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ABSTRACT

In this report the stability of linear and nonlinear
stochastic difference systems is considered. Explicit critefia
fpr étabdiity are derived. An algorithm is developed for com-
puting theAmoments of linear stochastic systems when a certain
Lie-algebraic condition is sétisfied. The relationship between

various stabi]ity definitions is explored.
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Chapter 1

INTRODUCTION

’An_accurate mathematical model of a dynamic system in electrical,
mechanical,‘pr.contro1 engineefing often requires.the consideration of
stochastic'e1ements. Physical systems with random parameters are
usually modeled by stochéstic differential equations, and an extensive
study of such equations waslmade in the sixties. However, the advent of
many moaerh day sampled data control systems has necessitated a study of
stochastic difference equations. A stochastic difference system is one
in which one or more variables can change stochasticai]y at discrete
instants of time. Stocﬁastic difference systems are the stochastic ver-
sions of deterministic discrete time systems. The class of stochastic
difference systems includes most modern industrial and military control
systems, for they invariably include some elements whose inﬁuts or out-
puts aré discrete in time.‘ Examples of such elements are digital
computers, pulsed radar units, and coding units in most communication
systems. One of the most important qda1itative properties of stochastic
difference systems is the stability of such systems. The purpose of
this report is to present criterid for stability of linear and non-
linear stochastic difference systems. We also attempt to initiate a

systematic study of the stability of stochastic difference systems.

1.1 PROBLEM STATEMENT

Consider a stochastic difference system whose behavior is de-

scribed by the equation
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Xy = Ao)x g K) (1)

‘where k is a ponnegative‘integer, §k¢;]R" for all k, and Ak(m) is a

nxn stochastic mgtrix; By this we mean that the elements of Ak(m) are
stochastic variables which can be continuous or discrete, with w € Q,
where Q is the sample description space of thekstochastic variables. We
assume that Ak(w) are independent stochastic matrices, Whose distribution
may depend on the state k. The nonlinear term f(x, ,k) satisfies

f(0,k) = 0 for all k. For simp]icity; we shall consider onTyvthe sta-
bility of (1) about the double point x = 0. For generality we assume

that the initial state X is excited by a certain noise process
Pl) , we& 2 (2)

which is statistically independent of the Ak(m). The homogeneous system

corresponding to (1) is the linear system
Xeap = Alodx | (3)

with the nonlinear term fjﬁk,k) omitted. For the class of systems (1)
the following stability definitions are discussed in the present report.

Befinition 1

" The equilibrium solution of the stochastic difference system (1) is
said to be stable in pth moments if for every € > O there is a § > 0

such that
p p p
IE(x]](k) x22(k)--- xnn(k)l< e whenever H50|[ <8

for all k and for any set of nonnegative integers PysPpst 5Py such that



g
‘ . " = T. -
PptPyt - +p = p, where x, = (x](k),xz(k), ’Xn(k))' The system (1)

~is asymptotically stable in pth moments if moreover

‘ p p p
lim E(x]](k) x22(k)---xnn(k) -0

ko

Definition 2

‘The equiTibrium solution of (1) is stable in probability if given

e,e' >0, there exists §>0 such that‘l[xol|~<6 implies

PUllx)l >¢') < e

- for all k. The equilibrium sd]ution of (1) is asymptotically stable in
probability if it is stable in probability and if there exists ¢' > 0

such that [[x || < &' implies

lim P(l|x,[|>€) = 0

k->co

Definition 3

The stochastic system (1) is pth mean stable for p > 0 if for every

e > 0 there is a § > 0 such that
ECl %l Py < ¢ whenever lIx [l <8
for all k. The system (1) is pth mean asyptotically state if moreover
Tim E(|[x )| P) = 0
in £l

It is clear from the definitions that pth moment asymptotic sta-
bility expresses a convergence to zero property of the state vector only
if p is an even integer. Notice that while we investigate the pth mean

stability of a system for any positive real p, we generally consider
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moment stability of integral orders only. We shall show that the
J definitiohshthat we adopted.constitute a logical development of sta-
bi]ity-theory‘by demonstrating that they lead to a ciass of well

étruCtured properties [1].

1.2 MATHEMATICAL PRELIMINARIES

In this section we shall inveétigate the relationship between
various stability definitions. Properties peculiar to linear systems
will be discussed\in the4next chapter. Thé following two lemmas yield
some qua]itative information on the relationship between’mean stability

and moment stabi]ity.

Lemma 1.

The pth mean (asympﬁbtic) stability is, for ahy p, at least as
strong as pth moment (asymptotic) stability. For even integers p, mean
(asymptotic) stability and moment (asymptotic) stability are equivalent.
Proof.

For every p > 0 and any norm

Py Y P p P , p
ECxy " () xp2(K) - x "k ] < EClx ! (K) % 2(K) - -x (k)] < ECllxIP)
} , » (4)

for py+..-+p_ = p, proving the first part of Lemma 1.
Let p=2r be an even integer and Héjhzbe the Euclidean norm of

the vector

x=1 . | (5)



defiﬁed by

lxll, = (& + x5+ -+ x (6)

Then = '
EClx I1P) = ELE() + x5(Kk) + -+ + xE(k)"]

r!
Ty 1...p |
rylrolesor !

Zr] 2r2 Zrn' '
x E(x; (k) x, “(k)---x_"(k))  (7)
1 2; n
by using the multinomial formula. |The second part of Lemma 1 is thus
established for Euc]idean norm. But any two norms in a finite dimen-
sional linear space are equivalent [2], hence (7) holds for any norm and

the proof is complete.

Lemma 2.
The pth absolute moment (asymptotic) stability of the absolute

moments

U U P, |
ECIxy (k) x,5(k) - x P(K)]) 5 pyptpy*e--dpy =p

is equivalent to pth,mean (asymptotic) stability for any integer p .

Proof.

Let ‘
xll, = I Ixl (8)

i=1

be the absolute sum norm of the vector (5). Then
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C n
EClIx D) = E((1§1'*i')p)

p!
p]!pzl---pn!

