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ABSTRACT

The linearizeticn of thé squaticns of motion for the supersonic
flow of a perfect fluid ié discussed, and methods of solution using
elementary éouree gink solutions are developed. These methods are
applied to the ecalculation of the performence of several types of
thréewdimemsional supersonic airfoils; in particular, the drag at
zero lift of a family of almost triangular, symmetriecal wings is

caleulated. The significance of the results is discussed.
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PART I

INTRODUCTION AND SUMMARY

The‘flcw of en incompressible, non=viscous fluid around a three
dimensional non=1ifting body can, in principle, be celculated for
rather ggneral shapes, and reasonably simple closed solutions exist
for a few speciel shapes. These possibilities exist, of course,
because the incompressible equations of motion are linear. These
solutions, however, do not answer directly one of the fundamental
agronsutical problems « the caleulation of the drag.-~ sinee in an
‘incompressible fluid this arises essentially from viscous effects.

On the other hand, in & compreszible fluid, at supersonic
speeds, an importent part of the drag does erise from the non=viscous
flow, and is lmown &s wave or preésare dreg, Unfortunately, however,
the complete compressible flow equations sre non=linear, end at
present can Ee solved only in two=dimensicnal and sxially symmetrie
cases, and then only by an approximete numerical procedure, However
the importence of the perfect fluld sclutionms in drag calculations
(aside from their obvious importance in 1lift caleulations,/ has empha=
sized the uééfulness of approximete solutions for engineering purposes,
and perhaps stimulated the carrying out of such ecalculaticns to an
even greater degree than exisfed in’the low~speed cases

v The most praetical approsch to an approximate solution is the
“small‘pefturbatign" assunption = that is, the assumption that the
important features of the flow are reyresented by velocity fields in

which the velecities dc not differ much from the free stream velocity,



It can be shown that this emounss to requiriﬁg that the slopes of
elements of the surface of'the body are elmost parellel to the
direetienbef'fhe free sfream ?eloéity, This is most likely to be
trﬁe fof +hin airfoils, or thin bodies of revelution. Even in
these cases, there may be regions in which the local (approximately)
caleulate&'velocities clearly do not satisfy the smell perturbation
assumption. Iﬁ these regions, at worst we must recognize that the
appréximate calculaticﬁ is leeally in serious error, while at best
we may hope that the general behaviour of the sclution, as to the
extent and order of magnitude of "pressure peaks", for instance,
vmay still be predicted correctly, and that in the integrals of the
sclutions, representing total forces or total drag, the error may be
small,

Comparison with anelogous situations in approximete incompressible
flow calculsaticns allow scme optimism regarding the letter possibility,
while at the seme time careful examinetion ef the approximations made
to the complete equations permit more quantitative specification of the
probable limits within which the errors of the sclution lie below
certein tolerances. In the last anelysis, from an engineering point
of view, the justification for any approximate method of solution, and
the determination of its range of usefulness, lies in comparison with
experimental results.

In the fellewing chapters a brief summary will be given of the
methods of lineerizing the general equations of motion for a compress=
ible fluid, and of obbaining solutions to these equaticns for supersonic

flows, An extended account will be given of the appliecation of one



ﬁetﬁod, the’ "source sqlutiéns“ to the calculation of the flow around
thin three-dimensional airfoils et zero lift, In particulsr, calcula-
tiéns are carried ocut and results. presented in deteil for one simple
but especially interesting femily of airfoil plenforms, the "delte
wings", which have an esSeﬁti&lly trianguler planform, but are also
allowed to,héve various trailing edge angles, This family is particu=
larly inﬁeresting because it is characterized by only a few geometrical
parameters, but at the same time exhibits most of the peculiarities,
also possesed by more complicated airfoils, in the behaviour of the
drag coefficient as the leading edge angle or position of maximum
thickness line ére varied, Local behaviour of the pressure coefficient
is also typical of local conditions in more compliceted cases. In this
way, the calculetions allew the develcpment of some engineering feeling
for the relation of sirfoil drag performance to the critical geometrical
parameters,

The masf imﬁortant results of the calculations are presented in
the éurves of drag coefficient vs, Mach number for airfeils of this
family, in Figse 20 to 32 . It is seen there that the most importent
geometrical parameters are the ratios of the angles defining positioen
of leading e&ge and trailing edge, and maximum thickness line, to
the Mach angle, and that certain singulsrities occur in the solution
when any one of these ratios is 1.0 In general, for an airfoil of
given thicknesé, the drag of the airfolil is decreased considerably when
Eoth the leading edge and the line of maximum thickness are swept well
behind the a;nigle of the Mach waves.

It is also found that in certain cases the drag coefficients

approach finite values when the Mach number approaches 1, in contrast



fo the resnlﬁs in two»@imensional cases, and in spité of the usual
suspleion that the linearized apprdximation fails completely in this
neighborheod.A It seems likely that some of the details of the flow
in this limiting cese do fa11 outside the scope of the linearized
theory, but it also seems quite possible that this evidence of great
improvement in undesirable drag characteristics near Mach number 1
by using'swept leading and treiling edges-is evidence of a real
phendﬁencﬂ. This is borne out to a considerable extent by existing

experimental data,



PART II

'Ii}mARI ZATION OF EQUATIONS AND METHOD OF SOLUTICK

A, Basic Equations
The following symbols will be useds

U, V, W, = velocities in direction of x, y, and z (or x,)

or U; axis respectively
Uo = undisturbed or free stream veloecity, in direction
of x=-axis

u, v, w, = perturbation veloecities in direction of x, y, and

or ug z (or xi} axis respectively

=

b = perturbation velocity potential
M = Mach number, U/a
a = gpeed of sound
P = pressure
£ = density
7 = ratio of specifiic heats, cp/cv
pe =12 = 1
A= slope of airfoil surface in x-direction
Subsoript ( Jo will denote conditions in the free streem
(i.e., at infinity ). ,

Certain additional symbols will be introduced later in the discus=
sion of properties of particuler airfoils.

Although the technique of linearizing the equations of motion is
well known, i£ will be exhibited here in somewhat complete form in order

to demonstrate clearly the order of megnitude of the terms neglected.

The fundementel -equations governing the steady motion of a compressible,



@Boe

inviseid fluid are the Fuler equetion,

2% L 22 ‘
ok P 2 | (1)

and the contiﬁuity equation,

é

. e = O ,
< (o) (2)

It can alse be shown from the equation for conservetion of energy that,
in the absence of viscosity, and heat transfer, the density will be a

unique funetion of pressure, given by the isentropic law

p = consts p . (3)

In this case it can slsc be shown that a flow initially irrotation will,
in the absence of discontinuities (shock waves, remain always irrotational,
and that equation (1) cen be reduced to the Bernoulli equaticn

U, U; 7 B = LonsZ | »
yl < _ - . 4
5 "5, e (¢)

7; O; - ;1/, 2% = CowsZT (4a
= =

where & is the locel speed of‘seund,\/i’g/p » The continuity equation

can then be written as

. _Tapde - LG T |
2k, o deo 24 27 Pk (5)

or, in expandsd form, as
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We now suppose the net velocity to consist of small disturbances

to the free stream velocity, U,, so that
U= U, + u
V=v
W=w / (6)

wherse u/Uo, v/Uo, W/Uo are all small compared to one., The speed of
sound, a, can be expressed in terms of these perturbations, using

equation (4a), as

LG A () (5T

(7
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where M, = U(},/&oa Us:mg this expression in equ&t on (Ba), we obtain
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The following assumpbtions are now made:z

(1) Mz(u/U’cj 13 small compared to (1 w Mo)2 at low supersonic Mach
mumberss This implies that elther u/UO must be extremely small, or
the Mach number cannot be allowed to approasch too closely to 1.

(2) Mcz(u/UG) is smell compared to 1 for high Mach numbers, M e Since
it will be found from the first approximate solutions that (w/U_ ) is
of’ the order (v/Uo)/MO, or a/Mo, where @ is the local angle between a
surfece slement and the flow direction, this assumption implies that
oM is small compareé to l. Since M is of the order 1//4 » Where 4t

- is the Mech angle, we thus have

ﬁ///( < K 1.

Thus a% very high Mach numhers, with small values of AL s the second
ordser effects become inci‘;eaSiﬁgly Amportant.

If thess é.ssxmptions are mads, (9) becomes the basic equation of
f.he linearized theory:

24 /) 4p2 ) 2 2 — )
9/4//M")+3j+95 | (10)
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The solution to this can be‘fegarded as the first step in o series
of su@cesgivé approxzimations. Substituting the values of u, v, w
found from (iO) into the right hand side of (9) & new linear equation
is obtained which might bs solved for the second approximation. This
is essentially the procedure used by Hentsche and Wendt, (Ref, 7) in
the subsonic two=dimensional case; 1t can also be carried out explicitly
in the sﬁpersonic tWOmdimensiqnal case, buat hms not as yet been worked
out in the general three-dimensional cesss However there is some
question about the convergence of this process even in the two=dimensionsnl
oase.

Since the flow is irrobational, the veloeclities can be given as:
w= 98/ 9x = &,
v = <9¢5//5%7
9%{/92

I i
SS&

i

w

and equation {10) becomess

B ) By s

This is the three=dimensional form of the perturbation equation first
introduced by Ackeret (Ref., 1) and Glauert (Ref. 3 /.
The boundary condition, that the velooity component normal to the

surface be zerd, may be expressed completely ass
Ul +Vm+¥®n = 0 (12)

whers _Z, m, n are the direction cosines of the normal to the surface,
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If we describe the surface of & thin airfoil as t = &(x,y), then:

2. ¥
. w7 q — _— _y - 2= ; 7

so that equation (12, becomes
/Z7+a)~—”+/ﬂ“—"]-f““r:0 (13)
77

10 J£/2%  anma Jf/gy are both small, even though possibly

of the same order of megnitude, we have

s Zao/E5 (1e)
o

Thus in this first approximation, the boundary conditions relates
only the dowmnwash, W, to the x=slope of the surface,

A corresponding linsarized calculation of the pressure changes in
the flow is necessary. If the Bernoulli squation for the pressuré in
terms of the veloecities (equation (4)) is expended in & Taylor series

about the free stream velocity, we find that

/J—fa“:w% Vg e p Al )

202
3
24
~ o) ]
We may define the pressure coeflficient, Cp, byz

- ‘u | & e o ®
G- Ll - -2 ) - T

;%2
. d//%/jj (15
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In the first order approximation, we then have
4 = 21/ }
Cp ,“Q/Uo (18

Ba Methods of Sélution

There are two general methods of arriving at solutions to equation
(11). One is %o investigate immediateiy the existence of certain
typical "conical" solutions, that is, a solution with u, v, w constant
along each ray throughAﬁ point, This form of solution was discussed
by Busemann (Refs €J. As shown by Stewart (Ref. 8) such solutions can
be represented as functions of & complex wvariable in a distorted plane
perpendicular to U, More general solutions can then be produced by
combinatlons of speeial conical solutions.

The other method of attack is to reprssent the solution as an
integrel of certain elementary solubtlons whiech can be interpreted as
supersonic sources or doublets. Such eleﬁentary sclutions wers used
by Kermen and Moors in caleulating the flow around slender bodies of
~ revelution (Refs 2), and were discussed by Prandtl, and used by
Schlichting, in connection with 1liftingewing problems (Ref. 4 and 9)e
This type of solubtion is pearticularly adaptable to calculation of flow
around thin wings at zero 1lift, as will be seen.

