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ABSTRACT

A connection is shown between K8nig's Theorem on
0-1 matrices and theorems giving sufficient conditions, in
terms of certain forbidden subgraphs, for a graph G to have
chromatic number equal to the maximum number of vertices in
any clique of G. A conjecture is proposed which would, if
true, give the best possible such theorem. Three special
cases of this conjecture are proved, and Kd8nig's Theorem

is shown to be an easy corollary of any one of them.



INTRODUCTION

The chromatic number of a graph G is always bounded
below by the maximum number of vertices in any complete
subgraph of G. Tt is of some interest to find conditions
under which these two numbers are actually equal.

In Section 1 we discuss this problem in a general
way and point out its connection with two classical com-
binatorial theorems: The K8nig Theorem on 0-1 matrices
and the Dilworth Theorem on partially ordered sets. A
conjecture is proposed which would in a sense give a best-
possible solution.

In Section 2 we prove two rather general lemmas,
which are the basic tools for the proofs of the succeeding
section.

In Section 3 we prove three theorems, all of which
are very special cases of the conjecture in Section 1, and
which are generalizations of the above-mentioned theorem
of Kdénig.

The modest nature of these generalizations is

indicated in Section 4.



SECTION 1

The term graph will always be used to denote an
undirected graph in which there is at most one edge joining
any given pair of vertices and no edge joining any vertex
to itself. (For definitions not given here see Ore (6).)
If two vertices are joined by an edge they are said simply
to be joined.

A graph G is called complete if every pair of
distinct vertices in G is joined.

A graph is called edge-empty if its edge set is

empty. A graph H will be called a subgraph of the graph G
if its vertex set is a subset of the vertex set of G, and
its edge set is the set of edges of G whose endpoints lie
in the vertex set of H. The graph G is said to contain the
graph H.

The unionla H, of a collection {Ha} of subgraphs of
G is defined to be the subgraph whose vertex set is the
union of the vertex sets of the Ha' The operations n, -
are defined similarly. We write H = Zaﬁato mean H = \&Ka
and RynKg = 4 for a« #B .

We denote by [G[ the cardinality of the vertex set
of G.

I1f G is any graph we denote by G* the graph whose
vertex set is the vertex set of G and in which two distinct

vertices are joined if and only if they are not joined in G.



We shall often denote particular graphs geometri-

cally, representing the veftices by dots and the edges by

arcs joining pairs of dots. For example,

a b

c d denotes the complete graph with vertices
a, b, ¢, d.

A complete subgraph of G is called a clique of G.
An edge-empty subgraph of G is called a color of G.

The vertex set of a color is called an independent

If two vertices form an independent set they are

said to be independent.

Thus if H is a clique of G, H* is a color of G*, and
vice versa.

If C is a clique and x a vertex not in C, X is said
to be joined to C if it is joined to every vertex of C.
If C and D are disjoint cliques, C is said to be joined to
D if every vertex of C is joined to every vertex of D.

IfGc=_% H

afa iy where each Hj is a color, and A has

cardinality k, we say that G is k-colorable. If
m = min {k |G is k-colorable}, we say that G is m-chromatic,

and we call m the chromatic number x(G).

Very little is known about the function x(G) in
general. One fact is however obvious. If we let

v{(G) = sup {k] G contains a clique with k vertices }, then



clearly we must have ¥(G) > ¥(G). It is natural to ask
the question: for which graphs G does the identity

(n) x(G) = v(Q)
hold?

Two well-known combinatorial theorems can be inter-
preted as saving that the identity (A) holds for certain

graphs G:

Theorem of RK¥nig (5): Let A be a matrix of zeroes and ones.

We call a row or column of A a line. Then the minimum
number of lines containing all the ones of A is equal to
the maximum number of ones of A no two on a line.

If we let the ones in the matrix A be the vertices
of a graph G, and let two vertices be joined if and only if
they do not lie on a line, then the K8nig Theorem states

that the graph G so defined satisfies (A4).

Theorem of Dilworth (2): If P is a partially ordered set,

and the maximum number of pairwise non-comparable elements
of P is k, then P is the union of k chains.

Here we take the elements of P as the vertices of the
graph G, and join two vertices if and only if they are not
comparable in P; then again the Theorem states that
x(G) = Y(G).

Note that in both these cases the graph relation was
defined as the negation of the "natural" relation. This

suggests the following "complementary" reformulation:



We define
c(G) = x(G*),
B(G) = v(G*),
and ask the question: when does the identity

(A*) c(G) = B(G)
hold?

In general the two problems are of course equivalent,
but in particular cases one or the other formulation may be
the more convenient.