-

CPyrpyteeEp =P
p p p '

x E(]xy" (K) %2 (k) =+ x "(k)]) (9)

Lemma 2 is thus true for the absolute sum norm. The general case fol-
lows from the fact that any two norms in a finite dimensional linear
space are equivalent.

The fd]]owing 1emma re]ates mean stability of different orders.

. Lemma 3.
If a stochastic difference system is p]th mean (asymptotically)

stable, then it is p2th

mean (asymptotically) stable for any P, satis-
fying 0 < Py < Py
Proof.
We need only consider 0 < Py < Py- Let
r=—>1
2

Applying Holder's inequality on a space of normalized unit measnre [2]

1 r

1
P pr = g l-% Py P,/P
ECIx 12 < EClx 1 20T EQ™D) T = Bl D2 (10)
Hence p]th mean (asymptotic) stability impiies pzth mean (asymptotic)
stability. |

The following theorem shows that mean stability is much stronger

than stability in probability.



Theo}em 1
. If the stochast1c d1fference system (1) is pth mean (asymptot1ca1]y)
stable for any p > 0, then it is (asymptotically) stab]e in probability.

We first establish the following inequality
P(IIx 12 €) < = E(llx [IP) (11)

for all p, €>0. Let f(x) be the probability density of “§an . Using
the fact thatlléﬂll >0,

ECx 1) = | x £(x) ax

x f(x) dx

Q"'—~\8 O%r—— 8

> oP(l|x, [I” >0)
for each a > 0. Choose o = ep. It follows that

PUlxfl 2 ) = PUlx, 1P 2eP) < =5 €l 1P)

and (11) is established. Suppose e, €', are given. We first choose

r > 0 satisfying
(—Elr)pv‘ <€
By mean stability there exists a § > 0 such that
E(“Eﬂ[lp) <r  whenever [[x ||<§

Hence,

lx, Il < 6



| ihp]ies thqt
PUlx > ') < PCllx Il 2 % €')
< (EP (]I, IP)

<€

for all n. Thus system (1) is stable in probability. From (11), it is

obvious that

i}
o

1im P(H§ﬂ|]>s)

n-—>oo

if

(o)

vim E(]lx [IP) =

n->oo-
Hence asymptotic pth mean stability for any p > 0 implies asymptotic sta-
bility in probability.

By our previous discussion, we have the following relationship

" between moment stability and stability in probability.

Corollary to Theorem 1

If the stochastic difference system (1) is (asymptotically) stable
in even order moments, theh it is (asymptotically) stable in probability.
In particular, stability in second moments'implieg stability in probabil-
ity.

The results that we have established should, with an appropriate
choice of definitions and modifications in the proofs, apply in the con-

tinuous case to stochastic differential systems.



' Chapter 2
LINEAR STOCHASTIC SYSTEMS

| Since lineér systems are easy to solve and study, the investiga-
tion of the linear part of a problem is often a first step, to be
followed by the study of the relation between motions in a nonlinear
system and in its linear model. In hany nonlinear problems, lineariza-
tion pfoduces a satisfactory approximate solution, and several averaging

methods are available for dealing with nonlinear stochastic problems.

2.1 MOMENT STABILITY CRITERIA

The homogeneous system (3) may be regarded as the linearized ver-
sion of the nonlinear stochastic difference system (1). A solution of
(3) satisfying -

Xn+1 - Anxn
(12)

XO =1
is called the fundamental solution. It is clear that the fundamental

- solution of (3) satisfies

X =A .A ---A_A-A
n n-1"n-2 210 A (-13)

= A AgKy e M

From (13), we immediately have the following result:

Lemma 4
The linear stochastic difference system (3} is pth mean stable if

and only if there exists a constant C such that
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A AANP) < C (1)

E(”AnAn—1' 210

for all n. It-is pth mean asymptotically stable if and only if
i ce e p =
Cim ECJAA e AMAGNIP) = 0
n->o0
The system (3) is said to be strongly pth mean stable [3,4] if

there exists a constant C such that
EC 1A, -AlIP) < ¢ - (s)

for all m,n such that m > n. It is strongly pth mean asymptotically

stable [3,4] if

lim E( [A_;---A [IP) = 0 (16)

m-»co
for all m,n such that m > n. Observe that since Ak are independent

stochastic matrices, it follows from (13) that
ECI%IP) < ECHA, - --A IPYEAIX ) 5 m>n (17)

As we shall see in the next chaptef, strong stability is a very
useful concept in nonlinear analysis.

We have seen that mean stability implies stability of moments of
the same érder,band that stabi]ity‘of even order moments implies sta-
bility in probability. We would Tike to investigate moment stability
of (3). Let us assume for the rest of this bhapter that Ak are indepen-

dent stochastic matrices with a common distribution. Let
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EGE (k)

E(xg"]fk)xz(k))

' p] :p2 Pn
E:(fX] (k).xz (k)--- xn (k)) s P]+P2+ "'+pn =p (18)

E(xp (k)

be a (";E;]) vector of the pth moments of X, - Then

Yo = Epp) ¥, (19)

»where E(A[p]) = E(Ak[p]) for &l11 k and Ak[p] is the pth Kronecker power

[5] of A If A, has eigenvalues A](k), Az(k), <. An(k), then the

n+p-1

eigenvalues of Ak[p] are the ( el

) values (counting multiplicities)

given by

Py P2 Py -
)\-l (k) )\2 (k) et }\n (k) s p]+p2+” +pn— p

Let us consider an arbitrarily fixed k and focus our attention on
Py Py Py
E(y (k) A7 (k) --- A 7 (K))s  py+pytee-tp =p  (20)
By considering (19), the following result is apparent.

Theorem 2

A necessary and sufficient condition for the stability of the pth
moments of the stochastic difference system (3) is that the quantities
in (20) should be Tess than or equal to one in magnitude if E(Ak[p]) is
nondefective (i.e., has a fu]i complement of ordinary eigenvectors) and
that the quantities in (20) should be strictly less than one if

E(Ak[p]) is defective (i.e., does not have a full complement of ordinary
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eigenvectors). ‘A necessary and sufficient condition for the asymptotic
‘stab1]|ty of the pth moments of (3) is that the express1ons in (20)
shou]d be ]ess than one in magnitude.

