SOME VISIBILITY PROBLEMS IN POINT LATTICES

Thesis by

David F. Rearick

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Techmology
Pagadena, California

1960



ACKNOWLEDGEMENTS

I am indebted to Professor T. M. Apostel for his interest,
encouragement and advice, and to Mr., Howard C. Rumsey for many
stimulating discussions of the material treated in this thesis., I
wish to thank the Californias Institute of Technology for the
aseistantships and socholarships with which I have been 86 generously
provided., Thanks are alsc due to Mrs. linda Hopkins for her most

competent job of typing the manuscript.



ABSTRACT

We say that ome lattice point is yisible from another if
no third lattice point lies on thé line joining them. A lattice point
visible from the origin is called a yisible point. We study the
manner in which the visible points are distributed throughout the
lattice and show that, in & k-dimensional lattice, the fraction of
such points in an expanding region "usually" tends to 1/ ¥(k). On the
other hand there exiat arbitrarily large "“gaps" containing no visible
points. The following is a typilcal theorem: The maximum number of
lattice points mutually visible in pairs is Zk, agd if n < Ek. the
"density™ of points visible from each of a fixed set of n points,

thomaselves mutually visible in pairs, is
T(a-%) -
p P

The last section is devoted to 2 study of the function
ﬁa(n.m). which is defined to be the number of distinet solutions of
the congruence

X 4%+ tx = m {mod n)
having
(1’, ) ® oL, = (xa,n) = 1,
A specisl case of this function arises in connection with s certain

visibility problem. A typical result is that

Y B am) g (nn) = B _(a k).
k mod n
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§ 1, Counting Visible Points inm a Rectangle.

Let L be the lagtioe consisting of all points in the plane
with integer coordinates. W¥e will say that two distinet lattice
points (m,n) and (r,s) are mutually visible* if no other points of L
lie on the line segment joining them. It is clear that (mn) and
(ry8) are mutually visidble if, and only if, the differences m « r and
n - 8 are relatively prime. For, if (u,v) is a point of L lying

betwean the two it must satisfy

dsr+xinm-r)

ves+xine-a)

for some xy O < x <1, &8ince u and v are integers, x must be rational
and its denominator must divide bothm -~ r and n ~ 8, and this is
possible if, and only if, (m -~ rn - 8) > 1,°*

In discussing visibility we lose no generslity in restricting
attention to the square lattice L. PFor suppose L' is a more general
plane lattice, consisting of all points m«} + nw} where «; and «} are
two non-gzero complex numbers with acn-real gquotient. An argument
similar to the one Just given shows that the points m«y + nuy and ruy
+ a4 are mutually visible if, and only if, (m - ryn ~ 8) = 1, that
is, if (m,n) and (r,s) are mutually visible points of the square

. Or that (m,n) is visible from (r.s), or vice versa,

s¢  The use of the notation (m,n) for both the lattice point and the
g.0.d, should cause nc confusion, as the meaning will always be clear
from the context.



lattice L.
If (m,n) is visible from the origin, we shall say simply

that (m,n) 1s a yisible point. Note that the origin itself is not a
visible point because visibility has been defined only between distinct
points. Let V denote the set of all visible points of L. The first
porticn of this thesla iz devoted to a study of properties of V and,

in particular, to the manner in which the visible points are distributed
throughout the lattice L.

Most of the results to be obtainad have analogues in lattices
of higher dimension, and the proofs are straightforward extensions of
those given for the plane. Sometimes these analogues will be mentioned.
In this connection we define mutual visibility between two points in
a k-dimensional lattice in the same way as for two dimensions, and
note that (nq.nh..;..nk) and (r,.rh.....rk) are mutually visible if,
and only if, {(n, « ryyn = Tpveeesly = rk) = 1,

The first theorem gives an algebralc property of V and is

unrelated to the reast of the work.

Theorem 1l,1. Every unimodular transformaticn of L maps V onto itaself.

Iet T be the transformation

B' = am + bn

(1.1)
n' = e + dn

where a, by ¢ and 4 are integers with 4 = ad -~ be = + 1. It is well
known (see [1]) that T maps the whole lattice L onto itself in a one=-

to-one fashion. The imverse transformation T ' ie given by



Am = dm°® - bn'
(1.2)

An = -cm® + an’
Choose (m,n) € V. By equations (1.2), any factor dividing both m' and
n' also divides both m and n, so (m',n') £ V and the mapping is into,
i.,e. TV <V, On the other hand, squations (1.1) show that any common
divisor of m and n also divides both m' and n', 80 TV c V and the
mapping is onto, i.e. TV = V,

Since there are infinitely many visible points, it is
natural to ask how “dense" they are, in some sense, among z2ll the
points of V. One way of answering this question is well known.* We
may count the number of visible points in a gquere centered at the
origin, divide by the total number of lattice pointa in the square,
and find the limit as the edge of the square tends to infinity. Let
the square be the point set {(x.y)} %] < Xy |ylsX } where x and y
are real and X is positive. Since the visible points are distributed
symmetrically in the four quadrants, it suffiaés to consider only the
square {(x.y) |[o<x <X, 0<y<X }. Furthermore, since (m,n) = (n,m),
we need consider only the triangle {(x.y) f O<ys<sx <X 37. For a
fixed positive integer n < X, the number of visible points on the line
segment X = n, O <y < n is P(n), and hence the number in the triangle

is

Z #(n).

n<X

» See Hardy and Wright [1], Ch. 18.
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The average order of fi(n) is known to be 6n/?, that is,

D B ~ 3 st
1.3 o

a result proved by Mertens in 1874, On the other hand, the total
nuﬁher of lattice points in the triangle is 1/2 X? + O(X), so the
fraction of visible points tends to 6/7?! as X <o, Thus, in the sense
of the above construction, the density of V in L is 6/

This result depended strongly on the shape (i.e. squareness)
of the expanding region. There is anocther known asymptotic formula
similar to (1.3) which may be interpreted as saying that the density
of visible points in an infinite gtrip approaches 6/r? as the strip

widens. Namely, we have the relation

) #@)/n~ 6x/nt

nsX

(1.4)

which is given as an exercise in [2]., Consider the first-guadrant

rectangle
(1.5) QXY = § (xyy) | Ocxs, O<ys¥ |,

Let N'(X,Y) denote the number of viaible points in Q(X,Y) and, if

m < X is a positive integer, let M(m,Y) denote the number of visible
points on the line segment x =@, 0 <y <Y, The total number of
lattice points in Q(X,¥) is [XI[Y] and the fraction of visible points
ia Nt (X,Y)/Tx1(Y], 1If we stretch the rectangle into a strip by letting

Y oo first, and then widen the strip by latting X -c<o, we obtain



im 1 la H (X, Y)Y
Xaoo X Yosoe

Ua [ 1dm B'(X,Y
Xaco\ Yweo LXILY

lim Z lis M{n,Y)/¥
X

B<X Yoo

L M2l ) gm)

a<i &
v 612 yy (1.4).

