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Introduction end Summary

In Chepter I the preliminary concepts are introduced
and appiled to the quacdretic differentisl equetion, 5§?==9vﬂ49z
in 2 complete normed linesr ring. In Chapters II znd V the
functional equetion, #'=F/#» Koy r y®@4 is studied under
suitable assumptions end shovm to be releted to the Fréchet
differential of the shove differential equation &S a runctional
of A , In Chapter IV the more general functionsl equetion,

g=Fr7ey) where 7 is an endororphism, is treaﬁed.

The existence of thc Fréchet differentizl with respect
ta A& of :—;i’;- g A4 is showvn in Chapter IL by means of &
power series for the colution of g=F»®cg 4, {/) where
A/ is e ‘trilinear function. The solution of 7—- - FADY

pter IV,

ﬂJ

is obteined in Chepter VI in thes terminology of Ch
lioreover, the solution iz showm to satisfy uniquely the
differential system, dJ&gfA/47= 7/%*&//5)/6‘)? , glo/t] =4,
and to possess = generalized Taylor series expencion. The
ehove equation 1s generalized with similar results to
;ﬁy 7448, ), vnere 7 iz e trilineer function.

Chepter VII is concerned with exesmples of Chapter VI.
For instence, the solution of the matrix differcntial cqustion,

o
QZ“ 95470 gl | ssisr, ssxsr , is treeted both

as e funection of  znd as an anslytic functionsl of the

. A
rm continuous functions A, 2D
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Chepter I

Ordinery Differential Hqustions Over 2 Banach Spece

It is evident thet 2 nuwber of the properties of recl
valued functions carrr over in pert to the more gensral RBanoch
spece valued functions. In perticulsr the cslculus snd the
differential eguation cen be conceived in this rore general
spacé.

The derivetive is defined in the ususl nenner. Let

£ € 8 , a (resl) Benach space, such thst for each mumber
Z in the closed resl intervel (@, 4), there 1s an element
expressed by the function, A& , in B. Then if there is

an element g £ gsuch that
S ///"’é) - //f) -
S -0 // A 7// 0

4 1is called the derivetive of #(Z) srith respect to # ., Is

1s custonmary one vrites
AP
L

g =Ft)=

For the notion of integration of functions of & real
vericble we ill restrict ourselves to the Riemann-Graves
integral. The fundeamental properties sre to be Zound in
(1) erd (2) and will be assumed throughout this work.

The concept of uniform convergence with respect *o the
norm is on the vhole gqulte analagous to the rezl or complex
velued function theory of the same. In fact in & great meny

cases the classicel proofs mey be followed step by step,
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e

rep}acing absolute values by norms throughout. Two exemples

of this useful for our purposss, are the eviacent generalizations
of the theorems given in section 1.71 and 1.72 of (3), con=
cerned with the term by term integration =nd diffsrentiation of
s seriec of Banzch space valued functions of = reesl variable.

| Throughout thie work, we shzll use freely the fundamental
properties of Fréchet differenticls of functions in Penach
spaces. This subject was initisted in 1925 by Freéchet in (11),
and since then it has been extensively developed in particular

by Prof. A, D. Michal

2]

nd his school (see (12), (13), and (14}).
A theory of analytic functions of varieables in Banach épaces
as wvell as a theory of differentiesl equations whose unknowns
are functions (not necessarily‘analytic) of verisbles in
Banach spaces was zlso initiated and developed. These rescarches
were begun in 1931 by Prof. A. D. Michal., Tor =2 nistory of the
development of these subjects refer to (7). (See ealso (10) for
normed linear rings, snd (12), (13), and (14) for further
references).

It is now our purpose to discuss abstract ordinary

differentizl equations of the type

2 5’5:%/49'), y&)=4 , [E-L/sh

where the independent variable Z is a real variable and &
is the dependent veriable with velues in the Benach space, &

The particular example of (1.1) that we will consider is the



B

ebastract Riccati equation vhere the Banach space, B , is
replaced by a 'complete normed linear ring, £ . In & later
chapter our methods will lead to the solution of some rather
interesting matrix differential equations. For example we

will be able to treat the rectangular matrix differential

equation
a/%(" [ 8/ ‘ Z . vt
o =Y, A Yy, 4B s ISE 7, TA S s 77
' A z) . - .
where A; ¢ are continuous real velued functions over

interval /Z‘—zj,/s}é and treat ‘the solutions as analytic
functionals of the 77 functions /‘{fﬂ‘) .

To treat (1.1) in genenal it 1is necessary {:o first obtain
some criteria fér the existence of solutions. Such an existence
theorem 1is embodvied in the follow;_‘ng theorem:

Theorem 1,1 If B is & Banach space and £ 1is the space of

real ﬁumbers, then let:
(¢ F£CZ4 4) on£B to B be defined and continuous in each

variable separately for domain £, defined by /2 -2 /ss

s-g4 4 s b with /4 and 4 fixed. |
06y HAAYI S/7 with A determined by AA7S S end
2y 2D . "

(£68Yy S FLY)—FEPISRKEIY-44 FAr 4 F 2 and R
is a fixed positlve number,

If (), (££), and (£44) are setisfied, then there is one and

only one solution g =g(L of the differential equation

Y
Z =fad)
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in -4,/ = /4 such that /204, .

Proof: The classical method of successive approximatioms is

used to prove this theorem (see (2) and (4)). For later use,

however, we shall give the details of such & proof in pert. .
If o solution, #/ , of (1.1) were known, which reduces

to 4 ‘vhen Z=124 s then the solution will satisfy
¢
(1.2) y0P) = q*,{ FOS 465) als

or an integral equation involving the ‘depezzdent veriable under
the integrel sign. Let the B-valued function, 4@ , now be
regarded zs unknown; the integrel equetion (1.2) mey be solved
then by the method of successive zpproximetions.
Let # , the independent variable, lie in the intervel
(%, 2, %) end consider the sequence of B-vazlued functions

G508, 4, (B, .. ., 4,0 defined as follows:

4 (D)= F(S, y68) S

4 %) =4 ,4 X OTAY &)
At

(1.3)
5/,; AR A ‘ris 4,00 s

We shall now prove thet the limit function of 4 @)
defined by (1.5), exlsts and is a continuous function of
when /Z-4/</A . First of all from (1.3) and (£¢) we
have

VG B -Gl S [N gy Ao S PI5Y <rthy s o

for 4 sZs 4 +#A . But this implies by (£¢) thet
(1.4) PELE 4B < M
Since (1.4) is true, let us suppose for purposes of induction

that L g, BV <b



' Then we have /Z A/Z 4, ,¢))/ <A and further that

Ve O =4, /< 4*//&2 Yt HE S 171 < 1o
Hence induction is complete end by (ii) it follows that
(L.B) /A(% 40/ </ vhen 4 sz <tk 5 oll
integers # . 7ith (1.5) true we can assume again for

induection that
O AN sl

- (1.8) W Yy (B= 4, , B2 S YTy
' r4
Then vy D-g,, DY < ‘é P FCs g, ()~ £ Sy V)5
| ¢
= gé' KV, (D (O s by (cE)
So thet by (1.68)
x7 i #r-/ _ MK _ ”
AT Yoy, (8 - 4 D) < /("’”‘0‘/ Jz; /5= 41 = S2-24/
vhen Z s £ s 4 +4 . Since (1.7) is true for 7=/

and can be proved similarily for interval Z-42sZ < 4, , the

induction is complete and e have

reon ~
L.ty 0-4, BIs MK”,/“Z"/ for all #7 when /¢-4/<4

(ar's
But now 1t is eclear thet
Ved
g (B = g, + g[qﬂ./f)“y/—-/ﬂ‘)]
and further from (1.3) we have

sy
V- g, eV < LIE LT pp for fEASs<h

#2/
fad
with ;§/ «r being convergent. Thus given & there
’7
exists A €) such that ”.Z I < & for 2,2 >N /&)
= pPrA/
Also

Ve lrd
Vg B~ Gy OO = V= LGB ~Go B]) < Z 17
Thus we have the staztement of uniform convergence:
(1.9) Given €, there exists A(E) such tha: S4B ~ %, Af<E€

for 177 7?7 >N (€) , independently of Z in closed interval



defined by /Z-4,/ <t

By the completeness of B end (1.9) there exists ¢/ =”/’:’_’7r7/"‘)

and:

(1.10) Given 2, there exists # ' :zuch that FZ4/4) -4, /z‘)//<§
for m>~’, independently of 2 <there /#-Z4,/</5A .

Thus by (1.10) if 27 is eny velue of Z in intervel defined

vy /E-4/s /A we have:

(L.11) Given €, tzere exists N'€)  such thet //y/i’)—y,,,/f’)//<§-

Tor 7>~

& COn-

| #3

Further if ~7 is fixed anc ~>N" , 4 (B 1
tinuous function of # , thus: |
(1.12) Given €, there exists & &) such that //g,,/f’)—y,,é‘)/<3§-
for /Z-27/ <& . |
Hence from (1.10), (1.11), @nd (1.1:3) we have:
Given € , there ezists €¢¢) such that
DY ED =GOV = J G CED = Gy (24 Yoy (27D~ 53, D+ 2s D4 O
S Sy D4 ON S 4, (4 - Sy DI+ VG ) ~ Sy (D < &
it S/ <8
Thus the limit function, @& =/-7/_/:; Gy (20 e:;iéts, and is a
continuous function of Z in the interval /z‘-z;/ s /.
low from (1.10) end (iii) we have
(1.13) /“{Z‘[//.g 45) —F£05 4, )]s ) SK/_éi’y/s) -y,,_,fé')/a@/
SK G, [E-1 )< BE,
where &, 1s independent of # and tends to zero as 4 tends to
infinity. Then by (1.13)

n-re

rm o (F) = 4 f”/:;:?o {t/’/f} 4, , ) ak

4
AR R T R

o
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and consequently, ¢ 1s = sclution of the integrzsl equation.
(1.14)

By (1) A4 4 ) is continuous in the intervel /-4, /s/A,
hence we have from the theory of integration for a B-valued

function of aresl variszble that

. ud _ o [t ]
1.18) T T g \é/'/s, YD) als = F£C2 408) |

Consequently, by (1.14) and (1.15) #¢/# satisfies the integrel

equation, (1.14), snd the differentiel ceqguetion and sssumes
the velue, 4 , vhen Z =2, . |

The unicueness of the solution, #¢# , obtained in the
preceding manner by the method of successive appréximations,
can be proved in the classical way. See for instance (), pg. 17.
Hence the theorem 1s established.

Before discussing the existence of & solution to the
Riccati equation, mentioned in the fifth peregreph of this
chepter, we will give the definition of = Complete Normed
Linear Ring (10). |
Definition 1.1. A& is a Complete Normed Linear Ring if <
ig a ring as well as a Banach space and if, in addition for

% 4R

} L2yt < r272 f XI5V
where /7 is the modulus of the product z¢#. It is & real or
a complex complete normed linear ring according as .f-, the
scalar field, is the real or complex number field.

It should be mentioned at this point that herein we will
be restricted to the real scalar field, so when the terms
Banach space or complete normed linear ring are used ve will

mean over the scalar field of real numbers.
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The follow1ng theorem is an application of Theorem 1.1
to a Riccati type equation:

Theorem 1.2. If A& is a complete normed linear ring and £

is the space of resl numbers, then <& 4@ 4 on £~ to R
is continuous in each variable, separately, for domain 2 ,
_definea. by /-4, /< b , V-4t < b Tith S and H fixed,
under the conditions thet & &€ <X a2nd A on interval, /Z-4/<4A,
of £ to R ié continuous end consequently bounded 0’1‘ that

SAL)Y <N vhen /fE-Z./ S F . Furthermore if
6
722 (Vo 4 £ 6D ‘
vhere ~7 1s the modulus of the ring product, then the abstract

V=

Riceatl eguation

(1.18) Z Z gDy
has one and only one solution 4 =4 @ in interval',
o WA ¢ such that %)= ¢ B

Ez;_g_c_)i:' The proof will follow from theoren 1.1 1f we safisfy
conditions (1), (ii), and (1ii)., The domein O ih tyhis., theorem
1s the same as.® of Theorem 1.1. Now since V- #<E
we have | | _
(1.17) Syl s &, ygED end  C = Sgsrb
Also from the continuity of A% in 2 or over the closed.
inﬁerval, defined by /24-A/s A , We have that:
(1.18) There exists a finite A such that ~ZAI/<N

for Jé-d)<h - |
stating the above continuity:
(1.19) Given €, there exists £@ such that

IAB) - ARV < = Ao [EXY<S




and

(1.20) Given €, there exists §, %) = < such thet
Frr RN
&

Ay-4'7 < Er=xryva For Vg-4H <8, .
Now to satisfy (i) of Theorem 1.l e have /%599==9’4Vf)?
and by (1. 17), (r.18), (1.19), =
_tnere exists £(Er= oz %, 8§, such that

4y]

(1.20), that given & ,

VAV~ g A 4

I

Vg Ay - ' 22D oy # 4y ‘ALY~ S AL G # ' A g ALY
SHGALY g - 5 ’A/z")y//v‘- 1y AtDey — y’/ﬂ/z)y/ *//y;m‘)q— yﬂ//)g/// .