To reduce the number of constraint conditions and to avoid the
computation of the expectation of mixed eigenvalues in Theorem 2, we

shall make use of the following result.

LemmaA5

: n.
Let o,,0,,--,0 be positive real numbers such that ] a;=1.
i=1
If f],fz, fn are Lebesgue integrable functions, then

Oq. O o n o
| n 3 i s
IJf] £, 0 f ] g]_I__I] (jlfi]) (21)
Proof
This is a generalized Holder's inequality. See [2].
Theorem 3

The stochastic difference system (3) is asymptotically stable in

pth moments if for any arbitrarily fixed k

E(1(k)[P) <1
for all 1.

Proof

A Tittle manipulation with (21) shows that
P- p P n p;/p
EQq T (k) A2(k) -+ A (k)| < T E( ()P (22)
i=1

n
for all p; > 0 and ) p; = P, proving the theorem.
i=1
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2.2 COMPUTATION OF MOMENTS

2 Sometimes we may want to compute the exact pth moments of (3).
The problem of how’the moments of (3) can be computed was first proposed
by Bellman and Bertram [5,6]. A-quadrature solution for this problem
has not been‘discovered; however, we shall give an algorithm for comput-
ing the exact pth moments of (3) when‘L(Ak(m):axé:Q) is a solvable Lie
algebra [7] for any arbitrarily fixed k. Our present discussion repre-
sents another attempt to bring Lie theory into the domain of Control
Analysis [8]. A subspace L of the space of square matrices of order n
constituteé a Lie algebra if for all A,B in L the commutator product
[A,B] = AB - BA belongs to L. We use the notation L(A],Az,-~-,Ap) to
denote the Lie algebra gengrated by the matrices A],AZ,---,AP. This is
also the smallest Lie algebra containing A],---,Ap. We associate with

any Lie algebra L its derived series defined inductively as follows:
Le) -y

L) s s,tel™y L s

"L is solvable if L(n) = {0} for some n. The class of solvable Lie alge-
bras includes the class of pairwise commuting matrices when L(]) = {0}.

An interesting property for solvabi]ity is expressed in the following.

Lemma 6
A matrix Lie algebra L is solvable if and only if there exists a

]AS is upper triangular for all A €L.

nonsingular matrix S such that S~
Proof

Seeb[7].‘ The impoktant thing is that the proof presented there is
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‘a constructive one.
Since the Ak are random matrices with a common distribution, the
Lie é]gebra geﬁerated by one of the matrices is the same as the one

generéted by‘all of them,
L(Ak(m)ia)esﬂ = L(Ao(mo),A](w]),Az(mz),L.. Iwo,w],mz...esn

The assumption that L(Ak(m):a)esz) is solvable for an arbitrarily fixed

1

k implies the existence of a constant matrix S such that S~ AJS is upper

triangular for all j. Let

X, = Sz, (23)
= o=
Bk =S5 AkS (24)
Then (3) can be written as
Zysy = B2 (25)

" where Bk are upper triangular and have a common distribution. It follows

- i n+p=1 th -
that if vy s the ( 2 ) column vector of the p'' moments of zy, we have

Y = EByoirp1) Y1 |
= EByappy) B@pppy) o EBypp)) ¥y
= (B}
and therefore
Y = SppalEEI )1 STy Yo (26)

where lk is defined in (18). Since E(B][b]) is upper triangular, expli-

cit eXpressions for the pth moments of Xy in terms of the initial



g

moments of 56 can be obtained by back-substitution. This algorithm can
be easily éddpted on computeré by using an algebraic manipulator. In

the 2x 2 case where the algebra is more transparent,.if

M 212 ,
B, = (27)
| 0 A |
then ‘ ~1 .
p p
N LY
- p-1, | : ,
By [p] - A, (28)
0 T
Let
P11 P12
P =
. Pt Pa2

be the triangularizing matrix, and

S = PyyPyy - PyoPyy

Then the following formulas for mean squares have been obtained [3]

E(F(K)) = A EGE(0)) + ALE(x5(0)) + AgE(x; (0)x,(0)) (29

EGAK)) = BE(C(0)) +B,E(Z(0)) + B,E(x, (0)x,(0) (30)

ECxg (K)x, (K)) = CE(E(0)) + CE(x5(0)) + C4E(x, (0)x,(0)) (31)
where

A = ;2 [P} P55 EOE) P2 0= PyPy 8 (32)

Ay = L3 {P% P8, EOD) 4 Pl Py Py} (33)

w
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1 2.k | |
2 {-2P; 5P P 11 E(\])" = 2Py Poqa+ (P Py + ProPog )B) (34)
T2 p2 pa2yk, p2 :
2 {P51P55 EA]) + P51y - Py Pyt (35)
1 12 02 a2k o2 o
2 {P1oPgy EQN)T+Pyyy - PryPpptl (36)
1 1-2pp. P2 E(Az)k 2P Py + (P )5} (37)
$2 12722721 B\ 11 21Y 11P22F P12Po ,
1 2 2k, 2
5 {P11P21P22 E()" +Poe- 2P21P22”} (38)
, |
{P11 21 12 E(K )k kPyie = PyyPyon} (39)
1 top. pp P EQZ)K- 2P P e+ (P, P )} (40)
2 PP arPar BN 1P21 117221 P12P oy
k-1

2 1,2,k k=-1-3 (4243
PT2E(3)" + 2P Py oE(ag52,) JZ E(A]AZ) E(25)

’ k-1 .
P4 {2E(h 2y, Edag 0 ) p E(rf)k1-d 2 E2,) T YEQS)Y
k=1 , (41)
E<a12> p E(2)k1d E(AZ)J}
2 S NS 3 .
20, ]ZE(A ¥+ 2P2 E(nag,) L DT oy e2)

‘ k-1 . .
2 2.k k-1-3 2vJ
PZZE(AZ) +-2P2] 22E(a]2 2) Jf E(x ) E(Az)

Po1{2E(N jay)Eay 1) Z E(Az)k e 2 E(2,) Y E<x§)Y

k-1 (43)
E(a%z) jZO E(A%)k-l"J E(AZ)J}

k-1

2 z E0D) 1 £, (44)

2]E(A a

2p E(2 ;2 )k4-2p

21 22 12)
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=P

m
)

12 225(A ¥ *(PyqPog + PyoPo JE(agh)) 7 E(2,) 1T E0Z)

k-1 :
2\k=1-j “1-ypy 2
P11Pop {2E( 2 ,)E(ay 2 ,) f E()TTY YZO E(q2,)3 7 TYEGD)Y

+

+

k-1. ,
E(al,) L e(nd)k-1-d E(AZ)J} (45)

k-1
- k 2 k-T~j j
N = (PyyPogt PyoPry)E(A,)" + 2Py 21E(A1612) Z E(A) E(A2,)

(46)
Let us illustrate the previous discussion by an example.