The two examples Jjust considered show that

o  A'(X
(1.6) otew T = 64

for the two special cases in which ¥ = X or in which the double limit
ia evaluated as an iterated limit. We are led to suspect that (1.6)
may hold as X and Y approach infinity independently, that is, as the
rectangle Q{X,Y) expands in an arbltrary manner. We shall indeed prove
this, basing the proofl on the following formula for counting the

nunber of visible points in s rectanglet

Theorem 1.2. The number K'(X,Y) of visible points in Q(X,Y) is

exaotly o0 -
IRICIIHE
ksl

Here the sum is finite, of course, since the terme are zero
when k > min (X,Y). In counting the visible points of a rectangle
the @-function no longer plays a rolej the Mobius p-function (see 1)

appears instead, The property we use is that
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Z u(d) = [%] .

d|n
¥e have
K (X,Y) = Zi = Z Z u(d) = Z w(d) Zi .
m<X m<X d|{(mn) d=1 dlm, m<X
nsY asY d[n, ns¥

(m'ﬁ) = 1

Let m @ kd, n = 1d. Then

R (XyY) » Z n(d) Zzi Z Z p@) |
kfd 1s

QJN
&h4

d=1 % A=l

From Theorem 1.2 we can deducse the "rectangle limit" result

(1.6)¢ that is to say,

xf;fw L ML = 6/

as X and Y increase independently. This result follows from
L *, 4
Theorem 1,3 %; NV (L, Y) » 642 + 0 L&%.ﬁ

where 2 = min (X,Y).
If ve write {a] = a - [al, then
HI - TR IR IR
Hultiply both sides by w(k) and sum on k from 1 to Z,

Lwop. ) 2R 1) X 1) )

k<Z keZ k<2

)4
k
& L{E) [E)-
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The first term on the right tends to
o0
Z 2&#). ® 6/712
ka1 ¥
as % +»o, (aee [1]), and the tail of the mseries is 0(1/Z). The

absolute value of the sum of the three remaining terms is less than

G-HT be& Trcd ] bedes
k<2 k<8 ksg

- % 0(1eg 2) + 0(1/2)

L ().

As we shall show in § 3, the same limit, 6/n?, is obtained
by counting the fraction of visible points in an expanding region of
much more general shape. Temporarily restricting attention to the

rectangle, however, we can generalize Theorem 1.3 as follows:

Theorem 1.4, The fraotion of points (m,n) in Q(X,Y) such that (m,n) = k

tends to 6/n? ° %3 as X,Y +c0,
Since the condition (m.n) = k holds if, and only if, m = km',

n = kn' where (n'.n') = 1, the number of points in Q(X,Y) with (m,n) = k
is equal to the number 2’3'( é. %) of visible points in Q(é' %) « Using

Theorem 1.% we obtain
AvEE) b f (B DA A

as XQY > 0O,
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This result has been obtained in the case of the square,
X = Y, by Christopher (4], whoss work is based on the asymptotic
formula (1.3). Both Christopher and Hardy and wright [1] use the
term Yprobability" as a loose but descriptive way of talking about
the density of a set of lattice pointa, and we shall adopt this languege
also. Thus, Theorsm l.4 could be described by saying that the probabil-
ity that two randomly selected integers m and n have a g.¢.d. equal
to k is ﬁé‘- f& o« No attempt will be made fc Juatify this usage from

the standpoint of measure theory.



§ 2. The Zeta-Distributions.

In the language of probability, Theorem 1.4 describes a
distribution function Fj (%) = ;?; }j %; s namely the probability that
the g.c.d. of two rendomly aelgetazsfnt@gers will be lees than or egqual
to x. Since F, (x) is proportional to the partial sum Z i-;l-; of the
series for J(2), it may be called a Y e-distributicn. gﬁir@ are corres-
ponding Jedistributions for all dimensions higher than 2. It is an
esasy matter to extend Theorems 1.3 and 1.4 to s dimensions by considering
the number x'(x,,....xn) of visible points in the box Q(X,....,Xs) given

by O < < X (£ 8 142400048), and letting 2 = min X, tend to infinity.

%
The corresponding theorems are:

, N S - 1 of,
W' &xc.'.xﬁ ﬁ(x"nncxs)'my +* O(ﬁ)

Theorem 2.2. The fraction of points (nyspse..n) in QXy sXg vevesX)

such that (n,.n,.....ns) s k tends to ;%;y . ﬁ% as 2 » <O,
Theorem 2.2 describes an entire family of Y-distribution

functions
W=y )
k<x

It is interesting to compute their mean and variance,

Theorem 2,3. The mean of Fs(x) is }Kéf'al if 8 > 3 and infinite if

2 = 2, The variance* is

s -2 _ I¥s -1
T(8) T¥a

. The formula for variance gives some incidental information about
the JT-function., Since the variance is positive, being equal to
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it s > b, infinite 1f & » 3, and indeterninate if s = 2,
Thus the "expected value" of the g.c.d. of two integers is
infinite, whereaz for s integers, s > 3, it is finite and tends to 1
a8 8 » © , |
let 5 be & set of positive integers. In view of the fore-
geing, we should expect that if m and n ars randomly selected, the
probability that their g.c.d. is in S should be

A

keS8
In other words, if f is the characteristic function of 5, we should

expect that

Ma 1Y flam) - g Y
kel

m<X
n<¥

This is indsed true, and for a much larger c¢lass of functions f than

those taking only the values O and 1.

o0

_%~ Z (k - B )2

ris) 5 )
S{a - (g = g = 2
vhere Eg = ~££?T;%l + we¢ have —£§?;7§l > (*SE?T;%2J o This holds in

fact for all real & > 3, integral or otherwise, and induction ylelds

the following theorem:
If 5 18 real and greater than 3 and k is an integer, 1 < k <

' I(s - k) >,(5‘e - >
(201) ) Jis F (s
This shows that iiﬂ?%;§l y considered sas a function of k, is of at

least expenential order,
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Theorem 2.4. If £{n) = 0(n'") for some € >0, then

P ) fea) e § ) HE L o(lez)
m<X k=l

n<y

This generalizes Theorem 1.3, which is the special case
£f(n) = [%] » Theerem 2.4 could be proved ms was Theorem 1.3, by
introducing the Mobius function, but it can be deduced more simply

from the latter as follows:

F5 ) ) ey ) ot ) 4

<X k<2 msX
n<y ns<¥Y
(m'n) sk
- L%). i X Z)
~ %? XY ﬁ{kx '
k<2 ;:- %

a8 in the proof of Theorem l.4., For fixed k, Theorem 1.3 gives us

XY Z
Kk k
=5 . ko(lgs-é)f
Hence
ot
1 Zx Mlan), &) 8 L ofieg) ) £
nsY

. The constant implied by the O ~ notation ig now independent of k.,
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An interesting special case ocours when f£(n) = d(n), the
number of divisors of n. It is known (see [1]) that d(n) = 6(n€ ) for
any € >0, and that

e
Z '&'1# s F¥2) = -
nwl 3@

Hence

Sl ) w@a)=F

m<X
ns<Y

that is to say, the average number of divisors of (m,n), extended over
all points of L, ia %g'. Since.%; < 2y this shows that there must be
plenty of points for which d{(m,n)) = 1, i.e., visible points, Ve
have thus cbtained a bit more information concerning the density of V
in L.

