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ABSTRACT

The liquefaction phenomenon in soil has been studied in great detail during
the past 20 years. The need to understand this phenomenon has been emphasized
by the extent of the damages resulting from soil liquefaction during earthquakes.
Although an overall explanation exists for this phenomenon through the concept of
effective stress, the basic mechanism of loss of strength of the soil skeleton has not
been thoroughly examined and remains unclear.

- The present study proposes a numerical model for simulations of the behavior

of saturated granular media. The model was developed with two main objectives:

1. To represent the mechanical response of an assemblage of discrete particles hav-

ing the shape of discs.

2. To model and represent the interaction of interstitial pore fluid present with the

idealized granular media.

The representation of the solid skeleton is based on Cundall and Strack’s distinct
element model, in which discrete particles are modelled as discs in two dimensions,
each obeying Newton’s laws. Interpa;rti‘cle contacts consisting of springs and frictional
element dé,shpots are included. Assuming a Newtonian incompressible fluid with
constant viscosity and density, and quasi-steady flow, the fluid phase is described by
Stokes’ equations. Thé solution to Stokes’ equatioﬁs is obtained through the boundary
integral element formulation. Several validation test cases are presented along with
four simple shear tests on dry and saturated granular assemblages. For these last four
tests, the numerical results indicate that the model is able to represent qualitatively
the behavior of real soil, while at the same time clarifying the processes occurring at

the microscale that influence soil response.
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Chépter 1
INTRODUCTION

1.1 Motivations

| The extent of damage resulting from the so-called soil liquefaction phenomenon during
earthquakes (Niigata, Japan, 1964; Alaska, USA, 1964; San Fernando, USA, 1971,
and probably during the recent San Francisco earthquake on 10/17/89) emphasizes
the need to understand the physical phenomenon that starts this process, whereby the
soil skeleton completely loses its strength. During the ’60’s and early '70’s, research
interest was mainly focused on phenomenological experiments where it was shown that
excess pore pressures were generated during cyclic shearing of a loaded saturated sand.
In the extreme case where the soil skeleton loses all its shear strength, the portion
of the applied load, which was originally supported by the soil skeleton, is shifted to
the liquid‘ phase so that the soil assumes the properties of a dense liquid. Settlement
results when the pore pressure dissipates by diffusion to drainage surfaces. In these
experimental studies,' empirical data were accumﬁla.ted on the pore pressure generated
in a particular soil under a particular applied stress, as a function of the shear stress
level and number of shear stress cycles [43,57,61,70,77]). The basic mechanism of loss
of strength has not been thoroughly examined and remains unclear.

With the advance of computers, predictions of liquefaction have been conducted
mainly by numerical simulations {75,99]. These numerical simulations were performed

by considering the soil as a continuum with a coupling relationship between the soil
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skeléton a.nd the interstitial pore ﬂu‘id. The appropriate material properties were
obtained empiri‘ca,lly. Although these numerical models proved to be quite useful
in the pfedictions of the behavior of soils, they do not help to explain the basic
phenomenon that initiates the liquefaction process.

In the quest for understanding soil behavior, some current research interest is
focused on the behavior of soil at the microscale [23,89]. From that work, the indi-
vidual particle behavior can be simply described. In particular, the distinct element
method (DEM) introduced by Cundall and Strack [23] has shown that even in the
simplest case, where the individual particles are modelled as discs in two dimensions
~and spheres in three dimensions, eéch obeying Newton’s laws and having contacts
consisting of springs and frictional element dashpots, the global behavior obtained
reasonably simulates the actual behavior of granular media. The shortcoming of this
model comes from the large amount of computation time required to perform each
simulation. Furthermore and very importantly, the original DEM cannot take into
account the fluid phase, which has such a significant effect on soil behavior.

A liquid phase is essential in the modelling of the saturated granular behavior.
The modelling of the behavior of particles in a fluid medium is of practical importance
in chemistry or biomechanics. However, in those fields contact interaction between
particles is not significant and usually a dilute system of particles in a fluid medium
is considered. In the case of soil, the interaction between the soil grains is the most
important factor controlling the behavior of the saturated soil medium. Therefore,
a model of a microscopic granular medium needs to be able to represent both the
solid-solid and solid-liquid interactions.

To model the liquid phase at the microscale, Darcy’s law [31], which is generally
used to describe liquid flow in a porous media, is no longer sufficient. ‘The derivation

of Darcy’s law assumes that the medium is a continuum and the relationship obtained



‘holds on the average. If the fluid is assumed to be Newtonian and incompressible with

constant vis'cosiigy and density, the description of the motion of the fluid phase is given,
in generé,l, Aby the Navier-Stokes equations. However, fluid flow in granular media
oécurs at low Reynolds numbers, with this condition, and by assuming furthermore
thallzi,qua,si-étudy flow occurs, the descripfion of the motion of the liquid phase can be
given by Stokes’ equations.

With the combination of the microscopic solid model, that is the DEM, and a
liquid behavior representation, it is then possible to model the behavior of a saturated
granular medium. Because of the complexity of the combined solid-solid and solid-
~ fluid interactions and the lengthy calculations involved in the numerical solution of
the behavior of the liquid phase in particular, no such attempt at modelling the
saturated granular medium at the microscale has been attempted before. Owing to
the widespread availability of supercomputers, such a simulation is now feasible and

has been implemented here.

1.2 Outline of the Present Work

As mentioned above, the main purpose of this research is to develop a numerical model
that can represent both the solid-solid and solid-liquid interactions at the microscale.
To this end, a numerical simulation tool, NePTune, was developed based on the
" microscopic solid-solid model pioneered by Cundall and Strack [23]. The description
of this model is presented in chapter 2.

In chapter 3, the derivation of Stokes’ equations is given. The main purpose is
to introduce the underlying assumptions that lead to these equations which describe
the solid-liquid interaction.

Several numerical methods exist for solving Stokes’ equations; however because

of the complexity of the shape of the liquid domain, the finite element method proved
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, Hto‘ be impraCt?éal because the doméin needs to be discretized entirely. In this work,
the boundary eierrient approach is chosen because of its simplicity in representing
the liquid domain where the khowledge of the liquid boundaries is sufficient for the
' déscription of the geometry of the problem. Although the formulation of the bound-
a,ry.élemen‘t method is elegant and simple, its numerical implementation proves to
be difficult, particularly when singular functions are involved. By comparison with
the finite element method, the boundary element method is not necessarily more ad-
vantageous because the matrix obtained is full and non-symmetric. In light of the
complex shape of the liquid domain present in the particulate problem, use of the
~ finite element method will also produce a large size of matrix; however, its numerical
implementation is more straightforward than that of the boundary element method.
The boundary integral formulation and its numerical implementation are discussed
in chapter 4 along with some validation examples.

Further test and validation cases involving solid and fluid interactions are pre-
sented in chapter 5. Of particular interest, four simple shear tests have been performed
(two for a loose array of particles and two for a dense array). Because of the limited
resource available oﬁ the Cray, only a limited number of particles has been used in
these four simulations. Nevertheless, we were a,ble’to obtain interesting and reason-
able results for these limited configurations. In particular, the model shows that it
_ is able to represent qualitatively the behavior of a real soil, while at the same time
indicating the processes occuring at the microscale that influence soil response.

Finally, certain conclusions and recommendations for future work are summa-

rized in chapter 6.



Chapter 2
NUMERICAL MODELLING OF THE SOLID PHASE

2.1 Different Concepts for Modelling Granular Media

2.1.1 The Continuum Approach

In engineering applications, the response behavior of any materials can be studied
at a macroscopic level without considering atomic or molecular structures. This
continuum concept lends itself naturally to homogeneous materials such as metals,
but the same approach has also beeri used by geotechnical engineers to model soil,
an aggregate of highly inhomogeneous particles. From a practical point of view, the
continuum approach has provided geotechnical engineers with a working hypothesis
in which a soil mass can be simplified and idealized. However, engineers must be fully
aware of the uncertainties involved and they must anticipate the differences between
real soil and the idealized materials used in their design. Safety factors are used
. extensively to overcome uncertainties. In the overall, the continuum approach has
been uséd quif.e successfully in Soil Mechanics as can be proved by the large number
of standing man-made earthworks and few failures of structures supported by soil.
One main, a,dva,nt‘age of the continuum conbcept comes from the fact that we can
establish a mathematical model that describes the behavior of the materials. Several
constitutive models have been developed to idealize the mechanical properties of

different soils [36]. The establishment of constitutive models is based on experimental
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- observations at a macroscopic level.

| However, fhe' identification of the relevant constitutive variables for a certain
‘material éél;ld become a diﬁiculf t;adsk. Also, the selection of pertinent properties often
m'ay have to be done only by experience and intuition. Depending on the complexity
of tﬁ,e modéls, the amount of internal variables used is quite large. Due to the limited
amount of available standard tests in Soil Mechanics, the determination of some
of these intérnal variables is not easy and requires special experimental apparatus.

Furthermore, constitutive models must obey certain principles or axioms that govern

the physical phenomena. These axioms are classified as follows:
e Axiom of determinism:
Future response is determined by the state (or history) of the body up to the
present time. This is also called the “principle of heredity.”
e Axiom of causality:

Mathematical models describing the internal constitution of matter are devel-
oped after selecting suitable constitutive variables. The axiom of causality pro-
vides a selection or identification rule to distinguish dependent constitutive vari-
ables from independent ones. (Fof example, deformation (effects) do not occur

without an external force (cause)).
e Axiom of objectivity:

The constitutive response functionals must be form-invariant under arbitrary
rigid motions of spatial frame of reference and a constant shift of the origin of

time.

e Axiom of neighborhood:

This axiom, which was presented by Eringen [41,42], is also known as the “axiom

of local action.” This axiom states that the values of response functions at a point
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are affected less and less by the conditions far away from that point. In other

‘words, the axiom of neighborhood is used to exclude from constitutive equations

“actions at a distance.”.

Axiom of fading memory:

The values of present constitutive variables are affected less and less by the values
of constitutive variables at distant past. This is the counterpart of the axiom of

. neighborhood in the time domain.

Axiom of equipresence:
This axiom, as stated by Eringen [42] is:

“At the outset all constitutive response functionals are to be considered to de-

pend on the same list of constitutive variables until the contrary is induced.”

The principle of equipresence says that all the constitutive variables should be
included in every equation, unless the presence of a certain variable violates a
basic principle of mechanics or thermodynamics, or another axiom. However,
when there are too many variables in the constitutive equation, the problem of

retaining them becomes complicated.
Axiom of admissibility:

The constitutive laws will be different for different materials. The physical laws
of nature, such é.s conservation of mass, linear and angular momentum, and
laws of thermodynamics, should be satisfied by any system irrespective of the
material type. These physical laws lead to the governing equations, such as
the continuity equation, equation of motion, symmetry of stress tensor, energy
balance, and the entropy inequality. In other words, the axiom of admissibility
asserts that constitutive equations must be consistent with the physical laws.

Details of these laws are given in various references [16,41,42,65,55,59,92,93].
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Nonlinear or.general constitutive models added an important step to earlier
Soil Mechanics (iesign concepts in which the soil was assumed to be either perfectly
elastic or'peArfectly plastic. Howéver, the utilization of complicated constitutive mod-
elé proved to give rise to difficulties when local yield occurs in narrow shear zones,
resuiting in> bifurcation behavior, or when signiﬁcant non-linear soil behavior exists.
“As is apparent from the axioms above, the overall macroscopic description of
granular materials couid rapidly become complicated, although at the microscopic
level, the behavior is simply that of an aggregate of particles that slip and roll over

each other. This suggests that ideally, granular media can be modelled as an assembly

. of elastic or rigid three-dimensional spheres or two-dimensional discs obeying certain

contact laws.

2.1.2 The Discrete Modelling Approach
2.1.2.1 Deterministic Approaches

In this approach, a granular medium is composed of distinct particles that move
independently from one another and interact only at their contact points. Although
such a model is quite simple to visualize, the overall behavior of the particles can
become sophisticated enough to represent the behavior of granular media.

Among the previous work performed in this field, we can distinguish three
- phases: the analytical, physical, and numerical phase. Analytical works have been
restricted to a face-centered cubic array of uniform size spheres. Deresiewicz [35]
proposed an analytical model of such an array in which non-linear and hysteretic
stress-strain behavior was predicted. Ultimate fé,ilure was also accommodated in the
formulation. Based on his results, Scott [76, chap.7] gave an interesting observation
in which the behavior of real granular soil can be deduced from individual particle

behaviors.
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‘Du;e to't%he restrictions of the geometry and loading conditions of analytical mod-
els\,v several inveétiga.tor,é have turned to physical experiments to study the behavior
of ‘gra,nul’a.r media. Dantu [30] and Wakabayashi [94] used optically sensitive material
’ fof the discs in two-dimensional photo—elasfic tests. De Josselin de Jong and Verruijt
[33]”gave a.n account of the analyses of ‘such tests where the force distribution was
determined. Although this approach is quite general and provides accurate contact
forces, displacements, and rotation for individual discs, the process is time-consuming
and the preparation and -test conditions are elaborate. Nevertheless, Drescher and
De Josselin de Jong [37] performed a series of tests in order to confirm De Josselin de

~ Jong’s [34] double-sliding free-rotating model formulated for continuum models.
Oda and Konishi [67] presented experimental results of direct shear tests on
assemblies of cylinders made of photoelastic material packed at random. The study
showed that the two-dimensional model presented the same microscopic characteris-

tics in regard to deformation and strength behavior as those of sand. They concluded

from their study that:

1. The direction of the normals to the contact planes tend to concentrate toward
the maximum principal stress axis. This tendency of concentration of the direc-
tion of these normals is not determined by the magnitude of the applied shear
displacement but by the intensity of mobilized stress ratio (7/oy, where 7 and

on represent, respectively, the applied shear and normal stress).

2. The preferred direction of the contact normals gradually rotates with the rotation
of principal stress axes during shear deformation. Thus rotation of the principal

stress axis must be taken into account in any granular model.

3. Sliding in microscopic scale at contacts is not, at any one instant, occuring in
the majority of contacts in the assembly, but rather is confined to some preferred

contacts (i.e., slipping planes).
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‘In éheii' %étudy, the determination of the direction of the normals to the contact
pléﬁes proved t(; be tedious work.

. With Athe advance of computers, numerical modelling, the third phase, became
thvevpreferred tool used to simulate assemblies of discs and spheres. Several models
havé, been .proposed. These models can be divided into two different classes: one
(essentially static) representing dense arrays of particles, having multiple contact
points, such’ as soils, and the other (dynamic), simulating rapid shear flow of particles

where the number of contact points for each particle is very limited (usually zero or one

contact per grain, i.e., a dilute system of particles). Among the models of the first class

- . above, Serrano and Rodriguez-Ortiz [78] and Rodriguez-Ortiz [72] developed a model

that simulates aggregates of discs and spheres. Contact forces are determined by
incremental displacements of the particle centers. Hertzian-type contact compliances
are used for normal forces whereas the effects of tangential forces are considered
according to the theory of Mindlin and Deresiewicz [62], and Nayak [64], and shape
changes are neglected. In this model, assemblies of discs are represented by the
finite element method. A stiffness matrix is computed that takes into account the
geometrical arrangement of the particles and the current stiffness at each contact.
Incremental displacements can be computed by inverting this stiffness matrix. An
iteration procedure is necessary to deal with slip and contacts. Only one contact is
allowed to slip at any time. The stiffness matrix needs to be reformulated whenever a
contact is made >or broken, and this process is time-consuming. Therefore, this model
is only able to process a relatively small number of particles.

The second model for a dense configuration of particles was developed by Cun-
dall [20] and expanded by Cundall and Strack [23]. First, it was mainly used for
the analysis of rock mechanics problems [20,21] and was named “distinct element

method” or “discrete element method” (DEM). It is capable of handling particles of
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any shape and size. It is based on an explicit local equilibrium algorithm in which
the contacts are \mdnitored and the motions of the individual particles are computed.
As such, 'g.k;ba,l equilibrium is ﬁot observed. Cundall also introduced several meth-
ods _of handling data, which reduce the computation time required to locate contacts
betv'\feen pa;rticles. Because global equilibrium is not observed, static problems are
treated as dynamic cases. For dynamic problems, small time steps are required by
the explicit ‘time integration algorithm and the absence of global equilibrium. This
method, which is essentially a finite difference approach, will be the one used for the
following work and its complete description will be given later.

To simulate rapid shear flows of granular media, Campbell and Brennen [11,12]
developed the binary collision model. It has been used mainly to study two-dimensional
fluidized behavior of granular materials composed of circular discs. This model as-
sumes that two collisions cannot occur simultaneously so that only two-particle or
binary collisions need be considered. Between collisions, each particle follows its own
trajectory and the positions and velocities are only functions of time. Trajectories
change only at collisions. Therefore, the updating process is performed from collision
to collision. The incremental time steps are as long as the interval between collisions.
This presents a distinct advantage over Cundall and Strack’s model where the time
step required is small in order to ﬁlaintain stability. The binary collision assumption

_ appears to be adequate for the rapid shear flows at relatively low densities studied

by Carﬁpbell. -

2.1.2.2 Probabilistic Approaches

The deterministic approach such as the DEM allows random distribution of particle
size, shape, and physical properties. From the physics of the problem, contact forces
are determined. For a random distribution of particles used in a deterministic model,

the contact forces obtained appear to be erratic and suggest a statistical description
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of these forces. This observation leads to the introduction of probabilistic models.
Because the det\ermination of contact forces is not easily feasible deterministically,
th_ey-a,re’a,sAsumed to be random variables. Theoretical analyses are conducted to
obtain the behavior of these models.
Ma.rsél [60] introduced a model composed of spherical particles made of homo-
geneous materials. The distribution of the number of particles and dimensions are

obtained frém the grain-size curve of the soil. As the magnitude of the contact forces

between grains depend on:
e the dimensions and shapes of particles

e the mechanical properties of the grains, and

i

e the particle arrangement in the vicinity of each contact,

the contact forces cannot be evaluated in a deterministic manner and are assumed
to be random variables. Similarly, the number of contacts of each grain is also a
random, discrete‘ variable. From the known distribution of contact forces and num-
ber of contact points, stress distributions were determined as well as stress-strain
relationships.

Oda [66] proposed a model of granular material on the basic assumption that
sliding at contact among grains is the main mechanism of microscopic deformation
and rolling of grains has a negligible effect on the mechanical behavior of the granular
material. The mean value of the force acting on a contact is assumed to be a function
of the state of principal stresses and the direction of the normal to the principal
stress axes.‘Thé relation between the mobilized stress ratio and the “fabric index” is
determined by considering static equilibrium of forces at contact. Several definitions

of fabric index have been prdposed, however the one used by Oda is defined as the
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following ratio:
. S 2 (o8] 1

[l conp vy (2.1)

where (5,/S;) is the fabric index, (o,/03) the mobilized principal stress ratio and
¢, the interparticle friction angle. The probability of sliding at a contact can be
calculated by considering that the forces at the contact are random variables having
mean values and standard deviations. The rates of strain in the principal directions
are theoreti;ally obtained in terms of the frequency and intensity of sliding and the
fabric index. Finally, based on the stress-dilatancy relations given by Rowe [74],
relations among the fabric index, the dilatancy factor (= (1 — dv/de;), where dv is
the volume change and de;, the axial strain change) and the mobilized stress ratio are
obtained. Comparison made with experimental results by means of the microscope
and thin section method showed that this theoretical model agrees well with the
experimental results.

Davis and Deresiewicz [32] also studied the compressibility and force trans-
mission in granular media. Their model is composed of a two-dimensional random
packing of like spheres in elastic contact. The packing geometry is represented by a
stochastic planar graph where the nodes of the graph are taken as centers of the
spheres and the branches are made of contacts between adjacent spheres. This
stochastic graph is further replaced by a lattice, each of whose branches has a random
- stiffness modulus assigned to it. For mechanical response calculations, the lattice is
treated as an elastic structure with branch stiffness in the form of the Hertz contact
law. From their analysis, they observed that a significant fraction of the contacts
among the spheres support no load Wha,tsoever; while a few contacts sustain loads
many times larger than the average. Such behavior agrees qualitatively with the
works of Drescher and De Josselin de Jong [37], and Cundall and Strack [23].

Rodriguez-Ortiz [73] pointed out that even in the simplest case, the hypotheses
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introduced in the stochastic approach can deviate from the actual behavior of granular

materials. He cited:

o The surface friction of the particles plays an important role in the magnitude

-and orientation of the stress transmission paths.
e Rotations and tangential forces between particles cannot be neglected.

‘e The creation and breaking of contacts also play an important role in the overall

behavior.

e Actual particles are heterogeneous and of irregular shape.

2.2 The Distinct Element Method

This model was first developed to handle two-dimensional elements of random polygo-
nal shapes, then later discs [22,23], and was subsequently extended to three-dimensional
spheres [24]. To date, the model has been used to study mechanisms of deformation in
granular media [26,27], constitutive relations for soil [4,25,98], stability of rock masses
[21], seismic stability of rock mass [2,68], the eolian saltation process (the transport
of sand by the wind) [95,96], and practical applications in Soil Mechanics [88,89)].