Example 1

Consider the stochastic difference system (3) with @ = {m],mz}'and

P(wl) = P(mz) = 5
R A B
Ak(m]) =

1 0

1 0
Ak(wz) =

0 1

for all k. If_Al,Az are the eigenvalues of Ak’ it is obvious that

[E(x ;)] = 1 and IE(AiAj)l =1 for i,j = 1,2. In addition

3 -1
E(A)

1
2

o
1
E~
-t

|
—
2]
(=]
(o]
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are both defective. Hence by Theorem 2 the first and second moments are
. not stabTé.n It follows that the stochastic system under consideration
is not pth mean stable for p > 2. Since {Ak} generates a solvable Lie

a]gebra, the moments can be readily calculated, with the triangularizing

SN

Using (29)-(46), the following results are obtained

matrix given by

Elx, 00) = 52 1, (0)) - & Elxy(0)) (47)
E(x,(K)) = 5 E(x(0)) - %52 E(x,(0)) S (e8)
EGG(K)) = (k1) (ked) E(x5(0))

+ 1 k(kn) EGE(0))
- 3 k(k+3) E(x,(0) x,(0)) (49)
E(x (K)x,(K)) = k(k+3) E(xE(0)) ‘

o+

%-k(k-l) E(xg(O))

(k+2)(k-1) E(x](O) x2(0)) (50)

E(x2(K)) L k(e EGE(0))

+ % (k2-3k + 4) E(x5(0))

% k(k-1) E(x,(0) x,(0)) | (51)
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Notice that the expectation of the initial state is taken with respect

“'to P(w) over 2 in (2). It is easy to see that
ECllx, 1) = o(k)
EC[lx, 1) = 0(k?)

For Tinear stochastic differential systems many investigators believe
that the stability of moments of a certain order implies the stability
of all lower order moments [9]. A discussion of the extent to which
this is trué will appear elsewhere. For stochastic difference systems,
the stability of moments of a certain order need not imply the stability
of lower order moments. However, it cankbe shown that the stability of
moments of a certain even order implies the stability of all lower even

order moments.

Example 2
> Consider system (3) with sample space Q=f{ml,m2} . Suppose that

Plo)) = Plo,) -

Aglogd = -A ()

1]
/'-.\
o ~N
™o w

©

for all k. It is easy to check that

it

(D) = E0G) = Eqh,) = 4

3 3 2 2y _
E(A3) = E(G) = EGGA,) = E(AAg) = 0
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Hence\although the third order moments are asymptotically stable, the
-second Ordér moments grow without bound. _

A discu;siOn of the stability ofysome specific stochastic differ-
ence systems is contained in [10]. A1l results of this chapter can be
extended to complex stochastic difference systems at the expense of

increased mathematical complexity.
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Chapter 3
* STOCHASTIC STABILITY OF NONLINEAR SYSTEMS

All real pHysicaT systems are nonlinear. Linear behavior of a
system can only be expected over a limited range. In order to describe
the response‘of control systems with accuracy, a study of the stochastic
stability of nonlinear systems is essential. The non]inearvsystem (M)
can, with an appropriaté choice of the nonlinear correction term
f(x,n), serve as a realistic model for many real 1ife sampled data con-
trol systems. We assume that the linearized system (3) corresponding to
(1) is stable, and we would 1ike to know how the nonlinear term Ff(x,n)
can affect fhe stability of the system. A survey of the present discus-

sion is contained in [11].5'

3.1 STABILITY IN FIRST MEAN

Since first mean stability is one of the most commonly examined
stability definitions, we shall establish in this section criteria for
the stability in first mean of system (1). The following auxiliary

results will be needed.

Lemma 7
Let 8(i) and ¥(i) be two nonnegative sequences and p(i) be a

positive sequence satisfying
N n-1
o(n) < p(mc + I w(i) 0(1)] (52)
'l:

for some C > 0 and for n > 0. Then with the customary notation that

n
T (i) =1 form > n, the following inequalities hold
i=m
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v n-1
- (a) 8(n) < Cp(n) I (1+y(i))

i=0

for a]]kn.if p(i) are bounded above by 1

(b) e(n) < C( I p(1))( H (1+9(i)))

i=0 i=0
for all n if p(i) are bounded below by 1.

Proof

If 0 < p(i) < 1, then from (52)

o(n) Cv+ ni] (i)e(i)< C + ni] P(i) y 84)
py =& * oLy ¥ R p(1)
Hence
6{n)
- ¥(n) 5?57 <1+ pn)
C+X¢(1)9-%)y

"~ giving

‘ n n-1 .
¢+ 19t §if < arutie s I v(1) L)
By iteration
C + E (i) l’{ (400 8(0)
Lo “]—j' L P(i))(C+y(0) Erﬁy)

But from (52)
6(0) < Cp(0)

yielding

(53)

(54)

(55)
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| ' 1t 0(i) n-1 _
}e(n) < p(n)(C + izo P(i) LS Co(n) -;Eo' (1+y(i))
If p(j) > 1, then from (52)
9(n) <

n-1 -
p(n)(C + J (i) 8(i))
i=0 ' :

giving

n
C+ ) (i) e(i)
i=0 <1+ vn)6(n)

‘ n-1 - n-1
p(n)(C + § (i) a(i)) p(n)(C + T (i) 8(i))
i=0 i=0 _

<1+ y(n)

Hence

n n-1
C+ 3 w(i) 8(1) < (Lrwim) p(n)(C + ] 9()o(i)
i= i=

By iteration

n n ! n
C+ J w(i)e(i) < (m (+y(i)))(C+y(0)eo(0)( 1 p(i))-

i=0 i=1 ; i=1

But from.(52)
| 8(0) < C p(0)

giving
C +y(0)6(0) < C(1+ p(0)y(0))< C p(0)(1+y(0))

Thus
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\ - n=l n-1 n-1
8(n) < p(n)(C+ } w(i)o(i)) <c(m o(i))( I (1+y(i))
S i=0 - i= i=0
The proof is therefore complete.
We consider Lemma 7 to be a generalization of the discrete form of

the classical Bellman-Gronwall lemma [12].

