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ABSTRACT 

In this report the stability of linear and nonlinear 

stochastic difference systems is considered. Explicit criteria 

for sta~ility are derived. An algorithm is developed for com

puting the moments of linear sto.chastic systems when a certain 

Lie-algebraic condition is satisfied. The relationship between 

various stability definitions is explored. 
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~hapter 1 

INTRODUCTION 

An accurate mathematical model of a dynamic system in electrical, 

mechanical, pr control engineering often requires the consideration of 

stochastic elements. Physical systems with random parameters are 

usually modeled by stochastic differential equations, and an extensive 

study of such equations was made in the sixties. However, the advent of 

many modern day sampled data control systems has necessitated a study of 

stochastic difference equations. A stochastic difference system is one 

in which one or more variables can change stochastically at discrete 

instants of time. Stochastic difference systems are the stochastic ver

sions of deterministic discrete time systems. The class of stochastic 

difference systems includes most modern industrial and military control 

systems, for they invariably include some elements whose inputs or out

puts are discrete in time. Example~ of such elements are digital 

computers, pulsed radar units, and coding units in most communication 

systems. One of the most important qualitative properties of stochastic 

differenc.e systems is the stability of such systems. The purpose of 

this report is to present criteria for stability of linear and non

linear stochastic difference systems. We a.lso attempt to initiate a 

systematic study of the stability of stochastic difference systems. 

1.1 PROBLEM STATEMENT 

Consider a stochastic difference system whose behavior is de

scribed by the equation 
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{l) 

~-where k is a ,nonnegative integer, ~ G. 1Rn for all k,_ and Ak(w) is a 

nx n stochastic matrix. By this we mean that the elements of Ak(w) are 

stochastic variables which can be continuous or discrete, with w En, 

where Q is the sample description space of the stochastic variables. We 

assume that Ak(w) are independent stochastic matrices, whose distribution 

may depend on the state k. The nonlinear term f.(~,k) satisfies 

f(O,k) = 0 for all k. For simplicity, we shall consider only the sta

bility of (1) about the double point x = 0. For generality we assume 

that the initial state~ is excited by a certain noise process 

P(w) (2) 

which is statistically independent of the Ak(w). The homogeneous system 

corresponding to (1) is the linear system 

(3) 

with the nonlinear term f.{~,k) omitted. For the class of systems (1) 

the following stability definitions are discussed in the present report. 

Befi ni tion 1 

The equilibrium solution of the stochastic difference system (l) is 

said to be stable in pth moments if for every £ > 0 there is a 6 > 0 

such that 

P1 P2 Pn I E(x1 (k) x2 (k) · · · xn (k) I<£ whenever II~ II < 6 

for all k and for any set of nonnegative integers p1,p2,···,pn such that 
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, . T 
p1 +p2 + •·· +pn = p, where ~ = (x1(k),x2(k),···,xn(k)). The system (l) 

is asymptotically stable in pth moments if moreover 

Definition 2 

The equilibrium solution of (1) is stable in ·probability if given 

£,£' > 0, there exists o > 0 such that llx
0

ll < o implies 

p (II ~II > £ I ) < £ 

for all k. The equilibrium solution of (1) is asymptotically stable in 

probability if it is stable in probability and if there exists 0 1 > 0 

such that 11~ 11 < o' implies 

Definition 3 

The stochastic system (1) is pth mean stable for p > 0 if for every 

e: > 0 there is a o > 0 such that 

E(ll~ll p) < e: whenever 11~ 11 < o 

for all k. The system (1) is pth mean asyptotically state if moreover 

1 im E( 11~1! p) = 0 
k-+oo 

It is clear from the definitions that pth moment asymptotic sta

bility expresses a convergence to zero property of the state vector only 

if p is an even integer. Notice that while we investigate the pth mean 

stability of a system for any positive real p, we generally consider 
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moment stability of integral orders only. We shall show that the 

definitions that we adopted constitute a logical development of sta-

bility theory by demonstrating that they lead to a class of well 

structured properties [l]. 

1.2 MATHEM.l.\TICAL PRELIMINARIES 

In this section we shall investigate the relationship between 

various stability definitions. Properties peculiar to linear·systems 

will be discussed in the ne~t chapter. The following two lemmas yield 

some qualitative information on the relationship between mean stability 

and moment stability. 

Lemma 1. 

The pth mean (asymptotic) stability is, for any p, at least as 

strong as pth moment (asymptotic) stability. For even integers p, mean 

{asymptotic) stability and moment (asymptotic) stability are equivalent. 

Proof. 

For every p > 0 and any norm 

for p1 + · · • + Pn = p, proving the first part of Lemma 1. 

Let p = 2r be an even integer and 11~! 12 be the. Euclidean norm of 

the vector 

x = (5) 
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defined by 

(6} 

Then 

E(ll~llP) = E[(xi(k) + x~(k) + ··· + x~(k}}r] 

\ ~,__r~' ~-,-
l r'r'···r' r 1+r2 + · · · +r n = r 1 · 2 · n · 

= 

by using the multinomial formula. \The second part of Lemma l is thus 

established for Euclidean norm. But any two norms in a finite dimen

sional linear space are equivalent [2], hence {7) holds for any norm and 

the proof is complete. 

Lemma 2. 

The pth absolute moment (asymptotic) stability of the absolute 

mpments 

is equivalent to pth mean (asymptotic) stability for any integer p 

Proof. 