Theorem 2.4 generalizes immediately to dimensions higher than
2. A more interesting question is whether it can be extended downward
to 1 dimension, that is, whether for certain f we may have

X»oo Z f(n) = B-uli- ;’%‘) Z —%2‘
n<X ‘

(2.3)

It is too ambitious to expeot to prove for a useful class of functions
f, say bounded functions, that existence of the limit on the right
implies existence of the limit on the left, which would be the direct
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analogue of Theorem 2.4, For, with f = u, this would prove that
Y u@) = olx),
n<X .
a result known to be equivalent in depth to the prime number theorem.

We can, however, obtain a proof of (2.3) in the opposite direction.

Theorem 2,5. If f is bounded and the sequence {f(n)} can be made to

converge to L by the Cesaro (C,k) procesa for some k, then

s (s - 1) ) %&l

s»l+k nol

exists and is equal to L.

Equation (2.3) is the case (C,1). Om the right, f(s) has
been replaced by E%T v since the Y ~function has a simple pole at
8 = 1 with residue 1 and hence (8 -« 1) F(s8) »1 as 28 = 1 +,

To prove Theorem 2.5 we define

n
ann% Z £() fn 21, a_ = O.
ke)

Then f(n) = na - (n - 1) a .

- -{a =-a +
n(an - an_i) ( . n~1) a .

For 8 >1,
Nf) Na-a_' Na-a_' ya
DI SEIDIE = N IR S I
n=l n=1 nsl n=l

We apply Abel's partial summation method to the first two serics on

the right. In the second, for example,
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3 () <o

nel

1 lt’(n)l < M, then ian\ < M also, and hence

N N
lgla;:” Sn;l_(;%-”(nél)")*(nfl)a”ﬁo

and the same result holds in the other series in (2.4) where & is

replaced by s ~ 1. Hence

N N
In;%?-;l% 2M, and

0 o0
(2.5)| @) _ %
311; 8 n};l.';g

both series being convergent for s >1.
Now suppose a, - Le In this cease, given € >0 we can find

n, such that |a - L|<€ whenn > n.

{Z& L (o) Z‘“L’ ¢ ) 4

n=1" n=l nen_ +1

n, |
< 2M Z %g + € Y(a)e

nel
Multiply both sideas by 8 - 1 and let 3 + 1 +,

lim (s~1)
sel+

u@!ﬂm

-L| S0+ ¢

n=l
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Since this is true for all € >0, we have

oG
F
aﬁ: (e - 1) Z ;ﬁ‘ = L, and hence by (2.9),

nel
o0 R
lis (8 - 1) gg§2
aal+ :Z; n® = L.

iz {an} does not comverge but its sequence {bn} of Cesaro
averages does, then (2,5) is still valid and it also holds with f(n)

replaced by a and a, by bn‘ The triangle ineguality then gives

(2.6) DYV,
n=l =

<
1;& S

and the remainder of the proof holds with a, replaced by bn. This is
the (Cy2) case, and validity for (C,k) follows by inductien.

We have seen that, if f takes only the values O or 1, Theorem
2.h can be interpreted as a formula for the probability that f£((m,n))
e 1 for two rendomly selected integerz m and n. It is perhaps worth
diverging briefly tc¢ observe a similar vigualization of certain Euler
products in terms of probability.

Lat £ be multiplicative and suppose f takes only the.values

C or 1. Then the probability that f({mn)) = 1 is

?‘t’i)i%%l.

kal
Thias expression haes an Euler product, namely

5 i%‘\}la ﬂ(l—%,)(l«o %&-’wigﬂw...)

kel P

- ‘TT glp)
P



vhere 14-!-(#_&&%3—)-" e

glp) = f ~§~

. 1l ;r- P

We will show that g(p) represents the probability that the highest power
of p dividing (m,n) is assigned the function value 1. For, if a > 1,
the probability thst p“ divides both m and n 1s(§;>a and the preobabllity
that 3" |(esn) but p"'{ (m.n) u(;%)'- (;é;;)ﬁ schn (1-3). e
probability that £{p") = 1 is just £{p) itself, since { assumes only
the valuss O and 1. Hence (1 - §%>'£égil iz the probability that pa
ia the highest power of p dividing (m,n) and that also £(p*) = 1. The
sum over all «, which is g(p), is the probability that the highest
power of p dividing (m,n) is assigned the function value 1. It seems
reascnable to assert that this event should be “independent® of the
corresponding event for a different prime, and thus the infinite

product can be regarded as the product of probabilitiss of independent

events,
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8 3. Counting Visible Points in More General Regionms.

Returning to the study of the density of V in L, we may ask
for the limiting fraction of visible points in an expanding regiocn of
more general shape than a rectangle. Under what conditions c¢an we be
sure the limit exists, and if it exists must it be equal ta‘;gk ?
One's imagination immediately pilctures an amoeba-like region expanding
by thrusting forth long tentacles toward special lattice points, and
clearly nothing could be concluded if such pathology were allowed,

We will discuss the case in which a region R which has a positive area
expands by linear magnification about the origin. Depending on whether
the origin iz contsined in the interior of R, or lies on its boundary,
or ia exterior to R, the expanding region will envelop the whole plane,
or a portion of it, or will disappear into the distance.

To begin, R may be an arbitrary‘bounded point get. If t > o,
let tR denote the imagé of R under the mapping £(z) = tz. Let W(tR)
be the number of 1attiaérpoints. excluding the origin,* in tR. Let
N'(tR) be the number of visible poiants in tR. Theorem 1.2, which
counts the vigible peoints of a rectangle, is readily extended to give

the following relationship between N and N'.

o0

Theorem %.1. H(R) = Z N'(E)
k=
N (R) - 2;:1 wtoN(E)

. The fact that magnification occurs about the origin makes this
point somewhat exceptional. Excluding it simplifies the statement of
Theorem 3.1,
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Both sums are finite since 2 eventually contains no lattice

k

point except perhaps the origin. Theorem 3.1 is formally identical

to a known inverszion formula® satisfied by the Mobius function.

S Y TR D N T S U N 7

(myn) R d=l (mym)ER del (o)l a1 4
(myn)#{o,0) (myn)ad (m.n)al
K'(R) = Z 1 . Z Z #(d) = Z w(d) Z L
(myn)ER (myn)eR 4| (myn)  d=l (myn)eR
(E'B)ﬂl : ' (ﬁqn)td

Z e 21 Zv(d)a(

d=1 (m ,n)f-' del
(m.n)ﬂ(o ’0)

Theorem 1.2 is, of course, the case R = Q(X,¥).