In this study, we are mainly interested in the microscopic behavior of particles.
~ For example, we would like to understand the behavior at the microscale of particles
when a phenomenon like liquefaction occurs. In this respect, the continuum approach
is not covenient because only a global and averaged behavior is obtained. Discrete
experimental simulations have been ruled out due to the large amount of work required
to measure the interparticle contact forces. Most of the statistical models neglect one
or more basic features of the granular behavior and because they were developed on
too many hypothetical assumptions, their usage will limit the response of the system

studied. This then leaves us with the discrete deterministic models. As was discussed
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“ea,rlier, S;erra;lid and Rodriguez-Orfiz’s model can only be used when the number of
pai'ticles is Smali, therefore, this model is not useful. We are then left with Cundall
and Strack’s DEM. Tt turns out that this model, although very simplistic, is able
té model qualitatively well the behavior of real soil. Its main advantage lies in its
eﬂié'iyency iﬁ handling a large number of grains through the use of a convenient data
structure for storing and retrieving information. However, as will be seen later, this
model requires that the time step that is used is small enough to achieve numerical

stability. The assumptions and algorithm of the DEM are given in the following.

2.2.1 Assumptions

The particles used in this model are assumed to be dry two-dimensional circular discs.
The inclusion of a fluid phase will be described in a later chapter.

In the distinct element method, every particle (or element) in the assembly is
identified separately, with its own mass, moment of inertia, and contact properties.
The dgformations of individual particles are assumed to be small in comparison to the
deformation of the assembly as a whole. This global deformation is caused mainly by
the rigid body motions of particles. Therefore, in the distinct element model, precise
particle deformation is not considered; instead, particles are allowed to overlap one
another at contact points. The overlaps, which replace the the particle deformation,
are small in relation to the particle sizes. Figure 2.1 shows the mechanism used to

model the contact between two particles. The symbols used are defined as follows:

C = Global translational damping coefficient
C* = Global rotational damping coeflicient
kny = Contact normal spring constant
ks = Contact shear spring constant

cy = Contact normal dashpot coefficient
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cs = Contact shear dashpot coefficient
S = Contact shear force

N = Contact normal ‘force

#, = Contact friction angle

Normal and tangential springs and dashpots exist at each contact, with a frictional
linlit oﬁ the-maximum tangential shear strength. While nonlinear spring and dashpot
behavior can be accommodated with this scheme, the present implementation assumes
constant spring stiffness and linearly viscous damping values. The magnitude of the
~ contact forces is determined by the overlap between neighboring elements. In other
words, an‘element can be visualized as a rigid disc with a coating of springs and
dashpots at the periphery. At the contact point between two elements, the spring
and dashpot at that location are activated. In the normal direction, for example, the
compression of the contact spring is determined by the overlap between the contacting
particles whereas the dashpot compression is determined by the relative velocities
between these two particles. In turn, the amount of overlap is directly controlled
by the stiffness of the springs. Dashpots are used to dissipate energy. Similarly, in
the tangential direction, the relative éliding of two contacting particles determines
the motioﬁ of the shear spring whereas the relative rotational velocity determines the
motion of the shear dashpot. The computed shear force is limited by the Coulomb
friction law. |
Movements inside the assembly of particles are generated by the propagation,
through the medium, of disturbances originating at the boundaries. If the time step
can be small enough so that during a single time step disturbances cannot propagate
from any disc further than its immediate neighbors, the resultant forces on a disc
can be determined simply by its interaction with discs with which it is in contact.

However, this local equilibrium could create global inequilibrium at an instantaneous
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(Translational damping)
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(Rotational damping)
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ky

Coulomb friction :
IS | = |N tang, + ¢

Figure 2.1: Contact model used by the distinct element method
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time step. To avoid iterative procedures, an explicit time integration scheme is used.
To achieve numerical stability, an explicit scheme requires a judicious choice of time
incremenlt.‘ As the time increment chosen is considered small, velocities and acceler-
ations are assumed to be constant over a time step.
2.2.2 Choice of the Distinct Element for the Solid Model

2.2.3 A Simple Example

Typically, the calculation process involved in the distinct element method alternates

between the application of Newton’s second law and the force-displacement law at

" the contacts. The motion of the particles is obtained by Newton’s second law. As the

particles move, contacts are created or broken. If contact occurs, the contact forces
are determined by the force-displacement law. Summing all the contact forces on a
particle provides the overall forces that are applied at the centroid of that particle.
These forces are in turn used to determine the particle motion through Newton’s
second law.

To illustrate the calculation cycle, Cundall [23] considered the case shown on
Figure 2.2. Two discs, labelled o and f3, are maintained in the horizontal plane
between a pair of rigid walls (i.e., no gravity involved). The walls are moving to-
ward each other at a constant velocity u. In this example, simplifications have been
- introduced so that only normal contact forces are involved.

At the initial time t = %4, the walls and discs are tangent to each other and no
contact exists, i.e., springs at points A, B, and C are at rest (Figure 2.2(a)). At the
following time step (see Figure 2.2(b)), t; = to + At, the walls have moved inward
over a distance uAt. Because disturbances are not allowed to travel beyond a single
disc during one time step, both discs remain at their initial position. Due to this,

overlaps occur at contact points A and C. The overlap magnitude is An = uAt.
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Figure 2.2: A simple example: two discs compressed between rigid walls
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In éhe hi)‘ta,ti(‘)n used here, superscripts designate the referenced object (such as
thé. contact poiﬁt, the disc or the walls) and subscripts indicate the time step, for
ex_a.rnple,' A;zf indicates the relé,tive displacement of contact point A at time step ;.
| Contact point A is defined as the rrﬁdpoint of segment A” and A" where AP
and AW rei)resent, respectively, points of the disc and wall lying on a perpendicular
to the wall through the disc center. The relative displacement, Anf, at the contact

is taken as the relative displacement of point A" with respect to AP.
As explained in the assumptions above, the contact springs at points A and C'
are activated at time ¢; (for the sake of simplicity, dashpots have been omitted here).

. Figure 2.2(b) shows the compression of the contact springs. Assuming constant spring

values, the incremental contact forces at time ¢; at points A and C are given by:
AN{# = k*And = kAuAt
ANE = k°An{ = k%uAt (2.2)
where k4 and k€ are the normal spring stiffnesses at contact points A and C re-
spectively and cdmpression is taken to be positive. According to the reference frame

shown on Figure 2.2(a), the acting forces on discs a and § at time ¢, along the x-axis

are:

F* = k*An

Ff = —k°Anf (2.3)

From Newton’s second law, the accelerations of each disc in the x-direction are

given by the above forces, namely:
& = F/m®
b = FlImP (2.4)

where &; and ,él stand for the accelerations of disc & and # and m® and m®, their

respective masses.



21 .
- '} -
Assuming constant accelerations over the interval {; and ¢, = to+2At, velocities

at time t, can be obtained:
B = Bt = (FPImP)At (2.5)

Hence, the relative displacement increments at points A, B, and C at time ’tz,

are determined to be:

Anf = [an— Bo] At

¢
Ang

(82 — (—u)] At (2.6)

Figure 2.2(c) shows the situation at time t,.

This cycle is repeated, i.e., forces corresponding to displacements are found
according to the force-displacement law; the resultant of the contact forces is in turn
used in Newton’s second law to determine new accelerations and velocities at the
following time step. In the general case of an assembly of discs, vectorial forces are
acting at each contact point. The equations used in a calculation cycle for a general

case are presented in the following section.

~ 224 General Calculation Cycle
2.24.1 Notations and Definitions

Let « and 8 be two discs in contact as shown in Figure 2.3. The coordinates of the
disc centers, according to the reference system are & = (a3, ;) and B8 = (b, f2).
Their respective velocities will be denoted by & = (d1,a2) and ,3 = ([;’1, ﬂz) Their
angular velocities, é(a) and é(ﬂ), are taken positive in the counterclockwise direction.

Each disc has been assigned a radius, R(s) and Rg); a mass, m() and mg); and
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a moment of inertia I(s) and [(g). If gravity is present, it is represented by vector
g = (g1,92). Points P,y and P(g) are defined as the points of intersection of the
line connéct"ing the disc centers with the boundaries of discs « and f respectively.

The unit vector from the centroid of & to § is represented by € = (cos~y,siny). Its

perpendicular unit vector in the clockwise direction is 7.

v

Figure 2.3 Variables used in the force-displacement law
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2242 Contact Forces Determination

If contact occurs between « and 3, D, the distance between their centers is less than

the sum of their radii, i.e.:

D < [Ria) + Rp) (2.7)

As explained in the previous example, if this condition is verified, the contact
point P is defined as the midpoint of P, and Pg). The relative velocity of P(,) with

respect to P(s) can be expressed as:
P = (P,P)
= (&= B) = (o) Rie) + bis) Ris))T (2.8)

The normal and tangential components of P, 1 and $, are obtained by the

decomposition of P along € and 7

n = P-¢

= (a — B) c € — (e(a)R(a) + é(ﬂ)R(:@))T - €

= (@-PB)-e
= (& — Br)er (2.9)
i = P.r

‘= (@&—B) 7= (8)Rie) + 5 Rp))T - T
= (6= B) 7 — (OeyRia) + b(5)Ri))

= (dk — ,B'k)Tk — (é(a)R(d) + é(ﬂ)R(p)) (2.10)

FEinstein summation convention is assumed only for subscript k. Indices between

parentheses do not follow this convention.
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By integrating the relative velocity components with respect to time, the rela-

tive displacement increments are:

An = nAt

_ [(a—B)- €] At (2.11)
As = At

= [@=8) 7 - (b Ra) + b0 Rie)] At (2.12)

From the force-displacement law, the normal and tangential incremental forces

- can be computed as:

AN = kyAn (2.13)

AS = ksAs (2.14)

where ky and kg represent the normal and shear spring stiffnesses.
Finally at each time step, the incremental forces, AN and AS, are added into

the sum of all force increments, N and S, determined from the previous time step:

N = N+AN . (2.15)

S = S+AS (2.16)

_ In the above notations, normal and shear forces are assumed to be positive in the
direction opposite to vectors € and T.
The contact model also includes a Coulomb-type friction; that is, the magnitude

of the shear force S must obey the following rule:

| S| < Smazy (Smaz =| Ntand, +c|) (2.17)

where ¢, represents the smallest value of the interparticle friction angle and c the

smallest value of the cohesion of the two contacting particles because the weakest
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particle will control sliding. In the case where S exceeds Spa, in the absolute value,
the value of S is‘set t0 Smas With the sign preservation of S.
Becﬁﬁée the contact model also has provision for damping, friction damping

forces at the contact point are also considered. The magnitudes of the damping

forces are given by:

Dy = cyn

= cv|(@—B) ¢ (2:18)
Ds = cgs

= cs[(@=B) 7~ (BB + 0@ Re)] (2.19)

where ¢y and cg are, respectiVely, the normal and shear damping coeflicients.

The shear forces generate the following moments on each particle:

Mg = SR

Mg = SR (2.20)

in which S represents the suAm of the shear force, S, and the damping force, Dg (if
shear damping is used, the Coulomb friction law becomes | S + Dg | < Spaz Where
Smez 15 as defined in equation (2.17)).

The sums of the normal and shear forces and moment at each contact point
" provide the forces and moment acting at the centroid of the particle. Resolving the
forces into the 1 and 2 directions, the forces at a particle centroid, 3_ F'(4), are given
by ¥ Flo): and Y Fi4)z. Similarly, the resultant moment generated is ) M(,) whereas
the contact damping forces, 3 D(q), are 3- Diap and 3= Dia)2- Although constant
springs have been used throughout the derivations, non-linear springs can easily be

included in this model.
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- ‘:2.2‘.4.3 i’artiéle Motion

In addition to local contact damping, global damping is also included in the particle
equation of motion. Although it can be used in combination with local contact
damping, global damping prevents a ringing effect when no local contact damping
is used. It consists of translational and rotational dashpots attaching each particle
to the ground. Assuming that C' and C* are the global damping coefficients for the

translational and rotational degrees of freedom (cf. Figure 2.1), and with the presence

of gravity, g, the equations of motion of disc « are given by Newton’s second law:

mea+Ca = [F(O,) + D(a)] + Mg (2.21)
Iefiey + C0i0) = 32 Mo (2.22)
As stated earlier, a central difference scheme [18] is used to integrate equa-

tions (2.21) and (2.22). In this scheme, the velocities at time step #; are evaluated

halfway through the time step, i.e.,

&; = -;—(O'Ev__%-l-d“_%) (2.23)
6 = %(éi_%+é,-+%) (2.24)

The translational and rotational accelerations at time ¢; can now be written as:
a; = (di_% + c'!,-_*_%)/At (2.25)
b = (biy +0,43)/At C(2.26)
C(;mbinihg equations (2.21), (2.22), (2.23), (2.24), (2.25), and (2.26), the veloc-
ities at time ¢;,1 can be obtained:

a;_1 [1 - ﬂ] + [F(a) + D(a)]i AL gAt

2m(a) &)

Gy = - (2.27)
[1 + 2m(q)]
. 0;_1 [1—9;—A-t] +3 | M), +
by = —t— Mo (2.28)

C*A
_[1 + 2,(0)‘]



27
N ,
The velocities are then integrated to yield the particle displacements at the next
time step, tiy1:
Xy = &y -+ di_'_%At (229)
001 = 0;+ 9',-+%At (2.30)

It should be noted that in equation (2.27), the discretization of the damping

forces can be performed as follows:

(Dn); = enn
= CN [a - ,@] -1 T € (231)
(Ds); = cs$

= cs[(@—B) T — (bR + b9 Ris))] (2.32)

An error of half a time step is introduced in the calculation of Dy and Dg. Cundall
[23] indicated that this error is found to be negligible.

From the equations of motion, we can see that energy is dissipated through
friction, local contact damping, and global damping. If neither local contact or global

damping is used in static problems, the system would never reach equilibrium.

2.2.4.4 Choice of Time Step

Explicit time integration is only conditionally stable. To insure numerical stabil-
ity, the time step, Atv, should be chosen smallerb than the critical time step, At
(At < Ateit) [3, chap.9). Because the equilibrium of each particle is only satisfied
locally, it is impossible to obtain the critical time step of the global system, which is
determined by the highest natural frequency (or eigenvalue) of the system. However,
the critical time step can be estimated based on the oscillation of a single degree of
freedom system of a mass m attached to a spring of stiffness k. For this system, the

critical time step is (24/(m/k)). The critical time step estimated by the solid phase
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algorithm is based on the lowest particle mass and the highest stiffness in the problem.
The actual t'ime‘step used by the algorithm is chosen as a fraction of this estimated
critical time step. Cundall [22] recommended the use of 10% of the estimated critical

time step as a safe choice for the actual time step. This choice is found to be adequate

for the present work.

2.24.5 ~ Contact Determination

If contact between two particles occurs, equation (2.7) needs to be checked for every
pair of particles. It is obvious then that the number of computations required would
be of the o;der of NV where N is the total number of particles in the simulation. This
number could be reduced to O(N!) if we do not test twice for each pair of particles;
i.e., if the contact between two particles @ and 3 has been tested, we would not
check again the contact between § and a. At any rate, the number of computations
required is so large that this algorithm is not acceptable for any practical purpose. To
eliminate the contact search between distant particles, Cundall [22] devised a scheme
in which the global area under study is divided into smaller ones called “boxes.” As
illustrated in Figuré 2.4, the box size is chosen in such a way that the largest disc
diameter is less than one box width or height. Based on this constraint, the scan for
contacts is reduced to a partial search in the disc vicinity only. Consider, for example,
~ disc o on Figure 2.4; because its immediate bounding square lies inside bbxes Bg and
Bg, we ohly need to consider discs inside these two boxes to test for contact condition.

This technique of “Divide and Conquer” significantly reduces the computation time.

In some cases such as the one shown in Figure 2.5, the immediate bounding
~ square of a disc fails to determine all the particles that would be in contact with
that disc. In this particular case, disc « lies solely inside box B,. Now, because its

immediate bounding square is fully contained by box B,, disc 3 will not be included in
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o,p, ... : Disc number

Bj : Box number j

Immédiate bounding
square of o.

N

Figure 2.4: Division of the area into boxes

the search during the contact scan. To circumvent this weakness of the scan method,
a bigger bounding square is used. A margin length, DNTQOL/2, is set outside the
immediate square to determine all the boxes in which a particle lies (cf. Figure 2.6).

The value of DNTOL is chosen so that the following condition is satisfied:
[2 max(R)) + DNTOL] < 2 x (Boz Dimension), Va (2.33)

The above condition ensures that a contact scan for a disc will not include more

~ than the discs inside 4 adjacent boxes.

2.2.4.6 Compliances of the DEM with the Axioms of Continuum Mechanics

At the grain size level, all particles follow all the axioms stated earlier in the continuum

approach, namely:

e Axiom of determinism: the motion of a particle depends only on the state at the

previous time step.
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B The immediate bounding square

P of disc o lies solely inside box By,
so that disc p will never be tested
for possible contact with «.

By

Figure 2.5: Case where the immediate bounding square fails to produce all possible

contacts

The new bounding square of disc a.
now also lies inside box By, so that
disc B will be included in the contact
scan for o.

' DNTIOL;2

i
L JIF

DNTOL/2 DNTOL/2

Figure 2.6: Margin length sets so that the contact search will find all the contacting
discs



31
.o Axiom of causality: the cause and effect that determine the motion of the as-
sembly of particles are clearly identified as the propagation through the medium

of disturbances origina,ting at the boundaries. Hence all the variables used in

this model are clearly identified.

e Axiom of objectivity: it is obvious from the description of the DEM that under

rigid body motions or a constant shift of time, the results obtained are identical.

e Axiom of neighborhood: as explained earlier, the response of a particle is only

affected by directly adjacent particles or objects (such as wall boundaries).

e Axiom of fading memory: the motions of a particle are affected by the response
of the previous time step. Therefore, the DEM follows a special case of this

axiorm.

e Axiom of equipresence: the basic equations of motion of the DEM include all
the physical variables and do not violate any principle of mechanics or thermo-

dynamics, or another axiom.

e Axiom of admissibility: the governing equations of the DEM satisfy all the
physical laws of nature at the grain size level. However, due to the iterative
procedure used in static problems, global imbalance of forces could occur during
iterations. For dynamic problems, force imbalance is minimized by the use of

small time steps that are also dictated by the explicit time integration scheme.

2.24.7 Comments about the DEM

In general, the DEM is quite flexible because it can accommodate different particle
sizes and material properties. However, the specification of material properties is not
easy for dynamic problems. For static or quasi-static problems (such as monotonic

loading), the material properties used do not affect the results because equilibrium is
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- always achieved. For dynamic problems, the contact spring and dashpot constants
| cannot be mea,sﬁred directly. For these cases, the value of the normal contact spring
constant can be obtained by éondering the geometry of the contact between two
idéntica,l particles each having a radius R (see Figure 2.7). The overlap between the
pa.rtricles, 6; determines the strain, ¢ = §/2R. The stress generated by the contact
force, F', is assumed to act over the chord length, /; hence, the contact stress per unit
length is given by:

o= (2.34)

Furthermore, if F represents Young’s modulus of the particles, assuming linear rela-

* tionship between the stress and strain gives:

F 6 El

Let
El
= 2,
ey (2.36)
then the relationship between the force and overlap distance is obtained as:
F =kyné (2.37)

The dependence of [ on 6 (I = 2\/R2 — (R — 6)?) shows that even in this simple-
minded model, the relationship between contact forces and overlap length is nonlinear.
"~ To simplify th’e‘ problem, the value of é is chosen so that it will not exceed a prescribed
value (usually between 1 to 5% of the minimum radius). This maximum value of 6
is used to determine the maximum value of the contact chord. Finally, the value of
the normal contact spring constant given by equation (2.36) is used for all range of

overlap length.

The study of Hertzian contact theory for elastic spheres by Mindlin and Dere-

siewicz [62] showed that the tangential stiffness at a contact may vary between 2/3
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/i
\/

Figure 2.7. Definition of parameters used to define ky

and 1 times the normal stiffness. No such information is readily available for two-
/ dimensional discs, therefore, such a range of values can only be assumed.

| The normal contact damping is directly related to the coefficient of restitution
of the particle. Because it is mainly used as a dissipator of energy, its function is
identical to the coefficient of restitution. The value of the normal contact damping
can be selected so that it matches the value of the coefficient of restitution. To
establish the correlation between these two variables, a test can be devised in which
a disc is dropped onto a rigid, flat surface. The ratio of the initial dropping height
over the bouncing height determines the coefficient of restitution. In most studies
involving the DEM, the value of the shear damping has been arbitrarily selected so
that its ratio over the shear stiffness is the same as that of the normal damping over
the normal stiffness.