C. The Source Solution

If we let '

o o 20% 1)
Ly, 2) = \Jlr-s)= B Cq-7)% + 2°f (17,

whare 52 = Mcz - 1, this potential will be a solution to equation (11 ),



' Ifbe goes to zero, it dﬂes,‘in:fact, hecome the potential for a
subsenic source lccaﬁe& at ( & , /7 ) in the x, y plens. However
‘fdr 52 > 0, the expression under the radical venishes for certain
values of x, y, &nd z, namely, at those values representing the

surface of the cone defined by
v 2 2 2 z
(-5 = § )" 27 (15
This cone is, of course, the Mach cons, with central halfeangls of

A= cot™ B

which is the Mach angle, and vertex at ( ¥ , 7, 0), This cone is
shown in Fig., 1. FEquation (18) dsfines two cones, one estending upe
stream, which mey be called the "forescone", and one extending downstrean,
which mey be ¢alled the "aftercone™. Apparently ¢ is defined for
X, ¥, 2 lying within either of these Soness However from physical
sonsiderstions we shall suppcse that the disturbance q at ( § , £
can aiffect only conditions downstream, that is, in the afbtercone of Qe
The cone is the stationary wave front produced by a disturbancs at
(5 , 7 J)in a fiow at Mach number i

If the point P 5 (x, y, 2z, lies in the aftercons of {( ¥ , 1? Jo
then ( § , # J)also lies in the llach cone extending upstream with
vertex at P, i.,e,, the forecone of P, Apparently ;f at P is affected
only by poinks whose aftercones include B, and thersfore by disturbances
at points lying within the forecone of P. This cone intersects the £, 7
plane in a hyperbola, given essentially by equation (18), and shown in

Figa 2e
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A gexlei'al solution lbcazi now te conskructed by sa?arpcsitions of
elementary solutions of the type in squation (17), with q( 5, 7 J
int:erpreted as a source strength per unit area. It can be nobed that
thess solutions will produce w = 3¢/9£ antisymmetric in z, but u

and v symmetric. The general solution ean be represented by

o x e )
% £ 7 7 I (19)
. = |/ .
Pl59,2) /%f}z—ﬁzﬂy—w“fz}
| E

where it is assumed that no disturbsnces exist ahead of & =0, The

curves ?/ , end /4, are defined by

g, = 9= JEF)/ET -2

p, = Y FSF)ET - 2?
| §/ = X - Bz
that is, the two branches of the hyperbola of Figs 2.

The downwash, or wevelocity, in the xy-plane, associated with the
potential of eguation (19) has a very simple expression. However the
calenlation of w = 9//92 directly from equation (19) is somewhat
awlkward, sinee the limits of integration invelve z, and the integrand
becomes infinite at these limits. Therefore certain transformations

are necessary. Integrating the second integral of (19) by parts,

with

“- /5 7) Aoz Ay [ le-2) =B lg2) 2

5 AR S -
a’%“ j‘dl/f < /3 o ’k/z[_;}z__/j.zzz
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and noting that

. 7.
| o ! B o) ‘ e
%@W”ﬁ%224=-zﬁ@ﬁkf@“U
we obbtaing
742 pe
= /;/72) /f/z) Jds + /;{;/_;—. .r/ﬂ_ﬁ/_w_
Zﬁ//‘; } f /A( 5} —-ﬁzg 7
The we-velocity mey now be calculated;
o4 » |
9_'£“=~1ft¢q(x—?»z,y)+Tl+T2 (20)
where
z-/B82

7 = 27?7/592/}/5’&) ~ 205 2,) ) d5

B 42A?\/é%r 5 /g 22 [f/ﬁzii - (%%gaijfééf

(21)

and

A-52 72 | /
/ — Ply-7 y
Z T B 92 //CZ¥ —ﬂ?-Sq Jr-5)%— g222 4

. 72 ‘
__ dmn PPN i/ ik VY
- F» 1./’/93/7/ 2/7 ‘//[_5)2_%2‘_?2 7

‘
452 2z

K/Q—?) _/
FZ. st
7"“_‘/“,_5): (92-/‘2 ﬂ*§)2~/5222

2 (22)
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Denoting the first of the two integrals in the last expression

for Tz' by I, and I, respectively, it is clear that
[I,I</—7‘j . e (p-n,) = O
/ P ) pay. L Fer-p2

ir (. 92 /) is tinite.
We also note that, in I,,
7>

2 [2 ééK%L?QL_ _ Y, Jrine —%£~.rnﬂ g ‘flg/ z)
92§?IW7~92_ 7> 7 /) Vik-5)* 522

7,

Y fypa (2F) 7 /sj &

2 /7~ E)? 222
22y )=

2

5 5z (g-7)
%/ % [(r-5) 5% Jt-5)> 3)eg-1)% 2

4

(23)

We are interestsd in the valu@ of wat z = 0, The integral in the
last term of equation (21) is obviously convergent, and therefore

aporoaches zero as z —= O, The first two terms are

\ﬁ}.’—g’)ﬁz_%/fZgz 27/- //%jz - éﬁ’ﬁ/

whish also approaches zero as z —> 0. As seen from equation {22, it
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is aetuallyr necessary to prove that the integral of this expression

with respect to _§ vanishes, which is easily shown as followse If

, A-52
<z :Q/V/Z- ;JH //97/ /ﬂ%//
then x-/52

, 2 ¥ _
1z < /Cﬁ@ = gz*

whers .
g > |5 - 68),
Sothat | e
7| < K 2% //Z-f)+//r—§)2—ﬁ222/
s2
< K/ Z /j Z—f/f /;‘ .2 /
and
/rma (II = //m = /aj = = O
Z=>0 >0

Thus T2 beccmes zero, and iz a similar manner, Tl approaches zero as

Z —» 0 Therefore

wé: = ?{/:/,O/—é) — 7}/1/9) (24)

This extremely simple result indicates that the velocity potential
may be written immediately in terms of & known downwash distribubion

‘in the xy=plane, with

q=~§ | (248)
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The same result was &emongtfated previously (Ref. 10, in & somewhat
simpler mannér, relyi.ﬁg ’Eo some extent on a physical argument, but
Whicsh unfortunately was not rigorous mathematicelly. As noted previocusly
this seolution will produce & distribution of w which is antisymmetric
about the xy=-plane, which, from the boundary conditien, (equation 14)
corresponds to & symmetric body at zero lift. A pobtentisl of this type
will thué be useful mainly for calculstions of drag of thin airfoils.

In tﬁis case, the lecal élope of the airfeoil surface in the x-direc-
tion, /1,1 » gives the scurce distribution immedistely, for, . from

equation (14),

w =T Ax (25

In eertain special esses, this solution can also be used to calcu-
late the lift distribution on an airfeil, Consider the airfoil of Fig, 3,.
in which the angle between the tengent to any part of the leading edge
or trailing édge and the x-axis, é s, 1 always greater than the Mach
angle, 4 . In this cage there is no disturbance in the field shead
of the wing., Suppose that the angle of attack distribvution over the
surface of the wing is @; then in the upper half-space (2 > 0) we mey
represent thé potential in the form of equation (19), with q = -u(’fj 7)/7('
In the lower halfe-space we may dsefine the solution as the negative of |
this, thus obteining & total solution for which w is symmetric, and u
aﬂtis%ymne%:ric about (x, yJ, i.e., & sclution for a lifting wing of zero
thickness, Since ¢ is zéro everywhere shead of the sirfeil, and
the Mach waves from the tips, the two solutions agree here, and since

conditiens behind the airfeil cannot influence conditions of the surface,



ale‘a

.i% is unnecessary %0 cglculate cénditions heres The'type of solation
éann@t, of course, be used to calcﬁlate directly the flow in the wake
oflths airfoil, whenvthe solution must again be symmetric in wes Leading
and trailing edges of this type are called "supersonic™ since the
component of the free stream Mach number normal to the leading edge is

greater than 1:
M, = M sin & >Msinge =1 . (26)

Thus the "source distribution" technique can be used to calculate the
1if% as well ss drag of any airfoil with entirely supersonic leading
and trailing edges.

For airfoils with "tipe" which are essentially subsonic leading
or trailing edges, as in Fig, 4, the source solution can be applied to
caleulate 1ift on all parts of the airfoll except the regions, A, affected
by the tips (the shaded zones ), In principal, the same technique can
be used even'here, if a sowrce distribution can be found for both regions
A and B which results in the propsr upwash over A, and a zero u=velocity
over B, for in this case the two potentials for the upper and lower
half=spaces would match in the free stream areas B, In general, this
would appear‘te lead to an integral equation: for the source distribgtion;
however Evaard (Ref, 11, has shown that a solution can be written immedie
ately in terms of the angle of attack distribﬁtion in regiomn A, Thus
gven'in this case the solution can be represented immediately by simple
integrals of the type of equation (19), This method fails if the influence
zone from one.of the tip regions B, or from the area ahead of a subsonie

'part of the leadihg edge, falls on part of the opposite region A,



In the‘general casé‘qf airfoils with subsoniec 1éading edges, the
1ift problem may be sclvéd by superpositions of special conical flow
solutions of the type deseribed in the first part of this éhaptera
Anctheﬁ" téchriique is also suggested By the special propertles of the
solution in equation (19)s We obssrve first that not only the potens=
tial, ;f», but also the perturbation velocity compoments, u, v, and w
must satisfy the basic equation (11)s Thus if

) . _;.-/ 7,

_ uls dx 4 \

«/}4%#?7}52/&’5/ 2/ < (27)
a %

\/Z_ ;)z_ﬁz/‘(g—_}?){‘ _sz

7

we See from the properties of (19) as indicated in (24) that
Ulx, y,0) = u(AX,4),

This distribution of u will be antisymmetric in the xy-plane = i.e.,
it represents a lifting surface. A potential which will produce this

uyfield iss

$ = Jadiy,z)dx

If the integration with respect to x and the differsntiation

with respect to z are earrisd oub, we find that

5 7 |
/J:—J_/ wisn) e (r-5)dsdp (28]
M R R (R,

From equation (15), the velocity u is essentially the 1ift per

2 i 1
unit area, L , for



4 288 = + F o | (29)
/OUZ/Z—~ - A o,

Thus the pobential for a wing of given 1ift distribubtion may be
written down immediately, but the angle of attack distribution must,
in general, be calculated from equation (28). In the inverse problem,
that of given shape, the lift distribubtion will, according to this
method, be the solution of an integral equation.

The sbove results may be arrived at in another (rather similar)
menner, bubt which brings out more clearly its vhysieal interpretationa
Imsgine a row of supersonic "sources"‘of constant strength g starting
at the origin and extending back along the x=axis to o0 , According

to equation (19,, the potential for this row of sources will be

R
’ A5 )
_F
¢//’K/ y/ 2’} = \//;-f)z—ﬁszé”z+zzj (30)

where

Ay AT

Y, X

¢i /235%/ 23) = £ 2?/ cosh pz 2;3::252

A row of "doublets", obtained by bringing snother source row up

Thus

from below, will be represented by

2, A -2
P (51)
é&f% 2)= o2 (yz+zz)\/rz—/>’z/yz+zz)
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Now bylanalog;y with ’c‘w subsonic interpretation of such a doublet
line, *this should represent an infinitesimal horseshoe vortex, commence
ing et the origin, s in Fig, 5, with finite product of circulation /7
and width G/IZ , but, in this limiting case, infinite circulation,

The flow field associated with the potential ¢E might be considered

a distorted version of the subsonié horseshoe vortex, and is therefore

‘not recognigable as such - but if we proceed to the Treftz plane

( x —= oo j, and restrict ourselves to the neighborhood of the x=-axis,

the flow field iz immediately recognizable as identieal to the subsoniec

doublets. For

=
Lorre 4, = — Ee T (32)
X—> oo 2 /yz—/- 22/

which is the potential for a horseshoe vortex of width a,,. and circulation
77, for & —> 0, with g, = = | a/2r, and with circulation in the

sense showm in Pig, 5. Since the vorbtex lews and the Kubta-Joukowski
law still hold in the supersonic flow, we know that the total 1ift on

the bound part of this vortex system (i.e., at the origin) is

L=pUlMNa=wpU. 2nq , (33)

Thus
| q = @ E— . \i’ L 3
1 4n pU2/2 (34

If we now suppose 9y to be & doublet strength per unit area, introduce
this in equation (31) and integrate over an area in the F , 77 plane

the result agrees with equations (28) and (29) exactly,
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This approach has incidentaily indicated a method for calculating
the dcwnwésh‘behind a suéeﬁsonic wing of known 1ift distribution in a
plahe very far behind the wing, and in a region well inside the Mach
cone, In this plane, the chof&wise distribution of 1ift on the wing
is cbviously unimportant, If the total 1lift per unit span is L’, than
- the potential in the Treftz plane is approximately, from equations

(32) and (34,

| | Yo | |
¢~—+U-——/~— L) 2y  (35)
S pUZ (y-pp)*% + 2%

_5/2_

where the wing span runs from «b/2 to b/2, Or, alternstively, this
field.can be calgulated using any of the standard techniques for obtain-
ing the flow fieid far behind & subsonic wing of known 1ift distribution.
The above calculation will not, of course, give the field correctly near
the Mach cone from fhe winge

In the remainder of this presentation, attention will be centered
on the ealculations which ean be made using the potential of the type
in egquation (19), with particular attention to drag calculations.