From Theorem 3.1 we can deduce that as t »c0, N'(tR)/N(tR)
- ,-T-é s under certain restrictions on R. Hereafter we shall write HN(t)

and N'(t) instead of N(tR) and N'(tR). Define N,(t) to be the number

of lattice squares®*contained entirely in tR, and N, (t) to be the
number of lattice aquares having at least one point in tR. Then we

have the inequalities

(3.1) Ky (8) < N(t) < K (t),

. Hardy and Wright [1], p. 237.

se¢ A lattice square ls considered to contain its southwest corner
and the open south and west edges, but no other boundary pointa.

)



We will now assume that R poseesses a positive area A(R) given by

lim 1im
(3.2) A(R) w (U BAFS = ot .

Then A(tR) = t? A(R), and we will write A(t) for A(tR) amd A for A(1l).

From (%.1) and (3.2) we have
(3.3) ﬂ(t) ~ At !0

Let ¢ = L.u.b. { £[N(t) = 0}, which 1s finite because of (3.3)
and greater than zero because R is bounded. For any t > ¢ let k(t) be

the largest integer k such that N(&):>0. We note that
(3.4) k(t) = [£] or [£]- 1.

¢

For, by definition we must have

t <
ke +1 =% S R(6)

and hence _ k(t) < = <k(¢) « 1.

© for

We may choose the size of B to be such that ¢ = 1. Finally, let P(t)

= ﬁ(t) - A(t)o Then

k(t)

' ( B (t) 1

Nt + 0(1) = W‘b e m kgl u(k)H(&)
{¢l

) #3)
Sy 9L ) aoRt)

k<t k<t

a
&)
™1

*»

~

z
TN

We have proved



Theorem 3,2. If R is bounded and has a positive area, then N’ (t)/N(t)

-»;%— if, and only 1if,

Z n(k)p(f:) = o(t?),
k<t

We shall be content with a very generous sufficient condition.

Theorem 3.3, The condition P(t) = 0(t) implies
Z a(x)p(g) = o(t?),
k<t

and this condition is satisfied, in particular, 4if R is = region whose
boundary is a rectifiable curve.
If |P(t)| <Mt for all t > o, then

) Z u(k)P(&) < Mt Z %s M't log ¢t = o(t?),
kst ket

Suppose R is bounded by a curve C of length 8. Then C c¢an pass through
no more than 4[8] + 4 lattice squares. For suppose we cut C inte (8]
arcs of unit length plus one arc of length {8}, and arrange these
individually in the lattice to maximize the total nunber of squares
passed through. Each segment can pass through at most four squares,
giving a maximum total of 4[S] + &4, and this is also a maximum total
for the original curve C since it constituted one of the posalble
arrangements of the segments. Thua the boundary tC of tR can pass
through at most 4[t8] + & sguares.

But since N, (t) < N(t) < N, (t) and N, (t) < A(t) < N, (¢),

we have |P(t)| =|N(t) - A(t)] < Ny (t) ~ N, (t), and N, (t) - H, (¢t) is
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the number of squares with at least one point imside and at least

cne point outaside of tR., The boundary curve tC must pass through each
of these squares, so0 there cannot be more than 4[t38] + 4 of them. Thus
[P(4)] € My (8) = Ny (%) < b[tS] + b = O(t).

We note that the comdition P(t) = 0(t) is satisfied, in
particular, if R is convex, for bounded convex sets have rectifiable
boundaries.

Theorems 3.2 and 3.3 do not furnish a direct generalization
of Theorem 1.3 because we have considered only the case in which R
expands by linear magnification sbout the origin. In a eimilar manner
we could treat the case of expension under the transformation f£(x,y)

s (t;%,83y)¢ of which the rectangle in Theorem 1.3 ie a special case.

However, we shall not pursue the details hsre.



8 4, Irregularities of Distribution.

we have aeen that the fraction of visible points in a region
B Yuguslly" tends to q?y ag B is allowed to expand. This means that
the visible points muast be distributed with a certain degree of uaniform-
ity throughout the lattice. On the other hand, the results which we
shall obtain in this section show that the distribution cannot be too
unifornm.

We begin with the fellowing question: Is thers a finite sube
set T of L such that every point of L is visible from at least one
point of T? 1If such a set T exists, we will say that T gurveys L. The
next theorem enables us to reduce this question to one dealing with the

distribution of visible points.

Theorem 4.1. The lattice L can be surveyed by a finite subset if, and
only if, V does not contain arbitrarily large square gaps.?

Suppose the disiribution of visible points is such that V
containa no square gaps with slde as great as k. Then any square of
side k containe a point vieible from the origin. It also contains a
point visible frem any other peint (m,n), for otherwise some translate
of thias square would contain no points visible from the origin, and
would thus be & square gap of side k. Hence any square subset of L
of side k surveys L.

Conversely, assume L contains arbitrarily large square gaps
and suppose T surveys L. Then any translate of T must also survey L.

Let T' be a translate of T located in the interior of a square gap

bd Thet 48, regions of form O < m « uo:s ky O <n«n < k belonging
to L - V, °
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large enough to cover it. Then no point of T' is visible from the
origin, which contradicts the fact that T' surveys L.
The next theorem along with Theorem 4.1, shows that no

finite subset surveys L.

Theorem 4,2. The set V contains arbitrarily large square gaps. In
fact, there is a gap of side at least k lying within the square
o 2.
YWe shall use a ¢enstructivé method, based on the Chinese
Remainder Theorem, to locate a gap of ai&e}k. Let Doy Prv eves Pt 1
be k? distinct primes. For r = Oy 1, ..oy k ~ 1 define
riek-1
m, = ;12; Py e
The m's are prime in pairs and by the Chinese Remainder Theorem the

system of congruences
(‘hl) xzr(ﬂﬁd mr)qrilo' 19 -cogk“l

has solutions; call one of them LA Now define
. k-l
Hﬂ' —rr pik“'s fﬁraﬂo‘ 10 cco.k"lc
i=0

The H's are prime in paira and the system
(4.2) y = 8 (mod Ms). g = 0y 1y eaey b =1

has a solution Yor Ve will show that the lattice point (xb,ye) forms
the upper right-hand corner of a gap of side at least k. Ye must
verify that, for 0 <r < ky O < 8 < k we have (x° -y, - s) > 1,

But x - r is divisible by m  and y - s by M_, and (mr.Ks) > 1 because
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the prime factor Prg + g is common to both m, end “a‘

To get the bound on X, and 7, mentioned in the theorem, we

start out with the first k® primes, and make use of Bertrand's
Postulate which implies that the nth prime, p_, cannot exceed 27,
Since the szolution x, of (41) is unique modulo the product of the m's,

we can choose xo to lie between 1 and
k-1 k?
W ﬂr =n an .
r=o n=l
Similariy, we can choose Y to 1ie between 1 and
k-1 k?