Theorems giving sufficient conditions for the
identity (A*) to hold have been proved by Hajnal and
Surényi (4), and by Gallai (3). A simple proof of the
theorem of Gallai, which is the more general of the two,
will be given in the next section.

If v(G) = 1, then (A) holds trivally (as indeed does
(A*)). The answer in the case v(G) = 2 is also well-known
and simple. First we need a few definitions and lemmas.

If a and b are distinct vertices of the graph G, a
path of length n from a to b is a sequence Co T @ ©q.
CorewesCl = b of distinct vertices of G, such that cy
is joined to Ciyqe i=0,1,...,n-1.

A graph G with n vertices is called a circuit of
length.n if for some numbering Xys Xoreens Xy of the

vertices of G, Xi is joined to Xj if i-j = +1 (mod n). If
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i-j = +1 (mod n), Xy and Xj are called consecutive vertices

of the circuit. The circuit G is called irreducible if xi

is joined to Xj only if i-j +1 (mod n).

Lemma l.l: Every circuit of odd length contains an

irreducible circuit of odd length.

Proof: By induction, it is sufficient to show that every
circuit of odd length which is not irreducible contains a
shorter circuit of odd length.

Let then G be a non-irreducible circuit of length
2n+l, with vertices Ko XgreeerXgoiqs where Xs is joined to
xj whenever i-j = jl (mod 2n+l). Since G is not irreducible,
some X, which we may take to be Xy is joined to some x.,

where j # 2, 2n+l. If j is odd, then x e Xy form

1 %2:%3
a circuit of (odd) length j <2n+l. If j is even, then
Xj’ Xj+l""’X2n+l' X4 form a circuit of (odd) length

2n-j+3 < 2n+1.

Lemma l.2: If a and b are distinct vertices of the graph
G, and there is a path of even length from a to b and also
a path of odd length, then G contains a circuit of odd

length.

Proof: Choose a and b in G such that cO = a, cl’CZ""
Cn = b and do = a, dl'd2""’dn = b are paths, where min
is odd, and where if e and f are distinct vertices of G,

and there is a path cof length r from e to f and a path of



length s from e to £ with r+s odd, then r+s> m+tn. Let i
be the least positive integer for which c; = dj for some j.

If i+3j is odd, then c yeeo,d, form a

O'Cl""’ci’dj—l’dj-z 1

circuit of odd length. If on the other hand i+j is even,
then‘ci is joined to b by a path of length m-i-1 and also
by a path of length n-j-1. But m-i-1 + n-j-1 =

mtn - (i+j) - 2, which is odd and <m+n, contrary to the

choice of a and b.

It is now quite easy to prove the

Two-Color Theorem: The graph G is 2-colorable if and only

if it contains no irreducible circuit of odd length.

Proof: Suppose Xy forma circuit of odd length

KprerrFonyl
is G, and that G is the sum of two colors A and B, where
a

xleA. Then xzeB, X

contradiction. The condition is therefore necessary.

3eA, and so on so that X2n+l€A’
Now let G contain no irreducible circuit of odd

length. We may certainly assume that G is connected.

By Lemma 1.1 it contains ho circuit of odd length, whence

by Lemma 1.2, for a and b distinct vertices of G, either

all paths from a to b have even length or they all have odd

. length., Define aRb to mean a = b or there is a path from a

to b of even length. R is obviously an equivalence

“relation. By Lemma 1.2, the equivalence classes are colors.

Finally, there are only two equivalence classes,vfor if all

paths from a to b are of odd length, and all paths from b to



c are of odd length, then since G is connected, there is a
path of even length from a to ¢, whence aRc. Thus G 1is 2-
colorable.

This theorem gives us the simplest examples of graphs
for which the identity (A) doce not hold. For if G is an
irreducible circuit of odd length > 3, then Y(G) = 2, but
x(G) = 3.

Let Pn be the irreducible circuit of length n, and

consider now the graph P n > 1. We have Y ( = n.

* *
2n+1 ' P2n+l )

A color in P * can contain at most 2 vertices, since

2n+1

vy (P, ,;) = 2. If P,  .* were n-colorable, we would have

therefore 2n+l = ]P2n+l*| < 2n, a contradiction, Hence

X Pope1™ = ¥(Pop™)-

Con-jecture: The graphs P n >1 are precisely

on+1’ Fon+l™

the minimal counterexamples to the identity (A) in the case

when vYy(G) is finite. That is, if neither G nor G*
containg an irreducible circuit of odd length > 3, then
x(G) = y(G), if vy(G) is finite.

In a sense, asking for minimal counterexamples to (2)
rather than for all counterexamples seems to be the "right"
question. For if G is any graph, then by adjoining to G
a complete graph with %(G) vertices, we obtain a graph G
with X(G) = v(G). Thus every graph is a subgraph of a
graph in which (A) holds, so that the problem of determining

when (A) holds in general is no easier than the problem of



determining all k-chromatic graphs for every k.

