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ABSTRACT

A kinetic model of spatial processes in a nuclear power reactor
is formulated according to the state space approach. The model is
very general, and may include the spatial effects of control rods,
temperature, and almost any other deterministic spatial process that
can be described by a finite set of partial differential equations. It is
noted that any locally unstable process may induce a spatial instability,
and that a spatial instability will occur only if a local process is
unstable. The concept of a temperature coefficient of reactivity is
extended to include spatial variations. A linearization about an
operating point is performed, and the resulting linear equations are
solved by using a non-interacting modal expansion. Some properties
of this type of mode and applications to other physical processes are
discussed. It is shown that non-interacting modes exist whenever
any other modal expansion exists. An efficient computational pro-
cedure for exact numecrical solution for the non-interacting modes
is given in the case of spatial separability. Simple linear stability
estimates for spatial processes are formed by variational techniques
which permit evaluation of the effects of spatially varying parameters
upon stability. A theorem presents mathematical proof of the linear
controllability of any finite number of modes by very few control rods.
The circumstances under which an infinite number of modes can be

controlled are discussed. Finally, methods of optimal feedback
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control are used for the analytical design of a spatial control
system for minimum integrated quadratic loss, and detailed

examples are given.



..-v._

TABLE OF CONTENTS

Chapter Title ‘ Page
I INTRODUC TION 1
I THE REACTOR KINETIC STATE EQUATIONS 14

III THE LINEARIZED STATE EQUATIONS : 30
v TWO METHODS OF SOLUTION OF THE - 43
LINEARIZED STATE EQUATION
\% METHODS OF SOLUTION OF THE KAPLAN 58
- MODES
VI A METHOD OF ESTIMATING THE EFFECTS 64
OF SPATIAL VARIATION ON STABILITY
VII ANALYTICAL DESIGN OF A SPATIAL 73
FEEDBACK CONTROL SYSTEM
VIII EXAMPLES 92
X CONCLTUSIONS AND SUGGESTED FURTHER 133
WORK
APPENDICES 139
A. NOTATION 139
B. PROOF OF THE VALIDITY OF THE 144
SCALAR REPRESENTATION
PROOF OF CONTROLLABILITY 147
D. FORTRAN IV PROGRAMS USED IN 156

THE EXAMPLES

BIBLIOGRAPHY 167



CHAPTER I

INTRODUCTION

»

The specific problem studied here is the oscillation of the
power density in a nuclear reactor, such that a ""hot spot" moves
from one region to another and back again in the course of time.

This is illustrated in Fig. I.1. The reactor kinetic processes will
be investigated mathematically with the goal of the thesis in mind;
namely, to develop a method of controlling these oscillations with a
feedback system.

The oscillations are due in part to the fission product Xe135,
The mathematical formulation of the problem can be generalized to
include other effects, in addition to the xenon process. However,
for clarity and utility, only the xenon problcm will be fully analyzed,
with many extensions indicated in the development.

The xenon process involves the decay chain that starts with the
fission of the reactor fuel and results in the production of X6135.
This decay chain is illustrated in Fig. I. 2 for the case in which the
fuel is U235. ()

Thermal fission yields of this decay chain, for some different

(2)

reactor fuels, are summarized in Table I. L
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TABLE 1.1

(2)

Xenon Yields from Different Fuels

*

2
Fissioning nuclide U233 U235 Pu 39

Avg. yield of Tel35 (atoms/fission) 0.051 0.061 0,055

Avg. yield of Xel35 (atoms/fission) -- 0.003 --

The Point Reactor Model

To examine the effect of this decay chain, first consider a
point reactor model. A point reactor model represents the reactor
as a single point in space by using average spatial values of the
variables. Therefore, the average flux, the average xenon concen-
tration, and the average iodine concentration are functions of time
only in this case.

For a xenon unstable point reactor, an initial perturbation in the
flux grows with time. Consider a reactor that has been operating at
a steady state value of the flux for a long time. A steady state con-
centration of Xe135 is formed, because, if the flux is constant in
time, then the rate of Xeljb born by decay from Iljb and directly
from fission is equal to the rate of Xel35 that is both decaying to

136
Ce135 and transmuting to Xe' . If a perturbation causes the flux to

. . . 135 .
increase slightly above its steady state value, Xe 3 will transmute

13 ] .
to Xe 6 at a faster rate. This means that the concentration of
135

Xe will begin to decrease. The thermal neutron capture cross-

section of Xe135 is as high as 3 x lO6 barns, whereas the cross-

(3)

gsection of Xe136 is less than five barns. Therefore, the



composite absorption cross-section will decrease. Because the
absorption will be less, the birth rate of neutrons will exceed the
death rate. The cyclic nature of a nuclear reactor, therefore, will
produce more neutrons, and these second generation neutrons will
transmute even more Xe135. In this manner, the initial flux pertur-
bation will grow with time.

(4,5, 6)

According to the literature, a point reactor can become
unstable only if the steady state value of the flux is higher than a
certain threshold value. This threshold value depends on the
parameters of the particular reactor. However, Schultz(s) indicates
that, for UZ35 fueled reactors, '"oscillations are not possible for
fluxes below 3 x 10“11 neutrons/cm2-sec. 1 Below this threshold, the
stabilizing effect of the direct xenon yield fromfission is more
important than the destabilizing effect of the xenon decaying from

iodine. Therefore, a high operating flux level is a necessary

condition for a possible instability in a point reactor.

Spatial Effects

In a point reactor, the flux is controlled by the control rods.
Even if the point reactor were unstable, the whole plant would be
stable and capable of maintaining a steady state flux by adjustment
of the rods because of the slow time constants involved in the xenon
process. Thus, if a reactor can be considered as a point reactor,
the instability due to xenon can be controlled by conventional

techniques.



However, if the reactor has a spatial dimension many times the
migration length, it may not be considered as a point reactor. The
effects of a process occurring on onc ﬁside of a large reactor may not
influence processes on the other side to a great extent. A large
reactor may be considered to be made up of a number of point
reactors, coupled by the current of neutrons flowing between the
points. Spatial xenon oscillations can occur only if the reactor is too
large to be represented as a single spatial point.

To examine the spatial oscillation, the early paper (1957) of

(7)

Henry and Germann analyzed two coupled xenon unstable point
reactors, separated‘by a moderating material. This is illustrated
in Fig. L 3.

The flux is proportional to the power density in the regions 1
and 3 because the fission cross-section is constant in each region.
It is assumed that there is a control system keeping the total power
of all three regions a constant, although the flux, or power, in an
individual region is not constant.

A slight increase from equilibrium flux on one side gives rise
to the unstable xenon process described for a point reactor. The
control system keeps the total power level constant, forcing the flux
level on the other side down. This induces the reverse process on
the other side, where the flux level continually decreases. A steeper

tilt in the flux occure, being limited only by two effects. One limiting

effect is the transmutation or burn out of most of the xenon on the
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high flux side. The other limiting effect is a tilting steep enough to
create a flux gradient in region 2 sufficient to support a current

carrying all excess neutrons being produced on oue side to compensate

for the depletion on the other.

The flux remains in this tilted position for a number of hours.
Then the high flux side will have created a concentration of 1135 that
is considerably greater than the original concentration. Since the
decay constant of iodine to xenon is 6. 7 hours, more xenon will be
created, appearing after this delay period. Similarly, on the low
flux side, less xenon will be created. This reverses the flux tilt
eventually, and produces the side to side oscillation with a period of
from fifteen to thirty hours. Thus the xenon process tends to be

self limiting and produces the effect of a moving hot spot to the

reactor operator.

The History of the Problem

The history of the spatial oscillations due to the fission product
xenon is somewhat clouded by the security measures under which the
design and operation of the early reactors were conducted. The
problem was considered in the Savannah River reactor, and also in
the PWR at Shippingport. The first unclassified paper on the subject
(8)

appeared in 1956 by Ward, under Canadian print. Ward described

the problem, and performed an analysis to get a stability criterion.



(7)

The first U.S. papers were the one by Henry and Germann,

(9)

discussed on page 6, and one by Randall and St. John, which was

published about a year later. ‘

Randall and St. John extended Ward's paper to include different
reactor shapes, and showed that a simple stability criterion could be
formed from the amount of material buckling that must be added.

These papers were of a theoretical nature. The first experi-

(10)

mental report was that of Simpson and Rickover, appearing in
1958, telling of the spatial oscillations of the PWR. They reported
that the reactor operators could satisfactorily correct the oscillation
by moving the shim rods.

These early studies triggered a relative torrent of papers.(ll)'(ém}
As it was concluded that the oscillations should not be allowed to
build up in the reactor, most of the authors studied the conditions
under which oscillations might occur. In general, these conditions
are large physical size and high flux levels, which now are in the

range of present-day design specifications for power reactors that

will be built in the very near future.

The Advantages of Feedback Control and Statement of the Problem

If a future reactor were to have a xenon oscillation, the heat
generated in the hot spot could very possibly damage the reactor.
Flux amplitudes as high as 170% of the steady state are possible. (43)
Most designers presently try to design the reactor in such a manner

that it is inherently stable. Usually, this is at the cost of some other

design parameter, such as efficiency. This is the reason for a
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general statement, appearing in Randall and St. John's paper:(g)
1]t would be more economical in almost any case to

design for the detection and control of incipient
oscillations than to design around them altogether.

(31)

Beckjord(zz) and Fullmer show that local control by the

reactor operators can indeed damp out the oscillations by adjusting

(13

the shim rods, and Beckjord experimentally verifies this.
However, simply inserting a local rod into the hot spot may not be
the most efficient way of damping the oscillation. This procedure
has been likened to squeezing a balloon, in that if the hot spot is
corrected in one place, it often pops up somewhere else. Further-
more, even slightly stable reactors can have a very bad transient
response, such that it takes quite a while for the oscillation to die
out. For these reasons, operator control alone may not be
satisfactory, and study of automatic feedback control should be
considered. Indeed, one can consider the operators as being a
possible link in the feedback control.

It is the purpose of this thesis to study automatic feedback
control of the spatial neutron distribution in a reactor. The problem
is to find the feedback control laws governing a number of shim rods
located spatially in the reactor, and to find the best number and
positioning of these rods to give a satisfactory response so as to

damp out xenon oscillations.
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This proposed control system would have other beneficial
effects. Firstly, such a control system would aid in controlling
the long term changes in a reactor, e.g., making fuel burn out in
a more uniform manner. Secondly, any spatial change in the flux
due to a change in coolant flow would be smoothed out. Finally,
any other spatially unstable process may be controlled also.

It should be noted that spatial oscillations may occur in any
reactor in which any point, or local, unstable process is possible.
There are other locally unstable processes, in addition to the xenon
decay chain. Samarium-149 has a similar decay chain, but since its

(2) (3)

are not as great as Xe135, the effect is
239

not quite as bad. The increase of fission cross-section of Pu

(3)

yield and cross-section

with increasing temperatures in a certain range give it a positive
temperature coefficient. Many other processes can also give rise to
a positive temperatur e coefficient, which leads to a local instability.
A slight increase in flux will increase the temperature, which in
turn increases the reactivity, thus giving rise to an instability. The
analyses of these other locally unstable processes can be carried out
in a manner similar to that used in analyzing the effect of xenon, and
an increase in calculational complexity would be the only result of
their inclusion in the presentation. Therefore, simply the xenon
process will be considered in further analysis.

The advantages of the study of a method of controlling the
spatial distribution of the flux have been enumerated. However, it

must also be kept in mind that this is an initial study of the feedback
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problem for a general reactor, and as such should not be taken as
giving a cook book approach to the design of the system. Rather than
evolving a step by step procedure for ;1 specific design, the aim is

to examine the properties of the mathematical description of a general
reactor, and to find out the quantities of interest. Many simplifying
assumptions are made, and where these assumptions are unjustified,
the final form of the control laws will be affected.

In order to simplify the problem from the beginning, one major
assumption is made. It will be assumed that the value of the neutron
flux is known, by means of detection or perfect estimation, at all
times and at all spatial points of the reactor. This assumption
introduces errors of the order of magnitude of the estimation error in
an imperfectly monitored reactor if the estimation is unbiased. Any
results derived under the assumption of perfect estimation must be
checked against the actual system used.

This assumption permits the analysis to be free of the actual
devices used for detection. Any means of estimating flux in the
reactor can be used, from spatially located neutron detectors to a
highly complex calculation on a digital computer using inferential
data. The results found from this analysis with perfect estimation
will then show the best possible response, and the response using an
imperfect estimator can be compared. The feedback system is only
as good as the data it rcceives describing the controlled reactor.

To summarize, the problem may be stated in the following

manner: given the flux distribution as a function of r and t, and a



13-

mathematical description of a general reactor, find the error signals
to be fed back to each one of N control rods located at points
Ty Toseee Top so as to give good response to transient spatial

phenomena, and the xenon oscillation in particular.
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CHAPTER II

THE REACTOR KINETIC STATE EQUATIONS

The Multigroup Flux Equations

Before attempting the feedback control problem, a mathematical
investigation of the plant that is to be controlled must be undertaken.
The plant in this case is a power reactor in which the fuel is
statioriary. Most generally, the neutron balance in such a reactor
should be described by the Boltzmann, or transport theory, model.
The neutron flux variable is not only dependent on space and time,
but on neutron energy and direction of motion. However, in places
where there are no sharp gradients in the flux, the Boltzmann
equation may be adequately approximated by the multigroup diffusion
equations, which depend only on space and time. For a derivation
of the multigroup equations and their approximation to the Boltzmann
equation, especially in the consideration of appropriate boundary
conditions, see reference (45). The form of the equations may be
illustrated here, for one fast and one slow group and one group of

(29)

delayed neutrons:
0
L p —— ¢
10 v 0 3 §s>
00 1) |C

’[V- D, V| Zae + Z, [+ 1~ )0 2] B, 4[1-8)v 5424 M
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The boundary conditions are: §F’ $ 5’ DFVEF and DSV§S are
continuous at all region interfaces, and &, ES’ and C vanish
at the extrapolated boundaries. The functional dependencies of the
coefficients will be treated in this chapter. For a discussion of the
evaluation of the coefficients, see, for example, ref. (46).

Equation IL. | defines as state variables the elements of the
state vector, denoted as Z(r,t). Here, the state variables are
§ (r,t), E. ) and C(r, t). Therefore, the dimension of the
state vector for equation II. 1 is three, because there are three
elements in the vector Z. Knowledge of the three quantities for all
r and t is necessary and sufficient to describe the reactor to the
desired approximation. In addition to these three, more elements of
the state vector can be included for additional flux groups and
delayed neutron groups, and also for describing other processes
(temperature, Sm concentration, etc.). Note that II. 1is non-linear,
because the coefficients depend on the state vector, in addition to r

and t. The general form of II. 1, in matrix notation, is:

/6((’2' )-5‘?— Z(z f (Z,F (1L 2)

Here the script; is a vector operator, including operations in T
such as 7 , but excluding such operations in time. This is the
general formulation, since 7 may be of any dimension. A rigorous
discussion of the concept of a state variable is given in reference (47).
The state space formulation is given in a quite general form and

additional phenomena may be included by increasing the dimension
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of the state vector and adding more equations as rows of the matrix
state equation. The analysis is presented this way so that the
processes specifically considered her; do not restrict the generality
of the method of feedback control design. If the analytical treatment
of any process does not suit the reader, the state equation may be
altered and the method of design is still valid.

Furthermore, the generality of the state equation II 2 is such
that the equation is valid for a reactor with many regions. A '"region"
is a bounded volume of the reactor in which a coefficient of II. 2
suffers a step change on the interfaces. Inside a region, there are
no discontinuities. As was mentioned, the variables and their
currents are everywhere continuous in the reactor. Using this fact to
form boundary conditions at the edge of each region, the state
equation can be extended to cover reactors having a number of

regions,

The Effect of Control Rods

By dividing the reactor up into regions, a description of the
action of the control rods may be attempted. The control of the
reactor described by IL. 2 is accomplished by varying the positions of
region boundaries. Thus, in a region of the reactor in which the
control rods are present, the various cross-sections will he different
from those in regions with no control rods. Movement of the control
rods corresponds to movement of the region boundaries. The static
case of multiregion description of the control rods has been done by

(45, 49, 50)

H. L. Garabedian. This technique is popularly called the
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nwindow shade'' method.
Unfortunately, the diffusion equations are not valid near a
control rod. The large change in absérp’cion cross-section creates
a steep flux gradient, and then the diffusion equations are not as good
an approximation of the Boltzmann equation, as mentioned previously.
A pussible way of estimating the effect of the large change in
the absorption cross-section is by patching up the multi-group
equation by a change in the interface boundary conditions. Inonu(51)
has had considerable success doing this in the calculation of non-
escape probability for small reactors, and his ''first-flight" approxi-
mation might very well apply to control rod boundaries also.

At the interface, 3, it is possible the region boundary conditions

might be altered as in equations II. 3 and IL 4.

F(2-) =a &G (IL. 3)

D(a-)V& (a-) = ¢, D(ax)V& (a+) (I1. 4)

In these equations, the constants ¢ and « > could be found by experi-
ment or by first flight considerations. Admittedly, the application to
the description of a static control rod is mere speculation. However,
there is a very close analogy between a highly absorbant control rod
and the non-return of neutrons from a vacuum, the case discussed by
Inonu.

By theory or by direct measur ement, it is usually possible to

find the effect of a static control rod. For small movements of the
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control rod, the effect of the discontinuity will remain essentially
constant. It should then be possible to represent small static changes
in the control rod positions by small changes in the absorption cross-
sections, when the effect of the material discontinuity is known
originally.

In light of these considerations, it is probable that a moving
control rod may be expressed as a moving interface. Of course this
is quite difficult to handle analytically, and further approximations
must be made. The first approximation is that only X ag Will be
affected, because control rods have a large thermal absorption cross-
section compared to the rest of the reactor, but hardly affect the
othcr cross-scctions. The second approximation is that, for small
motions of a control rod, the thermal absorption cross-section may
be represented as

N
Zas(r,t) = Zaso(r) + Z un(t) S(r—rn) (I1. 5)
n=l
where i aso('f') is some mean value and un(t) is the strength of a
thermal absorption source or sink at the end, }'n , of the nth control
rod.

Equation II. 5 may be justified by a perturbation analysis about
the mean position of the considered motion of each control rod. At
the unperturbed, or mean, static positions of the control rods,

r,t) i 1t ¥, t). his is ill d i ig. II. .
Eas(r, } is equal to Zaso(r’ ). This is illustrated in Fig. II. 1(a)

Here, 2 aso(r,t) is equal to Zasl in region 1 and ZasZ in region 2,
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The cross-sections Zasl and zasZ may vary with position within
their respective regions, but for clarity they will be considered
constant since the extension to the non:constant case is obvious.
Therefore, in the mean position, u is equal to zero.

When the control rod is displaced from its mean position,
an absorption source or sink is created. If the rod is inserted
slightly, a source is created anc u is positive (see Fig. IL 1(b) ).
If the rod is removed slightly, a sink is created and u is negative
(see Fig. IL. l(c) ). Values of u  may be calculated by the perturbation

formulation II 6(32) for u << s aLV.

A
[ #0020 o SEm ) Tma

V1+V2

A 3 f" - -3
= |& () fasl Fmar+ JEMOZ 2 (Md’r (II. 6)
Vv A\

1 2

A more complex method of deter mining u_ may be used by
extending Inonu's method to this case. However, in most practical
cases experimental values probably should be used. Therefore,
under the assumptions mentioned, equation II. 5 represents the effect
of slightly moving the control rods in a reactor.

It has been shown that the value of un(t) depends on the position
of the control rod at time t. In general, u is not a linear function

of control rod position. However, it should be noted that some sort
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of gearing can make un(t) almost any function of a control signal,

and in particular ‘un(t) can be made a linear function of the control

signal.

The Xenon Process

In addition to the control rods, the xenon process affects the
time and space behavior of Eas' The thermal absorption cross-
section of Xe135 is very large compared to that of the other members
of the decay chain. Its other properties are similar, and therefore
simply considering changes in Z s is a good approximation. If
the control rods are at their mean position so that all u_= 0, then
Zas = zaso(?)' To calculate S aso(;)’ only the ''clean' reactor is
considered. Zaso(r’) lumps the thermal absorption cross-sections
of all the other atomic species in the reactor except Xel35 and Sn1149.

The contribution of Xel35 to the absorption cross-section is
readily found. Adding in the etfect of the concentration of xenon
atoms, NX, the total thermal absorption cross-section of the

reactor is given by II. 7 (with the control rods at their mean

pousitions).

Z,. =% Bt N (5, (IL. 7)

This is the effect of xenon on the absorption cross-section, and can
be related to the flux by inclusion in equation IL 1.

Equations for the effect of the flux on the xenon can also be

written. The rate of change of xenon concentration is equal to the



-22-

rate of birth of xenon from iodine decay and from fission, less the
rate of xenon decay to cesium and the rate of xenon burn off.

9N (r, t)
X
ot

AN E Dt 2, B E 0y Zpgn B EY

AN E Y- N E DR (I1. 8)

The rate of change of iodine concentration is equal to the rate of

birth from fission less the rate of decay to xenon.

N (T, t)
e SRS S JI X SRS RS> SRl JEIED W \N I B (A

Equations II. 7, II. 8, and II. 9 describe the xXenon process.
Quite similar equations can be developed for samarium, also.

Detailed derivation of both the xenon and samarium processes can

be found in reference (1), pages 330-333.

53 . . .

It has been shown( ) that consideration of the two decay chains
135 149 . . ; c s

of Xe and Sm ~ is a very good approximation to the total fission

product poisoning. Hence, the effects of most of the important

kinetic processes have been described, and the only other major

process to be analyzed is the temperature variation.

The Effect of Temperature

The effect of temperature in reactor kinetics is exceedingly
complex, and the effect may be quite different for different types of

reactors. Not only may the individual reactor cooling systems be



~23-

different, but the effect on the reactor nuclear properties may also
be of significance. A positive overall temperature coefficient of
reactivity may induce a reactor instability, whereas a large negative
overall coefficient may over-ride other destabilizing effects and

(55)

insure a stable reactor. Since the large reactors that are
candidates for spatial control may be considered as a number of
loosely coupled smaller reactors, each with its own effective
temperature and fission product internal feedback, it is apparent that
the spatial effects of temperature must be taken into account,

Very little work has been done on the kinetic spatial temperature

(€9)

distribution. Carnosa found that the spatial effect on the funda-

(40) found that the effect on the spatial

mental is considerable. Guppy
transfer functions was large in the Calder Hall type of reactor. Since
both of these references are recent, it seermns that spatial temperature
kinetic effects are of present research interest.