TTHE"TTP:&'
820 n=l

But
‘ k? k?
1 2 2 &
(4.3) TT py < JT 2 = 2'/akMkBL < Gkt
nsl nel
This bound on
ki
1T Py
=l

, 2
iz, of course, very weak, and can be improved to kAk if we use the

prime number theorem in the form O(x)~ x, vhere 9(x) = }: log p.
p<x

Bertrand's Postulate uses only the fact that 6(x) < 2 x log 2. Using

the stronger thoorem. we have

kt
log TT », = Z log p = @(pk,)~pgg~2k2 log k
nal Pspkg

where the last step uses the prime number thsorem again in the form

P~ n log n. Thus



kl
TT », = exp (2k? log k + o(k? log k))
axl

o PR 4ol _ | ak?

for a suitable comstant A. For sufficiently large k we may take 4 = 3,
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8 5. Joint Visibility.

We turn now to the following kind of question: If T is a
finite subset of L, what is the dansity”of those lattice points visible
frem each point of T? Ve shall consider only the two simplest cases,
namely those in which T consists of just two points, or in which all
peints of T are themselves mutually visible 4in pairs. A4s in 8 1, we
shall interpret "density" as meaning the limiting fraction of such
points in a rectangle centered at the origin, as the dimensions of the
rectangle approach infinity independently.

Suppose first that T consists of two distinct points, (u,v)
and (wyz). Let Q and §, be two congruent rectangles, with § centered
at (0,0) and Q, centered at (w,z). We wish to count the number of
lattice points in Q which are jointly visible from both (u,v) and (w,z).
But this cannot differ from the corresponding number in Q, by more than
the number of lattice points in the region Q«Q, (in the language of
set theory), snd the area of §-Q, is of smaller order than the areas
of Q and Q,. Therefore, the fractions of such points in Q end Q, tend
to the same limit. Hence we may assume that the rectangle is centered
at one of the two pointe of T, and furthermore we may chocse éhis point
to be the origin, i.e. (w,2) = (0,0). In fact, we may restrict atten-
tion only to the first-quadrant portion Q(X,Y) of this rectangle,
where as before Q(X,Y) = {(x,y) | O<x<X, 0O<y<Y . For, although the
distribution of points jointly visible from (u,v) and (o,0) may not
have quadrant symmetry, we will see that the density computed from
Q(X,Y) depende only on the g.c.d. (u,v) and hence is unaffected by

replacing u by ~u or v by -v.



- 27 -

Our problem is thus reduced to countling the number of
lattice points in Q(X,Y) which are visible from both {(u,v) and {(o,0).
Such points (m,n) are characterized by (m,n) = (m - umn - v) = 1,

In addition to 2 = min (X,Y) 4t will be convenient to
introduce the notation

Z = mex (wax{(a,n), (m « u,n - _v)} ).
(myn) € Q(X,Y)
We have® Z < [2] + max (lul,(v]) < A2,
The fraction of points in Q(X,Y) visible from both (u,v) and

(0'0) is

'J%Y'Z 1 .-%f- Z n(d) Z n(d+)

a<X <X d/(m,n) d'| (m~u,n-v)
n<Y a<y
(myn)=(mwu,nev)al
(5.2) -F ) s@wer Yo
dd*<Z m<X
n<¥
d|(myn)

d'| (m=uyn=v)

¥or fixed d and d4', the sum on the right is equal to

- V7 N 2
3 /L Y L ey ) 1 ).t
m<X n<Y a al
(5.2) | - = '
dlm din da = ul(mod d') da’'= v(mod d')
a'm-u  @'lnev aé% a's%

» In this section A will represent a positive conatant whose value
is not necessarily the same every time it appears.
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The first sum on the right in (5.2) is the number of solutions

not exoneding'§ of the congruence
da = u (mod d'),

Thie is zero unless (d,d')|us If (d,d')|u then there are exactly (d,d')
solutions (mod d') and hence[a%%:](d.d') . B solutions not exceeding
é. where 0 < © < (d,d'), Similarly, the second sum on the right in
(5.2) is equal to zero unless (d,d')|v, and in that case is equal to
['&-%7} (dyd') + o' where 0 < g < (d,d'). Iine (5.1) becomes

4 ) w@ u(d*)(d L aian) o 9)([5%-,-] (d,a7) + 9> :

d,4’ <7

{(5.3)
(d,4%) |(u,v)

We want now to extract the principal term

Z u(d) ) (755 [55] cavan

4 4¢
(5.#) dyd' <
(d,m](u.v)

and show that the error terms R and 8 tend to zero as X, ¥ »oo, where

e ) @ s (o[fh] o [ Jwan
d,d'< b7
(dyd") | (uyw)

and

s-%,- Z p(d) u(d') & &

d,4'<3Z
(d.d')](u,v)

For R we have the estimate
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- e ....2‘....) 2 < £ i i
|| <55 (Tor+ge )it s 3 d 3 (wv)?
4,d'<2 d<AZ  d'<AZ

<
b

tafe

log? 2 » 0 ag 2 = oo,

The error term S cannot be estimated by aimply replacing the n's by 1
and the g'a by (u,v), but we may treat it as follows., V“hen d d'> max

(X,Y), line (5.3) reduces to 5, and by reversing the steps between (5.1)

snd (5.3%) we have

8= '}%f' Z Z u(d) nid*) .

m<X d’(ﬂqn)
n<Y d'|(m-u,n-v)
d 4' >max (X,Y)

Now it i3 safe tec replace the u's by 1.°*

IQIS‘%Y" Z Z 1 < "X%Z a({m,n))d((m-u,n-v))

m<X d|(m,n) m<X
n<¥ d'|(m-u,n-v) n<Y
dar >z (myn) (m-u,n-v) > 2

It is known®** that the divisor function d{n) is of order

0(n€) for any ¢ >0, so, with ¢ = %0

i i i
d{(m,n))d((meu,nev)) < A(m.11)6(31--xa.n~»v)6 < Az,

» I am indebted to Howard Rumsey for demomstrating that the fact
that S » O doss not depend on special properties of the n-function,
and for providing an alternative proof.

b Sea t1}| Ch.ﬂpo 18,
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XY Z 1
wm<X
n<y¥

{(myn) (meu,n-v) > 2

a2/t &)

mn<X
ns<Y .
1
(myn) > 2 /e or (m~u,n-v)>2 /2

*or e R

n<Y n<Y
¥ )
(myn) > 2 /2 (meu,n-v) > Z /2

SAZ‘/’%Y—Zlqu'/’ Y w1t

Is|

< Aﬁ'/

-

msX 1/, m<X
%
(myn) > 2 /2 (mn)=d
'/, 1 g
< 3 . 4
S A2 Z " X¥ xi
m<s
2/t 3¢3 d
X
néé
{myn)=l

1
ng/! Z d:(é*ﬂlcs >byThoareml.3.

&
1 d
& /’<dSZ
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IN

2 Z 4, « az” /% 10g 2 Z 3
d<Z

[s]

d>z‘/ﬂ

1/ .9 2 1
<azh o 2?10tz = 0270,

We now return to (5.4) and estimate the errcr incurred by

removing the greatest integer signs. The sum in (S5.4) is

y Al - ) wenen (P {75

(5.5]

v oE Y waman {75 (75 @ant

where the sums are over d < 2, d' < Z, (d,d') | (u,v). The first error
term in (5.5) can be estimated by the same method used for R above and
ia found to be

o( =2 ),

while the second error term is in magnitude less than

XY
dyd’'< 2 d,d'< AZ

g Z E%(u,v)’s'% Z -;%—.--M-’-‘-%Lg) .