One way of detérmining the global translétional damping, C, is obtained by
considering the hysteretic stress-strain relationships such as the one shown on Fig-
ure 2.8. These relationships are obtained in the laboratory by means of triaxial
compression tesfs, simple shear tests or torsional shear tests conducted under cyclic

loading conditions.
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The damping ratio, C' is defined as [49]

c= A
- 47TA2

(2.38)

where A; = area of abcdefa, and A; = area of Oag.

Shear Stress
a

Hysteretic
stress-strain
relationships

18

0 b Shear Strain
c
d

Figure 2.8: Hysteretic stress-strain relationships

Alternatively, the translational global damping, C, is assumed to have a value
ranging from 1 to 5% of the value of the critical damping of a single degree of freedom
system having the particle mass and normal spring stiffness. Similarly, the rotational
global daniping C* can be arbitrarily selected.

The values of the material parameters can thus be fine-tuned by devising special
eXperiments to obtain- appropriate concordance with measurable physical quantities.

Due to the small size of the particles, the moment of inertia, I(,), should not
play an important role in the deformation of an actual system of particles. However,
its inclusion in the equation of motion is required for a complete description of the
motion of each particle.

Although in principle any type of loading could be applied to the boundary (i.e.,

specified displacement, force, or stress boundary), a specified displacement boundary
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is. :the. mt;st p‘r}z‘xctical one to be used with the DEM. If force or stress is applied to a
boundary, their ‘distribution to directly adjacent particles presents some ambiguities.

In éornlclusion, the richness of information provided by the DEM proves to be
aiso one of its weaknesses. The wealth of information about each particle at each time
step‘,gives fise to a dilemma: either statistical infqrmation should be compiled out of
these discrete results, in which case all the microscopic behaviors become fuzzy; or
global information should be analyzed, in which case all the information could not be

easily absorbed unless only a small portion of the system is considered.

2.2.4.83 Summary of the Distinct Element Method Algorithm

The distinct element method algorithm can be summarized as follows:

read simulation parameters and initial conditions
for all time ¢; steps do
for each disc o do
assemble the disc contact list, i.e., all objects in contact with «
for each object of the contact list do
compute outward normal vector
compute incremental velocities at contact
compute contact forces and update contact information
compute accelerations for disc a at time ¢;
for each disc o do
integrate for velocities at time ¢;, 1
integrate for displacements and rotations at time ¢,
update disc information array
update list of contacts made or broken
update wall motion and wall information array
" end of simulation ’

2.2.5 Algorithm Validation
2.2.5.1 Static Test: One Disc under Gravity Loading

The following test was performed mainly to show the different types of damping

used in the DEM. In this example, a disc having a radius of 1 m and a density of
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Ps = ‘24OWO kg}/'m3 (i.e.,‘ having a mass m = 7539.823 kg), supported by a horizontal
pla.f;e, is subjectéd to a vertical gravity field of intensity g = 10 m/sec? (see Fig-
ure 2.9(a.)v). Friction, shear contact spring and dashpot have been omitted. The value
of vthe normal contact spring constant is assumed to be ky = 107 N /m.

v.vFour éases have been studied: case 1 considers only the normal contact spring
(Figure 2.9(b)); in case 2, both the normal contact spring and global translational
dashpot are’included in the analysis (Figure 2.9(c)); for the third case, the normal
contact spring is combined with the normal contact dashpot (Figure 2.9(d)); and in
case 4, the normal contact spring and dashpot, and the global translational dashpot

‘are all used (Figure 2.9(e)). The different values of spring and dashpot constant used

in each case are given in Table 2.1.

Case kn cN C Final Contact | Absolute
Normal Contact | Normal Contact | Translational Force Force Error
Spring Dashpot Dashpot
(at t = Ssec)
(N/m) (N/(m/sec)) | (N/(m/sec)) (V) (%)
1 10° 0 0 ! !
2 10° 10° 0 72703.36 3.5742
3 107 0 1.0 x 10* 75398.66 0.0006
4 107 10° 4.5 x 10° 75397.49 0.0010

Table 2.1: Values of spring and dashpot constant used for each case

Due to the simplifications made here, the only contact force involved in all these
~ four cases is the normal contact force between the disc and the plate. Figure 2.10
shows the normal reaction force on the plate with respect to time for each case studied.
Because no damping is considered in case 1, the reaction force is simply oscillating
around the weight of the disc (75398.23 N). The equation of motion of case 2 can be

expressed as :

INot included due to oscillation in the response.
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(a) Physical Model
_F
ky ky cN
(b) Case 1: No Damping (d) Case 3: Contact Damping Only

L

L

ky

(c) Case 2: Global Damping Only (e) Case 4: Contact and Global Damping

Figure 2.9. Different cases studied for the settling of a disc on a flat plate under
gravity loading
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Normal reaction force on the plate
mZ + ecNT + kyT = mg

Figure 2.10

Likewise, the equation of motion of case 3 is given by
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where cN wis t}fe nofmal- contact damping value.
The sirnilafity of the equations of motion of cases 2 and 3 is caused by the
simplicity of the model presenfed. In cases where a disc is also in contact with
aﬁother disc, the velocity used in equation (2.40) would be the relative velocity of the

conﬁact point rather than the velocity of the disc itself.

Finally, the equation of motion of case 4 is:
mi + (C + en)E + kne = myg (2.41)

As shown in Table 2.1, the magnitude of the damping used in case 2 is 10 times
smaller than the one used in case 3. Consequently, the response of case 3 reaches
equilibriurﬁ faster. In case 4, the combination of normal contact darhping and global
translational damping is such that their sum yields the critical damping ratio of this
simple degree of freedom system. Hence, no oscillation is observed for this later case
as the normal reaction force reaches the weight of the disc (i.e., when equilibrium is
achieved). Table 2.1 also gives the value of the normal reaction force on the plate
at the end of the 5000 steps simulation (i.e., at ¢t = 5 sec). The deviation of the
normal force from the weight of the disc is also shown on this table. In general, the
magnitude of the error tends to decrea.se as the amount of damping increases. When
higher damping is used, the disc reaches equilibrium faster. When no damping is

included, the disc will oscillate indefinitely; therefore, depending on the time when
the contact force is selected, its value can vary from 0 to twice the weight of the disc,
which is why the contact force has been omitted from Table 2.1.

The contact force between the disc and the plate of case 4 is shown on Fig-
ure 2.11. Here, the thickness of the line gives the intensity of the force whereas its
direction is given by the direction of the contact force line. It should be noted that
since the disc and plate are frictionless, the contact force is acting along the per-

pendicular to the plate. This graphical representation of the contact force can be
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2.2.5.2 Static Test: Five Discs under Gravity Loading

This test was performed to verify the accuracy of the contact forces under static
loaciing. Here, 5 discs, each having a radius of 1 m and a mass of 7539.823 kg, are
allowed to settle in the presence of gravity (¢ = 10 m/sec?) (see Figure 2.12(a)). The
discs are assumed to be frictionless (i.e., only normal contact spring and dashpot, and

global translational dashpot are present). The parameter used for both the disc—disc

and disc-wall contact are:

Table 2.2 shows the predicted value of the normal contact force at the end of
the simulation (¢ = 5 sec) at each contact point, along with the theoretical contact

forces calculated from force equilibrium of each disc, and the error introduced by the

algorithm.

kn

N

C

10°N/m

10°N/(m/ sec)

4.5 x 10°N/(m/sec)

Contact between | Predicted Force | Theoretical Force | Error
() (N) %

Disc 1 - Wall 1 188492.5 188495.6 | 0.002
Disc 1 - Wall 2 133648.0 128247.7 | 4.21

Disc 2 - Wall 1 188491.3 188495.6 | 0.002
' Disc 2 - Wall 3 133647.8 128247.7 | 4.21
Disc 3 - Disc 1 175075.0 170996.9 | 0.52
Disc 3 — Disc 2 175079.4 170996.9 | 0.52
Disc 3 — Disc 4 115750.6 113997.9 | 1.54
Disc 3 — Disc 5 115760.0 113997.9 | 1.55
Disc 4 — Wall 2 87832.7 85498.4 | 2.73
Disc 5 — Wall 3 87828.2 85498.4 | 2.72

Table 2.2: Comparison of the predicted contact force values with the theoretical values
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Contact Force

Time : S sec Force Scale:

75397.49

Figure 2.11: Graphical representation of the contact force for case 4 at the end of
simulation
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(a) Initial Configuration

Time : Osec

(b) Final Configuration

Time: Ssec

Figure 2.12: Initial and final geometry for the settling of 5 discs under gravity loading
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Tht; maiimum error found is about 4%. This error is caused mainly by the
difference in ge(‘)metry used to calculate the theoretical force where the discs are
assumed r1g1d As is apparent from Figure 2.12(b), due to the disc overlap allowed by
the DEM, a re-arrangement of the configuration occurred by the end of the simulation
whereas inAthe theoretical computation, the final configuration is identical to the
initial configuration.

Figuré 2.13(a) shows the contact force at each contact point at the end of the
simulation. For all practical purposes, the distribution of the contact force is symmet-
rical with respect to the vertical passing through the center of disc 3. The velocity
vectors of each disc at the end of the simulation are presented on Figure 2.13(b).
The small magnitude of the velocity of each disc indicates that they have reached
equilibrium.

The normal reaction force on walls 1, 2, and 3 as a function of time is given in
Figure 2.14. Due to the high values of damping used, no oscillation is observed as
the reaction forces reach their equilibrium value.

When friction and shear contact springs and dashpots are used, the results
predicted by the algorithm differ from that of frictionless materials. In the following
case, the friction angle at a contact point between two discs or between a disc and
a wall is assumed to be ¢ = 15°. The shear contact spring is given a value of
- ks = 7x10°% N/m, whereas the shear contact dashpot and rotational dashpot constant
take resf)ectivély a value of cs = 7 x 10* N/(m/sec) and C* = 4.5 x 10° N/(m/sec)
(i.e., these values have been chosen arbitrarily such that cs = 2/3¢y and C* = C).
Figure 2.15(a) shows the final position of the discs at the end of the simulation at
5 sec. Discs 4 and 5 have slightly rotated from their initial positions as shown by the
slight inclination of their radius indicators (see Figure 2.15(a)). Also, because of the

settlement of the discs, the final configuration differs slightly from the original one.
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(a) Contact Forces

Time: Ssec Force Scale:

188492.5

(b) Velocity Vectors

N\

Time : 5 sec Velocity Scale:

2.5170575E-05

Figure 2.13: Contact force and velocity distribution at the end of the simulation
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“T‘h:e distributif)‘n of contact forces is presented in Figure 2.15(b). Due to the friction,
the contact forcés are no longer normal to the walls and they do not pass through
the centers of two contacting discs. From this figure, it is clear that the distribution
of‘ the contact forces is again symmetrical with respect to a vertical passing through
the Centér éf disc 3.

The values of the components of the contact forces for each contact point are

given in Table 2.3. The orientation of axes z and y is given in Figure 2.15(b).

Contact between F, F,
(N) (N)
Disc 1 - Wall 1 | 167269.7 | 38775.2
Disc 1 — Wall 2 28609.2 | -7665.5
Disc 2 - Wall 1 | 167269.7 | -38774.5
Disc 2 - Wall 3 28610.1 7664.9
Disc 3-Disc1 | 116104.0 | -31109.8
Disc 3 - Disc 2 | 116103.1 | 31109.6
Disc 3 — Disc 4 78747.3 | 13561.1
Disc 3 - Disc 5 78749.6 | -13561.0
Disc 4 — Wall 2 50610.7 | -13561.0
Disc 5 — Wall 3 50611.1 | 13561.0

Table 2.3: Components of the contact forces for material with friction

The sum of the horizontal and vertical reaction forces on walls 1, 2, and 3 yield
Y F,=-05 N and ¥ F, = 376991.7 N. The value of 3_ F, closely approaches the
value of the weight of the five discs (which is 376991.2 N). Similarly, the value of
~ ¥ F; is almost zero, indicating the symmetry of the distribution of the contact forces

with respect to a vertical passing through the center of disc 3.

2.2.5.3 Dynamic Test: Impact of Two Discs

This simple experiment was devised to test the algorithm in a dynamic case. Disc 1
has an initial velocity of 6 m/sec in the vertical direction as shown on Figure 2.16.

It collides with disc 2 of equal mass and radius and initially at rest. Assuming that
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(a) Final Configuration

Time : 5 sec

(b) Contact Forces

\ .
4 Time: 5sec orce Scale:

171705.2

Figure 2.15: Final configuration and contact force distribution for material with
friction



48
there is no loss of energy during the collision, i.e., that there are neither contact nor
global rotational dashpots, and that the material is frictionless, the theoretical values
of the Velocity of each disc can be calculated from the kinematics of the particles
(conservation of momentum and coefficient of restitution of 1). The predicted value

of the velocity of each disc ( (viz,v1y) for disc 1, and (veg,vqy) for disc 2) and the

theoreticé,l results after the collision are presented in Table 2.4.

Velocity | Predicted | Theoretical | Error
Component | (m/sec) (m/sec) %

Vig 2.591 2.598 | 0.27

v, 1.514 1.500 | 0.93

Vg —2.591 —2.598 | 0.27

Vgy 4.486 4.500 | 0.31

Table 2.4: Comparison of predicted and calculated velocities after collision

In general, the maximum error is less than 1 %. Therefore, the predicted results
agree well with the theoretical values. Thé position of the discs at impact, and at
time ¢t = 1 sec along with the trajectory and final velocity of each disc are also shown
~on Figure 2.16. |

It should be noted, however, that for this particular test, the only material
parameter involved is the normal contact spring constant, which was choéen to be
ky = 107 N/m. In the theoretical solution of the problem, the mass of each disc is
irrelevant, however, in the DEM, a mass has to be assigned for ea(;h disc. Here the
mass is assumed to be'm = 7 kg for each disc. Dﬁe to the small mass used, the value
of the critical time step is roughly of the order of 10~ sec. To be a.ble to capture all
the features of the impact, the time interval is chosen to be 1073 sec. The impact
occurs roughly between ¢ = 44 msec and t = 46 msec. The magnitude of the contact
force is presented on Figure 2.17. The impulse-type force can beA viewed as consisting
of two sections. The first one covers the period of compression from first contact until

maximum deformation of the two bodies (for the DEM, this corresponds to maximum



49

Dynamic Impact of 2 Discs
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Figure 2.16: Geometry, trajectories and velocities of the collision of two discs

20 m/sec
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overlap between the two discs). At the end of this period, the relative velocity of the

two bodies is zero. The second interval comprises the period of restitution from

maximum deformation until cessation of contact. The symmetrical shape of the

contact force clearly indicates that the deformation is purely elastic.

| ‘This concludes the description of the solid phase used in this work. The mod-

elling of the fluid phase is given in the following chapter.
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Figure 2.17 Normal contact force for the collision of two discs
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Chapter 3
MODELLING THE FLUID PHASE

3.1 Historical Review

~ The following gives a short review of the historical developments of flow through
porous média. For a complete review of major historical works in this field, the
- reader is referred to Happel and Brenner’s book [48].

Flow through porous media has probably been considered throughout history;
however, the first scientific results were obtained only about one hundred and fifty
years ago. Flow through porous media had attracted the attention of several engineers
at the “Corps des Ponts et Chaussées” in France during the first half of the nine-
teenth century. Darcy, while director of public works at the city of Dijon, performed
a series of research on the flow of Wa,tef through sand bed filters. From the results of
these studies, he developed a law for flow through porous media [31], named Darcy’s

law. This law simply stated that the superficial velocity of flow is directly related to
the pressure g‘radientvthrough the bed of fine particles by a constant of proportion-
ality that includes both the soil and water properties. This law is widely used for
investigating the behavior of water flow through porous media, such as underground
flow to wells, flow in soils being irrigated, and flow through earth dams. Flow of
oil in underground formations has also been found to follow Darcy’s law. Dupuit,
another member of the “Corps des Ponts et Chaussées,” continued Darcy’s work on

flow through porous media and published his work in a book on the transportation
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and distribution of water [38).

The eXpreésion of Darcy’s law is obtained by considering water flow through
soil as a continuum. In other Words, this law averages all the motions of the fluid
inéi_de the pores of the soil continuum. Hénce, Darcy’s law represents an average of
the vmicrosc.opic behavior of flow in the soil continuum. Furthermore, Darcy’s law is
valid only for a range of slow velocity flows that are usually found in soil (i.e., for
flow for which Reynolds number, Re, is smaller than 1). For large Reynolds number
flow, the linear relationship given by Darcy’s law is no longer valid.

In 1899, Slichter [79] studied geometrical arrangements of spheres in order to
- reduce the hydraulics of a complex soil to an idealized system. He also made the
first attempt to derive the porosity function for beds of uniform spheres, by making
the simplifying assumption that the average cross-sectional area for a flow would be
triangular. Applying the equivalent of Poiseuille’s law for a flow through a tube of tri-
angular section, he obtained Darcy’s permeability equation. Unfortunately, Slichter’s
basic formula proved to be inadequate due to its oversimplification. Nevertheless, his
study provided the starting point for many subsequent works.

In parallel to the experimental studies of flow through granular media, theo-
retical developments on slow flow of fluids have also been accomplished. One of the
earliest was performed by Stokes on the resistance of a solid body moving relative to
_ a fluid. For this study, fluid viscosity was taken into account. In 1851, hé published
a paper -[83] in which the so-called linearized form of the general equations of motion
of a viscous incompressible fluid, i.e., a time-dependent form of the creeping motion
equations, was used to estimate the frictional damping of the motion of a spherical
pendulum bob due to air resistance. The resistance to fall of a spherical body was
also presented in this paper. The relationship between the drag force and the radius

and velocity of a falling sphere that he developed, known as Stokes’ law, is still used
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“in_ estime,ting}:‘the size distribution of grains in a soil. Stokes’ law applies only to
situations Where the particles are far enough so that the motion of each one is not
affected by the motion of its neighbors.

| Lorentz [58], following the method developed by Stokes [82], determined the
mofion of e, sphere in the presence of a plane wall. The technique used involved
reﬂectipn of the original motion produced by the body from the surface of the wall
and back again. Smoluchowski, a Polish mathematician, employing the same tech-
nique of reflection, was able to study the effects of hydrodynamic interaction between
two spheres moving in a viscous fluid [80] and the sedimentation of an assembly of
~ spheres [81] Cunningham [28] studied the sedimentation of a cloud of particles in a
closed vessel, employing a cell model. His estimate of the decrease in terminal settling
velocity due to particle interaction was based on the approximate assumption that
each particle moves, on the average, as if it were contained in a rigid spherical enve-
lope of radius equal to half the distance to its nearest neighbors. Many of the early
contributions to low Reynolds number hydrodynamics can also be found in Oseen’s
book [69].

It is also interesting to note that Einstein’s doctorate thesis was concerned,
among other things, with a new method for determining the size of molecules of
chemical substances. In order to accomplish this, he developed a theory for the
~ resistance to shear of a suspension of small spherical particles immersed bin a contin-
uous fluid, as a model for large molecules in solution. He showed theoretically that
the apparent increase in viscosity of the suspending liquid could be related to the
volumetric concentration of solid particles (or solute molecules) by a simple propor-
tionality constant [40]. Einstein’s law for suspension viscosity has been used as the
basis for almost all theories of the behavior of suspensions in shearing fields of flow.

Like Stokes’ law, Einstein’s law applies to cases where the suspended particles are far
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‘enough apart on the average that their motion is not influenced by mutual interaction
of the disturban;es produced by individual particles.
: Reéen}: developments in ﬂow through porous media have been more varied and
INore NUMerous. These developments Were‘motivated by the needs of different scien-

tific communities. The various discipfines that have studied fluid flow through porous

media comprise:

¢ Chemical engineering: In this field, usually interaction of particles is neglected
so that the fundamentals of single particle motion apply, and this application

refers essentially to dilute systems of particles.

e Civil engineering: Although the infiltration of water and oil through soil has
been studied routinely by assuming the validity of Darcy’s law, no work has
been performed to study the microscopic behavior of flow through an assembly
of particles. For dilute systems, such as the transport of sediments, the analyses
led to microscopic studies. Saltation, the transport of particles (generally sand)

by the wind is also of particular interest.

¢ Biology: Normal blood is a suspension of flexible particulate matter (red cells,
white cells, and platelets) in a continuous medium, the plasma. Therefore, micro-
scopic studies are required for a better understanding of the difference between

an idealized man-engineered blood system and a real one.

The above branches are not necessarily the only ones interested in fluid flow
through porous media. Other scientific fields, such as mining engineering, physical
sciences, and earth sciences have also contributed to the study of this topic.