However, it is not the purpose of this thesis to attempt a
general formulation of the kinetic temperature spatial equations.
Any equations so found would be non-linear, and there is a possibility
that they could not be linearized even over a small range. However,
to indicate the effects of temperature variation on the properties, it
will be assumed that each coefficient in the state equations can be
expanded in a Taylor series about a mean temperature To(r) such
that the linear deviation term is sufficient to describe the temperature

effect in a neighborhood of the mean temperature. For example, the

macroscopic slow flux fission cross-section is assumed to be
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expressible in the form of II. 10.

#

9z
Zfs(r‘, T 2 (7T )+ (T-T )~ (7, T ) (IL. 10)

This is roughly equivalent to assuming a spatially varying
temperature coefficient of reactivity, and reduces to this when Z.a
is uniform. Although the partial derivatives of these spatially
varying coefficients have not been considered in the literature, it
will be assumed here that they can be estimated. Therefore, to
take into account the first order effects of temperature in the
equations of other nuclear processes, the first two terms in the
Taylor series expansion for each coefficient will be used in place
of the temperature varying form of the coefficient.

This device will give an estimate of the effect of temperature
on other nuclear processes. However, now there must be an
equation for the temperature included in the development. Heat
radiated from the reactor surfaces will be neglected, and just the

(56)

useful heat will be considered, as given by Bonilla. Also as
stated there, the heating sour ce will be assumed to follow the local
flux density. All heat may be considered as removed by the cooling
system. Since cooling systems are so different, only a very general
relationship can be found. The reactor can be divided up into

regions again, each of which contains a different material. Tf the

material is solid, only heat conduction is possible. Therefore, in
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solid bodies, the rate of change of internal energy is equal to the

energy gained from fission less the heat conducted away.

¢ (1) o) Y _ gk OV IE, Y+ 3 (T ELE,Y

+ e ZfS(T,“r‘) zs(‘f, t) (II. 11)

Equation IL 11 has boundary conditions similar to the neutron diffusion
equations in that the temperature between solid bodies and the heat
flux are both continuous at solid interfaces.

However, a problem arises when considering the coolant
channels. The heat conduction is usually neglected within the fluid,
and an average bulk fluid temperature is usually used to describe an
average cross-sectional temperature. The fluid motion is also taken
into account to get the coolant heat transfer equation. If x is the
axial dimension down the coolant channel, then equation II. 12 is

obeyed for the cross-sectional average temperature T(x, t).

9T (x, t) _ 0T (x,t)
ox

i + (T (%, t)-T(x, t) (1L 12)

wall

In II. 11, Twall(x’ t) is the wall temperature. The coolant inlet
temperature gives the boundary condition T(0,t). Now the nature of
the problem can be seen. The wall temperature varies with time
as well as position. This gives rise to an inhomogeneous boundary
condition at solid-fluid interfaces.

Approximations must be made, dependent upon the type of

(40)

reactor. Guppy assumes that the temperature distribution is
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proportional to the spatial flux distribution. Another possible
assumption is that the temperature deviation from the mean
distribution, To(r), is proportional to the change in coolant
temperature deviation. The boundary condition would then be as

expressed in II. 13.

8$T(x, t) N B
S W8T 0ot § Tx,t) = hil-a) § T (x, 1)
wall
0% q¢ %1 (II. 13)

In equation II. 12, ¢ is the constant of proportionality. This is a
homogeneous boundary condition. It will be assumed that the
temperature distribution can be found as a function of time and space
throughout the reactor to some satisfactory approximation by using
these or other appropriate boundary conditions. It must be
remembered that this procedure is merely to estimate the effect of
temperature in the following analysis, and that each individual
reactor design should be closely checked with experiment. Even if
the temperature assumptions are violated, it may be of use to the
control system designer to perform the feedback calculations
omitting temperature effects. This would give a rough guide for

the ultimate type of spatial control system that might be used. In
the general case, equation II. 11 will be used to represent a tempera-
ture equation in the state equations of the system, and can be replaced

by a more specific equation in any given case.
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The Reactor Kinetic State Equation

Equation II. 1 gives the neutron d}stribution, equation IL5 gives the
effect of small control rod motions, equations IL. 7, II. 8 and II. 9
describe the xenon process, and II. 1l gives the temperature in the
reactor. Other time depeﬁdent processes occur in the reactor, but
these are the most important when considering the spatial oscillations.
One neglected process is fuel burn-up. This occurs over a matter of
months, and may be considered to be constant over the period of
oscillation. Other neglected processes can be included in the general
formulation if necessary, but only those discussed will be specifically
used in further examples. Therefore, equations II.1, IL. 5, IL. 7, IL 8,
II. 9, and II. 11 may be combined into a state space notation of the
form II. 2. The combined equation, II. 14, is the state equation of a
nuclear reactor, valid for small control rod motions and small
temperature deviations.

Equation II. 14 does not take into account the statistical nature
57)

of reactor processes. IHowever, Wigner( slales:

"That the results obtained on the basis of the transport
equations are adequate seems to be a consequence not
of the large number of neutrons which participate in
any given process, but rather of the relatively large
fluctuations of individual processes which cancel each
other because some of these processes yield more,
others less, neutrons than can be expected on the
averagc. '

Thus II. 14 is an equation for the averages of the state variables, and
a truly descriptive equation would be an equation similar to IL 14,

but whose coefficients would also be statistical functions of time.
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However, for the most part, only the averages are the quantities of
interest, and so in most cases equation II. 14 will be used to represent

the complete reactor in the following development.
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CHAPTER III

THE LINEARIZED STATE EQUATIONS

The state equation of the reactor has been described very
generally by equation II. 14. This equation is so general and so
complex that an attempt of the general solution is presently out of
the question. However, it is possible to solve a linearized version
of it, and it is the purpose of this chapter to derive this linearized

equation.

The Steady State

To obtain the linearized equation, only small deviations of the
state variables from some operating point will be considered. The
deviations may be assumed small because it is the purpose of the
control system to keep them small. Optimal performance will be
required at the operating point considered. Satisfactory performance
at all other operating points can usually be obtained by adjustment of
the stability margin if necessary. The operating point to be con-
sidered will usually be some point near the maximum power output
and at some mean time in the lifetime of the reactor, since power
reactors are the prime candidates for spatial control. This operating
point can be made a steady state solution of the equations II. 14 by
using the corresponding position of the control rods to determine the
stcady state absorption, and also by specifying all coefficients to be
evaluated at the conditions of the operating point.

It must be emphasized that all quantities of interest are to be
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taken about the operating point, which is not the case in the usual
zero power clean reactor calculations. Henceforth, it will be
assumed that the control rod steady state position is defined to keep
a reactor just critical in the presence of poisons, etc., at the
desired running flux level. This implies that the '"steady state' is
the operating point about which are taken all the Taylor series ex-
pansions of the coefficients of the previous chapter. By defining the
quantities and the steady state in this manner, it can be stated that
the purposec of thc spatial control system is to make all the deviations
from the steady state equal to zero.

The preceding remarks permit definition of the steady state
values of the state variables. These are denoted by affixing a zero
as a subscript to the particular variable, and noting that by definition
the steady state has no time variation. The variables of the steady
state are then found by solution of equation IIL. 1, which is obtained
by suppressing the time variation of the state equation II. 14.

N

W DU T, FN- 3, (T, 7) +1-BIVE T, 7| B (F)+01-pIv Z T, R (7
+/\CCO(r)

0 iR.( To’ —E)EFOG:) +[V'DS( To’ ¥)V—i-aSo( To’ }-) -q"a};( TJNxo(¥)] ISO(‘E)

of PBvEplTy ?)EFO(?Hﬁvzfs( T, 1&g (T)-) . C.(T)

O NN (O, ST, D Ep (FIHE Zg(T, T) Rg (1) -A N, (7)

B ra}é( T 3"1\]}{0(—;)I So(;)

0 xl ifF( To’ ) §.Fo(_r.)Jr xI ffS( To’ ;)ESO(-;)— AINIO(?)

O [es /T, T) P r)re Z (T, T) ISO(?HV' K (r VT (r) (II1. 1)
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The general state equation, II. 2, may then be written symbolically
as III. 2 in the steady state.
0 = f (Z (),7) (111 2)

It is necessary to assume that these equations can be solved
by some means to some reasonable approximation. Fossibly, the
steady state can be measured in the particular reactor to be controlled,
and this can be used as the solution. Knowing the solution of these
non-linear spatial equations gives the desired state to which the

control system is to return the variables.

The lL.inearization

From this point on, it will be assumed that the steady state
is known, and all variables are the deviations from the steady state.
The coefficients (including partial derivatives with respect to
temperature) of the state equation II. 13 are to be evaluated at the
local steady state temperature, and so vary with . The deviations

of the variables from their steady state are defined in IIL. 3.
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¢o(T, 1) = BT, 0)-F g (7)

(o]

x(r,t) = NX(}", t)-N_ (T) (II1.

o(r,t) = T(¥,t)- T (r)

zZ(r,t) = Z(r, t)- ‘z"o(;)

These definitions are put into the state equation, II. 14, and the
steady state equation III. 1 is subtracted from II 14 to get equation
III. 4.

It is the purpose of the control system to kzep the deviations
small. An optimal control system, furthermore, should attempt to
keep the deviations as small as possible, and eventually return the
unforced system to the steady state. Therefore, it will be assumed
that deviations from the steady statc arc small for the system under
control. The effect of large deviations should be investigated, but
this can be done after a design has been suggested by study of the
linearized equations. The methods of Gyftopoulog(SS) might be
extended to spatial systems so as to estimate the range of validity.

Since deviations will be considered small, the expansion
of the reactor due to temperature will be small compared with

the reactor size. Therefore, the boundary conditions on the

3)
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equation are assumed fixed.

For small deviations, it will be assumed that the reactor
processes can be represented by ouly JLhe linear part of equation III. 4.
This means that the last two matrices on the right are assumed to
contribute very little. It can be seen that one of the two matrices
contains only temperature derivative tcrms times the tecmperature
deviation times the deviations of other variables. Therefore, this
matrix is an order of magnitude less than the coefficients of either
the temperature deviation or the deviations of the other variablesg,
if the temperature derivatives are small. This is usually the case,
and so the matrix can be neglected.

The terms in the last matrix must be dismissed individually.
Only if the rate of change of the flux is small will —%Y,-I.:-l- _Sgti be
small compared to the other coefficients of 8. However, the process
of xenon instability is very slow, and so this will usually be true.

Also, since 565 and x are both assumed small in comparison
with their steady state values, the term d“:S 9§Sx can be neglected.
It is interesting to note that this term was retained in the work of

(59)

Gyorey, who found a "hard-spring' type of behavior in the phase
plane analysis of the i, x, %s system. Hence, neglect ol Lhis term
gives a pessimistic evaluation of the response to control.
N i —
Next, there is the term 75 Z 1 J(r—r ). Most studies of
s, 9 o n
the control rod would require only that u be small in comparison

with the absorption operator. This is because these studies deal only

with the steady state. Here, it must be required that the absorption
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represented by this term be small compared to the production
operator minus the absorption operator. This is indicative of the
rate of change of flux and flux leakage, which must be much larger
than this term so that the term may be neglected. This appears to
be the most stringent condition of the linearization, and should be
checked carefully. Hence, large control rod motions cannot be
included in the analysis.
N ou

Finally, there is the term [§so+ 4’3] 0 n_l——a—%lé(r—rn).
From the remarks in Chapter II concerning themcalculation ofu ,
it can be seen that u is equal to a mean value of Zas times a
function of time. The remarks of the preceding paragraph require u
to be small compared with the absorption operator, so this function
of time must be small. Therefore, the rate of change of u with
temperature is equal to that of Zas times a small function of time.
This small function of time and the small deviation 6 assure that
the whole term may be neglected.

With the above assumptions, the linear part of equation IIL. 4

is rewritten in matrix notation as equation IIIL 5.

M) g 3w 0 =L@ 2E 0 L@ H (11t. 5)

Equation III. 5 approximates the spatial behavior of a nuclear reactor
near some steady state operating point, and will be used as the state

equation of the controlled reactor.



-37-

Separation of the Power Control System

The proposed control system is a spatial control system, the
purpose of which is to return all spatial deviations to a steady state.
This is somewhat at cross-purposes with the power control system,
the purpose of which is to follow the changes of the desired value of
the steady state. The spatial control system is known formally as
a regulator, whercas thc power control system is a servomechanism.
If all other modes are controlled by the spatial system, the power
control system need only detect and influence the fundamental mode
of the solution of the linearized equation of the deviations, IIL 5.
This permits minor variations in power due to the contributions of
the higher modes, but these contributions should quickly be returned
to zero and so will be ignored. Therefore, the reactor can be
controlled by one feedback system detecting and controlling only the
fundamental, and another feedback system detecting and controlling
all the other modes.

Analytical design of the spatial control system can be per-
formed without regard to the exact nature of the power control
system if the fundamental interacts only weakly, or does not interact
at all, with the harmonics. This interaction will be examined in
detail later, but now it will be assumed weak at most. In general,
the fundamental will be denoted '7&0(?), and Z’H(?, t) will be defined
as the state variable to be controlled by the spatial, or harmonic,

control system. Thus ;H is written as in III. 6.
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Z4(r.t) =% (r, t)-a_(t) ‘7L (I1I. 6)

Therefore, z H(;’ t) is controlled by the harmonic control system,
and ao(t), a scalar, is controlled by the power control system.

Since the harmonic control system may at most weakly influence
the fundamental mode, the action of one harmonic system control rod
must be forced to negate the effect of all the other harmonic system
rods on the fundamental. The action of this one control rod may be
found by substituting III. 6 in III. 5 and taking the inner product with

respect to the adjoint of the fundamental.

el -
< j‘o(?),/((?) y + & (1)< ¢0(f),/< (F) ¢ _(E)> =

A

A A
<F @), L >+ a0 <E®, L@ E> s <f @) 0>

o
(III. 7)
The first terms on either side are small with respect to the
coefficients of a. and é’o because of the weak interaction requirement,
and so the effect of the control rods on the fundamental can approxi-
mately be negated if Lhe lasl terwn in IIL 7 is zero. Thus equation

III. 8 is found by equating the last term of IIL. 7 to zero.
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n=l V

S ARICRE IR

From equation III. 8, the motion of one control rod may be

expressed in terms of the motion of all the rest.

Z + :(2)(?n) Eso(—fn) un(t)

W (t) = - *(Zz (LLL. 9)

This condition is imposed on the spatial control system so that its
perfor mance will have little disturbing effect on the power control
system. Conversely, it may be desirable to have the power control
system primarily affect the fundamental, although this is not
necessary. As will be shown later, this would reduce the input to
the spatial control system.

Now 1 and,& in III. 5 may be redefined to incorporate IIL.9 ,

and will be denoted u and,& N-1° as in III. 10.

N-1
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Thus the state equation for the spatial control system is put
into the form of IIL. 11, by using III. 5, III. 6, and the redefinition of

u and .ﬂ to GN—I and }iN—l'

0z (1,t)
ﬂ(r) I;)It

7w or (D a8 SE-T )| vy

™~

+a (0d@ W (1)-a (1) 4(T) @ (7) (III. 11)

o
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Equation III. 11 is a linear equation consisting of a homogeneous
and an inhomogeneous part. Since uN—l(t) is to be made up from

measurements of ZH(;,t) as a feedback, u,. .(t) is part of the

N-1
homogeneous equation. The last three terms, however, are

functions of space and time only and are not dependent on ZH(;’ t).
These terms may be considered as part of an input f(r,t) that is
discussed in detail in Chapter VI. Therefore, the state equation

for the spatial control of a reactor has the final form of lll. 12.

_om(r,t) o -
}L(r) -—I—{5;-——— =£(r) z(r,t) +)i§fN_1(r) U‘N-l(t) + £ (r,t) (III. 12)

Now that the linearized state equation III.12 has been found,
a simpler form can be used to develop the rest of the theory and
yet retain the essential features of just the xenon process. Only
three elements will be retained in the vector state variable, the
deviations of iodine and xenon precursors, and the deviations
of a single flux group. Thus all neutron flux groups and delayed

neutrons are averaged into one scalar equation with the coefficients



-42-

altered accordingly. Also the temperé;ture processes are
neglected, as are the fast leakage terms. These alterations
retain the main effects, and considerably reduce the com-
plexity of future notation. Accordingly, for purposes of
preliminary investigation and for simplicity in later notation
and dvelopment, equation III. 13will be used as the state
equation with the understanding that the theory also applies to

a more detailed model.

1 00 i —)I 0 ‘XIGZf
0 1 0 —(,%— x| = AT -(Xxﬂrz §O) -O':NXOJr yXer r
1 X X
003 ¢ 0 -0, §o {v D\7+1Je£f~ Za‘D—aNxo)J
f
0 0
+ < 0 0
<3)(_ ) <3(>_ )
N S U - - o NV — =
_§ S(r rl)——(—g-)—:— 5(1‘ rN) - §o é(r rN_l)- (3)— (S(r—rN_l)
N (ko(rn) (//O(I'N)

N-1

(III. 13)
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CHAPTER IV

TWO METHODS OF SOLUTION OF THE LINEARIZED STATE
EQUATION

There are a number of possible methods of solution of the
linearized state equation, III.13. This chapter will consider two
methods of modal expansion; expansion into clean reactor modes and

(29)

expansion into a type of mode ariginated by S. Kaplan.

Expansion Into Clean Reactor Modes

The linearized state equations are first solved by expansion into
clean reactor modes. The equations of IIl. 13 may be written

separately, instead of in matrix form.

L3tV Vp rveE g5 po N 4 - B

N
Y BSET) @
n=]
Do Niry el (b) (IIL. 13)
9x

ot - )\Ii g Ax+ "-;(} o)x_ rz NXO¢ * yxe£f¢ (c)

The clean reactor equation is III. 13a, in which NX , X, and u are set
o)

equal to zero. To get the mode shapes, let the scalar eigenfunctions

Gm(r) and the eigenvalues a be determined by IV. L.
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¢ 9,0 = V.Dyo () +(weZ -7 )0 () (Iv. 1)

I 1m

The equation counsists solely of IIermi;;ian operators, thecrcforc the
modes can form an orthonormal basis and IV. 2 holds.

j@ (?)g(?)d3r:<g ,9.> =§ (IV. 2)

m k m k mk

7
The mode shapes Om(_r—) are those that are found when solving for the
time behavior of the total flux in a clean reactor. However, here
these modes are used in the expansions of the deviations that are
measured from an operating point in a poisoned reactor. The

assumed expansions are written in IV. 3.

¢E. =) b0 (7
m=0

[0 0]
i(T,1) = Z c (V6@ (IV. 3)

m=0

o0}
x(r,t) = Z d_(t)e_(r)
m=0

To obtain a set of equations for the modal time coefficients,
b (t), ¢_(t), and d (t), the expansions IV. 3 are substituted into
m m m

III. 13 and the relationship IV.1is used, resulting in IV. 4.



-45-

© o0 00
1 Z 2o (%) = Zambmomm- o meNx (F)0_(7)
m=0 m=0 m=0 ©
le’o) N
B G_Z deio(f) Om(f)— Z Yn EO S(?‘.En)
m=0 n=l1
P dc @ ©
Z 20_(7) = - A Z e 0 _(N+¥ ¢ meif(?)gm(‘r‘) (IV. 4)
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Multiplying by Gk(r) and integrating over the reactor volume gives
the desired set of total differential equations for the modal time

coefficients, after the orthogonality property IV. 2 is used:

0o os)
17 x 3 x 3
—b = b - me fNXOQmOkd r-q Z d_ /§09m9k d’r

m=0 Vv m=0 A2
N
3
- Z u, fEOQkS(r—-rn)d r
n=l Vv

o0
] 3
- 0 04
R SN 5T me fzf m kS T (Iv.3)
m=0 Vv
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An exponential form in time is assumed in order to obtain the
next equation IV.6, as is standard in the solution of systems of first
order linear constant coefficient total differential equations. This
shows that bk’ S and dk are linear combinations of exponentials
with time constants w, and are forced by the un(t) term. The time

constants are chosen such that IV. 6 will permit arbitrary selection

of either bk’ Ck’ or dk.

00
3
wbk k Z f\f Q 8 dr 0‘ Zd IQOOmOkd T
m=0
o0
3
Al ¥ Z Pm [ngmgkd T (IV. 6)
m=0 v

©

.3

- -2 d - XZ f 0, d

C“‘)dk /-\Ick Zx k o“a dm §o gm k ¥
m=0 A\

X . 3
+ bmf XXGZf~0'a hx)gmgkdr
o
m:O vV

Note that unless Zf’ §-o and N, are flat spatially, the
o
equation IV. 6 will contain infinite sums. Therefore, the modes

"interact' with one another. Modal interaction will be seen to be
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the main drawback of this method.

If the infinite sums are convergent, an approximate solution
may be found by truncating the series at the Mth mode. This finite
set of algebraic equations may then be solved, and the values of
found can then be used to express the b_._ and ¢__ in terms of d_,

m m m
which in turn is determined by the initial conditions. Having the
modal time coefficients, the state vector is then of the form IV. 3.

This is the method of separation into clean reactor modes.

Expansion into Kaplan Modes

Now the linearized equations are solved by expansion into
Kaplan modes. In this method, the state equations are written in
matrix form, as equation IIl.13. For generality, Kaplan's form(zg)
is extended to include a spatial operator multiplying the time partial
derivative of the state vector. This permits inclusion of spatially
varying neutron velocities and, when the effect of temperature is

included, spatially varying heat capacity. Equation III. 13 is

repeated here for convenience.
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H
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The mode shapes are vectors in this case, and are defined hy IV. 7.
(1) —
Yo 0 ()
w_ ¢ Y
m |
(3) ~
' D)
™

o O
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( Ve (D
—AI 0 Vléff {/'m (1‘)
2y —
=9 XI _(Xx+¢:§o) -raXNx +xxeff 3 <SLH§ )(r) >
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Equation IV. 7 is rewritten in matrix operator notation as IV. 8.
YAy OR SUOEPOR ME (1v. 8)

Equation IV. 7 may be thought of as giving a triply infinite set of
eigenvalues, each infinite set due to the partial differential operator,
and three sets to correspond to the number of elements in the state

vector.