As XY » oo, the surviving term in (5.5) is

o0 o

Flww)) = ) p(@u(@)@,e)?a Y a 3 %;:_2_;
dyd'sl (d qv)? a|(uw) dedtml

(dtd')‘ (u,V) ‘ (d‘d’)“&
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o0

Flaw)) = oy et ) ealulm)
a|(uyw) @mel

(m .a)-l
p%a) o
" E: at E: %mn?é
a8 |(usv) ®yn=l
(a,mn) sl

. B T oel o
), EE o

v

a ‘(n.?) kel
(& ’k)‘l

- L R T ()

a(u,v) pta

fcw&n -Cc ) ifa) W(l*'fﬂ'l

a;(u’v) pla

vhere C = ﬂ(l-*fr) >0,
P

The form of this last expressicn shows that é F{(u,v)) is
a multiplicative function of the g.c.d. (u,v). Evaluating it on

prime powera, we have

1
« |
sFEH - ) %{4 B(l-%)‘l « leopbs

k=0

Hence %;- F((u,v)) = T—r ?;;—:-% . 'Ye have proved
‘ p|(u,v)
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Theorem 5,1, The density of points visible from both (u,v) and (o,0)
~— 3 -
depends only on the g.c.d. (u,v) and is equal to C (1‘ §1~:~§ '

where C = W(l - -5,-) . pl(uyw)
p

This formula shows that the density of points mutually viaible
from (u,v) and (o,0) is minimized by choocsing (u,v) and {(0,0) to be
mutually visible themselves, and this minimum value is C.* On the other

hand, the density is always less than

cwg—}% “TTa-4) = 4.
» P

as it should be, since this is the fraction of points viaihle'frow one
point alone.
We note that the density of lattice points visible from
gither (u,v) or (o0,0) is
-Té-”-;%e-c TT g':—‘:"‘% ’
pl(u,w) -
by the “oross-classification® principle. If an independent expression
vere derived for this density, the constant C could be evaluated.
However, the work would be much more difficult than that above, .
becauae the functions involved are not multiplicative.
In generalizing Theorem 5.1 to a finite set T consisting of
wore than two points, we will simplify the counting process by assuming

that all points of T are mutually visible in pairs. For a two-dimensional

. By numerical caslculation and estimation of the tail of the
produoct we obtain the inequalities

0,321 < C < 0.32}.
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lattice L, the only case to consider is that of three polnts, in view

of the following observation.

Theorem 5.2. It is impossible to find five points of L mutually
visible in pairs. More generally, in an s-dimensional lattice the
largest possible number of points mutually visible in pairs is 28,
Since 2° 1s the number of vertices of an s-dimensional unit
e¢uba, it is certainly poassible to find 2® points mutually viaible in
pairs. Suppose, on the other hand, that we pick any set T of 2° + 1
lattice points. If we reduce each such point modulo 2, component by
component, we obtain 2° + 1 points each having all components 1 or O,
By the Dirichlet box principle, some two of these points must be
{identical, meaning that the original two points from which they came
have the same parity, component by campeneﬁt. 8ince the componentwise
differences are all divisible by 2, these two points cannot be

mutually visible.

Theorem 5.3. In a two-dimensional lattice L the density of points
visible from each of three given polnte mutually visible in pairs is
TT(l ~.z.> .
P p?
Let the three points be (u,v), (w,z) and (o0,0), with

(ayv) & (wez) = (4 « wyv = 2) = 1, This time let

7. max max | (myn)y (@ « uyn = V) (@ - wyn = z)\ .
(n,a)fQ(x.Y)< { ' ’ ' y >

Again Z < AZ where Z = min (X,Y). The fraction of points in Q(X,Y)

viasible from all members of T is
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+ > 1 ek ) ) w@) ) w@) D wa)
(5.6) m<X <X 4, |(mn) dp | (m~u,n-v) dy | (m-wyn-z)
n<Y n<Y
(myn)=(m-u,n-v)
s{m~wn~-z)el

) wEomEmE) ) 1 Z 1

d,,d,.d,sa m<X
dy| m d,ln
dplm~u dp| n-v
dy|m-w  d;|n-z

Note that d,, dp 4 4; must be prime in pairs because of the conditions
(uyv) = (wyz) = (u-w,v-z) = 1, Thus the system
| % =0 (mod 4,)
m =u (mod 4;)
m=vw (mod dy)
has a unique solution (mod d,d,d;) by the Chinese Remainder Theorem, and
{-—---5---»] + © solutions not exceeding X, where O = O or 1. line (5.6)

dydy dy
becomes

¥ n(d,)n(d,)u(a,)([a—‘%-—é’] "QX[d,a,Ya,] v o)
dy o8y o8y < Z

where also 0 < &' < 1, The error terma can be shown to tend to zero
by the seme methods used before, giving finally
o0
Z 2%@, dads %
dydpdy)?
dy odp 43 =l
as the density of points visible from each of (u,v), {(w,s) and (o,0).

. Letting k = dydydy 4 this becomes
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(5.7) Z ké‘%l Z 1 .

ksl didpdy =K

We may consider k to bs square~free due to the presence of u(k). The
nusber of ways k can be represented in the form k = d4d,d; is then
4

just 3 (k). where (k) iz the number of prime divisors of k. Iine
{5.7) reduces to

o0

k)
SRS T3 )

kel p

4
the Euler product representation holding since 3 () iz multiplicative.

T -57) o

Since

Theorem 5.3 shows that there are infinitely many waye of choosing four
points mutuslly visible in pairs, besidea the vertices of a unit
square, It also provides a method of constructing a set £ of lattice

points, of positive density

Te-5r)

P

such that no two points of E are mutually visible--namely, let E be
the set of all pointe visible from each of three mutually visible
points. If any two pointe of £ could see one another, we would have
five points mutually visible in pairs,

The higher-dimensional analogue of Theorems 5.1 and 5.3 is

~ the following:

Theorem 5.4, Let T be a set in an a-dimensional lattice consisting of
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n points mutually vieible in pairs. The density of points viszible

from each point of T is

T 3)
P

1f n < 2%, and zero if n > 29,

The proof is a direct extension of the method used in proving

Theorem 5.3
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B 6, Some Identities Involving Vieible Points.