1722 [V W 98 EU =, + VSV IS o # Wl PO /
Ll Eet s e tres, vyrtes o

27 and ¢’ verying independently in -2 . Thus (i) is sstisfied.
For (ii) by hypothesis and (1,18},

b
AN <NV = Wy Y S

hence by (1.17)
VEL Dl = Vg ADGY < 1222 50 SV ALY

_é__ <'£ =M

Thus =~ A7 = f and (ii) is satisfied.

If now (4 4) and (2, Y) are within 2 , then
VYADY -~ g 4D y) |
= IYVADY - Y AL Y+ VA gy — y»m‘){///
S VALY -YAD G + VAL g -5 AL gV
& PR PRB Y (VXS A075Y) V-7

Hence by (1.18) and (1.19)
I ALY ~ §ABOYY € 212N /¥~ g/

T ITARY —4AD YIS KI5



there K= Rmw?2HcC end is a finite positive number.
" Thus condition (i1i) of Theorem 1.1 ig satisfied znd Theorem
is established.

In concluding this chepter it is relevent to say that
we will be concernéd with methods in the next few chapters of
obtaining Fréchet differentials of the solutions of differentizl
equaticns, such zs (1.16). Ve will sssume the definifion end

the elementary operationzl properties of the Fréchet differential.



Cheapter IT

A Functionszl Zquation Releated to the Fréchet Differential

of the Solutiocn of ;7;? = g ABy 5 & Functional of A&

Under the assumption thet the Fréchet differential 7ith
respect to A& of the solution, #v# , of (1.16) exists, it
is not difficult to see (see (7)) thet S4/lA/Z7 could be

obtained from the integrel equation, -
e .
(2.1) g lA/t] = { Y LAS] BAD G LAST A5 * [ 0y s 4D GUA ] s +

| # 'z'/,‘ i{/ LAIST 42 Sy lA/s] a5

if 4 /#/47 , the solution of (1.18) were knowm. (2.1) is
of the form of the more general Volterrz type integrel ecuation
(2.2 G = F(B) *42/6 (XEDSIEDTE # J?/f)//;,—&)/f (SESZE L)
where X (2,5 , £ end #6524 are continuous in the
closed intervel =g 2=4 with values in & complete normed
linear ring, A (not necessarily comuutative). | |

In order to solve (2.2) and hence (2.1) let us consider the
functional eguation,
(2.3) =+ KOG+ 9K
with respect to which we make the following assumptions:

Assumption 2.1. AKX 2% and ¢@ /4 zre bilinear functions vhose

values and Independent variable # are in a Banach spsce & ,
winile the independent varisble A ranges over = complete normed
linear ring Ax end the independent varisble 4 renges over a
complete normed linear ring A, wvhere the unit elements are
not assumed to exist,

Assumption 2.8 (R A) O ¢ R O(Aey) for cll K, K, € Ax

end g&E & . @A) = [y®H]D 4 for all 4,4 €A%
and ye€ B, _
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Assumption Z.3 There exists a positive number A7 such thet

f L7 Zz
. Vard Vo 94
VKN < 2oV

sy 200 (=423 ..°)
757

Assumption 2.4 If F(X, K, K ; H H,, .- #»; 4) Tepresents the

multilinear function formed by iterating either X 0 4 o~ 4 @4,

on ¢ with respect to Ay Ky, - Kwr , Ho, Hs -+ Hm».  in eny

7/

specified ordering, then with A7 given by Assumption 2.3
M E, Eyy e B j s Hlaye e Koz 4D S

7
< pp 7/ 7‘7//1(./)/77//,7.//)///97;‘/7)/ (277=423...)
S AL At

where m?-ec and 7= r~>0 means £~ 1s independent of A 5’?4:’
s77=8>0, t72= O means A 1s independent of A & R,
and #7=0, /7=0 means A 4 . An exemple in
which the above four sssumptions are all satisfied is given in
Theorem 2.,2.
We will now define the #7- % zlternate iterations of the
two functions K o ¢ and g @ A .

Definition 2.1 The »»-# azlternste iterations of the two

functions X Oy = ALK, %) and g ®@K= Ay #) rith respect

to the same two functions are defined as followse:
HNE f) = KA T ) < B (AT L))

By = HOH D o, fy M= [HT R D] @ H
vith & P& P =K of and H P LM ]
From Assumption 2.4Land Definition 2.1 the following lemma is
clear: |

Lemma 2,1. There exists a positive number /7 such thet
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VH i o) s rrax P e PO 4
7 Z = (VRY 4H7) ey,
CH L < Pk N2 7 2 Y
Z (WKY, W HY) ooy -

e are able nowv to prove the following theoreu,
concerning the solution of (£.3) for #., (Compare vith

Theorem 5.,1)

Theorem 2.1 The solution of (2.5) under A-ssumptions 2.1,
Doy, 2.%, and 2.4 znd Definition 2.1 1is an entire anslytic
function of A and # , separetely, end is given unicuely
by

(2.4) 4= /7‘1% kg £ + Z 2/ LR

LAk Ol KL OS) # KO(LAOE] OH) +.--
* F@ht [h0 L@k + [ACABE/®S # . ..

]

where
(2.5) e BrZErxIe ...  ERx
and o= HAEHTE T e E A,

Proof: By assumption 2.3 )
17050 g gt
-7/

IEY S
Hence
(2.6) VKW S W RIB2 B oo f S JENF SR F -
< JR) e TR

Thus the representsztion for A converges, and by the compleie-

P

ness of A& , A is zn element of Az for sll X in Lz

=s given by . (2.5). Similarly

/4

(2.7) SV S P K E Ky

/
and his representable by (2.5) in ALy . From (2.4), (2.8),
snd (2.7} and Lemma 2.1, we have

7
Yyl < rPax e sty eTxe’”
Z=(HE 159
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so that (2.4) converges for ell X £z tni # & Ay .

Thus by the completeness of the space B, & exists in
B =3 defined by (2.4) as zn entire analytic function of
A end A/ , separately.

Now to show that (2.4) satisfies (R.3) we substitute
(2.4) in the right side of (2.3) end obtain by using
ﬁ..ssﬁ.mptions 2.1 and 2.2, Definition 2.1, and (2.5),

| FrREOF + KO (KOF) 7‘-‘_.:5/02?@ xe Wﬂ)/f;/:) */%Z@(f/ﬂ)ﬁ‘;é))+
£ AOH flg L ®Pir )] # » [f@A]@/ﬂg [z%‘%/v,fzf@é]@éz
= frxors SKot-KoF] 4 § ER N L - B o UGmF+

* ﬁ,’ @ (B YLR) # L f/% (K n ok + JF@% - AR +

4 SEH - 2 Ik nfoni = F1E, A Cp £) - B W Rt A “hoh-

= £r B nDen )+ ZHCHL)
which is the same as the left side of (2.3) as defined by
(2.4). Thus (2.4) is a2 solution, satisfying (2.3).

To. obtain the unigueness suppose that & and y' are
the solutions, satisfying (2.3). Then

I Fr ROy +5®H
g Pr ROy rYOHN
from which follows
27 g-g' = Rocy-4)+Ly-570H
If we iterate, successively, 7 times, -4’ in (2.7}, we
obtain from Assumption 2.4 that
(28  ty-g0 <Ly gy, E rrm BELISD

Now suppose that 4’ were different from & , then /5/*?770



and fronm (2.8)

- Vd /7
/sﬁ_/;/%?_{)_ 7= 4 B E ) .

But this 1s o contradiction for there exists 72 such thot

2 72
17 2% _
2/
Hence Ay-47=0 or =4’ =nd the solution of (2.3) is

unlgue. Thus the theorem is proved.
liow let & be = complete normed linear ring {(not

hecessa_rily comrutative) with modulus »,7 in which there
aré elements Xcd, S, Frso , Hs D) continué® ith
respect to the real varicbles. 2 &nd &, in the interval

ass 2sb . Let Rz :ni Ry be conplete normed linesnr
rings and & , the Banach spece, as used in Theorem 2.1
with values of the functions in K for ecach 2 znd & . The
products in Az and Ry will be volterra integrael compositions
and z
(2.9) Koys K (K408 alF

_ pF
GOHSL glIHE DA, mszESH

Moreover, the norms in Rg, %y , znd B cre défined,

respectively, by
tRY = 7, Y G APy /2

(?? . lD) aslSy
IHY = ds/;f::;é IHED e
AFrY = s::;fb A FCSS e

vnere » Zs 15 the norm of & ., ¢ see novw the possibility
of the following theorem:

Theorem 2.2 If K &9, A , and #F PDsre continuous in the

closed interval @sg£4s4éd  with values in e complete normed
linear ring A& of modulus #7 , then the unique continuous

solution #¢® of 5
Y0 = £00 + [ B (5.6 §l0)lem #[ YOMEDSE | ASESY,



is given by

yr¢)==¥9@9*;3?ﬂr””%agg>fﬁ%fV‘“72449
=/ =

nere

em, o PPl B |
KR = L L L RO o K (B 5D FLEOLE 23 P B g, an Dt ey,
/

rcad 7‘%/ /0 .
P },,9=%G;¥:2w if‘9V%v%~>'"/<4%/°’ZE”94%/2)"66%»%4;>¢a~eg94?

VA
/0
2 7 pe = _’(/’Zf’f’.’{i’fé K, 1 Lora D o KB ORI )3 - oy B - Ay

e N
e T VR Py /% 1%
A G L L S L B, 1) KU, A fotl 129 oo D - gy, A
Tor 77/ and
" x
HOKD = [ 2 FOOE ond s [ o o % e

and further

Aig £9=Kox D r Xvxor X0z Hr .

hlED = HEDFHYED +HTE 2D+

wiere
Z L, il %
Km/’/'f’) :é{d‘_ 'ﬂ:‘{ ” .{“{[,‘K/Z,/?”-,)Kﬁ,_,, ’”’2)"4?@,/?)-2//’26’)4?---4%.,
and \
- ¥ vt pom-2 plS '
»7E 1):{,‘; / é HERIHR, ) Bz, orid W (0 s AL s
Proof: By (2.9) and (2.10) it is easy to verify that

Assumptions 2.1, 2.2, 2,3, and 2.4 are satisfied by the
hypothesis. Therefore if we apply Theorem £.1, the theorem
follows.

Theprem 2.2 provides & solution for (2.2) =nd hence for
(2.1), thereby offering = means for computing the Fréchet
differential of the solution to (1.16) with respect to 4@ ,
provided we knew it existed, In the next chapter we probose

tc show that this Frechet differentizl does exist.



Chapter III

The Existence of the Fréchet Differentisl with Respect:

to A) of the Solution to a%/"y"' gAD

Let us consider zgein the Riccati differential equation

(1.16},

LIL gy A G® , 9E) %,
where A®# € £ ., a complete normed linear ring whose

products have modulus #7 . Here, we shall designate the norm
in R as # 4= . Let B denote the Banach space of R-valued
continuous ful;zctions over /&4 /s /4 . The norm in B .for

such an element, A/ , we shall take to be

= Max
({).l} AL //_4"/\(& A e

A restatement of Theorem 1.2 in line with the purposes of
this chapter is:

(3.2) The unique, continuous solution of (1.18) is given
by Y= 77 G (D , uniformly, vhen /Z-4/s/A

‘wnere Z
G408 = G F S G AV s

, G (B = 5 P Lok Yot () BED Gy I S

under the conditions, that 4@ is continuous and

b o :
I Vo S”W vhen /z‘—zf, /< /4 Cand -4l sb .

and

e will now state Y. in terms of two trilinear functions,

RIY, , %, YD) and 77074, , %, &,)D (additive and contintinuous

in each of the three varisbles) on BBB to B or R, “respectively,

as follows:

(5.8) % LA/E] = 4+ & (%.,4R/4], 2B, Gpy £9/2])

::z’%%gfir/%;léyﬁfz RED, 4., (PID) A

and 5 [A1L] = 4+ R (g, A, %) = 44 76D, %) o
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In a more short hand notation (deleting the dependence
on the real variable) we mey revrite (3.3) as
e .
(B34 =G+ R Gt s Ay S ) = Go P CGrs s B, s /5))
and
_ : 4 )
B=9%" R, ALI=Gr f 7CH . A%/
In accordance with (3.2), (8.3), and (3.4) the definition of
REE, A, #z) and 7%, ,9,,12/!) is explicitly as follows:
Definition 3.1 & (X, A, #2) end F/E, Ay Ze/ED  are

trilinear functions (additive and continuous in each of the

hree variables) on BBB to B or R (to R for each vé.lue of &

in intervel /£~Z4 /S/2 | the dependence on Z of ®cZ, Ay Zz)

being understood), defined by | |

C?/ﬁ&,ﬁz,2&)::458}7@%,407&/@946’=¢£%5A@wzﬂé7%aﬁn¢?
From Definition 3. 1 and (3.1) we heave

(8.8) A 7CE A, Ze/DYo= VZE AL ZoltDMpr S 172 W ZE o I 2 V5D e
S 122 W E (M V22 Dl I |

Moreover from (3.5), |

z
(3.6) @8, 8, %) le < [y V708, A, 22 St/ <m0 I8 ] V54 435642/

and AR ‘%, A, %20/ g/i{f*:;<é PR, , 4, ﬂz)/ﬁe

TN

Now let us consider three lemmas vhich give the poly-
nomial properties (as a polynomial in A) of 4, . Vith these
lemmas we will be able to prove thet 424D can be represented
as an abstract power series of homogeneous polynomials of A
with 2 definite radius of analyticity greater than zero, -

(See (5) for elementary properties of homogeneous polynomials).