As shown in Kaplan's paper, (29) a bi-orthonormal set of vectors
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can be set up using the vectors of the adjoint equation, IV.9.

A

—

4"
L) +
w"k/l(?) \’uk :£(r) \Fk (IV.9)

In the particular case of IV. 7, all elements Of/( and & are real and
Hermitian operator.s. Therefore/aﬁ:/é and :;(+ is the transpose
of the matrixgf . Taking the inner product of IV. 8 with ‘/.:—k and
subtracting the inner product of the adjoint of IV. 9 with LFm gives

the bi-orthogonality condition IV. 10.

A
(W_ ~w,) <¥ Mf > =0 (IV.10)

The assumption of distinct eigenvalues (wm#wk) then implies
that each vector eigenfunction is bi-orthogonal to all the others. Also,
if wmzwk for m # k, often the vector eigenfunctions can be
geometrically constructed to be bi-orthogonal by symmetry. It will
be assumed that no other cases of repeated roots exist. Example
VIILA of Chapter VIII illustrates a case of geometrical and a case of
non-geometrical multiplicity. Also it is assumed that
< ik’ﬂ¢k> # 0 so that the set of {wkg is equivalent to the set of

{wkng In general, any cases of wmultiplicity other than those due to
symmetry may be said to be accidents of nature, and the multiplicity
may be broken by considering a slight perturbation. Similarly, any
case of ¢« _"Ek’/« iFk> = 0 is a great coincidence, and again a slight

perturbation will make the inner product non-zero.



Finally, each vector eigenfunction is determined to within an

arbitrary constant a, as shown in IV. 1L

wm/u(aFm):awm/u_Em:astm:;((a;z ) (Iv. 11)

m

Set 1

a = (IV. 12)
V< —‘;k’/tl Fk>

Then, with the stated assumptions, the bi-orthonormality condition

is given by IV. 13, in which Skm is the Kronecher delta.

A
CFME D> = $km (IV. 13)

Having a bi-orthonormal set of vectors (assumed complete) a
solution is attempted by expansion in Kaplan modes. The state vector

is thus assumed of the form IV. 14.

Qo

et = ) a0 F ) (IV. 14)

m=0

T'his expansion can be used in the state equation III. 14,

(o]

X da_ (t) — — _
Yy Mo @ - Y e 0X () @+ P @ (1V. 15)
m=0

m=0

Use of relation IV. 8 puts the first term on the right in a more useful

form.
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Z drtn /u' Fm - }: wmam/“‘?zm +’8 u (IV. 16)
m=0 m=0

Multiplication by the adjoint vector and integration over the reactor

volume permits use of the bi-orthonormality condition IV.13.
a _
—_— = W
= WAt < A a> (IV. 17)

This equation is analogous to IV. 5 of the clean mode expansion, except
that there are no infinite sums. Therefore, there is no modal inter-
action between the Kaplan modes.

An explicit solution for each a) can be obtained by solution of

. 17.

w, t W (t-7) A
ak(t) = ak(O)e k +j e K < ¢k’ /&'ﬁ( T)> drt (IV.18)
0

Here

a, (0) = <@ Z(r, 0) > (1IV. 19)

Equation IV. 14, with IV. 8, IV.9, IV. 18, and IV. 19 then give the
solution for the state variable z(r,t) under the action of control u(t).

This is the method of separation into Kaplan modes.

Relations Between the Types of Modes

Substitution of an expansion for each Kaplan mode in terms of

clean reactor modes yields a useful relationship between the modes.
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Let

00 C

o km 7
§_(7) = Z a4 | 6@ (IV. 20)
k=0 ‘b
km

where the ¢ d

k' Sk’ and bkm are arbitrary constants to be found.

Substitution into IV. 7, using relation IV. 2, yields equation IV. 21,

(0] o0 Q
w_ Z T W Z Crfit ¥ € Z b Z. 0y (IV. 21)
k=0 k=0 k=0
00 QO QO e 0]
0 - x N\
wrn dkm k }‘I 2, ¢ mgk /\x Ldkmgk (ra }_, dkrn—gogk
k=0 k=0 k=0 k=0

o o'} oo @
1 X x
= Q. = b 0. - Q. - 4]
m v Z km k Zak km k %a Zbkmeo k Ta Z dkmEO k
k: k:o k:O k:O

Multiplication by Qj and integration over the volume of the reactor

i i .22 , 4, d
gives equation IV for the Crm’ 9k an bk
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W km™ Ik‘LXéZme fZQO dr (IV. 22)
j=0

o'}
B _ X
“’mdkm Alckm Axdkm Ta Zdjm _/foojok d’r
0 ¥

o0
X 3
+ ijm f (XxéZf— LS\ )QjOkd r
j=0 \4 ©

00
1
wm;bkm_ kkm 2_. ,[N Qer—¢demj§OGOdr
j=0

Equation IV. 22 is exactly equivalent to equation IV. 6.

It can be seen from the relationship just shown that even if the
infinite series are not convergent, the eigenvalues of the Kaplan
modes satisfy the infinite set of equations formed out of the modal
time coefficients of the clean reactor modes. If these series are
convergent, the Kaplan modes can be expressed in terms of the
clean reactor modes. By the same device the Kaplan modes may
be expressed in terms of any other suitable expansion. Of course,
the converse is not true. It may be concluded that whenever an
expansion in terms of another type of mode exists, then the expansion
in terms of the Kaplan modes exists.

Although existence is usually easy to ascertain, completeness
is not. Expansion in clean reactor modes can usually be proven

complete, but there is no gnarantee that the Kaplan expansion is
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complete because the conditions undcr which transformation IV. 20
is one to one are not known.

Most of the mathematical questions evolve basically from the
fact that the matrix operator & (r) is not Hermitian. This is the
reason that modal expansions of other than the Kaplan type are
considered. The spectral theory of the clean reactor modes has been
fairly well worked out, even in the case of the multigroup operator.(éo’él)
Therefore, in the cases of expansion in the clean reactor modes, the
main question is the convergence of the ''modal interaction' series.
In each specific case, calculation of a number of these coefficients
will usually give an idea of the convergence. If the coefficients
converge, then there exists a firm mathematical basis from which
the analysis can proceed.

However, in many cases it seems it would be advantageous to
merely assume that the spectral theory (i. e., behavior of the
eigenvalues, etc.) of the Kaplan type of modes is somewhat similar
to the clean reactor modes. Then analysis of the physical problem
would not be held up by the formal proof of existence, uniqueness,
and completeness. These mathematical properties, therefore, will
be assumed in the rest of the thesis.

In defense of this assumption, calculational results seem to
indicate that the Kaplan mode spectral theory is close to the clean
reactor mode spectral theory for the types of reactors considered.

Only the terms involving the effect of xenon are negative among the

off-diagonal terms of the linear operator. Because of this, the
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results of Varga for operators with only positive off-diagonal
terms cannot be used. His results préobably would apply even if a
small negative term were introduced, but it is difficult to determine
at exactly what magnitude of the negative term his conclusions would
not apply. The introduction of the negative xenon terms appears not
to have changed any conclusions of Varga in the examples of reactors
studied here. The eigenvalue of the fundamental mode may be
estimated to be always real and larger than other eigenvalues by
using the estimation technique of Chapter VI. Furthermore, the

Taie s v Be T
aiuc s may o Or

de
et

cTre

es d. T
with the results of Varga for clean reactor modes, and gives some
justification of the mathematical assumptions.

However, there are differences between the Kaplan and clean
reactor modes. The clean reactor mode eigenvalues most probably
tend to minus infinity with increasing order of mode. Example VIII. B
shows a specific case where a set of Kaplan mode eigenvalues tend
to a finite limit when there is no differential operator in a
row.

In summary, the Kaplan modes and clean reactor modes seem
to be somewhat similar, but the specific behavior of the Kaplan type

of mode is not as well known as the clean reactor modes.,
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A Comparison of the Two Types of Modes

Now that some of the relationships between the types of modes
have been discussed, a comparison of their suitability for the
solution of the spatial control problem will be undertaken.

The clean reactor modes have some advantages. The spectral
theory of the clean reactor modes has been worked out, and their
completeness is really not in doubt. Their physical usefulness rests
on the fact that, in the constant coefficient case, the modes are
usually well known functions and are easily found. Also, these same
functions can be pieced together at the interfaces to form modes in
a multiregion reactor. Finally, they are independent of power level,
and therefore do not have to be recalculated al each operating point.

However, the clean reactor modes also have a number of dis-
advantages. In addition to the question of convergence, the clean
reactor modcs also have two drawbacks for their possible use in the
spatial control problem. The first is that the equations for the modal
time coefficients can be of very high order, complicating their
numerical solution. The second is that any control effort expended
on one mode will disturb the behavior of all the other modes, due to
modal interaction. There is a possibility that control action based
on a finite number of modes will excite and even make unstable modes
that are not controlled. This last consideration dictates the choice of
the Kaplan modes, which will be used in the rest of the thesis despite
their drawbacks.

The Kaplan modes do not interact, so feedback control of one



57~

will not affect the stability of all the others. Unless controlled, each
mode will decay with its own time constant, and the movement of the
control rods will appear merely as a forcing function. This property
dictates their choice, but there are other desirable properties.

This separability of modes means that the power control system
and spatial control system can be completely separated, so that the
spatial control system can be designed without regard to the specific
characteristics of the power control system.

The simplicity of mathemalical expression reduces computational
labor in the determination of modal time coefficients. Also, the
simple expressions obtained are useful from a theoretical standpoint,
even if other modes must be used for calculational purposes.

Finally, there is a certain aesthetic appeal to using what Kaplan
calls the '""natural” modes. Only the Kaplan mode shapes are the
mode shapes that can be excited separately, so that one could actually
see!' these mode shapes in a reactor for small deviations.

However, there is one disadvantage of the Kaplan modes that
has not yet been discussed. Besides their mathematical drawbacks,

(i. e., the questions of existence, uniqueness, and completeness) the
Kaplan modes are, in general, much harder to calculate than the clean

reactor modes. The next chapter will discuss methods of calculation.



CHAPTER V

METHODS OF SOLUTION OF THE KAPLAN MODES

As vyet, there is no general method for solution of the Kaplan
modal equation, IV. 8. If the spatial control system is to be
designed by the analysis presented here, the Kaplan mode eigenvalues
and vector eigenfunctions must be found. This chapter discusses
four methods of solution and gives some advantages and disadvantages
of each method. Conceivably, there may be cases in which no
method works, but for almost every practical case the Kaplan modes

may be found to a good approximation.

Expansion of Each Kaplan Mode in Terms of Other Modes

As discussed in the previous chapter, if the modal interaction
sum converges, it is always possible to expand each Kaplan mode as
a series in the clean reactor modes. If another set of modes can be
found whose shape is closer to the Kaplan modes, their convergence
will be faster and so they should be used instead of the clean reactor
modes. By clever selection of the expansion mode, expansion of
each Kaplan mode may be the only method of obtaining solutions to
the Kaplan modal equation.

This method has many drawbacks. The Kaplan modes can exist
in cases where there is no convergence of another expansion. Com-
putation is complicated by the many unknowns to be found. Also,

(32)

Gyorey found that truncation of the modal interaction series

usually gives an estimate that is smaller than the true value of the
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Kaplan eigenvalue, so that the stability margin for each mode is
usually less than that computed. The converse effect is more useful
in an analytical design. Finally, the most serious drawback is that
the modal interaction series may converge very slowly. It becomes
difficult to tell when enough modes have been used to represent each
Kaplan mode. In this case, computational effort is such that almost

any other method of finding the Kaplan modes would be better.

A Nirect Finite Difference Model

A finite difference approximation to the Kaplan modal equation,
IV. 8, may be constructed by standard procedures for a three-
dimensional mesh of discrete points in space. There are many
sophisticated methods of solution of the finite dimensional eigenvalue
problem formed by these finite difference procedures. The interested

(62)

reader is referred to the book by Varga for specific numerical

methods.

These numerical methods have onc commeon failing. They must
solve a boundary value problem, and therefore much computer storage
is necessitated. If only a rough mesh is desired, or if a special
methad can he found to save storage space, the direct finite difference

model can be used to obtain the Kaplan modes.

Mu Modes
The -mode approximation was introduced by Harris and
Lacy. (21) Xenon is assumed to be 180 degrees out of phase with the

slow flux, so that a constant,/‘(» , can represent the effective
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coniribution of the xenon to the thermal absorption cross-section.
This assumption gives exact results when the steady state flux is
flat in a homogeneous reactor, giving no modal interaction. A
complete discussion of the method and its assumptions is given by
Ewen. (36)

Ewen found good agreement with the éxact solution in a number
of cases where the steady state flux is not flat. It seems hard to

(32)

reconcile this with the results of Gyorey, who found the effects
of modal interaction induced by the steady state flux to be quite
important when the flux is not flat. Furthermore, a private
communication from S. Kaplan states that the /,L modes are hard to
calculate if obvious modal lines are not provided by symmetry. He

also states that the assumption of flat flux leading to the xenon being

exactly 180 degrees out of phase is difficult to evaluate.

Shooting

Whenever the Kaplan mode equation IV. 8 can he completely
separated in space, a very efficient numerical computation scheme
known as "'shooting' can determine the Kaplan modes. It is known
as shooting because the solution trajectory is adjusted at one boundary
until it "hits" the other boundary.

The Kaplan equation must be altered a bit before the standard
shooting technique is employed. The matrix equation IV. 8 must be
reduced to a scalar partial differential equation. To illustrate the
procedure, the equations for the elements, J, of the lllth vector

eigenfunction [Fm(?) are written out to correspond to the matrix
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equation IV. 7.

-a%wn@mtgwf

A ED O er 8 ¢ Py es - vNO)¢‘3):wm¢(2) (V. 1)
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The upper equations may be multiplied or divided by a non-zero
function to obtain an expression for gbn(lz) toput intc the bottom

equation.
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. . . (3) . .
2 th
It is shown in Appendix B that sbm is zero when co_ is the
negative of AT or )\X+ (y}: §0, and so equations V. 2 are valid.
Putting the last =quation of V. 2 into the last equation of V.1

completes the reduction to a scalar equation, V.3, for this case.

w
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(V. 3)
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This may be referred to as the '"characteristic” equation of the matrix
operators /aand;(,’ . The characteristic equation should be derived
by the technique of successive elimination just illustrated, although it
corresponds to 'taking the determinant" of the matrix operator

I - Mw.

The problem is now reduced to finding solutions ‘;Ln(lg) and
coefficients W - that solve V. 3 and fit the boundary conditions. If
the reactor properties and Nx and Eo are spatially flat, the clean
reactor modes are solutions tg V.3, then ¥.DV may be replaced
by the geometric buckling term, -DBmZ, and V. 3 is a cubic in (.Jm
Three values of w A may be found from the cubic for each mode
shape. Some of the values of «)m may be complex, reaffirming the
non-Hermitian character of the operators.

The method of shooting is employed when the reactor properties
and N and io are not spatially flat. A (possibly complex) value
of wnjis guessed, perhaps from the technique given in the next
chapter. The equation V. 3 is separated into equations such that
each contains only a single independent variable. Then the solution
trajectory is started from the initial conditions of zero value and
arbitrary slope at one boundary for both real and complex parts of
lf n(13)' The trajectory is computed by a finite difference approxi-
mation of V. 3, using the guessed value of w.__ - At any region
interface, the conditions of continuity and continuous currcnt may be

applied as the trajectory progresses across to the other side of the

reactor. If the trajectory is non-zero when evaluated at the other
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boundary, the value of w guessed is wrong. Systematic guessing of
the w m in the complex plane will determine a trajectory that hits the
opposite boundary at a point where the trajectory is exactly zero.

This trajectory is the eigenfunction that was sought, and the guessed
value of w_ is the true value of the eigenvalue. In this manner all
the desired Kaplan eigenfunctions and eigenvalues may be found.

The sequence of guessed eigenvalues is usually very rapidly
converging, since a plot in the complex plane of the trajectory values
at the opposite boundary will usually give an indication of where the
zero lies in the plane. The storage space required is on the order of
the number of points approximating a linear distance in the reactor,
and may be even less if a differential equation is used to generate
values of N and io at each point. Only a small number of
arithmetic o;erations are needed, so that trajectory computation
times can be on the order of a few seconds on a large computer.

Thus it can be seen that this method gives a very quick way to

evaluate the Kaplan modes for any multiregion reactor in which the

Kaplan modes are spatially separable.
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CHAPTER VI

A METHOD OF ESTIMATING THE EFFECTS OF SPATIAL
VARIATION ON STABILITY

This chapter presents a method of estimation of the eigenvalues
of the Kaplan modes by a variational procedure. Spatial stability and
eigenvalue determination are interrelated, as inspection of equation
IV. 18 shows that the reactor is strictly stable if and only if the real
part of each eigenvalue is less than zero. Since many spatial
processes may be put in the form of the state equation, this method
gives a means of estimating the effects of spatial changes upon the
stability of a broad class of physical processes. The method also
provides a means of finding an initial estimate of the eigenvalues to
start the shooting procedure described in the previous chapter. Finally,
the need for a spatial control system may be determined by the use of
the method to evaluate the spatial stability of the reactor.

It has been tacitly assumed in all papers dealing with reactor

(11-44)

spatial stability that investigation of the uncontrolled reactor is
sufficient. This is valid only in cases of no interaction with the
power control system, as was shown by equation III, 7. If the inter-
action is negligible, the question of the spatial stability of the hot
poisoned reactor, as discussed qualitatively in the introduction, is
equivalent to finding the Kaplan eigenvalue with the largest real part,
as represented by equation IV. 7. If the interaction is not negligible,

equation IV, 7 may be extended to include the dynamics of the

particular power control system used. The method of stability
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estimation can then be applied to the controlled as well as the un-
controlled model to determine its stability.
The variational method is applied to estimate the eigenvalues

of equation IV. 7, although it is applicable to the general form IV. 8.

The Variational Estimate When D is Constant

First, consider the case when the diffusion coefficient, D, is
constant. Then the scalar form of IV. 7, found in the previous chapter

as V.3, can be used to form a Lagrangian, as in VI. L.

X
T, &
L= [ DV2+1JGZ-7: e W a*o
m f a a’x v Iy X
Vv “m xvaEO
¥, 67.) 3
( I+ i 1 xxeif- ¢;‘NX )xmd r (VI. 1)
m I o

In equation VI. 1,the value of w._ is to be regarded as a fixed complex

constant. Then VI.1 can be rewritten in the shorthand notation of VI. 2.

L - fxm DV2+7/Z(i)) de3r (V1. 2)

v

Suppose an estimate, X ' 2 be formed to approximate the shape

of ‘)Lng?’), so that € is much less than one in equation VI. 3.
x.®= ¢ PVmiedx (V1. 3)
m m m )

3
Note that Xm and L'Lnr(l ) are zero on the boundary of the reactor, so

§ X is also zero on the reactor boundaries.
m
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Now the stationarity of the Lagrangian, VI. 2, will be shown.

The expression for X oy VI3, is used to expand the Lagrangian.

L= f¢ril3)>k(D VZ'F»Z ) ¢rr(l3)d3r+e fJXrn::‘(DVZ'i'M) SL(S)dBI‘
\4 4 m

(VI. 4)

+ef¢n(l3)*(D 7im) S X _dre Zf,rxrg (D Vo) §X
\4 v

The first two terms are zero by equation V. 3, and the third may be

eliminated by using Green's theorem, VI. 5.

j’(fn(l?))*vz Sde3r :f( ¢I1(13)*stm_ Jx.m V‘Lng?))*)dzr

v 5
¥ féXmVZ ¢ OV, (VL. 5)
v

Since both 4rr§3) and JZ are zero on the reactor extrapolated
surface, the surface term of VI. 5is zero. Therefore, the third

term of VI. 4 may be represented as in VL. 6.

f?Ln(lS)* (D7) § X - fllm (07 %m) ¢ (VL. 6)
vV

v

Since the set of iwm*} is taken to be the set of Swmi from the

discussion in Chapter IV, L’er(13)* is a solution of VI. 7.
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(D v Z+m}¥’n(l3)* =0 (VI. 7)

Thercefore, the Lagrangian, VI 1, is stationary at thc mode shapes of
the flux and its adjoint. If the shape X o, 18 chosen such that € is

small, VI. 4 can be rewritten as VI. 8.

. 2 3 2
o-[xm(DV+m)xmdr+0(e ) (V1. 8)
A%
If the real and imaginary part of the guessed shape X - is taken to
1 ) +
. e 0
be the unpoisoned reactor flux shape Qm, and Xm to be m then

Vi. 8 becomes VI. 9.

0 = ai;
o & v.e3.)
—f v};Nx * ‘:m * — X : + = * Yxezf_ Q-ZNX and3r
f o Wt g twm Al o
+0(e? (VL. 9)

This can be put in more familiar form if all reactor parameters are

constant and VI, 9 is divided by F_ .

a
¥1h1
o - N JK}+AXHéZ}§JwHiRI g -
0= k -1-L"B_-fw_- = o dr
za\/' wm+>‘x ‘Taio
2
+ O €°) (VI. 10)

In the examples of Chapter VIII, the real and imaginary parts of

W to solve VI. 10 are merely guessed, and a very rapidly converging
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trial and error procedure enables close determination of w (see
Table VIII. 3). Therefore, equation VLE. 9 provides a useful means of
estimating the effect of spatial variations on the kinetic behavior of
reactor processes.

As further verification of the utility of VI. 9, the Lellouche

(34)

xenon stability criterion, used in the case of infinite flux, may
be derived from VI.9. In the limit of EO tending to infinity,

equation VI. 10 becomes VI. 11

o (g
0 = koo—l—LZBm2~£wm- 1; (NI ii :y% of €2 (VL. 11)
1
(63)

Application of the Routh-Hurwitz stability criterion to VI. 1l gives

the conditions for stability, VI.12.
o0 2 2 k% 2 , k™ ]
kK -1-L°B "~ =5 y +D(€ )<m1n(£,\1, ——6—31) (VI. 12)

; . 2
Equation VI. 12, without O( ¢ ~), may be recognized as the Lellouche
stability criterion, which was obtained from the original non-linear

state equations (that are linear in the limit of infinite flux).

An Explicit Expression for the Eigenvalues

An explicit expression for the eigenvalues may be obtained by

choosing Y m 28 in VI. 13.