The results of this section are certain identities based on

the following principle. Suppose
/
Z f(m.a)
(B'ﬁ) EL

is an absolutely convergent infinite series summed cver all points of
the lattice L excluding the origin. Ve can rearrange the series by
summing first over all multiples (km,kn) of a visible point (m,n) and
then over all (mm)e V, i.e.

y [e o)
(601) Z !(ﬂgﬂ) = Z Z f(kﬂlykn)o
| (mem) € L (men) €V k=l
In certain cases it may happen that the inaide sum can be put into
closed form, thus converting the original sum over L into & new sum

over V. The same idea holds for absolutely convergent infinite products,

namely
y o
(6-2) —H f(ﬂ'n) = W TT f(km'kn).
(ﬂ,a)L L (E.R) €V k=l

ILet us apply this process to the Weierstrass ba-function

defined by
1 /
. - - 1

(6.3) Fz) = g7+ Z ( oy +ng ~2) 7 (oo +ng ) 7 >

(mynde L
where z 1s a complex variable and W, and w, are fixed non-gzero complex
nubers with non-real ratio. We write  for a general point my + nw
and, with a slight abuse of notation, write L for the lattice of all
such w and V for the set of visible w, that is, those . for which

(ﬂ’n) ] 1- Theﬂ



(6.%) kK&)(z)n-ﬁr-ﬁ- Z(Tﬁm -'ﬁr) .

wel,

wWAC

The series (6.4) converges absolutely for every fixed

g2 ¢ L since

and

L T

wey,

W 40

converges. - Hence

€5 F@edr o) ) (o oot )

wey kel

%,

since in the l-dimensional sum on k the two parts converge separately,

the value of the second being

e
25 A
kel

Now if w i3 a complex number different from an integer

multiple of 71T, thgz the partial fractiogn expansion of csc? w is

wwolve ) TEem o2 ) Gt tar
e 0O -3
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Putting w a% + we obtain from (6.5) the formula

1 Ul T unl
6.6) Pia) ety + § ) (wwc' cal S Ll )

kJLv

which expresses {(2) as a sum extended over the visible points of the

lattice generated by (/, and W,
In (6.5), another way of putting the sum on k in closed form

iz to introduce the Hurwits zeta-function By (s8,a), defined for real

8 > 1 and oomplex a not a negative integer or zero, by
o0
T(s,a) = Z @%35 .
kno

Then

6.7 P ady + ) (Zw’ﬁﬁ;ﬂ -er - 31;’)

wWEY kmo

L, DR 1
oy Z(z}, Y2, 8 - X - g;;,),

wWwevy

Similer expressions hold for the Welerstrass Y- and
0 =functions, namely:

6.8 Twals ) (Foedik)

wWel,

w #0

31V (TemBodefy o)
Wiy
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69 was [[Q-Bew(Beily)

wey,
whd
2 .2
-z [[rrtpee (-8 4 )
wey

where in (£.9) [(z) is the gamma function and 7 is Euler's constant,
The gemma function arises from the l~dimensional product on k, which

is recognized az the Velerstrass product representation of

, 2\
rapy e (-7 8
The “imvariante" g and g, associated with the P-function

are easily expressed as sums over the visible points, namely:

&(wu%)ﬂﬁoza*%‘:néﬁiklgzu%t,ggcgg ZE)}T

wej, o=l we¥ wey
(6.10) wio
6
ﬁ;(")‘f‘)g) e 140 Za’%‘n‘é{;’g « 140 Z l:)lt'.
WEY, wey
w #O

If we put G () «4) = 60 ) Hyand

wey

G) (“J‘ 'wg) alf&O Z C‘%" ’ then

wey

g,ag'éﬁgand

ré

6 =55 -



3 2 3 2
The condition g ~ 278y # O becomes k9 G, - 1080 G, 4 O,
and Klein's modular invariant
2’
Iy oy ) & o=y
& - 278

may be written

J(W, 44y ) = hoGy 3 .
459Gy -~ 1080Gy
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8 7. A Generalization of the Fuler F-Funotion,

In 8 5 we considered the 1imiting fraction of points in a
rectangle Q(X,Y) which are visible from both (0,0) and (u,v). Let us
now put (a,v) = (m,0) and allow Q(X,Y) to expand by making X -0 first,
holding Y constant, and finally letting Y -o°, The limiting fraction
of points in Q(X,Y) visible from both {o,0) and (m,0) is

lia% }: F(mon)

Yoo n<¥
where
(7.1) F(m,n) = ln § Z 1.
Xooo x<X
(x.n)wl
{x-m,n)=l

For fixed m and n, F(m,n) is the average value of the function
£(x), vhere f(x) = 1 i (x,n) = (x-m,n) = 1 and £(x) = O otherwise.
Since f(x) is periodic with period n, the average need only be

extended over the interval 1 < x < n, ard we have

F(m,n) a% Z 1.

x<n
(xyn)el
(X"an)ﬁl

If we define y by x + y = n + m, then
(7.2) F(m,n) -% Z 1 = %ﬂ(n_.m)

x<n
Xeymni+m
(xyn)=(y,nl=l

where #(n,m) is the number of ordered pairs of integers (x,y) satisfying

X+ymn+m l<x<n, (xp) = (yn) = 1. The function F(n,m) which
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x|="—‘—x(!80dn)'1<x,$n

y(modn)y,m<y,<m+n--1,

b £}

Then %, + y; = m (mod n) and 1 < x, + y, - m < 2n, which implies
Xy +y, =n + m. Conversely, any pair (x,.,y,) satisfying this last
condition with (x,n) = (y,,n) » 1 sutomatically satisfies (7.3).
8ince there is a one-to-one correspondence between the pairs (x,y)
satisfying (7.3) and the pairs (x,,y,) satisfying Alder's condition,
there ure the same number of each, and therefore the twe definitions
of P(nsm) are equivalent.

| It is now natural to define, for positive integral s, a

new function g (n.m) to be the number of distinct solutions (mod n)

of the congruence

(7.4) X + % e tA =1 (mod n) with

(Xym) a2 (3p 1) 2 s0u = (xa.n) = 1.

with this notation the Alder function is £ (n.m) and the Fuler function
% (n,0). In the degenerate case 3 = 1, we have @, (n,m) = [E%Ey].
A number of properties of }6 (nym) will be derived, beginning

with the following theorem linking it to Ramanujan's sum C (m) =Z ( @')
k modn

Here e{x) = exp (2wix) and the sum on k is over any reduced residue

system (med n)., Omission of the asterisk will mean summation over any

complete residue system.

Theorem 7.3, If s is a positive integer, the & th power of Cn(n) is

given by
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(7.5) Ci(a) s Z ﬁa(ngj)e(‘i}) .
J mod n

Furthermore,

(7.6) ﬁs(nm)a% Z c2(s)e(d2),

Jmodn

Equation (7.5) states that ﬂa(n,;]) is the coefficient of the
Jjthterm in the finite Fourier expansion of the s th power of Cn(m).
Equations (7.5) and (7.6) are equivalent, being a "Fourier transform

padr” (see [7]), and we need only prove (7.5). We have

L]

CEEDNEC O NDNEC PN

¥ mod n X% mod n xamodn
£ ] [ ] »
s Z Z oas Z e(ﬁ(x, O AT ;ts)>
Xy modn % modn X, mod n ‘
i "
* Z () Z
Jmod n Xy mod n
% mod n
. x,+x,+...*xss;}(madn)
, mod n
» Z ﬁa(n.j)a(df*) v
Jmod n

Since Cn(u) reduces to @(n) when m = n and to the Mobius
function 1(n) when m = 1, substitution of these values in the first

line of Theorem 7.3 gives the following corollary:
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Sorollary 7.3 ) = ) g (np)

Jmed n

) = g ape(d).
jmod n

The second line of Theorem 7.3 leads to an evaluation of

ﬁa(n.m) as a divisor sum, namely:

2
Theorem 7.4, ﬂs(mm) = ﬁéﬂ % Cd(a) .

dln

The proof is based on the formula

(n)y (=B
(7.9 ¢ () = s (oY)
ﬂ(an*Rj)

given by Anderson and Apostol [7] and others, Substitution of (7.7)

in (7.6) yields

“é( ‘ ) n
(7.8) ﬂa(n.m) aqﬁjmgn e(a ).