Although Darcy’s law has been used with great success for modelling fluid
flow through porous media, its development was made by assuming the medium as a

continuum. In other words, Darcy’s law provides a macroscopic behavior of fluid flow.
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| ”T(j study“ the flétailé of an incompréssible fluid flow through an aggregate of particles,
| the equations of motion of the fluid phase can be described by the Navier-Stokes
eq_uation's.. | |

| In the classical theory of fluid meché.nics, the Navier-Stokes equations proved
to be a m#jor achievement to describe the motion of an isothermal, incompressible
fluid with constant density and viscosity. However, owing to its nonlinearity, the
solutions of these equations under given boundary conditions are difficult to obtain.
Furthermore, due to their generality, the Navier-Stokes equations have proved to be
cumbersome in describing fluid flow through porous media. By reducing the Navier-
- Stokes equations to the so-called creeping motion equations, or Stokes’ equations,
the equations of motion of fluid flow become linear and are easier to handle. At the
fundamental microscale, Stokes’ equations provide a complete description of the entire
flow field. By performing appropriate volume averages of Stokes’ equations, Darcy’s
law, which was established empirically at the macroscopic level, can be obtained.
Therefore, Stokes’ equations give an adequate description of the fluid flow at the
microscopic level.

In the following, first, the derivation of the Navier-Stokes equatiohs will be

presented, however, due to the complexity in solving these equations, they will be
simplified by assuming quasi-steady flow and neglecting the inertial term. This then

leads to the Stokes’ equations.

3.2 The Navier-Stokes Equations

3.2.1 Development of the Navier-Stokes Equations

Assuming isothermal flow of a homogeneous viscous fluid, the equation of continuity

is obtained from the conservation of mass of a small stationary volume element within
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‘a flowing fluid. In vector form, this equation is given by:

dp

P =9 () (3.1)
where p is the local density of the fluid, u is the local mass average fluid velocity,
and o/ ot refers to the time rate of change at a fixed point in the fluid. The quantity
v (pu), which is called the divergence of pu, expresses the net rate of mass efftux per
unit voiume. In other words, the continuity equation (equation (3.1)) states that the
sum of the rate of change of mass inside a control volume and the net rate of mass

efflux through the control volume is zero.

An alternative form of the continuity equation is given by:

Dp
= —oV - 3.2
Di pV - u (3.2)

where the operator D/Dt, called the substantial derivative or Stokes operator, is

defined as:

D 0
-5;=5?+11'V (33)

This later form of the equation of continuity describes the rate of change of density
as measured by an observer moving along with the fluid.
If the fluid is also assumed to have constant density p (i.e., incompressible), the

continuity equation simply reduces to:
Veu=0 (34)

The equation of conservation of linear momentum is obtained by the application
of Newton’s laws of motion to a differential volume of fluid. These laws may be
interpreted as stating that the external force acting on a stationary fluid element is
equal to the time rate at which momentum is being created within the element. There
are two external forces acting on the fluid element: (a) the surface or contact forces

exerted by the fluid stresses acting over the surface of the element and (b) the volume
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or body forces exerted on the element (such as gravity). The rate of creation of
momentum in the volume is given by the sum of the rate of accumulation or increase
of 'momerlltum in the volume and the net rate of eflux of momentum out of the volume

element through its surface. Hence, the equation of linear momentum is given by:

9(puw)
ot

+ V- (pu®u) =V - -T+ pX (3.5)

The left-hand side of equation (3.5) expresses the rate of creation of momentum per
unif volume, which is the sum of the rate of increase of momentum per unit volume
(0(pu)/0t) and the rate of momentum loss by convection though the surface, per

unit volume (V - (pu®u)). The right-hand side of the above equation relates to the
- external forces per unit volume. The quantity (V - T) gives stresses on the surface
per unit volume, whereas (pX) are the external body forces on the element per unit
volume.

The second rank stress tensor T is defined according to the usual convention,
that is, if dS is a directed element of surface area, dS- T is the contact force exerted
by the fluid into which the vector dS is directed on the fluid on the opposite side of
the surface element. If T is assumed to be symmetric, its nine components, o;;, are
reduced to only six independént ones (i.e., 0;j = 0j;).

The external body force, X, is a force per unit mass. Typically it arises from
the action of gravity. For example, if g is the acceleration of the gravity vector, then
X= g -

Also, in equation (3.5), V- (pu®u) represent a vector due to the dyadic product
of the velocity vector u (i.e., u®u represent a tensor of rank 2). Similarly, V- T is
also a vector because T is a tensor.

By combining equations (3.4) and (3.5), and after rearrangement, equation (3.5)

becomes:

=V T+ pX (3.6)
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- Here, the substantial derivative of the velocity vector is defined as:

% = % +u- (Vu) (3.7)
the here that the quantity Vu, which represents the gradient of the velocity vector,
is a tensor of rank 2.

As expressed in equation (3.6), the left-hand side gives the mass-per-unit volume
times the acceleration, whereas the right-hand side represents the sum of the stresses
andA body forces on the element, per unit volume. In this form, the equation of
momentum is referred to a small volume element moving with the fluid and accelerated
7 by forces acting upon it.
| Refefring to an orthonormal system of axes (z1,%2,3), equation (3.6) can be
written explicitly as:

P%‘f + Png%; = % + pXi (3.8)
The components of the velocity vector, u, and the body force, X, are respectively
(u1,ug,u3) and (X;,Xs,X3). Before equation (3.6) can be used to solve problems,
suitable expressions for the stresses must be obtained in terms of the velocity field.
| Assuming Newtonian fluid, i.e., the stress is proportional to the rate of shearing

strain (angular deformation rate). The stresses may be expressed in terms of velocity

gradients and fluid properties as follows:
T = —pl + 2uA (3.9)

where p is the local thermodynamic pressure, u is the shear viscosity or dynamic

viscosity, | the unit tensor (or identity matrix, [6;¢]) and the tensor A is defined as:
A= 5[(Vu) + (Vu)’] - §(V -u)l (3.10)

Here, (Vu) represents the transpose of Vu. The pressure is given by:

p= —%0’,',' (311)
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Substituting the expression of T from equation(3.9) into equation (3.6), the
general equation of motion for an incompressible newtonian fluid is given by:

~ (V)Y 0) 4 pX

(3.12)

p% = ~Vp+uVia+ %,uV(V-u) +2(Vp) - Vu+(Vu)x (Vxu)
This equation, alohg with the continuity equation and the equation of state
pv = p(p,T) (where T represents the temperature), the density dependence of the
dynamic viscosity 4 = u(p,T) and the boundary and initial conditions, determines
completely the pressure, -density, and velocity components of a flowing isothermal
fluid. |

When the gradients of temperature and pressure are small, terms in Vu may
be omitted, i.e., the dynamic Qiscosity is assumed to be constant.

Finally, for constant density p, i.e., incompressible fluids (V-u = 0) and constant

dynamic viscosity, equation (3.12) reduces to the so-called Navier-Stokes equations:
Du (2" u.Vu) = —Vp+ pVPu+ pX (3.13)
o7 = PG, =~Vp+p p :

which were first derived by Navier in 1827 [63] and modified by Stokes in 1845 [82].
Assuming an orthonormal coordinate system, the equations of continuity and
motion of an incompressible fluid with constant density and viscosity are given ex-
plicitly as:
Bu,- :
=0 (3.14)

oz;
and

Bu; au,' 1 8p 2
—— j—— = —— - i+ X; A
5 +u’8xj pB:l:,-+VV u; + (3.15)

where v = pt/p = kinematic viscosity.

The components of the syfnmetric stress tensor, T, are given explicitly as:

Ou; = Ou;
= T = — D et A T § .16
0 = 0ji = —pbi; + ,u(awj + 52, (3.16)
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- Note that in gquation (3.16), 6;; represents the Kronecker symbol (6;; =1 if ¢ = j
and 85 = 0if i # ).

-Whéh A,u = 0, the Navier-Stokes equations (equation (3.13)) reduce to the well-
known Euler equation for a frictionless or ideal fluid. In the case of irrotational motion,
ie., V x u = 0, the equations of potential flow is obtained. These form the basis for
most of the classical hydrodynamic theory. Because steady potential streaming flows
exert no force on stationary solid bodies, the theory is useful mostly for predicting
fluid flow patterns at a distance from boundaries.

Due to their nonlinearity, solutions of the Navier-Stokes equations are difficult

to obtain both analytically and numerically. Further assumptions are required in

order to obtain a simpler form for the equations of motion. This leads to Stokes’

equations, which are described in the following.

3.3 The Stokes’ Equations

3.3.1 Developmént of the Stokes’ Equations

One common way of simplifying the Navier-Stokes equations is to assume that the
flow is quasi-steady, i.e., that the depen‘dence on time, du/dt, can be neglected. This
assumptioﬁ is acceptable for the range of small velocity found in flow through granular

media. This means essentially that for a dynamic problem, the instantaneous drag
force acting on an obje;:t is a function of the geometry of the problem at that particular
instant of time only. Furthermore, the inertial term, pu- Vu, is assumed to be small
compared to the viscous term, uV*u, and therefore is omitted from the Navier-Stokes
equations. These two assumptions lead to the so-called creeping motion or Stokes’

equations. Thus for a quasi-steady incompressible isothermal fluid with constant
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viscosity, the equations of motion are given by:
1
_1/V2u— ;Vp+ X=0 (3.17)

V-u=0 (3.18)

By neglecting the inertial term and the time dependence term, the equations
of motion have now become linear. If, in a given flow problem, ! and U represent
respectivelysthe characteristic length and velocity, then the inertial term and viscous
terrﬁ are respectively proportional to (pU?/l) and (pU/I?). Assuming that pu-Vu <
pV?u is equivalent to saying that (pU?/1)/(upU/1?) < 1 or (pUl/p) < 1. This last
ratio is the Reynolds number. Thus, the smaller the Reynolds number, the better the
approximafion of the Navier-Stokes equations by equations (3.17) and (3.18). For the
type of flow through porous media that are dealt with in this study, the assumption

of small Reynolds number (Re < 1) is appropriate.

3.3.2 Stokes’ Paradox

In the case of two-dimensional flow that is studied in this work, it is interesting to
note Stokes’ paradox, which was pointed out by Stokes himself. He stated that it is
impossible to find a steady two-dimensional solution that satisfies equations (3.17)
and (3.18). and boundary conditions. Three-dimensional solutions do not have this
problem. Stokes’ paradox can be illustrated with a dimensional argument: if iner-
tia is negligible, the force, F, acting on a cylinder, placed perpendicular to a two-
dimensional streaming motion, and having a radius R must depend only upon free

stream velocity U, fluid viscosity u, and characteristic length R:
From dimensional analysis, it can be shown that:

r = constant (3.20)
wlU
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This second equation is quite unrealistic as verified by numerous experiments.
It means that thé drag force on the cylinder would be independent of the radius R of
the cylindér: Thus when the radius of this cylinder approaches zero, the force would

not vanish, as it must in reality. It follows that if the inertial term is not negligible,

there must always be a density effect in plane creeping motion, i.e.,

F=f(P,U,,LL,R)
or
F _  pUR
i f(T (3.21)

This relation no longer conflicts with physical plausibility, providing that the function
| vanishes when (pUR/p) — 0. Mathematically, Stokes’ paradox means that a plane
creeping solution will produce a logarithmic singularity at infinity unless inertia terms
are accounted for.

Fortunately, two-dimensional solutions of Stokes’ equations exist in the case of

bounded regions.

3.3.3 Stream Function Formulation of Stokes’ Equations

It is sometimes convenient to forrnulate Stokes’ equations in terms of stream functions.
This transformation is given as follows.

If the body force is present and if it can be expressed as a gradient of a field, then
the body force term can be combined with the pfessure term. Thus the equation of
motion becomes homogeneous. In the following, the equation of motion is assumed to
be homogeneous, that is, the body force term is either simply neglected or combined
with the pressure term.

Assuming that w = (u;,u;) defines the velocity in the (z,,z;) plane, the vor-
ticity vector is defined as: |

V=-Vxu (3.22)
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In two—ci“i’mension-s, V is a vector perpendicular to the (x4, z3) plane. Its coor-

dinate along the axis perpendicular to this plane is given by:

1 a’U,g aul
W= 5(5:71 — 8_:02) (3.23)
" The equations of motion are given explicitly as:
1 8p vy 0%y
=% + ( 52 o ) = 0 (3.24)
1 9p Puy 0%uy
s v( i + 2 ) =0 (3.25)

Differentiating equation (3.24) with respect to z2 and equation (3.25) with respect

to z; and subtracting one from another, yields:
Viw =0 (3.26)

By defining the velocities in terms of stream functions, 1,

_ %
= a$2
_ o
Uy = _a_ml (3.27)

such that the continuity equation is automatically satisfied, and by substituting these

velocities into equation (3.23), we obtain:
Vi = —w (3.28)
Combining equations (3.28) and (3.26), we finally get: |
Vi =10 (3.29)

That is, the stream function, v, satisfies the tw();dimensional bi-harmonic equation.
Although in some instances, this form of the Stokes’ equations can be conveniently
used, the boundary conditions , especially for the vorticity term, are difficult to define.
This form is used for numerical solution of the Stokes flow because it is analogous to

the solution of the well-known elastic plate equation.
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3.3.4 Relationship between Stokes’ Equations and Darcy’s Law

The one-dimensional empirical relationship discovered by Darcy has served as the
starting point for numerous applications. While the original conditions studied by
Darcy are found in many practical situations, it is the extensions to more general
cages that are especially deserving of theoretical analysis because they usually rep-
resent situations in which experiments are difficult to perform. The extension to
three dimen;ions of Darcy’s law would be practical because it covers many types of
real groundwater flows or oil recovery processes. While Darcy’s law is being used

with great frequency for three-dimensional flow, no experimental verification of the

- obvious tensorial representation of Darcy’s empiricism seems to exist. On the other

hand, there are many theoretical treatments that lead to this result (cf. Gray and
O’Neil [45‘], and summaries of the\subject are also given by Bear [5]). However, in all
of these developments, one or several constitutive assumptions were made to obtain
the final conclusion. The only exceptions appear in the works of Brenner [9] and
Whitaker [97].

In Brenner’s work, Stokes flow in a spatially periodic porous medium was an-
alyzed in order to produce Darcy’s law for the case in which the volume-averaged
velocity is-constant. Whitaker’s approach, which is also devoid of any constitutive
model, considers the momentum balance equation (i.e., equations of motion) of the
- fluid phz_ise only, regarded as a continuum. Accordingly, he derived the equation of
motion for the fluid phase present in the void space of a porous medium by taking an
appropriate volume average of the equations of motion of this phase. By assuming
that (a) the inertial effects, and (b) the internal friction inside the fluid are negligible
in compa.risoh to the drag produced at the fluid-solid interface, Whitaker proved that
Darcy’s law can be obtained from this process of averaging the Stokes’ equations.

Whitaker’s work presents the following advantage over Brenner’s work: (a) spatial
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periodicity and (b) homogeneity of the porous media are not required in the analysis.
From these theoretical works, it can be concluded that Darcy’s law depicts

the macroscopic behavior of the flow whereas Stokes’ equations give the details (i.e.,

microscale) of the fluid flow considered as a continuum.

3.4 Continuum Approach to Fluid Flow in Porous Media

-

Assuming that Stokes’ equations hold for the fluid phase of a porous medium, it
becomes clear from these equations that if the velocity is known, the pressure, and
therefore the drag force exerted by the fluid, can be obtained. If an assembly of
‘particles, such as the one represented by the Distinct Element Method in the previous
chapter, is submerged in a ﬁu.id phase, then the drag force acting on each particle
can be determined because the velocity of each particle is known. This drag force can
be added to the interparticle contact forces resulting from the solid-solid interactions
to produce the global forces acting on each particle. This global force is used to
determine the new velocity of the particle, which in turn will determine the new
boundary conditions for the fluid phase and the creation or breaking of solid-solid
contacts. Thus, the simulation of a bi-phase system in which solid-solid and solid-
fluid interactions are considered can be simulated.

The assumptions applying to the fluid phase that lead to this model are listed

" as follows:

1. Isothermal flow: the flow occurs at constant temperature.

2. Incompressible ﬂuid: the density of the ﬂui& phase is assumed constant.
3. Constant viscosity.

4. Newtonian liquid.



66
o
5. Quasi-steady flow: the drag force acting on a particle is only a function of the

| geometry of the problem at that instant of time. This assumption is valid for

the fa.née of low Reynolds number flow studied here.

6.: Omission of the inertia term: for low Reynolds number flow (Re < 1) found in

practical undergrourid flow, this assumption is acceptable.

Additioﬁal assumptions are required before the complete description of the bi-phase
model can be given.

In three dimensions, the fluid phase of an aggregate of polyhedral or spherical
7 ‘shaped particles is a continuum, that is, the fluid phase constitutes a single domain.
This is nof always the case in two dimensions. As illustrated in Figure 3.1, the
fluid phase could be divided into several pockets of fluid trapped in between particles
and outer boundary walls. In principle, the velocity at the boundary of each pocket
can be easily obtained from the velocity of the particles and walls that form the
boundary of that pocket. Therefore each pocket can be treated as separate bodies of
fluid to be handled individually. The fluid force acting on a particle is obtained by
summing all the contributions from different fluid pockets with which the boundary
of the particle is in contact. The probiem that arises from this solution method is
the delineafion of the fluid pockets. Although this delineation can be easily done
visually, an algorithm performing this task would be very complicated. This division
of the fluid domain iﬁto pockets can be completely avoided if we assume that the
fluid phase occupies only a single domain. For this, we allow the particle to shrink
s]jghtly so that all the fluid pockets become interconnected (see Figure 3.2). The
~ fluid phase can ﬁow be visualized as a single domain with multiple holes (i.e., a swiss
cheese-like geometry). At the boundary of each hole, particle velocities are prescribed.
Under this assumption, the modelling of the fluid phase is far easier than the one with

different fluid pockets. This idealization is similar to a three-dimensional model where
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the fluid pha,s:e is a continuum. However, this model requires the specification of a

minimal gap between the particles.

Due to the contact between
particles, the fluid phase is
divided into 2 pockets:

P1 and P2.

Figure 3.1: Fluid pockets inside a 2D saturated assembly of particles

By allowing the particles

to shrink slightly, the fluid
pockets are now interconnected
and form a single fluid domain.

Figure 3.2: Shrinkage of particles to produce a single domain fluid phase



68
Finélly; éfbr the sake of simplicity, all particles are assumed to be completely
submerged in th;a fluid phase (i.e., the study considers a saturated granular medium).
Thus the‘ca,hpillary effect can be ignored. Furthermore, the outside boundary of the
ﬂﬁid domain can be simply determined beéause no particles are allowed to cross this
bouﬁda.ry. | |
In summary, the model that will be used to simulate a saturated granular

medium consists of:
1. A solid phase with contacting particles.

2. A continuum fluid phase with multiple holes at the location of each particle.
To obfain this geometry, the particle size is allowed to shrink enough so that
interconnection of fluid pockets that used to be trapped between particles and
boundary walls become interconnected. In this case, the fluid is allowed to flow
in between the gap. The quantity of fluid flow through this gap is controlled
by the gap width. If this width is chosen small enough, the flow could become

negligible.

The algorithm used in the computer program NePTune (New Program by Tan
for useful numerical experiments) obtained by introducing a fluid phase to the DEM

algorithm is as follows:
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. read simula.tib; parameters and initial conditions
for all time ¢; steps do
shrink the radius of the particles until all fluid pockets become interconnnected
solve for the fluid force acting on each particle from known
velocities of particles and walls
for each disc a do
assemble the disc contact list, i.e., all objects in contact with «
for each object of the contact list do
compute outward normal vector
compute incremental velocities at contact
- compute contact forces and update contact information
compute accelerations for disc « at time ¢; by
- considering contact forces and fluid forces acting on the disc
for each disc a do
integrate for velocities at time ¢, L
integrate for displacements and rotations at time #;4,
update disc information array
update list of contacts made or broken
update wall motion and wall information array
end of simulation

From this algorithm we observe that the boundary conditions used for solving
the fluid phase are out of phase from that of the solid phase by half a time step.
Performed numerical simulations have shown that the error introduced is negligible,
especially when the time step required is small.

The numerical treatment of Stokes’ equations will be presented in the following
chapter. Owing to the complexity of the fluid domain, the boundary element method

" is used to model the fluid phase.
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Cha_pter 4

NUMERICAL SOLUTIONS OF STOKES’ EQUATIONS

In this chapter, the numerical implementation of Stokes’ equations is given. The

boundary element method [1,8,7] is chosen to model the fluid phase based on its

flexibility in discretizing the domain. Three test cases have been included to verify

the validity of the numerical formulation.

4.1 Governing Equations of Motion

Recalling from the preceding chapter, the governing equations of motion of a New-

tonian, incompressible fluid in a cartesian coordinate system can be summarized as

follows:

e Conservation of linear momentum:

Oike +pX; =0
o Conservation of mass:
ugr =0
¢ Constitutive equation:
ok = —pbjk + 2pdjp

where

1
djx = 5(uj,k + U, ;)

(4.1)

(4.2)

(4.3)

(4.4)
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~ where Ojk 18 the stress tensor, uy, are the velocity components, p is the fluid density, X;
are the body force components per unit mass, p is the pressure, é;; is the Kronecker
symbol, p is the constant viscosity and dj; is the rate of strain tensor. The tensors o
and d;; are both symmetric tensors. The above equations are assumed to be satisfied

in a.‘doma,in (1, the domain of the problem.