Yo = (Wt A ol B0 (x) (V.13

The term o-;( Eo usually dominates in the high flux power reactors

considered, especially when w | is small. Therefore, VI. 13
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probably overestimates the flattening that usually occurs in the flux
upon the poisoning of the clean reactor. This overestimation
increases the error, O € 2), in the Rayleigh product. However, the
eigenvalues calculated from this approximate shape may provide

some indication of the error involved, when compared with the
eigenvalues obtained from VI. 9. The two calculations may bound the
eigenvalue, because VI. 9 underestimates the flattening. Furthermore,
the estimate obtained fr om this simpler calculation can start the
iteration procedure needed to solve VI. 9. For the constant coefficient
case, putting the approximate form, VI.13, in the Lagrangian

equation, VI. 8, gives the next equation, VI. 14.

2
[(wrr;»Ax)Z * 2(wm+’\x) G.Z ?OJF ( GZ) .f OZ} { koo_l-LzBma‘ﬂ wm)
x x Z
2 0, = (G‘a) e
+ (wm+}\x) 7 NXO+ z (wm+A 2 Nxoio

(VI. 14)

;‘i%(; 51 (W Bot A Tot T By |

2 )
+ 0 1w _*A) V§§o+ Liad) F 7 F,+ oed) = o

+ a': koo(xx+

The bar denotes spatial averaging of the quantity under the bar
with respect to an. Equation VI. 14 is a constant coefficient quartic
equation in w0 which may be solved by standard procedures. The
extraneous root introduced usually causes no difficulty, since it lies near

- -U—Xf . In the limit of infinite steady state flux, the stability
x Ya<%o
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2
criterion becomes equation VI. 15 if VZ§O:~BO io'

o)
k'b’I
)

, kY
2.2 _2_ 2 X
- - > €
B LBO + Of

%)

k*-1-L = min(f A, ) (VI. 15)

The appearance of the term LZBOZ is a serious error, and illustrates
the breakdown of the assumed form VI. 13 in the limit of infinite flux.
However, for low flux values, the criterion approaches that of the
clean reactor and should be a good estimate. Also, the relative
simplicity of VI. 14 usually makes the calculation of this estimate of

the eigenvalues worth while.

The Variational Estimate When D is a Function of Space

Now, a somewhat more complicated Lagrangian is formed for
the case when the diffusion coefficient D is a function of space. The
Lagrangian formed by importance function and the flux has been

(64-66)

foundto be stationary in all cases by Lewins. The equations
for the linearized importance deviations may be developed in a
manner similar to the development of the linearized flux deviations.
Therefore, in the state space notation used previously, VL. 16 is
stationary.
[7‘(; L@ 7md3r - w [7(;1 ME) X a3+ oe? (V1. 16)
v v
Here, ?m and —X:n are the approximations to the vector eigenfunctions

+

q)l‘l‘l and (lll‘l'l

The elements of }—(m may be formed from the



-71-

approximation of the thermal flux by means of equations similar to
V.2. The elements are thus functions of com, so that VI. 16 may be
transcendental in com. If this is not desirable, some elements of
)Z m Py have to be guessed independently. This probably increases
the magnitude of the error term. A further drawback is that VI. 16
contains many more terms than the Lagrangian, VI.1, of the scalar
equation.

Finally, one small brief mathematical point will be brought up
in this estimation problem. If all elements of 7—(m must be guessed
independently, the relationship VI.17 is probably slationary in c,om
even inthe case of multiple eigenvalues.

= = 3
fx; (fxm dr
7

Co
m

- + o €% (VL. 17)
— _ 3
[7 7,

Vv

In the finite difference case, Ostrowski

(67)

has shown this
expression to be stationary if all elementary divisors are linear.
He has also given an example of a non-stationary point if the
elementary divisors are non-linear. But the assumption of the
diagonalizeability of the finite difference operator implies linear

(68)

elementary divisors, so VI1.17 may be assumed stationary.

Relations With Reactor Transfer Functions

The transfer function of a uniform reactor, considering only
the thermal flux, is equivalent to the spatial variational equation

VI. 10 with 0’2 and O( € 2) set equal to zero and the fundamental
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mode shape considered. If the effect of delayed neutrons had been
included in the original model, IV. 7, then VI. 10 would yield the

1
(1) It might be said that the variational

familiar inhour equation.
procedure yields a point reactor transfer function that incorporates
the effect of spatial variations. The effect of spatial variations is

currently the topic of much research interest. (69-71)

The only
drawback of the procedure is the transcendental nature of the
expression for Ldn in mest cases.

The analysis by Kaplan modes shows that the transfer function
itself does not ''vary in space!'. What really happens is that, in the
non-constant coefficient case, the modal shapes are not exactly the
same for each root of the inhour equation. The inhour equation then
corresponds to the scalar equation for the Kaplan modes. The
changes in shape of the modes are illustrated by Figures VIIL, 4, § ,

and 6 , giving the shapes associated with different values of the

Kaplan eigenvalues for the xenon case.
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CHAPTER VII
ANALYTICAL DESIGN OF A SPATIAL FEEDBACK CONTROL
SYSTEM‘

Three fundamental questions must be investigated before a
spatial control system can be proposed. Is it possible to control the
reactor with a given number of control rods? What types of input
are encountered? What kind of response is desired from the control
system? These questions will be discussed before a method of

spatial control system design is presented.

Controllability

(22)

Prevalent opinion seems to be that many regional control
rods are necessary to control spatial oscillations in a reactor.
Appendix C gives mathematical proof that the number of control rods
needed is only equal to the maximum multiplicity of the Kaplan
operator, plus those needed for power control. In light of the
assumption that only geometrical multiplicities are permitted, this
means that spatial instabilities in a reactor of one, two, or three
spatial dimensions need be controlled by at most one, two, or three
extra control rods, regardless of how many modes are unstable. The
proof is given formally as a theorem in Appendix C. Although
relegated to an appendix in order to enhance readability, this theorem
is one of the major conclusions of the thesis. The theorem applies

only to a linear model, and so is not valid for large inputs that

necessitate use of a non-linear model.
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It is assumed that there are only a finite number of unstable
modes and perhaps a number of stable modes, all of which are
controllable. This leaves an infinite number of stable modes un-
controlled. Since the uncontrolled modes can be chosen to be the
more stable ones, their damping of any input is usually acceptable.
By neglecting the infinite number of the more stable uncoupled Kaplan
modes, the problem is reduced to that of controlling a finite number
of modes. The controllability theorem gives the conditions under
which any finite number of modes can be controlled.

The controllability theorem states that any finite number of
modes of the reactor model III. 13 can be returned to zero by the
action of a control if:

1) There are at least as many control rods as the maximum

multiplicity of the spatial operator IV. 8.
2) All control rods are not on any possible nodes of a

combination of modes having the same eigenvalue.

Note that although a reactor may be controllable with only a few
control rods, this does not mean that response to an input cannot be

improved by the addition of more control rods.

The Input
Excitations of the spatial control system usually come from two
different types of processes. Omne process, an input, comes from
changes in the operating level, following the commands of the reactor

operators. Another type of excitation comes from the random
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disturbances inherenl within a reactor, as mentioned at the end of
Chapter 1L .

Since the Kaplan modes permit complete uncoupling of the
fundamental from the harmonics, the power control system will not
excite the harmonics by inter-mode coupling. Furthermore, if
condition III. 13 is met, small power adjustments (that keep the system
nearly linear) will not provide an input. Therefore, only the larger,
non-linear shifts in the operating level will affect the spatial control
system. These shifts in the operating level are brought about
suddenly by the attempts of the system to compensate for a large load
change or a change in the steady state reactor properties. These
shifts in operating level usually occur infrequently, and so may be
approximated by a step input into the system.

The random disturbances inherent in the reactor processes
come from the random variations of the reactor parameters. These
random parameter variations are usually uncorrelated. (72)

Since most of the excitations are of these two types, the spatial
control system should be designed to give optimal response to step
function inputs and white noise parametric excitation, in addition to

acceptable response to other excitations.

The Criterion

To evaluate the effectiveness of a control system, some number
should be determined to measure the controlled response to a class of

inputs. Since the purpose of the reactor spatial control system is to
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return the flux deviation to zero, a measure of the flux deviation over
time is a good criterion by which the control system design can be
evaluated. This {lux measurement can be taken in many ways. For
example, one way is to calculate the expected number of deviations
occurring that are greater than a certain value. Of course, both
positive and negative values must count, or a control system that
continually made the negative deviations very large would be considered
very good. Therefore, a measurement of the flux deviations must lead

to a positive definite criterion, such as lsb(?, t)l < f(r,t) or
f tl _ 2a _ 3 _

min [¢(r,t)] f(r, t)dt d"r, where f(r,t) is greater than zero
V t

and ¢ is a positive integer.

However, it is not enough to limit the deviations of the flux.
As is known from the section on controllability, the motions of a few
control rods can essentially return the flux deviations to zero. By
making the rod motions large enough, the deviations can be returned
to zero almost imme diately. Large and quick control rod motions
are not permitted in the practical case of an operating reactor. The
control rod motion should be limited so that the reactivity never ex-
ceeds prompt critical. Furthermore, one of the assumptions of the
linearization was that of small control rod motions. For these reasons,
a positive definite measurement must be used for control rod motion.

2a
1
Similarly, these may be of the form of lun(t)‘ éfn(t) or minj [un(t)] X
t
fn(t)dt. Therefore, a criterion to measure the effectiveness of a

reactor spatial control system must usually take into account the

control rod motion, as well as the flux deviation.
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In summary, the conditions under which control is possible,
the types of input, and the types of criteria have been discussed.
The design of any spatial control system must take these factors into
account. The next section gives a method for design of a spatial
control system that is optimal for a certain type of criterion and

input.

Feedback Control Design for Minimum Integrated

Quadratic Loss

This section presents a method of analytical design of a reactor
spatial control system that is optimal, in the sense that it minimizes
the integrated quadratic loss for any initial condition of the state
variable as an input. A criterion formed from a quadratic of the
flux deviation plus a quadratic of the control rod motion forms a
quadratic loss matrix. The system minimizing the integral of the
quadratic loss over the reactor volume and response time is considered
optimal.

The selection of initial conditions as an input and integrated
quadratic loss as a criterion may not be the best for every reactor
spatial control system. The methods and results obtained by the
study of the control system resulting from these selections, however,
may serve as a guide to the design, or as a measure of the effective-
ness, of any other system designed by any other means. The usefulness
of these input and criterion selections stems from their ability to
yield a very simple constant linear feedback, in addition to the fact

that there are physical foundations for their selection.
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The two most commonly occurring excitations of the control
system, step function inputs and uncorrelated parameter variations,
are equivalent to the initial condition input under a quadratic loss
criterion. If all quantities are related to the steady state resulting
as t —»00 after the application of a step, the problem is ""turned
around' so that the old steady state conditions become initial
conditions for the new state, as the '"height! of the step. In this
manner, a step function input may be treated as an initial condition

(73, 74) that

input. Also, for the finite mode case, it has been shown
the feedback calculated for uncorrelated parameter variation is
exactly that calculated in the initial condition input case.for the
quadratic loss criterion. Since the step function input and parameter
variation are equivalent to initial condition input, feedback calculated
from the initial condition input will be optimal for most excitations
encountered in the reactor.

In addition to being a criterion that has some physical foundations,
the quadratic criterion yields a linear system as a feedback. A
linear system that is strictly stable for any initial value is bounded
for all bounded inputs. Therefore, this feedback gives a stable and

probably acceptable response for any input small enough to preserve

the linearity of the system.

Furthermore, the quadratic criterion can be formed quite
generally, so that the addition of weighting functions can change its

character quite a bit. First, any part or function of the state
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variable can be included in the response measurement by changing

variables to form the quadratic, as in*VIL 1.

¥, t) = H () =5, 1) (VIL 1)
Specifically, in this case the deviation of the flux is probably the
guantity of interest.
i(r, t)
¢E,t)=(0 0 1) | x(=,1) (VIL. 2)
¢, 1)
Next a general weighting function in space can be incorporated
into the quadratic by defining a symmetric matrix that is a positive
definite function of r, denoted—é— Q(’;)_ Then the integrated quadratic

measurc of the rcsponse can be represented as VIIL. 3.
4
—Tey, T - 3=
_;f leit QM2 dr d (VIL 3)
t A
o)

It is possible to form a linear, time-varying feedback if N and &
are extended to include time varying functions. (75)

Similarly, a quadratic in the control effort can be formed by
defining a constant coefficient symmetric positive definite matrix % R.
The elements in R are chosen according to the relative motion

desired in each control rod. Then the measure of the control rod

motion is VIIL. 4.
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1 - -
2—] uT Rudt ° (VII. 4)

The two measures, VIIL. 3 and VII. 4, are added together and
their sum is a criterion of the "optimality' of the system. In general,
if better response is desired in a given feedback system, it can be
obtained only at the expense of increased control rod travel. Con-
versely, control rod travel may be reduced only if poorer response
is acceptable. This is the reason for using the sum of the two
measures as the criterion of optimality.

Since each measure is determined to an arbitrary multiplicative
constant, one ''constant of proportionality! must be deter mined to
judge the importance of flux deviation compared to control rod motion.
This essentially determines the stability margin of the system. The
constant of proportionality may be looked upon as the price one is
willing to pay for better resp onsc in terms of control rod motion.

This constant may be determined by trial and error to give the
minimum control rod motion and maximum stability mar gin.

It should be noted here that the criterion must converge. One
control system cannot be compared with another if they both yield an
infinite criterion. This is an important and subtle point, especially if

t, =9»00. Since the power control system must be free to respond to the

1
command of the operators, the deviation of the fundamental must not

enter into the criterion. Therefore, the criterion must be made up

of the deviation of the harmonics and of those control rods which are
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driven by the spatial control system.
In light of the above remarks, the problem may be stated
mathematically in terms of the calculus of variations. Find the

infimum of VII. 5 subject to the constraint VIL 6.

o V 0! (VIL. 5)

Here, VII. 6 is written for any linear model of the reactor.
/a Zig = x 2 +/&N—l N (VIL 6)

If the state variable z is representable as the infinite sum of
Kaplan modes, a truncation to a finite number of modes may be

(75-81)

immediately put in the form of present theory by integrating
the spatial terms to arrive at a constant coefficient time dependent
problem. However, to investigate the conditions under which the
finite mode solution tends to that of the infinite mode solution, the
problem will be treated in the infinite case for a while longer.
Accordingly, define a Lagrange multiplier EH(?’ t), a real
vector function of space and time. This may be formally identified

(65)

as the importance, in the sense of Lewins. From VII 6, the

inner product with g H ig zero.

t
1
=T — — -~ 3
J' ng (L2 + ‘&N-luN-l"/{ ZpldT de =0 (VIL. 7)
t v
O
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Since VII. 7 is equal to zero, it may be added to VII. 5 without changing

its value.

t
1
i 1T = ZT 3
v‘f (2 UN-R N ngﬂN-ld TN O
f v
O
ot
+ ff(—%“TWT@%;JrgHXZH—gFﬂ,Z) djr dt
t v
O

(VIIL. 8)

The first integral is a minimum if the gradient of the integrand with

respect to Uniog is zero.

— =T 30 =
RuN_1+ ng/yN-ld r =0 (VII. 9)
v

Since R is positive definite, it can be inverted.

CEE NN P MY (v 0
v

Equation VII. 10 gives the optimal control in terms of the adjoint.
The criterion v will then be a minimum if the adjoint is picked such
that the second integral on the right of VII. 8 is a minimum. To
calculate the minimum of this integral, the boundary conditions must

be such that it is equal to the adjoint integral.
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t t
1 1 _
=Tw— T p2) 3 —TwTg | =T yTg 3
f f{gHXLH—SH/{szrdt:[ ﬂzHof §H+ Ziy §H)d r dt
to Vv to v
(VII. 11)
66)

Using certain physical arguments, Lewins( ascribes a physical
meaning to the adjoint in this case, calling it the importance. If the
physical arguments of Lewins can be accepted, then VII. 1l is true for
any diffusion coefficient that is a positive function of space. If his
arguments are not acceptable, the diffusion coefficients must be a
constant and Green's theorem invoked to show VII.1ll. This is quite
similar to the variational procedure undergone in Chapter VI (see
especially equation VI. 5), except that the reactor model may have

many diffusion coefficients. Using VII.1ll, the gradient of the second

integrand of VII. 8 with respect to EH is set equal to zero to assume a

minimum for the criterion.
- Tz T -
/(TfH:"I Ey-H &@¥*= (VIL 12)

Equation VII. 10 can be put into the system equation, VIL 6, to form

another equation dependent only on § and z.
= - -1 — 3
Uz -L7-Yr fg;ﬂﬂN_ld r (VIL 13)
v

Equations VII. 12 and 13 form a distributed parameter analogy to

. . (75)

Kalman's '"canonical equations!'.
Having derived the canonical equations, their solution reverts to

calculating the feedback for a finite number of Kaplan modes. Note,
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however, that the equations developed for a finite number of modes

from the canonical equations, VII. 12 and 13, give the same system as

if the spatial dependence had been integrated out initially. This is

true whether or not the diffusion coefficients are functions of space,

and so lends credence to Lewins' physical arguments.

(75)

To apply specifically the methods of Kalman for determining

the feedback, the canonical equations must be reduced to a finite set

of equivalent real, constant coefficient total differential equations in

thc modal time cocfficients. Although these modal coefficients can

be those of the clean reactor modes, for reasons previously stated

the Kaplan modes will be used.

It has been shown in Chapter IV how the state equation may be

reduced to an infinite set of complex time dependent equations for the

Kaplan modal coefficients. The expansion for the state variable and

the importance are written as VIIL 14.

QO

Ty = Y At NG

oo A
g, 0=Y vrm Y m
m=

(VII. 14)

According to the procedures described in Chapter IV, the canonical

equations for the modal time coefficients are given as VIIL 15.



-85-

(VII. 15)

When these equations are truncated to M modes, they may always be
put into real form by separation into real and imaginary parts, as

described in Appendix C. Then the equations VII. 15 are denoted as

in VII. 16.
2=F3-GR'c" B
(VII. 16)
b--F'b-Qa
In VII. 16, the following definitions have been used:
Re(alz or Im fals Re‘(bik; or Im {blﬁ
a = : b = :
Re fa, 4 or Im iaMi Rejby} or Im{bij.
where
M _ M A
= ). a ®F @ and TEo=y brm ¥ @,
m=0 m=0
ke §m ~ Tm
Gmn: {<¢m’ ﬁn>] , F = direct sum of wml or -
m gm

where W= §m+ i G‘m, according to Appendix C, and
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Q.= 1< ‘Zm’ ¥ 'g % ¢j>§

for m, j=1,..., M, the number of modes considered, and n=1,..., N,

the number of control rods.

Having the form of VII. 16, the procedure of Kalman(75) can be
used. Define an M x M time variable matrix P as in VIIL. 17.
b(t) = P(t) a(t) (VIL 17)

The validity of this substitution and the proof that P(t) is positive
definite and symmetric are given in Kalman's paper. Putting VIIL. 17
into VIIL. 16 gives VIIL 18.
il — -1 —
a = Fa -GR GT Pa
(VIL 18)

s T — —
Pa =-F Pa -Qa

-

a

e

hd

The top expression for a can be substituted into the bottom expression.

1

’—-— —— — - r—— J—"
-Pa = PFa+ FTPa -PGR GTPa + Qa {(VIIL. 19)

This is true for all a, and so a matrix equation for P is obtained.

T

P =-=PF+ FLp-PGR™} GIp+ Q (VII. 20)

Kalman has shown that the unique, stable solution of this matrix
Riccati equation backwards in time is the desired solution. Therefore,
one may always compute a positive definite symmetric matrix

solution to VII. 20 by computing, on a computer, the solution to the

initial value problem VII. 21,
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. -1
P =PF+ FTP -PGR GTP+ Q (VII. 21)

with P(0) = O. The steady state solution to the initial value problem
VII. 21 is then the constant coefficient matrix that determines the

constant linear feedback to form u(t) as in VII. 22.

M A T
AUt = RV g,};ﬂN_ld% -R7 [ Z b*(t) ‘P;A?)}ﬂl\;mld%

reactor V reactor m-=l

(VIIL. 22)
Here, the b*(t) are found by VIL 17.

In summary, Kalman(75) has given a procedure for determining
the constant coefficient optimal feedback control of the finite mode
model. This procedure is quite useful as a guide for suggesting the
form of spatial control systems, as is shown in the examples in the
next chapter. Its usefu(lness stems from the fact that only a few

modes in a reactor really need to be controlled, if the control system

does not interact with the uncontr olled modes.

A Discussion of the Infinite Mode I'eedback

It is of interest to know the conditions under which the solution
for the finite mode case tends to the solution in the infinite mode case,.
Knowing these conditions will give an indication of the usefulness of

including more and more modes into the finite mode design. If the

o0 -—
sum of the remaining modes, ), a_(t) ¥ (r), tends to zero for
n=Mtl m

M tending to infinity, then there is justification for neglecting the

higher modes because they contribute nothing to the measure of the
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deviation and need no separate control.
It can be shown that the sum of the remaining modes tends to
’ c
. ‘s _ 2
zer o under certain conditions. If Re {wmi = _gmg ¢ m for all

m > M, where ¢, and c, are any constants such that ¢, » 0 and ¢, 7 1,

1 1 2
then for any bounded control or input, the limit of the sum of un-
0o —_
: i t T
controlled modes, hmM-«;oo z am( ) ’fm(r), equals zero for all
m=Mt1
t > 0.

To demonstrate this, each term in the sum will be shown to be
smaller in absolute value than a term in a summ thal tends Lo zero.

Equation VII. 23 is obtained using the Schwartz inequality.

(0 0] _ (e0)
Z a (t) l,Lm(?) < Ill'm(?)l Z lam(t)l (VIL. 23)
m=M+1 A% =M1

From IV.18 is obtained an expression for am(t), where _ﬁ( T)

may contain a continuous input as well as a control.

-T) —
a (t)=a ( w(t)dr  (IV.18)

t
w_ t Ea w...(t
O)e @+ < 4> fe‘“
I
0

Equation IV. 18 is put into VII. 23.

o0} 00 ? t
3 ol feof Y
m=M+1 max m=M+1

(VII. 24)

(0] t
Z egm e m dT

m=M+1 0
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Note the u are bounded by hypothesis and the am(O) and ‘{'m(?) are
bounded because z(r, 0) is bounded. The integral in VII. 24 may be

evalualed easily.

g t t -7 T fmt
e mf e TMigp e o oL (VIL 25)
0 fm gm

This last inequality follows because € m is hypothesized negative for

all m > M. Using VIL 25, VIIL. 24 is rewritten as VII. 26.