—-19~

- Lemma 3,1 4, 1is & polynomial in A4 of degree 27y
which can be represented as a sum of homogeneous polynomisls
in the following manner:
IS P
y” - /20 l‘
where /;' /A is a homogeneous polynomial in A4 of degree ¢
depending in general on 47 , and
7Py =4 ol s
Proof: TFrom (3.4)
G =4 +tR%,AH %) .
Hence ,
2~
g = =07
. /) ’ L
where [’( A= &, end /27 A)=R%,42, 4> . Thus the lemma

is true for =/ . Now assume for purnoses of induction

that the lemma ig true for 211 integers # such that /2 »7

then 277, (,'ﬂ) )
(3.8) Hor = 2, 07 O [T T

Then by ($.4) end (3.8) we have

I rrorr = %F & /ym)ﬁ, ym>
AL 271 o
sgrall 7w, 8 2 /m)_.
@ ETI) : N
72) Vs
S Ut E B TR, 5, G
Vel ”f"‘l-“/’ </ »
Vecddd .
—yiiEtE Ao, L Tm)
(] J=o 0:;’;;;;’\(2”—'/
: 7D 72
But = Q@ cw, A /,49)

Y
oSSRy

is a homogeneous polynomial in A of degrees, j#/ s hence
o7t 0N 7)) %) :
/7 )= = /7 /7
Z PS8/ Q /" L2 8 69)) .
o Sy



“Thus (3.9) becomes
: 2’”—//_7 Vo
?mw = yo * < Z /A)

2’2/
where /7 2 gy = 4
thereby completing induction. Hence lemma follows,
Lemma 3.2 /7/"” =2,,/A) is a unique homogeneous polyncnéial
of degree #7 in A , unique in the sense that /:;/”)r ReR”))
;ﬁor 'alj_ 7, ﬂ%h, |
énd

(3. 10) Py D= G A, Cpy (D) + R (Cprry V) A, #)

*ERORD, B,y B) | 0, B

LHrf = 127l
L2/

Proof: By Lemma 5.1
T <o o
thus 47 is unique ond our lemme is satisfied for »=o
Now from Lemma 3.1 and (3.4)
G = % rRCY, A Y= G T
‘Thus /,"(')/A) = S2,A) =2 R4, A ) . Yow a,s.su‘me that

//"/‘9 D=2 (4) . for /e / s/ o Then by Lemma 5.1
-//_7(19 ' :
=9 f;f:—; A
where /;"j.)/,e) =2, (A) » and by (o 4% y
‘@
Z}/ = 9,&4{?, A y_)-_— %fa/nyf’ '/)(/9) A, 9 /-.2’/" A ) =
oy
= yr@(Y,A, y)+z‘fa/z,/9/" (A))%a?//"”) ‘z>f+.
27
i S NP R NAL A,/"(")/A»)
P8 KASE M -
s sx2ly
/r‘/"’/A) = <2, () : fon i
Thus 7, %4 4) = end induction is complete,
implying that Dy D =RCH, A, 4. is unigque and that our

lemma is true for =/ ., Now that lemme is true for /~?=g, /
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~let us assume it true for all r7s & . Then
77) .
77, A = 2, D , uniquely, or
77)
(3.11) /:';,/ (B) = X2, (A foralrEm When mSK .

By Lemma 3.2 o
2
Y=g+ =TT,

r=y

and from (3.4)

%f/ =9, * a‘(%"”g’ Fud =

2%/ -
7] :

= YFrRY4,A Z) 45 f?(%,/%ﬁm)/”))fﬁ/aﬂ/ﬂ)"q yé)f+
ot '

2 -z
r S = R

’?__z P X Vo

/(Zl-s's,?/f/

) oy P,
D A7 f/")) .

Ars) V7 ) b
Ky, A= LT D= R AL ) # PR A ) -
: /77 A
*Z e ROCT A 77H)
IS SShk-1<2%y .

and by (3.11)
(3.12) Ry A =& (4, A Cu (M) + R (2.(A, 4, y)

# 2. B (2D, 4 0 ).
s>/

wn
joF

@2 ~
Now assume that /] "= .., ) for ckustbsp @

by (3.12), then

7 ' '
: 2/ ) ' -
ot = G F @1, A 4> * 2 FAGUAL 1)+ & L0, 4, 4)F
270 |
: Vg DN
_ g é§;=k<?{27 P, A
Hence /52,552~ ' '

/"Oaﬂ)/ﬁ) =&, A, //:/p)/i)) #+ a/g{p)/,g)’ 4, %) *

At
o) 7.2) :
,1.25: 4\7(7 D, 2, /.; //9)))

’S2, SYA-r<2Zs

and by (3.11}

LZ27008) = @ (%, A, ) #8 (<2l A 4D +

*zgrké?(ﬁz/’9>//ﬁ“as/’9>> ""*Q'A:f/(/?) .-

2,57/

efined
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‘Thus the second induction is complete, giving the conclusion

)
thet /[~ A= Oy D for 11 » , #z~=»/,0r that
AAl) . ‘ - z 19%
/:7(,‘, /,9) = _a/(,/ (/9) 1s U.nique . .c'%‘lwo by ('J . l(—v‘)

oy, ()= B (5, ) # R ) 4 4I1.Z R A -G R)
W hdccd a2

thereby completing the first induction with the conclusion thet
~the lemme ic satisfied for =211 #7 . Hence lemme ig proved..
The next lemme will be concerned with the norm of the

7>

homogeneous polyncmial, /': s of degree ¢ with respect to

both the complete normed linear ring &£ =2nd the Banach space B,

Lewiz 5.5 S71B Mp 1224 ) e W5t T st
and e C’ YR 2///% Vaiar Py
for 7242 ... and os 2=/ s and when VATV

- Proof: By lemme 3.1

Vi b= V7 ID e = V5t = P S7 7 = 07 T =7 TR M, otV 7.

Since % =4 ARC4A L)  then [Pnm) =@y, 4 4> end
we have by (3.8) | : ,
PO e = SRGA M S /77’?//4///4/ 5/5 Ao = 7L | VN IS
and by (3.7) | |
//'./7(/)//4}/<ﬁ7 2y Vg ¥
Thus the lemme is satisfied for =0 and 2=/ ,
Now for purposes of induction assume the;t lémma is true

‘ 2% e
for 21l ”</ , Then by Lemme 3.1 g, == /7 /D

V<74

and by (3.4)

z2=-Z <) ) .,
' = = 7. /7 s)
Y = %* @ e, B H)=H+Z f,«:f"/k", AAITTA)
Hence ‘ Osrss2%s :
% 1% AP A D
(3.13) 7w = R, 4 L7709

ospssols



for /sl s2”-y . Now by (£.13), our induction

hypothesis and (3.8) e have

~) iy
270D Y s = AROT N AS P
< PAS =gt Ky
oS s, s¥2%s

S Al Z, S L1 1L gt/
o5y ox2l, :

'l
S 2180 = /J, -2 f oty I T d ) o 24 4
.. Y=Ly
A VR eI

R A AL TSR O Y a4
osrnss2’y

//_z,//"fsf/

_— 2 Zz &t

=oAL 4G /'*ff*/ SESES
OIS sT R/

S Rpat g ) LEEL L5 ot pgy )

for /s s 2" end /JZ-Z /<A .

Thus #7 " DYy S JE-2) o 2 Yy or C e oL s 25
and /LI . tut Sl < Kt Wy 0

for o s <=2 , independently of Z for /z‘-zz/S/r'
hence 27 Cunl s o ipap Sy s “VHC for oS w2t

and our induction is complete. Thus Lemma ig true,
In the previous lemmas it iz to be understood thet
o= 4, [/ cxa 0, M=z, [A] | oné thet both ere

contained in A for each Z in intervel, /Z-Z/sA , or

contained in £ for each A ¢ B , following (3.1) cnd
(3.83). With this in mindé we shell prove the follovwing thoorem: t

Theorem 5.1 The unique continuous solution to (1.1€) on the

Y

intervel /JA-A/</ of £ to R is given dy the uniformly
convergent series

(3.14)  g/A/]=% hé'j —a, [4/2]

7/ .
vhen 244 </27’2—/7—/y_// , Where »7 is the modulusg of the

D
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product in R , and A% is continuous over intervel V47 VAN
Considered as = functional of A¢2 on B to £, (3.14) is e
regular power series of homogeneous polynomlals, -, L2427

in A® of degree ¢ =s defined by Lemma 2.2, with redius of
enalyticity /= —— 2 ——

‘ SR Ve

Proofs By Lemmas 3.2 and 3.3

P4

1, [#/2TN < bl 2,0 AT,

J2y L5/270

P72y = Ai‘}’f Yy st Vg

is the bound to the modulus of the homogeneous polﬁmmial
<2, LA/27 | But now

/.é‘:; rrlcz I N s Fh v Bty 4 A
7
bre gt
> o , and the right of (5.14)

converges absolutely for A< Thus »° , the radius

- . /

of analyticity is 2 s—s——+r
allely Y > /4/772//%//

is a2 reguler power series in £ . Thus the last part of the

" theorem 1s proved.

But again we have by Lemma 3.3 thet the right of (5.14

converges absolutely with respect to the norm # Zeg , independenty

' 3 ’ /.
of £ T’le.(l /-, /<K eng AAV < ZZ)a s .
Hence 1if we call the s7- % pertial sum of the right of

(3.14), 4 «» , then by the completeness of A end the pre-
ceding sentence there exists y/t) such thet /y/) A ‘_"0
uniformly for /Z-4 /s /4 end LS <

é 2//y/ .
From this it is clear thet #42 is = continuous function of 2
T N /
chen /X-Z,/< A and /,{//< e .

L

How by Lemmes 3.1, 5.2 and 3.3 and (5.4)
7”7
+7 2~/
)
=20 rF [T A
y/f o= ¢ ‘ Py Va4 “ )

so that
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g < 27 277Dt <
Ay (D=4 D Y= //z 7R S =
sort
2’_7' p s 5702 Yy T 0
S Z R S s 7

vhen [4-4/ s # and »///9// < W . Thus
L4 BD-4] Dfe - € uniformly vhen /JZ-# /< / and

//A// < Z/Iy// . Hence we have

(8.18). gm0 = tm 4 D= n/zyﬂ/f)
continuous when /z‘-z’ / </ and AA) < yyuy rya

with both limits being uniform with respect to the norm, A Y .
Now the sequence of functions 4, & of (1.18) corres-

ponds to the sequence % ) , used in the existence proof of the

general differential equation of Theorem 1.1, vhere A/Z 4#)

corresponds to 4/® A& 4% . To show that 42  given

by (3. 15}, satisfies (1.18) vhen /Z2-24/s/ and
A< émz//y// , e need to show that (1.13) is satisfied.
Suppose that /N < 7”;‘;/7;7’ , then we heve by (3.15)

A / LYDADgssd - g, , () 96D 4,02 ] s
<// w2 R G A 4 /)////.r) % Y d{:’/

) 22
< - s N for ¥ "c”k

where €, 1s independent of # :&nd tends to zero &s /2 tends to

infinity. This is the desired result., Thus L2745 5
as given by (3.14), satisfies the differentisl ecuation (1.18)

o -,
Tl 2"‘/, 8 : and -
vhen / /s A nd LAY < AT -
/
/ﬂzé //%/ b4

end further thet there exists znother continuous function ¥ @ 5

For the uniqueness suppose thet ZA7/ s A <

distinct from #¢% which satisfies (1.18) with 2 &%) =%
under the conditions of the present theorem. By the continuity
of ¥ (@ there exists A7 such thet HS¥ s VNS /7. for

-2,/ < /o sng LAV SN L .
/ and /V<m2k Tar Thus



(3.16)
YD DI = /// J (Y5 AV - g D) 5 6 [ A5

V<4 //’/////Y/)‘//y//)/éf//?'/;)-y/‘s.)//? 0/~f/
= yan 7 - ‘
el /M"/_A”zy//%//)/é Y5 - y/&?./,ea./f/
= K JLyven-giteats)

7 o '-3/772/\/ fard 4 and - < / . .
“here X (- */_/7,42/\///%//) nd  JE-4 /s %

Z.F‘Porr \a 16) we have by the successive substitution of L,he left

side into the right side ,
’ ' Z,Z %, . .
/}’[/)- f/f)/{’ \'(X/«é ‘é ',.‘ "é 2'/4‘ /Y/I:,)-yff,;)/; aé;d///;-/' ° "'4///

EZ VY-t 5”7

%

< = .-..
< 7 (774 2 3, )
which impliesg . ‘
. Voo 4 « .
(3.17) gt < E2 gt i)
T = 2 / ’ D117 2y r f‘ o oo o 3
where &K =A72n (7 2 /_mz/v/%/) . But now by assumption

Y i distinet from /A, thus //iny/z,’:%&/yﬂ)‘fﬁ‘)/ez‘- <

end hence from (5.17)
/7/7/7
/S T ot

But this is = contradiction for there existe 77, such thet
x%4H% iy
— 7 </ . Hence /¥ d)- ?/f)//q SY¥Ygf=0
implying thet Y @B =< gD ; therefore the solution
(3.14) is unique. Thus the theorem is proved.
The following theorem is concerned with the Fréchet
differentiability of /4727 ", the solution of (1.16),

with respect to A2 .

o)

Theorem 3.2 The unique solution ¢£A4/27 o

L eygry , 90454

under the hypotheses of Theorem 3.1, as & function of A4 £8 to

B Thas successive Fréchet differentials of all order for each.