In'Ref.,ls, R. T. Jones makes use of a source distribution similar
to the solution of eguation (19), actually an integral of a uniform
distribution over certain basic areas,‘to calculate the drag of certain
swept back wings. Again, in Ref, 14, Jones mrkes use of the solutions
of the type in equation (28) to caloulate the characteristics of wings
with giveﬁ.lift distributions, Further application of an extended form
of the solution in egumation (19, was used by Evvard in Refs. (18, (18)

and (17} to calculate 1ift near subsonic wing tips, downwash fields,
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énéuperf@rm&né@ of yawed miﬁgs; vThe doublet distribubions of equation
(28 are used again by Heeslet and Lomax in Ref. 18 for the calculation
of é wowash fields,

Exﬁensive’calcalations of airfell drag fer valous specifiec plan=
forms were made using the source distribublion methed by Mergelis in
Refse (19), {20) end (21 ). The source solubicns were alsoc presented

N

by Ths von Xarman in terms of Pourler integrals in Ref. 22,
A g



:  PART III

&F?CIAL.A??LILATLORW TC IVFINITE WINGS

As a first illustration of the epplication of ths source type of
potential, a calculation will be mede of the pressure disbtribution and
drag on sn infinite two=dimensional wing of small but finite thickness
and at zéra anzgle of attack which is swept back or yaweds, Two cases
ere of interestz (1) +the angle & between wing leading edge and
x-2xils is greater than the lach sngle, « , or (2) & is less

than 4« , The first sase is shown in Pig. 8. D
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"sweepback angle", O , is such that tan 7 > B,
The pressure cosfficient at a point P, which wse may take to be on

#
the x axis, and in the plane of the airfoll, will be determined by the
® £ 3 t‘y

source disbribubtion within the ferscone of P, the region A in Fig. &,

This forecons is bounded by the Mach lines

p= 4 (x-3)/8

and by the leading edge
¥= K7

where ¥ = tan T .

From squations (12, and {24), the pobtential at P is given by

v pr d¥ dig (38)
) - V///r—;‘ﬁ—/f’?z

{ﬂOﬁﬂj d@VﬁmHuh in the & , %47 plane, Let A be the

i
&8
P
]
et
ry
&)

/‘ ]

whers
glops of a surface slement of the alrfoll measured in the z-dirsction.

Then A is consiant along lines paralisl to the leading edge of the



airfoil. I we introduce

5= 3 - 57 (37,

then s is constant along lines parallel %o the leading edge, and

w= A(s) . U (38)

Bquation (38, now becomes s

772

¢’_-———-/ME/5‘ _”C(f_..-—/ {39,
7/

f[ s kg)*p8 72

while the limlts of integration ares

X -5
7, =~ s = - 7
(40)
a4y
VARV B v
Equation (39, may be rewribiten as:
(41

¢ — __._- w/,s‘)é/f /92/[_5)1 lr jj,é z
- //——r "

This is immediately integrated to

Z
s fels)ds k(5 &Y //
¢ T ﬁz_kz S0 /3 ﬁ/z—:

g
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or,
B gf J//? wis) ds
= . (42
| o /37— K
The x~veloecity inerement is
_ VM_ B wrlx) T4 |
“= ok T Ve kr (43,

The pressure coeffieclent ocan,

e

of course, be calculated immediately from

equation (18)s It will, however, be more convenient to express the

pressure coefflcient in terms

the airfoil leadlng edge. We
U
n
M
n
and
C?n

where Ap is the pressure disturbance on the airfoll surface,

further notethat

cos T

of the component of velocity normal to

may let

U cos T

M cos o

Ap

(44)
r U,/

We may

/v + 2

end we may define & new "B" for the normal Mach number by

//3;7 - = /WQ?’"/

Bk

(45)
- K=




The slops of the airfolil measured normal to the leading =dge is

. = A = A+ £z | ‘ (48)

(47)

7, P
#7 ﬂ | /’7,72"' /

.This 1s identiesl with the result obtained by Ackeret {Ref. 1) for
the pressure coefficlent on a two-dimensionsl airfoil, rsferred hers to
the veloelity and Mach number of the flow normal to the leading edge.

The initial requirement that P > k ensures that Mn is greater than l.
This result is sasily obtained alsc by the direct physical argument

that the pressures in this case must be determined only by the component
flow normal to the leading edge, as was poinbed out in 1935 by Buaemsan
(Ref. 5o In obl f‘WOTﬁS, the true free stream velocity can be supposed
to cgnsisﬁ of one component perallel to the wing leading edge, whiczh
cammot affect the pressure distribution, and a normal component. The

@

pressure coefiicient referred to the true free stream dynamic pressure
is

_ 2 A, cas 2 g
C, = — (48

M, E— 1

For this twoedimensiomal airfoll, the normal to each surface slement
is also norumal to the airfoil leading edge, and therefore the horigental
component of the net force on emch element is normal to the leading edge.

‘The component of this foree, AF, parallel to the x-axis will give i%s

contribution to the airfoil drag, AD, as
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4D = AF cos T (49)

Thus the elemenbtary drag cosfficlent will be

Zﬂﬂz cos> T

7 J 19,72 1

or

2)2 cos T
- \/MZ___/ (50)
r7

where the x=direction slope, A s has again been introduced.

AC, =

If we consider an airfoil with fixed profile in the xzwplane,
but varia’bléswee?back, and thus consider only the variation in
cos T / M.ﬁg « 1 with T , we see that the drag is sctually ineressed
with increasing 7T and approaches the usual twoedimensional sigularity
at Mﬂ = 1. Even in this very simplified case it thus appears likely
thet primary drag advantage from sweepback must come from sweeping the
wing back so far that M, < 1, or else taking ad%antage of the new
geometry to decresse the slopss, A » measured parallel to the free
stroam flow,.

A similar caleulation may now be made for the second case mentioned
at 'th§ beginning of this ssction = the infinite wing swept at an angle
such that the leading edge is behind the Mach waves, i.e., tan T > B
this cese is illustrated in Fig, 7. The forecone of P will now intersect
beth leading and trailing edges of the wing, so the limits of integration

must be revised somewhats It is convenlent to carry out the integration

in two parts, one over the area ahead of the line L, end bounded by the



s Gan

upper Mach wave, and the other over the region behind L. Using again
§= § = L. 974

we have the complete potential

-, w ds Ay (51)
7= 7////):—5)2—2/1’4)@ #k=5%)7*
/ /

where & is the forecone of Po If we divide the integral as above, with

g=1+1

then

and

(53)

/”“’/ il 8e-s)*
\/7—5)& 7'/22_—} k‘—p
where y/ and 7, are still given as in equation (40), and the lower
limit & will be allowed to approach minus infinity. In order to obtain
the principai velue of these integrals, the squared quentities unéer

the square roobt must be taken in such sense that they are positive in

the range considereds The expression in brackets under the square root

is positive in both cases. In I;, (x~s) is greater than zero, so

| ” 0
-/ -7 [£Z
I AV 4 __“L/
S 7o e A A BTy /

a
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At 7= A, 4 the expression in brackets becomes wnity, so that
7o -/ _ (ki) (54,
o BL- 5)

The sscond inbegral is similar except that (s-x) is now greater then

gzaros Thus

c
3
£y ot okt 5 V2]
2 kz/gz Vel Bl(5-x) ~

= gé Ljﬁ
~Z; //,e /h”/;[j /ﬁ //51’)

These two inbegrals meay be combined tos

cC
¢=_Z;_/__.__ Ao k| (£5p7) 2 (56)

ga/gza s =)

since the sxpression in dbrackets in both equations (54) and (85) is
positive in the range of s considered, The ineremental uevelocity is

thens
. C

o Viemg [ 2 l) 4
9lv 7 /f—l)wfk/ksj—/kggyaj%7§¥fﬁjz




If a is now &1l owed to approsch minus infinity, we find
C
ow = ,ﬁfi = ;___fi___ﬁ;_ rords) d< (57)
7 2y _ 7/—//{/2"/52 /5—2’)
a

This disbturbance velocity is of the same form as that obteined

in the two=dimensional thin wing theory for the representation of the
pressurss over a symmatrlcal airfoll of finite thickness at zero 1lift,
In fact, for an airfoll at zero Mach number, with a chordwise slope
distribution A fs,, in a flow at veloeity U the perturbatieﬁ

velocity over the surface would be

_aﬁ=__ﬁ“/ A,05) ds '(58)

04 rs-x)

The pressure cosfficlent corresponding to the supersonic case will
be, from equations (38/ and (57),
Als) ds

2
+/T/l€z_/gz. //J"—-Z)
o

whers ,l (s) is still the slope in the x-dirsetion. In the incompress=

(59)

ible case, from equation (58), the pressure coefficient is

c

G o=+ 2 ) Al) s (s0)
g 7a / (.5'—2.’}

In our suﬁersonie case, we may now rewrite equation (59, in terms
of the velociﬁy, Mech number and slope normal to the leading edge, using
equetions (38), (44/, and (46), end referring the pressure coefficient

to the dynemic pressure of the normal flow as before. We note that
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_ 2 .2 .2 ,
i 1+ k2 1+x?

The new supersonic pressure coeffieient, C?h’ hecomes

' Cc
.- 2 A, ls) s
‘h T nfr-mE [5-%)
2]

L C (62)

=7 ‘o

Thus, as agein might be expectsd from very simple physical consideras
ﬁi@ﬁ%, the pressure distribution over the airfoll is debsrmined only by
the component of flow normal to the leading edge. In this case; the
normal Mach number is less then 1, and the pressure distribution is sube
sonic in character, being exactly egquel to that computed for the two
dimens ional normal profils with a Prandtl«Glavert correction based on
the normal Mach numbér., The drag in this case is obviously zero, according
to the D'Alemberﬁ paradox, or as may be easily shown by integrating the
pressure distribution of equation (59) multiplied by the local slope
over the chord of the airfoil,.

It must be noted that the integrals of equations (54 ) and (55), and
particularly of (56) end (57 are all singular at s = x, In equation (57
it is necessary te take the Cauchy principle velue. In (54}, (55, and
(56) the singularity is essentially logarithmiec, and causez no trouble,

The aEQve‘caleula%ion suggests strongly that eppreciable drag redue=~
tions may be obtained with wings swept back bshind the Mach angle. Howsver,

in the form presented 1t cannot give any quantatative indlcation of this
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in.ﬁ'practieal case, sincs'any‘réal‘wing must be finite in span, and
ﬁhsrefgre‘noApart of it will be free from the influence of the center
seeticno If & real wing congists of two two-dimensional wings both

swept back from a center plane of symmetry then the conditions infinites
ly far from the center must approach the results of the previous calculae=
tione The real problem is the calculation of the flow resulting from

the geometry of the center section.