(¢ o] [0 0] T
Y lagole fa o ) fF
m= M1 EX =Ml
A (0]
+1u, < 9> . 4 (VIL. 26)
! ’maX ! m Jimax mZM+l-gm

The hypothesized inequality for the asymptotic form of fm is now

used.

(e.0] (0 9] ¢

—tclm

D lag®ela @ ) e

m=M+1 maE L =Mtl
A e 0]
+lui \ |<L{um, xj>jl Z ——~1--—-—C— (VIL 27)
ma¥x max m:M+l c.m ’

1

For allt » 0, a suitable positive constant C4 Can be chosen such that

VII. 28 holds.
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o 0 -c 0 C
2 ds 3
< —

2 [a_(D)] € c; Z m £ c3f <, &1 (VII. 28)

=M1 m-Mt1 MoS (1-c,IM
C:j —
Since limM - T " 0 for c, > 1, and the ¥ m(r) are
2
(1—CZ)M

bounded, VII 28 may be used in VIIL. 23 to prove the hypothesis.

The asymptotic behavior of the eigenvalues of the Sturm-
Liouville problem satisfies the hypothesized behavior
Re iwmzf ~¢m 2 for all eigenfunctions except those over infinite

(82}

or semi-infinite domains, In the infinite or semi-infinite cases,
the constant <, is equal to one, and not greater than one as required.
However, all regions in the reactor optimization problem are
considered bounded, so this restriction is of no great importance.
The restriction that is of great importance is that there can be
only a finite number of eigenvalues whose real parts are greater than
any real number. As was mentioned in Chapter IV, it is likely that
any matrix differential operator that has a row with no operator on
the diagonal will have a set of eigenvalues tending to some finite
number. This is the case in the xenon oscillation problem. Physically,
any motion of the control rods must disturb the xenon distribution,
which cannot be damped out immediately by quick flux readjustments.
Therefore, there are an infinite set of modes that do contribute to
the criterion, despite the fact that they are stable. In light of this, it

seems to be futile to try to improve performance by controlling more

than a certain number of modes. Any truly optimal feedback that
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would satisfy the canonical equations should include an infinite
number of modes for this case. Fpom the remarks following the
controllability theorem in Appendix C, it would seem that point
control rods would be inadequate for this, and perhaps something
like a spatially distributed poison would be necessary. The Euler
equations and feedback can be derived for this case, u(r,t), but

this is of no practical importance at present to reactor control

system designers.



CHAPTER VIII

EXAMPLES

Example A: Types of Multiplicity Encountered in a Reactor

A geometrical multiplicity is encountered in the solution for the
clean reactor modes in cylindrical geometry for the case of constant

coefficients.

a 0 ) =DV +veZ - Z)o_( (IV. 1)

Solutions to IV.1 in this example are given in terms of sines and
cosines in the azmimuthal direction. For cach mode containing a sine
term, there is a corresponding mode with a cosine term that gives
the same value of a. Spatial symmetry suggests a rotation of 90° to
construct an orthogonal mode, so this is considered a geometrical
multiplicity.

A non-geometrical multiplicity might arise in the case of a
cylindrical reflected reactor, with regionally homogeneous compositions
in the core and reflector. In a multi-region reactor like that pictured
in Figure VIII 1, the second harmonic of the flux deviation in one
region may match the interface conditions of the first harmonic of the
flux deviation in a neighboring region. Although it is doubtful this can
happen, the possibility is still an open question, especially in reactors
with a large number of regions.

This improbable circumstance might give rise to the two
distinct modes pictured in Figure VIIL. 1. These two different modes

have the same eigenvalue, as can be seen from the symmetry about
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Fig. VII.1 Illustration of a Non-Geometrical Multiplicity
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the center line of the reactor. Whether it is possible to construct
two orthogonal modes from the modes illustrated is not known. This
is an illustration of non-geometrical multiplicity, because the modes
are in one linear dimension and thus a shift of coordinatcs will not
produce an orthogonal mode.

Note, however, that any asymmetric perturbation in materials
praperties or the placing of the boundaries will break the multiplicity.
It is safe to say that any non-geometrical multiplicity would be a

remarkable coincidence.

Example B: Asymptotic Eigenvalue Behavior of Kaplan
Modes

Consider the Kaplan modal equation VIIL. 1 in linear geometry,

where a, b, and ¢ are constants.

|f(nll) 4 b (/,I(rll)
w = 2 (VIII. 1)
L2 d 5//(2)
? m ¢ d 2 m
iy
If the boundary conditions are ‘;(O) = ‘7—&(11) =~ 0, then [/:m(r) is

proportional to sin %Ir—r— , and the eigenvalues are the solution of the

characteristic equation VIII. 2.

2
(w_-a) {wm + {P-i;‘—f) }—bc =0 (VIIL 2)

The solutions are shown as VIIL. 3.
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TR Ny ST

2
nw
]
The limit as n tends to infinity of the positive square root shows
that one set of W/ m tends to negative infinity. In the case of the

negative square root, further analysis is needed. The square root

is expanded in VIIIL 4.

- 1 nmy h 1
w :'Z[a“ _}} 1-1-2 > O("’Z,) (VIILA)

The limit as n tends to infinity may now be taken.

nmw 2
- )+ ve
11 e OO m .
n ~——p OO {n'ﬂ') ~

The point is that especially when there is no differential
operator in a row of the matrix operator, as in VIIL. 1, then it is
possible that there is an infinite set of eigenvalues tending to some

finite limit.
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Examplc C: Spatial Fcedback Control of a Rcactor With Uniform

Poisoning

Example C illustrates the method of spatial feedback control
for a very simple model. One averaged value represents all energy
groups of flux and all the delayed neutron groups, and all other
effects are ignored. Therefore, this model cannot exhibit spatial
xenon oscillation, and the spatial control is probably of no practical
importance in this case.

The model is analogous to a homogeneous slab reactor, whose
spatial variatons about an operating point are to be controlled. The
state equation, II. 14, is a linear constant coefficient scalar equation

in this case.

N
2
108 _ . 0" % §
;—T = Dg;z + (Vﬁff“ i-a)I - IUnS(I"'Tn) (VIII. 6)

n=1

The steady state equation, IIl. 1, is given as VIIIL. 7 for this case.

0=D 2 $ tveZ -2 )% (VILL. 7)

For a slab of width h, the steady state flux is then VIII. 8.
T =3 sin T (VIIL. 8)
o] 0 max h

Criticality then requires VIIL 9.

2
0=-D (%} tve2 -3 (VIII. 9)
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The linearized kinetic equation of the flux variation, III. 5, is thcn

VIII. 10.

N

2

1 ag ) ¢ . TT

v o P arZ * ('Vé'if—za)*—-io max sm——E«Zun(t)S(r-rn)
n=1

(VIII. 10)

Solutions are of the form VIII. 11,

QO
¢: @ Z a_(t) sin (——T’l}t-l—)lrf— (VIIL. 11)
m=0

Therefore, the deviation of the harmonics, IIl. 6, is expressed as

VIIL 12.
¢ - ¢_~\/§E‘£ a_(t) sin IE (VIIL. 12)

If the spatial control system is not to interfere with the power control

system, condition III. 9 must be imposed.

1 N-1
ZATTI'n
Z g sin 2 (VIII. 13)
n=1

2 TI‘I’N
uN . [Eo max sin h

Substituting VIII. 12 and 13 into VIIL 10 and using the criticality
condition VIII. 9 to eliminate the fundamental mode, the state equation

I1I. 12 can be written in the form of VIIIL 14.
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3¢ 2
1 H _~ 8
v ot P2 fut (PR 20 ¢y

‘ (VIIIL 14)

T T
-2

N-1
. Tr 20 d . N
——Eo rax SR Z [J(r—rn)~5ln L o h J(r-—rN)] un
n=1

This is the system equation, as indicated in the chapter on
computation of the feedback, VIL 6. In order to compute the optimal
feedback to control the system, the quadratic loss criterion must
be decided upon. For simplicity, only the square of the harmonic
flux deviation and the square of cach control rod deviation will be

used. This gives the criterion VIIL 15, corresponding to the general

case VII. 5.
<0 h N
1 2 2
Y :7f f $rdrt e Zun dt (VIII. 15)
0 0 n=1

Selection of this criterion implies that ¥ =1 and @ =1in VIL 3, and
that R is ¢ times an N x N unit matrix.

In the criterion VITI. 15, ¢ is the constant of proportionality
representing the price one is willing to pay for flux deviation in terms
of control rod movement. The constant @ should be chosen after all
calculations are completed, repeating system design for different
values of a to get the desired balance between system response and
control rod action. However, for this example, one value of ¢ will
be chosen from an initial rough estimate, and will be used throughout

the example. To provide an estimate, it will be conjectured that the
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contribution of deviation term at its maximum in the criterion should
equal the contribution of the control energy term at its maximum.
At its maximum, suppose the deviation is to be no more than

ten per cent of the steady state flux.

—

9‘}1 BN US ¥ S (VIIL. 16)

At the maximum of the control energy term, suppose the
control reactivity is to be no more than ten per cent of the total
material reactivity, so that the time-varying absorption term in

equation III. 4 can be ignored.

max

N
¢H Z u (t) S(r-rn) = 0. l(ver—Za)gﬁH (VIIL. 17)
n=1

Multiply VIII. 17 by the adjoint and integrate over the reactor.

N h
Z u_(t) ﬁi(rn) = 0. ez - éa)f $ o dr (VIII. 18)
n=l max 0

For simplicity, assume the flux deviation is constant in VIII. 18.

N
Z un(t)] = 0. (P€& ff- Z_a)h (VIII. 19)

n=1 Jdmax

Also for simplicity, assume that each maximum is equal and occurs

at the same time.

B ) -1
u o= 0. 1h(ve 2,2 )N (VIII. 20)

By the conjecture that the maximum of the flux deviation term equals

the maximum of the control energy term, relations VIIL 16 and 20 can
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be used to find a.

b

> y 2
(0.1F___)%ar = aN [o. h(veL - Z )N7| (VIIL 21)

o

This rough calculation determines «.

§ 2
g =N [ _*o max (VIIL. 22)

Ver," Za
The value of ¢ can now be incorporated into the criterion,
.. . th
VIII. 15. In addition, the constraint on the N~ control rod, VIII. 13,

must be included in the criterion.

0 h
1 2
V‘“Zj f $ dr
0 0
_{ 2 N-1 o N-1 T 2
p N[ Zemax) | 572, e NS w sin® 2 dt
f <a n=1 n=l

(VIII. 23)
From equations VIII. 14 and VIII. 23, the matrix notation used in

VII. 5 and 6 may be evaluated.

—_— _ _ —-T _
2y ?QH He1, @-y Unor = (e vy )
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4 sin4 = sin2 ! szlnZ "N-1
B i )
1+
sin TTI'N sin T
3 2 h h
R, - N[Eemex)) ,,
) Peii 2, Tr T
wr T
) .2 N-1 . 4 "N-1
sin” — sin T . sin ——
) sin T”'N sin TTI'N /
h h
(VIIL. 24)
1 d2
/a:‘xF’ X:D"‘;z”"ff“fa’
., TT
ﬂ 5 Sll’la—-h.l
N-17" o max®i? TR | 00T 5 T Sz §troryy)
sSin "E———
Tr
sin2 N-1
il oy O
- 5 T T rN)
sin o

Using the definitions VIIL 24, the canonical equations VII. 12 and

13 can be found.

(VIIL. 25)

o g 2
2 {D%;Z*Vﬁzf’ 2.8y #u

h

8¢ 2

1 _"H 8~ | -1 T

v - (D o2 FVeZ Za]?"H' 'Z]N—l Rye) fﬂN—lgH a
0

(VIII. 26)
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These canonical equations, VIIIL. 25 and 26, can be solved for
any finite number of control rods, N, and approximated by any finite
number of modes, M. For simplicity, only the first two harmonics
will be considered, so M=2. To control the reactor, it will be assummed
that the minimum number of rods will be used in this example. By
the controllability theorem, since the reactor is one dimensional,
one extra rod in addition to the power control rod is needed. This
means N=2. Henceforth, in this example, the feedback for two control
rods controlling the fundamental and two harmonics will bc computced
by the methods of Chapter VII.

From VII. 14, the approximate forms for ?QH and § 1y @re given
by VIIL. 27, and note that b* equals b in this case only because & and

/6{ are Hermitian.
[ 2v . 2nr . 3mr
¢I—I V& lal(t) sin == + a,(t) sin — ]

_ PAY . 2Tr . 3rr
51—1_ -\f-—E— (bl(t) sin — + bz(t) sin — )

(VIII. 27)

If VIII. 27 is used to express the solutions of the canonical equations

VIII. 25 and 26, multiplication by ~\/§H\7—sin 2

LESN 2v sin 3mr and
b TVH® "

integration over r from 0 to h gives an equation for the modal time

coefficients corresponding to VII. 15.
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> T T
v(veZ -2 ) sin” sin?_ 2
5-w.a - f Za h b o (sb. + s,b.)
1 11 111 272
Tr T .
sin’ —— + sin’ —
> Tr Tr
V(Véz '2) sin  —— sint 2
2 -woa - f =2 h h 5 (sb + s.b.)
2 2 2 1rr1 T 2711 22
sin  ———— *t sin4-——-2l
h h
(VIII. 28)
&
bl = —u)lbl— va,
[ ]
by = mwpby-va,
In VIII. 28, w2 and s are defined by VIIIL. 29.
m m
2 fm 2
w =V Uez’f- fa-—D(m’rl) (—H) ]
(VIII. 29)
in {(mt+1)mwr _Sin"l TrI'ZSin LEST (Irx+l)1rr2
Sm ~ %t h h R S TR

Using the material constants of Table VIII. 1, a reactor width

of 250 ¢cm, and control rods at .25 h and . 6 h, equations VIII. 28 are

put in the numerical matrix form VIIIL 30, corresponding to VIL. 16.

él -1. 024 0 a 0.01034 0.00823 bl
az 0 -2.304({a, 0.00823 0.00656 b,

(VIIL. 30)
’
b, . -1.024 0 \[b, ) 10 0 a
b, 0 -2. 304\b,, 0 10/ 1|a,
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TABLE VIII-1

Material Constants for Example 1

migration length

135
I atoms/fission

neutrons/fission
iodine decay constlant
xenon decay constant

xenon microscopic absorption
cross section

resonance escape probability
non-fast leakage probability
fast fission factor

Xel35 atoms/fission
average neutron lifetime

infinite homogeneous multi-
plication constant

maximum steady state flux
density

-2 160 cm?
2,

¥, = 0.061

Y-2.5

/\I=2.9x10_5 sec

)\ = 2.1x10—5 sec
x

G'X: 3x10—18 cmrfd
a
p=1
gth:1
€ =1
¥ =0
x

y :l/iaV:O.lsec

0 _ veZs
Sa

=2.0x 1014 neutrons/

k = 1. 0256

}.O max

cm -secC
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Using VIIL 30 and VII. 19, the feedback matrix P may be found by

solving VIIL 31 backwards in time from an '"initial"' condition of

P(t)) = 0.
[P Ppp ] -1.024 o \[p, P, ) P, P, | FLoz4 o0
P, P,, 0 -2.304[\P, P,, | \P P, 0 -2.304
(VIII. 31)
 [Pu P, | [0.01034 0.00823\ [P P, . 10 0
P, P,,/|0.00823 0.00656] (P, P, 0 10

Equation VIII. 31 can be solved easily on a computer, noting the
equilibrium solution after the computer has proceeded a while. This
is feasible for systems of fairly high order, because of the large
storage space of modern computers. However, instead of solving
VIII. 31, the low dimensionality of VIII. 30 makes hand computation
feasible. Egquation VIII. 30 may be rewritten to find the eigenvalues

of the system.

(a;y (-1.024 -0.01034 -0.00823y ra)

ay 0 -2.304 -0.00823 -0.00656 a,
d ¢ > =9 < 7o (VIIL. 32)
dt | b, -10 0 1. 024 0 b,

(b,) Lo -10 0 2. 304 Lbzl

This may be solved for the eigenvalues.

Ay =+ (1.024+ 0.02857)
’ (VIIL 33)
)‘3 4 = (2.304+ 0. 01453)

2
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Stability requires the minus sign, and so the closed loop poles are
-(1. 024 + 0.02857) and -(2. 304 + 0.01453). This small improvement
of the closed loop response over the open luop is due to Lthe [acl that
the control energy is weighted quite heavily, and that the open loop
poles are stable.

To find the fcedback, lct

’ / - 3 _ -
a)efae 1.05257¢ . -2.31853t
N o -1.08257t o -2.31853¢
L L (VIII. 34)
bl g e-l. 05257’5+ F e—Z. 31853t
b :Ge-l.08257t+ He~2.31853tJ
L 2/ N
Then, to find C, E, and G, put VIIIL 34 into VIIIL 32.
ol lko.02857 0 0.01034 -0.00823 | [a]
0 0] -1.23143 -0.00823 -0.00656 C
< >’W > < » (VIII. 35)
0 -10 0 2. 09657 0 E
0 0 -10 0 3.37657 G
\ / ] / . J

Using the values found from VIIIL 35 and the corresponding operations
on B, D, F, and H, equation VIIL 34 can be rewritten in the form

of equation VIII. 36.

- 2
) o ) A o 107257

a,| |.0314 70,5 ~2. 31853t

(VIII. 36)

-4, 31853t

Be
b 4. 77 3.00\ [A o 1072
-.0930 154.0 | \B e
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Since b = Pa, P can be found from VIIL 36.

4. 77 3. 00 1 1\ ] 4077 - 0251

P = = (VIIL. 37)
-. 0930 154.0 -.0314 70.5 \—. 0245 2.18

The existence of a finiie unique stable solution to VIII. 31 guarantees
that the inverse matrix in VIII. 37 always exists. Note also that A
and B are determined by the initial conditions al(O) and aZ(O) and that
VIII. 37 is valid for any A and B, so that the feedback is optimal for
any initial conditions.

As a check, VIII 31 was solved on a computer, and the values

so obtained agree favorably with VIIL 37. "

4.769 -.0251

P . Iy = (VIIL 38)
computer SO\ . 0251 2.164

Having P, the feedback for both control rods can be computed.

From VII. 10, the value for ul(t) can be obtained.

" After performing the computations, a small error was discovered.
The open loop poles of this example should be -. 768 sec~l and
_2.048 sec™ " instead of -1. 024 sec~! and -2. 304 sec~l. This change
is minor and no conclusions are altered, and the method is illustrated
equally as well with either set of poles. This can be shown %asily in
the scalar case. The feedback equation is 0= 2PF + Q-R-1g4 P2,
Since R is large and F is negative, the positive definite solution for
P is -Q/2F, so P changes linearly with the small change in F.



-1068-

42
h(pe Zf'j_ )" sin T Tr
- sin (s,b, + s_b.)
4T 4T h 171 2 2
Za§o max(sm gt osin
(VIIL. 39)
4 T
h(ve 3 - )" sin Tr asl
f a h 1
= sin (s, s, P
™™ 4755 h 1 2 .
5 £ (sin + sin ) 2
aT~omax h h
Using the values of the example, U can be found numerically.
ul(t) = (-.000483 -.000173) (VIII. 40)
§-o max a.Z(t)

The action of the other control rod is found from the power control

constraint VIII. 13.

B aso .
uz(t) = ————— (. 000267 .0000956) (VIII. 41)
§ a,(t)
o max 2

This is the feedback to each control rod that was to be found. Note

that, because of the homogeneity of the reactor, if a device were set

up to divide the feedback by § o , the control system would be

max

optimal for all operating levels. This is not true in general, but

provides another hint for better overall performance.
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In the derivation of the reactor model, it was assumed that
u<.<(1)eff— fa)h, or u/Zah << k-1 =.0256 for the example.
Since a__ << E , because the flux deviation is much less than

m 0 max

the operating flux, the feedback formed from VIII. 40 and 41 certainly
satisfies the assumption.

The deter mination of ay and a5 is performed by the dectection
system. It is assumed that ® (r,t) is known at all points, so that
¢ (r,t) can be detected by subtracting the steady state, :EO(I').
From this, the inner products with respect to sin (mmnr/h) will give
the a_ (t).

m

If the flux is detected only at three points, the feedback may be
constructed from the output of the three detectors and the system
compared with that of perfect estimation. Using three detection
points, T Ty, and I3 the relationship V1il. 42 can approximately

represent ags 2y and ay.

T 21’1’1‘1 3'rrr1
’I(rl,t)- Eo(rl)‘ ( sin = sin — sin T ) (ao(t)*

J T, ZTTI‘Z 37r
< ﬁ(rz, t)- §0(r2) > = sin = sin A sin — ? { al(t)> (VIII. 42)

Tr 27T 37r
. 3 . 3 .
| §(r3, t)- §0(r3)4 \ sin -5 sin I sin —p— .az(t)J

The inver sion of the matrix will give the a in terms of the flux
deviations at the three points.
The location of the detectors can influence the gain of the

feedback. If the detectors are located favorably, this feedback gain



-110-

may be used to decrease the value of the criterion. For detectors

located at o= 25h, r,= 33h, and ra=. 5h, the feedback is given by
VIIIL 43.
u. (t)
17 | 00075 2L2508) 0140 BL 3308 L 00070 BLOMD  (yirp 43
}:ah 3 0 max 0 max 0 max

The effect of moving the detector at . 33h to . 75h is given by VIIIL. 44.

u,(t)

1 #(. 75h, t)

- 00030 BL255.8) . go018 . 000086 Bl 58
Z h 0 max §0 max §o max

a
(VIII. 44)

This decreases the gain significantly while achieving the same
response. Therefore, the same percentage flux deviation at the
first three detection points will give rise to much more control rod
action than at the second set of detection points. Thus, the second
set are chosen to give a possible final feedback configuration as

illustrated in Figure VIIL 2.

Example D: Positioning of the Control Rods

Example C has provided a simple, hand calculable example of
reactor spatial feedback control. The small change in the poles of
the system has pointed out that stable modes are hardly worth while
putting into the calculation when the penalty for moving a control rod
is so great.