These governing equations must satisfy the following boundary conditions:

u; = 1, only

t; = oung=1t;, onT, (4.5)

- where t; are the component of the traction vector, n; are the components of the unit
outward vector normal to I', %; and ?; are the components of the specified velocity and
traction vectors on I'y and I';, respectively, and I'; and T'; are parts of the boundary
of the domain €. Furthermore, it is assumed that I'; Uy = I", where T constitutes
the complete boundary of region {2.

Equations (4.1) — (4.4) and the boundary conditions (equation (4.5)) deter-
mine completely the pressure, density, and velocity components of an incompressible

viscous flow field.

4.2 Different Approaches for Solving Stokes’ Equations

* The most common approach used for solving Fluid Mechanics problems is the finite
difference method [13,71]. Due to the simplicity of formulation, the use of finite differ-
ences allows concentration on the particular nature of the flow problem rather than
on the numgrical tool used for solving it. However, the main difficulty in the use of
finite differences lies in the incorporation of the boundary conditions. In the analy-
sis, because the differential equations of equilibrium of the system are approximated

directly by the difference scheme, it is necessary in the differencing to satisfy both
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the essential and natural boundary conditions. This can be difficult to achieve at
arbitra.ry bound:;mries, because the topology of the finite difference mesh restricts the
form of différencing that can bé performed. Also, the matrix formed by this method
is .not-always symmetric and requires lengthy operations for inverting it.

‘ " To ovércome the difficulties introduced by the finite difference method, the fi-
nite element approach has been used increasingly in fluid flow analysis. Taylor and
Hood [86] presented two approaches for solving the Navier-Stokes equations (i.e.,
including convection and time-dependence terms). In their first formulation, the ve-
locity and pressure are the physical variables used for solving the problem. Using this

~approach, the boundary conditions are easily defined because the variables used are
directly related to physical variables. In their second formulation, the Navier-Stokes
equations are transformed to include the stream function and the vorticity. However,
the solution method in this second approach is not straightforward because gener-
ally the vorticity is not known on boundary walls, and the specification of boundary
conditions on pressure, except for the simplest problems, is practically impossible.
Nevertheless, this second approach has also been adopted by Tong and Fung [90] to
solve biomechanics problems involving slow particulate viscous flow in channels and
tubes.

The numerical implementation of both the finite difference and finite element
_ approaches are relatively straightforward. However, due to their discretization of
the phyéical domain, these solution techniques are not the most convenient ones
for modeling the fluid phase in this study. For example, to obtain the solution of
a particular problem, the physical domain needs to be discretized into a mesh for
~ the finite difference method or several elements in the case of the finite element
method; thus, solving fluid flow through pores of an assembly of particles requires the

discretization of a domain with a complicated shape. Furthermore, these techniques
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valso provide sélutioﬁs at locations not directly adjacent to a particle (i.e., inside the
fluid medium itéelf), which are not required to obtain the solution of the problem.
In fact, W'h‘a,ht are needed are onIy the solutions at the periphery of a particle because
thése completely determine the reaction force of the fluid on the particle. Therefore,
knovﬂedge éf the solutions at points inside the fluid phase other than those at the
periphery of a particle is not necessary. In other words, the motion of a particle is
only a function of the inter-particle contact forces (solid-solid interaction) and the
drag force generated by its motion inside a viscous, incompressible fluid (solid-fluid
interaction).

Because solutions are needed only at the boundaries of solid particles, this sug-
gests that the boundary element method (BEM) [1,8,7] might be the most convenient
one to use for solving flow of the fluid phase. The BEM reduces the dimensions of the
problem by one through re-formulating the problem in the form of boundary integral
equations. This method is well suited for solving the fluid phase problem because
the two-dimensional domain occupied by this phase is now reduced to curves along
the boundaries of particles and walls. Although the formulation of the BEM is quite
sfraightforward, its implementa,tionr is usually complicated because it involves non-
singular functions. Furthermore, the matrix that arises from the BEM formulation is
non-symmetric and full. To obtain the solution of the problem, this matrix needs to
_ be inverted at each time step and this requires lengthy computations.

Like the finite element method, Stokes’ equations can be solved by two dif-
ferent approaches using the BEM. In the first formulation, Stokes’ equations are
transformed by introducing the stream function. In this case, the bi-harmonic equa-
tion (equation (3.34)) is obtained and solved. Bézine and Bonneau {6] presented a
formulation based on this approach. They adopted this method because of its sim-

ilarity to the equations of plate bending problems. Like the finite element method,
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) the difﬁc;llty f)f thi‘s approach lies in the specification of boundary conditions. A sec-
ond approach uging physical variables, i.e., velocity and pressure, was presented by
several aﬁtliors [10,56,91]. Thié formulation is probably the most useful one because
tl'le‘ physical variables used here have direct significance and can be easily specified.
TheﬂvvelocitAy-pressure approach will be the method used for solving the fluid phase

flow and its formulation is presented in the following.

4.3 Boundary Integral Formulation

Let 4, p, and &;; be a set of arbitrary velocity, pressure, and stress weighting fields
- (weighting functions). If u;, p, and o; do not identically satisfy equations (4.1)

and (4.2) in §, the following weighted residual statement can be written:
/ﬂ [ojk e + pX;] G;dQ + /nuk,kﬁdﬂ =0 (4.6)
Integrating by parts the term involving o &, equation (4.6) becomes:
- /ﬂ o5 1A + /F o it dT + /Q pX;0;d0 + /ﬂ g PdQ = 0 (4.7)

From the definition of traction (equation (4.5)), it follows that equation (4.7) can be

written as:
- /9 05 kS + /F t;6,dT + /,, pX ji;dS + /ﬂ upspd = 0 (4.8)

Because ij, p, and &;; can be chosen arbitrarily, they can be selected to be

Newtonian, incompressible fields, i.e.,

U = 0

&i; = —pbi;+ pdy; (4.9)
R 1 .

dij = 5(;+ ;)

ji. = viscosity of the weighting field
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From the symmetry of o and dj,

‘/QO'jk’&J"de = /chjkcijkdﬂ (410)

Using the constitutive equation (4.3) and considering the incompressibility of

the Weightihg field, equation (4.10) can be rewritten as:
/Qa'jkaj,kdﬂ = -/QO'jk(ijde
= — [ podind@ + [ 2uddyed
= —ijkkdﬂ +Lzudjkjjkdﬂ

- /ﬂ 2ud;d;d) (4.11)
Similarly, ,
/Q &t pd = — /9 P8xd;dd + /Q idd ;5 dS (4.12)
The value of i is chosen such that:
f=p (4.13)

Combining equations (4.11) - (4.13) yields:

- /Q o it d D = — /Q & s A — /Q g PO (4.14)

This last equation is also known as the reciprocal theorem for incompressible viscous

flow.

Substituting equation (4.14) into equation (4.8), we obtain:
- L&ijj,de + /th&jdf‘ + /{;p.X}ﬂ_,dQ = 0 (415)
Integrating by parts the term involving &;x and retaining the other terms give:
- A&jk,kujdﬂ = pLXjﬁde - /Ffjude‘ + /thﬁ,-dI‘ (416)

The left-hand side of equation (4.16) can be further reduced by an appropriate

choice of the weighting field. This reduction is explained in the two following sections.



76
| 431 C];oiceédf the Fundamental Solutions or Kernels
The weightiflg field is chosen such that:
Gk k(@) + A(P, Q)6 =0 (4.17)
whe?e A(P,.Q) is the Dirac delta function. This function has the following properties:
AP,Q) = 0,if P#Q

A(P,Q) = oo, if P=Q (4.18)

[ @A P, )dQ) = £(P)
The components of velocity and traction of the weighting field at any point of

the domain are given by:

5@ = Xt(PQ) (4.19)

where uf; and t}; represent respectively the j component of velocity and traction
generated at point @ by a unit load at P in the ¢ direction. In other words, the
éomponents of the velocity and traction can be visualized as the sum of the individual
j components of the velocity and traction generated by unit point loads in two or
three directions for two- or three-dimensional space.

In the case of an incompressible fluid flow, the (.)* field, which is also known as
the fundamental solution or kernel, is given by the so—called Stokeslet [14,47]. In two

dimensions, it is defined as follows:

u;(PQ) = ﬁ{ln(%)é,-ﬁr,ir,j} (4.20)
t:j(P1Q) = —%{g—;mr,j} (4.21)

where r = r(P,Q) = || PQ|, is the distance between the source point P and the field

point Q, and n is the unit outward normal vector. The derivatives are taken with
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reference to the coordinates of the field point, @, i.e.,

ST = AT

r = (L‘,(Q) - .’IJ,(P) (422)
.o or i
T 0n(Q) v

These fundamental solutions satisfy Stokes’ equations in an infinite domain with
a unit point source in the 7 direction at P. With this choice of fundamental solutions,

equation (4.16) can be reduced as follows:

43.2 Boundary Integral Formulation for a Point Inside the Domain

Given a point P inside the domain 2, substituting equation (4.17) into (4.16) yields:

ui(P) = p [ X;u3,(P,Q)0(Q) - [ (P, Qus(@Qr(Q) + [w}(P,Q)L(Q)r(Q)
(4.23)

This last equation is similar to Somigliana’s identity in solid mechanics.

4.3.3 Boundary Integral Formulation for a Point On the Boundary

If P € T', equation (4.23) is still valid; however, the second and third terms of the right-
hand side of this equation include singular terms (i.e., uj; = fi(1/r) and t}; = f5(1/r);
when P = @,r = 0, and thus u; and t}; become singular). Assuming that the
boundary is smooth at P, we can represent it by éha,lf circle (see Figure 4.1) centered

around P and having a radius €. By taking ¢ — 0, this half circle tends, in the limit,

to point P.

In this case, the second term of the right-hand side of equation (4.23) can be

written as:

Jiz quI‘—hm{/F_ u,dr+/ f2 qur} (4.24)

e—0



Figure 4.1: Singular point replaced by a half circle

Considering only the I, integral, we obtain:

-0

I! = lm /F tiju;dl

~

= lim L @r,ir,j u;dl’ (4.25)

e—0 |Je. 7r |On

Along T, we have:

ny =cosf, ny=sinb (4.26)
ry=cosd, ro=-sinb

therefore,

0
—3—:—;- = r,ml = 1 (427)

hence,

1
If = lim —;r,ir,j quF (428)
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When ¢ = 1 for example, using the geometry shown on Figure 4.1, I! becomes:

. L =
I{ = El_l}(l) [—_7_{‘—1"—./0 (r,lr,lul +T’1T,2’LL2)T'CI0]
= lim [—l /r(cosz fu; + cos fsin 0u2)d0]
e—0 T Jo
1
= —§U1 + OU2 (4'29)
Similarly,
I; = Oul - ’;-'ll,g (4.30)
Finally,
* 1 *
LtijUde = —§5gkuk + /Ftijujdr (4.31)

It is understood that the second term in the right-hand side of the above equation is
defined in the sense of Cauchy Principal Value.
Performing the same procedures for the third term of the right-hand side of

J
equation (4.23), we obtain:

[t =l { J  witidl + ! e u;fjtjdr} (4.32)

Considering only the I, integral, we obtain:

1 = tm{ [ ujtar}

. 1 1
L= hm{/r yP [111(;)6,']‘ + r,,-r,j] tde} (4.33)

e—0 AT

When : = 1, for example, I}* is given by:

£~

I} = lim {e /or [ln(—i—)tl + cos 0 sin 0t, + cos® Otl] d0}

=0 (4.34)

Similarly,

Ir=0 (4.35)
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The singularity found in the third term of equation (4.23) does not present the strong

singularity type encountered in the second term.

Deﬁning,
1
ci;j(P) = =6, (4.36)

the integral equation for a point on a smooth boundary is given by:

iPu(P) = o [u(PQXAQUAR) + [u5(P.Q)(Q)C(Q)
- [ (P, Qui(Q)r (@) (4.37)

If the location of point P is not smooth, i.e., P is at a sharp corner of I', the

tensor [c;;(P)] is given by [46,53]:

1 | 20 + (sin 26, — sin 26,) (cos 205 — cos 26y)
[C,'j(P)] = Z; (438)
(cos 260, — cos 26,) 20 — (sin 260, — sin 26,)

in which the angles 6,0,, and 6, are shown positively on Figure 4.2.

2 /N

Figure {.2: Definition of angles used in tensor [c;;(P)]
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4.3.4 Numerical Implementation of the Boundary Integral
The integral equation (4.26) involves an integration over the domain 2; therefore the
domain must also be discretized. However, if the body force is simply that of gravity,
this vvi_nbtegra.l can be handled separately. We are then left with integrals involving only

the boundary I'. The following gives the numerical implementation of the boundary

integral equation and the special handling of the body force term.

43.4.1 Body Force Term

If the body force consists only of the gravity field (i.e., X = g), the linearity of Stokes’

“equations requires the solution to the equation motion to correspond to the static
pressure. The force generated by the gravity field on an immersed particle is simply
the buoyancy force, i.e.,

B = —pAg (4.39)

where B is the buoyancy force, and A the area of the particle. This force can be
computed explicitly and need not be integrated numerically.
In this case, the boundary integral equation remaining to be solved is reduced

to:
ai(P)us(P) = [uii(P,QL(Q)I(Q) — [#(P,Q)us(@)r(Q) (4.40)
- 43.42 Vectorial Notation

For the sake of simplicity in the numerical implementation, a vectorial formulation
will be used instead of the indicial notation.

Let x, u, and t be respectively the position, velocity, and traction vectors,

X = , U= , t = (4.41)
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Also, by defining the following matrices:
uy; u t3, 4 1110
Car o |t b= 1 b2 ,c*=§ (4.42)
Uz U th i3 01

the integral equation (4.40) for a point on a smooth boundary is given by:

c(P)u(P)+ [*(P,Qu(Qdr(@) = [u"(P,QHQANQ)  (443)

r

It is in this form that the integral equation will be implemented numerically.

4.3.4.3 Numerical Implementation Steps

In order to solve the integral equation numerically, the following approach is used:

1. The boundary I is discretized into a series of elements over which velocities and
tractions are chosen to be piecewise interpolated between the elements’ nodal

points.

2. Equation (4.40) is applied in discretized form to each nodal point P of the
boundary I' and the integrals are computed (usually by a numerical quadrature
scheme) over each boundary element. A system of linear equations can then be

obtained.

3. Boundary conditions are prescribed that complete the system of linear equations
obtained in step 2. This system of equations is solved by standard methods to

obtain the unknown boundary values.

4. If solution at a point inside the domain is required, equation (4.23) is used where

the integrals are evaluated numerically.

4.3.4.4 Discretization of the Boundary

The boundary I' is divided into N, segments or boundary elements as shown on

Figure 4.3. Several types of elements are used in the BEM, the most common ones
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‘bei_ng ‘.cheuconsl;fdnt, ’linear, and quadratic elements. For the constant element, the only
node of each eleﬁleﬁt is located at the middle of the element. Because each element

has only one node, there can be no variation of variables along an element. In other

wérds, the value of each variable is constant throughout the element. For a linear

elerriént, ea,éh element contains two nodes and variables are assumed to vary linearly

between the nodal values. The quadratic element consists of three nodal points per

element; thérefore, variables along each element are obtained by using quadratic

interpolation functions. The choice of the type of element to be used depends on

the type of problem to be solved. However, it is quite obvious that the higher the

~order of the element used, the more accurate the solution can be obtained because
higher order elements allow more flexible interpolation of the element variables. On

the other hand, the higher the order of the element, the greater the memory storage

and the larger the computation time. The numerical implementation used to model

the fluid flow in this work will be based on the linear element. Also, the so-called

discontinuous element will be used (see Figure 4.3(c)). The choice of this type of

element will be discussed later.
The interpolation functions used in the BEM are identical to those used in the
finite element method. The value of a variable along an element, I', is expressed as

a function of the nodal values, i.e.,

u =Nug, t =Nt,, x = Nx,, (4.44)
Ny, 0 N, O
N = , (4.45)
0 N 0 N,
z,(Py) uy(Py) t1(Py)
z9( P, ug( P ta2( P
XE = < (P) b, U = ¢ (P1) b, tr = < (F1) - (4.46)
$1(P2) ul(Pz) tl(PZ)
| z2(P2) | | ua(Py) | | t2(Ps) |
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Node

~N
j element

(a) Constant clement

NodesN’

/2 element _/ element

(b) Continuous linear element (c) Discontinuous linear element

/ element / element

(d) Continuous quadratic element (¢) Discontinuous quadratic

element

Figure 4.3: Boundary Discretization
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- _and P; and P, are the nodal points of element I';.

For the continuous linear element, the interpolation functions are functions of

the homogeneous coordinate 7 and are given by:

Ny = S(1-)
N, = %(1+n) (4.47)

- The irtterpolation functions of the discontinuous linear element are:

M = (%—TI)
N = (5+) (4.48)

Figure 4.4 shows the interpolation functions for each type of linear element.

— : — Bttt
-1 0 +1 /n -1 -172 0 +1/2 +1 /n
(a) Continuous linear element (b) Discontinuous linear element

Figure 4.4: Interpolation functions for linear elements

Substituting equation (4.44) into equation (4.43) and assuming that nodal point

P corresponds to node number :z, we obtain:

N.

c;u;+§{Akt*NdF}uk = Z{/Fku*NdI‘}tk (4.49)

k=1
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Let:
;‘k=/ t*NdT, G’{sz u*Ndl (4.50)
. /Ty | Y
we then define:

H;. = H}, +cibir, Gir = G, (4.51)

and équation (4.49) can now be written as:
Ne Ne
S Huup =Y Guty (4.52)
k=1 k=1

Selecting each node alternately as the source point, a system of linear equations

can be formed:
[HIU =[G]T (4.53)
where [H] and [G] are obtained by assembling each of the individual H;; and G;;

submatrices. [H] and [G] each has dimension 2N, x 2N, where N, is the total

number of nodal points. Vectors U and T are defined as follows:

( ) ( A

u1(Py) t(P1)
uz(P1) ta(Py)
U =« : 0, T =3 : - (4.54)
u1(Pn,) t1(Pn,)
| w(Pn,) | | t2(Pw,)

- with P; to Py, the nodal points.
If the boundary conditions are applied, the system of equations (equation (4.53))

can be ordered as follows:

AY =R (4.55)

where [A] contains all the coefficients of [H] and [G] related to unknown variables,
Y is the vector consisting of all the unknown variables, and R is the vector formed

by the product of the coefficients of [H] and [G]| and the known variables.
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4.3.4.5 Traction Discontinuities at Corner Points

If the velpcifcies are defined at a node located on a sharp corner (see Figure 4.5),
and the tractions are unknown both before and after the node, then this situation
gives rise to the so—called traction discontinuity problem. In this case, the two sets
of tractions before and after the node are not necessarily identical, and there is a
jump or discontinuity in the traction field. If only one node is assigned at the sharp
corner, equa;ion (4.52) involves both of these two sets of tractions. In other words,
we can only form two equé,tions involving four unknowns. Therefore, another set of
2 equations is needed for solving the problem. If two sets of tractions are specified
and the velocities are unknown, the system of equations is complete with only one

node at the corner (i.e., the two required extra conditions simply consist of identical

velocities at the intersection of the two elements).

B ‘ B

Figure 4.5: Corner node with traction discontinuities

Several methods exist for handling this problem [7, pp.165-167]. The different
possibilities a,re:v

1. Corner with gap: in this‘ method, two separate nodes are used at each sharp

corner. Each node is assigned only a set of two traction components (cf. Fig-

ure 4.6(a)). A gap is left in between the two nodes. The length of this gap must
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(a) Corner with gap

(b) Corner with small element

(c) Discontinuous element

Figure /.6: Treatment of corner node with traction discontinuities
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oeasmallwenough to limit the error introduced. However, a too small gap could

cause numerical instabilities because the coefficients of the two sets of generated

‘equétions are very close to each other.

2. Corner with small element: this second method is conceptually the same as the
first one. The only difference is that the small element instead of a gap is inserted
between the nodes. The disadvantages of this method are the same as in the

~ previous method.

3. Discontinuous element: probably the most general approach to this type of prob-
lem is obtained by using discontinuous elements. The deficiency of the boundary
elemént method to handle the traction discontinuities arises from the insistence of
locating the nodal points at the end of each element, i.e., by forcing the continu-
ity of the tractions across elements. If we allow the tractions to be discontinued,
i.e., if we move the nodal points inside the elements, this problem does not occur.
As a matter of fact, the constant element is nothing more than the most simple
type of discontinuous element. Here, variables are constant within the element
and no continuity is assured across elements. Higher order elements presenting
discontinuities are obtained by déﬁning two or more nodal points per element.
However, because the interpolating points are no longer located at the end of
each element, the interpolating functions have to be modified slightly to reflect
this change (cf. -equa,tion (4.48)). The main disadvantage of the discontinuous
elements comes from the higher number of nodal points used in a problem when
compared to the one having the same number of elements but using continuous

elements.