PART IV

APPLICATION TO BELEA'WiN“S;.ﬁﬁﬁEME OF CALCUIATIONZ

As & p&rticularly simple case of a Tinites three=dimensionsel wing,
we shall sonsider the wing with planform shown in Fig. 8, called a
delta wings For simplicity the profile is taken to be & doubls wedgs,
with variable.loe&tiom of the vertex, Bs The three essential geometrieal
perame ters are the thres sweepbsck angles of the leading edge, msximum
thickness line, and trailing edge; 0O, CT’Z, end 0—3f ff@speeﬁively;

1

or their tengents,

k, = tan T (83,

I+ will also be convenient to define

r = E;Q,/i{j_
a = lkg/fky {64,

The area, &, and aspeet retic, X , ere respectively

2 v
S = éé‘ (£, - é}‘) , A = 7

(65,
2
A (1-2) £,

The thickmess is Z +imes the true root chord, 2= (1 - a).
Thé slopes (in the x-direction) in regions I and IT respectively will

thus be

: = lm j = £ 3 y
Al ___(_.w.ﬁ';.}ra’ AE __M (66}
2(1 = r) 2(r = =)



It is desired to compute the drag of this wing at zerc lift, using
the source solubtions of the type of eguation (19) %o deseribe the flow

fielde The computation scheme thus becomes quite simple in prin

o3
fte
s
bt
D
ws

since the slope in reglon I is a constant, A 3s its contribution to
the solution is represented by a constant sowrce distribution in region
I, snd similarly in region II, In order to simplify still further the
classification of the basic integrals regquired, the wing planform can
be composed in & somewhat different wey. The slope distribution can

be suppesed to result from the superposition of three triangles, with
vertices at A, B and C, respectively, sach extending indefinitely in
the positlive x=dirsciion, The slopes of the surfaces of these briangles

will then be

A, = A

Ay = =4, NG
which, upon superposition will give the corrsct sctual slopes in resgions
I and II, and zerc slope in the wake. The basic pressure distributien
reguired will therefore be that associated with & single such trisngle
of' comstant slope. For the sake of order, the scheme of supsrposition
and calculation of mutusl influences will be set up fairly completsly
in this section, before any of the calculations sre carried oubs

In the ealeulation of the drag of the complete wing, four cases
must be ccnsidered,idetefmined by the directlon of the lach wave relative

te the three lines AT, BT, snd CT on the wing. These cases are charachsrw

ebo

aed by
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(1} g > ky

{2} ky > B>k,

&

(2} %, >8> kg

2
{4 k3>ﬁ

il
iy
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and afe illusﬁrated in Fige, 1. We notiece thet in cases (1, and
the pre gé'r@s zasociated with the scurce distribution in the triangle
A, will act upon both regions I and II, while the scurce distribubion
in B will ach only upen region II. Iu cose (3), the pressures due to
B can also act on region I, while in case {4), the pressures dus %o
both B end C can act on both regions I and I1.

Le% CFj be the pressure cosff

o uniform scwree distribution in a triengle with vertex at j and a

(positive ) unit slope in the x-direction. Then let D; . be the drsg
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triengle with vertex J,
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generel, the total drag for both sides of
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Term {1) and (4}

will have a singulsrity when kg = B, and tern (5) will have =z singularity
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PART V

BASIC PRESSTRE DISTRIBUTIONZ AND SURFPACE INTRGRALS

A, Pressures over unit-slope triangle.

&s concluded in the last section, the initial problem is the

calculation of the pressure field associated with one of the basic

triangless This preaswre fisld will have a different representation

depending on whether k is greater or less than £, i.e., whether the

leading edge is ahead of or behind the Mech wave from its veritexe

The first case is illustrated in Fige 10, for a point within the

trianglss

The potential on the airfoil surfece at point P = (x, y) will be

the integral over the region betwesn the leading edges end the Mach

lines going forward from P of the uniform source distribution, This

integration is most conveniently ecarried out in thres parts, correse
& : , s

ponding to the regions (1), (2) and {3} in Fig. 10.

Since the pressure

field is to be caloulated for & trimngle with unit slope, the potential

is:

¢ (3’1, Y) :Il + 12 + 159 58y,

where

| . s
, - _ T
Z, = 77*/47///3;/?/4@

y/ _;é'?

o +67

4 5 :
L, = — ;/Taf/ﬁ’/f ///f,/z/df



w3 Jeo

Z, =-Z
s 7 ) 97 | e ) s o
v £y
with
2 z /7
Hen)= [r-5)% g°ly-0)? ]
and | Iy, = ==Bly=qpJ
F, = x+ply=p)
The points yy end ¥g &re given by
kyg = =t Bly = yp)
end
~kyy =x = By = yy)
or o ox + 8 . + 8
Jg . mi’ I1 “%—“F{i (71

Integrating these expressions once, one obtains:

}./
-/ -
/5/7 cosh /!/y—/z) / .

0

. T . 2'7‘1’7

= — //1 447 cosh /5(2/_41}

9,
4 /-5 ’
T / -
A = "—/a’ o054
- " V7] v ﬂ/y—/?/ +&

v

- 7/4’7 cosh - _X-kr

- 7 Sy~ 1)
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%
YR -/ -5 =
e =z + = 6‘/7 cosh
3 7 ) Blg-2) e,
g
A
| zr - ¥-£p .,
= = = 4/7 costh e (72 )
' ‘a /5'/_7”7]
g
These integrals mey immediately be differentisted to find the usvelocity.
Since the integrands wvanish at E‘yl oY Yo, We obtainsz
26 . _T [ =l
“4= ok T )T by 8 y-1)"
72
a4

- =
ﬁd/\[/z—ffsz—/fz/y-/?)z (73 )

These integrations can be carried out easily if one notes that

(7« k/z)z__/ngy_’?)z: kx # . /_F—/SL)

/I-/:sz_;Z/j-WL = [ﬁﬁﬁz__  JE 5

/cz-'/fl (74 )
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Denoting the integrsls of equation (73 by I; end I, respectivaely,

these bscome:

| oy Y,
= 24 (Dfé

I’ T T T e st SlL+ Zy) 4,

— /
L, - +'rf./é2./32' E(K— ko) /0

At the limits v, and the irnverse hyverbolic cosins terms
31 Vo5

venish, sc that one finally obtains:

w = = [M_//{u + 854"~ /frﬁ
£y 7 /F Blxt Ey) pBle-kg) 1 (15)

It s clear, of course, that this solution must be essentially
conleel, that is, the velecities end pressures must be constant on

rays through the vertex of the trisngle. Therefore let

v = ky/%

so that + = 1 on the leading edge., It is alsc cleer that the solubtion
g g

must depend essentislly on the retio k/B, sc we skall lek

n = k/ﬁ;a

Thus + = n on the ¥Mach wave from the vertex of the trisngles This fackor
g s

n, might be called the "reletive sweephack", since it is essentially the



ratio of leading edge sweepbsck to the "sweepback" of the Mach waves.

The . present ealculabion has required n > 1. Then

' 2 -/ nZ
“v:zé:____q‘___—_/ cosh™ AL L oty 2 =L
2% 78 Vnt nlrit) 1 lr-¢) (76)
New if
2
+ 2 .+
cosh 8 = — t\ s cosh B = —Eie—_QEf
n(l + %) n(l - ¢}

then it cen be easily proved by elementary identities that

cosh B - p /— (E/)*
2 vy /— 2%

The finsl expression for u may therefore be writhtens

| 27 Ry
- I By —_— .
“T T msfn=s /— 22 ()

As © appreaches 1, thet is, the leading edge of the triengle, the
disturbance veloeity bhes s logaritimic eimgularity. Sinee in this case,
with n > 1, the leading edge of the trimngle iz "subsonic", this behaviour
might well be expected. The expression also becomes complex for 1 < £ < n,
thet is, for points between the leading edge and the Mach wave from the
vertes. However for the cmse m > 1, there is also s disturbsnce in this
region which is required in the airfoil drag éalculatiom, In erder to
verily the form of the pressure distribution in this region, it is necessary

Yo make = caloulation similar to the preceding for e point off of the



triasngle, but behind the Mach wave. This situation is illustrated in
Fige lls The inbegration of the source influence at P msy be carried

out in Ywo parts. HAgein, for the trisngle of unit slope in the x

direetién, ,
| o  X-ply-n) ~
¢ = - _U_-_ g/7 =1
7 /E-E}Z— By-127)*
.
Y L-y-2)
7 / o /5
“ ./\//:/‘sz’ﬁlfﬂ"?jz (78)
o +/(7
where

. o= X = By o x = Py
i Yy Jg T = E

kefp ? k + B
Integrating, one obtainss
g %>
T 4 Aty T XL
4 7r/ 7 g )T )
7, o

Since the integrends again vanish st ¥y end ¥o, the derivative with

regspect to x becomes:z

' (4]
z:'—g—é#——f/‘ CLA
~ " Vire £q)2- 52y —4)*

~ .ﬁ 43 Q’?
—“—7’;/‘/7—;@7}2— /éz/'yFsz (7¢)
o




A transformetion essentially the same as that in equation (74)
mey. now be made. In order to obtein the proper value of the inbegral,
it must be reﬁz@m‘bem@ tﬁat now X < Xy, and kx > ﬁzy, so that the sign
of the lest téi*m in parenthesis in the second of equation (74) must be

reversed, Ths result is then obitained that:

: , 4
MW= - ——-/——— [a;é-/ !ﬁéz + cosh” M}
4 k% 52 Bl + £y ) Aley-x)
or

w = - L L /m,ré—/———”z"i— + cash™’ n=z ]
78 ynt all¢d) nlt~t)

(80)

As vefore this expression may be transformed bo:z

cosh 7=/ (81

2T / |
= — 4 J
« 1(%,//72—/ %—/

in which form it is real for 1 < ¢t < ne.

This expression agein has e logarithmie singularity as ¢ approsches
1, which metches the singularity of equation (77), but it approaches
zero &s t approgches n, that is, ss the point P approsches the Mach wave.
Equa‘-;iens (77) and (81) complete the description of the pressure field
for n > 1, that is, sweepback behind the Mach line, or subsonic leading
edges

It is now meessa?y to caleulate the disturbance field associsted

with the triangle havirg k¥ < B, or n < 1, i.es, & supersonic leading



edge. This situation is illustrated in Figvvlga For ¥ < B, there

is no disturbance ahead of the leading edge of the %trimngle, so the
eél@ulati@ns ére eoncerned cnly‘with points on the wing. However

here, agein, two types of points must be distinguished, Points such

as Fl’ Flge 12, lying between the lesding edge and the Mach wave M,

(1 > © > n) heve & potentisl determined only by the sources lying
within the oress~hatched region (1) But this potential apparently
must be the same as that for s point on an infinite wing, since the
vertex does not lie in this region; The disturbance velocity at Pl
must thus be equal to that celeulated for the infinite wing in Part III,

and from eguation (43 ) one observes immediatelys

7

74
“lf)= < EE T T i (s2

&t poinﬁ.Pg the influence of the vertex is felt, However the
potential at ?? must be equal to thes potential at Py decreased by the
influence of & uniform source distribubion in the crossehatched region

(2), or, for positive unit slepe,
ﬁ(Pg) = /é(Pl) £ A¢ (83)

where

L 2// aff 0//7
A¢ - '/7'@ \//X“E)Z"/S‘Z/y’pjz
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Writing this integrsl in two parts, we haves

o Y2 X897/ -bp
Af = ——/"”7 f/}‘gja’f - ZT/ﬂ?/f/f 2t (84
| Ty ' Sz ky
where |
= 2= B - _x=Ff
7y "ta.r * Y2 "Btk

Cerrying out these mtegrai-mm, there resultssz

— =/ A ﬂé
A¢ /76‘r ﬁ/yfzj

- U'/d? coid ' X Y4 —café—/ X +&s
ﬂfy 7) By ~2)

o

dfi:- -*;/0/7 cosh X K7 /0/,7 Los ‘/_,*_kf
Aly-1) Aly-17) (85)
%

The u=velocity asscclated with this potential may now be computeda

The integrands vanish for /Z = ¥y or ¥p, and the u=velocity is therefore

o o
| dr T 27
. 2 (1) = - 7 ——, (86
A% ot Y 05 y1)® T e kg ) %5y 1)
S _% yZ

These become elementary integrels if 1t is noted that
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B - kz)z_ kxX—5°%y
Bk VB2 k?