Let 

11.~11, 
n 

= I Ix. I 
i=l l 

be the absolute sum norm of the vector (5). Then 

(8} 
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= p! 
I p Ip '···p I p +p + · · · +p = p l · 2 · n · 1 2 n 

Lemma 2 is thus true for the absolute sum norm. The general case fol

lows from the fact that any two norms in a finite dimensional.linear 

space are equivalent. 

The following lemma relates mean stability of different orders. 

Lemma 3. 

If a stochastic difference system is p1th mean (asymptotically) 

stable, then it is p2th mean (asymptotically) stable for any p2 satis

fying 0 < p2 ~ pl 

Proof. 

We need only consider 0 < p2 < p1. Let 

Applying Holder's inequality on a space of normalized unit measure [2] 

Hence p1th mean (asymptotic) stability implies p2th mean (asymptotic) 

stability. 

The following theorem shows that mean stability is much stronger 

than stability in probability. 
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Theorem l 

If the stochastic difference system {l) is pth mean (asymptotically) 

stabl.e for any p > 0, then it is (asymptotically} stable in probability. 

Proof. 

We first establish the following inequality 

( 11) 

for a 11 p, £ > 0. Let f (x) be the probability density of 11.?5..n I! P . Using 

the fact that llx 11 >.1-0, 
~ 

00 

E (II~ II p) = J x f ( x) dx 
0 
00 

~ ~ J x f (x) dx 
a 

~ aP(!l~llP~a) 

for each a > 0. Choose a = £P. It follows that 

and (11) is established. Suppose£,£', are given. We first choose 

r > 0 satisfying 

l p 
(-,) r < £ 

£ 

By mean stability there exists a o > 0 such that 

whenever 11~ II < o 

Hence, 

11~ 11 < a 
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p (· II ~II > E: I ) ~ p (II~ II ~ ~ E: I ) 

. ~ (~T)p E( ll~llP) 

< E: 

for all n. Thus system (1) is stable in probability. From (11), it is 

obvious that 

1 i m P < 11~ 11 > E: > = o 
n+oo -n 

if 

Hence asymptotic pth mean stability for any p > 0 implies asymptotic sta

bility in probability. 

By our previous discussion, we have the following relationship 

between moment stability and stability in probability. 

Corollary to Theorem 1 

If the stochastic difference system (1) is (asymptotically) stable 

in even order moments; then it is (asymptotically) stable in probability. 

In particular, stabi 1 i ty in second moments implies stability in probabi 1-

ity. 

The results that we have established should, with an appropriate 

choice of definitions and modifications in the proofs, apply in the con

tinuous case to stochastic differential systems. 
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Chapter 2 

LINEAR STOCHASTIC SYSTEMS 

Since linear systems are easy to solve and study, the investiga

tion of the linear part of a problem is often a first step, to be 

followed by the study of the relation between motions in a nonlinear 

system and in its linear model. In many nonlinear problems~ lineariza

tion produces a satisfactory approximate solution, and several· averaging 

methods are available for dealing with nonlinear stochastic problems. 

2.1 MOMENT STABILITY CRITERIA 

The homogeneous system (3) may be regarded as the linearized ver

sion of the nonlinear stochastic difference system (1). A solution of 

(3) satisfying 

X = I 
0 

(12) 

is called the fundamental solution. It is clear that the fundamental 

solution of (3) satisfies 

Xn = An-lAn-2···A2A1Ao 
(13) 

Xm = l\n-1···AnXn, m > n 

From (13), we irrunediately have the following result: 

Lemma 4 

The linear stochastic difference system (3} is pth mean stable if 

and only if there exists a constant C such that 
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E(!!AA ····AAA!jP)~C n n-1 2 l 0 (14) 

for all n. It ·is pth mean asymptotically stable if and only if 

The system (3) is said to be strongly pth mean stable [3,4] if 

there exists a constant C such that 

for all m,n such that m > n. It is strongly pth mean asymptotically 

stable [3,4] if 

limE(l!A ···Allp)=O m-1 n 
m+oo 

for all m,n such that m > n. Observe that since Ak are independent 

stochastic matrices, it follows from (13) that 

(15) 

{16) 

As we shall see in the next chapter, strong stability is a very 

useful concept in nonlinear analysis. 

We have seen that mean stability implies stability of moments of 

the same order, and that stability of even order moments implies sta-

bility in probability. We would like to investigate moment stability 

of (3). Let us assume for the rest of this chapter that Ak are indepen

dent stochastic matrices with a common distribution. Let 



E(x~(k)) 

E(x~- l (k) x2(k)) 
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. . P1 : P2 Pn 
lt< = E(x1 (k) :-2 (k) · · · xn (k)) 

E(x~ (k)) 

b (n+p-1) th ea n-l vector of the p moments of~- Then 

(19) 

where E(A[p]) = E(Ak[p]) for all k and Ak[p] is the pth Kronecker power 

[5] of Ak. If Ak has eigenvalues A1(k), A2(k), ··· An(k), then the 

eigenvalues of Ak[p] are the (n~~ll) values (counting multiplicities) 

given by 

Let us consider an arbitrarily fixed k and focus our attention ~n 

By considering (19), the following result is apparent. 

Theorem 2 

A necessary and sufficient condition for the stability of the pth 

moments of the stochastic difference system (3) is that the quantities 

in (20) should be less than or equal to one in magnitude if E(Ak[p]) is 

nondefective (i.e., has a full complement of ordinary eigenvectors) and 

that the quantities in (20) should be strictly less than one if 

E(Ak[p] >, is defective (i.e., does not have a full complement of ordinary 
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eigenvectors). A necessary and sufficient condition for the asymptotic 

stability of the pth moments of (3) is that the expressions in (20) 

should be less than one in magnitude. 