A theorem of deBruijn and Erdds (1) states that a
graph every finite subgraph of which is k-colorable, where
k is fixed and finite, is itself k-colorable. It follows
that for Y(G) finite, any minimal counterexample to (A)

must be finite.
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SECTION 2

Lemma 2.1l: Let G be a minimal counterexample to (A%*),
where B(G) is finite. By the remark at the end of
Section 1, G is necessarily finite. Let p be any vertex
of G. We have

G-{p}= Cl+C2+...+CB,where each C, is a clique. Let

R. ={xeC, | % is joined to p} . Let N, = C,-R,, and let
i i i i 71

w
It
(o]

o)

=
Il

IN.. Then
1

(1) B (N) <B.

(2) For i and j distinct integers between 1 and B inclu-
sive, there exists an independent set {xk} , xke N, , k # i,
such that Xj is not joined to Ci’ and no ¥, is joined both

k
to Ci and to every other vertex which is joined to Ci'

Proof: (1) If B(N) 28 , then B(G)=B(N+{p)) =B+ 1.
(2) 1If any vertices of N are joined to C,, we add
them to Ci’ forming an enlarged clique Ci. If any further
vertex of N—Ni is joined to Ci, we add it to Ci forming a
new clique Ci'. We continue in this way until no further

vertices may be added. Let the resulting cliques be

cl Cb N .-.,NB- If B(N-Ni) < B-1, then
;)

c(G) < c( + (G—C ) =1+ -1 =8. Hence B(N-E.) =8 -1,

and we may choose B-1 independent vertices X xkeN k # i:

where xj is not joined to Ci’ and where no Xy is joined to

Ci' But every vertex of Ei - Ci is joined to Ci’ so the
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lemma is proved.
In view of (1) of Lemma 2.1, we may write
= K - , i i .
N hl+K2 KB‘l where each Kl is a clique For

xeN, we define K(x) by K(x) = Ki’ XeKi-

Lemma 2.2: Let G satisfy the hypothesis of Lemma 2.1. Let
IvJ=B=1{1, 2,...,8}. Let {x(i)}, x(i) e N;, ieI, and
{v(3)} . y(j)eNj, jeJ, be sets of |I| and |J| independent
vertices respectively. Then for some ieI-J and some jeJ-I,
there exists a sequence ng = i, Mys Dyoeee Iy = j ‘of
distinct integers in B such that K(x(ns)) = K(y(ns+l)),

s =20, 1,...,k-1.

Proof: For any ieI there is at most one jeJ satisfying
v(3) eR(x(i)), since K(x(i)) is a clique and the y(j) are

independent. This j when it exists we call a(i). If for

i, i'eI, a(i) and a(i') exist and are equal, then i = i'.

For if a(i) = a(i'), then y(a(i)) = y(a(i'))eK(x(i))n

K(x(i')), whence x(i) = x(i') and i = i’

If either I-J or J-I is empty, then by (1) of

Lemma 2.1 there is nothing to prove. For any i¢I~J consider

2

the sequence a(i), a” (1), a;(i),.... Since the terms of

‘this sequence are distinct, it must terminate, say in

am(l)(i). This can happen in exactly two ways:

m(i)

(1) « (i) e J-I. 1In this case the sequence

ng = aS(i) has the desired property.
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(2) cxm(i)(i)el, but there is no y(j)eK(x(am(i)(i))).
Suppose that this case holds for every ieI-J. Now if for
4 1
m(l)(l) = am(l )(il),

i, 1'¢I-J, 1 #1i', a and m(i) > m(i'"),

it follows that i' = oD ™™ED 4y Byt if m(i) = m(i"),
then i = i', and if m(i) > m(i'), then am(i)—m(i')(i) € J.
In either case we have a contradiction. It follows then
that there are |I-J| distinct K, to which no yv(j) belongs.
But then the |J| y(j) belong to at most B-1- | 1-J]= |J| -1
of the K. contradicting the independence of the y(j). It

follows that (1) must hold for at least one i€ I-J, and

the lemma is proved.