Hext, the order of summation is changed, firat runming over all j such

that (n,j) = d, and finally over all d|n.

ﬁ(n.m)s&z °(9‘ Z e(‘}W%) Let j = dk
d|n ( >3 mod n
(nyjled
w y 2 v ey
din (d) k mod %

ﬁ,k) 1
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The inside sum is Ca(a). yielding Theorem 7.4 with the sum on d
4
running backward. Ve now have

Corcllary 7.2. The function ﬂa(n.n) is multiplicative in the variable n,
i.e. R’a(n ﬁ‘;ﬂ) L] ﬂa(noa) ﬁm(n' .ﬂ) if (nyﬂ’) = 1,

For, Cd(n) is multiplicative in 4, as are u(d) and $(d), and by a well
known theorem the divisor sum in Theorem 7.4 is multiplicative in n.

From Theorem 7.4 we derive the following product representation:

meores 25, A, = £ TT (2 f2300) TT (2 - £205 ).

P'(&gﬂ) pln

pim

Por multiplicative £, the sum
Z (@) e(a@)
dln
has the Euler product

TT (1 + («2)%2(p)).

p(n
C,{(m)
« Theorem 7.4 yields

For fixed m, if we let £(d) = =
d

c_(m)
ﬂa(nm) = ﬁéﬁ T—l- (1 + (-1)3“2‘:}" ) o

3
o[ (p-1)

The well known formula
a
c (m) = Z du(d)
dl(ﬁgﬂ)

shows that Cp(m) = p-1 or -1 according as p|m or pim, and substitution



uz}gaﬁ

of these values gives Theorem 7.5.

The product form reveals some interesting properties of
ﬂa(mm) in light of its definition as the number of solutions of a
congruence. For example, if 8 is odd and both m and n are even, or
if 8 and n are even and » ia odd, then one of the factors in Theorenm
7.5 48 zero and ﬁe(mm) = O, Conversely, aside from the case s = 1,
these are the only conditions under which the product can vanish,

which proves

Corgllary 7.3, For s > 2, the congruence (7.4) is insoluble if and
only if n is even and & and m have opposite parity. For a = 1 there
is, of course, no sclution unless (m,n) = 1,

Another consequence of Theorem 7.5 is the following:

Corcllary 7.4. If a is even, the number of solutions of the con~-
gruence (7.4) is maximized, for fixed n, by taking m = o, and minimized
by taking m = 1, If & i3 odd the reverse is true.

¥We turn our attention now to a certain functional equation

satisfied by ﬁs(n.m).

Theorem 7.6. The function B (am) satisfies the functional equation

Z ﬂs(n,m)ﬁa(numﬁc) = ;’é’%’:%%% Pas {({nen?) k).

o mod (nnt)

The left-hand side is essentially the gross-correlation
funotion of the functions §_(n,-) and 2 (n'y-). Here (nyn'y denotes

the l.c.8, of n and n', If n' = n we have the following cerollary:

Gorollary 2:5. ) £, (nmek) = B_(nJk),

mmod n
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That is, the autocorrelation function of ﬁg(n.—) is 2&8(3.—).
The proof of Theorem 7.6 is based on the following lemma

which asserts that thé crosg~-correlation function is the "“inner

product® of the two Fourier series:

Lemma. If f and g are periodic with common period M and have the
respective Fourier series

(7.9) f(m) = FE: ' ay c(%?» y B(m) = §: bj s(%%) s then
J mod M J mod M

(7.10) 33; Z Tm) glamek) = Z Ej b, e(%).
w mod M § mod M

Here a bar denotes complex conjugste. Since our functions
and Fourier coefficients are real-velued, the bars can be removed,
but they are needed in the proof of the lemma.

We substitute in the left hand side of (7.10) the series
(7,9) for f and g, replacing all terms in the former series by their

complex conjugates.

Y Y w3 ) vy (i)

mmod ¥ 4 mod K J mod M
Y Y wevge) L (%)
imod M J mod M m mod M

The last sum on the right is equal to M if 1 =3 (mod M) and is equal
to zerc otherwise. This expression thus reduces to (7.10), proving

the lem:a.

To prove Theorem 7.6, let f(m) = ﬂ;(n.m) and 5(&7‘E"¢g(n'.a).
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The respective Fourler series are given by Theorem 7.3 and have

periods n and n'. To get a common period M a(t:.ﬁ‘}. we may write

ﬂs(nm) u%j Zd 8y e(%?) where ay = ﬁ(%)ifﬁé—,—y} 3
mod M

= O otherwise

,da(n'.u) ai‘, Z hJ e(‘%ﬁ) where hj ™ c:, (139-;;“-’—)~> ir T;?;;-)- | 3
Jmod M
= O otherwize.

The lemma now gives

Y. A g sl ) o (Haad) e () ) ().
‘momod M J mod ¥ ‘

e oL

If we put N = (nyn') and let § = 1 g y then 1 ranges over a complete
residue aystem (mod K) and the right side becomes
) i in ialy ik
(7.22) DIAC JE-AE DI
i mod N
Substitution of the formula (7.5) for Ramanujan’svsum glves, after a
little juggling,
22m) %) gas(gnﬁ;zﬂ ik
(7.12) 5 of%),
N ﬂza( N ) ]
i mod K ZN.is
and reference to (7.8) shows that this last summetion is equal to
Ll (Nyk) The form of the right side of Theorem 7.6 is reached

.Rad8 ) °
by applying the identities

RO 00) L ga n) w gln 1) » LRI
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[3]

- 52 -

REFERENCES

G. H. Hardy and E, M, Wright, An Introduction to the Theory of
Humbera, Third Edition, Oxford (1954).

F. Mertens, Journal fur Math., 77, 289-333 (1874).

We Jo Leveque, Topics in Number Theory, Vol. I, Adéiaan-%’esley
(1956).

Js Mﬂt@]’her. &- Math, Mgnthlz. ﬁg Ko. 69 399“'2-’01 (19%).
K- Lo Aldcr. &o MQ E‘WQ ﬁ‘ Eo. 9. 690‘692 (1958).
V. A. Golubev, Mathesis, Tome LXVII, 11-20 (1958).

Ds R. Anderson and T. M. Apostol, Duke Math. Jourmal, 20, Ro. 2,
211-216 (1953).