(k)™= -1 =

| | 2 i 2 2/x £ bp)° 2, 1%
-~ . <
' ' 87

5 K

These expressions are essentially the same as those of equations (74),
except that the signs of the terms have been chosen sc as to keep the
quantities in brackets positive through the range of integration, in
order to obitsin the prinecipeal value of the integral, Introducing equations

(87, iute (86) and integrating, we obtain

Adu =

> 2
—Z ——-/—— _r/h - Eﬂ - .S‘/;'IH/ M } (38)
7 ?92;_£”2 ,éﬁcf—‘féyj ‘/9(CZ-# é}y}

If the variable t :=ky/§ is introduced, and this equation is reduced

by means of elementary trigonometric identitiss, it cen be shown that

Auw - — ——fijZl———— s’ .fo:;élz (89)
e/ —n* VAV

According Lo equation (83), the tobel u=velocity at point P, Fig. 12,
will comsist of the e xpression in equation (82, minus the increment in

equation (89, Thus

/ 2 CJ
Z ) = — — = g7
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As t approaches n, equaticn'(gcj will, of c@ﬁrse, approach equation
(82 jo

We have ﬁ@w gaieﬁlaﬁed the xnéampon@nt of the perturbation velo=
citles for boﬁh the case of n > 1 and n < 1, and for points both
ahead of and behind the Mach weve. The pressure coefficlents are

obteined immedistely from equation (16),

Cp = = 2u/T

These pressure ccefficlents, all calculated for wnit slope of the

basic triangle, may be summarized as follows:

Case 1z n>l
a) o0 < ¢t < 1 (Fig. 1¢)
7 costr ™ n* 2”
C, = -z '
P TB %y /1~ = (91a)
b 1 <+t < n , (Fig. 11)
o = (81v)

P T Bfr—-n® (92¢)
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The pr%ssufe coefficient for a triangle of slope A is, of course,
6btained‘by multiplying the right hand side of equations {91) by A,

For these triengles of slope A g it is seen from squations (91}
that the pressure coefficient in the form Cpf/ A , or Cp V -1/ A,
is e funetion only of % (position on the airfoil) and n (relative sweep=
5aékj, Curves of the pressure ecocefficients in this form are plotted in
Fige 12+ The cese n = C will correspond to the éaSe of the twe-dimensionel
wing with no sweepback, for which it is well known that CpB/A = 2,
Velues of t > 1 correspond to points aherd of the trimngle.

It can be shown that all of the expressions for pressure coefficlent
in equations (91) are equivalent to the real part of s single expréssi@n,

identical to (91a):

-7/ /72__ ZZ

¥ |
P T, T 1=z (6e)

For purposes of the surface integrals to be carried out later, however,
and sertainly for ordinary calculations, it is more convenient to have
the real'expreséions cf equations (91,
BQ Zurfece Integr&is of Pressure.

In order Ho earry‘out the drag celculstions, it is now necessary

to caleulate the surface integrals required in equation (68, or (69



The two basie types.@f‘int@gr&ti@ns required correspond to parts (1)
end {2,/ of equations (68); all the other integrsls may be expresssd
in terms of integrals of-th@se types.

Consider first the integral over the region shown in Figs 14 of
the pressures due to sources in this region « l.2,, of pressure coeflfie
clent &s.given by equations (8la, c, or d). This integral will be
required in the caleulation of parts (1), (4, and (5) of equations
(69 ) Since the pressuf@ distribublons are all conieal in form, the
integraticns cen be carried out over trianguler strips, as shown in
Fige 14, In terms of the speawise wariable 4, and the gecmetrical

parameters shown in Fig. 14, the elementary area dA becomess:

(r-s)

/4= A, (1— st)* o (93
where | | 8 = o2/2k = of/f2fn
Now let
. /
5(n,5) =[5 44 = ;ﬁ% [/_;[/z ca%%’gﬂ“ (54
A > ,

where & is the srea of figure 14, and C? is the pressure distribution
, Ta
of equetion (¢ls), and n = k/Bs The integrel in equation (94,

/

;9 ¢ /nz Zfz‘a/

/ 2 Ty T e

T: /[/_J_f)z[‘r é—
o

/__21;2._ (95)
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mey be evaluated by &n‘inﬁegration by parts. let

z 2z St
VA Ly it -
“. = -god //T I e)?

Wy __/_/
V=S liSsE) (-s)

(/—tz/ nE=£% 7=/
_ﬁﬂ—:i)/~£}

and

This perticular form of v is used in order te aveid an infinity

ot one of the limits of integration, Since

2 2 . )
lrma (1-4) costs TIZLT | s (-2) log (FE) = T
/~2% 2y

(A Y 4

we have

/
/ & S '
-/ V7%~ / »,
. cosh’ 7+ 5 ///—:Z‘)//+f)1//72— ¢z (96,
o

© Since

¢ / A

(/—.rz‘/mafj': /e s ,/—S,f [+ T

the integral in equation (96, can be written as I =1, +1I,, with

/

. / Z

_ (5 //’Jf)|//72—t2
[#]

/

a

Y T
B L, = /#+ 5 (1+ )/ 5 ¢#



w3

TUpon substituting £ = n sin 6 = these integrals reduse to elementary

y
forms, , o,
I = ! ‘ = = /qﬁ -
/ I14+3S [ J_ 5p7 5102 & //"‘5)\/5‘2/72—/ o8 é_+a:’;
2 o
o
6,
. /
L, = - - =
/ 2_
pa S [ I+ sn & /+;} 7 - o, (57
o 2. o
whers
' -t/ -~ _/
- e - 5/ —
G, = s P , HZ oy
The second of these two integrals lis simply
4 / l/~7
= ' (7 [f;’v‘ — /7 _} 98
’Z;. '/ﬁ+sjb/>72;_/ 7 / //07) (98)

The appropriate form for the evaluation of the second integral in
(87) will apperently depsnd on whether sn = sk/ﬁ is greater or less than
1, is.e., whether the tralling edge of this region is ahead of or behind

itz Mach wave, In the cass that sm > 1, it can be written

. / N+ =1 - 574 \/sE)

(1+5) /50, A%~ — 57— 5% %

/ V/a / 25
-+ .
+sisni 7 41— ~sm - )55

(99)
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while in the case that sn < 1, it can be written

-
—_———— $V7
Al )+ 7

__Z b —  SP
= o lg)
\/:}_ZZE _//_ 5s292 v /—52n%

,‘7/—:2;72 r7+ N2} —sr

(100)

Then inbtroduclng ig into sguation (96), one may observe that

osh ™ n Vv
cosh ' n /+S log 1+ = (/n) )
= S (a.s‘h‘/ 7+ /aj 77
(+5 /+_5‘

Finelly, using equations (88, and (99, or (100) in (95 and (94), the

surfacs’ integral 8§, may bs evaluabed as

4 A,

,,5://7,57 EZR &G (r7,s) (101)
where, for ns > 1
/I—5 | 5 cash ™ 17 /v

alns) =

#7
va
‘S V- S i/

% /03//+ 2 .r/?z / ]
m Nefnt—] - so—fsnzy



or, for sn < 1

0y 55679"60 log N

/ /
[ yrn*-1 {103 )

- ~ /)1 —rZs*
+ e Tan .
Vi—-n*s® 9 +Jn3-/ —/7§>

G'(n s )f

The same type of surface integral must also be ealoulated for the
cage that n < 1, is8., for the pressure distribubtions of eguations
{91c ) and (91d). Since these pressure distributions ars actually the
renl part of the expression in equation (91a), as mentioned previcusly,
it is clear that the deslrsd integral could be obtained by Llﬂalﬂg the
real part of equation (102, or {108) for n < 1. It is, however,

gasler o calculate the integral directly. If

S ns) = [, a4
' 2

/
‘ #(r-5)*4, / 7 _ . -t/n=2?
o

then the integral will be

-/ ni Zfz
57 z
7/(/—55) ﬁ’ st)*® Tzt

(108)

The first integral is immedlately:

. T _/
- 7 2 (1-5)
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a5 that

<

The sseond integrzl ssn be evaluabsd by the same Lschniqu

used in eguation (95, with

2 - 5ﬁf
o =t frn=T A =
“ =TT (1= s2)*

from which

/ .ot . //_,/72/ é.:/Z.L
Z, /-5 7 (1-sEN1+EN 12— 2

The iotegration of this last expressions procseds in much the same
way as the preceding compubations, excspt that the prineipal wvalues
for n < 1 mush be compubeds. Carrylng ocubt this integrabtion and

combining terms, one finds that

/ -t 7 V=112 4 77
= ——— | 5 Svr7 F7? + = — 107 SH) 4 L
L2 /*prZZ[ Z /—5%02(/ 2 )

Combining the above sxpressions for Il and I, in equetion {105,

the valus of T becowmes:

{108)

If the surfece inbtegral for n << 1 is written in the same form as

squation {101/, with

, | 24, |
S (ns) = —77%—“52/’7/ 5) (107)



we Tind, using esquation (104), thet

@/,7/5)_ /+S[,_————[a.s‘ 17 + ‘// e /2 o+ S177 5‘/7)] (108 )

The first besic surfacs integral, as given by squation (94), has

thus been exprassed in threc forms,
‘5’ 7 /4,
//7/5'): G/US) for n>1, ns >1
s

4 A %
= —=L G, [/’))5’), forn>1, na<1

7

fh

4'4’5 (n, s) , for n<1l, ns<1
2 /
a5 (109

with Gl’ G1‘9 and GZ given by equations (102), {103) and (108) respsce
tivelys The three expressions are, of course, completely equiwalsnt,
and can be derived dirsctly from each other. Their equivalence st the

various limits ls sesn immedintely, for ebns = 1,

ah ™ n /aj/? Z
) ‘9(’7; Y, [Cy/ﬂa_, \/nz M—/+/nz—/ (110)

As n approsches 1, the exprsssions in general become indebterminate, bub

it is observed that



‘ . (oJf%—//7 : ‘ ’ /ai F7
//M = _/ //M = 4
sy V7= Lo, e, T

and that

SH =1 JIFS .
2 fa//) l /_:_; - 7T — s/ / /_52_

= 7 — cos"’ 5

— 77 oo~/
=
-+  SY#? S

The valuss of G as n approachss 1 then become

lm G (n)s )=t G, /n S}*—‘—‘/‘Sv‘—‘/___/”—/-:m 5)5 (111)

Fl>/ N>/

A particulerly importent limit oceurs as s approaches O for n < 1.
From equation (108,
: 4
li G, (F,S5) = 3
S =0
that is, the-surfaee integral becomes indepsndent of the swespback, ne
The other necessary type of surface integral is that corresponding
to part (2), (3) 4nd (6) of equati@ﬂs (69 ) Consider the ares B shown
in Pige 15, boundsd at the front by & Mach weve from P, The inbegral
B of %%@ pressure dus to a uniform source distribution in the triangle
with vertex at P must be caleulateds In terms of t = sky/k, the

elementary area will be



A B e

l-s)%
a4 = A, Py gt

whers

‘Ag‘ = selfok = scz/éﬁn

The pressure distribution is given by equetion (91b), but with n

replaced by sn. Then we may write

S2(n,5) = d/fz;} A4
71

57
2 2
o ) A, __’__2 st~ (S0 A
TRVsn*1 ~ Jlt-5) 5~/ (123,

If one deu&bnatea the integral in this expression by T, and integrate

by perts, as in the prsvious calculsbtions, with

- 2.2 cfkf
« = b S =/ = =

/
/552y (z-1)
67/4{ = - 7 =
(e /)m V=s)(t=3)
then
- _ VT z AL

114
/f+/)[t s)s 2 g2 (124/



This integral is agein separated by partial fractions into Il and 12,

with
' A ‘
' / A
I/ = i '
/+5 (1+t) ) s%7 % ¢ 2
: /
/ 5 St
—Zz ~ rs /L"~5‘J\[5'2r7"— 42
: /- : (115)
These integrals ars, as previously, elementary forms, and are
evaluanted as:
- / /79 =77
=t T trs Ss2m 2y
7 = / P sni i+ fnZilsnZ,)
2 O+s)frn%y 4 7((-5) - (118)
Writing equabion (113) as
' 4 |
S, (7, 5) = 5‘}?42 #n,5) (117
one then finds thet
. Ry log S
Fln)s) = L=
! +5 ( Vsin2—/
' {118)

o/ enis e vnE)(se) |
-+ T /og Y j
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This exprsssion has physical signifi@aﬁ@@ only when both n > 1
and su > 1, 1t goes to zero, of coursse, for sn ¥ 1.