However, the formulation of Example C can be used to provide

a guide to the placing of control rods for maximum effectiveness
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when the open loop poles are unstable. Instead of the stable poles

at -1. 024 and -2. 304, suppose that by‘some means these poles were
shifted to the values +0.163 and +0. 0221. These unstable poles are
one hundred times the two most unstable poles of Example E. TUsing
these values, control rod placing was investigated using

7090 Routine No. 1 (see Appendix D) to solve VIIIL 31 for different
control rod positions. Table VIII. 2 gives the results of the effect of
different control rod positions, ry and r,, on the resulting closed
loop system poles. The control effort is also minimum at the
minimum deviation, corresponding to the smallest value of the closed
loop poles. It appears that the best response is obtained at approxi-
mately ry = 0. 2h and r, = 0. 4h, or their symmetrical values of 0. 6h
and 0. 8h. These are the control rod positions chosen for Example E.
It is to be noted that in this case there is a distinct advantage to control
with rods on the same side of the reactor, which was not obvious

before attempting an analysis of this type.
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TABLE VIIIL 2

Contr ol Rod Effectiveness

The formulation and material properties of Example C ar
used, except the open loop poles are shifted to 0.163 sec”
and 0. 0221 sec™L.

Larger closed Smaller closed

r,/h rz/h loop pole-sec loop pole-sec ™! r,/h

0.1 0.2 -. 0155 -. 0350 0.9 0.8
0.1 0.3 -. 0155 -. 0805 0.9 0.7
0.1 0.4 -.0151 -. 1197 0.9 0.6
0.1 0.5 -. 0144 -. 1407 0.9 0.5
0.1 0.6 -.0129 -. 1412 0.9 0. 4
0.1 0.7 -. 0097 -. 1307 0.9 0.3
0.1 0.8 -. 0045 -. 1228 0.9 0.2
0.2 0.3 -. 0154 -. 1452 0.8 0.7
0.2 0.4 -.0149 -. 2860 0.8 0.6
0.2 0.5 -, 0139 -. 3343 0.8 0.5
0.2 0.6 -. 0116 -. 3681 0.8 0.4
0.2 0.7 -.0068 -. 2334 0.8 0.3
0.3 0.4 -.0143 -. 2197 0.7 0.6
0.3 0.5 -. 0125 -. 4153 0.7 0.5
0.3 0.6 -.0081 -. 3943 0.7 0. 4
0.4 0.5 -. 0087 -. 1768 0.6 0.5
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EXAMPLE E

Example E takes into account the xenon and iodine distributions
in a homogeneous slab reactor, in addition to the thermal flux group
that was considered in Example D. The price of the added complexity
is that a digital computer must be used in the calculations. However,
this example illustrates the occurrence and control of a spatial
instability due to xenon. The solution for the Kaplan modes by means
of shooting, the complications introduced by a non-Hermitian operator,
and the method of obtaining the feedback for the state variable from
only flux measurements are included in this example.

The homogeneous reactor in this example also has the material
constants given in Table VIII. 1. However, it was decided to make the
reactor of such a size that two clean mode harmonics are unstable at
the operating point. For the given material constants, this size is
988 centimeters.

To initiate the design procedure, the steady state operating
point must be determined. For the example reactor, the scalar steady
state equation corresponding to IIL 1 for xenon, iodine and one flux
group is given as VIII. 45.

2 dZEo N {I dz §o

k-1- - k

0 =1L
Z
dr i (]-Z§O+/\ x ©

(VIIL. 45)

This equation is obtained by dividing the scalar steady state equation by
the constant 2. and setting Y equal to zero, so that prompt xenon
Q >

is neglected. It may be recognized as the usual steady state flux
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equation, with the non-linear term arising from the non-uniform
poisoning of xenon.

A value of k=1. 0256 gives the flux shape of Figure VIIL 3, when
the peak flux is 2 x 1014 neutrons/cmz sec in the center of the reactor.
The solution to VIIIL 45 depicted in Figure VIII. 3 was calculated on the
Caltech IBM 7090 by Routine No. 2 of Appendix D. This solution is
compared with the clean reactor sinusoidal shape. The values of k
and reactor size chosen are such that the third harmonic is marginally
stable by the Lellouche criterion (see Chapter VI). Note that k as

defined in this example is the infinite multiplication constant for the

-1

clean controlled reactor, so k:Veff Zaso'

The comparatively low
value is due to the inclusion of the steady state control rod position
in zaso’ so that the value of k is determined to be that which main-
tains the steady state flux, 10, in equation VIII. 45.

After the steady state flux has been determined, the Kaplan
modes must be found for the linearized equation for the deviations
about the steady state, V.1. Since there is only one spatial variable,
the shooting technique of Chapter V can be used. To provide an initial
estimate to start the shooting, the estimation methods of Chapter VI
are used. The explicit form of the estimate is not very good because
of the high flux, and so eigenvalues are calculated for only one clean
mode shape for illustration. The transcendental estimate, however,
provides excellent agreement with the true values. In Table VIII 3,

these estimates and an estimate obtained from the clean mode ex-

pansion neglecting modal interaction are compared with the true
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TABLE VIIL 3

Comparison of Kaplan Mode Eigenvalues for Example E

Clean Clean Explicit Transcen-
Mode Mode Variational dental
Shape Estimate Technique Variational
Technique
Values are dimensionless: u.)n//\ I

Fundamental - -- 366

- - . 046

-- -- -401
First Harmonic 65.1 98. 5 54. 3

. 328 . 368 . 334

-- -- -1, 335"
Second 12.0 -~ 7. 42
Harmonie . 138 -- 2.0z

. - ~4,000"
Third -. 882+ . 863j - -1. 039+ 3. 391j
Harmonic -, 882-. 863] - ~1. 039 - 3. 391;

- - -7,900"

Desk calculated, ignoring integral terms.

True
Eigenvalue

374
. 043
-394

56.28
. 3306
-1,638

7. 63
2.00
-4, 340

-1. 067+ 3. 475]
-1. 067 - 3, 475]
-8,182
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eigenvalues obtained from tke shooting technique.

The integrations involving the re*al and imaginary part of the
estimate can be performed in seconds on the 7090 by Routine No. 3
in Appendix D. This gives a very rapidly converging estimate for the
eigenvalues, and is useful to start (and also check) the search in the
complex plane by the shooting technique.

The shooting technique can be performed rapidly on the 7090,
also, by Routine No. 4 that solves equation V. 3 for the material
constants of this example. The resulting harmonic mode shapes are
given as Figures VIII. 4, 5, and 6. The fundamental has the shape of
a sinusoid to within one percent for all three eigenvalues corresponding
to the clean mode fundamental. However, the harmonics differ
significantly from a sinusoid, and also differ significantly from one
another. This characteristic suggests the remarks about spatial
transfer functions in Chapter VI.

Because the spatial shape of the flux components of the Kaplan
modes corresponding to the fundamental clean mode are so similar,
they are all approximately bi-orthogonal to the modes controlled by
the spatial control system. Therefore, these modes are omitted
from the analysis and will be controlled by the power control system.

Having the Kaplan harmonic modes, the analytical design of the
spatial control system can proceed. Only two control rods will be
used in the control of the reactor. From Example D, the positions
chosen are at 0. 2h and 0. 4h. From the control rod constraint, III. 9,

the motion of one rod is expressed in terms of the motion of the other.
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e

) = -2 56u1(t) (VIII. 46)

0 = - 4N B ) w0 # ) B

The reactor model III. 15 can be used with condition VIII. 46 to form the

homogeneous reactor harmonic state equation corresponding to VIL 6.

1 0 O i
9
0 0 2 ?SH
)
'>‘1 0 ¥ eg 1 (*
=0h H(TLE () F ) - e (r) x
o )
‘ 2 a
0 Zasoa' E( ) 1 2&.50 a XO) #H
( LN
0 (VIIL. 47)
+ 0 e uy(t)
gaso X ()} §(x-0. 4n)-2. 56 §(x -0. Zh))J

Having the harmonic state equation VIIL 47, a criterion must be
decided upon. In this example, the flux deviation will be weighted,
because deviations in the center are more important than deviations at
the edge. This is true because total power density is assumed
temperature limited, and power density is assumed proportional to the
total flux. Since the total flux is the sum of the steady state flux and
the flux deviations, and the steady state flux is highest in the center,
it follows that larger deviations can be permitted towards the sides

than in the center.
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A rough method of weighting the spatial importance of the
deviations might be decided upon in th(? following manner. Suppose
the reactor can withstand only a twenty percent increase in flux
over the maximum value in the center. A total flux value equal to
1. 2% max anywhere in the reactor is as detrimental as that value

occurring at any other point in the reactor. Therefore, a flux

deviation equal to 1. 2 3 - Io(r) will give this value of total flux.

0 max
The weighting function of the deviation can then be represented as in

equation VIII. 48, so that deviations in the center will be weighted six

times as heavily as those at the very edge.

Q= 1 > (VIII. 48)

[1’ 2- Eo(r) §c;}.'nax]

The same assumptions as in Example C lead to the same choice
of measure of control rod effort. Therefore, the criterion can be

given by VIII. 49.

@ h 2
1 fr (x.t)
V- 'Zf -1 z- dr
o L7 (1. 2-§0(r)Iomax)
2
n }_(E% ) [1+(2. 56)2] u Z(t) dt (VIII. 49)
h 1
zaso(k—l)

The canonical equations VIIIL. 12 can now be formed, using

equations VIIIL. 47 and VIII 49.
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0 0 ¢ ?5 1 < 82 Ta X
| 0 -850, 2, L;—z—+k-1- 5 1 ﬁI’JH
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0
-4 0 y
-1
S (g(r-rl)-z. 56 §(x-x,)
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b Siso(k”l)‘2 s -1 5 s § S
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(VIII. 50)
100 5 “Ay A 0 G ]
0 _ _(a¥ el x
010 5t Exp T 0 (¢a§o+>‘x) ZasowaivoX f’xrs
0 0 ¢ e 2 g.N
e (3eh TN L= -l 2 %o 3y
JH
ar ZH—SO

0 i
0l L U {oo01} {x
J [L2-Emz | 4

O max

1

As an approximate solution to VIIL 50, only the four unstable

harmonics drawn in Figures VIII. 4 and 5 will be considered, so as to

decrease the computational complexity. The modal expansion VII. 14

is then used to obtain VIII. 51, corresponding to the complex
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equations for modal time éoefficients, VII. 15.

[
1
L

m mam

h(k-1) % (. 4h) c/~(3) (. 4h)-2. 56‘/‘ /zh)ZsL . 4h)-2. 561/— (. 2h) s

1+(2.56)° \Zo max| o [X Lo [A2 n
< %m’/u s m? w <Vn’/a l'er>

(VIII. 51)

(
T Z fh ¢ ¢ e
w HE N gy © g,

The integrals needed to evaluate VIIIL. 51 can be computed by 7090
Routine No. 5, in Appendix D. The results are tabulated as Table
VIII. 4 for this example. Note that for m equal to two or four,
corresponding to the less unstable modes of VIII. 3 and 4, the inner
product is negative. Since the square root of the inner product is
used to normalize the vector eigenfunction, the normalized vector
eigenfunctions two and four are purely imaginary. Therefore, the
modal coefficients corresponding to these vector cigenfunctions
are purely imaginary, and the equivalent real matrix form of

VIIL 51 is then VIIL 52.
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Evaluation of Numerical Integrations

>‘I <92~m’/((lizm> in meters

. 0288
-4. 205
.0712
-. 2640

P ¢ By

0 [l. Z-fﬁo(r)§

-1
0 max

2

in meters

19.
.44
-2,
-2,
21.
-3.
-2.

20

55

811
181
40

282
640

9. 139
9. 080
9.048
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4 al \ -56. 28 0 0 - ral
E 0 .3306 0 0 la|
Al< ) =< Lo > <
aj 0 {. 63 0 a3
.Ia4L L 0 0 2.00) {[a,]
(. 124 -.0118 -.132 .0674 | (b,
-.0118 . 00115  .0127 -.00654| |[b,|
- < > <
-.132 .0127 .143 -,0732 b,
| . 0674 -. 00654 -.0732 .0376 J »[bA
(VIIL. 52)
(, ] (56.28 0 o o | [b, ]
1 1
b, 0 . 3306 0 0 4lbzl
A (= ¢
b3 0 0 7. 63 0 b3
\|b4b 0 0 0 2.00] |[b,]

¢/ 680.0 58.7 -62.0 -25.03 (a,
56.7 5.1 -6.0 -2.51 >J[aﬂ

-62.0 -6.0 128.0  66.2 a

3
L -25.0 -2.51  66.2 34.3) l|a,|)

Note that both cross-coupling matrices are non-negative definite.
The feedback matrix equation corresponding to VII. 21 was

solved by 7090 Routine No. 6, Appcndix D.
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,

1868. 56 244. 69 727. 69 426. 70
p- 4 244,69  1390. 05 387. 68 710. 10 }
727. 69 387. 64 672. 89 570. 74

| 426. 70 710. 10 570. 74 737. 32

(VIIL. 53)

Note this matrix is positive definite, as required. It gives closed
loop poles at -. 002779),1, -2.959 >\I, -7. 43 )\I, and -57. 25 AI.
Using the P matrix, the control rod motions can be found as

functions of the modal coefficients.

Y €6 max

e

3as0 . {mn)
AR §§ g D am-2s6if, 2w (55 0 g P b;
= > 0010
[1+(z. 56) ]gomax ol 7\ /i 7 000i aq
m’/Lé m \345
(VIIL. 54)

The control rod motion at 0. 2h can be found by using VIIL. 46. Eguation
VIII. 54 corresponds to VIL. 22, Using the values of this example,

VIII. 54 is evaluated as VIII. 55.

4 ¥, max
5 Uh I\[)\ I

as

= -. 6897a,+ .1713\a2|-.oz79a3+-.1385{a4 (VIII. 55)

This is the general form of the feedback for any detection system. The
A

a can be evaluated by taking the inner product of ‘Pm with the state
m

vector. The state vector can be formed from the knowledge of the

flux by taking first and second derivatives and using the knowledge of

the closed loop system poles. This procedure is illustrated for the
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case of three detectors positioned at . 25h, . 5h, and . 75h. Actually,
it would be better to use more detectors and have an estimation
scheme to reduce the effects of the disregarded har monics, but this
will not be pursued here to keep the calculations as simple as
possible.
. vo

The signals detected are E(rj,t), :';.;(rj, t) and §(rj,t) for
j=1, 2, 3. The steady state flux is the setting at which the reactor is
desired to run, and so Eo(rj) is known. Therefore, equations

VIIL 56 give the error signals.

6 ‘1[’(3) 3 (3)
(r.) o (r))
Frp0-Fw) = ) 2l = D a0 __1’:._ L— jL2,3
m:l ‘,z¢m’/u¢n>‘l k'—‘—l (%o,ﬂ¢0>

6 (3) 3 (3)
) TNED
Fipn=) @ Fom Py —d =L, 2,3

J m P — ° 2 _
o ufy <, UE>

(VIIL. 56)

6 (3) 3 (3)
22 (r.) (r.)
a0 =) % Fmty) ) ) Yo b, j=1, 2,3

m =2 _ = % [z
m=1 < 1,/11‘/ s k=1 4";0’/“‘/'3

The derivatives of the modal time coefficients can be calculated from
the closed loop system matrix, VIII. 57. The closed loop power system

will be assumed the same as the open loop, for purposes of illustration,
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although in general this will not be true.

(2 ) (374 0 0 0 0 0 0 0 0 Y (s )
aOl a01'
L 4
ago 0 .043 O 0 0 0 0 0 0 242
[ 4
ay3 0 0 -392 0 0 0 0 0 0 ag4
:ﬁl, 0 0 0 -105.24 -10. 63 -35, 31 -18. 89 0 0 a -

[

l,lf=A;{0 o 0 1532 139 333 L79 0 0 la)

53 0O 0 0 170.72 1.19 44.32 19.66 0 0 a,

la| 0o 0 0 -87.12 -5.72 -18.72-8.06 0 0 |||

é5 0 0 0 0 0 0 0 -1, 638 0 a

] 0 0 0 -

‘aé / i 0 0 0 0 0 4, 3401 \aéj
(VIL. 57)

Using VIIL 57 and its derivative, the modal time coefficient first and
second derivatives may be expressed in terms of the modal time
coefficients themselves. Therefore, the equation for the detected
deviatinns, VIII. 56, can be expressed in terms of the modal time
coefficients only. This equation can then be inverted by 7090 Routine
No. 7, Appendix D, to obtain the modal time coeificients as

functions of the detector readings and their first and second derivatives.
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Using the first four rows of VIII. 58, the feedback VIII. 55 can be

evaluated.

u1§o max
< h

aso

= -3. 70¢(. 25h)+2. 664(. T5h)+ . 688 (. 5h)

-17. 76 $'(. 25h)1+ 29. 60 ¢'(. 75h)-8. 06 ¢'(. 5h) (VIII. 59)

~1L. 716¢1(. 25h)+ 14. 47$1(. (5h)-L. 8T $"(. T5h)

This expression and the expression for uz, VIII. 46, can be used to
design a reactor feedback control system similar to that depicted in
Figure VIIL 2 for Example C. Large filters should be added to
eliminate the fast transients.

Finally, note that a step function input of 0. 02 £0 max PF obably
would satisfy the mathematical requirement u<< Easo h. The effect
of larger inputs and different operating points should be investigated.
However, it is hoped that an analytical investigation similar to this
example can provide insight into this very complex feedback control

problem.
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CHAPTER IX

CONCLUSIONS AND SUGGESTED FURTHER WORK

Conclusions

T'he problem of spatially dependent reactor kinetics has been
attacked in a very general manner, extending the usual point reactor
equations to spatially dependent equations. This has been done not
only to attain a more detailed description of reactor kinetic processes,
but also to control them. Although the thesis has been primarily
concerned with the immediately practical problem of controlling
xenon oscillations, methods for attacking the description and control
of most reactor spatial processes have been investigated.

The state space formulation, known to be:very effective in the
description of kinetic processes in many fields, has been consistently
applied to spatial nuclear processes. The form II. 2 permits the
inclusion of the spatial effects of control rods, temperature, and other
deterministic processes within a reactor with stationary fuel.
Specifically, the formulation can include the spatial effects of a
locally unstable process. It was shown that any locally unstable
process can lead to a spatial instability, and this possibility can be
investigated by the methods used in the thesis. Also, the concept of
the temperature coefficient of reactivity was extended so that spatial
temperature effects can be investigated by their inclusion in the
general model.

An additional benefit of using the general state space formu-

lation is that the methods used in nuclear reactor kinetics may also
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be used for any physical system that happens to fit the formulation.
One practical case of this has already been found. In fluid mechanics,
the Benard problem of the linearization of the equations of a fluid
heated from below is usually treated by a Fourier transformation in
space. (83) If the heating is uneven so that the adverse temperature
gradient B(r) is a function of space, the technique of Kaplan modes

and the resultant stability criteria may be applied to the equations

expressed as IX.1, instead of the Fourier transform method.

100)(3 v o 0 1
2 drz V4 82 82 er
00 1JL T — or, 91y
0 B(r) x T

From this it can be seen that the technique of Kaplan modes, and
spatial control, can be applied to many other problems of general
scientific interest.

However, the linearized state space approach does have a draw-
back, in that the steady state condition must be defined very carefully.
The steady state as defined in Chapter III is not of the type most
reactor engineers can use with familiarity.

The linearized state space equation as applied to the reactor
has many advantages to offset this. The Kaplan modes can be
applied to thc analysis of the linearized equation, especially as
generalized to include another spatial operator,/‘é, before the 9z/0t.
The use of Kaplan modes gives more insight into the assumptions
made in deriving the point reactor equations. In the usual point

reactor calculations, only the fundamental shape is considered.
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Although the power control system may be driven by information of
the reactor total power, the control rods are assumed to act on the
fundamental only. The Kaplan modal analysis has shown that the
control rod action excites the harmonics unless the control rods are
specifically controlled to excite only the fundamental. The harmonics
are assumed to die off quickly in the point reactor analysis, and if
they do not, spatial cffects should be analyzed.

The use of the Kaplan modal expansion has been justified
by pointing out the relations between it and other expansions.
Examples of the behavior have been given to stimulate further research
in this mathematical problem, and a new method for their exact solution
has been given.

This method of reduction to a scalar equation permits the use
of variational techniques to estimate stability. The new method has
been shown to agree with that of Lellouche as a special case. The
only drawback is the transcendental nature of the solution, which has
been shown to be no problem when used with modern computational
methods. In an effort to eliminate this drawback, substitution of the
clean mode shape times a function containing the steady state flux
was used as a trial function in the variational estimate. However,
this gives an error which increases with increasing flux and better
methods are available in the high flux range.

The transcendental estimate is shown to be the point reactor
transfer function that includes the effect of spatial variations. How-

ever, the Kaplan modal solution makes it obvious that transfer
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functions do not ''vary in space'.

The use of Kaplan modes permit the reactor to be described by
a finite number of modes. Because of this, the controllability
theorem could be proven. This indicates the feasibility of controlling
spatial shapes with a very few control rods, leading to a practical
solution of the xenon oscillation problem.

Furthermore, the methods of modern control theory may be
applied to the finite number of Kaplan modes. The technique of Kalman
gives a method of optimal analytical design. This reduces the control
problem to its barest mathematical essentials, and provides a way
to judge the effect of design variations in system parameters. The
technique of Kalman is shown to be a good starting point for practical
control system design.

The assumption of perfect estimation permitted the analytical
design of the system to be free of the method of estimation. Thus,
methods of estimation can be compared.

Finally, a discussion of the control of the infinite mode system
was given. This problemis shown to be very hard, but a few
conclusions can be drawn. Perhaps a few considerations have been

shown for pussible further work in this area.

Suggestions for Further Work

Possible further work on the infinite mode control problem has
been indicated. Another very fertile area seems to be the mathematics
of the Kaplan modes. Although they have been shown to be a

reasonable expansion, there is need of an answer to the rigorous
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mathematical questions of the conditions under which existence,
convergence, and completeness are asasured. The behavior of the
eigenvalues is an especially interesting question.

The operators in the state equations have been restricted to a
diffusion type. The variational representation of dissipative processes

(68) by "physical'' arguments. This

has been given by Lewins
representation has been substantiated somewhat by the remarks in
Chapter VII. However, mathematical rigor is lacking. Future
mathematical research may find the circumstances under which the
boundary conditions are such that equation VII. 11 is valid.

It may be possible to extend the type of operators beyond the
diffusion type. What if a general partial differential operator is
permitted? Perhaps even integral operators may be investigated,
because integral operators also may give an eigenvalue problem.