To reduce the number of constraint conditions and to avoid the 

computation of the expectation of mixed eigenvalues in Theorem 2, we 

shall make use of the following result. 

Lemma 5 
n. 

Let a.1,a2,···,a be positive real numbers such that l 
n i=l 

If f 1,f2,···,fn are Lebesgue integrable functions, then 

If l f 2 .•. f nl ~IT ( jf.I) l I a a. a n J a.. 

1 2 n i=l l 

Proof 

This is a generalized Holder's inequality. See [2]. 

Theorem 3 

(21) 

The stochastic difference system (3) is asymptotically stable in 

pth moments if for any arbitrarily fixed k 

for all i. 

Proof 

A little manipulation with (21) shows that 

for all p. > 0 and 
l -

n 
l p. = p, proving the theorem. . 

. l 1 i= 

(22) 
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2.2 COMPUTATION OF MOMENTS 

Sometimes we may want to compute the exact pth moments of (3). 

The problem of ho~ the moments of (3) can be computed was first proposed 

by Bellman and Bertram [5,6]. A quadrature solution for this problem 

has not been.discovered; however, we shall give an algorithm for comput

ing the exact pth moments of (3) when L(Ak(w): wEn) is a solvable Lie 

algebra [7] for any arbitrarily fixed k. Our present discussi~n repre

sents another attempt to bring Lie theory into the domain of Control 

Analysis [8]. A subspace L of the space of square matrices of order n 

constitutes a Lie algebra if for all A,B in L the commutator product 

[A,B] =AB - BA belongs to L. We use the notation L(A1,A2,···,Ap) to 

denote the Lie algebra gen~rated by the matrices A1,A2,···,AP. This is 

also the smallest Lie algebra containing A1,···,Ap. We associate with 

any Lie algebra L its derived series defined inductively as follows: 

L (o) = L 

L ( n+ 1 ) = {[s, T]: s, T t L ( n)} n~O 

Lis solvable if L(n) = {0} for some n. The class of solvable Lie alge

bras includes the Class of pairwise commuting matrices when L (1) = {O}. 

An interesting property for solvability is expressed in the following. 

Lemma 6 

A matrix Lie algebra L is solvable if and only if there exists a 

nonsingular matrix S such that s-1As is upper triangular for all A €.L. 

Proof 

See [7]. The important thing is that the proof presented there is 
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a constructive one. 

Since the Ak are random matrices with a common distribution, the 

Lie algebra generated by one of the matrices is the same as the one 

generated by all of them, 

The assumption that L(Ak(w): w{;n) is solvable for an arbitrarily fixed 

k implies the existence of a constant matrix S such that s-1AjS is upper 

triangular for all j. Let 

Then (3) can be written as 

~ = s-* 
-1 

Bk = S AkS 

(23) 

(24) 

(25) 

where Bk are upper triangular and have a common distribution. It follows 

that if~ is the (n~~l 1 ) column vector of the pth moments of~' we have 

~ = E(Bk-l[p]) ~-1 

and therefore 

= E(Bk-l[p]) E(Bk- 2[p]) ··· E(Bl[p]) .'{_l 

k 
= {E(Bl[p])} Ya 

(26) 

where~ is defined in (18). Since E(Bl[p]) is upper triangular, expli

cit expressions for the pth moments of~ in terms of the initial 
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moments of~ can be obtained by back-substitution. This algorithm can 

, be easily adopted on computers by using an algebraic manipulator. In 

the 2 x 2 case where the algebra is more transparent, if 

(27) 

then 

(28) 

Let 

be the triangularizing matrix, and 

Then the following formulas for mean squares have been obtained [3] 

E{xi(k)} = A1 E(xi(O)) + A2E(x~(O)) + A3E(x1 {O)x2{0)} {29) 

E(x~(k)) =Bl E(x~(O)) + B2E(x~(O)) + B3E(x1 (O)x2(0)) (30) 

E(x1 (k)x2(k)) = c1 E(x~(O)) + c2 E(x~(O)) + C3E(x1 (O}x2{0)) (31) 

where 

(32} 

(33) 
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(34) 

(35} 

(36) 

(37) 

(38) 

(39) 

(40) 

(42) 



Let us illustrate the previous discussion by an example. 

Example 1 

Consider the stochastic difference system (3) with n == {wl'w2} and 

1 P(w1) = P(w2) = 2 

f~r all k~ If A1,A2 ~re the eigenvalues of Ak' it is obvious that 

IE(A;)I = 1 and jE(AiAj)j = 1 for i,j = 1,2. In addition 

) - 1 E(A - 2 c -: ) 
-4 

0 

0 
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are both defective. Hence by Theorem 2 the first and second moments are 

not stable. It follows that the stochastic system under consideration 

is not pth mean stable for p ~ 2. Since {Ak} generates a solvable Lie 

algebra, the moments can be readily calculated, with the triangularizing 

matrix given by 

P= (; :) 

Using (29)-(46), the following results are obtained 

E(x~(k}) = ! (k+l)(k+4) E(xi(o)) 

+ ! k(k+l) E(x~(O)) 

-1 k(k+3) E(x1(0) x2(0)) 

l 2 E{x1(k)x2(k)) = 4 k{k+3) E(x1(0)) 

+ * k(k-1} E(x~(O}} 

= ! k(k+l) E(xi(o)) 

+ ~ (k
2-3k+4) E(x~(O}) 

- ~ k(k-1) E(x1(o) x2(0)) 

(47) 

(48) 

(49) 

(50) 

(51) 
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Notice that ~he expectation of the initial state is taken with respect 

·to P{w) over nJ in (2). It is easy to see that 

E(ll~I!) = O(k) 

E( 11~1! 2 ) = O(k
2

) 

For linear stochastic differential systems many investigators believe 

that the stability of moments of a certain order implies the stability 

of all lower order moments [9]. A discussion of the extent to which 

this is true will appear elsewhere. For stochastic difference systems~ 

the stability of moments of a certain order need not imply the stability 

of lower order moments. However, it can be shown that the stability of 

moments of a certain even ~rder implies the stability of all lower even 

order moments. 