This complebes the salculation of the fundamental pressure distris
butions and integrals of the pressure diétributions required for the
galeulation of the drag of a delta wing, To summarize, the various
expressions for the pressure distributions are given in equations (91a)
through (914 ); the tﬁ@ types of surfaces inbegrals, illustrabted in
Figse 14 and 15, are given in squations (109) and {117), together with
the e xpressions for the related functions F and C.

Plots of F(n, s) and G(n, s) are given in Pigs. 17 and 18, The G
function is conbtinuous in derivative across the line sn = 1, even
though the real expression changes form., However the real part of
F{n, s ) venishes abruptly, with infinite slope, &t sn = 1, This is
to be sxpseted, of course, since the pressurs distribution escting
shead of the triangls in this case has an infinite pressure peak.

This singularity will be seen later to have an essential sffect on
the cheracher of the drag curves for sm = l.

The curves of Flgs., 17 and 10 can be used for approximate calculas
tion of the drag coefficient components of equations deseribed in the
next section as long a3 none of the parameters are near any "eribiecal"
values, = ls2., n, sn, are not near 0 or 1. As any of the discontine
uities are apgrga@héd, the drag expressions invelve smell differencas

betwassn large guantities, and more accurate ealculations must be usede
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PART VI

ﬁRAG COEFFICIENTS AND FRESSURE DISTRIBUTIONS FOR THE DELTA WING

Ao Cglgulatioﬁ of Drag Coefficients, Double Wedge Profilee

The scheme of calculetions set up in Part IV, as sumarized in
equations (68 and (69), conteined surfece pressure integrals which
we can now express in terms of the basic integrals Sy(n, s) and
Sz(n, g) caleulated in ﬁhe last section, It is necessary only to
relete the geémetrical parameters of the basic wing, as shown in
Fig. 8, and equations (63) and (64), to the persmeters defined for
Sl and S,, as illustrated in Figs. 14 and 15, It must be noted

that we will use a single relative sweepback parameter, referred to

the leading edge,
n = kl/ﬁﬁ

We then have, by inspection, for the integrals required in

equations (68) or (69,
/(,,/} g4 = S5, r)
Ve ,

/CPgdﬁk = “5;(/7//-)
-

/Cpcg/g; = .5-2//0,4)—“5;/”7} "/g—j
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/‘PA""'—'— S (n,a) = S (n, r)

'/C,: a4 = S (rrn £ )

p (119

The expresaicns for 8§y and 8y as given in equations (109, and (117
may now be introduced, and the result substituted in equatiens (69)
to obtain the finel expressions for the drag coefficient. It must

be noted that the integretions for &, and 8  were, in effect, carried

1 2
out over only one half of the airfeoil, so the area § appearing in
equetions (69, must be interpreted as one~half the total area., Thus

in (69a s

A/ r/(1~a)

In (69b); Ak = r/(1 = a)

- and similarly for the cbher termss
The complete expressions for the compenents of the drag coefficient

of the tﬁeaslcpe or double wedge delta wing then become:

272 (1-a)
504 = 78 Tr)* G(n,r)

(1208 )
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“re BT (1-r)*(r-a)

' 2TZ ali-—a) | ,_
— Y~ A = c)
@zc = 2T lrrira) / 1,4 ) — (rn2, ) ] (120¢ )

h

27wl (ofa) Glnr)]

Cp, y B (imrir-a (1204 )

Z 2
2T /'(/“4) G'/r;/)/ —é—) - (120e }

Pms T gw (lrir-a)?

. 2T? alr-a) a |
sz[c Y /)2 Fl(rn, & ) (120f)

The total wave drag coefficient, based on the actual airfeil plan

area, is the sum of these six contributions. The expressions for

G{(n, =) are given in equations (102), (103, or (108) depending on the

values of n and s, while F(n, s, is defined by equation (11&), We may

recell agéin the significance of the paremeters appearing in these



equations:. n is the basic "relative sweepbaék" parameter « since

n = kl/ﬁ, n gives the sweepback of the airfoil leading edge relative

to & Mach wave from its %ertex, The parameters 2 end r give the
réla.tive’ geometry of the planform; r defines the maximum thickness
location, as a fraction of totul chord, from apex to wing tips. It
will also be convenient to express the location of the maximum thickness
point as a fracticn of the mctual root chord, say b, in which case,

from Fig# 8,

[
?
e ]

(121

[
t
®

The rumber & gives the sweepback of the trailing edge relative to the
sweepback of the leading edges &8 a —— 1 one obtains essentislly a
two=dimensionel swept wing or arrow winge

It is noticed first that the totel drag cocefficient resulting
from equations‘ (120 ) may be represented in the form CDB/ T 2, in which
case it is & function only of n, a, re Thus the drag for all Mach
numbers and geometries may be represented in a reassonably simple family
of plots, If, for instance, CDﬁ/Z'_ 2 3¢ plotted against 1/n, this
parameter, foi' & given sweepback, becames proportional to |/ MZ = 1,
and the plot will immediately show relative varistion of drag with Mach
numbere |

Before procéeding with discussions of the final calculations of
drag coefficient, it will be desirable to calculate one simple limiting
case, As n —» 0, we have either & swept wing at an indefinitely high
Mach number, or & wing with zero sweepback = i.e., an essentially two

dimensional wing, In this case, the contribution from the terms in



(120b ), (120c), and (120f) is zercs Furthermcre, as n 0, we have

from equatien (105,
Glo, 8) = 3;‘(1 = 5)

Substituting this in (120a), (120d) and (120e}, there results:

by Cof _ lma) lor) _ (=2)
nea 7*  (-r)? //—r}(r 4)[0-4) //‘r}j

rlr-a)% 4
-/_//—r)//"—4) // )

(- a)°
(r-r)(r-a)

I

Using equation (121, to express r in terms of b, the lceation of

maximum thickness, this becomes:

/
‘ <,
limm PP -
neo T2 b~ 56) (122)

But this is exmctly the expression for the dreag coefficient of a
twomdimensionel double-wedge airfoil, with crossesection as shown in
Fige 19s The opbtimum lccation of maximum thickness for this airfoil,
as is wéll.knm, occurs with the peak at the 507 chord point = i.e,,

b = 0.5, and then

—— = 4 (123)
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Thué thé equations (120) reduce to the correct value for the case
of gzero sweepback, Moreover, we have learned alse that at extremely
high Mach numbers, such that the Machwaves are swept well behind the
ieading .edge, the drag coefficient again approaches the value pertaine
ing to e twowdimensional wing with the same lecation of maximum thicke
ness, indé?enden‘bly of the sweep of the delta wing trailing edge = o
rether remarkeble result.

This slso suggests .'that 8 result of essential interest in the case
of the delta wing will be the lceation of the maximum thickness point
which will result in least drag for various Mach number renges. From
the above ecalculation, it appears that b = 0.5 will be optimum for
very high Mach numbers; it is certainly unlikely that this will be
true at all Mach numbers.

In order to examire this, in Fig. 20 is pletted Cp/z 2 vs. b,
with n as parameter, for the case of zerc trailing edge sweepback
(a =0J)e It is noticed first that with 0 < n < 1, for alil values
of b, the drag of the delte wing is greater than that of a twoedimen=
sional wing; this case corresponds to case (1) in Pig. 92, As the
sweepback is increased (n increassed), the drag begins to drop, and
one observes the large discontinuity in dreag curve slope at the point
r=(1=5b)=1/n, i,e;, when the Mach waves are parallel to the
maximum thickness lines This situstion forms the dividing line between
cases (2) and (3, in Pigs. (9b, and (9¢cjs It is only with the maximum
thickness point forwerd of this position, ises, b < 1 = 1/n, that

the drag finelly drops below the value for a twowdimensional winge
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& rémarkable and app_e,réntly fortuitous result now appears; for
values of n greater than approximately 1.3, the minimum drag ocours
with the maxim\nn th‘icknéss line somewhere betwesn the 107 chord and
20% chord positions, practically independently of the sweepback n.
Thiz meens that the maximum thickness line is swept back approximately
80% as much as the leading edge. With this location of maximum thicke
ness, the drag drops rapidly with increasing n; for n = 1.4, the drag
has decreased to the mln:unum two=dimensional velue, and for n = 2,0,
it is approximately onewhalf of the minimum two=-dimensional value.
With increasing n, (greeter sweep‘t;ack or decreasing Mach number ) the
location of maximum thickness point becomes less and less criticel,

The corresponding variation of CDﬁ/ Z 2 with b for the wing with
trailing edge swept 50% as much as the leading edge, i.6., 8 = 0.5,
is plotted in Fige 21. The results are again qualitatively very
similar to the case of a = 0. The important ﬁrag bresk now cccurs,
of course, at somewhat more reerward locations of the maximum thick=
ness, since rn = 1 corresponds to b = (n = lj/n(l « 8 ), However the
minimum drag again occurs with meximum thickness lecated between the
10 and 20% chord points. It is significant thet the drag drops much
more abruptly with ineressing n in this case; at n = 1.3 it is
appreciably belew the minimum twoedimensional drag, while at n = 2
it is almost 1/4 of the twomdimensional value.

Similar plots have been made for a = 0,25 and & = 0,753 in both
these cases, a similar result concerning optimum loeation of mesximum
‘thickness point for high n's is observed = the minimum drag is achieved

with b in the renge from 10 to 20% of root chord. As the trailing edge
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sweepback approaches that of the leading edge, i.ce, as a approaches 1,
it is hardly to be expected that this result would still be true. The
wing in this 6a3e‘is appfoaehing e two~dimensional swept wing, and the
optimum location of maximum thickness should be more nearly at the

50% chord point.

Ba Effects of Sweepback on Drag.

The effect of variatien in sweepback on dreg is seen more easily
in plots of CDQ/ZT 2 vs; l/h; in Pigs., 22, 23, 24, and 25, these plots
are given for a = 0, 0.25, 0,50 and 0.75 respectively, with b as para=
meter for eachs The real charecter of the peaks occurring at the
eritical velues of n and rn can now be seens

Consider first Fig, 22, for & = 0, At low values of 1/n (high
sweepback or low M) the superiority of the small wvalue of b is
evident, It might alsc be remembered here that the minimum drag for
8 twowdimensionel double wedge, with maximum thickness at 50% chord,

gives

CDB/z:2 = 4,

which furnishes an indication of the significance of the levels of the
curvess

As 1/n is increased, the drag curves approach a first pesk at
rn (in this case (1 = bn, = 1, at which point the Mach waves are
parallel to thé maximum thickness line, Sometime before this point,
the delta wing‘loseé its superiority over the two=dimensional wings
Anothér essential effect becomes evident here; the smaller values of

b will, of course, delay the occurrence of this peak to a higher Mach
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number, but the height of the peek itself increasess Thus the forward
locetion of meximum thickness is clearly an advantage only if the design
operating condition for the wing is to the left of the peak; if for any
reason the de’sign condition must lie to the right of the peak, then a
value of b near 0.5 would be advantagecus; in thet the pealk itself is
reduceds |

A second peek oceurs &t 1 =1 with all values of b, i.e., Mach waves
parallel to the leading.edgee Ageain, the height of this peak is inecreased
by forward location of maximum thickness points The drag decreases for
greater values of 1/n, and as L/n approaches infinity (large M, the
éurves approach asymptotically the value given in equation (122) for a
twoswdimensional wing with the same maximum thickness location.

In Fige 23 are shown the corresponding results for small sweepback
of the tralling edge, & = 0.25, The general character of the curves,
and the relative drags for various values of b are much the sanme.