A in the sphere JA/ <

m?/7 Ja7d =nd can be given b’

= term by term Fréchet differentisztion of the power series (3. lﬁ)
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-

- Proof: The theorem follows immediately by Theorem 2.1l and the
 theorem in (8).
It is evident thet Theorem 2.1 is & much stronger existence

theorem for the solution to (1.18) thezn was Theorem 1.7 for

clearly
bR (g W r )R T Srr fl g
The explicit solution 4 ./.A4/47 of (1.16) is now in order;

in fact one method would be to construct it inductively by the
‘use of (3.10) and (5.14). Hovever,we shzll postpone this
problem to & leter chepter., (See Chapter VI).

In the next two chapters we will discuss = feir of the

—

problems releted to the functiocnzl equastion (2.3), introduced



Chepter IV

. Functionel Fouetion, Involving Endomorphisis

The motivetion for this chapter is the study made in
Chapter II end (7), pg. 18. Consider s lineer bounded trans-
formation of 7 for e real Banach spsce B to itself, or Jor
ZeB then 7¢# € B, The norm of 7~ in the space of trans—

formations will be £ 77 = ,';"/;” Z, V7R N

Following (4), pg. %8-34, we rill now state the folloving-

, the uniform topology.

definitions end theorems, concerning ringsoef endomorphisms:

- pefinition 4.1 £ linesr bounded transformstion on & Beanach

cpace B to itself iz celled en endomorphism of & . If 7, 7

. . . a
en¢. 7z are endomorphisms of & , then 7 #7% , a7 for ¢ resl

number, and 7, 7 are defined for gll Z&€8 by
CTRABIFEI= T CE) # 7502, (7D CE) =7 7CE

(7 72) B =7, L7 ex)/ .
Theorem 4.1 If 77, 7, ¢nd 7z ¢re sndomorphisns of B

0
(@]
)
-y
®

7,“7" 72, @7, and 7, 7z ., Curther _
VT, p WSO AP, Pord=jaf P77

Z ol S YTIOES . ,
Theorem 4,2 The set of «ll endomorphisms of B forms az complete

normed linear ring #/Bunder the uniforn topology. It is
normeily non-cormutetive and the identity trensformation mey be
edjoined =5 the unit =lement. |
Although #7B) possesses a2 unit element it is sometimes more
convenient to speak of the quasi-inverse, following (8), =znd
the reverse, folloving (4), pg. 455 than the inverse. e shell
state some of the known results of these concepts, vhich are

needed for present purposes.

Definition 4.2 If X O = Z+F+* XY =02 , then & ig the right

quasl inverse of Z for X :nd & in ¢ ring A& . If RXog=52%* =0



7,

then X is guasi-regulsr =nd & iz ths quesi-inverse. The

quesi-inverse of Z will be denoted by Z .

Definition 4.% If the cross product @ xé = @rb-=b=0
then 4 is the right reverse of & for @« zni 4 in e ring A&

+hen & i reversible andé & 1z the

If axb=bxa=p s

reverse of & . The reverse of & will be denoted by 4~ .

Theorem 4.5 If X hes = richt guesi-inverse =3 well as &
Y 4

left quasi-inverse £, then =2 znd Z hes & unigue cquédsi-
inverse.

Theorem £.4 If Z has a2 right reverse & as well as & left

reverse Ztien 4= Z and Z hes a unigue reverce,

Tize relationships of the reverse or ths cuessi-inverse
to inverses in £ /5 is clear if they exist. The next
theorem will show the existence of reverses and gquecsi inverses

in £B).

Theorem 4,5 Every element 7 of #£r/B8)with #/7/</ hes a

11

unique reverse given by

2 2
(41) 7= =7

rz=/
and a unique cuasl inverse given by

= _ 2 N7
(4.2) 7 = E,/ 24
Both 7 end 7 " are analytic functions of 7~ of redius 7/ .
Proof: From (4.1) 777 = ~§/T” , thus
~7/
(4.3) D7 < Yot T ST = -7
Ved74

vhen A#7#4 </ . Hence #7774 is bounded and 7~
[

as given by (4.1) is an anelytic function of 7~ of radius / .

By the completeness of £¢/8) it is clear thet » ~, as defined



B

by (4.1}, is en element of £¢/&) for all 7 in A& --ith

ATV </ | Also

FxT =T KT =T 7 E s
_ 7=/ 7=2 '
Thus by Theorem 4.4, the first part of the theorem follovs,
The second part follows in the same menner,
Since there ig almost complete duality in the concepts
of the quasi inverse &nd reverse, i1t will be convenient =%

thig polnt to give relationship between the two ideag in #£r8),

Lemma 4,1 TFor 7~ in #/8) with 477 </

and 7 T=—--7) .
eroof: The lemma follows clearly.f‘rom Theoren 4.5 and &
direct substitution in the deining relations of 7 eand 7 -,
given in Definition 4. 2 and 4.3, respectively.

Until nov some of the propertics of the elements of #&¢5)
have been characterized, enough so, that the solutions of the
functional equetions = £* 79 end A=g*77c3%),

where £ € B  and 7€ £ ¢B) |, can be obtained.

Theorem 4.6 If f¢€8 and 7€ £8) with /77</ , then the

unigue solution of the functional equation,

(4.4) g = Fr7ez)

is gilven by

'4.,5) Gg=F£~7 70

where 77 1s the reverse of 7 , The_uniciue solution of
(4.6) F = g*7q

1s given by

(4.7) g= L +70F)



—3]~
vhere 7 is the guasi inverse of 7= , The expressions, given
by (4. 5) and (4.7) are analytic functions of 7
Proof: By Theorem 4.5 7 ~(#) is 2 linear bounded transform—
ation of £ on B to B vhen L7 ~/ . Hence by (4.5)‘,

NGNS HV+ X7 HAIFY s (r~07207 020
vhen A7 </ _' » showing by the completeness of 4? that
& exists in B , zs expressed in (4.5), and is an'anaIYtic
function of 7= of radius / . By substituting (4.4}>in the
right side of (4.4), |
(4.8) Y= LT AT FED T AT~ F=)F)
But 7xrT= re Tl rr-—p 3 OT 77— 77 =~7 ",
Thus 4.8 becomes 4= #=77"¢4) | showing that (4.5)
identically setisfies (4.4). |
To obtain the uniqueness suppose thet & znd g/'are two.

solutions, satisfying (4.4). Then

G =L, T
gl=fr reqg)
from which we have
(4.9) g-o'=7 (y-40 .

Now by taking the norm of (4.9) we obtain ;
4,10) Ao~ SY7HV -5 _ |
~ow suppose that &’ were different from ¢ » then - y"//7ﬂ

and (4.10) gives
W oed

But by hypothesis this is a contradiction. Hence V-5V =0

or . =g’ and the solution of (4.4) is unique. Thus

the first part of the theorem is proved. The rest of the

theorem follows by Lemms 4.1 or a proof similar to the above

proof.
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We will next determine the reverse and the guesi-
inverse of the sum of two elements in £¢8), If 77, =nd 7
are in £/8) , then by Theorem 4.5 the unique revegse of 7 »7%
is given by

— x© Ved
(4.11) (72 7Y =~ T Hr )T, 4 rml</,
the unique cuasi-inverse by
238) (TGEm) = B 0T (henY, VARl
he next two lemmas will be concerned with the finding of two
other expressions for (4.11) under a slightly stronger con-

—

dition; one in terms of 77 anct 7z T &nd the other in terms of
77 end 7 or 7 and 7 .
Lemms 4.2 If 4, BeA S Vith #24 </ :nd JBY</— 44/
end A~ end B sre the reverses of 4 end & , respectively,
then the unique reverse of A #5858 is
(4.13) (RPBD = (A A B - A B -Z57)* _

7"/% [ B7) Sl 9Bt BB B A
Proof: The existence and uniqueness of #2#8)7 is zusranteed by
Theorem 4,5, TFurther —~more by (4.3) it is clear that the right
of (4.13) is convergent and hence bounded, leaving us only to
show that the right of (4.13) identicelly satisfies AXBIX(AXB) =0 ,
Since AXA =0 nd B xB =0 , we have the relations,
(4.14) BrB" = BB~ arnd ArST =95
Further since 2 8 x 9 rB) =0 |,
4.15) A rB) = (ArBIRAIB)  — [HrB) |
£ one substitutes the right side of (4.13) into the right of

(4.15), the right of (4.15) becomes
(AIBD (At B 4B B9 + |
 128) B[ B 0= ) 5 (5 AV BB AN - A8
=/



~BE

which becomes by expanding and using (4.14),
(ArB) -AB A B =595 4+ 288 45D A5
+ 2 28IV (B-E 9D+ E B s B
* 8 (BADEAD (B9
vhere /9+8)~ designates the right of (4.13), We need now
to show that the sum of the remesining terms is zero, then the
right of (4.13) will identically setisfy (#r8)xordd =

Clearly, the remaining terms are equal to

AL A BV B4 (A 4 E 5 ED “/'9‘—/” pB o BD >
£ = =2

f/ég/a B9 B _ S;A /5;9-)‘f;’;7‘;5/,¢5—)‘ﬂ‘ -
= Py . 2=

-2 By~ B ¢ +:€ (BAD B Az ,%’ CEBADE A ‘_
=2 z=/ <=2

vhich by further reduction becomes
Z 80 ) ~FAE 198+ BB 9B —
2=2 Vav4 2=/
. oo nw o - -y 2. /-—5_)1.
T ABAV = BABAVZ B *
/=2 o=/ Z =2
. Y
+Z BrI BIVF (BADBA) =0
252 =/
“ence lemme is proved.

lemma 4.3 If 4, B& KB with /90 </  ond p8p ~/-2%

and 4~ 1is the reverse of »# , the unique reverse of 4»8

is '

, B) =9 Z 4B~ fB B .

'4.16) ArE) =4 2 [(BA47ED 7 '/

Proof: The existence and uniqueness of (#»&”  and the

existence of the right of (4.18) in £/ follows as in Lemma
4.2, If we substitute the right of (4. 16) in the right of
'4.15), the right of (4.15) is
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A+8) f,rf/g [/3- AEG— (-7 BF — 9rED =
= /?4"7‘5/9'*‘% J908 Bt 208 -9B] #
1‘/% [BLB- 4B ~BE- BT 5-5 =
= ABA P BOE - BN — 9 (B 8B~ B f;g M/ng)"",’;? _
- //5-/%‘5) H BB D - BB ]
= A r BB ABH "~ ABS = A BA* B A E- P |
7‘4—% LB -BE-9"8) (5 ~9-B)° 8~ /95 45- /9‘3)49;;9-3> ‘%
rB(B-HE) - BrB-5 B =
= PR BB~ (B 9B) #

4 2 Sl ) D E B A B (B 7B BE BN [~
2=

il

A" F (E-ABIA — (B8 +

~ E/ [vB-9-8 09— o] =
&=

fl

’/9“;‘/% L o298 9~ /5—4‘59’]

which is the left of (4.15) as defined by the right of (4.16).
Hence lemma is proved. ' |

Now by combining (4.11), (4.12), Lemmas 4.2 and 4.3 and
using Lemma 4,1 ,‘ we have the following theoren.

Theorem 4.7 If 7 , 75 £ ®/B) vith 474 </  and STV </-PFS

“and 7, and 7z are the reverses of 7 &nd 7z , respectively,

the unique reverse of 7, » 7 1is

- (a2
(747%2)" == Z (7777 =
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L=/
- z - - P

=5t E L7-5 ) - (-7 T

The unique guasi inverce of 7#7; is
4

(Zrr)=Z 7 rr a7 =
— — Z = — Vs
= T2 Z SO AT LA D Y 7 f =

2 E LRI+ FTICF4FT Y =
=T B [0 T BTIF r 0 (7 570 F

where 7 and ‘7';;. cre the quasi inverses of 7 and 7z
respectively.
Now since 77 in Theorem 4.5 was an snalytic function of

of radivs / , we can shovw this dependence on 7 by

writing
(4.17) =717/ R A7 </ .
“urthermore by {(6) the Fréchet differentisl & 7L77 of

7 L7 vith increment 87 exists for 7 in £48) vith srA</
The next lemna will give the determination of #7/7/ .
Lemma 4.4 Tor 7&£H8B8) vith H77/</ enc. >/77 , given by
(4.17), -

(4.18) S7L7T =~87- 8757 -T 85 -F 8T

and

(
when S & £CB)

Y

.19} FT“[T]:—J‘T?‘J‘T}I"",4.7--‘0(17—_7_—;7_7._

Proof: By the statement, preceding the lemma, the exlstence

of the Fréchet differential of 7/77 ig gueranteed. The
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implicit Fréchet differential of
T oF =T AT TS SO
with inecrement &7 is
F7T rET +T ST AET =0
or then
ST AT ST = -ST-5T 7
From thils we have
FOEFATEF) = 7O (ST Sr 7D
which upon expending becones
SFEATOF)Er = =87 =87 7=~787 =757 7
Since (rerJl =2 we thus have
ST 2 gFf7]= =87 =877 -7 S5 =787
which is the required result. (4.19) may be obteined from &
similar proof or by the use of Lemma 4.1 in (4.18), Hence
lemma is established.
Theorem 4,6 stated that the unicue solution of (4.8) was
| given by (4.7) vhere the right of (4.6) was =n znalytic
function of 7 with radius /7 . Rewriting (4.7) to shov the
functional dependence of 4 on 7 we have |
(4.20)  gLTT=FrT[T] O, gy,
vhere # is = fixed element of B . By virtue of (4.20) and
(3) the Fr8chet differenticl & 4277 with increment &7 & &2
exists for each 77 in A B) vith 47+ </ , and likewise,
each succeeding differential with inecrement F7 . These Frééhet

differentials will be given in the following theorem.