Corollary l: A set of vertices {ri }, rie Ri’ ieI will be

called strongly independent if there existB-—iI[ vertices

x(k) e N, , k¢I such that {ri}u {x(k)} is an independent set.
Let G satisfy the hypothesis of Lemma 2.1, and let it

contain no irreducible circuit of odd length > 3. If {ri},

r, eRi, ieI, and {sj} p sje Rj' jeJ are strongly independent

sets, where In J = ff, then for some ieJ, jed, r, is joined

to s..
3

Proof: Let I' = B-I, J' = B-J. Since InJ =g, I'vJ' = B.
Since {ri} and {sj} are strongly independent sets, there
exist independent sets {x(k)}, x(k)eN, , keI' and (y(k)},
y(k)eNk, keJ' such that no r. is joined to any x(k) and

no sj is Jjoined to any y(k}). By Lemma 2.2 there exist
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i'eI'-J', j'edJ'-I' and a sequence Nys Noyyeee such that
x(1"), y(ny), x(ny), ... yvin), x(n), y(3') is a path.

But then p, s;, x(i'), y(ny), x(ny),....y(n ), x(n ), y(3'),
rj.form a circuit of odd length > 3. Since no such

circuit can be irreducible, this must contain a circuit of
length 3, by Lemma 1,1; but this is possible only if rj. is

joined to Sia-

Corollary 2 (Gallai): If every irreducible circuit in G

which is conlained in a circuit of odd length has length 3,

then c(G) = B(G), if B(G) is finite.

Proof: Let G be a minimal counterexample. Then G certainly
satisfies the hypothesis of Lemma 2.l1. Let r. €Ri, rje Rj’
i # j. By Lemma 2.1 there exist independent sets {x(x)},
x(k)eN,_, k # i, and {y(k)} , y(k)eNk, k # 3. By Lemma 2.2
there exists a sequence Nys Dgreee Dy such that y(i), X(nl),

y(nl) ..... x(nK),y(nK), %x(j) is a path, whence p, r yv(i),

i
X(nl),---, y(nk), x(3), r; form a circuit of odd length.
This circuit contains an irreducible circuit containing
p and ry. which by hypothesis must have length 3. The only

possible such circuit has to consist of p, r. and rj.

 Thus r. is joined to rj. It follows that R is a clique,

whence c(G) € c(R) + c(N) 1 +8~ 1 =B.
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SECTION 3

We continue to use the notation of Section 2.

Theorem 3.1: Let G be a graph satisfying the following two

conditions:
(a) If S is a circuit of odd length in G, then some
vertex of S is joined to two consecutive vertices of S.

(b) G does not contain the graph

Then c(G) = B(G), if A(G) is finite.

Proof: Let G be a minimal counterexample. Suppose that for
some i Ri contains two distinct vertices r, s. Since 8> 1
(obviously), N, # #, by (2) of Lemma 2.1. Let ueN,. Then

G contains the subgraph
i)

u
contrary to hypothesis. Hence lRiI <1 for all i. If

R, # @, let r.eR,. Let R, and Rj be distinct and non-empty,
and suppose r. is not joined to ;- By Lemma 2.1 there
exist independent sets {x(k)} , x(K)eN,, kK # i and {y(k)},
v(k)eN, , k # j. By Lemma 2.2 there exists a sequence

n, = i, Ny e-.,n = j such that K(y(ns)) = K(x(ns+l)) for

s =0, 1,..., m1l. Therefore p, L y (i), x(nl),...,

x(nm_l), y(nm_l), x(3), rj form a circuit of odd length > 3.
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The only vertices of this circuit which can possibly be
joined to two gdnsecutive vertices are r, and rj. Suppose
'ri is, and consider the first such consecutive pair in the
sequence y (i), x(nl),...,x(j). This pair cannot be of the
form x(ns), y(ns), for then the circuit (ri,y(i),...,
x(ns)} would violate condition (a) It follows that r, ie
joined to two vertices of some KS, and therefore to all Ks'
by hypothesis (b). Let R' = {reR|r is joined to all of K
for some s for which }Ksl =z 2. Now if r, and rj are both
joined to all of K_, where [KSI; 2, then r; is joined to
r., again by condition (b). Hence c(R' + N) = pB-1. But

J
we have seen that c(R-R') = 1. Therefore c¢(G) € c(R'+N) +

N
c¢(R-R') =B-1+ 1= B.
Almost certainly condition (a) can be replaced by

the weaker condition that G contain no irreducible circuit

of odd length > 3.

Theorem 3.2: Let G be a graph satisfying the following two

conditions:
(a) If S is a circuit of odd length in G, then some
3 consecutive vertices of S form a clique.

(b) G contains neither of the following subgraphs:

@ e

Then c(G) = B(G), if B(G) is finite.
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Proof: Again we let G be a minimal counterexample. Let Ri
and Rj be distinct and non-empty, and let rigRi, rjeRj. By
Lemma 2.1 there exist independent sets {x(k)}, x(k)eNk,
k # 1, and {y(k)}, y(k)eN,_, k # j, such that no x(k) is
joined both to C; and to every other vertex which is joined
to C., and no y(k) is joined both to Cj and to every other
vertex which is joined to Cj' By Lemma 2.2 there is a path
y(i), x(nl), y(nl), x(nz), y(nz),...x(ns), y(ns), x(3).
Thus p, r., v(i), x(nl),...,y(ns), x(3). rj form a circuit
of odd length. Applying condition (a), we find there are
3 possibilities:
(1) r, is joined to x(nl).

