spectra. Finally, the var-
jation with wave length and atomic number of the absorption eoeffi;ients for
both the long and short wave length limits of the Lymen and Balmer continuous

spectra are briefly discussed.

- 38 -