Example 2 

:'.Consider system (3) with sample space Q='{wpro2} . Suppose that 

for all k. It is easy to check that 
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Hence although the third order moments are asymptotically stable, the 

.second order moments grow without bound . 

. A discussion of the stabi 1 ity of some specific stochastic differ

ence systems is contained in [10]. All results of this chapter can be 

extended to complex stochastic difference systems at the expense of 

increased mathematical complexity. 
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Chapter 3 

STOCHASTIC STABILITY OF NONLINEAR SYSTEMS 

All real physical systems are nonlinear. Linear behavior of a 

system can only be expected over a limited range. In order to describe 

the response of control systems with accuracy, a study of the stochastic 

stability of nonlinear systems is essential. The nonlinear system (1) 

can, with an appropriate choice of the nonlinear correction term 

f(~,n), serve as a realistic model for many real life sampled data con

trol systems. We assume that the linearized system (3) corresponding to 

(1) is stable, and we would like to know how the nonlinear term .f.(x,n) 

can affect the stability of the system. A survey of the present discus-

" sion is contained in [11]. 

3.1 STABILITY IN FIRST MEAN 

Since first mean stability is one of the most commonly examined 

stability definitions, we shall establish in this section criteria for 

the stability in first mean of system (1). The following auxiliary 

results will be needed. 

Lemma 7 

Let e(i) and ~(i) be two nonnegative sequences and p(i) be a 

positive sequence satisfying 

n-1 
e(n) ~ p(n){C + I ~(i) B(i}] 

i=O 

for some C > 0 and for n ~ 0. Then with the customary notation that 
n 
TI B(i) = l form> n, the following inequalities hold 

i=m 

(52) 
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n-1 
e ( n ) .:s_ Cp ( n ) II ( 1 + ip ( i) ) 

i=O 

for all n if p(i) are bounded above by 1 

n n-1 
(b) e(n) .:s.. C( II p(i))( II (1 +ip{i))) 

i=O i=O 

for a 11 n if p ( i) are bounded below by 1. 

Proof 

If 0 < p(i) ~ 1, then from (52) 

{53) 

(54} 

() n-1 n-1 (') 
~ < c + I ip(i)e(i)~ c + l w(i) ~~ (55) 
p \II J - i =O i =O p \ 1 I 

Hence 

1 + 
l/J(n) e(n) 

P1JiI ~ 1 + lfJ(n} 
n-1 (.) 

C+ l ip{i) e ~ 
i=O PCTT 

giving 

c + I w c; > ~ p ~ .:s.. o + w c n > )( c + "r, w c n ° f g > 
i=O P 1 i=O P 

-

By iteration 

n (') n e(O) 
C + i~O ip(i) ~(~) .:S.. i~l (1 +ip(i))(C+ip(O) pm) 

But from (52) 

e(O) .:s_ Cp(O) 

yielding 
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n-1 . n-1 
e(n) .~ p(n)(C + i~O iji(i) ~f n) ~ Cp(n) i~O (1 +ip(i)) 

If p (i) ~ 1 , then from ( 52) 

giving 

n 

____ e_._( n_,_) ____ ~ 
1 n-1 

p(n)(C + l ip(i) e(i)) 
i=O 

c + l ip(i) e(i) 
i=O ~ 1 + __ ip'-'(,_n-'-) _e_,_( n-=-) ___ _ 

n-1 n-1 
p(n)(C + l ip(i) e(i)) 

i=O 
p(n)(C + l ip(i) e(i)) 

i=O 

~ 1 + ip(n) 

Hence 

n n-1 
c + J.. ip(i) e(i) ~ (l+ip(n)) p(n)(C + l ip(i) e(i)) 

i=O i=O 

By iteration 

n n , n 
c + }_ ip ( i) e ( i) ~ ( II (1 + ip ( i) ) )( c + ip ( o) e ( o ))( II p ( ; ) ) 

i=O i=l i=l 

But from (52) 

8(0) ~ C p(O) 

giving 

C + ip(O) e (0) ~ C(l + p(O) ip(O)) ~ C p(O)(l + ip(O)) 

Thus 
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n- l n-1 n-1 

e(n) :5_ p(n)(C+ l w(i)e(i)) ~C( TI p(i))( II (l +w(i)) 
i=O i=O i=O 

The proof is therefore complete. 

We consider Lemma 7 to be a generalization of the discrete form of 

the classical Bellman-Gronwall lemma [12]. 

Lemma 8 

If ai ~ 0 for all i, then the product 

n 
TI (l+a.) 

i=l 1 
(56) 

and the series 

(57) 

converge or diverge together. 

Proof 

See [13]. 

The following assertion has been established [3]. 