From the reactor engineering standpoint, a better model of the
kinetic behavior of the control rod is desired. In the present model,
only very small motions can be permitted. The control theory is
able to handle any linear model for the control rods, and perhaps a
better linear model can be found. Inonu's theory should be checked
against experiment for control rods, in addition to the fuel cell
experiments presented in his paper. In addition to better spatial
kinetic models for control rods, better spatial kinetic models for the
temperature need to be found.

Finally, a non-linear stability theory and control system should

be studied so as to predict behavior at all operating points, and the
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behavior in moving from one operating point to another.
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APPENDIX A

NOTATION
Operations:
A = The vector with components A(i)
AJr = Complex conjugate transpose of A
AT = Transpose of A
Ag< = Complex conjugate of A
A = Solution of adjoint equation for A
A,B = Integration over the reactor volume of the scalar product
of the vector B and the complex conjugate of the vector A
O( ) = Order of
| | = Absolute value of
Re = Real part of
Im = Imaginary part of
Subscripts:
F = Fast flux group
H = Harmonic part of
o = Steady state value of
S = Slow flux group

Script Letters (denoting operations dependent on T)

ﬁ = Vector containing spatial operations

A

X = Output matrix

1

Control coefficient matrix

X = Matrix containing spatial operations
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7}’2 = Shorthand for non-operator part of VI.1 in brackets

(@ = Matrix measure of flux deviation

E

/L( = Matrix containing spatial operations

y = The control system criterion functional

Capital Latin Letters:

B
m

= = g Q

[

2 2 g €4

=

w ® 0O W Z
»

N < a H

H

i

il

il

i

1l

1l

1

H

1l

Geometric buckling

Neutron precursor density

Diffusion coefficient

Plant matrix of the modal decomposition of & and &
Control coefficient matrix of the modal decomposition of/ﬂ
Unit matrix

Number of multiplicities of w

Lagrangian

Number of modes

Number of control rods

Todine concentration

Xenon concentration

Feedback matrix

Measure matrix of the modal decomposition of N M
A measure matrix of U

A matrix defined in Appendix C

Temperature, also a matrix defined in Appendix C
Unitary matrix

Reactor volume, also a matrix defined in Appendix C

State vector
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Small Latin Letters:

a = Modal expansion coefficiepnt

b = Modal expansion coefficient

c = Modal expansion coefficient, delavyed neutron précursor
deviation

Cp = Thermal heat capacity

d = Modal expansion coefficient

d3r = Volume derivative

e = Energy of fission, also base of natural logarithm

f = Input

h = Film temperature coefficient, also linear dimension

i = Jodine concentration deviation

] = '\/-_:1-,I also a dummy integer

k = Multiplication constant

£ = Neutron lifetime

m = Dummy integer

n = Dummy integer

T = Spatial dimension

t = Time dimension

u = Control rod effective absorption change at ?n

v = Neutron velocity, also coolant velocity

x = Xenon deviation

z = State variable deviation
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Greek Letters:

e = Clean mode eigenvalue

¥

= Fraction of delayed neutrons

=< e

= Fraction of iodine atoms per fission

Fraction of xenon atoms per fission

<
I

Dirac { function, KronecHer §, virtual displacement

Gradient

Do

Laplacian operator

It

IFast fission factor, also a small number

1

Riemann )Y variable

T g g9 >
1

Clean mode shape

Heat conduction constant

1

> R
i

(o]

Decay constant of neutron precursors

>
s
i

Decay constant of iodine

= Decay constant of xenon

>
»

= Number of neutrons per fission

Adjoint variable

1

v
1l

Density

Real part of (o
m

Ly
I

m
bd = Absorption macroscopic cruss-section
a
Zf = Fission macroscopic cross-section
ZR = Removal macroscopic cross-section
T, = Absorption microscopic cross-section
= Imaginary part of wW
m

T = Dummy time variable of integration
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Neutr on flux

Neutron flux deviation
Arbitrary function
Kaplan mode

Eigenvalue of a Kaplan mode
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APPENDIX B

PROOF OF THE VALIDITY, OF THE SCALAR
REPRESENTATION

The scalar representation , V.3, of the Kaplan operator
matrix, V.1, is valid if the scalar (flfj) is zero at the singular points
introduced. The singular f)oints are introduced in the process of
reduction to a scalar equation upon division by functions that have a
zero in the range of the independent variable considered. The range
considered is the interior of the volume of the reactor. The boundary
is not considered because the function g:m is required to be zero
on the boundary.

In the case of the derivation of the specific scalar equation V. 3,
it must be shown that 4 (3) is zero whenever the expressions
wm+ )( I and (,Jm+ >‘x+ q:zo are zero. This will be shown first in
multiplying media, i. e., where S £ is non-zero. Then all material

constants in the Kaplan operator matrix are greater than zero.

¢1fr];):—>‘1¢1’(1i)+ Xleff_l’LS) ()

m

(2) (1) x (2) YHYITE ) (3
U’m L'Lm - )IL‘Lm —(Xx+ vha§o)‘1/rn +(XX_ % \]Lm (b) (V.1)
Mo, g,

A X U S A S TINE

. (3) .
If wm+A [ is zero, then ‘ILm is zero by V.la. If

X. . . -
t, then V.la and b may be combined
w .t )‘X-k va§o is zero at a poin en n may m

to form equation B.1 at thal poiut.
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oy S CAE U W) S SR R W W N Py Sk
0-2x"a¥o "1 °x I/\x I’ I”7x "I "ao éif(LI(If) (B. 1)

X
/\x+0~a§o

Since )’IS Xx and ,\I>>‘ < the numerator of the fraction is
greater than zero. The denominator is always positive, and so
(7[ I(j) is zero. Therefore, the scalar representation is valid in
multiplying media.

In regions where ff equals zero, the xenon and iodine con-

centrations are zero and then equation V.1 reduces to B. 2.

(3)

wm (3
P f O gDz L8 (B. 2)

Since V/.D YV represents a leakage term, B. 2 implies the inequality
B. 3.

-w,, >Z,V (B. 3)
But Zav is the inverse of the neutron lifetime, and so if wm+,\ I

or wm+ ,\X+ v:§o are zero, then B. 4 must be true.

12)\1 >1 (a)
(B. 4)

1A ok ) > (b)

In a practical case, neither of these inequalities is satisfied,
. 3) . .
and so the only solution to B. 2 is ﬁLr(n) identically zero. Therefore,
the scalar representation V. 3 is valid everywhere in the region of

interest.
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Similar arguments for the reduction of the general matrix
operator to a scalar equation can usually be made, which implies the
variational methods of Chapter VI are valid. The shooting method
of solution to the Kaplan equations can be applied directly to the
matrix form, Although this is more cumbersome, it is valid in

any case.
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APPENDIX C

PROOF OF CONTROLLABILITY

The proof of the controllability theorem rests on a criterion

8
4 (75) It concerns

stated by Pontryagizn< and clarified by Kalman.
complete controllability, which means that every state at any time
can eventually be returned to zero. Kalman's statement is that

"A (linear) constant plant is completely controllable if and only if ...

{criterion C.1 holds). "

rank[G,FG, . ..,FM‘lc]— M (C. 1)

Here, F is the M x M real constant coefficient plant matrix and G is

the M x N control coefficient matrix for the plant described by C. 2.

%ﬂ = Fz(t) + Gu(t) (C. 2)

Therefore, the composite matrix in equation C.1 has M rows and MN
columns.

Before giving the theorem, it is necessary to show that the
modes of the state equation, III. 5, can be put in an equivalent real
form. In general, the Kaplan eigenvalues and vector eigenfunctions
are complex. The Pontryagin-Kalman criterion may only be applied

to real forms. The equivalence to a real form is shown by a lemma.

Lemma: If the Kaplan modes exist and form a complete set, the state

equation, III. 5, can be put in the equivalent form of an infinite set of
real, time dependent total differential equations that may be coupled

only in pairs.
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Proof: It has been shown in Chapter IV how the state equation may
be reduced to an infinite set of comple’x time dependent total
differentiai equations for the Kaplan mode modal coefficients. The
expansion of the state variable in Kaplan modes is rewritten here.

8

00]

z(r,t) = Z a (t) —l)[m('r—) (IV. 14)

m=0
A typical equation for the modal coefficients is written as C. 3, for N
control rods.

N A

a1rn:l")nr1alrn+2:<(}m ’,<ajn> “n (C.3)

n=1
Note that the assumption that X is able to be diagonalized is implicit
in this, implying only geometrical multiplicities.

If wm and (#m arc complex, then their complex conjugate is

guaranteed to be another eigenvalue and vector eigenfunction by the
reality of the linear operators. Taking the complex conjugate of the

modal equation TV. 8 gives equation C. 4.
X Y. :wm/é( Y (C. 4)

Since Z and/(( are purely real, they are identical to their complex

conjugate.
L - u)éi/[(#%n* (C. 5)

Therefore, if w_ and (/’m are complex, then their complex

conjugates are also a solution to the eigenvalue problem.

Also, note that if 4y is real, then Lf is a real vector times
m m
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A —
an arbitrary constant. Since ¢ ¢m,/{ C,Lm > =1, the normalization

guarantees that 'f m Con be chosen purely real or purely imaginary
’ a

for the case "Jm real, depending on whether < SLm’ /(QP m’ 1S

positive or negative when computed with all real elements.

The state variable is real, so the terms in the Kaplan expansion
must be real for all time and for any initial condition. This determines
that the am(t) are purely real or imaginary, corresponding to the cascs
in which is purely real or imaginary, respectively. Also, the

m 5P y g y p ¥y
t) of a 1 0 t be the compl onjugate of the a, (t
am(_)_ complex %mmus e the complex conjugate e k()
of éLm .
Therefore, the infinite set of equations C. 3 may be broken up in

three ways.

——

1. w . real, ¢n1 purely real.

IX

N P
Re{ami = Wy Re iamg+ Z <(fm ,/@h) u (C. 6)
n=1

—

2. w m real, (/«m purely imaginary.

N A
imfa_{=w Imiam.ng Z <%m, > v, (C. 7
n=1
3. W complex = fm + i v"m. (C. 8)

wo— e

The pair of equations for L7Lm and l:(:m must be used.
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Re ia.m{ + iIm iatmi = { L4 +ip” )(Reiam§+i Im{ami )

m  m

n

N “ .
+ Z ( <Re} ¢m§,ﬂn> + i<Imj ¢m§),2]n> Ju
n=l

(C.9)

L4

Re {;HS -1 Imiam{ = Sm—ic‘m)(Rei ami-i Imiamg)

N “
+ Z ( <Re T('Zmi’ ﬁn> -1 <Imi¢m s 9 e )un

n=1

Both equations of C. 9 may be seen to be equivalent to C.10.

Re ia.mi fm "m Re {ami N[ <Re I¢1rn€ ’ 'z:fn>
= ¥ a u_ (C.10)
Imiami T om fm lm{ami nol' I {"bmg’ R n’ g

The infinite set of complex equations C. 3 is equivalent to the set of
equations for the real and imaginary parts of the modal coefficients
C.6, C.7, and C.10. This set of equations may be put in the infinite

dimensional matrix form C. 1l.

2 =Fa+ Gu (C.11)

In C.1l, a is the vector made up of the real and/or imaginary parts of
am(t), T is still the N dimensional control vector, and G is defined

as in C. 12,
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)
Gij={<¢i,ﬂj>f i=L,2,.. ., N; i=l2,... oo (C.12)

@

. m  T'm
The plant matrix, F, is the direct sum of wm or
q-

m  §m

Therefore, F is almost diagonal except for the 2 x 2 blocks
corresponding to the complex eigenvalues. Each eigenvalue, b‘)m’
is repeated Jm times. The sets of equations C. 6, C. 7, and C. 10 may
be put in decreasing order of the real parts of the eigenvalues, so that
the most unstable modes appear first. Since equations C. 6, C. 7, and
C. 10 have a one to one correspondence with the equations C. 3,
equation C.1l is equivalent to C. 3 and the lemma is shown to be true.
The wmalrixes F and G are now truncated at some finite
dimension, M, so that the controllability of a finite number of the
most unstable modes may be investigated. If there are K distinct

eigenvalucs, the rclationships C. 13 hold.

K

ZJ -M , K<£M (C. 13)
m

i=1

Having proven the lemma and described the finite plant, the

controllability theorem can now be proven.

Theorem: Any finite number of modes of the recactor model C. 11 are
controllable if:
1) There are at least as many control rods as the maximum

multiplicity, max Jm
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2) All control rods are not on any possible nodes of a

combination of modes having the same eigenvalue.

Proof: Set u = 0 for n > max Jm. This is equivalent to taking
N = max Jm., The u = 0 should be chosen so that condition 2 is not

violated. Then the Pontryagin-Kalman criterion can be applied.
M-1 i1
rank{ G, FG,...,F G| = M <> controllability (C. 1)

The matrix F may be put back into diagonal form by the transformation

C. 14.

uru ! - Ko ¥ (C. 14)

Here, the matrix U is a direct sum of unit matrices and unitary

11
matrices of the form W}Z{ Lod ) The unit matrices occur whenever F

-1 1
has w, on the diagonal, and the unitary matrices occur in U where
_S’m —q'm . . . .
the occur in F. It can be seen that (1 is a diagonal matrix
m fm

with the eigenvalues of the Kaplan modes on the diagonal. Therefore,

using C. 14, the criterion C.1 may be rewritten as C. 15.

-1 M-1
rank U [UG, NUG,..., 0 UG] - M & controllability  (C.15)
Since U is non singular, the rank of the matrix in brackets determines

the rank of the product. This matrix is written out as C. 16.

4 M-1 M-1 1
Cll"'cIN u)l c11 ...,wl. CIN
A ’ ‘,.‘. M—l M—lc
CJ-. 1. .. OJ’ N ° . wl CJ-‘ 1 e Wl J" N r (C- 16)
M-1 M1
LML MN W °miTTCWE CMN

Iu C.16, c.. is defined as {UG] ... (C.17)
ij ij
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The rank of a matrix is not chauged by the addition of more
rows equal to the rows already in the matr ix. Add as many rows
as necessary to make each distinct u.)m appear as many times as
the maximum multiplicity, max Jm:{' N. Then consider the KN x KN

matrix formed by deleting the last MN-KN columns, as shown in C. 18.

( N
C C K-1 LKL
T 11°°° "IN w1, ‘1 1. “IN
- i i -1 -
"""“‘N Jl C cos C w K C WK 1C
5 - 11 IN 1 11 1. "IN (C.18)
=9 . o wK—l Wkl / :
€I, 17 TN 1 5,1 1“3, N
’ . K-1 LKL
°M1°T" TMN Wi °m. '4 CMNJ

But S may be recognized as the product of two matrices, as shown in

VI. 9.
fCll CIN ‘( h
. I , w1 ’ WK
o |11 IN | . o —_ 1
. g - (C.19)
CQ[yNCTT LN o YO
¢~ N >, N .
| : J1 -
| SVPIERL VR SN (VW FPp | T

= TV.
However, V may be recognized as a rearrangement of a direct sum
of N Vander monde matrices, K x K, made up of the K distinct roots.

Therefore, V is nou-singular and the rank of S is that of T. But the
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rank of T is equal to the sum of the ranks of the N x N blocks on the
diagonal. Since these blocks each have, N-J _ identical rows, the

maximum rank each block can have is Jm. Therefore, the maximum
K
rank of T is }: Jm, which equals M by C.13. If and only if each
m=l
block on the diagonal of T has rank I will the rank of S equal M,

implying controllability. A typical block is written out as C. 20.

(Cml m2 " SmN )
C = 9 c c ce. C ’ (C. 20)
ml “m2 mN )
‘3 1S5 2... 7 NJ
m m m
But each ¢.. = UG .. from C.17, sothata J =J submatrix of C is
i} ij m m

non-singular only if a corresponding Jm X Jm submatrix of G is non-

singular. The J x Jn submatrix of G is non-singular if C. 21 holds.

A
O#det, .1 G=det o f <& P> =det; {Eo(rj) ‘1’?)(1”3')3
m m m m m m
(C. 21)
The last matrix, whose Jm x Jm deter minant is to be taken in V1. 21,
is the product of the matrix of Kaplan mode slow flux elements
evaluated at the control rod positions times a diagonal matrix of the
steady state flux evaluated at the control rod positions. This diagonal
matrix is always non-singular since Io(—;j) > 0 at any interior point
in the reactor. Therefore, the only way any Jm X Jm deter minant

can be zero is that a linear combination of "f §3)(?j) equal zero, or



that all control rod position ends arc on possible nodcs of the
vector eigenfunctions belonging to the same eigenvalue. This violates
condition 2, and so the theorem is proven.

This requirement that all control rods not be on a possible node
cannot be met in the infinite case. Surely one of the infinite number
of modes can be found such that it has nodes on the finite number of
control rod ends. Therefore, it is doubtful that a model with an
infinite number of unstable modes could be controlled by a finite
number of control rods.

Note that the proof of the theorem rested on the existence
and completeness of Kaplan modes. If the node shapes "interacted",
it would not have been possible to consider only a finite number of
them, so that the theorem could not have been formulated.

Finally, the form of the /@ matrix has been assumed to be
’81’1 = }O(?) S (17-_1:n) in the row corresponding to the thermal flux,
and zero elsewhere. If this is not the form, then condition 2 of the
theorem becomes, instead, that the Jm x Jm determinant of

<¢,,2Z> is non-zero. In Example D, two rods placed symmetrically
about the center of the reactor cannot control the second harmonic
because they are constrained by the power control system requirement
that changes,g to /&N-l' Therefore, even tho.ggh the rods are not
on any nodes, the Jm b'q Jm deter minant of < Sb, ﬂN—1> is zero

when the rods arc symmetrical about the reactor center line.
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APPENDIX D

FORTRAN IV PROGRAMS USED IN THE EXAMPLES

In each of the first six separate programs, the DEQ subroutine
from the Caltech subroutine library was used to solve a set of
nonlinear total differential equations with given initial conditions.
The DEQO subroutine uses a Runge-Kutta technique to start the
solution and goes to an Adams-Bashforth method once it has started.
It has built-in error control, and has proven satisfactory in past
operation. For further information, a copy of DEQ is in the Caltech
Physics Library. (85)

The seventh program uses EIG 1, from the IBM SHARE library,

to determine the eigenvalues of the closed lcop matrix, and MATINV,

on CIT tape, to invert the detection matrix.
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7090 Routine No.l: Feedback Calculation For Various Control Rod

Positions of Example D with Unstable Open Loop Poles

‘ DIMERSTON PHTTITPHITOT(3]

16 READ (5,500) R1,R2 R, RZ ALe con Tiowns$
“EGC EORMAT (ZE10.2) A LY B B CONTRON RO TOBITION

KMRITE {6,600) R1,R2

~ PHI(2) = 0.0 ~
PHI(3) = €.0
R = 0.0 e R=TWE
DR = 200.0

EPSLON = .01
T =T 0001308 SIN{B 1415926 R1I w2/ U1 0Y S IN(3 1415926 %R1T 7
1 SIN{3.1415926%R2))12x4)

€27 = SIN({B.Z831852%R1T — SIN(3.T415926#R1V*SIN(6.2531852%R2)7
A SIN(3.1415926%R2)
€33 =SIN(9.4247778#R1) - SIN{3.1415926#R1)*SIN(9.424T7778%R2)/
A SIN(3.1415926#%R2) B
WRITE (6,615) C11, C22,(33
F11 = -Cl1%C22%%2

F22 = «-C11#C33%402

o F12 = ~CAARC22%C33
WRITE {6,620) F11,F22,F12
CALL DEQ(Ky34RyPHI,PHIDOT DR, EPSLON)

0 70 (100,200,200,3007,K

c
€ CERTVATIVE BOX - GENERATES FUNCTION
c
VVVVVV OE CORTINGE — NOTE ™ TIME -~ SCACE 5 REL TIHE X Joo
o PHICOT(1)=.0003260%PHI(1) + .1 - C11#(C22¢PHI(1)+C33#PHI(3]))x#2
PHIDOT(2)1=.0000442%PHI(2] + .1 = Cl1#(C22+PHI(3)+C33+PHI (2] ) #%2
PHIDOT(3)=.0001851%PHI(3) - Cl1#(C22%#2%PHI(1)#PHI(3)+
1 C22%C33% (PHI{1I*PHI(2)+PHI(31%%2) +C33%%2%PHI(2)*PHI(3))
....... CALL DEQZ e e B
20C CONTINUE
c

C PRINT RESULTS,TEST FOR END OF INTEGRATION
C

WRITE (64610) Ry,PHI(1),PHI(2),PHI(3)
610 FORMAT [(4X4HR = E15.844X9HPHI(1) = E15.8,4X9HPHI(2) = E15.8,

1 4X9HPHI{3) = E15.8)
IF {R_.6T,50000.0) GO TO 20

T CALLU DEQL
60 TO 200
2C Al 0001630 + FLl1#PHI(1) + F12#PHI(3)

ll H

_A22 = ,0000221 + F12#PHI(3) + F22%PHI(2)
AT2 = FLI#PHI (31 + FIZ*PHI(2)
A21 = F12%PHI(1) + F22#PHI(3)

B = 0.5+(A11+A22)
SQUARE = SQRT(B#x22 + A21#A12 — Al1w#A22)

WRITE (64650) By SGUARE

__EIGENL = "#SQUARE o },ewwv L00P EI6ENVARYES
EIGEN2 = 8- SQUARE
_MRITE (6,660) EIGEN1,EIGEN2

Il = =CIT/SINGI 14159 26#R 1) # (C22%PHT LI +C33RPHT (3 1)
12 = ~C11/SIN{3.,1415926%R1)*{(C22#PHI(3)+C33%PHI(2))

EFORTL = Z1 + Z1#SIN{3.1415926%R1)#%4/SIN(3.1415926%R2)%=4

e o conTROC  EFFERT - * . e
mm‘uvaarzu,,
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EFORT2 = €2 + [2#S5IN{3.1415926#R1)%#4/SIN(3.1415926#R2)a24

WRITE 16,6707 71y ZIZ2 EFORTIEFORT?Z

.....e0 71010

c LA E0

L ERROR ON RETURN FROM DEQ
C .