Theorem 4.8 For 7 €£s/8) vith sr#</ +the #»2-7% Fréchet

differentiel with increment &7 o /77 , the solution of
F=yr7cy) vith LB, is given by
(4.21) g7, F7T= 07 12t (8T #7870, r2i47,.0),
end the - Tréchet differential with increment &7
éf ¢L7r7 , the solution ofg=Frrey) with Fe B , is given -by
4.22) 87qlrT= 2/ (8T -7y (7=423 ...)
Proof: By the preceding paragreph JSg <77 exists as a Fréchet
differential, and by (4.20) the solution of # +#»# 7'/{) -+ 1is
gL 77= L2 FLT7HD .
Thus Fy [77 =&7[77F> 0 thet by Lemre 4.4
Sy lrT = /—é‘r-;r%—f&r— FETFEIA

S L ST -G FE - PP TV F+ (87— 3T FF S T=TST T

= LST—Sr(roF)—FET= FET (ro7)) &)

s~ (ST A TFTTIY |
. which is (4.21) for +#7=/ . 1lovw for purposes of 1nductlon let
us assume (4.21) true for all intergerc les then @7se) , then

EoY [T T = Dm0l (572 FF TV 0%
= D [ST # 7 TV f5 7w T F

By taking the next Fréchet differentiél_with increment &7 , we
have

ST LT = fY o b T TS TEr )T P ETET $ 1S TET Tt (5T TSTIST [

and by using (4.10) one obteins after simplification
S Y[ 7T (D om0 (ET AT ST) Pl s FE TR (5T FITS T D

=~ /)”"’/,7,‘/) 1T S5 7> FED )+ (FT75TH 7O »&f
= )P (1) ! (STHATIT )

thereby completing induction and esteblishing (4.21). (4.22)
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may be shown in the seme manner. Hence theorem 1s proved.’
The following theorem, concerning d_ifferential systems,

can bé proved by the same methods used to prove Theorems 1 and

2 of (4).

Theorem 4.9 TFor 7&#B) with /77 </ the differential system

SALrT== (ST HAST+ ST A+ ASTA) | Al0] =2,
has a unlque analytic solution of radius / given by

—

2[7']=/§/ %77 = 7
the quasi inverse of 7 ; the solution of

SALT] == F7 2 ASTHEITA ~ASTA, ALo7 =2,
is given by -

—

AL77 = —%—,T”ﬁ )
the reverse of 7~ in A/B), For F€LB , the uni@ue analytic
solution of radius 7/ of |
Y LTT=— (ST TETI, #L{e7=7~,
‘is gixfen by T |
G=Fr TR,
and the solution of the differential system,
Fyl7T= (57757209, 9LoT7F
is given by |
B 7T
With the aid of Theorems 4.7 and 4.8 the following

thecrem 1s proved:

Theorem 4,10 For any given 7 in £B) vith 47 4=/ , the
‘enalytic solution #£477 of (4.4) or (4.8) can be expanded in
a generalized Teylor's series of successive Fréchet differentials

with equal increments &7 velid for S7ELB)  ith fs74</~-7%7
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o0

GLT r57]=g (7T A Z 5 [J’?ITJ_/,__,;
with values in B .
Proof: Trom the last expansion of Theorem 4.7 =nd Theorem 4.8
the unigue solution of
| F=g £ +87 4

is gilven by

(4.28) G = ST A TTT = P A CTr ST

&;ffjffypf;ég /v9’?37'fi§dnt7§6rf2§zyq)
vhen 27z /</ end LAS5rl</—ypr 4 By (4.20)
GLET=Fr Z e and by (4.21)

Y724 ey = CDTprd ff e T 57 e Im7)
SOOI EETA I8 TP
Thus (4.23) becomes |
gL rF 7 [ = 7[&‘]*‘%0, }—’7 [J‘Iq[rfjr__ 7
vhich 15 the desired result. The corresponding result for the
solution of (4.4) is obtained in = similar manner, Hence theorem
ig proved. |
The results of thié chapter will be used with slight

modifications in the next two chapters. The functional ecuations
studied in this chapter clearly correspond to the Fredholm

integral equation.



Chapter V
4 Further Study of the Functional Zguation Y = FrEoyr y@)/ |

Although, 25 we shall see in Chapter Vi, we will manage
to avoid the use of the integral equation (2.2) in obtaining
the‘Fréchet differential of the solution of (1.16) as 2
functional of A4 , it is of some interest to stud.y further
the related functional equation (2.3}, first, as an application
of* the methods of Chapter IV, and, secondly, as a means for
finding Fréchet differéntials of the solutions of other, more
‘difficult, non linear abstract differential equations. For
the present we will treat (2.3) under Assumptioﬁs, 2el, 2.2,
2.5, and 2.4, |

- The functional equation that we are considering is

g=fFrRoy+ry®H

where A0y and ¢® A~ satisfy the assumptions of Chapter II.
‘Heuristically, #~ €~ is written on the right of the
operation ® in y®#4 to sufgest a non—commtativity and
non—asséciativity with respect to the operation @ in the
function X @ as was the case in Theorem 2.2. If we let
(5:7) 7= oy |, LN=4@K |
then from definition 4.1 it is clear thet 7z (@) and 75, ¢
are endomorpnisms of B . Consider the following d'efinition.

Definition 5.1 If 7% , 7,, and 7z, with &, € Fxare endo-

2

morphisms of & , as defined by (5.1), then 7% # 7, s
@7 for "a'areal number, and Zx,, 7x, are defined for all 65 by
(7, Tz, )09 = T (72 C8) | (7ae, # 72,) (905 7k (9D + T3 (%)

(@72)(H) =a7.(9) .



Similarly, for A4, Ry
C% Tm) (D = 73, (7, 0, (%, % 73, ) () =< 7, o)+ 7, )
(A7) cp=az, cs).
Moreover if X & =, and A e, , then 7z # 7,  end nrz
are defined for all 4 2& by
(T2 +7y) 0= T () 7,(9D, Za T,E90= T3 (755D
Frovaefinition 5.1 it is evident that 7% and end more

74
generally any multinomlal of elements, 7, 2nd 7. T.«.Tifh_lgéf?g
and 4 &R, , will be contained in the ring /f’/_&)', the
complete ring of all endomorphisms of /& . Hence we may state
the fcliowi’ng lemua s |
Lemma 5.1 Under Assumptions 2.1, 2.2, 2.3, and 2.4 any

multinomial of elements, 7z, and 74, with XK, ¢ Rg and
A E Ry , the endomorphisms defined by (5.1) a‘nd
Definition 5.1, is contained in #£¢8J , the conipiete normed
linear ring of all endomorphisms of & as defined bj Theorem 4.L1.
- We shall prove now the following two lemmas.

Lemma 5.2 TFor &; € Rz and A &Ky under (5.1) and Definition

5.2 the following is true:

and

\
f

@ 74

’

=7-4ﬁ,) 7/59*7;/3_ 2-"»7/'4/4

Proof: Clearly,
QTG =70l =a(Roy)s (@XDOY=7,,, (9

7.

and TR # B Q)= T @) # 7oy ()= 2 04 #5309 = (K 4 K) O = T 50, P

(7, T () = T, T, D) = T (X, 0 4)= K, L%, 09)=(K, K.)OF =Tk e, €70

Thus the first part of lemma is proved. The second part

follows in a similsr manner.
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Lemma 5.3 If A &Rx and #& R , the endomorphism, (7 #7.)

of & satisfies _ -
MRS #447)
A7+ T) NS 727

where the'norm on the left is the norm of the uniform topology
and M is given by assumption 2.4.

Proof:. Now , :
W Tr 7)W= TP e S

"/7!/*4’7;""7,;/* e T

Thus by assumption 2 4 ’ :
Vrenz 78 < LL(VEL S GEY TY S e 25D

V4
A,?Z? AEN 5 g 0"
Thus lemre 1s proved.

With the sid of the above lemmas we can now prove the

following theorem:

'.’Qheorem 5,1 The unigue solution of the functional equation

I=Fr KOy+y@~5
vhere KX @¢ and #@®@#&  are bilinear functions, satisfying
Assumptions 2.1, 2.2, 2.3, 2.4 with &K € L4, and e,y 1s
given by

GLEHT = F =75 + 7,9 (1)
Tx4)= KO and 7; (9)* #®# are endomorphisms. of & for
each X € Rz 9nd 4R, under Definition 5.1. 27;})‘ 7> is the
unique reverse of 7z # 7, in the ring #£& of all endbmor;ohisms
of B under the uniform topology. — (7% 7‘7;,)h has the following

expansions:
— co
- (TRr7) = =, (TxF 7y)
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- vhere '/(=;§,2E7[ and /9==2%% a . Moreover, the solution
gL &K, AT will be an entire analytic function of each variable,
X and 4 , separately, and an entire analytic function of the

pair (&, /) on the product space z?;;- Ky to B when the norm

in Rx Ky is

,ﬁﬁwﬂ/:/k///ﬂ/.

Finaily, gL &, K] wiil be Fréchet differentiable with respect

to each veariable separately, end with respect to the palr &, A

- when ¥/ %,#7 is defined on Ax Ry to & ..

Proof: It i1s clear from Lemme 5.3 thet 7% =# 7, is quasi-

nilpotent for all X & X g and H#&AR,H |, and hence that

7x # 72 1s reversible. By the proof of Theorem:é.5 and‘LenEg

5.1
(5.2)  Trrr) = = 2 Sra )7

is the unique reverse of 7x + 7. , and 1t is‘certainly'an

element of &) since by Lemma 5.3
(5.5) 707 fu)v/ée/v(//g//f~///‘///) —

Now by Lemme 5.2 and Assumption 2.3 we have

(5.4 T = -7k awd Ty T4
o0 ] o0 - ’
where A= F A and br-;f/ A ¢ . Hence by (5.2)

(5.8) Assumption 2.4 and the algebraic proofs of Lemmas 4.2 and

4,3 we have .
' r'4

~ (Tt = (7=t 70

§

il
A\
*
M
3
*
N
N
QNK'
“*
N
W
~
N
3
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w w * . [ »
where 4= F X and A= ZF ¢ , existing in £ &)
for 211 K < Rx and A EF Ry .

From the proof of Theorem 4.8, the uniqueness proof of

Theorem 2,1, and (5.2) the unigue soclution of

Y LA EOY, GO = FF (Tt 7,8

(5.4 L&A= £-(7xr 73,) " (A
for ell X €Rx and # & &, . From (5.3) 2nd (5.4,
(5.5) V5 LR, TP < WY & T

(5.5) shows us thet #/&K,#/7 1is an entire =znclytic
function of & z2nd # , separately. Hence by (B) #={%& /”7,
considered ag 2 function of K &€ R ewnd ARy |, is

réchet differentizble with »2spect to =sach verieble, separately.
ilso from (5.5} if ¢ /K,#/ 1s considered zs & function of
(&, H) Ry Ry, the product space of Rz 2anid < , then /& 4/
is an entire 2nalytic function of (&, #) end is Fréchet differ-
entiable with respect to the pair (K, A . The norm in R=x ¥
is in this case LA/, KW/ =AXY +# 57 . “Fith the above the
theorem is now proved.

It 1s not difficult to see thet the last expension of
Theorem 5.1 for the zolution of (2.3) is the same solution
obtained in Theorem 2.1, but in different notation. It is
evident thst the above theorem mey be generslized to obtein the

solution of
y:/*‘.zkz'@[y



whe  re Ao are dlstinct bilinear functions, satisfying
assumptions similer to those of Chapter II with &, €2,
e conplete normed linear ring.

- Theorem. 5,1 furnishes a possible solution of (2.1),
giving Sy L4727 = vhen ¢ is xnowan. In the sane wvay
Fréchet differentials may be obteined from other abstract
differentizl egqueticns, either by Theorem 5.1 or its ebove
mentioned generslization. However 2s wo mentioned earlier
e shall circumvent this method in the next chapfer by obtain-
ing ¢dA/27 of {1.18) explicitly.

Before concluding this chapter it mey e meﬁﬁioned thet
attempts were mede to answer the following question: Under
what condition is A% algebraically isomorpaic and topologically
nomeonorphic to a ring of endomorphisms of & , & Banach space,
uncer the uniform topologys Ve were only atle to enswer this

umptions, so much so that

D}

question under very restrictive as:

{

1llustrative examples were cifficult to find. Hence we shell
leave this chepter for the next sthere we will be concerned
with the solution of the Riccati equstion, introduced in

Chapter I, Theorem 1.2,



Chapter VI

The Solution te the Lbztract Riccati Sguation and the

Associated Differential System in Fréchet Differentials

To begin with let us prove & lemme on reverses,
defined by Lefinition 4.4. |
Lerms 8,1 If A& is s complete normed linear ring with the
product setisfying,
(e.1) Iyl S 172 JZIVS A
Where #»7 1c the modulus of the product or bilineszr function

zy for Z and 4€R, then ZER hes & unlgue reverse Z 7
£

i PN < ;—’7 . This reverce satisfies
2N
SN Gy~

Furthermore for 2z and # L, setisliying

//1/4 L 2N s < L

lccd

the following ineguelity +ill hold:

. - /_ //:Z—,ZI/
O a2

-— s 1 - . . o~ 2 ’
Z~ and ¥~ being the uniqus reverses of # and #

"respectively.
L -4
Proof: If /24 < = then Z = - = 27  saticfies
foBiadindindiendy 2 Py
ZrEx - ¥Z 0O andl EFrEX - xZTzZ=p , &nd
- = o~ o SEL . Z
SEH s Z 177 Ve 74 sy for 24 < & .