Lemma 8

- If a; 2 0 for all i, then the product

(1 + a;) (56)

e =S

i=1

and the series

] a, (57)

Hoes-1=3

.i
converge or diverge together.
Proof

See [13].
The following assertion has been established [3].

Theorem 4
Given the stochastic difference system (1); if
(i) The ;orresponding homogeneous system (3) is strongly first mean
‘asymptoticé]]y stable and the solutions approach zero sufficiently
fast; | |
(i1) f(x,n) satisfies the nonlinearity condftion: there exists a

sufficiently small constant L such that

EC[|f(xom]l) <LE(][x]]) for all n (58)

then the system (41) is first mean asymptotically stable.



Proof
The solution of (1) can be written as
T T R £ (
X = + o A;) f(x;,i) 59)
e o Ai%o i=0 j=i+1 I 1
for all n. Recalling (16) and assuming that the decay is at least

geometric in condition (i), so that
E( ”Am-l"'AnIl) <™, ms>n : (60)

where C is a constant and 0 < & < 1. Without loss of generality, we

assume that C > 1. By (59) and (60), we have

ECllx, 1) < co™e(x, - z es™ T LE(Ix D

(61)
for all n. Notice that we have used the relations
eI e = ]| A et I (62)
j=0 3= 7° j=0 J 0
E( |[J RS Qi Al - E ||J A EClLEG DD (63)

since P(w) and AO’A]’AZ’ "’An-1 are independent. Multiplying both sides

of (61) by 6 " and applying Lenima 7 with p(i) =

_ n-1 LC
E(flx,11) 8 "< CE([lx, 1) HO (1 +%7) foralln (64)
i= .
yielding
EClx, 1) <CECllx ) (8 +1e)" for all n (65)

If L is sufficiently small, then
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S + LC <1

and so
Tim (8+LC)" = 0
n->c

Hence

E(lx, 1) >0 as noe

proving first mean asymptotic stability.

At this point we would like to interpret physically condition (i)
‘of Theorem 4. In most real-life sampled data control systems, the
inherent nonlinearity is such that within the normal operating range
the nonlinear term j(ﬁ}n) generally decreases in magnitude asl&
decreases in magnitude. This fact is reflected in condition (ii), which
is typical cone condition. It means that the expected value of the norm
of the nonlinear term must lie withih a half cone whose apex angle
depends on L. |

Now we have shown that under a certain realistic assumption on the
nonlinear term f(x,n) the asymptotic stability of (1) can be deduced
- from the strongly asymptotic stability of the corresponding linearized
S&stem (3). Suppose the homogeneous system (3) is only strongly pth
meanvstable (15), we would like to know the kind of assumptidn that we
can impose on f(x,n) to make the nontinear system (1) pth mean stable.
We shall find that a variable cone condition is sufficient [3]. The
following result has been obtained.
Theorem 5

Given the stochastic difference system (1); if
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(i) The qorresponding homogeneous system (3) is strongly first mean
- stable;
(i1) f(ﬁ,n)_satisfies the following nonlinearity condition: for every

n there exists a nonnegative number B(n) such that

E(lIf(x,n))]) < B(n) E({Ix]]) (66)

' n
then the system (1) is first mean stable if the series ] B(i)
i=0
converges.
Proof

The solution of (1) is as given by (59)

n-1 nil (n-] ) )
X = 1T A.x + o A;) fx:,i
gm0 0 0 =i T

By (15), it follows that

n-1
EClx, 1D < CEClix 1) + _ZO cB(i) E(llx;11)
i<

Applying Lemma 7
n-1
EClx, 11 < CEC % 1D I (1+CB(i)) (67)
i=

for all n. Since J B(i) < =, it follows by using Lemma 8 that the
i=0
system (1) is first mean stable.

Example 3
Consider system (1) with Q = {wl’mZ’w3} and arbitrarily specified

P(mi), i=1,2,3. Let

Alo)

o N -t
= L]
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1
- 0
9
A (w,) =
kY2 4 8
5 9
1 1
8 4
A (w,) =
kY3 2 1
3 2
for all k
4 16
1,9 .7177%2
’ M 2
_f(g(_,n) T T s n2l
2n x]+x2 :
where M is a constant and
X
?i:
X2 1
Let
”i” = lx]l + lxzi

be the simple absolute value norm. Then for the matrix

a1 822

(68)

(69)

(70)

the natural norm induced by (70) is the maximum absolute column sum

HAII==£§?t2 (lag |+ 12y )

(71)

Using these norms, it is easy to see that the linearized system in the

present case is strongly first mean asymptotically stable and that (60)

is satisfied. Moreover,



2.
Ietenll < (el o8 ¢ 41+ fel)
s_z—:j-i (Ixg] + 1xID

<7 llxl

where we have made use of the fact that forAnonnegative real number x

%-xz e X <

Thus f(x,n) satisfies the nonlinearity condition (58) when n is
sufficiently large. If the nonlinearity condition holds when n > N,
then by shifting index the vector Xy can be taken as the initial state.
Hence the nonlinear system in this example is first mean asymptotically
stable, as can be checked Ey direct calculations. It follows that the

system is also stable in probability.