An additional disconbtinuity has entered at an = 1, i.e., when the Mach
weves are parallel to the treiling edges The drag rise occurring at
this disecontinuity is, however, very small, and not particularly impore
tants The next pesk has been delayed, but also incressed in magnitude
by the trailing edge sweepbgckg The "leading edge peak" (n = 1, is
particularly increased in magnitude over the case with a = 0., For
large values of'l/h, the curves approech the same asymtotic velues as
in the & = 0 cases |

The trends already exhibibted in Figs. 22 and 23 are continued with
the larger values of trailing edge sweep showm in Figs., 24 and 25, for

a = 0,50 and 0.75. In these cases, the value of the drag coefficient
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for iow (L/ﬁ) has become so small compared %é,the two=dimensionsl
wing that the loeation of maximum thielmess point actually becomes
rélétively unimpertan%,' In faeb, in practieal cases, for the thicke
ness rati@s, - Z , of practical importance, the value of the wave
drag coefficient in this range of sweepback will be of the same order
as or smaller than the drag due to skin friction., On the other hand,
the drag pealss, at a = 0,75, for instance, now bescome so violent that
the design condition for the airfoil must cleariy lie at low values
of 1/&; As shown by von Karmen in Refs 22, the corresponding drag
peak for an infinite two~dimensional swept wing is infinite in megnis
fu@ﬁe
To clarify further the effect of trailing edge sweep for constant
location of maximum thickness point, in Figs. 26 and 27 are plotted
CDB/Z' 2 VS I/n with b = 0,2 and 0,5 respectively, and with a as
parameters With forward position of maximum thickness (Fig. 26),
the amount of trailing edge sweep has an importent influence on drag
for all values of n, decreasing it strongly to the left of the peak,
and increasing it through the pesk. With the 507 chord location of
maximum thickness peint (Pige 27), this effect becomes even more
pronouncads
The important conclusions from these two sets of curves are

easily summarized:

&) Moving maximum thickness forward decreases drag for
small valuesvof 1/5, although at very small values of 1/5, and partis=
cularly with large trailing edge sweep, it is not so important, On

~the other hand, the drag pesk, although delayed, is greatly increased
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in severi“tya '
b) 'Inecreasing trailing edge sweep has a similar effect,
but somewhat r‘noreprenounced. |
' The asbove representations of the drag veriation, while quite
general, do not allow immediate visualization of the variation of
actual dr's;gv goefficient with Mach number, sinee this is partly
included in the factor B= M « 1, In order to present & clesrer
physieal picture of the ."behaviour of the drag coefficient in typiecal
cases, the funetion CD/Z' 2 is plotted vs. M in Fig, 28 for a family
of airfoils with no trailing edge sweep, with maximum thickness at a
éonstant 157 chord, but with varying leading edge angle. The sweep
angle is there replaced by the apex half-angle, 4, These are, of
course, obtained from a single curve in Fige 22 The shift in
pressure peak location and height, and the change in low Mach number
drag coefficient with increasing sweep is clearly seens
The behaviour of the curves near M = 1 should be particularly.
notede In Fig, 22, the curve of Cnﬂ/z Z is seen %o approach O as
1/n aporoaches O, so that CD/’L"2 is in this order indeterminate.
The caleculation of this limiting case is outlined in the next section,
and it is shown there that CD/ Z2%mesa logarithmic approasch to infinity
at M =1 for a = 0, This is, of course, much less severe than the one
half powsr approach to infinity for the infinite two-dimensional wing.
The effect of peak location is also interesting when CD/Z' 2 is
plotted dirsctly. In Fig. 29 the drag coefficient is plotted against
M for a family of airfoils with constant leading and trailing edge

sweep, (we = 307 and & = 0, but with varying location of maximum



n??,na

thickness, The shift éf’thé pressure peak to higher Mach numbers,
end its increase in height with decreasing b are easily seens

In Pig, 30 are drag coefficieﬁt curves corresponding to the
airfoil family of Fiz. 28, but with trailing edge sweep of & = 0.5,
and b = 0a2e The general behaviour for low Mach numbers is the
same as iﬁvFig. 28, with the important difference that the drag
coefficient approaches a finite limit as M approaches l, This
limit is again indeterminate to the order of the curves of Fig, 24,
but it is obvious that the limit is finite, as the curves in Fig. 24
approach 1L/n = 0 with finite slops. The evalustion of this limit
is somewhat lengthy, and is carried out in the next section,

In Fig, 31 the effect of maximum thickness location on CD/zr 2
is exhibited for the family of airfoils with 30° apex halfeangle, and
& = (0.5, The characteristics are much the same as‘Fig. 29.

In order to compare more clearly the effect of trailing edge
sweep, Fig., %2 presents curves of CD/'Z‘2 for wings with 30° ana 13°
apex halfwangles, and values of a = 0 and 0.5¢ The similarity between
the effects of sweeping meximum thickness line and sweeping trailing
edge 1s again evident.

The character of the above curves, and in particular of Figs, 29
and 31, suggests that there are two ways in which advantage may be
ﬁakenvof the delSaewing drag propertiess At reasonably low Mach
numbers, the leading edge may be swept far enough so that the drag
peak liss at a Mach number coﬁside?ably higher than the design point,
and with proper forward meximum thickness location, & substantial

reduction in design point drag is possible. On the other hand, the



design Mach number may be so high thet it is impractical to sweep the
wing baek far enough for thiss In this case, the maximum thickness
point mey be iocated ﬂea} th6150%‘chord point, and the primary effect
of the delta‘wing will be to cause a very small drag rise through the
low Mach number region, as compered to the two=dimensional wing, and
to appro&éh finally the two-dimensional value, The drag peak is then
very small. This application may be the more important of the two
for very high Mach num%ér33

Anocther rather obvious consideration must be pointed oubt, which
in an engineering problem may have decisive influence on the cholce
of optimum configuration. The representations so far have been of
CD/7: 2, where T is the thickness=chord ratic. In a specifie
design problem, the actual wing root thickness will be debtermined
by structural considerations, and presumably will not vary greatly
within a reasonable range of confipgurations, However the change in
configuration for a wing of given area, or given dcl/ﬁﬂ, may involve
considerable changes in wing roct chord and therefore in ¢ , It
is metually in this way that the low aspeet ratio (large sweepback)
delta wings of"ten achieve their greatest advantage, For the low
aspeet ratic generally implies much larger root chord (and often
smaller absolube thickness) and therefors decreases 7 materially,
Since the drag coefficient varies with 272, the effects may be very
larges vThe'comparissng of drag ccefficient discussed above then
becones eséenﬁially relative in character, and it is clear that the
real cholece of optimum configuration must depend largely on the special

design psrameters or conditions in a partiecular engineering problems
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C« Drag Coelfficients andibragaﬂtrength Ratié»for Modified Double=Wedgsa
. A further extension of the above drag calculations which has partis-

cular engineefingAimportanee TIOW Suggests itself., In the case of an
infinite two=dimensional wing, the profile with least drag for a given
thickness is the familiar double~wsdge section, with maximum thickness
at the SO%Vchbrd point, as previously deseribed. However this is not,
in genefal; the optimum profile in a practical problem; the usual
design problem is +o fiﬁd a profile of minimum drag with some other
section property given = sither stiffness (moment of inertia) or
strength (section modulusj. The variation in profile may then include
#aria%ion in thickness ratio, The seetion property must even depend,
then, upon the type of structure chosen - whether, for instancs, it
is solid, or essentially monocoque, or a combination.

It was shown by the present author that for & two-dimensional
sollid airfoil, the least drag for gziven stiffness is obbtained with
an airfoil having a profile defined by an elliptic funetion =~ actﬁally
very close to a circular arc. For & monocoque structure, of given
stiffness, the optimum section actuslly is a bi=convex eircular are
profile. Optimum profiles for givén seetion modulus varied only
éiightly from thise Only if the structure is concentrated primerily
in a single spar at the maximum thickness point will the double=wedge
éection be opbimum,

These caleulations suggest that a) the double~wedge delta wing
very probably mey be the optimum profile for given thickness ratio,
but that b)) the optimum delta wing profile from the standpoint of a

likely engineering requirement will probably have a continuous
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curvature and more distributed thickness. The camplete variational
problem cen be set up, much as was done for the two-dimensional wing.
However, in ciderrto avoid this génerality and still estabiish the
trend of the desired change in thickness distribution, a simple
family of profiles will be considered which has one more parameter
eddeds This profile, called a "three slope" profile, is shown in
Fig. 33. The slope of the central part of the airfoil will be held
zero, and the loeation 6f the forward and aft limits of this zone,
ie2ey, b and a, allowed to vary. Only the case of zero trailing edge
sweep will be considerad,

The scheme of the calculation is essentially the same as for the
two slope delta wing, and will be indicated briefly, Referring to
Figs 33, we will superimpose three triangles with vertices at A, B, and

C, having slopes

A=A Age- A, A= A,

A /

N
N~

Furthermore,

. & _ ! -z _
A=z =27  A=-%

Using the surface integral designations of equations (94) and (113,
Part V, and the drag component notation introducad in equations (68),

Part IV, we can immediately write

= 24, A4 ‘5,///7/ .,;)

_/7[_5 - Zj/ /"5 ‘5‘/2[17} /')



ZE = 2A,Ac [ 5ln a)=- 53 rn L)

A - 24,4, [j'/no)— 5 (n,a))

f

Lae . 5,4, [5;/,—%0)_5/% ,,_{_);

D!-ZZC = 2/?3/16 ‘54//4’7/ 0)
Va V (124)

Substituting for the slopes, A s 88 given above, and sxpressing S
and 8, in terms of F and G according to equations (109) and (118,

we have finallyse

2 z? /
= &

2, 4 BT (1-r)? )
C - _ 27*% r —
C = __ Z-Z_Z A

Orc e (/”—,_} [F/ﬂ a)— F(rn, }/
Cpo . 2T*% .

a4 7T 4//—/-) /&[n °) = aln, 4)j
Co.. = 2Z° a

Do 5 ﬁﬁ' 4[/—- 5 [G/kr; o) — & (ra, ,»)}
C o = _2_2;2__/_ G/dn)'a)

£ C
o s a (125)
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Calculati@ns of the drag coefficisnt have‘beén carried out for
one particular value of relative sweepback, n = 2,5, and for various
values of g_and‘zf The vériation of drag coefficient with position
of this two maximumAthickness,points is shown in Fig. 34, where
GD%/Z’2 is plotted against (1 «2), with b = 1 »r as the parameter.
Ahs (1 = a) approaches b, the airfoil is identical to the two slope
delte wing with zero tfailing edge sweep considered previously, so
that the end poinbs of‘thé curves for various b's will produce the
drag curve for n = 2,5 in Pig. 20.

It is immediately clsar from Pig. 34 that for any loeation of
?i’

that is, the doublewwsdge alrfoil does have the least drag for given

the minimum CDﬁ/Z‘ 2 will occur when 1?2 is identical with Pie

thickness for this airfoil family. che?er, rearward motion of Pg
causes only a small increase in drag - for instence, with P, at 104
chord (b = 0.1), P, cén be moved aft to the 30% chord point with only

a 3079 increase in drag, A% the same time, it is clear that the strength
of the section must be increased greatly by this change.

The section modulus, 8, for this profile, assuming it to be selid,

is given by

73
’51__ ____2"[ = C-?——" //1‘_)7/"—-34;)
= Trc 2% (126 )

In order to find the airfoil of least drag for given section modulus, we
mey plot the ratio

co /T Cop

s/t T s/e
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wnich doés not involve the thickness ratio.

- In Pig. 35, this ratio 1s plotted as a function of 1 = a for
b= 0,05, Qelb and 0¢15,- For each‘of these curves, the imp?cvemsnt
in drag is very significant-as‘?é is moved aft, with an optimum for
?é at approximately 40% chord. The best drag=strength ratio is
obtained for the value b = 0,10 and approximately (1 « a) = 0.4,

At this point the dragastrenéth ratio has decreased approximately
197 below the value forrfhe two slope wing with b = 0.1 or 0.2.

Thus for a solid three-slope or modified doubleswsdge wing of
this family, the opbimum profile will have a maximum thickness
fegiﬁn distributed between approximately the 1075 chord and the 40% chord
stations. The resulting design is certainly more attractive from a
structural standpoint in any case, Consideration of & more general
family of shapes would undoubtedly lead to better profiles, but this
first step clearly indicates the trend, namely, that the thisckness must
inerease very rapidly near the leading sdge, but‘then may continue withe
out much decrease to the neighborhood of the 40 or 507 chord point. The
location of this second point will, of course, depend on‘n, the leading
edge sweepback, and will be higher for larger values of n.
De Pressure Distributions Over Double«~Wedge Wingse.