Hence under {6.1) the first part of the lemre end (6.2) is
o § o4 T T f' ~ / /,Y_’//S - —Z— 1-‘ pn) 3 1 pa e £ F ""}_
satisfied. HNow for 2/, # =2 <5, and are <The
. X ’ . . - ~—
unique reverses of # and &7, respectively. Thus Z»x - %% =2
/ . /7’ Y | L3
end Z'A2ZT-Z2FZT =g, Trom this ¢ obtain

2= 2= (R ICL-EDET A 2T Z)



end
VE =2 VS V2P o 7 W2 PV Z-2F F 10l 2° W V=2

Hence we have

(17 1 WD
Ve i~ 4 »
By (6.2), (8.4) and the fact that @z4s27) </ <% ve heve

(5.4) A2 =R~ Ys Jx- ZH

finally,

7#FZZ) Azl
(/- 27,2 T /-rpe)R

Ve iy 4 €/7!’~ z/
which is the required result. Hence lemme is proved.
The next theofem will be concerned withh the solution
of the Riccati differential @quation.. |
or (1.16) whose existence and generel expansion hes already
been discussed in Theorems 1.2 and 3.,1.

Theorem 8.1 If R/ is = complete normed linear ring without

unit element and £ 1is the space of real numbers then for

A& on £ to < , continuous over intervel /#-4L/s /4 s

~the unigue continuocus solution over /L2 /s A on LR toRoF
- @y -

(8.5)  F=9Py | ydI-g

is given by '

gD =g o (freDG A

, .
W ————— Wl ¥ 4 ig wi

hen //A/<m‘?é//%// vhere the norm, Z » e with
respect to the Benach space, £ , of continuous functions
, ' z —
on the interval /Z-Z/ Ss/4 to &, (S AL g a5 )
is the reverse of étﬂ'ff) Y, ds , and »#7 1is the modulus

of the product Z¢# in < .
Proof: It is possible to prove this theorem by the method

suggested in the second to last paragraph of Chapter III,
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but we chall use, however, the following more expedient methol

In the following we sheall denote the norm "’lth respect to &€

/
2R Wt

VLA 4 A M < o S VA e WG o)

by /2 . Vhen A4 <

s/ ‘ots JOAOLH S #77 Attt
| < b (g ) Pl < 5 |
Hence by lemma 6.1 (,/’ A5 ¢ a(;) .y the reverse of [5:9/-9)%0’\9
eX‘iStS. By 8.3 and the differenticbility of /tﬁ(-r) a/..f it
is clear that /.4;2‘/9/5) 2, /=D | is continuous and dif f»-entiable
with respect to # when /Z-4 /<4

Now if =Ze)=4 /./' A g, 5) - s tl;.e?.

2 X (S Ay o@)—[y L o> ds)/x /J‘Z@y a’s‘)
where X is the cross product, deflnea in Definition 4.4,
Expanding we have |

£ +/’ Arsr g b - .z/t)/ A/:)ya@ =

| = yf//;'/:)ya@ z/fﬂrs)yo/)fy//,ws) a/)(/ifs)ya@)

or finally,

(6.6) ZD -2 [ A EDY, Ao Ga~ z[({ 59/5)5 a@)X/‘gjé/s) y,c/s)f/:

By differentisting (8.8) we obtain

(68.7) 22 [ DG Ats-Z D)9y =0

From (6.7) we have

(z®-210) G4 a@)x ey o5) =2 @ x (4 5e5g, a&)ﬁ
or | | - - =
ZE)ED [ A b # Kz/,,i;/")% o) -z ’,(g)/.é f;/.f)% a./j') # z’/f)/éé/.s)zaéj&{éf.s)ga@)z

=ZD A 4,4 (YR Y l) 2 (OAD) 4 (Y IS 55 H)
8o thet g9 -2 JlL wcog o) x ([ 9> ot) [ =
=2 DAD [4~2% (L gae) [



TS s cr )[4 [ rer 4 DT =
SZE A 2cZ),
shoving that g- 4 (f A4 ofs)”  setisfies the differential
Fa —

equation (6.5). Hence by Theorem 3.1 /&)= ¢4- %@//f)%a@)
is the unique continuous solution under the hypotheses of our
o 1 . -
theorem, Thus theorem is prove d.

The solution, &= %—%/Jz,fﬂ/s)% a/s-)“ R givén by the
above theorem, 1s, when expanced,
(ﬁ ) oo 2 ~
(68.8) g =gry Z L A0%5]

velid wvhen /A4 < Clearly from (8.8) 4/4/47

/
Ve LY ’
as & function of # on & to &P is representable as & power
series in A with radius of znalyticity Z 75 gy - Lhis
egrees with Theorem 3.1, and further by Theorem 3.2 or (8) we

know thet the Fréchet differentisl of #4447  +ill exist vhen

/ —_ s . sk . et
‘//A <} 2L T T . This fact m.ll»be used in the lLollo.,J_ng
theoren,
Theorem 6.2 The Fréchet differentizl of /277 , the

solution of (8.5), is given by
. Z
(6.9) SG LA/ = & (4 T AR Ay . |
The s7-/% Fréchet differential of g/A#/7  with equel
increments £ A4S is given by o
’” ; z ~
(6.10) S7glA/t]= G [CLSADA) 5]
(6.9) and (8.10) hold when #47 <,,7—’—zé//%// and S ez,
the Banesch space of continuous ring valued functions over interval

VP A

Proof: By Theorem 6.1 we have

G L] gy 55 (5 % S5)
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/
7?24 Vos

obtain (6. 8),
Z
(8.11)  ylwstt] ~ gLl ] L A2 9 o = g .

Being Theorem 3, 2 and teking the Fréchet differentisl of (6.11)

vhen 4497 < , SO tnet by the same device, used to

with respect to # , one obtains
(6.12) Sy IHT - J’q[?/a‘]f//f)y s = g L] (L S50 4 s )
Hence by (6.12)
(S5 LA/2])=Sq Ik L 552 4, ) x (L oeng,22) =
= [900/] (s a2 g5 5 ) ] x ('8 acsrgs 5)
and by expanding |

8y [4/4] - ;yﬂ)f/[ /f ' 9 4 ofs) x CLERD gy ats) /=
= g LAV ] [l 850 4 ) - (U 3’4@%4‘5’)@ g s) )

Thas gy Lost7= g l9/27 (% 25 005 %) /% -4 (Livesd 4 aé)‘/.:
= G [AT (L5 pr0as) glon]
Hence (8.9) is proved. (6.10) is now true for #=/ so let us
assume for purvoses of induction that (6.1@) is trué for all
integers <= # . Then | | |
 STGLAT < 10 o LA 4 Lapi7]
By taeking the Fréchet differentiszl with iﬁcremeht FAS, we obtain

€.18)
87y LALT=r! ) J‘yﬁ/z][//zﬁe/sy g ot ] s

# g AT, ! gpe2as) Sy Lt LIS aws)aeyzng i v
# g LALT 11 S 5)at) g 2ol (/M/s)a/s) 8o L] J?

By (6.9), (8. 12) becomes .
87 yd#/eT= f Pl M/s’)a@) gLy L d o5) y[l/é]] “

# q,&?/é]/f SHD L) yj)%‘]({f A IS )yﬂ/z{][ eI A) yj??/é_Z/,,_
B
#9¢&&77Z’A%0a69¢ﬂVi7 AVJW&%dQﬁJWQKriﬁﬁh/)zﬂV]f..

= 12,0 r00d gdafe] L0g ‘8805 ) g 29/27] T —
= rmenst g Lote] JO s e 5) g L 77
. ’ J
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thereby completing induction, showingthat (£.10) is true for

21l #7 ., Hence theorem is proved.

w

Theorem 6.3 If A4, A& B s, the Benech space of continuous
ring valued functions over J/#-Z4/s/4 , the differential
et ar R Py
systen Sy [A/g‘] = 4[/4/{]/‘4; FACD a5) o o/t ]
(8.13)y glolt7 = 4,
. ——? “ml ) 2 'F' a9 o 2, ‘_‘//'— (‘!"i b hoxta
has & unicue s=kaytic solution of radius Z r o Vg given by

- z Z d

GLA/ET = %74 = LOLADAD o [
_ , ~
=4, ~ %[{,; /9(5)a<<'%]’

the unicue solutlon of the differential equation (8.5},

Proof: The proof follows along the same lines used to prove

o
=
y]

Theorem 1 of (7). Ve want to find the necessary end sufficlent

conditions that the anslytic function

(6.14) gl A1L] = g,7E <, [ne]

L3 efy the G4 FF P01 svetem (6.15) < /

atisfy the differential system (€.13) when z9/ < mf/y//é .
In (68.14) 2, [A/27 is & homogeneous polynomial of degree <

on & to B8 , or =/A727 ig 2 continuous function of A4 such

that
@ <2, [AR/n] = A, f5/2] 21l recl A end AES
(8) 2, [#428/¢] <2 A& B BH] Tor ell reald end cll 4,865
7~

But we know by (5) thet a homogeneous polynomial in & Bznach
space has a unicue polar, or thet there exists e un‘i’que Z-lineer
function as, /4, A, .--,A: /47  such theta, 4, 4. 047 = <% [94]
Furthermore, the Fréchet differentisl of the homogeneous poly—
nomial -a,; Im/¢7 exists end is given by |

(6.15) &, [Alt]<cay [ 8, < A, SAL]

=9 .
(8.14) - %ae/f__/—a,,»[A/J] hes a radius of‘ enalyticity of
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‘ ‘(o . o
Iy vy e . thu< by (6) we can use (8.15) to obtein the

term by term Fréchet dlfferential of (8.14) within this sphere.
Hdence ’

Z LA
(6.16) Sy L7727 = ""'f‘/'/wt"[’@”"" D, SAIL] wtoerr SV il g F -

& = ' ;

To obtain 2 necessary condition thet (6.13) hold, we have by
(6.18) and (8,14)
.17}

GyIAN] = F iy L84 e A SAN] =

= 4 LANT (B3 o)y LT =

= [%+ 2 o ] s o) gt 2, IH]] =

= % (['546 adgy + 2[RI IAEIA) g4 4, B4 2edae ) I L

* 2 f 4 /ﬂf//x) AE) Qpy IA/L] # 22 M/z]/f S A) % F +

*Z Lk T (LS5 )2, LAE], whew SV, "/77_'?2_//- 2V

L=
liow if we let 122269—,463) in (6.17) and equate coefficients,
i1t 1s cleer by (8.15) that _ |
g .18) e, IA/E] = 4, ./’,9/.:).4//& = .2, [A/t‘]
2, [AIE] = 2, ]A12] /905 4 oA s g, .é 9 ) ez, JAN] =

=24 /4“‘,9/:) g )%= 20 [ot7

or
' o z
(.19) 0, IAIE] = g (fy, PO 5 D7
" and in generel
(.20) L »
(1750 &,,,, [,9 Ay oo AIE] = 5 (Lo A0S 5D 2y 28727
| +~a,,[/9/17/ HOY A+ o LAl )L 7D Dy L]
) l/)/ ‘
when AA4 / e thus see that a necessary conditlon

S mTar °
for (6.20) to hold is that for ##%F L
(6.21) = 0] = 5 £, (L5055 D g Lo/ A 7 52 AT (L A0 4 ) +

+ 2 o, JaN] (fEhe) at) - L5747 }
*f=
At



when SR < 7z 7 - Jow since =, L2/e7 = g5 Lflres> gy o]
for #72=/ end. 2 by (8.18) and (6.12), let us assume for
purposes of induction that it is satisfied for =211 integers =~.
Then
‘ /7

(6.22) D2, [A/E] = 4 [_4,:“459)% a/s'],
end by (6.21)
| 9/2] = — s L0 /5) Vi 7 Jfo sy o VLo ak)

B, 1R/E] = o PG O % AL A g T 4 54 [ A% 5‘](4//5% £)r

+;J? A2 ‘hrsd g e ] "/4:‘,9/;) gD/ L 4 o> g ]’ f =
Lr2t 4

[f“ A g A ]

77/

thereby completing induction. Furthermore from
(6.8) ve know that

o # ;;Z': y[,éfﬂ/f)zéff']”
"is & reguler pover series in 4 wvhen //9/"”%;’_27" Tr’luc the
necessary ccndition that (6.14) satisfy the differentizl systenm
(6.13) is | |

2B) 2, [A/E] = y[/ /:)yag] , (/=423 ),

4
17724 A A *

‘'a
\

("J

vhen A4 < Tow condition (8.22) is elso

sufficient fTor by (8,15),
740) oy LAY Ay e s A, SASE] = S0y, LAET =

o (4255052 ) o [ 465 gy o] 5 g L e ]ffﬂ"ﬂ/ﬂa@)z[/ ﬁ/c)za'f/ -

#oeen o+ g iR g ] UL e o) 4 [ O gt ]

(4

4 [4inwg 5] (Lisrcd o) 4,
/f 88 (5D Ae) <524, [A/E] # o, Le/e] (fLanes) as)-sy,, LB2T *
* <2, 187 _7/‘4'; SRS 5D 2, JAIZ] # 52, [2/!_7/‘4 s o) o |

shen LAY / L u J. ‘ L w2
! S —55 757~ Jence (6.20) holds for 7> ,
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L3

- z s 4oz - o 4 i
and by the term by term Fréchet differentiebility of g4» z;;:_,[.ézﬂ/f)%ds]
- [

-/ .
it VAV § ——F——— e the n follovws
7ith respect to A4 for #27s Ty the theorem follows,
The next lemme will be useful in obteining = Teylor
xpension to the solution of the differentiesl equetion, dis-

cussed in Theoren 6,1.