3.2 GENERAL CONSIDERATIONS

Naturally, we would like to extend the results of the previous sec-
tion. Specifically, we would like to generalize Theorem 4 to arbitrary
p. By Lemma 3 any such generalization is expected to introduce more
restricti?e assumptions. If a system is pth mean stable, then evidently
the greater the value of p, the more moderate the behavior of the
samples of the system becomes, and at the same time the output process
is squeezed more and more. The following generalization has been estab-

lished.



tTheorém 6
Givéh fhe stochastic difference system (1) and any 0 < p < «; if
(i)' the corrésponding linearized system (3) is strohg]y pth mean asymp-
totica11y sfab]e,»and the solutions converge in pth mean to zero
sufficiently fast;
(ii) f(x,n) satisfies the nonlinearity condition: there exist an inte--

ger N and a sufficiently small constant L such that

ECJIF(x.n) [IP) < LE(]Ix]IP) . n>N
(72)
E( ”_f(_)_(_an)”p) < ® > 0 <n< N

then the system (1) is pth mean asymptotically stable.

Let us first expTain-the conditions of Theorem 6. In condition
(i) we require that (16) be satisfied. To specify the rate of conver-
gence to zero, it is fequired that the solutions of the strongly stable

linearized system (3) satisfy

ECHlAL - ANP) <o (p) ST, om0 (73)

o, . = 0(=) > i21 , 1>3>0 - (74)

where 0 < § < ]; Since aij need only be defined for 0 < j < i, one easy
way to check (74) in practical calculations is to show that the double

sequence aij can be dominated in the fo]]owfng way

(75)
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where C is a constant. Condition (ii) means that the pth mean of the

nonlinear term lies within a cone whose apex éng]e is determined by L.

Proof of Theorem 6

First assume that N = 0 in (72). The general solution of (1) can

be written as_

n-1 :
-)-(-n =B x + ZO _BT+] f_(é_i ,1) (76)
n-1
for all n>0, and B, = TT A.. Hence
i 5=1 J

~n=1
Hln”pf_ (”802(-0” +1'ZO ”B-H.] f_(li:i)”)p

< ()P (ax (1B x )1 5 1By ,q F(xg,1) NP
0<i<n-1

’ n-1
< (ne)PClIB IIP Hlx P + RRE 1P 11£0x;, )Y (77)
1=
for all n. As previously explained,

ECNB, 117 Hlx, IP) = ECliB, NP ECHx, IIP) (78)

CECIB 1P G 1 IPY = ECIB, IP) ECIE(x . DIP) (79)

Using (72), (75), (78), and (79) '
. : n-1 A .
EC % 17) < ()P 8"EClx 17) + L Lanﬂ.ﬂa"“"E(llaiHp)}

-1 R
< ¢(n+1)P sn{a”E(n_&onP)f,‘zo L™ E(]lx, 1P} (80)
}=

Now



It fo]]owé that

o)

‘ n-1 .
CE(lIx, [1P) < 1+ LyP {MCG"E(II%HPH{;O meL 6" E(][x, llf’H- (81)

for n > 1. Define a sequence p(i) > 1 by

a+hHP s
o(i) =
1 . i=0
Using (81), we have
EClx, [1P) <o(n) (MC s"E(Ix,]IP) + Z meLs" ek 1Py (82)

for all n > 0. Multiplying both sides of (82) by § " and applying Lemma

7,

E(llx, IP) 8™ <me T o(i) ECllxg P 11 (1 + ML

i=0

for all n > 0, or
n '
E(llx,1P) < Me (5 Edllx,[IP) (6 +meL)"
i=

for-all n> 0. If L is sufficiently small, then

§ +MCL =v <1

Thus
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EHHIW)<MCHHxHW n]u-+ap" (83)
‘]....

for all n A1though H (1 + —QP is a divergent infinite product, the
product H [(1 +T;)py ] converges to zero (or diverges to zero. For

term1no]ogy, cf. [13]). To see this, choose 0 < ¢ < 1 such that

y <€

There exist an integer N and 0 < t < 1 such that n > N implies

[0+ DelP <t <1 | (84)
Thus
n 1
oL Wﬂ< [+ Del?
3=1 j=r !
N n
= 1 [0+ Dl 1 [0+ el
i=1 J j=N+1
N
<t"Non oo bet?
§=1 ’
implying
Tim II (3 +—)pY]
n>eo j=1]
Hence
1im E(Hx 1Py = ‘ (85)
n-—)—oo

proving pth mean asymptotic stability for N=0. If N> 1, then by the
assumption

E([£06m)|P) < =
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for 0 < n sgN? we can shift index and take x, as the initial vector by

_N
‘using the transformation

e = X
By = Aay

or we may apply the previous analysis directly to

, n+N-1 n+g—1 n+N-1 ) £
X = I A.x, + (m A.) f(x.,i) , n>0 : (86)
TN e TN Sy et 3T T

This completes the proof.

We have mentioned that the cone condition is a realistic condition.
In our previous analysis we required the apex angle as determined by L
to be small. This restfiction should be removed if our results are to
be of practical use. We shall establish that if, instead of a decay as

described by (73,74), the following inequalities are satisfied:
ENALy A NP) <o npy> >0 20 (87)

where 81 and tj are positive sequences satisfying

Z tj < e
BJ. = o(—1) | (89)
1 (_i+-l)p -

then the apex angle of the cone as determined by L in condition (ii1) can
be arbitrarily enlarged and the vertex of the same cone can be freely

translated along the horizontal axis. If E(HAn}lp) =0(1/nP) and p > 1,
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then (87)-(89) obviously hold.