Due to the generality of the formulation using discontinuous elements, they will

be used in the numerical implementation of the fluid phase.
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4.3.4.6 - Numerical Integration for Source Points Not on the Field Element

When the»séurce point, P, is not located on the field element, i.e., P ¢ T, conven-
tional Gauss quadrature can be used to integrate each term of the submatrices H;,
and G};. Because the interpolation functions are expressed in term of the hetero-
geneous coordinate, 7, it is necessary to transform the element of surface dI' from
the local cartesian system to this intrinsic system of coordinates. This is performed
through the‘following relation:

dT = |J| dn (4.56)

where the Jacobian of the transformation is given by:

] = \/<%”f7—1)2 + (G (4.57)

Hence, using a Gauss quadrature, we obtain:
Ik(u;j) = / uijdF
Tk

+1
= [T upNdy
-1

1

Ng
Sl {upN} (4.58)
=1
[ uNar
Tk

+1 .
= [ tNldy

Ii(ti;)

Ng
~ 3 | {tN} (4.59)
=1

where N, is the number of Gauss quadrature points and w; the weighting factor [84].

The choice of the number of quadrature points is based on the following parameter:

.
= n ' 4.60
0=-7 (4.60)

where 7,y is the distance from the source point to the field element, and L the length
of the field element. Based on the value of g, N, is selected according to the rule

shown on Table 4.1.
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According to this table, the closer the source point is to the field element, the

larger the number of quadrature points is to be used.

2 Ny

200 < o 1
20<p<200| 2
2<9p<20 4
0.l<p<2 |16
0 <0.1 32

Table 4.1: Rule for selecting N,, the number of Gauss quadrature points

43.4.7 Numerical Integration for Source Points on the Field Element

When P € T, a special treatment is required in order to handle the singularities
found in the integrands (i.e., the kernel functions). The integrations of the velocity

and traction kernels are performed as follows:

1. Velocity Kernel

Let:

+1
I(wz) = [ wpNdD = [ uN|JT|dy
+1 1 1
= [_1 17—1_-’; {ln(;)&, + T‘,,'T,j} N |J| d’l]

ns 1 1
./_1 drp {hl(r)&]—}-r,,r,]} Tl dn
+1 ]
Ns m
= Ii(uwi) + I (uij) (4.61)

1
+ {ln(;)tsij + 7",:'7“,1'} N|J| dn

where 7, is the homogeneous coordinate of the singular point.

We define:

n—1s
= — 4.62
£= 1% (4.62)

Hence,

n=1n,—(1+n:)¢ dyg=—(1+n,)d¢ (4.63)
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Performiﬁg this change of variable, I}(u;;) becomes:
11
Ii(uws) = [ _4w{ ()63 + rrs pNII(L+ 7,)de¢ (4.64)
Next, we split I}(u;;) into two parts: -

I (uij) = I(uij) + I (uij) (4.65)

where,
Rus) = /01 4; {ln( )5,-j+r,,-r,j}N|J| (L+7n.)dé  (4.66)
) = [ e {8 | NI+ e (a60)

Each term of I3 (u;;) is smooth and well behaved, in particular, the term involving
In(£) because r — 0 when ¢ — 0. Therefore, I$(u;;) can be evaluated using

standard Gauss quadrature. However, we first need to perform another change

of variable:
y=26-1 (4.68)
then:
+1 1 + 17’
R = [ {8 + s 11 52,
N N
= < 1 ¢ .. . (1 + 1)
= Z; mwl { [ln(;)é,, + 'r',,r,J] N|J| }1 5 (4.69)

Similarly, I}(ui;) can be evaluated numerically using a suitable logarithmic
quadrature [84], i.e.,
4 11 1
Bug) = [ o m(E)6N 1| (14 n)de
N'

==§:*7deﬂﬂ}ﬂ+nﬂ (4.70)
Likewise, the integration of IZ(u;;) is obtained by first performing the following
change of variable: |

(=1"T (4.71)
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e
Following the same procedure as explained above, we obtain:

where,

I (uiz)

HUN

I

T (ui) = I (uij) + I (uij)

Z Z;r—;wl {47!‘ [ln( )5,'1' -I- T','T"j] N|J| }l
N’ 1 /
Z yr {6;N[J]}, (1 = ns)

1=1

In summary, we have:

where,

Iy (uij)
I (uij)
I3 (uij)

I3 (uij)

Te(uij) = Ig(uis) + Ii(uij) + I (wij) + I (uij)

Z o (608 | N1

N'
1
Z ——#w; {6;;N|J1}, (1 + ns)

ln( )5, + riT, jI N|J| }
Z:47ru {471' [ 7 g !
N1

——w) {6;N|J 1 —1n,
S g BNV (=)

l

-

2

773)

(1+n,)

2

(-

2

s)

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)
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—
.2. Traction Kernel -

Let:

L(ti;) [ Nar
+1

g N|J|d
[ == Armnmrr s} NI dy

-1

Ns

1
= / —;;{r,mn,mr,ir,j}NlJldn

-1

w_a N|J|d
+/n T ar {T,mn,mr,zm} |J]dn

s

= L (t;) + IR (t;) (4.80)

Because r,n, — 0 as't — 0, then (r,n,/r) is smooth and well behaved
and therefore can be integrated numerically using standard Gauss quadrature.
Performing the same transformations as those used for the velocity kernels, we

obtain:

1 ,mnm 1 + Ns
() Z——w,{ rar N|J| e }l (4.81)

s

1 mNm
I3 (t:) E—;wl{ : T }1 (4.82)

4.3.5 Comparison with Plane Strain Elastostatic Problems

. If we consider the two-dimensional plane strain elastostatic problem, the equations
of motion are given by:

Ojk.k + bj =0 (483)

where ;. are the components of the stress tensor and b; is the body force per unit

volume. The constitutive model in this case is:

| 2u'v'
Ok = ﬁ@-kul,, + 2[,L’djk (484)
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3

where u; are the components of the displacement vector, u’ is the shear modulus, v/

is the Poisson’s ratio, and

‘ 1
djk = §(uj,k + uk,j) (485)

. If we solve this problem using the BEM, the fundamental solutions or kernels
are given by:
1

. (L6 ]

ij =

47r(1 1_ o {(gr [(1=20)6;; 4+ 2r;m ]+ (1 — 2V ) (nir 5 + njr’i)} (4.87)

- If we select v’ to have a value of 1/2 (i.e., incompressible), the fundamental solutions

reduce to those of the incompressible, viscous fluid.

For a point inside the domain 2, the displacements are given by:

/bu,J(PQdQ ) - [P (QMIQ) + [ui(PQ)t(@)AI(@)
(4.88)

Substituting equation (4.88) into the constitutive equation (4.84), we finally obtain:

Oij = LDkijtde — /FSk,-jukdI‘ + -/(;Dk,'jbkdﬂ (489)
where, |
1
Dkij = m {(1 — 21/,) [6,"'7',]‘ + 6kjr,i — (5,']'7‘,]‘,] -+ 27',,'7‘,]'7“,]:} (490)
@ or , -,
Skij = 271'(1——-1/’_)_1“5 25; [(1 - 21/ )55.,'7’,],.7 + 14 (6,-kr,j + 6J~kr, 47',,7" T k)]

+20 (nir jr ) +mgrar ) + (1 — 20')(2ngr 47k + niik +nibii)
—(1 - 4V')nk5,'j} ' (4.91)

It should be noted that when v/ = 1/2 (i.e., incompressible), equation (4.84) is
not defined; however, stresses inside the domain can still be computed using equa-
tion (4.89) because the expressions of Dy;; and Sk;; are perfectly well defined for this

value of ',
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4.3.6 Results for Internal Points

Once the values of the velocities and tractions are known on the boundary, the values
of the velocities and stresses at any interior point can be computed. The velocities

are given by equation (4.23), which in discretized form is:

u(P) = k\é {Aku?dr} £y — é {/Fkt*dl‘} uy + fé {p/Qku*XdQ} (4.92)

where M. is the total number of subdivisions of the domain Q. The right-hand side
terms of this equation can be integrated numerically as explained in section 4.3.4.6.
The stresses at a point inside the domain are given in the same manner as those

used for solid mechanics, i.e.,

i = /I“Dk,'jtkdr —/rSk,-jukdI‘ +/(;Dkijbkdﬂ (4.93)
where,
1
Dk,'j = ;r,ir,jr,k (4.94)
or
Sk,‘j = # {%(5&7‘,1' + 6jk1”,,- — 47",-7"‘7'1‘,];)
+(n,-r,j1',k + n]-r,,'r,k) + nké,-j} (495)

When the stresses and velocities are known, the pressure can be computed as

follows using the constitutive equations (4.3) and (4.4):

p = —on+2udy

p = —0pn+2udy (4.96)

4.3.7 Velocities and Stresses along the Boundary

If we consider an element along the boundary according to its local coordinate system
as shown on Figure 4.7, the component of the strain tensor along the element axis is
easily evaluated as:

€11 = Uy = %[ul(Pg) —u1(PA)] (4.97)
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Figure 4.7 Local coordinate system for discontinuous linear element

Using equation (4.44), the tractions can be computed at any point along the
element. By using the local coordinate system defined above, the stresses at a point

on the boundary element are given by:

a1 = t1 (4.98)

Ji12 = t2 (4.99)
From the equation of conservation of mass (equation (4.2)), we have
Uy + Uz 2 = €11 F €22 =0 (4.100)

which yields:

€29 = —€11 (4101)

- Using the constitutive equation (4.3), the stresses are:

onn = —p+2uen (4.102)

Oy = —p+ 26 (4.103)

Subtracting equation (4.103) from (4.102), and combining the result with equa-

tion (4.101), we finally obtain:

g5l = 4#611 + J929 (4104:)



98
Fina,lly,fhe pfesssure- is given by:
p = —033+ pi€x (4.105)

4.3.8 Multi-boundary Domain

The fluid problem that needs to be solved has more than one surface as shown on
Figure 4.8, \Zvith internal and external boundary surfaces. Both types of boundary
can be differentiated by identifying the direction of the normals. This can easily
be done by adopting the irule that the numbering on the external surface is done
counterclockwise and the one on the internal surface is carried out in the clockwise

‘direction. From these rules, the normal is perfectly well defined and is always pointing

outward from the fluid material domain.

I,

Figure 4.8 Multi-boundary region definition

4.3.9 Force and Moment on the Boundaries

Because the formulation of the BEM used here is employed to compute directly the

tractions on the boundaries of the problem, the force and moment acting on a bound-
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ary can be obtained as follows :

5 (to(PY) + to(P]))

F(T) = Z A 5 L’ (4.106)
F(T) = Z (t(P) +t o(P) s (4.107)
M(F) — gj {( x(Plj) '; tw(P'g))dZ’ + (ty(Plj) ; ty(sz))di} LJ' (4.108)

where, F, and F, are the components of the force acting on surface I', Nr is the
nurhber of elements constituting I', ¢, and ¢, are the components of the traction
vector, P} and P} are the two nodes of the J-th element of T', L; is the element
length, and dJ and d{; are respectively the horizontal and vertical distance from the
center of the element to the moment center. In an actual problem involving particles
of microscopic size, d’. and d{; are negligible and therefore the moment can be neglected.

This is the assumption used in the solid-fluid algorithm.

4.4 Algorithm Validation

In order to verify the validity of the boundary element formulation, three problems
have been solved and the results are compared with known solutions found in various

publications. The three cases studied are described here.

4.4.1 Flow around an Infinite Length Fixed Cylinder, Located between Two Fixed

Planes

The geometry of the problem is given in Figure 4.9. The boundary conditions are:

e Velocities are zero along the top and bottom walls and around the cylinder.

e The velocity profiles at both inlet and outlet are given by:

u = —U[l-—( ]
v =0 (4.109)
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where U is the mean velocity of the flow and R the cylinder radius.

The velocity distribution of the flow is presented in Figure 4.10. The force per
unit thickness acting on the cylinder is obtained by integrating the tractions around

the ',cylinder. In the present case, the non-dimensional force is:
T/pU =24.20 (4.110)

This result compares favourably with Bézine and Bonneau’s boundary element result
(24.15) [6], Harrison’s serrﬁ-a.nalytical result (24.55) [52] and Takaisi’s semi-analytical
value (24.23) [85]. Owing to the symmetry of the problem, this force has a horizontal

component only; the vertical component being zero.

4.4.2 Flow around a Steady Infinite Length Cylinder between Two Moving Planes

The geometry and boundary conditions of the problem are shown in Figure 4.11. The

following boundary conditions are prescribed:

e Uniform velocity on the top and bottom wall, and on the inlet and outlet of the

flow, i.e.,

v = 0 S (4111)

e Velocities are zero along the surface of the cylinder.

The computed velocity distribution is shown in Figure 4.12. Because velocities
are specified at each corner of the outer boundary, traction discontinuities occur
at these locations. The traction field on the fluid obtained by using discontinuous
elements is shown in Figure 4.13. As expected, the results obtained indicate symmetry

with respect to the horizontal passing through the center of the cylinder.
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Values of the velocity along this symmetry axis are compared with numerical
valﬁes given by Boﬁa,rd [19] and the comparison is shown on Figure 4.14. There is a
good agr'een;ent between the two results. The horizontal force per unit length acting
oﬁ !;he cylinder is obtained by integrating the tractions around the cylinder. This

value is:

T/pU =97.29 (4.112)

This result compares favourably with the boundary element results of Bézine and

Bonneau (98.8) [6] and Bouard’s numerical value of 99.4 [19].

443 Flo_w with a Rectangular Particle Floating Freely in a Channel

As shown on Figure 4.15, a denotes the height of the rectangular particle, which is

the half-width of the channel. The boundary conditions shown on Figure 4.16 are:
e Velocity is zero along the top and bottom walls.

e Axial velocity is chosen as a two-dimensional Poiseuille profile, i.e.,

- e
v = 0 (4.113)

o The horizontal velocity of the particle is unknown and has to be determined so
that the forces acting on it are zero, i.e., the particle is floating freely in the
channel. Because of the symmetry of the problem, the vertical component of the

particle velocity is simply zero.
This problem is solved by superposing two basic solutions:
1. The particle is moving with a unit horizontal velocity, Uy, in a quiescent fluid.

2. The particle remains fixed while the fluid moves with a unit mean velocity, U.
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For each case, the axial force acting on the particle is computed by integrating

the tractions around the particle and then the solutions are combined linearly to give

a zero axial force on the particie. The ratio of the velocities is:
U,/U =1.3017 (4.114)

This result compares closely to the one obtained by the boundary element
formulation of Bézine and Bonneau (1.3041) [6], and the finite element result of Tong
and Fung (1.31) [90]. The shear stress distribution along the top wall of the channel
is shown on Figure 4.17. Once again, the results are in good agreement with those of
. Tong and Fung. Using equations (4.97) - (4.105), the distribution of the pressure on
the walls and the particle can be obtained. This distribution is shown on Figure 4.18.

In conclusion, the boundary integral method turns out to be an effective ap-
proach for numerical analysis of fluid dynamic problems. Furthermore, because only
the boundary has to be discretized, this method presents a distinct advantage over
the finite element or finite difference method where the complete domain needs to be
discretized. Therefore the use of this method to model the fluid phase becomes per-
fectly evident in the case of fluid flow past moving particles where the discretization

of the complex domain is by itself a complicated problem.
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Chapter 5
RESULTS OF NUMERICAL SIMULATIONS

In this chapter, several examples are presented. The first three cases validate the
computer program. They will also explain some of the details that were left out of
-the previous chapters for the sake of clarity. In the final four cases, soil-like systems

will be used to demonstrate the capability of the algorithm.

5.1 One Disc Falling Symmetrically in a Viscous Fluid between Two

Parallel Walls

Consider the problem as shown on Figure 5.1: a disc of radius r = 0.5 cm and having
a density p, = 2 g/em?® is placed exactly mid-way between two parallel walls. The
horizontal distance separating the twd walls is 2b = 5 cm and the length of each
wall, h equals 40 em. The disc is placed exactly at mid-height of the wall. The
space between the walls is filled with a liquid of density p; = 1 g/ em? and viscosity
p =50 g/(cm—s). This value of the viscosity is chbsen arbitrarily. The initial velocity
and acceleration of the disc are zero. It is assumed that the thickness of the system
is 1 em perpendicular to the paper. The system is then placed under the action of

gravity, g = —980 cm/s?. The aim of this problem is to find out the terminal velocity
of the disc as it moves inside the fluid. This problem is similar to that of a sphere

falling in a liquid (i.e., a sedimentation process).
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511 Semi-al;élytical Solution

Based on the image method, Takaisi [85] obtained an expression for the drag force on

" . the disc as:

D - TH [8‘— 4(3)?]
| 2In(®) + 3.4486(%)? — 1.8312
= KU (5.1)

where
= viscosity of the liquid
U = velocity of the disc
r = radius of the disc
b = half width between the parallel walls
K = is the expression between braces
This solution is only an approximation of order (r/b)? of the exact solution. This

drag proved to be very close to the BEM solution as shown in the previous chapter.

Assuming this drag force, the equation of motion of the disc is given by:

mi + Apig — K& = mg (5.2)
where
m = ps X A X1 =mass of the disc
A = 7r® = area of the disc

z = as defined in Figure 5.1

g = acceleration of gravity

Equation (5.2) can be further simplified as

B = (1- 2y () (5.



110
This can be solved as follows: let

a = 1—ﬂ
ps
b= 4 (5.4)
and initial conditions:
z(t=0) = 0
#t=0) = 0 (5.5)
the terminal velocity is given by:
a
Voo = 3 2
= W (5.6)
For the problem studied here, ¢ = —980 ecm/s?, r = 0.5 cm, p, = 2 g/em?,

pi=1g/em3, p=50g/(cm — s), b= 2.5 cm, and the terminal velocity is:

Voo = —0.9535¢m /s

5.1.2 Numerical Result

The velocity profiles of the analytical and our numerical results are shown in Fig-
- ure 5.2. The value of the terminal velocity obtained from the numerical solution
is:

Voo = —0.9306cm /s

This differs from the analytical result by approximately 2%. In general, there is
a good agreement between the behaviors and the two final results. The accelerations
given by the numerical and analytical results are compared in Figure 5.3. Again,

good agreement is observed.
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Because the problem is perfectly symmetric, the velocity and acceleration in
the horizontal direction should be zero. Figures 5.2 and 5.3 also show the horizontal

velocity and acceleration. For all practical purposes, the numerical solution yields a

zero horizontal velocity and acceleration.

52 S_edimentation of Three Discs

Durlofsky et al. [39] studied the sedimentation process of three identical spheres in
an infinite fluid domain. They also imposed the constraint that the spheres remain
in the same vertical plane while falling (i.e., a two-dimensional problem). However,
because NePTune was developed only for handling two-dimensional problems, we
selected to simulate the same process as that of Durlofsky et al. Here, discs are being
used instead of spheres. Furthermore, because only finite space can be modelled
numerically here, the three discs are placed in a large container. With the presence of
the boundé.ries of the container, boundary effect will play a certain role in the solution
obtained and differences between the two solutions are expected. The geometry of
the two-dimensional problem is given in the following.

Three identical discs of radius » = 1 cm, density p, = 1 g/em® and unit
thickness, are placed in a container filled with a liquid of density p; = 1 g/cm®
and viscosity p = 100 g/(cm — s). The choice of this high value of viscosity will be
- discussed later. The lateral distance between the leftmost disc (labelled 1) and the left
wall is 116 ¢m and its lateral distance to the second disc (labelled 2) is 5 ¢cm. Finally,
the distance from the rightmost disc (labelled 3) to the right wall is 72 ¢m while
its distance to disc 2 is 7 em. The three discs are placed at an elevation of 810 cm
ﬁom the botfom wall. The system is then subjected to a gravity field with the initial
velocity and acceleration of the three discs being zero. The geometry of the problem

is illustrated in Figure 5.4. The geometry is chosen intentionally asymmetric in order
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\Bounda,ry effect of the walls on the particles. Because the particles do

vto.obserw": the
not collide against each other or any walls, the contact springs and dashpots are of
no signiﬁf:éJlAce here, and the prbblern is one of solid-fluid interaction only.

| .. The trajectories of the discs calculated numerically by the present program
are shown iﬁ Figure 5.5. Notice that th‘e scale in the horizontal direction is highly
exaggerated to show clearly these trajectories. If no scale exaggeration is used, the
discs look as if they are falling straight down.