Lemma 8.2 If A& 1is = complete normed linesr ring with s , the

rodulus of 2 product in & , then

. . — . oD . - - 3
(e.24) (Fr 2= @+ Z Lrx-ax)a ~cx-z »f
&=
is the unigue reverse of the element #»z € & vhen the

following condition 1s satisfied

(6.25) If s/ < —’;f- os @ </ , the norm of Z must be

Proof: By Lerue 8,1 if Jey< ._”?_7 , then
VL4
(6.26) Hay < < _Z

SN 2Y L
Hence, Her 4-/3[/;'-07—’)"4* _ /z_ﬂpx)z'//s

S @ YA I (V12 fr ) z ror W 2W //fm//a‘/) <

7z L20 2 roger 7t 6.26
Sap T 772 Z. 55 by J.
Put this converges vhen s/ < /;)7; , thus the right of

(6.24) exists under the condition, (8.25). Thet the right of
(6.24) represents the unique reverse of @«# follovs algebra-
ically as in the proof of Lemma 4.8, Tence Lemme is proved.,

Theorem 6.4 For 4, €8 s The Banach space of A-valul

continuous functions, A& , over interval /&4 /s 4 ,

el / . . ,

end /Z./<,;77;7/%—//—‘, the snalytic solution 44#Zz/ of
(6.13) can be expended in a generalized Teylor series of

successive Fréchet differentials with equal increments, A4
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' /
4 . A ]
velid for &AE€EB  cond 44V < =y e x4 ;-
(6. 27) VL AZEIE % LAKT + Z 5 [84q 2027] »
Proof: llow let

s

(6.28) //4:4 059 4, Ao S 127 AQIVGY 5o = g
then

A Y g0 g Aot S 1775 NGNS I <

< b 15 g ) =

Rl Y2 .
. 7’77 -
< ol 4 PR / U~
By (8.28), (6.29) and the fect that MM(W , we have

Ve d -

from Lemma 6.2 =nd Theorem 6.3,

GLAFFAIE] = 4, - /é‘ig D4 o5 £ O g ) =

-—

= -4 (A % a6) - %z /;"// Z5505)4 ) W) /5)40’5)//1 “W/’)V"'?f !i""?i”“l

- f/ ‘:M/Qy a@—//‘ﬁfz &>9a5) (4 “J/J/s) 4aG)f _/ =
sy /h/- z/y f[/ TA) a5~ /f 9 (4, 5) /f SR 4 f // 4, £5) y) -
- g Sl ncnrols - (ReIg oY Cfears I 4, f¢ )=
=g /4, /4]#5 / JylLln@ ats - (ffncedy, a/s}”/f," ‘rpa6)]f %
= $4 L9 - (Y n 4, ) (846228 F Yy, (ftg es5g ) ) =

= y[/s/z]f;ﬁ %= 454 9 4ol ) [ (f S pes2a@F [, 4 /J'A o) [ =
= g LAL]r Z [9iA 1] (02 558)]° grAst] =
= yi4/47 +,,§ q[/; 17 [ n 3D il ET] ‘,.
But by Theorem 6.2
L8y Lant]], , = &7 g 2R NI [OF sr9a05) 3 LartT] f
hence |

G LA, EA/L]= S [A4/E] +# g/ 5 J‘/‘gf{l;/z‘]f,, =4,
/= 2z

vhich is (6.28)., Hence theorem is proved.
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The next theorem 1s concerned with the

jon)

of g /l%4/¢47 , the sclution of (€.5), holding 2 fixe

Theorem 6,5 The Fréchet differentiel of #/¢%/4/7 , the

solution of (8. 5), holding ##) fixed, with increment &g -

ls given by

[

(5.30) i Sg Lo, /tT7 < Jy J%/ /9/:) L o) -
+ SLGHT [ e [By - Jy(/‘ /s)ya/s) 7

The #-#% Fréchet 3.ifferential of ¥Zl%/t7  with egual

increments dg, is given by
EZglep i T = 125545 /4] f/f ‘9csra5) 85 - -d, /./,m-)y o ]f

vhere d¢ L4 /27 iz given by (6.30). (6.30) end (6.31) hold

(5

(')
o
I
-

/ -
Vhen YN < —az iar— end JSg,e B , the Benach

f continuous ring valued functions over intervalg,
«

Proof: WOV glg/i7 - g5 (4 A5 DT

o

(-4

A ;,%/.4 A5 g a/S')

. e o et s I e T . /
is clearly & power series in ¢ with radius of snelytic 1ty>”,,%/i/
Hence by (8) the Fréchet differentisl of ¢/ % /27 exists

. / '

when Vol < EZE AT .

From (6.6) ‘

G4/¢7- y/%/z’]//?/f) a5 =g

Taking the Fréchet differential we have

F4
Syl /t]- 544 /f]ﬁ/x) 4 -z 4/ 4 A g o =54
(4 (]
or

» , |
(6.31) d¢l4,/27- Jy[z//]{ A G = S4,+ 5l //]{ ’//f)cf% HE |
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Hence . from (8.31)
(Sqr40e7- 5414147/, Tacs) gy ots) X /f 0053 4 ) =

=(%y, +4[y/¢]/2-"/7(5>;{/ ) x (‘/{?/5)%0{;)..@

or J’q[Wz’]-Jy.[%/ﬂf A5 g e F LGRSO A5) - Y UA T 4/s)ya@ -
| * EYLH/LT (Vs #C%6) (i ACsr o 5) =
=8y {/[q,/z‘]f BlDEq, s # (Y] "x?(:)y s) - oy (/‘ D) -

. : = By LH 2T (B 03 44 e ) S 95 )
Upon simplificaticn we have

Sy Ly, /t7= Sg~ S¢ //A/s)ya’s)+y[¢//]f/9/!)affﬂ% A //’9/“74"(")./
"z»?hich is (6.30). By teking the TFréchet differential of (6.1:31)
with increment g, we obtain | |
y S LY /eT-8"Y L4 1[5 02g, als = 25y B lh] (4 A0 A) S
suppose for purrposes of induction thet

Sy LUl ]~ 8y Ly e [ 15 o = é‘/’y[é’//].f sy s
for ell A« ., Then
§7yL4/2]- 57 [7/!]/ 205) g at = /.?f” y[y//].{ /%')ay ok,
ahd; thebFréche*' c‘lff@rential rith 111cr€31;1911t CE
STy LRI -8y Ly AT f s gy - ;z[y,,e]/;m;%a& -

op = 787, [y/a’]/ff'/‘)é? at

$7 g L9027 £777, z /e J/ &g a5 = (1740) 5 [y/x]{ 0 5, o

complet:’m&T induct‘ion. Tnus »

; s ,
(6.82) &7%ly/tl- 87 [%/z]{ Ay e = 1087y L5 /27 f, A5G A5
for cre=gs5,4...) . By (6.32)

("G LG /8T~ 879l 4 /27 fAS95) X (LA, a@) =

SO (87 G Lo 12T S AR Sy 5D x /f A4 aS)
By expanding end simplifying we obtain

(833) 87 Ly /67 =108 oy £y 1 2T HLP A5 t5 [654- Sy G 4, f

for (7=z2354%...) . From (6.3%) we can obtain



(6.31) by an evident induction. Hence theorem is proved.

The next step in this chepter will be to generalize the
differentisl ecuation of Theorem 8.1 to
d:/f) = T4 ), AP, ) vhen &)= 4,
where the product,‘ g A o , 1ls replaced Dby tLe’{ rilinesy
function, 7 /g, 2, yj , to which suiteble assumptions

- will now be attached (See (7)).

~

Lssumption 8.1 B, cnd B, ere RBensch spaces such thetg g, 45
- ) (4 Z £ i - 77 2

end 704, A Y) is & trilinear function (sdditive and
continuous in ezch of the three verisbles) on & B, 3, to B, .
211

Lssumption €.2 7/7cy, 42, 4,0, 8, 4)=7(% P, 7%, 4., #)) for

g, €8 and Ay €4, .
Two imrediate conseguences of the above (qsqu*‘mt ons are:

Lemra 6.3 There exists an A such thet
7Y, A, Y )V < M/A////q///yz
0’// by/‘f 3/ 7 /91552‘

Lemma 6.4 IT ¢, 028, o,02), A 2 are @ifferentisbhle
functions of Z in intervel JE-L /S~ , then ‘f/z/zQ/Z(z‘,g,a‘))

is 1ffnr zntizble over the seme inLerwl‘ and, explicitiy,
Z (43 AP, 95 02) = F(ELE, 400, 4,08)+ T (400, ) e )

a’z!
o 7‘(4/1) A8, ﬂ%”))
Definition 6.1 r”/q‘,,,o,, &) is the »-#%° iteration of the
linesr function 7°¢%, 4,40 &f 4 vhere 7(4,4 LT, A, ).

From Definition 6.1 it follows that . -

(6.38) 77 (g m,y0 = TG AT, A, )

ell 2 J such thet £#/=# . T%e shall nov prové the
following two lemmas:

Lemns 6.5 TG, Ay, T, A2, 9) =TT, A, 5D, A2, Y) ,
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(/742 8 ...) Wheh_ 4,948, end A, A2 €8, .

Proof: Let us first prove

(6.35) ”’/y,, A, P=T (7, 9,4, 4,9), (C42L...D

for g4 ,4s5, and 4, € B, . By lLssumption 8.2
end Definition 6.1 (8.35) is true for sm=/ . lov let us
,éssumerfor purposes of Induction thet it is true for o< »~ R
ﬁhen for Z¢ 3, s

7Y A, TG, B, E) =TT, A, gD A, ED

end by letting = =774, A, &) we obtain
(6.36) ”f//% A, T, 2,9))= 77,4, %) 4,7(%, 4, 7’)).

The left of (6.36) is by (6.34),

*z/q/) /9// g)

end the right side by ! qsmu},‘clon 6.2, induction hwrpot lesis, and

T a0, 4, 9) .
he (6.38) becomes
| 7, A, DT 0, 40, 4,4
thereby comﬂeting induction, showing (655) to.be true. Since
(8.35) is true we have '
(6.37) TG AL BT (TG, 8, 0,8, 2 | srel25 e
for ¢, =5 end 4 £ Be . lNov let =7y 49:9)

then (6.37) gives by LAssumption 6.2 =nd (6.35),
T B T, B2, 9 = T g, 4, o, A, 7Y, e, 9D
STCT T, 4, 40, A 9, A2, 4)

STTL,,5,9,), e, o)

for (7=%2 3 4,...) . But this is true for #=/ = by

Assumption 6.2, hence lemma is proved.
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Lemme 6.8 27 cy, A, 0l S AMVG 0 030 V7,

(£=4 23 ...) g g8, and 9,85,

Proof: The lemms is true by Lemme 6.3 for £ =/ s S0 let us

assume thst 1t is true for < =2 then

~
(&>}

B8) ATy A S T WGy T A4V h
(6.34)

[8)]

e
s

/77"/

(4, 2,4) <7 (4,4,7 7, 5,9) .

Hence by Lemme 6.3 and (6.38) .
VT TG, B, ) I SITIGY VAN 770, 4,908

. s””f///y’//”,‘///AlI/?)‘//y/

Thus induction is completed snd lemre is proved.

Now 1if we let

(6.39) 74,8 0 7Y ,4,9)
end 7, . # "%, s T8 79 end @ 72/04 | be defined by
(€.40) (7477, = "o, D F 7, (9 =
ST, AT, 5D,
BnTynd ) = 7, 0, L7 0T = 7, 2,7 ),
(@2 5 (P = a7y 49 =a7 (g 7,q9),
for all 4, €8, , A €5, s then 7;”,7' by Definition 4.1

is an endomorphism for 211 g8 , A8, , contained-in the

~

complete normed linear ring of =11 endomorphisms, A CE) , of
£, . UYe are now in a position to prove the following theorem:

Theorem 6.6 If 4 with velues in &z 1: continuocus over interval

-

JE-L /< A s then the unigue continuous solution with
values in &, of

(6.41) % 7Y, #E, o)

2=
= yLr=%

’
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where 7 satisfies A ssumpti
(6.42) y) = LT-74 ,
oo
= % 2;/ 7‘
- /
when AZA4Y —_—
- 2 S o Tan

respect to the Banach spece o

intervel, /&-4,/<s/kh , to

Av]

ons 6.1 z2nd

%)

, is given by

WA /9(.5-)4/.5'] /%

7Y, fEAD A5 )

»

and vhere the norm / 4, 1i:c with

£ continuvous functions on the

.