3CC CONTINUE

WRITE (6,511)
G0 70 10
"60C FORMATY (1C0X5HRT = E15.8,10X5HR2 = E15.8/7)
615 FORMAT (10X6HCLI1 = F15.8,10X6HC22 = E15.8,10X6HC33 = £15.8//)
CB2C FORMAT (10X6HFLY = E15.8, 10X6HFZ22 = E15,8,10X6HF12 = E15.87/)
65C FORMAT (15X4HB = E15,8, 10X9HSQUARE = E15.8////)

66C FORMAT (15X9HEIGENT = E15.8,15X9HEIGENZ = E15.877)
67C FORMAT (5X5HZ1I = E15,845X5H12 = E£15.8,5X9HEFORT]

e IR B+ PR 2nEE LT - S SHEFORT3
511 FORMAT (//10X21HERROR RETURN FROM DEQ)
g S0 - o

EL5.8,
E15.8/7777)

Won
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7090 Routine No. 2: Steady State Flux of Example E

DIMENSICN PHI(2), PHIDCI(2) R o
10 READ 15,500). ALPHA DO XALPHA = J- 1
500 FORMAT (FlU.4)

_MRITE (6+512) ALPHA

PHI(1)=1.0

PHI(2)1=0.0
R=040 METeRS - SLAG ReneToR wALF B iMecwSion

2%3?33;;’0001 TRUNCATIIA ERROR CooTROL - ;mm Te SUBNTERUALS
-CALL DEQ{K+2+R+PHI,PHIDGT,DR,EPSLON) '
GO TO (100,200,200,300),K

DERIVATIVE BOX ~ GENERATES FUNCTION

[N el el

100 CONTINUE
PHIDOT(11=PHI{2])
PHICOUL2)1=(~ALPHA+(1.5254.0244% ALPHAYSPETILL1Y/{.035¢BHI{ 1)) )aPHILY)
CALL DEQ2

200 CONTINUE

PRINT RtSULTS; TEST FOR END CF INTEGRATION

[eXalel

WRITF (6,510) R.PHI{L), PHI(2)
510 FORMAT {10X4HR = F15.8,10X9FPHI(1) = E15.8,10X9HPHI{2) = E15.8)

IF(R .GT. 20.0) STOP
IF(PHI(L) WLE. 0.0). GO IC 10
CALL DEQ1
e OO T 200 i
ERROR CN RETURN FROM DEQ

po

300 CONTINUE
WRITE (6,511)
G0 TO 10
212  FORMAT(1H] 4QX8HALPHA = E15.87/) .
511 FORMAT(//10X21HERROR RETURN FROM DEQ)
END
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7090 Routine No. 3: Estimation of Kaplan Mode Eigenvalues

1C READ (5,500) P MARMONIC = SN P X .

15 READ (35,5000 R,S e: &]%3 $> M"di
IF (R.EQ.0.0.ANDLS LEQ. 0.0) GO TO 10

500 FORMAT (Z2F10.2)

REAL =0.0 Ren. - Lere FART 06 t?Muygd freos
UNREAL = 0.0 1 A “

OX = 0.02

X = 0.04

SUM = 0.0

TUM = 0.0

RS = (1.0 + R)%#2+4S52x%2

RL = 725 +R
DO 50 1 = 1,77

§X = 20.T*STNTXY
V = SIN(PexX)=e2#SX/({SX+RL)*#2+5#22)
SUMSSUM+YR [ {RL®{SX+RL ) +5% %23/ (SX+, 7291+ {{SXIRL)»{1.0+R)-S==2) /RS)
TUM=TUMAV R (SX/(SR+ . T25)-(SX+1.72542.0%R}/RS)
A=X+0X
5C CONTINUE )

AEAL = 1620-Pws%2~,C0188R=00.4=SUM
UNREAL =5#(,0018+.42TUM)
WRITE (6,600) P,R,S,REAL  UNREAL

600 FORMAT(/2X4HP = F10.495X4HR = F10.5,5X4HS = F10.4,5XTHREAL =
1E15.8, ‘-'.XQHHNR?M = F15.8)

GO 1O 15

END




-161-

7090 Routine No. 4: Calculation of Complex Kaplan Eigenfunctions

DIMENSION PHILG6), PHIDUTL®&) »
10 READ (5,500) RHO, SIGMA
500 FORMAT (2F10.4)
WRITE (64512) RHO, SIGMA
PHI(1)=1.0
PHI(2)=0.0
PHI{3) = 0.0
PHI(4)=1.0
PHI(5)=0.0
PHI(6)=1.0
R=0.0
DR=,05
EPSLON=.0001
CALL DEQ(K,6,R,PHI,PHIDOT 4DR,EPSLON)
GO TO (100,200,200,300),K

DERIVATIVE BOX - GENERATES FUNCTION

100 CONTINUE ) i
PHIDOT(1)=PHI(2) KSTEAW STAYE *.n»:
PHIDOT(2) = (~1.6+1.525%1.0256#PHI(L1/(.0354PHI(L)))apHI(])
PHIDOT{3)=PHI(4)

PHIDOT(4)=(.00018125%RHO~1.6+32.36#PHI{1)#(({0.724144+RHN)}+
1(20.69#PHI(1)+0.74214+RHO)+SIGMA##2)/ ((0.T72414+20.69«PHI(1) )+ ‘Lz‘¢fﬂ
2((0.72414420.69#PHI{1)+RHO) ##2+SIGMA*#2) ) +((20.69#PHI(1)+ -
30.724144RHO)* (1, 04RHO)-SIGMA*#21/ ((120.69%PHI (L)1 40.724L44RHO) wa2
4+SIGMAR#2) = ({1, 04RHO) ##2+SIGMAR#2)) ) ) #PHI(3)
5-SIGMA#(.00018125+(32.36%PHI{1)/((20.69#PHI{1)+0.72414+RHO) ##?
6+SIGMA®#2) ) #{20,69%PHI(1)/(0.724144+20.69#PHI(1))-(20,69%PHI(1)
T+1.726414+42.0#RHO)/((1.04RHO)##24SIGMARS2) ) ) wPHI(S)

PHIDOT(5)=PHI(6)

PHIDDT(6)=SIGMA*{.00018125+(32.36%PHI(11/((20.69%PHI(1)
140.72414+RHO) ##2+4SIGMA#=2) ) #(20.69#PHI(1)/(0,72414+20.69+PHI(1)}
2={20.69%PHI(1)+1.7241442.0#RHO)/{ (1. 0+RHO)} *#24SIGMA##2) ) ) #PHI(3) » 7
3+4(.00018125#RH0~1.6432.36#PHI(1)#({{0.72414+RHO}#{20.,69+PHI (1) %‘{‘A mf
4+0,72414+RHOI+SIGMAR22) /[ (0. 72414+20.69PHIIL) ) «((20,69*PHI(1)
540.T26144RHO) #22+SIGMA=#2) )+ 1120.69*PHI(1)+0,.72414+RHO) #(1.0+RHO)
6-SIGMA##2)/(((20.69%PHI(1)40.T2414+RHO) ##24S[GMARS2)»
TU{1.04RHO)#*#2+SIGMA=#2))) ) #PHI(5)

CALL DEQ2

200 CONTINUE

PRINT RESULTS, TEST FOR END OF INTEGRATION

WRITE (6,510) R,PHE(3)}, PHI(5)
510 FORMAT (10X4HR = E15.8,10X9HPHI(3) = E15.8,10X9HPHI(5) = E15.8)
[F(R .GT. 10.0) STOP
IF(PHI(1l) .LE. 0.0) GO TO 10
CALL DEQl
60 TO 200
ERROR ON RETURN FROM DEQ

300 CONTINUE
WRITE (6,511)
GO 70 10
512 FORMAT (1H1 30X6HRHO = F10.4, S5X8HSIGMA = F10.4//)
S11 FORMAT(//10X21HERROR RETURN FROM DEQ)
END
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7090 Routine No. 5: Calculation of the Coefficients of Table VIII. 4

DIMENSTON PHI(10),PHIDGT(10)
_PHI(1)=1.0
PHI(2)=0.0 ‘
PHI(3)=0.0
PHI{4)=1.0
..PHI{5)=0.0
PHI(6)=1.0
PHI(7)=1.0
PHI(8)=0.0
PHI(9)=1.0

N
PHI(10)=0.0 L = ‘l/:(;!:s'a"’l" ]
ot nAm OU&J_W#wﬁL“A

ALFA37=0.0
ALFA39=0.0
ALFA55=0.0
ALFAST=0.0
ALFA59=0,0

ALFAT7=0.0
ALFA79=0.0 e
ALFA99=0.0 9[ *
ETA33=0.0 s < SL >
taee e STp AN
ETA77=0.0

ETA99=0.0

. EPSLON=.0001 . . .
CALL DEQ(K/y10sRyPHI,PHIDOT,DR,EPSLON)
GO _T0O (100,200,200,300),K

DERLVATIVE BOX - GENERATES FUNCTION

100 CONTINUE B , »
PHIDOT(1)=PHI(2) (ALCULATES
PHIDOT(2) = (-1.6+1.525%1.0256#PHI(1)/(.035+PHI(1)))=*PHI(1)] que
PHIDOT(3)=PHI (4] . T
leDOT(4)=(.00018125*55.23—1.6+69.463»PH1(1)~(1.9+14.3~PH1({3 ALCUATES T, 14)

141.1905%56.2840,69048%56.28#%2)/({(1.0+28.6%PHI(1))»
2(1.0428.6#PHI(1)+1.38095%56.28)%11.0456.28)))%PHI13)
PHIDOT(5)=PHI(6) ‘g . ¢

PHIDOT(6)=(,00018125#.3306-1.6+89.463#PHI(1)*(1.0+14.3+PHI(]) L
1+1.1905#.330640,69048#.3306#%2)/((1.0428.6%PHI(1)])=
2(1.0428.6#PHI(1)+1.38095%.3306)#(1.0+.3306)))2PHI(5)

PHIDOT(T7)=PHI(8)

PHIDOT(8)=(.00018125%#7,630-1.6489.463%PHI({1)%#(1.0%+14.3%PHI(1) TE

©141.1905#7.63040.69048%7.630%%2)/{(1.0428.6%PHI(1) )+ v Y
211.0428.6#PHI(1)+1.38095#7.630)#(1.0+7.630)))*PHI(7)

PHIDOT(9)=PHI(10)

PHIDOT(10)=(00018125%2400-146489.463#PHI{L)I*({1.0+14.3+PHI(1) g ""F“

»

LY e

141.1905%2.00040,6904842.000#%2)/{(1.0+28.6#PHI(1))+ o 9
2(1.042B.6#PHI{1)+1.38095#2.000)#(1.0+2.000)))#PHI(I]}
CALL DEQZ

200 CONTINUF
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PRINT RESULTS, TEST FOR END OF INTEGRATION

WRITE (6,510) R,PHI(3), PHI(S)
510 FORMAT (10X4HR = E15.8,L0XIHPHI(3) = E15.8,10X9HPHI(5) = E15.8)
SX=20.69%PHI(1)

ALFA3B3=ALFA33, DR'i?HHB)wPHI(3)/(1-2-!’!'1!!1.)"2))
ALFA35=ALFA35+ DR#(PHI{3)#PHI(5)/(1.2-PHI{1)}==2))

ALFA3T=ALFA37+ DR=(PHI(3)*PHI(7)/(1.2-PHI(1)%%2))
ALFA39=ALFA39+ DR*(PHI(3)*PHI(9)/(1.2-PHI(1)%%2))
ALFASS=ALFASSY DRx{PHI(S)*PHI{5) /(1.2 -PHI{1)%%x2))
ALFA5T=ALFAST+ DR#(PHI(5)*PHI(7)/(1.2-PHI{1)*#2))

TALFAS59=ALFA59+ DR*(PHI{S5)=PHI{91/{1.2-PHI{1)*#21)
ALFAT7=ALFAT7+ DR®*(PHI(7)*PHI(7)/(1.2~PHI{1)##2))

ALFA79=ALFATO+ DRe(PHI(T7}4DPHI(D)}/(1.2-PHI(1)==2))

_ALFA99=ALFA99+ DR#(PHI(9)*PHI(9)/(1.2-PHI(1)%%2)) \ WieerATI 205

ETA33=ETA33+ DR#(.000116+SX/{SX+57.0)1*((SX/(SX+.72414)~
1.01746)/(SX+57.00)-.000305) =PHI (3 )*#2)

ETAS55=ETA55+ DR#(,000116+5X/(SX+1.055)1#((SX/(SX+.72414)~
1.75154) /(SX+1.055)-.387344)#PHI(5)%%2)

ETATT=ETATT+ DR#*(.000116+SX/({SX+8.354)%((SX/(SX+.72414)~
1.11587)/(SX+8.354)-.013425)%PHI (7)%22)

ETA99=ETA99+ DR=(.000116+SX/(SX+2.724)% ((SX/{SX+.72414)~
1.333333)/(SX+2.724)-.111111)#PHI(9) #%2)

WRITE (6,513)ALFA33,ALFA35,ALFA37,ALFA39,ALFAS5,ALFAST,ALFA59,

1ALFAT7,ALFAT9 ALFA99,ETA33,ETAS5,ETATT,ETA99

513 FORMAT (/2X9HALFA33 = E15.8,2X9HALFA35 = E15.8,2X9HALFA37 = E15.8,

12X9HALFA39 = E15.8,2X9HALFAS5 = E15.8/,2XSHALFAST = E15.8,
22X9HALFASY = E15.8,2X9HALFATT = E15.8,2X9HALFATY = E15.8,
32X9HALFA99 = E15.8/,2X8HETA33 = E15.8,2XBHETAS5 = E15.8,

42XBHETATT = E15.8,2XBHETA99 = E15.8//)
IF(R «GT. 10,0} S1QUP

IF(PHI(1) .LE. 0.0)STOP
CALL DEQL
GO TO 200

ERROR ON RETURN FROM DEQ

300 CONTINUE
WRITE (65511)
511 FORMAT{//10X21HLRROR RETURN FROM DLCQ)
STOP
END

Mot : DR > .06 — (F SeBROVTING DEG DIAES INTr SMALLER

STeps , THE Aop/7wen oF Trksk S7EPS MIST B

SIBTRRETED LR20af FNE Fia/Re RPesulT.
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6: Feedback Calculation for Example E

" DIMENSTON PHI(107, PHIDDT(lQ)

_PHI(1)
PHI(2)
PHIL3)
PHI(4)
PHI(5)

1868.5
244.7
727.6
42667
1390.2  J STA%ie0 AY T

PHI(6)
_PHL(T)
PHI{&)
_PHI(9)
PHI(10)
DR = .00

'3% ;’ Wity WUCH RARGER
“697.4a =02 To Stesd
570.7 VP CONVERGENCE -

737.3 Jmg s 2% op TWO

CALCVLATIONS -

N»Ln|ﬂn R P I ]

EPSLON L0011
R 0.0

w124
-00118
-.132
0674

All
Al2
Al3
Al4a

A22 =.00115

A23 =.0127

A24 =-,00654

A33 =.143

A34 =-.0732

A44 =.0376
CALL DEQ(Ky10,R,PHI,PHIDOT,DR,EPSLON)
60 TO (100,200,200,300),K

HoHin o

DERIVATIVE BOX - GENERATES FUNCTION

100 CONTINUE

PHIDOT(1) =680.0+112.56  #PHI(1)
1-PHI(1)#(AL1#PHI(1)+AL12%PHI(2)+AL13#PHI(3)+A14*PHI (4
2-PHI(2)#(AL2#PHI(1)+A22%PHI(2)+A23%PHI(3)+A24%PHI (4
3-PHI(3)#(AL3%PHI(1)+A23#PHI(2)+A33%PHI(3)+A34%PHI(4
4—PHI(4)*(Al4»PHI(1)+A24%PHI (2)+A34%PHI(3)+A44*PHI (4

PHIDOT(2) =58.7 +PHI(2)#(56.28+.3306)

(Tis

Ne<e 5SARY
To  WRITE

ov? THE

I-PHI(1)#(A11=PHI(2)+A12#PHI(5)+A13=PHI(6)+A14=*PHI(7
2-PHI(2)#(A12#PHI(2)+A22%PHI(5)+A234PHI(6)+A242PHII{T
3-PHI(3)#(A13#PHI(2)+A23PHI(5)+A33aPHI(6)+A34=PHI(T
4-PHI(4) 2 (AL4%PHI(2)+A24#PHI(5)+A34#PHI(6) +A44PHI(T
PHIDOT(3) =-62.0 +PHI(3) #(56.28+7.63)

1-PHI(1)#(A11#PHI{3)+A12#PHI(6)+A13#PHI(8)+A14#PHI(9

P (T) Bechus
P THE

SV8RoVTING .

2-PHI(2)#(A12#PHI(3)+A22+PHI(6)+A232PHI{8)+A24%PHI(9

 3-PHI(3)#(A13#PHI(3)+A23+PHI(6)+A33%PHI(B)+A34#PHI(9

4-PHI(4)% (A14*PHI(3)+A24«PHI{6)+A34%PHI(B) +A44#PHI(9
PHIDOT(4) =-25.0 +PHI(4)*  (56.28+2.,0)

T1-PHI(1)#(AL1L1*PHI(4)+A12%PHI(7)+A13%PHI(9)+A14%PHI(10))
2=PHI(2)2(A12%PHI(4)+A22%PHI(T7)+A232PHI(9)+A242PHI(10))

3-PHI(3)#{A13#PHI(4)+A23#PHI(T7)1+A332PHI(9)+A342PHI(10))
4~PHI(4) % (A14#PHI(4)+A24#PHI(T)+A342PHI(9)+A44#PHI(10))

PHIDOT(5) =5.10+.6612 *PHI(5)
1-PHI(2)*(ALL*PHI(2)+A12#PHI(S)+A13%PHI(6) +A14%PHI(T
2-PHI(5)# (A12%PHI(2)+A22%PHI(5)+A23#PHI(6) +A24*PHI (7
3-PHI(6)# (AL3#PHI(2)+A23%PHI(5)+A33#PHI(6)+A34%PHI(7
4=PHI(T)#(A14%PHI(2)+A24%PHI(5) +A34%PHI(6) +A44»PHI (T

)
)
)
)

)
)
)
)
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PHIDOTL6) =—6.0  +PHIL6)  #{.330647.63) )
1-PHI(2)#(AL1=*PHI (3)+A12#PHI(6)+A13%PHI(8) +A14*PHI(9 ))
2-PHI(S)*#(A12%PHI(3)+A22%PHI(6)+A23%PHI(8)+A24PHI(9 ))
3-PHI(6)#(A13%PHI(3)+A232PHI (6)+A33%PHILB) +A342PHILY ))
4=PHI(T)#(A14*PHI(3)+A242PHI (6)+A34%PHI (81 +A44*PHI(9 ))

PHIDOT(7) =-2.51 +PHI(7) #(.330642.0)
1-PHI(2)#{A11#PHI(4)+A12#PHI{7)+A13%PHI(9)+A14*PHI(10))
2-PHI(5)*(A12#PHI (4)+A22#PHI(T)+A23%PHI(9)+A24#PHI (10))
3-PHI(6)#(AL3%PHI(4)+A23#PHI(7)+A33PHI(9)+A34+PHI(10))
4*PH!(7)'{A1§'PHI(4)*A24*PHI(7)7A34*PHI(9)*A44IPH1(10))
_PHIDOT(8) =128.0+15.26 _ #PHI(8)

”1»9H1(3)u(&11;PH1(3:+A12uPH116)+A13rpH148)+A14-PH1(9
2-PHI(6) = (AL2*PHI(3)+A22#PHI(6)+A23%PHI(8)+A24#PHI (9

))
))
3-PHI(8)#(A13%PHI(3)+A23#PHI(6)+A33%PHI(8)+A34*PHI{ 9))
4=PHI(9)#(AL4*PHI(3) +A24%PHI (6)+A34*PHI(8)+A44*PHI(9 ))
PHIDOT(9) =66.2 +PHI{9) #(7.63+2.0)

1-PHI(3)%(A11#PHI(4)+A12#PHI(7)+A13#PHI(9)+A14*PHI(10))

2-PHI(6) % (A12%PHI(4)+A22#PHI(7)+A23%PHI(9)+A245PHI(10))
3-PHI(8)*(A13*PHI(4)+A23#PHI(T7)1+A33+PHI{9)+A34%PHI(10))

4~PHI(9)*#(A14#PHI(4)+A24%PHI(T7)+A34%PHI(9) +A44#PHI(10))
PHIDOT(10)=34,3+4,00%PHI(10)

1- PH!(Q)*(AII*PHI(4)+A12'PHI(7)+A13*PH!(9)+A14*PH!llOl)

4-PHI(10)*{AL4*PHI(4)+A242PHI(T)+A34#PHI(9)+A44=PHI(10))

CALL DEQ2
_200 CONTINUE =

?RI&T RESULTS,TEST FOR _END OF INTEGRATION

WRITE (6,610) R,PHI(1),PHI(2),PHI(3),PHI(4),PHI(S),PHI(6),PHI(T)

1 4PHI(8),PHI(9),PHI(10)
610 FORMAT (20X4HR = E15.8,/1X7HPHI(1)=E15.8, 1X7THPHI(2)=E15.8,
1 LXTHPHI{3)=E15.8,1XTHPHI (4)=E15.8,1X7THPHI (5)=E15.8,/
2 1XTHPHI(6)=E15.8, 1X7HPHI (7)=E15.8, LXTHPHI(B)=E15.8,
3 1XTHPHI(9)=E15.8, 1X8HPHI (10)=E15.8/)
IF (R .GT. 1.0 ) GO TO 20
CALL DEQ1
GO TO 200

ERROR ON RETURN FROM DEQ

300 CONTINUE
WRITE (6,511)
511 FORMAT (//10X21HERROR RETURN FROM DEQ)
sTop
END
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7090 Routine No. 7: Calculation of the Closed Loop Poles And

Inversion of the Detection Matrix

DIMENSTON A{101,103),NC(LICOT.RTR{I1D0O).B(50,50),C(50)
READ 15,5001 ({Aa(1,J),J0=1,4),1=1,4)

500 FORMAT (4£8.2)
CALL EIGL{A,4,4,RTR,RTI)
READ (5,501) ((B(1,J),4=1,91,1=1,9)

501 FORMAT(9FB.2)
CALL MATINVIB,9,C+0,DETERM)
WRITE(S,650) DETERM
WRITE (64,6511 0(B(1,d),0=1,9),1=1,9)

65C FORMAT {1HII1OX14HDETERMINANT = £15.8/77/)
€51 FORMAT {9E14.%)

$TOP

END
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