Theorem 4 

Given the stochastic difference system (l); if 

(i) The corresponding homogeneous system (3) is strongly first mean 

asymptotically stable and the solutions approach zero sufficiently 

fast; 

{ii} f(~,n) satisfies the nonlinearity condition: there exists a 

sufficiently small. constant L such that 

E( llf(~,n) II} ~LE( 11~11 J for all n 

then the system (41) is first mean asymptotically stable. 

(58) 
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Proof 

The solution of (1) can be written as 

n-1 n-1 n-1 
x = TI A.x + l ( TI A.) f(x.,i) 
-:-n . 0 J-0 . 0 . . +l J - -l . J= l= J=l 

(59) 

for all n. Recalling (16) and assuming that the decay is at least 

geometric in condition (i), so that 

m > n (60) 

where C is a constant and 0 < o < 1. Without loss of generality, we 

assume that C ~ l. By (59) and (60), we have 

n-1 . 
E(il~ II) 5- ConE( 11~0 11) + Jo Con-i- l LE( 11xi11) (61) 

" 

for all n. Notice that we have used the relations 

since P(w) and A0,A1,A2,···,An-l are independent. Multiplying both sides 

of (61) by o-n and applying Lerrma 7 with p(i) = 1, 

n-1 
E( 11~1!) o-n ~CE(ll~ll> TI (l + ~c) for all n 

i=O 

yielding 

for all n 

If L is sufficiently small, then 

(64) 

(65) 
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o + LC < 1 

and so 

lim(o+LC)n=O 
n+oo 

Hence 

as n -+ 00 

proving first mean asymptotic stability. 

At this point we.would like to interpret physically condition (ii) 

of Theorem 4. In most real-life sampled data control systems, the 

inherent nonlinearity is such that within the normal operating range 

the nonlinear term f(~,n) generally decreases in magnitude as~ 

decreases in magnitude. This fact is reflected in condition (ii), which 

is typical cone condition. It means that the expected value of the norm 

of the nonlinear term must lie within a half cone whose apex angle 

depends on L. 

Now we have shown that under a certain realistic assumption on the 

nonlinear term f(~,n) the asymptotic stability of (1) can be deduced 

from the strongly asymptotic stability of the corresponding linearized 

system (3). Suppose the homogeneous system (3) is only strongly pth 

mean stable (15), we would like to know the kind of assumption that we 

can impose on f(~,n) to make the nonlinear system (1) pth mean stable. 

We shall find that a variable cone condition is sufficient [3]. The 

following result has been obtained. 

Theorem 5 

Given the stochastic difference system {l); if 
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(i) The corresponding homogeneous system (3) is strongly first mean 

stable; 

(ii) f.(~,n) satisfies the following nonlinearity condition: for every 

n there exists a nonnegative number B(n) such that 

E( llf(~ .• nlll) ~ B(n) E( 11~11) (66} 

n 
then the system (l) is first mean stable if the series l B{i) 

i=.0 
converges. 

Proof 

The solution of (1) is as given by (59) 

n-1 n-1 n-1 
x ~ IT A.x + l (TI A.) f(x.,i) 
-n j=O J-O i,,;O j=i+l J --l 

• 

By (15), it follows that 

Applying Lemma 7 
n-1 

E(ll~!I) ~CE( 11~11) _II {l +CB(i)) 
i=O 

(67} 

for all n~ Since l B(i) < 00 , it follows by using Lemma 8 that the 
i=O 

system (1) is first mean stable. 

Example 3 

Consider system (1) with n = {w
1

.w
2

,w
3

} and arbitrarily specified 

P(w; ), i = 1,2,3. Let 



Ak(w2) :::; 

Ak (w3) = 

- M f(~,n) - 2n2 

where M is a constant and 

Let 
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li ;) 

u -n 
for all k 

be the simple absolute value norm. Then for the matrix 

the natural norm induced by (70) is the maximum absolute column sum 

(68) 

(69) 

(70) 

(71) 

Using these norms, it is easy to see that the linearized system in the 

present case is strongly first mean asymptotically stable and that (60) 

is satisfied. Moreover, 
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-x4 
llf(~,n)ll :s.-M2 (lx1! l~x~ e kl+ 11~11> 

2n 

:s. -;-11~11 
n 

where we have made use of the fact that for nonnegative real number x 

l x2 e-x < 1 
2 -

Thus f.(~,n) satisfies the nonlinearity condition (58) when n is 

sufficiently large. If the nonlinearity condition holds when n.?.. N. 

then by shifting index the vector~ can be taken as the initial state. 

Hence the nonlinear system in this example is first mean asymptotically 

stable, as can be checked by direct calculations. It follows that the 

system is also stable in probability. 

3.2 GENERAL CONSIDERATIONS 

Naturally, we would like to extend the results of the previous sec

tion. Specifically, we would like to generalize Theorem 4 to arbitrary 

p. By Lemma 3 any such generalization is expected to introduce more 

restrictive assumptions. If a system is pth mean stable, then evidently 

the greater the value of p, the more moderate the behavior of the 

samples of the system becomes, and at the same time the output process 

is squeezed more and more. The following generalization has been estab-

lished. 
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Theorem 6 

Given the stochastic difference system (1) and any 0 < p < 00 ; if 

(i) the corr~sponding linearized system (3) is strongly pth mean asymp

totically stable, and the solutions converge in pth mean to zero 

sufficiently fast; 

{ii) f(~,n) satisfies the nonlinearity condition: there exist an inte

ger N and a sufficiently small constant L such that 

n > N 

(72) 

then the system (1) is pth mean asymptotically stable. 