(2) r. is joined to y(n_).

Jj s
(3) r, is joined to rj. |
In case (1), let ri' be any further vertex of R. We have
S
r."
1
y(1i x(n;)

By condition (b), therefore, ri' must be joined to x(nl),
since p is not joined to y(i). Thus x(nl) is joined to Ri'
Let r, now be any vertex of Ri' By the choice of the x(k),
there is a vertex a which is joined to T, and to y(i) but

not to x(nl). Let s be any further vertex of K(y(i)). We

have
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a x(nl)

s

y (1)
Since a is not joined to x(nl), r, must be joined to s.

Thus Ri is joined to K(y(i)).
For a further pair Ri" Rj" let {x' (k)}.{v"' (k) }be the

associated independent sets. Suppose case (1) holds here

also, and that K(y(i)) = K{y'(i')). Then v(i) is joined to
Ri,. y(i)eNi, and 1s one of a set of 3-1 independent
vertices in N—Nj. If i' # j, one of this set must lie in
L If on the other hand i' = j,then y(i) is not joined

both to Ci' and to every other vertex which is joined to
Ci,. Hence in any case there is a vertex a which is joined
to y'(i') and to R, but not to y(i). Thus for rieRi,

r.,eRi, we have

l [}
ry r,
a
y (1) y'(i')
Therefore r, is joined to Tive If we now let R' be the

union of those Ri for which case (1) holds for some Rj'
it follows that c(R' +N) = B-1l. But we have shown that
for r, s €R-R', r is jolined to s. Therefore c(G) ¢ c(R'+N) +
c(R-R') +{p}) =8-1 + 1 =B, and the proof is complete.
It seems likely that condition (a) alone is enough
to guafantee c(G) = B(G), and also x(C) — ¥ (C), but

certainly much more powerful methods would be needed to
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prove this.

Theorem 3.3: Let G be a graph satisfying the following two

conditions:

(a) Neither G nor G* containsg an irreducible circuit
of odd length > 3.

(b) No vertex of G is joined to 3 independent
vertices of G. Then c(G) = B{(G), if B(G) is finite.

We prove this theorem via a series of lemmas. We
assume throughout that G is a minimal counterexample to

Theorem 3. 3.

Lemma 3.3.1: For any X in G the set of vertices joined to

x is the sum of 2 cliques.

Proof: Let H be the subgraph formed by the set of vertices
joined to x, and consider the graph H*. By condition (a),
H* contains no irreducible circuit of odd length >3, and by
condition (b), it contains no circuit of length 3. There-
fore, by the Two-Color Theorem, H* is the sum of two colors,

whence H is the sum of two cliques.

Lemma 3.3.2: For any r in R the set of vertices in N which

-are joined to r is a clique.

Proof: If r is joined to X and X, in N and X is not

joined to Xo then p, Xqv and X, are 3 independent vertices

all joined to r, contradicting condition (Db).
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Lemma 3.3.3: If R., R., Rk are distinct, r.eR., r.eR.,
i J i1 J 3

rkeRk, and r., is joined to rj, and rj is joined to Ty

then either

(I) r. is joined to or

kl
(I1I) B= 3 and every vertex of Nj is joined either to

Ni or to Nk'

Proof: If r. is not joined to r and x is any vertex of

k!

Nj' then x must be joined either to r, or to r since

kl
otherwise Ty X, Iy would be 3 independent vertices all
joined to rj. But then every vertex of N. is joined either

J
to N. or to N, , whence B(Ni + Nj + N =2, and B = 3, by

i k k)
3

If a single vertex of R forms a strongly independent
set, we call it strong; otherwise we call it weak. By
Corollary 1 of Lemma 2.2, the strong vertices form a clique.
We let Si be the set of strong vertices in Ri’ Wi the set of

weak vertices in Ri’ =2 Si'

Lemma 3.3.4: Let Wi and Wj be distincet and non-empty.
Then one of the following must hold:

(1) Wi is joined to Wj.