Bg , M is given by Lermme £.3,

Z 1s the identity transformstion on & to &, .

Proof: By Lemma 6.6 and hypothesis
L7400, 4 ﬂfs}a/s DY srlrg s’ //“A/na/;/ Vob'<

Hence by (6,34), (8.40) =nd De

(6.43)

= .S‘/J,o
//7-0 //zlﬂf)a’-f' // Ay s/

From (8,4%) and the completen

174 Pyl bl BRI W gV =<
nition 6.1

Ve a/d %, peeords, 00 </ .

ess of #£¢&>5 wve thus have that

-

: -/ . . = . v .
-7 exists in L&D £nd is given unicuely =
4 %. ./é‘lfs)a/f ] i - : v
follows:
. -/ . o0
a4 - Z 7
(6.44) lz- 7, e Itz 74 pincrcts

/
M NGY -

By Lemme 6.4, (6.39) 7

vhen A4, <

Hence by (6.44) and the fourt
) s
clear that [r-7 4%4@4/]/7915

Now let

. - -~/
(6 '4:5) z)=/r- 7é, {,‘;9(3)4’.5' '] “)

Then by operating on the left

we obtain

(.46} z(g) /t,e/s)a/.; ze8) = ¢
Differentiating (6.46), using T
) . Z’(é) =~ 90’/'9(!) (Z{é>) 7-

%, LE A A (4.1
(4

O

ds differentisbl

o+
l-J N
[ &}

h paragraph of Chapter I i

differentizble (see slso (4),

of (6.45) with [Z-7%. , /ﬁ@%%@]

-

Lemme 6.4,

g -
.{ B8 d's z'@®) = 0

0.

S

Q

i
o



Thus by (6.44)
-~/

(6.47) &7 = (lZ-7, 7 72}0//9/”)(2’(#))—_—

7,/‘*/7/)a6'

=(z+ 2 77 )
‘ 7=/ 7:,4’,9(9‘/; (. 7%, 5c2 D (Z208))

- 79;,19/&‘) /.Z(g’))./.z ’ %Jt-,,(s)ds.)(r ))/Zf&‘)):

L= TG, B, z[j))f 5, 774, _/f,sv/s')a(s' 7'/%,,9(1,‘) z(»‘)>
By Lemme 6.5 (C.;?), end theé trilinesrity of 7y, B, 42 VS thus

heve = 2@ <7 (q AV EEY + Z T (T, IR, 4, A, 2L D=

208 fr/ = 77, /‘/9/;) s gD, AB) z(z)) o

=

%, A

N iz= 7 (ZB) + T ZD) =
o, AD =
0/  esrope (Fo% A

-
Veild %
EE) =

7]

(I "57 Siaes) ats) (45, #CE)

CZ8) = (2D) =

=7 7 .
€2 75,«,,/4‘,9/;)/:) %), A

STlE,905 22Y

z(é) At

m - o z
Thus [7- 79;,4:'/9/:)0’:_](%) = %22, 7%, 4 AP )

satisfies (6.42) vhen /44 z

—_— . The unidueness by
ATh Aoy 1 N

similar proof to the one given in Theorem #.1. Hence theorem is

proved,
The znelogy in the proof of Theorem 6.6 to tl of Theorem
6.1 is evident, moreover Theorem 6.1 1s a specilal case of Theorem

6.6, Te shell now state the theorems which are the analogs of
Theorems 6.2, 6.3, 6.4, and 6.5, Their proofs will follow zlong
the same lines as hefore,

Theorem 6.7 The Fréchet differential of ¢/44/4/ with increment

& of the solution to (6.41) i: given by

Ly LA/t = 7 (g / FRD A5 G)

The s-#4 Fréchet differentisl of & /#7/Z7 with equal increments

FALS) ig given by
Py (#4/2] = 7”/4 aw/s) o



Ll
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/4

These ex o 1 vhe vz <
These expressions hold when //'7'? 1’75 VW

and d2cs)  is in

the Banach space of B&,- velued continuous functions over /Z-4/54 .

Theorem 6.8 If 4 €8 and A€ B, vhere 224, ‘/v/://yl’ the

-

differemtial system
Sy Lh/L] = 7 (g L9747, 4’ %S00 s, 4L4/87)

| ylo/t] = 4,
has a unique enalytic solution of radius >

- . ) /
Theorem 8.2 TFor A4, € B, , the Benacl

functions, #¢ , over intervsl, /#-%4/ SsAh , end 440z S AW
the enalytic solution #/#2/¢7 of (€.41) can ve expended in a

1

generalized Taylor series of successive Fréchet differentials with
" ) /s . . - .
equal increments, 44 , velid for &4 £ B, el MY < oy~ VR
2 Z
G414+ 848/ = o L5/2] *Z 7 VoS y[/?/z‘]_é -

Theorem 6,10 The Fréchet differentizl of 4./#/27 , the solution

of the differentisl equation (6.41) holding Ac#) - fixed, with
incremént 44, is given by

-t Co.
(6.47) Syl /7= (Z~ 7z, L0 o) (%% 7%, 4“’»/:) a5, y[z/f])) )
The /7-# TFréchet differential of ¢l /47 with equal increments
is given by

(6,48) EPyly 1] = 120 7 ””{'(z‘—ry / 265D a’.S' sy % /c‘])

o:{’,y{:)a’.s') J%l
(77=2,3 4 <<+ ) , where Sy l¢/t7 is given by (8.47).

/
174 4 Al

the Bansch spzce of continuous & - valued functions over int
VLA WL

(6.47) end (6.48) hold vhen 24/ < and dg, 8,

H
®
e}
<
03
l,.._l

The work in Chapter III suggests another type of problem,

the solution of the functionsl equation,

-
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(8.49) g=FrR4 4, 4)

7
where & (¢, A., Hed is & trilinear function(additive and
continuous in each of the tn.ree variebles) on & 8. 5, : to &,

Je shall not devote much time to this problem, but if &%, 4. %)
satisfies Assun ti ns 1, 2, end 4 of (7), it is possible to show

’2y the methods ‘of Chabter IIT or directly that the following is

(e iz given by

truey The unicue enelytic scolution of (€.49

, : 2 y;

\J

v 7 (17277121 .
.. /
when #2947 < ————— and where M 1s determined zs In
¥ Y & WIlE. e t I
Lemma 8.3 end @7 A A F) is the #-7% iterstion of @ (LA 2 of =
evalusted at & =X . ¥ hen Assumption & of (7) is satis-

fied, ¢ , given by (8.50), will be an entire snalytic function of 4

There are other differentisl egustions which mey be treated

by methods similar to those we have used and suggested., It will not,

however, be our present purpose to delve into this further. The
next and concluding chapter will concern itgelf with & few

fal

i1llustrati ive examples of the theory we heve so far discussed.



Chaepter VII

xemples and ﬁppl'r cetions

The first example of this chepter will be & specialization
of the differentiel equetion {(6.5). If A =a , & constant

in & , end A& contains the unit element, @ with modulus, 7=/,
then by Theorem 6,1, the unique solution of

(7.1) ;:,” yay , Y= , /t/</f

Y

(7.2) g~ e -elfliqedt)
= ere-ta)’ = ce-ta)”’

vhen Jast < By the proof of Theorem 6.1 it is

A '
”’ B .
t the solution, (7.2) of (7.1) mey be extended to any
~ ] k) I -7 . .
velue of & znd & & R  such that @-L@) exists (see (4)

by HE Aetyrttor af Fhe resohverst (L4T, P797),
pg. 95). Henceqthe inverse of ae-a& when 1t exists zn

51

Ead

denoted by £CA ;7 &) , we cen stete the following theorem,

Theoren 7.1 For & & <& =2 constant, with unit, < the
’ s 3 ’

unigue solution of

2
A

is given by the resolvent function

=gy, gz

=L st = - -/
y/x) = ,e/t ,a) = (e~Za) ,
valid vhenever ce-2a)’ exlsts.,

In 2 like menner we obtain from Thacrem 8

.
(3

Theorem 7.2 If @&k, /2/<4 end SLaf < 5~ , the differ-

ential system Sy la/t]=2gla/t] Sagla/l]

glo/t]=e
has a unique analytic solution of rediuvs > 274 given by

YLarET = (et D= L g (L a)
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Another exemple, which illustrates the usage of Theorem 8.1
- a8 applied to matrix integral-differential equetions, is the
following-
o 2y, .
(7.2) /fg’ 2 =Ly 95 (BB DACR 2 YA, £ 2D s s
| ,% /,a},_{s, g,): /.//;,_,@) for /f;f suc_n that a\</3,3< 2
vhere A7 (A4, pe, £ are resl continuous functions over
XS, P ¥ b, /f—é,/sé , vhen /< /72,2 s4 | . The no‘rm‘
- with respect to the ring, £ , is
N7
AT, P Dl = e st I, B
B IS 2 €/
end with respect to & ,
7”77
(7.8) 247 (22,80 = /f?f/«///”z /4,&/)/4
If we denote the "product® in &£ ,
b 2
LA A BB A E20;
by
(7.8) AT x (5] 2))
it is easily seen thst
(7.7) AATE) * (B MW S 2(6-a) § 57 W e V757029 Ve
From (7.7) the modulus, ~7 , of the product is -« »%b-= .
Thus from (6.4), (6.5), (6.6), (8.7) end Theorem 6.1, the unique .
solution of (7.3) is
. <0
(7.8) G AED - gl (A UL x (LI @dde]x g ))
=g (58 7
5 . z
R A A Y A A A AT L Y A
valid vhen /22 I / -, Where

EnCb-DF 4 1y 72 f) 4
17 ¥ .
' ) denotes the -s2-4 pover in A& ., From
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Theorem 6,3 we have aslso that (7.8) is the unique enalytic

' o 72 s / _
Csedution functionel of A4, , radius 2z fﬂ/ﬁ-a)f’%//zf.'//gf)// s

setisfying the differentisl system,
E4f iR /o 52T <) L ee, D1 ‘M;”// e, 8 A5] 5, 015,6 2)Afpt

i 1015887 %0 0D

There are other examples we could u\m to illustrate Theorsam

€2}

6.1, for instence the replecement of the Fredholn compositicn
in {7.5) by Volterra compositicns, but we shell leave this to
‘give an example which illustretes Theorem 6.6. Ve shall discuss
briefly a rectenguler metrix differentisl equstion.

The differentisl equation in cquestion is
e : .
dyd Z

v s -

(7.9) — = 6/, 10 g7 L G )= Y

where / S § 27, /S <7 , and AJ-///) zre continuous
functions of # over intervel /[E-2, /< F . It is clear that

3

r/y,/ﬂ,,q)i-‘zﬂ(z‘)fz//t)g ® setisfies Assumptions 6. 1. and 6.2 wit

5, , the Banach space of continuous matrices, %ﬁ,f/f) , over

intervel /#-4Z/</ , endi B, , the Banach spszce of continuous

metrices, 4 (% , over /t-&/<#k . The norm for & is
. / l. = Mﬂz Ve .

(7.10) WGe OV = 5% 1950/

IS8 = r7 '
and for B,

& «

(7.11) AT = [TIE, AT

AV R ¥4

From (7.10) and (7.11),

(7.12)  #4f @ A @ DY 1207 ) V94 /z)//x{'/z)/,

%e
Thus from (7.12) and Theorem 8.6 the unique solution of (7.9) is

(7.13) 5/;"(&‘) y * yﬁ z LA /é')y L s)7*

!

e 2 '
valld wvhen 24 /3)// S A — where [ denotes
202l H4LH ? )
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- the 27-/% pover of metrix in bracket.

From Theorem 6.7 we conclude that (7.13) is the unique analytic
4

— L sstisfying t
”7/?/'/?( // ,qu Lizy cne

functional of A%ftﬁo s radius >

differential system . |
’ gl LAf )T < y/j Ve, /z‘]/f &4 ) ls) G/ TAS 27

gl JoltT = g,

in 1nt@r@gt1n& SpQCldl czse of (7 9) is vhen a =/ , or
(1.18) e gimiry?, g =4t | ieia. . m).
From (7.10} the solution of (7.14) is eas ly scen to be

. y;’.
(7.15) ‘)= -
( ) 4 /-.‘{{"f‘,ﬂ/. (g’ S | | |
N / - P ,
When L4690 /. <'2Z;;Z;Z;—— . By direct substitution of (7.15)

in (7.14) it is seen thet (7.15) is the solution of (7.14) whenever
 the inverse of /-‘[’4}-/:) g/ exists.
-
In conclusion we give two examples of the functional equation,
G
(7.16) Y = FryAY

[9)]

.49). The first is

>"here A is en m xs7 metrix and A is en #xsm7 metrix.  The

solution of (7.18) for ¥ is by (6.50)

: . e cRr7)/
Y = F*Z i CFA7F

vhen /A4 <'Zﬁ;j£7737 , the norms given by (7.10) =nd (7.11).
The final eyepre under the conditions and notation of the
first paragraph of section 6 of (7) is the 1ntegral equatlon,
GOER =L+ LY DA Yl A |
The unique solution of this by (6.50) is givén by the entire
enalytic functional of 42 & s
GER =L+ %’ Ll ST PN

 (17#) 7 177

=r"/z5r)f4,' /’/zj.s‘) AL EDAEA v
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