Let us first explain the conditions of Theorem 6. In condition 

(i) we require that (16) be satisfied. To specify the rate of conver-

gence to zero, it is required that the solutions of the strongly stable 

linearized system (3) satisfy 

(73) 

- 1 
(l •• - 0(-) 
lJ .p i .?.. 1 , i>j.?_O (74) 

l 

where 0 < o < 1 . Since a .. need only be defined for 0 ~ j < i, one easy 
lJ 

way to check (74) in practical calculations is to show that the double 

sequence aij can be dominated in the following way 

a, .. < ca. lJ - µ, 
1 s. = 0(--) 

l i p . 

(75) 
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where C is a ~onstant. Condition (ii) means that the pth mean of the 

nonli.near term )ies within a cone whose apex angle is_determined by L. 

Proof of Theorem 6 

First assume that N = 0 in {72). The general solution of (1) can 

be written as 

n-1 
x = B~ + \ B.+l f(x.,i) '-'fl v v .l 1 - -1 

1=0 
(76) 

n-1 
for all n ~ 0, and B. = IT A.. Hence 

1 j=l J 

~ (n+l)P (max(llB0~ll, llBi+l f(x;~nll>P 
O<i<n-1 -

for all n. As previously explained, 

Using (72), (75L (78), and (79) 

E(llx lip)~ (n+l)P{a onE(llx !IP)+ nf Lan i+lon-i-lE(l!x;llP)} 
-n n,o -o i=O ' . 

Now 
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0 <M-1 · n_>l µn - p ' 
n 

Without 1 oss O·f' genera 1 i ty, we can choose the constant M such that 

MC ~ 1 

It follows that 

for n .'.'.'... 1. Define a sequence p(i) ~ l by 

' i ~ 1 

p ( i) = 
i = 0 

Using (81), we have 

for all n ~ 0. Multiplying both sides of {82) by o-n and applying Lemma 

7, 

for al 1 n .'.'.'... 0, or 

for all n > 0. If L is sufficiently small, then 

o + MC L = y < l 

Thus 
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. n 

E(li~l!p) ~MC E(l!x lip) II (1 + J.)Pyn 
' -0 j=l J 

n. Although ~ (l + J.)P is a divergent infinite product, 
. j=l J 

for all 
n 

product TI [ (l +.J.)P y ] converges to zero (or diverges to zero. 
j=l 

terminology, cf. 
J 

[13]). To see this, choose 0 < s < l such that 

There exist an integer N and 0 < t < 1 such that n > N implies 

Thus 

n n 
IT [(l + J.)Py] < TI [(l + J.)s]P 

j=l J j=} J 

N n 
= TI [(l + J.)s]P IT [(l + ~)E]P 

j=l J j=N+l J 

N 
< tn-N IT [(l + J.)s]P 

j=l J 

implying 

Hence 

n 
l im IT 
n+oo j=l 

(83) 

the 

For 

(84) 

lim E( !Ix l!P) = 0 (85) 
-n ' n+oo 

proving pth mean asymptotic stability for N= 0. If N 2:. l, then by the 

assumption 
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for 0 .$.. n < N~ we can shift index and take ~ as the initial vector by 

using the transformation 

.Y.f< = 2*+N 

or we may apply the previous analysis directly to 

n+N-1 n+N-1 n+N-1 
x +N = II A·~ + l ( II A.) f(~., i) , n ~ 0 (86) 
-n j=N J . i=N j=i+N+l J 1 

This completes the proof. 

We have mentioned that the cone condition is a realistic condition. 

In our previous analysis we required the apex angle as determined by L 

to be small. This restriction should be removed if our results are to 

be of practical use. We shall establish that if, instead of a decay as 

described by (73,74), the following inequalities are satisfied: 

(87) 

a . . (p) < f:Lt. 
lJ - 1 J 

(88) 

where Bi and tj are positive sequences satisfying 

l t. < 00 

J 
j 

1 
B; = 0 (- ) 

(i+l)P 

(89) 

then the apex angle of the cone as determined by l in condition (ii) can 

be arbitrarily enlarged and the vertex of the same cone can be freely 

translated along the horizontal axis. If E( II An lip) = 0(1/nP} and p > l, 
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then (87)-(89} obviously hold. 

Theorem 7 

Given the stochastic difference system (1) and any 0 < p < 00 ; if 

{i) The corresponding homogeneous system {3) is strongly pth mean 

asymptotically stable and the solutions converge in pth mean to 
. 

zero with a rate, for example, exceeding that in (87)-(89); 

{ii) f(~.n} satisfies the nonlinearity condition: there exist an integer 

N and arbitrary constants L
1

,L2 such that 

E( llf(!~n} l!P) ~ L1 + L2(E( ll_~J!P} , n > N 

(90) 

E( llf(~,n) jjP) < 00 

then the system (1) is pth mean asymptotically stable. 

Proof 

We can assume without loss of generality that N= 0 in (90). It is 

easily seen that (77) holds in the present case 

n-1 
ll!nllp ~ (n+l)P{lls x !IP+ 'I llB·+i llP llf(x;,k)l!P}-

o-o i=O . 1 

for all n ~ 0. Using (87)-(90), 

Let 

~ ti+l = n 
l 

By (89), we can choose a constant K < 1, satisfying 

K < t 
0 

n ~ l 
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It follows from (91) that 

Define a sequence 0 < p{i) ~ l by 

. lK(i+l)P 8. 
p(i)= l 

l 

i > l 

i = 0 

for all n 2:. 0, where s = n/K. Applying Lemma 7 

Si nee 

? ti+l = n < oo 
l 

the infinite product 

oo L2t·+1 
II (1 + 1 

) 
i=O K 

is- bounded by Lemma 8. But 

lim p(n) = 0 
n-+oo 

Hence 

proving pth mean asymptotic stability. 