‘Theorem 7 .
GiVen the stochastic difference system (1) and any 0 < p < o3 if
(i) The correspéhding homogeneous system (3) is strongly pth mean
asymptoticai]y stable and the solutions convefge in pth mean to
zero wi%h a rate, for example, exceeding that in (87)-(89);
(i1) f(x,n) satisfies the nonlinearity condition: there exist an integer

N and arbitrary constants L],L2 such that

ECIEGam IIP) < L+ LGECIX®) o o> N
(90)
EClEGxn)IP) <=, 0<n<N
then the system (1) is pth mean asymptotically stable.
Proof
We can assume without loss of generality that N=0 in (90). It is

easily seen that (77) holds in the present case

Ix MIP < (n+1)p{113§50-||9+'§; 118, I 11 (xs k) [P}

“for all n > 0. Using (87)—(90);

» : ' n-1 n-1
E( Hin”p) < (n+l )p{BntoE( ||§0Hp) + iZO L]Bnt'i+] + iZO LZBnt'H'lE( ”?_(_1 ”p)}
(91)
Let

; TSI

By (89), we can choose a constant K < 1, satisfying

0<km)Ppe <1, K<ty n2l
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It follows from (91) that

o n-1 L,t.
E<‘n;,,;np> iK(n+1)p8n{%toE(H§0”p)+L]n+iio U P (g2

Define a sequence 0 < p(i) <1 by

K(i+1)P 8. . ix1
p(i)= !
1 T, i=20
Thus -
B n- t.
e 17) < ot EClxgIP) + e+ T Fgh el 7)) (93)
'l:
for all n > 0, where £ = n/K. Applying Lemma 7
t n-1 L, t.
(e 17) <o (¢ Bl [IP) + L) 1 (1 2t (94)

Since

; t.gpsn<e

the infinite product
0 L,t.
T (1 + _ZKlil)
i=0

is- bounded by Lemma 8. But
1im p(n) = O
n—>co

Hence

lim E(flx |IP) = 0

n--co

proving pth mean asymptotic stability.
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It is surprising to find that (87)-(89) are strong enough to
“allow for a "projection vector" type or a "cdmbinatiqn cone" nonlinear-

ity condition in f(x,n). The following generalization of Theorem 7 is

useful in practical calculations.

Theorem 8
" The assertion of Theorem 7 holds if condition (ii) is replaced
by (ii)] f(x,n) satifies the following non]inearity-condition; There
exist an integer N,r real numbers 0 < p],ﬁz,---,pr < p, and r+l con-
L

stants L,L ~~,Lr such that

12722

e lP) <L+ T e o o0

i=1
(95)

E(If(am)]IP) <, 0<n<N
Proof

As before, assume N = 0 in (95). For O < P; <P

p.
Ixll ' o<1+ Ix)IP 1=1,2,-,r
‘ Hence

ElEGOm IP) < L+ T LEQIT) < L+ § 00+ (T LR
' i=1 i=1 i= : (96)
and this is condition (ii) of Theorem 7. The result follows.

A genera]iiation of Theorem 5 is the following statement.
Theorem 9

Given the stochastic difference system (1) and any O<p < « ; if

(i) The corresponding linearized system (3) is strongly pth mean

stable;
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(i1) \fﬂzﬁn) satisfies the following nonlinearity condition: for

,everybﬁ there exists a,ﬁonnegative number B(n) such that
(I IP) < B(n) ECIIXNIP) (97)

and B(n) can be dominated by

B(n) < Bt (98)
. n-1
in such a way that the sequence s(n) = nP ) Bi is bounded and
n-1 i=0
the series ) t{ converges, then the system (1) is pth mean

: i=0
stable.

Proof

The general solution of system (1) is given by (76)

n-1
Xy = Boxo + 1 Biyy £lxp. 1)
n-1
for all n, with B, = T A.. Hence
i =1 J
p» p. p"5! \ (1P
iy 17 < B IP+ 0P F 1By £lxgi) ] (99)

for all n > 0. Using (15), (97), and (98)

, n-1 .
£l I7) < CEClxgIP) + o 85) ECll )

n-1
< CE(llx, [IP) + cnP Lo Bty Bl ")

n-1 n-1
< CE(|lx IIP) + cnP Lo 1 Edly I1P) (100)

Since the monotonic sequence
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n-1
s(n) = nP § Bs
i=0
is bbunded, there exists a constant K such that

s{n) < K

for all n. Applying Lemma 7, with p(i) = 1,

n-1
ECllx, IP) < cEClIx, IIP) T (eekty) . (101)
1'.'.."
for all n. Since ] t. <, it follows from Lemma 8 that the system is
i=0

pth mean stable. The proof is complete.

Example 4
Consider system (1) with @ = {m],wz} and arbitrarily specified

P(wi), i=1,2. Let

1
[ 2 3
Alay) = AW
_ 6
.1
, [ B )
Ak(mz) = E?- 2 1 for all k
3 2
A+ oxp/2 3
flx.n) = 4 16 (102)
J—B x9 e‘x] "2
2°%

where A,B,C are constants, §_e}R2 is defined by (69). Using the norms
in (70), (71), it can be readily checked that the linearized system is

strongly second mean asymptotically stable and that (87)-(89) are
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satisfied. Clearly

E(lle(m 117) < ECCIAl + Bkl + Tel fxl™®)%)

= A2+ 8% E([lxl1%) + c® ECHxI)
+2]a8] E(J|x]]) + 2|Bc] E(JIx]I'/®) (103)

Hence by Theorem 8 the nonlinear system in this example is second mean
asymptotically stable. It follows that the system is also pth.mean
asymptotieal]y sfab]e for p < 2. ' |

Criteria for the mean stability of some special systems can be

found in [3].
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Chapter 4
DIRECTIONS FOR FURTHER RESEARCH

In previous chapters the stability of linear and nonlinear stochas-
tic difference systems has been investigated. Since the theory of differ-
ence equatﬁons‘has not been adequately developed, many problems 6n discrete
systems'still await solution. We shall discuss in this chapter a number of

unsolved or partially solved problems on the stability of stochastic systems.

4.1 STABILITY OF STOCHASTIC TRANSFORMATIONS

Consider a stochastic point mapping of the form

Xep1 = B x) k>0 (104)

where the state vector ikegiR" for all k, and {fk constitutes a sequence

}k=0
of independent stochastic transformations having a common underlying sample
space ©2. By this we mean that for each w € © and each k, fk[w] is a deter-
" ministic recurrent operator defined on a domain inR". We assume for gener-
ality that the initial state Xg is excited by a noise process Pl{w), o €9,
which is statistically independent of the fk' Equation (104) p]ays a
brqminent role in stochastic control, crystal lattice dynamics, pharmaco-
kinetics, mathematical economics and biomathematics. It also represents the
discrete version of a class of stochastic differential equations which are
of great physical importance, and whose solution behavior is not at all

well understood. The stochastic equation (104) was first considered by

Bellman [14,15], where he derived the asymptotic behavior of E(fk) for large

k when fk are analytic and have a common Bernoulli distribution, and when
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the Abel-Schroder functional relation can be applied to fk’ The question
“is how the stability of (104) can be investigated in the general case.