(2) There exists a vertex =y in Ni which is joined
to.Nj but not to Cj’ and such that every vertex of Rj not
joined.to X5 is joined to R;: furthermore Sj is joined to

R. .
1
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(3) There exists a vertex xj in Nj which is joined
to Ni but not to Ci’ and such that every vertex of Ri not
joined to xj is joined to Rj; furthermore Si is joined to

R..
]

Proof: Let Wi and Wj be distinct and non-empty, and assume
none of (1), (2), (3) holds. Choose B -1 independent
vertices y(k), y(k)eN,, k # j, such that y(i) is not joined
to Cj; if Sj # @, then y(k) may be chosen independent of
any preassigned sjesj. Clearly none of the y(k) is joined
to Ci (by Lemma 3.3.2). If necessary enlarge Ci to a new
clique Ei by adding vertices of N—Ni in such a way that no
vertex of NQEi is joined to Ei' Choose B-1 independent
vertices x(k), x(k)eNk - Ei, k # i. If 5, # @, the x(k)
may be chosen independent of any preassigned sieSi. Choose
wieWi, wjer such that Wy is not joined to wj. Since wy is
weak it is joined to some X(nl), which by Lemma 3.3.2 is
unique, and we assume for now that ny # j. Then y(nl)
exists and is different from x(nl), since W is joined to
x(nl) but not to y(nl)_ W is also not joined to x(k),

k # ny. Thus the set'{y(nl)}u {x(k), ¥ # nl} is not an
independent set (since w, is weak) , and y(nl) is joined to
some x(nz), where n., # ny. If n2 = j, we stop. Otherwise
y(n2) exists and is different from x(n2), since y(nl) is
joined to x(nz) but not to y(nz). The set { y(nl), y(nz)}u

{x(x), ¥ # nq., nz} is not an independent set, but y(nl)
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is joined to x(nl) and to x(nz) and therefore not to any
x(k), kx # ny, n,. Thus y(nz) is joined to some x(n3),
ng # ny. Nge. Again if ng = j, we stop. Otherwise we

continue, repeating the same argument, and obtain in this

way a path

wi.X(nl),y(nl),X(nzly(nz),...,x(ns_l),y(ns_l),X(ns) x(3) .

Similarly we can construct a path

wj,y(ml),X(ml),y(mz)IX(mz),---,y(mt_l),X(mt_lLy(mt) = y(i),

where we assume my # i. Suppose m =n. Then y(nk) is

joined to x(nk) and x(nk+l) and also to x(j). This 1is
possible only if Dy = j., that is if kX = s-1. Bul Lhen
P: Wil X(nl)l Y(nl):---rx(ns_l):Y(nS_l), Wj

form an irreducible circuit of odd length > 3, a contra-

diction. Thus my # ny - Ifm then y(nk) is joined

2 =~ "k
to x(nk), X(nk+l)’ and x(ml), which is impossible. Repeating
this argument, we find that m, # n, for all h, k.

Now x(nl) is joined to W and therefore to y(i). If
the S, defined above exists, then y(i) is joined to Sy

x(nl), and x(m ), which is impossible, since S x(nl),

t-1

and x(mt_l) are independent. Thus Si = Sj = g. x(nl) is

joined to ﬁi but not to Ei' Hence there exists rieRi such

that x(nl) is not joined to r,- Since y(i) is joined to
x(nl), x(mt_l), and T these cannot be independent,
whence_ri is joined to x(mt_l). But now p, ri,x(mt_ ),

y(mt_l),--.,x(ml), y(ml), Wj form a circuit of odd length
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> 3. This circuit cannot be irreducible, so r, must be
joined to wj. But r. is also joined to W and to
x(mt_l); and Wi x(mt_l), and wj are independent.
Therefore the assumptions n, # 3 and my # i cannot
both be valid. Suppose n, = j. Then x(j) is joined to w.
and therefore to Ei' It is not joined to Ei’ so there
exists rieRi such that x(j) is not joined to r.. In
particular we may Lake r; = sy if S, exists. r, is not
joined to Rj’ by assumption. Choose rjeRj such that r. is
not joined to rj. Not every vertex of Ei can be joined to
rj, for then every vertex of ﬁi would be joined to every
vertex of‘ﬁj, contrary to the fact that 8 > 2. Choose
yeﬁi such that y is not joined to rj. Then p, r;. Y,

x(3), rj form an irreducible circuit of length 5. The

assumption my = i leads to an exactly similar contradiction.

Lemma 3.3.5: Assume (II) of Lemma 3.3.3 does not hold.

Let R,, Rj’ Rk be distinct and non-empty, and let

i
Sj = 8 = #. Then some two of R, Rj’ R, are joined.

Proof: Assume first that Si = ¢, and that no two of

Wi’ Wj' Wk are joined. Then with suitable renumbering we

have for some w.eW,,w.eW., w. joined to W. and w. joined to
11 3 3 1 J J

'Wk, by the preceding lemma. But then w. is joined to Wj’

which is joined to Wk, SO w, is joined to W _; and Wj is

joined to Wi which is joined to Wk, so Wj is joined to Wk’

contrary to assumption.
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We may therefore assurme S, # @. Suppose first that

W, # @, and that Wj is not joined to W, . Then, with

appropriate renumbering, there exists wjer joined to Wk.