Durlofsky, et al. [39] used a mobility matrix formulation where the relationship

between the velocity and drag force on a sphere are given by:

U=MF (5.7)
where
U = vector consisting of translational and rotational velocities
F = vector consisting of force and moment

M = mobility matrix

The mobility matrix is obtained through an expansion of the integral equation of
Stokes flow. It can also be viewed as the inverse of the resistance matrix, R, if we

express the above relationship as:
F=RU (5.8)

That is, the force vector, F', is proportional to velocity vector through the resistance
matrix. Hence M = R~!. The lateral distances between each sphere are the same
ones as those used in our simulation. The trajectories obtained by these researchers
are shown in Figure 5.6 for the case when they used their most accurate method (i.e.,
one that takes into account lubrication forces when the particles come close to each
other). The parameters z and y are non-dimensional because they were normalized

by the uniform radius of the spheres.
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. | Corﬁpari;g their results with those obtained by NePTune, we notice that they
both present the éame oscillation-type trajectories. However, it seems that the results
obtained By nt;he method given hére show a higher frequency of oscillation. This could
sirﬁply be the effect of the right wall on the particles. It is surprising that Durlofsky
et ai., did n;)t mention the value of the viscosity that they used in their study! The
differences in the trajectories can be attributed to a difference in viscosity used in
each analysis. However, the appearances of the trajectories are quite similar.

Although Figure 5.5 shows that the trajectories of particles 2 and 3 are inter-
twined, at no instant of time do the particles touch each other. This is shown in
Figure 5.7 where the z and y position of each disc is plotted versus time (note the
scale difference between the plots of the x and y position versus time). When the z
positions of discs are identical, their y positions are different and we can then con-
clude that no collison occurs. Finally, the horizontal and vertical velocities of each
disc are shown in Figure 5.8. As the particles get closer to the bottom wall, their
vertical velocities decreased eventually to reach zero when they hit the bottom wall.
However, because of the smaller time step required when the particle approaches the
bottom wall, the simulation is aborted at approximately 43 s after it starts. The
maximum y velocity of each particle is about 20 em/s, which gives an approximate
Reynolds number of 0.4. Therefore a smaller value of y will increase the maximum
_y velocity thereby increasing the Reynolds number and hence the flow will no longer
be Stokes flow.

To capture all the details of the particles coming to a stop, smaller time steps
are required because the forces exerted by the fluid on the particles become extremely
large. The use of a large time step in this case can cause numerical instability as the
particles will move in large increments of velocity. Therefore, they generate large drag

forces even high enough to push the particle upward. This gives rise to an oscillation,
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which is then repeated indéfinitely. To avoid this problem, artificial damping can be
used to attach the pa,rticle to the ground and prevent the oscillation. The damping
used in this Amanner does not cofrespond to an actual physical value.

~ As mentioned above, too large a time step cannot be used with this algorithm.
At pfesent, no exact method can be used to determine the vertical time step beyond
which numerical instability occurs. One simple-minded way of determining this crit-
ical time step is to assume that at any instant of time, the velocity of the particles
could not be larger than the terminal velocity. Because the geometry of the prob-
lem is known, the terminal velocity can be approximated by the expression given in

equation (5.6), thus we impose that:
ZAL < Voo (5.9)

This then gives us a value for the critical time step. However, this technique of
determining the time step proves to be inaccurate when more than one particle is
present. Consequently, the critical time step has been determined by a trial and error

method.

5.3 An Artificial Liquefaction Simulation

5.3.1 The Liquefaction Phenomenon

It has been observed [54,57,70] that a loose sand subjected to vibration decreases in
volume. The pore pressure increases if it is saturated with drainage restricted (such
as in the case of an earthquake). This phenomenon can be explained by the effective

stress concept [87], which is defined as:

o =0—u (5.10)
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where

o' = effective stress
o = total overburden pressure
~u = pore water pressure.

When the soil grains lose their load-supporting role, the value of ¢/, which represents

the portion :)f the total overburden pressure carried by the solid phase, becomes zero.
Sirnultaneoﬁsly, the pore pressure rises to that of the overburden pressure. Therefore,
the soil becomes a suspension of solid grains in fluid, or is said to have liquefied.

For liquefaction to occur, three conditions are necessary:
1. an overburden load or stress
2. a solid particulate phase that loses its strength

3. a fluid phase that will absorb the imbalanced force when the solid phase loses

its strength.

According to these specifications, we are now able to define a mechanism that

can simulate liquefaction.

5.3.2 Saturated Granular Medium Simulation

To fulfill the first requirement, all we need is a constant load that is applied to the
granular medium. As we mentioned in chapter 2, the formulation of the DEM is
more convenient‘ when applied strain conditions are used because it is easier to define
the motion of the particles. However, when an applied stress condition is used, a
technique must be developed for the numerical system to support this load. One way
of solving this problem when the medium is dry is to allow the walls on which the

load is applied to move in the direction required to achieve contact reaction forces on



116

the wall equal and opposite to the applied force. To illustrate this idea, consider the
case shown in Fiéure 5.9(a). Here, three particles labelled A, B, and C are arranged
ina column ;avithout touching each other. No liquid is present. If a vertical load F} is
apbl_ied to the top boundary (wall 3), the solution consists of moving this wall down
untilﬂconta,cAts between particle and wall and particle and particle are formed. The
downward motion of the top wall is stopped when the contact force between the top
wall and particle C reaches F, (Figure 5.9(b)).

If we suppose that, when the motion of the top wall is stopped, liquid is added
to the void space between the particles (Figure 5.9(c)), the particle contacts at this
stage still take the vertical load, and the liquid is unstressed. Next we shear the
system (Figure 5.9(d)) while preserving its volume, and holding the applied load (F})
constant. In this case, the top wall has to remain at a fixed distance from the bottom
wall. Thus, if the inter-particle contact forces change as the result of this shearing,
some other mechanism is required to absorb the unbalanced force that‘ exists at the
wall. Because now the system is composed of two phases, i.e., liquid and solid, the
unbalanced load will be distributed to the liquid phase, which translates to a change
iﬁ the pore pressure. If only the solid phase is present, because there is no other phase
that can absorb the unbalanced force, the top boundary is required to move up or
down to maintain the contact force constant. In this case, there is a volume change
_ in the system. The motion of the wall will be discussed later.

Based on this simple idea, we now have all the ingredients to simulate liquefac-

tion in a saturated granular medium:
1. A top boundary wall with specified constant load.

2. In the saturated case, this load is compared with the contact forces on the wall. If
an unbalanced force exists, it is simply distributed to the boundary of the liquid

phase that touches the specified load wall. For the liquid phase boundary, this
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" unbalanced forée becomes its applied boundary condition after transforming the
load force iﬂto tractions. Together with the knowledge of all the other boundary
conditi(;ns, the solution of the problem of solid/liquid interaction in terms of the
liquid phase is given by the BEM, WhikCh provides the pore pressure changes at
vény point in the liquid phase. It also provides the drag-force on the particle,
which in turn will be combined with the interparticle contact forces to produce

the force applied at the centroid of the particle. The motion of the particle can

then be deduced from this force.

3. The solid phase will be simulated using the DEM, which allows us to obtain
the contact forces needed at the applied load wall; these are necessary for the
computation of the unbalanced force if any. If no contact exists at the applied
load wall, the applied load will be distributed entirely to the liquid phase. This

condition defines liquefaction.

5.3.3 The Liquefaction Simulation

As explained earlier, the purpose of this simulation is simply to demonstrate the
redistriBution of load from the solid phase to the liquid phase via our calculation
process. Because the example is purely artificial, we will assume that the dimension
used is of unit L, the mass of unit M, the force of unit F' and time of unit 7. From
~ these, all other variables can be deduced.

In this example, three identical frictional particles of radius r = 5L are placed
in a container of dimension 30L x 30L with the same arrangement as in Figure 5.9.
To achieve eventual instability of the system, disc B is slightly off-center to the left
from discs A and B. Next, this dry system is subjected to a vertical loading force
F, ~ 107F. Beyond this value, because disc B is slightly off-center, the column of

particles will buckle. At this stage, a liquid of viscosity p = 25 M/(LT) is added to
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the Void- spacés between the particles and walls. The value of the physical parameters
used in this example is given as follows:
p = fluid viscosity = 25M /LT
ps = nparticle density = 2400M /L3
m = mass of each particle = 157080 M

. ky = normal contact spring constant = 0.75 x 10°F/L

ks = shear contact spring constant = 0.75 x 10°F/L

cy = normal contact dashpot constant = 1.5 x 10" F/L
cs = shear contact dashpot constant = 1.5 x 10"F/L
¢4a = disc-disc friction angle = 22°

¢dw = disc-wall friction angle = 10°

Because no gravity is present in the problem, the knowledge of the density of the
liquid is not necessary. The contact damping ratio in both the normal and shear
direction is taken approximately 5% that of the critical damping of a single degree
of freedom of a particle of mass m and spring constant ky. The value of the fluid
viscosity is chosen arbitrarily here because our main purpose is to demonstrate the
; liquefaction mécha.nism. ‘

A shear rate, 4, of 7 x 1073 radian/T is applied to the two lateral walls (walls
2 and 4). The velocity of the bottom wall (wall 1) is simply deduced from the motion
of the lateral walls because the bottom wall connections are hinged. Shearing is per-
formed until a shear strain, «, reaches 0.7%. As the shea,ring process progresses, disc
C, due to its friction with the top wall will move in the lateral direction. Therefore,
the contact forces diminish gradually (compare the width of the contact force line on

Figures 5.10(b) and 5.9(b)). Eventuallly, all contacts are broken (Figure 5.11).
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Hefé, thzyliqu’id phase is assumed to be a continuum (i.e., no enclosed pockets of
fluid). Thereforé gaps (0.05L in size) are artificially generated between the particles
to permiﬁ ﬂ{lid flow between regions. Figure 5.12(a) shows the discretization of the
ﬁﬁid phase at ¥ = 0.35%. Because of the unbalanced force at the top wall, the
liquid phase has to support this load. The boundary conditions on the lateral and
bottom walls are given by the velocity of these walls. On the top wall, applied
traction is specified in the vertical direction and specified velocities are prescribed in
the horizontal direction. The resulting tractions computed by the BEM are shown on
Figure 5.12(b). We notice that the tractions along all four walls are uniform. This
- i1s simply the consequence of the incompressibility of the liquid. At the boundary of
the particles the tractions are relatively small, suggesting that the velocities of the
particles are also very small. Figure 5.12(c) shows the velocity field. We notice that
if the top wall consists of a membrane instead of a rigid wall used here, a sloshing
effect would occur.

Finally, the boundary element discretization at ¥ = 0.7% is shown on Fig-
ure 5.13(a), the velocity distribution in Figure figh:13(c) shows that the velocity
amplitude is much higher on the left side than on the right side. This is justified by
the motion of the particles to the left and the left wall lateral motion to the right,
which together produce a squeezing effect on the left side liquid phase. The gap that
_ allows fluid ﬂow between the particles is selected in such a way that the gap width
remains constant. Consequently, the fluid phase will see different sizes of the same
particle during a simulation. This is illustrated in Figure 5.13(a) where the diameter
of particle B has changed. A and C are shrunk because of their close contact with
the top and bottom walls. Also because A and C have slighﬂy moved laterally away
frorn B, the distance from B to A or C has increased. Thus by reducing the size of A

and C, the gap widths existing between B and A, and B and C are large enough and
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Mtherefo.re ’,B ﬁ;éd ﬁbt be shrunk. The traction field is presented on Figure 5.13(b).

 We observe that in Figures 5.12(b) and 5.13(b) that the tractions along the
boundary 0% each disc are a,lrﬁost uniform and that they are not identical to the
magnitude of the tractions along the boundary walls. The uniformity of the tractions
aloﬁg each disc indicates simply that the motion of the discs in the viscous fluid
does not generate appreciable disturbance. Therefore, the main component of forces
generated by the fluid on each disc is simply caused the increase of pore pressure at
the wall boundaries. However, because of the multiply connected domain used in this
problem, the tractions obtained along each disc are known up to a certain constant
to be determined from the boundary tractions. This does not present any ambiguity
to the algorithm because the tractions are integrated along the boundary of each disc
to obtain the force acting on the centroid of each disc and therefore the knowledge of
the boundary constant is not necessary.

The pore pressure change along the top wall (wall 3) indicated by the solid line
on Figure 5.14, increases gradually as the contact between disc C and the top wall
(wall 3) is broken (indicated by the dotted line). The pressure along the bottom wall
(wall 1) (open square) indicates an instantaneous response of the liquid phase when
a pressure is applied. As the pore pressure rises to that of the applied vertical stress,
the solid phase eventually ceases to support any load. If drainage is allowed at this

_ moment, the tbp wall will simply collapse. By doing so, it will push all the particles
downward until new contacts are created between the walls and discs. Hence a more
compact configuration would be generated.

This simulation suggests that the fluid component play a double role:

1. As a transmitting medium for the pressure disturbance created at the boundary
by the force unbalance due to the restructuring of the solid particles (primary

effect).
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2. As a viscous medium which resists to the motion of the particles (secondary

effect).

- According to this simulation, we observe that for slow monotonic loading case, the
secondary effect is almost negligible. The negligible contribution of the secondary
effect can also be caused by the large opening gap between the particles in the fluid

phase.

5.4 Sim’ple Shear Simulations — Initial Setup
In this set of simulations, four cases have been studied:
e Dry simple shear of a loose array of particles
e Saturated simple shear of a loose array of particles
e Dry simple shear of a dense array of particles
e Saturated sifnple shear of a dense array of particles

The results obtained are compared with actual experimental results.

5.4.1 Initial Setup

_ For all four cases studied, the initial configuration is identical as shown in Figure 5.15.
Here, 20 particles having the distribution shown in Table 5.1 are generated randomly

inside a box of 1em width and 0.8cm height:

Number of | Radius | Solid Area
Particles | (mm) (mm?)

3 1.5 21.21

6 1.0 18.85

11 0.5 8.64

Table 5.1: Particle distribution, size, and solid area
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The following parameters are used to characterize the properties of these par-

ticles:
ky = normal contact spring = 1875 x 1039 F/cm
(both disc—disc and disc-wall)
ks = shear contact spring = 1875 x 10°gF/cm
(both disc-disc and disc-wall)
¢y = mnormal contact damping = 34.323gF/(cm/s)
~ 5% average critical damping
cs = shear contact damping = 34.323¢F/(cm/s)
d4qa = disc—disc friction angle = 22°
¢4 = disc~wall friction angle = 10°
ps = disc density = 2g/cm®
o = liquid density = 1g/cm®
= liquid viscosity (i.e., water) = 0.01g/(em — s)
Neither gravity nor global damping is imposed in any of the examples. The
value of ky and kg are those used by Cundall and Strack’s simulations [24]. The

contact damping is taken as the average value of 5% that of the critical damping of

. each disc, each having.a mass given on Table 5.1 and a spring constant ky or kg.

5.5 Loose Medium

5.5.1 Initial Compression

Before performing the shearing tests, the particles are subjected to an initial com-
pression. This compression is obtained by moving inward walls 2, 3, and 4 (see

Figure 5.15). The positions of the particles at the end of the compression are shown
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in.Figure 5.16(a) and the contact force diagram in Figure 5.16(b). Here, the thickness
of the line gives t‘he intensity of the force whereas its direction is given by the direction
of the»coﬁta:ct force line. This graphical representation of the contact forces can be
aséqciated with the fringes observed in pic’ﬁures of photoelastic material testing.

 We oBserve that after consolidation, the largest contact loads are supported by
the biggest particles. Because of the particular configuration used here, the biggest
particles located midway between walls 1 and 3 create an arch-like structure and
thus prevent particles beneath them from playing an important supporting role. For
example, the particle labeled A on Figure 5.15 does not come into contact with any
other particles.

To obtain a loose sample, the friction angles have been set at the start of the
compression phase. Because of these friction angles, the motions of the particles
under the confining loads are more restricted than those obtained when no friction is
present.

The width of the compressed box now becomes 0.89 ¢m while the height is
reduced to 0.69 cm giving rise to a void ratio of e = 26.11%.

At the end of the compression phase, the wall motions are stopped and a period
of relaxation is allowed so that static equilibrium can be reached. This equilibrium
can be monitored by the sum of the contact forces on all four walls. At equilib-
_ rium, these forces become constant with sum zero in the coordinate directions. A
slight redistribution of forces is observed at the end of the relaxation period (see
Figures 5.16(b) and 5.17(b)) although the particles still remain at the same location
and orientation as that of the beginning of the relaxation period (Figures 5.16(a) and
5.17(a)).
| Using this later configuration, the system will be sheared either dry or with

interstitial pore water. The applied vertical force on wall 3 is taken as the force at
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the end of themrelei){ation period and is fixed throughout the shearing process. This
a,pplied vertical force takes a value of 8.1kgF', which gives a vertical applied stress on
the top Wéll; o, = 8.1ng/(0.89cm X lem) = 9.1kgF/cm? = 892.8kN/m?.

| _‘ Before we examine the results obtaiﬁed by the shearing experiments, we first
needﬂ to understand the mechanism that maintains the constant force on wall 3
throughout shearing, when no liquid is being used. We have previously explained
the mechanism that maintains the load constant when liquid is present in the inter-
stitial pores (cf. section 5.3.2). In this case, the unbalanced force is distributed to

the fluid phase.

5.5.2 The Servo Wall Mechanism

[

Cundall [24], the originator of the DEM, suggested a simple way to maintain the
applied force: to obtain a constant force when an unba,la,niced force exists between
the reaction force on the wall resulting from the contact points, Fz, and the applied
force, Fy4, the wall needs to be moved in the direction of the unbalanced force (F4 —
Fc). He called this type of wall a “servo wall,” i.e., like a servo motor, where a
sensor constantly monitors the unbalanced force and adjusts the position of the wall
accordingly. Using a slightly modified version of Cundall’s servo wall, the adjustment
of the wall is performed in the following manner:

Let err = (Fa — Fg)/F4 be the error introduced by the unbalanced force, then

the most simple way of adjusting the wall is given by the following relation:
v =GXxerr , (5.11)
where:

v; = velocity by which the wall should be moved

G = gain of the wall
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In order to prevent ‘the displacement of the wall from becoming too large, a

limit is further imposed on the velocity:

v = min(Vmaz, |‘v1|) x stgn(vy) (5.12)
where
v = velocity to be used to displace the wall
Umez = mMmaximum imposed velocity

This last equation is also illustrated on Figure 5.18.

Cundall [24] mentioned that if the value of the Gain, G, is too high, the wall
might become unstable because a fast motion of the wall to correct the error will
create another error in the opposite direction and cause instability. This has also
been observed in this study. Furthermore, if the value of G is too small, the response
of the servo wall becomes sluggish and hence no constant force can be obtained. The
value of G' and vy, in a particular problem can only be obtained by a trial-and-error
process.

Also, to maintain a stable constant force, a slow wall motion is required, which
in turn implies a long computational running time. To overcome this problem, we
have tried a method in which an additional iterative loop is added to eacil calculational
time step. This method proved to be unsuccessful because the additional iteration
] loop required-é, large pumber of cycles. Furthermore, the adjustment of ‘G and Vmeg
becomes almost impossible because the requirements for each time step are different
from one another. When fast deformation occurs, the adjustment of the servo wall
becomes more difficult to achieve. Although Cundall never mentioned this problem,
we came to this conclusion by observing the large number of cycles required in his
calculations between two instants of time.

When slow motion is used, no additional iteration loop is required; however,

the computation time also increases significantly.
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5.5.3 Dry Simple Shear of a Loose Array
5.53.1 Simulation Results

Sté.rting from the configuration shown on Figure 5.17(a), a shearing mechanism is
applied as shown on F igure 5.19. As explained earlier, to achieve a constant vertical
loadiﬁg force, F,, wall 3 is allowed to move up or down. For this shear deformation,
the value of the required shear force along walls 1 and 3 is obtained from the tangential
component of the contact forces of the grains at equilibrium. Notice that there is no
joint between wall 3 and the two lateral walls. In other words, this top wall functions
just like a lid to the system.

The éonﬁgura.tion of the particles and the corresponding contact force diagram
at a shear strain of v = 4.9% and v = 10.5% are shown respectively on Figures 5.20
and 5.21. As shearing progresses, we observe that the number of particles supporting
loads increases. Also, at the end of the simulation, the overall direction of the contact
forces is oriented diagonally. This observation agrees with the simulations performed
by Cundall [24]. rIv‘he shear forces (5; and S3) along walls 1 and 3 and their mean value
are shown in Figure 5.22. The change of height of the box expressed as a percentage
of the initial box height (H ) is given in Figure 5.23 where a negative value indicates a
decrease in height (i.e., compression). Because the array is always compressing (i.e.,
densifying) we conclude that the original configuration used was effectively “loose.”

To insure that the equilibrium is achieved at each time step, the sum of the
forces on each wall in the X and Y directions are computed as shown in Figure 5.24.
In general, this equilibrium is observ?d throughout the shearing process. As a conse-
quence of this equilibrium the system behaves statically. Therefore, the velocity and
accelerations are small enough so that 'the inertia terms become negligible. Because
no gravity field is present in the problem, this then suggests that a higher value of

the disc density can be used in the calculations without changing the behavior of the
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system. This implies that a larger time step can be used to speed up the calculation

process.