(92) 
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It is ,surprising to find that (87)-(89) are strong enough to 

·allow for a 11 projection vector 11 type or a "combination cone" nonlinear-. -

ity condition in f(~,n). The following generalization of Theorem 7 is 

useful in practical calculations. 

Theorem 8 

The assertion of Theorem 7 holds if condition (ii) is replaced 

by (ii)1 f(~,n) satifies the following nonlinearity condition: There 

exist an integer N,r real numbers 0 < p1 ,p2,···,pr ~ p, and r+l con

stants L,L1,L2,···,Lr such that 

Proof 

Hence 

. r p. 
E(llf.(~,n)!IP)~L+ l LiE(l!~ll 1) , n>N 

i=l 

As before, assume N = 0 in {95). For 0 < P; :::_ p 

p. 
ll~ll 1 ~ l +ll~llP l=l,2,···,r 

and this is condition (ii) of Theorem 7. The result follows. 

A generalization of Theorem 5 is the following statement .. 

Theorem 9 

(95} 

Given the stochastic difference system (1) and any O<p < 00 ; if 

(i) The corresponding linearized system (3) is strongly pth mean 

stable; 
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(ii) f(~,n) satisfies the following nonlinearity condition: for 

every n there exists a nonnegative number B(n) such that 

and B(n) can be dominated by 

(97) 

B(n) ~ Sntn . (98) 

n-1 
in such a way that the sequence s(n) = nP l 13. is bounded and 

n-1 i=O 1 

Proof 

the series l t: converges, then the system (1) is pth mean 
. 0 1 1= 

stable. 

The general solution of system (l) is given by (76) 

n-1 
x = Bx + l B.+l f(x.,i) -n o-o i=O l --1 

n-1 
for all n, with B. = TI A.. Hence 

1 j=l J 

n-1 
II~ II P < II B ~ II p + n P . l II Bi + 1 f (~i , i ) II P 

1=0 

for all n ~ 0. Using (15), (97), and (98) 

(99) 

n-1 n-1 
~CE(!lx !Ip)+ CnP l 13. l t.E(!lx

1
.l!p) (100) 

-o ·01-01 1= 1= 

Since the monotonic sequence 
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n-1 
s(n) :;; nP l s . 

. 0 l i= 

is bounded, there exists a constant K such that 

s(n) ~ K 

for all n. Applying Lerrma 7, with p(i) ~ 1, 

n-1 
E(llx llp)~CE(l!~llp) TI (l+CKt.) -n v • 0 l 1= 

00 

{101) 

for all n. Since 2 t. < 00 , it follows from Lerrma 8 that the system is 
. 0 l 1= 

pth mean stable. The proof is complete. 

Example 4 

Consider system (l) ~ith Q ~ {w
1

,w
2

} and arbitrarily specified 

P(w1). i=l,2. Let 

for all k 

{102) 

where A,B,C are constants, ~E1R2 is defined by (69). Using the norms 

in (70), (71), it can be readily checked that the linearized system is 

strongly second mean asymptotically stable and that (87)-(89) are 
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satisfied. Clearly 

E{ llf{~_,n) 11 2
) S.. E(( !Al+ !Bl 11.~JI + IC! 11~11 516 )?) 

= A2+ B2 E{ 11~112) + c2 E(!lxJl5/3) 

+2IABI ECll~ll> + 21sc1 E(il~ll 1116 > {103) 

Hence by Theorem 8 the nonlinear system in this example is second mean 

asymptotically stable. It follows that the system is also pth. mean 

asymptotically stable for p s. 2. 

Criteria for the mean stability of some special systems can be 

found in [3]. 
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Chapter 4 

DIRECTIONS FOR FURTHER RESEARCH 

In previous ~hapters the stability of 1 inear and nonlinear stochas

tic difference systems has been investigated. Since the theory of differ-

ence equations. has not been adequately developed, many problems on discrete 

systems still await solution. We shall discuss in this chapter a number of 

unsolved or partially solved problems on the stability of stoch~stic systems. 

4.1 STABILITY OF STOCHASTIC TRANSFORMATIONS 

Consider a stochastic point mapping of the form 

k~O (l 04) 

where the state vector ~i:="lRn for all k, and {ft}k=O constitutes a sequence 

of independent stochastic transformations having a common underlying sample 

space n. By this we mean that for each w t; n and each k, ft[w] is a deter

ministic recurrent operator defined on a domain in lRn. We assume for gener-

ality that the initial state~ is excited by a noise process P(w), wt: n1, 

which is statistically independent of the ft· Equation (104) plays a 

prqminent role in stochastic control, crystal lattice dynamics, pharmaco

kinetics, mathematical economics and biomathematics. It also represents the 

discrete version of a class of stochastic differential equations which are 

of great physical importance, and whose solution behavior is not at all 

well understood. The stochastic equation {104) was first considered by 

Bellman [14,15], where he derived the asymptotic behavior of E(ft) for large 

k when ft are analytic and have a common Bernoulli distribution, and when 
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the Abel-Schroder functional relation can be applied to ii<· The question 

is hqw the stability of (104) can be investigated in ~he general case. 