If Wi is joined to Wj' then Wi is joined to wj, which is

joined to W, , so Wi is joined to W, ; but then W which 1is

k k k'

joined to Wi’ which is joined to Wj’ is joined to Wj‘
Similarly, if S; is joined to Wj’ then it is joined to W,

and Wk is joined to Wj. The remaining possibility is that

k

there exists wj'er joined to R.. If W, is joined to W,

then wj' is joined to Wi’ which is joined to W, , so wj is

k

joined to W, ; but wj' is also joined to Ri’ so Ri is joined

k k

is joined to Si’ is joined to Wk and Wk is joined to Ri'

Thus we may assume that there exists wkeWk joined to Ri'

But W, is joined to wj, so this implies that Ri is joined

to W, . Similarly, if Si is joined to W, , then wj', which

k

to wj and therefore to Wk.

Finally, suppose W.l = g, Wj not joined to Wk' Then,

with suitable renumbering, there exists xeN, joined to Nj

k
but not to Wj’ such that the vertices of Wj not joined to x

are joined to W, . Let Wj' be this set of vertices, and let

k
W.''= W.-W.'. Let w.eW.'', w,.eW, be independent. Then an
i 37 575 k" P Y
ses.l is joined either to wj or to W - If it is joined to

'wk, then it is joined to Wj' and therefore to W, . Suppose

on the other hand s is joined to Wy Wy is joined to x,but

X is not joined to s, for then x would be joined to Ni’
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and N, would be joined to Nj' Therefore every wj'er' is

joined either to x or to s, but by definition no vertex of

Wj'is joined to x. Thus s is joined to Wj' and therefore

to Wk,

of the lemma.

whence Si is joined to Wk. This completes the proof
We can now prove Theorem 3.3 under the additional
assumption that case(II) of Lemma 3.3.3 does not hold. We
know from Lemma 3.3.1 that R = A + B, where A and B are
cliques. If A and B can be chosen so that S &€ A, we are
finished, since then c(G) < c(aA) + c(G-A) = 14+8-1 = B.

Suppose there exist Si and Sj distinct and non-empty.

Since B > 2, we may assume that A intersects some further
cligue Rk' If Si + Sj < B, then every strong vertex in A
will be joined to B. Thus we may assume that A intersects
Sj' Then every seSin is joined to A. It follows that
every strong vertex in B is joined to A. Therefore all Si
but one, say Sl' must be empty. But now by Lemma 3.3.5

some two of R.. Rj’ Rk are joined for every i, j, k distinct,
whence R = A + B where A and B are cliques and S < A.

We have thus reduced Theorem 3.3 to the case where

B= 3 and every vertex of N, is joined either to N, or to

N3. If any vertices of Nl are joined to 02, we add them to
'C2, forming new cliques Nl', N2', N3. Every vertex of N2'
is still joined either to Nl' or to N3. Write Nz' =

N21 + N23, where N21 is joined to Nl and N23 is joined to
N3. Suppose some XeNl is joined to N23. Then N23 is
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joined to x, to R2, and to N3, where R2 is non-empty by
Lemma 3.3.4. No vertex of_R2 can be joined to N3, since

then N, would be joined to N,. Hence x is joined to R,.
But this implies that x is joined to N2', which is

impbssible by the construction of Nl' and N2'. Therefore,

by Lemma 3.3.4, either Wl is joined to W, or §, is joined

3
9° Finally, if any vertices of N2 are joined to

to R2. Similarly, either W2 is joined to W3 or S, is
joined to R

Cyr we add them to Cq: if any of the remaining vertices of

N2 are joined to C we add them to C3, forming new cliques

3/

3 Suppose some vertex xeﬁi is joined to N

1 Npo N 3
X 1s joined also to Rl and to EZl' No vertex of Eél can be

joined to El’ since it is already joined to N

N

1 Therefore
some vertex of Rl ig joined to EB' and EB ie joined to N

which is impossible. Similarly, no vertex of §3 can be

ll

joined to 1 It follows that Wy is joined to Wy If Wy is

N, .
joined to W2, it follows from Lemma 3.3 that either W, is
Wo

joined to in which case we are finished, or every

3

vertex of Nl is joined either to N, or to N.,. But no

2 3
vertex of ﬁl is joined to ﬁ3. On the other hand not every

vertex of N, can be joined to ﬁé- Similarly, if W2 is

jolned Lo W3, we find that Wl is joined to W The only

-
remaining possibility is that Sl is joined to R2 and S3

is joined to R2. But then R is the sum of the two cliques

S,.+R.,+S

1R, and W,4+W

3 1¥W3. and the proof is complcte.
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SECTION 4