5.53.2 Comparison with Experimental Results

Coleﬂ[15] pérformed a series of simple shear tests on dry Leighton Buzzard sand.
Typical results of a loosely compacted sand are shown in Figure 5.25. Comparing the
numerical simulation shear force in Figure 5.22 and the ratio of 7 /oy (Figure 5.25) for
shear strain less than 10%;, both cases indicate that the asymptotic plateau value had
not yet been reached. Due to the limited amount of particles used in the numerical
_simulation, the result is not as smooth as that of the experiment. Furthermore, the
maximum ratio, S/F,, obtained in the numerical simulation gives a value of appfox-
imately 0.2, which is lower than the experimental results. This value is somewhat
higher than the tangent of friction angle of the disc-wall contact but lower than the
interparticle friction angle. In other words, the particles serve as a load transmitting
medium from the top wall to the bottom wall. The presence of the interparticle fric-
tion thus contributes to the rigidity of the éystem and hence increases somewhat the
global friction angle of the system. If a larger number of particles was used, their
contribution to the rigidity of the system would be much more significant than the
one obtained by this simulation. Consequently, the ratio S/F, would be increased.
_ Although the rvmmber‘ of particles is limited, the qualitative response of this array
resembles that of a real soil remarkably well.

When the shearing is pursued further, the dense array obtained from the den-
sification of the loose initial configuration start to dilate. In this case the volume

increases, as can be seen in Figure 5.25(b).
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5.5.4 Saturated Simple Shear of a Loose Array
55.4.1 Simulation Results

U'éing the same initial configuration as that of the dry simple shear (shown on Fig-
ure 5.17(a)), a liquid is added to the interstitial pores. From there, a constant volume
shéaiing mechanism is applied to the system as shown on Figure 5.26. This is achieved
by maintaining the height of the box constant.
| Unlike the dry simple shear, if unbalanced force exists along the top wall, this

force can be supported by the liquid phase and affects the pressure of the liquid.
Because no gravity is present here, the liquid density does not play any role in the
behavior of the system.

For comparison, the configuration and contact force diagram at a shear strain,
v = 4.9%, are shown in Figure 5.27. The contact force diagram shown in Fig-
ure 5.27(b) indicates that the contact forces generated during this phase of the shear-
ing process are smaller than those of the dry system. The velocity and fluid force
generated on each particle are shown in Figure 5.28. We notice that there is no co-
linearity between the particle velocity and the fluid force generated. Therefore the
conventional relation betweeﬁ the drag force and the velocity is not valid here. The
configuration and contact force diagram at v = 10.5% are shown in Figure 5.29, and
the velocity and fluid force diagram are shown in Figure 5.30. The force generated
by the fluid on the pai‘ticle is smaller than the contact forces. This seems to indicate
that either the gap between the particles, which allow fluid flow, is either too big
or the viscosity of water is too small. Because of this small value, the liquid plays
mainly a role of load transfer material when an unbalanced force occurs. The drag
force generated does not play an important role here.

Looking at the contact force diagram sequence, we notice that the intensity

of the contact loads has not changed much throughout the shearing. However, we
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notice a clear rotation of the direction of the load path. This can be explained as

follows: because the volume is kept constant and the value of the void ratio large, the
particles do Anot experience any increase of contact forces because no densification or
diiai".ion occur. Therefore the load supported by the skeleton remains almost constant
throﬁghout .the process. This force is simply rotated as the shearing progresses. Thus,
its component in the vertical direction decreases while the horizontal component
increases during the shear. This then is translated by an increase in the shear force
required to move the system and a decrease of the supporting role of the skeleton in
the vertical direction. Because we impose a constant vertical load on the top wall, as

. the vertical contact force decreases, the liquid phase has to support this unbalanced
load so that the top wall remains at a fixed vertical position. Consequently, the pore
pressure increases.

By comparison, the dry case where the volume is allowed to change, the contact
forces between the particles steadily increases from this densification process while at
the same time the load path is rotated from its initial configuration.

The shear forces along walls 1 and 3 and their average values are shown in
Figure 5.31. The system does not offer much resistance to shear during the first 4%
of shear strain. During this period, an initiation process is required before the loading
of the full system occurs. This is probably due to the small number of particles used

_ in this test. If '# larger number of particles is used, this initiation process will probably
start insfantanéously as the shearing is applied.

The pressure change along walls 1 and 3 are shown in Figure 5.32. The results
indicate an increase in pore pressure, which is expected. We observe a sharp increase
of pore pressure corresponding almost exactly to the period where the shear force
sfa.rts to increase. As the load supported by the skeleton starts to rotate, the system

becomes softer and hence less prone to support any load. Thus the portion of the
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load supported by the skeleton decreases sharply, and is accompanied by a sharp
incféa,se in pore ‘préssure. However, as the shearing progresses, the skeleton is able
to find a,'rn(A)re stable position,. thereby increasing the portion of the applied load
thz'it. it supports. Consequently, the pressﬁre decreases. The pore pressure change
along, the tép and bottom wall are quite similar. This i1s simply the consequence of
incompressibilty of the liquid used here.

 Finally, Figure 5.33 shows the total components of forces in the horizontal (X)
and vertical (Y') directions. In general, we observe that static equilibrium is obtained
almost throughout the entire shearing process. Some oscillations occur between the
_shear strain value of 4 and 7%. This oscillation can be attributed partly to the
motion of particle A, which constantly bounces inside the void space it occupies.
This observation can only be seen by a rapid animation of the particle motion. The
constant oscillation causes the oscillation of the forces measured along the walls.
Although the solid-solid contact force is not very important, this bouncing effect
could create enough disturbance on the wall. The fluid phase also propagates this

effect to other walls as well.

5.5.4.2 Comparison with Experimental Results

Because of the lack of experimental data on undrained monotonic simple shear loading
_ of saturated granular media, we can only make a qualitative comparison between the
numerical simulation and undrained triaxial tests on sand. Seed’s et al. [77] have
performed a series of undrained triaxial tests on Sacramento sand. Typical behavior
of a loose sand is presented in Figure 5.34. In particular, we notice that the shearing
occurs with an increase in pore pressure. For this particular test, we also observe that
there is a period where the deviator stress remains almost constant before it starts
increasing again until it reaches a plateau value. This seems to corroborate with our

numerical results where a period of time is required before the shear force starts to
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be mobilized. However, in our numerical results this may simply be caused by the
limited number of particles used in the simulation. We conclude that in general, our

. numerical model is able to represent the qualivative behavior of a loose saturated

sand.

5.6 Dense Medium

5.6.1 Dry Simple Shear of a Dense Array
5.6.1.1 Initial Compression

Like the previous cases, prior to performing the shearing tests the particles are sub-
jected to an initial compression. To achieve a dense configuration, during this initial
compression case, we imposed a zero friction angle between the particles, and be-
tween the particles and walls. Because no friction exists, the particle will offer little
resistance to the motion of the walls. This compression is obtained by moving inward
walls 2, 3, and 4 (see Figure 5.15) until the width of the box is reduced to 0.89 cm and
its height to 0.69 cm. The positions of the particles and the contact force diagram at
the end of this initial compression period are shown in Figure 5.35. By comparison
to the contact force diagram of the loose case, here the intensity of the contact forces
are smaller. This is expected because the particles do not have any friction angles.
To obta,in. the same vertical loading force as that of the loose case. We replaced
the top Wall by a servo wall with a specified vertical load force of 8.1kgF (i.e., the
vertical stress is identical to that of the loose case). When the servo wall has reached
the specified load force, a relaxation period is allowed for some period of time for
contact force distribution. When the servo wall has rea,chéd a stable position, the
pérticle positions and the contact force diagram are shown on Figure 5.36. The height

of the box is now reduced to 0.682 ¢m, giving rise to a void ratio of e = 24.65%.
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' 5.6.1.2 Simulation Results

Using the co!nﬁgura.tion at the end of the compression phases, a shearing mechanism
similar to that of the dry, loose array is used to apply the shearing.

. The particle positions and contact force diagram corresponding to a shear strain
of 5.0 and 10.5% are shown respectively in Figures 5.37 and 5.38. In contrast to the
loose case, the orientation of the load path is clearly shown at a shear strain of
5%. The shéar forces along the top and bottom wall shown on Figure 5.39 confirm
this observﬁtion. The system resists to the shearing motion immediately after it has
been started. We also notice that the interparticle contact forces are larger than
‘those found in the loose case. This can be attributed to the dilation of the particles:
because the system is dense, as the shearing occurs the particles try to expand in
volume; because the volume is fixed the particles are not allowed to dilate, this then
results in a net increase of the contact forces.

The change of height of the box, expressed as a percentage of the initial box
height (H), is given in Figure 5.40 where a negative value indicates a decrease in
height (i.e., compression) and a positive value indicates an increase in height. Here,
the volume of the system initially decreases before starting to increase steadily. The
increase of volume of the system confirms its dilation and hence the system is “dense.”
The glitches encountered here are probably due to the small number of particles
* present. For a system with a higher number of particles, these glitches might be
smoothed out.

The sum of forces along the four walls in the X and Y directions are shown
in Figure 5.41. Staticiequilibrium is obtained .throughou‘q the shearing. We also
note that the vertical force on the top wall (wall 3) remains constant throughout the

experiment,.
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5.6.1.3 Comb;irison with Experimental Results

Cole [15] has also performed simple shear test experiments on dense Leighton Buz-

" zard sand. A typical behavior of the response of this type of material is given in

Figure 5.42.. The shape of the shear stress ratio of Cole’s experiment presents a re-
markable similarity with that of the average shear force obtained by the numerical
simulations. However, the maximum ratio of S/F (i.e., ratio of shear force over ap-
pliéd vertical load) is approximately 0.19, in comparison to Cole’s value of 0.8. As in
the loose cé,se, the value of this ratio is only slightly higher than that of the friction
angle. Again this indicates that the skeleton serves mainly as a force transmission
medium from the top wall to the bottom wall. A higher ratio could probably be
obtained by using a higher number of particles. The volume change behaviors are

also very similar in both cases.

5.6.2 Saturated Simple Shear of a Dense Array
5.6.2.1 Simulation Results

Using the same initial configuration as that of the dry simple shear (shown on Fig-
ure 5.36(a)), a liquid is added to the interstitial pores. From there, a constant volume
shearing mechanism similar to the one used for the saturated loose array is applied
to the system.

\ Figure 5.43 shows the particle position and fhe contact force diagram when the
shear strain reaches a value of ¥ = 5.0%. As in the dense, dry case, the rotation
of the load path can be seen clearly at this stage. The particle velocity and force
generated by\thelliquid on the particles are shown in Figure 5.44. Like the loose case,
we notice here the absence of co-linearity between the velocity vector and the fluid
force. Furthermore, the intensity of the fluid forces are relatively small in comparison

to that of the contact forces.
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- The particle position and contact force diagram at 10.5% shear strain are shown
in F igure 5.45. Comparing the contact force diagrams at a shear strain of 5% and
10% indicﬁfés that the contact forces are steadily increasing. This can be attributed
to vthe dilation of the particles, which is prevented by the imposed constant volume
condition. Because the skeleton is able to support a higher portion of applied load,
the fluid phase will contribute less to the support of this load, which then results
in a decrease in pore pressure. The increase of the contact force intensity is also
accompanied by a rotation of the load path.

Figure 5.46 shows the velocity vectors and the fluid force of each particle. We
also observe here the absence of the co-linearity between the velocity vector and the
fluid force vector. Again, the fluid forces are almost negligible in comparison to the
contact forces.

The shear forces along the top and bottom walls (walls 1 and 3) and their
average values are shown in Figure 5.47. Unlike the loose case, the shear response is
immediate. The pore pressure change along the top and bottom walls is presented in
Figure 5.48. A good agreement exists between these two walls. As expected, there
is a steady decrease of pore pressure after an initial increase. Finally, the sum of the
forces in the X and Y directions is shown in Figure 5.49. Except for a few instances,

static equilibrium is observed throughout the simulation.

5.622 Comparison with Experimental Results |

Due to the lack of experimental data on undrained monotonic simple shear loading
of granular media, only a qualitative comparison can be made between the numerical
simulation and undrained triaxial tests on sand. Seed et al. [77] presented some exper-
imental results on undrained triaxial tests performed on Sacramento sands. Typical
behavior of deviatoric stress and pore pressﬁre change is shown in Figure 5.50. For

the range of shear strain value found in the simulation, Seed’s results indicate that
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the peak value of stress is not yet reached. This seems to confirm the numerical
results where the shear force is still increasing. The pore pressure change exhibits the

same behavior as the one obtained by the simulation, that is, the pore pressure rise

is immediately followed by a sharp drop.

5.6.3 Conclusions

We have demonstrated here that in general the behavior of the numerical model is
qualitatively similar to that of a real granular soil. However, because of the limited
computer resources available, we were not able to pﬁrsue further simulations with a
lager number of grains. Also, due of the lengthy computation time required for each
simulation When an interstitial pore liquid is present, we were not able to perform
any cyclic shearing.

Although limited, the proposed numerical model contains all the appropriate
features for simulating granular media liquefaction. Further conclusions and sugges-
tions for the improvement of the study of discrete saturated granular media are given

in the following chapter.
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Figure 5.1: One disc falling symmetrically in a viscous fluid between two parallel
walls: Geometry
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Figure 5.4: Sedimentation of three discs: Geometry (not to scale)
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Figure 5.9: Artificial liquefaction simulation: (a) Geometry, (b) Generation of contact
forces, (c) Addition of fluid, (d) Shear mechanism
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Figure 5.12: Artificial liquefaction simulation (y=0.35%) : (a) Boundary element
discretization, (b) Traction field, (c) Velocity field
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Figure 5.13: Artificial liquefaction simulation (y=0.7%) : (a) Boundary element dis-
cretization, (b) Traction field, (c) Velocity field
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Figure 5.24: Simple shear simulations (dry, loose), Force components along the four
walls and their sum—(a) in the X direction, (b) in the Y direction



157

N
- T T T T T I T T T
[ @
Q.
o
=z
<
<
e
Q 1 1 ] 1 i ] 1 L ]
o
0 10 20 30
Shear Strain [%]
Q
2 T T | T T T T T |
| ®)
e =
\&
S
Y
4 B
<=
o /
g ] 1 | L L l 1 1 |
0 10 20 30
Shear Strain [%]

Figure 5.25: Experimental results of simple shear using loose Leighton Buzzard
sand—(a) Stress ratio-shear strain relationship, (b) Void ratio change-shear strain
relationship (after Cole, 1967



158

F
y
— TN
S
’ Height maintained
Y constant by allowing
lateral boundary to
stretch in length
Sl
> -\
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Figure 5.28: Simple shear simulations (saturated, loose), y=4.9%—(a) Particle veloc-
ity, (b) Fluid force on particles
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locity, (b) Fluid force on particles
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Figure 5.38 Simple shear simulations (dry, dense), y=10.5%—(a) Configuration, (b)
Contact force diagram
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: Chapter 6

CONCLUSIONS AND SUGGESTIONS

6.1 Cohclusions

In this study we have developed a tool to simulate the behavior of a two-dimensional
saturated granular medium. The treatment of the solid phase was based on Cundall’s
distinct element method. With this solid phase, we have incorporated a liquid phase
that was modelled by the boundary element method. Because water flow processes
in a porous medium occur at a low Reynolds number, the equations of motion of the
fluid phase are assumed to be Stokes’ equations. Furthermore, quasi-steady flow has
also been assumed. This choice was based on the hypothesis that in the low velocity
flow that occurs, the inertia and convection terms are negligible.
The analytical formulation of the ‘liquid phase requirements has been described
and comparisons have been made with other solutions in order to check the accuracy
and validity of the algorithm used. In general these validations showed satisfactory
agreement. |
Finally, the developed computer code was used to simulate the simple shear of
soil-like systems both for dry and saturated systems. In the course of developing the
computer code, a mechanism allowing the transfer of load from the skeleton to the
liquid phase has also been developed. From the numerical simple shear test results,

it was found that:

1. The distinct element model is capable of modelling adequately the overall be-
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havior of soil—like systems. In particular, in the dry case, the results obtained
lndlcate that quahtatwely, the overall behavior of the systems corresponds to
_ that of a real soil. For example, the dry shearing of a loose soil is accompanied
by a decrease in volume while the shearing of a dense system shows an increase

in volume due to the dilation of the particles. In both cases, softening of the

shear stress versus shear strain behavior was also shown.

- For slow monotonic loading, the choice of the solid phase properties is not crucial

to the response of the system because static equilibrium is always achieved.

. The combined solid-fluid interaction treatment was shown to be capable of mod-
elling badequa,tely the overall behavior of saturated sand. We have demonstrated
that the simple shearing of a loose saturated system is accompanied with an in-
crease in pore pressure while a dense system indicated first a rise in pore pressure
followed by a decrease of the pressure. This behavior has also been observed in

actual soil.

. The Stokes’ flow regime used in this model is adequate for the representation of

the fluid phase because the velocity of the fluid is relatively small.

. In addition to the global behavior, a microscopic behavior is also observed that
clarifies the behavior of the systems studied. The rotation of the principal
stresses during the shearing process was the main characteristic of the response
of the system. In the case of a dry system, this rotation is accompanied by con-
stant increase of the interparticle contact force because the volume is allowed to
change. When the system is loose, the densiﬁca,tion’ process that occurs during
shearing pushes the particle into closer contact, thereby increasing the contact
force. In the dense, dry system, the dilation of the grain assemblage also in-

creases the interparticle contact force; however, here the shearing occurs with an
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.incféa.sé in Aév'olume. :
When a liquid phase is added to the system and shearing is performed at con-
stant \'/olume, in the loose system the forces supported by the skeleton do not
change much but rotation of the direction of the load path occurs, coinciding
vﬁth a decrease in solid support for the applied vertical load. Consequently,

this unbalanced vertical load has to be distributed to the liquid phase, thereby

increasing the pore pressure.

In the dénse, saturated system, because the dilation process is not accompanied
by a change of volume, the interparticle contact forces steadily increase accom-
panied by the same rotation of stresses. The increase of the contact forces in
this case allows the skeleton to support the applied load better and leads to a
decrease in loading on the liquid phase. Hence, a decrease in pore pressure is

observed.

. The fluid phase play a double role in a saturated granular medium: (1)as a
transmitting medium for the pressure disturbance created at the boundary by the
force unbalance due to the restructuring of the solid particles (primary effect) and
(2) as a viscous medium which resists to the motion of the particles (secondary
eﬁ‘ect).. For slow monotonic loading, only the primary effect contributes to the

global behavior of the system.

. At present, only a limited number of loading conditions can be performed due
to the restrictions of the fluid phase model. In particular, the incompressibility

of the fluid phase does not allow uniform corhpression on a saturated system.
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6.2 Suégeséibnsl for Further Work

The modelling of saturated granular media is still in its infancy; further developments

" and studies are required. Possible investigations are:

1. .'Becausé an artificial gap is allowed between particles for fluid flow, the influence
of this gap on the overall behavior is not yet clear and further parametric studies
of the gap width are necessary to obtain some insight on the influence of this
variable. Furthermore, the important role played by the fluid primary effect may

be caused by the large gap width used in the simulations of this study.

2. An alternative numerical solution method for Stokes’ equations is necessary be-
cause of the lengthy computation time required by the boundary integral el-
ement method. Of particular interest is the “Lattice Cellular Gas Automata”
model [50,51,44,29], which models fluid flow using “fluid” particles with discrete

velocities on a regular lattice.

3. Although it was demonstrated that the model is able to represent the liquefac-
tion behavior, because of the limited resources available in this study, we were
not able to conduct several cycleé of shear loading and unloading such as is
observéd to produce liquefaction in real soils. Observations of the microscopic
behavior resulting from this type of study would give clues as to how liquefaction

1s imitiated.

4. In its actual form, the computer code developed for this study is not adequate for
modelling uniform ‘compression of sa,turated'systems because of the incompress-
ibility of the fluid phase. To overcome this restriction, further studies should take
into account fluid compressibility. If this were done, general loading conditions

could be applied to the system.
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5. Probably the next most important step would be the study of a full three-
dimensi'onal‘ system. Because of the plane strain assumptions used in two di-
menéibr;s, several factors hé,ve been neglected. In particular, no information on
stresses in the out-of-plane direction is available. When shearing occurs in two
directions (as opposed to one only in two dimensions), the difference of behav-

ior between the two- and three-dimensional cases will enable us to justify (or

‘otherwise) the use of the two-dimensional model for certain types of problems.

6. Free surface fluid boundary conditions are needed in order to model free surface

flow problems such as those found in earth dams and natural soil profiles.

7. An empirical or statistical model can be developed in order to predict the forces
on particles generated by the fluid phase (i.e., a drag-like force type). From the
numerical results performed here, this force is not proportional to the velocity
because of the particle-fluid interactions in a closely-packed array of particles.
Using such a model would allow us to describe the fluid phase without the use

of any lengthy numerical solution techniques.

8. Finally, the model proposed in this study can also be used for future development

of rational constitutive relations.
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