An equilibrium point a of (104) is a double point [16] satisfying
a = f(a) - (103)
for all k and for all w € . Let a be a double point of (104). Provided

all second-order partial derivatives of fk exist in a neighborhood of a,

equation (104) can be written as

Xpgp = 2+ A% -a) + Ry(x, - a) (106)
ofy 2 . .
where Ak = ?5§-§?E_and Rz(g) = 0(x"). The Tinear operator A, is a nxn

stochastic matrix, the elements of which are stochastic variables. From
(106) it is obvious that we can always assume,by a translation of the
coordinate system, that the origin is an equilibrium point. It can now
be seen that all definitions and properties established in Chapter’].
apply to the stochastic transformation (104). We have recently investi-
gated the stability [17] of the transformation (104). For the linear
transformation the investigation is essentially equivalent to that pre-
sented in Chapter 2. For the nonlinear case we have established that |
the stochastic transformation (104) is pth mean asymptotical]y stable if
the corresponding Tinearized transformation is strongly pth mean asymp-
totically stable and the solutions of which converge in pth mean to zero
sufficiently fast.

The control and stability analysis of the general implicit stochas-

tic transformation
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B = DlleXn)
o (107)
€

Xy
remaiﬁs an open problem. The nonautonomous stochastic transformation
corresponding to (]04) has not been‘fuTiy investigated [17]. The
general étability analysis of stochastic transformations possessing a
more complicated form has not been attempted [15], although transforma-
tions with certain specific properties have been considered [18].
Before concluding this section we would like to mention the problem of
studying the behavior of various functions of (104), such as the deter-
minant or the characteristic roots of the linear transformation. For a

discussion of this problem, see [19,20]. For some problems involving

Tinear stochastic transformations arising from physics, see [21,22].

4.2 STOCHASTIC LIAPUNOV FUNCTIONS

The stability analysis of nonlinear stochastic transformations
can often be facilitated by using discrete analogues of differential
inequalities [17,23]. However, this method becomes involved for trans-
formations assuming complicated structures. Naturally, we_wou]d like
to know whether the direct method of Liapunov [24,25] can be used in
(104) or (107). This gives rise to the idea of a stochastic Liapunov
function. Let us consider the following linear steochastic transforma-
tion

X = Alw) X,

“n+l

(108)
w €

Suppose there exists a positive definite stochastic matrix P, such that
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AT(w) P() Alw) - P(a) = -Q(v) (109)

where Q(w) is positive definite for every w € Q. Then using the positive

definfte function

A (110)
we haQe
Vo = Vo = (k) P,) - P
= x (ATPA - P) x < 0
whenever X, # 0. Hence
v =+ 0 as n > o

and the transformation is asymptotically stable at x = 0 [12,26]. The
function constructed in (110) is called a stochastic Liapunov function,
with a probability structure induced by A. It is clear that the idea
of employing stochastic Liapunov functions can be generalized. The
- problem has not been previously studied. Of obvious interest is the
probabiiity structure of stochastic Liapunov functions. We would also
like to kﬁow how stochastic Liapunov functions can be constructed [27,
28]1. A report on this investigation will appear elsewhere.

It should be noted that the term stoéhastic Liapunov function has
been used in some recent works to mean a different thing [29,30], as we

now explain. Given the Ito differential equation [31,32]

dx = a(t,x)dt + b(t,x)dz (111)
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“ ) n‘ ] i . N
where x, a€ R, b is a nxn matrix, and z is a vector of independent

. Brownian processes, with E(dzidzj) = Gijdt, define

| n :
Bij(t,z) = kz] by (t:x) bjk(t,z) (112)
Vot sl T b (b g )
L= ) a,(t,x) 7—+5 B..(t,x) s0—= (113
521 1 Ix; 21,j=1 1] Bxiaxj

Then a positive definite function V(x) may be called a stochastic
Liapunov function if LV(x) < 0 in a certain region. Thus V(x) defiﬁed
'1n this way is a deterministic function, its study is part of the theory
of partial differential equétions [33,34]. An interesting question is
the possibility of employing the stochastic Liapunov functions as

defined by us to treat Ito differential equations.

4.3 DISCRETIZATION OF STOCHASTIC DIFFERENTIAL EQUATIONS

Various special methods have been devised for the study of the
stabi]ify of stochastic differential equations [35,36]. We would like
to have methods that can be applied to large classes of stochastic dif-
ferential equations. For linear stochastic systems excited by additive
or mu]tip]icative colored noise, the corresponding differential equation
may be discretized and the stability of the resu]tfng stochastic dif-
ference equation investigated. It can be shown that if the point « is
an ordinary or a regular singular point, tﬁen the leading behaviors of
sqlutions to the difference equation and its differential equation
analogue are the same [37,38]. Hence the stability theory of difference
equations as developed by us may contribute to the stability ana]ysi; of

stochastic differential equations. For nonlinear systems, the previous



_46-

method applies wheh there is a nonlinear transformation reducing either
,‘the’diffefen£ia1 or differenée equation to linear form. Work along
this line is ih progress. | |

| We would like to point out that in the literature a complicated
stochastic differential equation Rx = 0 is usually studied by approxi;
mating it by a manageable simplé equation Sx = 0 for which [|R- S]] "is
small [24,39]. This approach is hambered by the lack of efficient sys-
tematic methods for cqnstructing the mapping S. Our approach focuses
on the correspondence relationships between differential and difference
equations and can be easily applied in real calculations. However, our .
present approach requires modification when applied to Ito differential
equation (111), for in this case the solutions of the difference equa-
tion obtainéd by discretization do not in general converge to the solu-
tions of the differentia] equation [40,41]. This is because Ito calculus
is a self-consistent theory and is not an extension or limit of ordinary
calculus [40,42]. One approximate technique for the solution of the
stochastic differential equation (111) is the iterafive or the numerical
solution of the associated Fokker-Planck equation [32,43]. Thisrbelongs
to the theory of partial differential equations. For‘a discussion of

various abproximatevmethods,vsee [32].
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