Let A = (aij) be_a matrix of zeroes and ones. We
take as the vertices of a graph G those ordered pairs (i,j)

such that Ajy T 1. We join the distinct pairs (il,jl),
(12,32) by an edge if and only if 1, = 1, 0r j; = 3,- We
note that the resulting graph G satisfies all the conditions

of Theorems 3.1, 3.2, and 3.3:
For let (11,31), (12']2)""’(12n+l’ j2n+1) form a
circuit, and suppose no three consecutive vertices of this

circuit form a clique. Since (il,jl) is joined to(iz,jz)

we may assume that i, = i2. Since (i3,j3) is joined to

1

az,jz) but not to (il'jl)' we have j2 = Similarly,

j3-
13 = 340 Jg = 350---0don T dgpyq- But then iy 0 o=d, =i,
a contradiction. Thus (a) of Theorem 3.2 is satisfied, as
therefore is (a) of Theorem 3.1,

If (11,31), (12,32), and (13,33) form a clique, with
say il = i2, then we must have il = 12 = i3. if (iz,jz)
(i3,j3), and (i4,j4) also form a cligque, then il=i2:i3=i4,
and (ll,jl), (12,32), (13,33), and (14,34)form a clique.
Thus condition (b) of Theorem 3.1 is satisfied, as there-
fore are condition (b) of Theorem 3.2 and condition (a) of
Theorem 3.3.

Finally, if (11,31) is joined to (12,32), (13,33)
I RS R T

whence 12 = 13. Thus condition (b) of Theorem 3.3 is

and (i4,j4), then we must have, say, i
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satisfied.
Thus each of Theorems 3.1, 3.2, and 3.3 gives a
different generalization of Kénig's Theorem. We now prove

a converse result.

Theorem 4: Let G be a graph containing none of the follow-

ing subgraphs:

’ (a) An irreducible circuit of odd length > 3.

(b) @

(c) <

Then there exist sets A and B and a function
f(x) = (a(x), b(x))., a(x)ea, b(x)eB, such that distinct
vertices x and y in G are joined if and only if a(x) = a(y)

or b(x) = b(y).

Proof: Let M(G) be the graph whose vertex set is the set of
maximal cligques of G, and in which Cl is joined to C2 if and
only if C;~ G, # @. We show that M(G) contains no
irreducible odd circuits.

Since the subgraph (b) does not occur in G, any two
distinct maximal cliques intersect in at most one vertex.
Suppose C;. C,, C; form a clique in M(G). If Cyn CynCy # d,

let x belong to this intersection, and let clecl—{x},
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c2€C2 -{x} . c3€C3 -{x}. Since subgraph (b) does not appear
in G, Cyr Cy1 C4 are distinct and independent. But they are
all joined to x, which is a contradiction. Thus we must
have C;nC, ={x12},cln03 ={xl3},C2Ac3 ={x23},where X151 Xyq
of C;, would be

1 1
and to X3 and therefore to x

X,3 are distinct. Any further vertex a

But then a

joined to x 23" 1

12
would be joined to all of Cys which is impossible. Similarly
C2 contains only X119 and Xo3e and C3 contains only X4 4 and
X,5- But then CyvCyvCy is a clique. It follows that M(G)
contains no circuit of length 3.

Let now Cl' C2, C3,...,C2n+l form an irreducible
circuit, where n > 1, and let x.eC.nAC. . Then X., Xa, ...,

171 Ti+l 1 2

ool is a circuit of odd length in G. It cannot be

irreducible, so we must have, say, =g joined to e i # 1,3.
Xy cannot be joined to X4, since it is not joined to all of
C3. Xy cannot be joined to X9 since it is not joined to

all of C

1 Similarly X cannot be joined to x But then

3-
X1, X;, X5 are independent vertices all joined to Ko which
is impossible, since subgraph (c) does not appear in G. It
follows that M(G) contains no odd circuit, whence

M(G) = P + Q, where P and Q are colors.

Let now A = PuvG, B = QuG, and define

C, if xeCeP
a(x)

x, if x belongs to no CeP
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C, 1f xeCeQ
b(x) =

x, if x belongs to no CeQ

The function f(x) = (a(x), b(x)) is certainly one-
one. If a(x) = a(y) or b(x) = b(y), and x # y, then x and
y must belong to the same clique, whence x is joined to y.
If on the other hand x is joined to y, then x and y belong
to the same maximal clique, which is unique and must belong
either to P or to Q, whence a (x) = a(y) or b(x) = b(y).

This completes the proof.
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