An equilibrium point.! of (104) is a double point [16] satisfying 

(105) 
(' 

for all k ana for all W€ n. Let~ be a double point of (104). Provided 

all second-order partial derivatives of fk exist in a neighborhood of£!_, 

equation (104) can be written as 

(106) 

34 2 where Ak =ax x=a and R2 (~) = O(~ ). The linear operator Ak is a nxn 

stochastic matrix, the elements of which are stochastic variables. From 

{106) it is obvious that we can always assume,by a translation of the 

coordinate system~ that the origin is an equilibrium point. It can now 

be seen that all definitions and properties established in Chapter l. 

apply to the stochastic transformation (104). We have recently investi

gated the stability [17] of the transformation (104). For the linear 

transformation the investigation is essentially equivalent to that pre

sented in _Chapter 2. For the nonlinear case we have established that 

the stochastic transformation {104) is pth mean asymptotically stable if 

the corresponding linearized transformation is strongly pth mean asymp

totically stable and the solutions of which converge in pth mean to zero 

sufficiently fast. 

The control and stability analysis of the general implicit stochas-

tic transformation 
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(107) 

remains an open p~oblem. The nonautonomous stochastic transformation 

corresponding to (104) has not been fully investigated [17]. The 

general stabtlity analysis of stochastic transformations possessing a 

more complicated form has not been attempted [15], a 1 though transforma

tions with certain specific properties have been considered [l~]. 

Before concluding this section we would like to mention the problem of 

studying the behavior of various functions of (104), such as the deter-

minant or the characteristic roots of the linear transformation. For a 

discussion of this problem, see [19,20]. For some problems involving 

linear stochastic transformations arising from physics, see [21,22]. 
t 

4.2 STOCHASTIC LIAPUNOV FUNCTIONS 

The stability analysis of nonlinear stochastic transformations 

can often be facilitated by using discrete analogues of differential 

inequalities [17,23]. However, this method becomes involved for trans

formations assuming complicated structures. Naturally, we would like 

to know whether the direct method of Liapunov [24~25] can be used in 

(104) or (107). This gives rise to the idea of a stochastic Liapunov 

function. Let us consider the following linear stochastic transforma-

ti on 

~+l = A(w) ~ 

(108) 

Suppose there exists a positive definite stochastic matrix P, such that 
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AT (w) P(w) A(w) - P(w) = -Q(w) (109} 

where Q(w} is positive definite for every wen. Then using the positive 

definite function 

(110) 

we have 

= (Ax ) T P(Ax ) - x T P x -n -n -n -n 

whenever ~ 1 0. Hence 

as n -+ oo 

and the transformation is asymptotically stable at~= 0 [12,26]. The 

function constructed in (110) is called a stochastic Liapunov function, 

with a probability structure induced by A. It is clear that the idea 

of employing stochastic Liapunov functions can be generalized. The 

problem has not been previously studied. Of obvious interest is the 

probability structure of stochastic Liapunov functions. We would also 

like to know how stochastic Liapunov functions can be constructed [27, 

28]. A report on this investigation will appear elsewhere. 

It should be noted that the term stochastic Liapunov function has 

been used in some recent works to mean a different thing [29,30], as we 

now explain. Given the Ito differential equation [31,32] 

dx = ~( t,x )dt + Q( t,~)d.?_ (111) 
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where ~' ~ e IRn, Q. is a n x n matrix, and z is a vector of independent 

Brownian processes, with E(dz.dz.) = 6 . . dt, define 
1 J lJ 

B .. (t,x) 
lJ -

(112) 

(113) 

Then a positive definite function V{~) may be called d stochastic 

Liapunov function if LV(~) ~ 0 in a certain region. Thus V(~) defined 

in this way is a deterministic function, its study is part of the theory 

of partial differential equations [33,34]. An interesting question is 

the possibility of employing the s tochas tic Li apunov functions as 

defined by us to treat Ito differential equations. ,, 

4.3 pISCRETIZATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 

Various special methods have been devised for the study of the 

stability of stochastic differential equations [35,36]. We would like 

to have methods that can be applied to large classes of stochastic dif

ferential equations. For linear stochastic systems excited by additive 

or multiplicative co1ored noise, the corresponding differential equation 

may be discretized and the stability of the resulting stochastic dif

ference equation investigated. It can be shown that if the point 00 is 

an ordinary or a regular singular point, then the leading behaviors of 

solutions to the difference equation and its differential equation 

analogue are the same [37,38]. Hence the stability theory of difference 

equations as developed by us may contribute to the stability analysis of 

stochastic differential equations. For nonlinear systems, the previous 
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method applies when there is a nonlinear transformation reducing either 

. _the differential or difference equation to linear form. Work along 

this line is in progress. 

We would like to point out that in the literature a complicated 

stochastic differential equation Rx = 0 is usually studied by approxi

mating it by· a manageable simple equation Sx = 0 for which llR- Sil ·is 

small [24,39]. This approach is hampered by the lack of efficient sys

tematic methods for constructing the mapping S. Our approach focuses 

on the correspondence relationships between differential and difference 

equations and can be easily applied in real calculations. However, our 

present approach requires modification when applied to Ito differential 

equation (111), for in this case the solutions of the difference equa- · 

tion obtained by discretization do not in general converge to the solu

tions of the diffefential equation [40,41]. This is because Ito calculus 

is a self-consistent theory and is not an extension or limit of ordinary 

calculus [40,42]. One approximate technique for the solution of the 

stochastic differential equation (111) is the iterative or the numerical 

solution of the associated Fokker-Planck equation [32,43]. This belongs 

~o the theory of partial differential equations. For a discussion of 

various approximate methods, see [32]. 
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