The pressure distributions over the delta wings are of some interest,
and shed some light on their pessible behaviour in a real fluid, These
distributions are easily calculated, of course, by proper superposition
of the basic pressure fields of equations (91, using the souree strengths
defined by equations (66) and (87), The two important types oceur when

(a)n < 1, and {(b) n and ra > 1 (cases (a) and (e, Fig. 9).
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vAn exa&ple of the first type is shown in;Fig. 36, where the chords

wise pressure coefficient is plotted in the form GPE/ Z for sgveral
spavwise stations, with n = 0,8, and b = 0eB, ises, maximum thickness
at 50% chord, andAno trailingvedge sweeps The pressure remains constant
for a short distance behind the leading edge, with the typical "supersonic
leading edge® characteristic, and then drops rather rapidly. When the
me.ximunn thickness liné is reached, a large drop occurs, with no pressure
rise until the Mach wave from the maximum thickness line is crosseds
Thus all pressure gradients are favorable up to this Mach wave, which
lies w=ll aft on the winge

In Fig. 37 are plotted similar chordwise pressure distributions
for the case n = 2,5 and b = 0.2, with no trailing edge sweep., The
leading edge now has the subsonic (logarithmic) positive pressure pesk, .
but the pressure begins to drop very rapidly as the maximum thickness
line is approgshed. ‘At this line 2 negative peak occurs, followed by
a very rapid rise. This behaviour is expected, by anslogy with the
subsonlc flow over such a twowdimensional cormer, in whish case it is
first accelerated and then decelerated very rapidly. The important
point in the-present case is that the maximum thickness line for the
twowslope airfoil will always introduce a large adverse pressure gradient,
in cases when this line is swept behind the Mach wavess. This gradient
mey have undesireble effects on the boundary layer. A profile with cone
tinucus curveture would certainly be more desirable in this respect.
B. Lift for Delte Wings With Supersonlc Leading Edgese.

One further application can be made of the celculations presented
previoﬁsly; In Part I1 it was pointed out that the sovrce solutions

can be usged to caleulate the 1ift on airfoils with "supersonie” leeding
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adgeé, sincé,the Flow in the upper halfnspacé,and lower halfwespacs may
be caloulated separately. Imegine a flateplate delta wing with n 1,
of zero thicknessz, at aﬁgle of attack @, In the upper halfespace the
potential will beAessentially that given by equation (83), which produses
a_constant downwash over the entire triangle, and the pressure distribum

tion will be

C; &ig / /72 Zfz
- /_“ . - a
/2 :/;:———* [ — 37 y } (127)

This distribution is showm in Fige 13.

In the lower halfwgpace, the potential is represented by the negative
of that in the upper halfegpace, which reverses the sign of all perturbation
velocities, and therefors gives 2 solubtion with dowrwash symmetric in z.

The 1ift will then be twice the integral of the pressure distribution of
equation (127) over the surface, But this is exectly the integral Slfn, s)s
carried out for a triangle with unit slope, and given by equations (109)
and {108), Rewriting equation (108) slightly, and using equation (109),

the 1ift coefficient hescomess:

fac (-2 )

- a . /
3 76 (I+4) [\/,'_—",72“” e

(a.r—//—zzn}/ (128)

where & is the tralling edge sweepback parameter, as in Fig. 8, end n
is less than le
For the case of no trailing edge sweepback, (a 0), it is observed

{as showm in equation (112)) that for any n,
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Cpy = = (129

This is‘exactiy the 1ift eoéffiﬁient on an infinite twowdimensional
.unswept wingav Thus we have the remsrkable result that for e delte wing
with leading edges ehead of the Mach waves, and no treiling edge sweep,
the iiftbéeefficienﬁ is independent of sweevback, and has the same value
as the two-dimensional wingo“By sweeping the trailing edge, the 1ift
cosfficient can be madé much grsater than the bwo=dimensionel values
Curves ¢f this lift coefficlent were presented in Ref. 23, together
with the 1ift coefficient curves for n > 1 which were caleulated with

the conical flow technique.
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PART VII

LIMITING CASES

The behsvicur of the dreg coefficlents previously calculsted is
of interest in seversl limiting caszes, In particuler, its behaviour
as the ﬁﬂaéh number approsches 1 can be calculateds The case of the
wing with no treiling edge sweepback will be considered first, since
this does not form a simple special case of the more general problem
for a not equal to zero, |

The drag is given by equations (120, with CDIC = Cprpe = Os
vand & = 0 in the other drag components., As M approamches 1, with
finite sweepback factor k, them B = \/M° = 1 appreaches 0, and the
parameter n = k/P approsches infinity, Therefore the limiting forms
of G(n, 8, and F(n, s) for large n must be computed. Noting that
for large x,

&1 )
eosh * x = log 2x = log x,

one finds from equation (102, that G(n, s, approaches the value

: /- 5 log £ Jog 17 / _,/_]
Gilns) — /+5[ #7 T T 4_./7_3:/471_5

— (/-5 /”j;’)” (130

where only terms of the order (log nj/n have been retained.

From equation (118, one also finds thet as n —a oo 9



/-5 log # / sri— () + s %
F//?/ 5) | o 2 log rtrs)
e =S5 fog M (131)
= Ve

tc the same order of (log n,/ne Substituting these in equations 120a,

b, 4, and e, with a = 0, one obtainss

C}%/? L7 ag # [ 1—r _ (7—~+) ., /
T 2 7 L(=r)F ) Hr) Ty 7-r)
. L log (132
rZ r

Yow substituting n = k/B,

Ve 2 |/ 7 |
72w e s (153

&g M approsches 1, therefore, the drag coefficient for the delta wing
with no treiling edge sweepback approaches & logarithmic infinity,
The charascter of this weak peak is shown in the previcusly discussed
plots.

For the wing with trailing edge sweepback the situstion is slightly
more é@mplieateda The terms in G and F may be arranged in the following
decreasing orders of magnitude in n:

/o9 #

log 77 ’
A g - e’z
77 J 7

2
J 77 /
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Terms‘of the first twé orders of magni%;ude will be needed, It
will be most convenient, however, to calculate them separately. Dee~
noting the céntribu‘ci@ns of terms of the largest order by CD(]‘;j s One
finds, ﬁpen introducing equations (13¢) and (131 in (120):

)

o 7 > /ﬂzﬂ/_f_:@_ _ (1-a)* L, ali=a)
s 2 7 - (r-r ) F—4&) riF-a)
_tma . (r-a)°  (i-a)

T rr-r)r-a) rér-a)

— log 1 (1-a) /—4 /
r7 [r—d) / /)_

— O

Thus there is no ccntmbu"lon to the dreg coefflcient from terms of
this order of magnitude. In order te¢ obtain terms of the next order,
we must first find terms of thet order in G(n, s) and F(n, s}, which

might be designated G'r(g) and F(gja From equation (102) we have

G(Z)(/? s) — /f_’f‘!i._ A /aﬂ //—5)} (155

//—5 75

and from equetion (118

. ] 2
(2) /I—5 [ tog 5 /o 2= =/
S) — L= ez - AN/
s /+s n t T a5 )
, . 25
S _fff,i_/_ _f /0.7 "/‘:‘5_”‘

/s s» 77 (136
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Dem*:.ing the contributions to the dm.g coefficisnt in this order

bB”{CD(Z ), ws have, from equations (120;),

o o 2en ) / rlog2 _ /ag//—r)/

Pra ~ BT [/—p 77

@) _ 27 pr-a)® Sog /' L o EL
szg | B // 2J(/-r?) / 7 /7 7 /=7
) = pz* a (r-a) /-a / log 4, £4
Prc ~ g (—rir-a)( /+al an i
st (g oty 2L
7+ a4 a7 r77 /-4
) z ~ /-
o - _2rF _(-4) /ﬂ 22 L log(r-a)|
‘a4 ,@/r (I-r)r—a) | /+4 nz '

/f_,f(/f ;flé£Z~__, L ,/57 /7”ﬂ*%/{—j7

(2) 2 )% 4
- . 27% r(ra) a lg _42/09//-_4,;)f

8 B (—rkrEa®] résn
Cf:?zj . . 2T%* (1ﬁ~41) log AUr + L log z2amnr )Z
zZc pB7T r<a*® A r 77 /-4

Collecting terms, the entire expression can finelly be reduced tosz
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~ /05//‘—4)}

o a1/7/7 i l1-r)
Replscing n by k/B, it is seen that the drag coefficient, Cﬂ/z'z

approsches a finite limit as M approaches 1, This limit is shown for
the curves of drag vs. Mach rumber pletted in Pigs. 30 and 31.

If & is allowed to appromch C in this expression, the first and
last terms in (137, give essentislly m constent, independent of B,

while from the middle term one obtains

/. 2 _/ 4
“L . - —— a - ¢ 3
Z_z VY e 7 2 1138,

The entire eapr3551en for drag cecefflcient was, however, wvalid only

for the case that an = 1, otherwise the expressions for CDv nd
ic

CD would have been imeginery. Therefore & can approech O no fester
1IC ’ -

than 1/n, or:

‘(D

S (156)
2 ‘ T é,,.z‘ 4 /<g 158

which sgrees with equation (133, alﬁhough the method of approach to
& = 0 it quite different.

The existence of this finite limiting valug of Cp for wings with
swept trailing edge raises an interssting question concerning its

significence and validity. On the one hand, the present linearized



approsch to the solution of the compressible flow problem certainly
breaks down at & Mach number of exactly l; in fact; as brought out

in the derivetion of ths'basic equﬁ%ions iﬁ‘?hrt 11, the approximation
réquires‘smaller and smeller disturbances as M approgches ls. Purthers
more in the present case, if one considers only the area of the delta
wing ehead of the maximum thickness point, the pressure coefficient
approaches infinity e#erywhere‘at a rete gi%eﬂ by the limiting form

of equation (9le ),

‘ 4 1

¢, —= — log =

P T CF

and the integrel of these pressures over this forwerd surface, which
is proportional then essentislly to G(n, o/, approaches infinity at

the rete

1
./C?dA — Consts leg 7

The finite limlt of the drag coefficient is caused by the existence
of negative drag on the remeinder of the wing, which approsches
infinity at essentially the sams rate as the positive contribution.

On the other hand, for a sufficiently thin airfoil, the result

may be regerded as sccurate for Mach numbers which approsch extremely
close to 1, The practical question therefore seems tc be how far
ffom Mach number 1 the non=linear terms in the equations have an
iﬁp@rtant effect, This question can properly be answered only by
experiment, including the possibility that viscous effecis might

alsc hecome importent,
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Experimental results aveilable so far.iﬁ this range indicate
very strongly that the drag curves are predicted with reesonably
good aceurscy Almogt dowﬁ to Mach number 1 by the linearized results;
in fect, the drag rise near or through Mach number 1 sesms to be
predicted very closely by the limits calculeted above, The ecxperiments
do not, of couwrse, show sny infinite dregs or even large peaks near
M =1 for the delta wing with zero tralling edge sweepback; to what
extent this is a funetion of acceleration or viscous effects, or to
whet extent it could be predicted by & more accurate solubtion to the
equations near Mach number 1, is not yet clear,

Another interesting specisl case of the above calculstion is
obtained if a is allowed to approach 1 = which should in the limit
correspond to & two-dimensional swept wing, or "arrow wing". For
convenience the maximum thickness point mey be tsken at mid root

chord, which implies

2(lwr; = (1 =aj

(140>

In this case, from equation (127, the dreg coefficient is given

bys
QE __ 2 0a) [ F ,  (rafra)
Vake T  » alr-a) 7 2
v < alr-a) 4 /~4]7
— L g 2L /
/—a*® 7Tz alr-2%) 72
S e[y

log () — _ /25 4/

/A

T n a (141)



This dfrag coeffi@ient,' based upon the actual plan area, §,
apperently approaches O as a_ approaches 1 and the span approaches
infinitys In order to cbtain a physical ides of the forces involved,
however, & new dfa.g chf‘fieient, Cp's might be caleulated, based on
the square of the root chorg, A . From Pigs 8,

,! 2

kKl =2)

and thus

z
— S & ! ; 49)
¢, = 0/2 et /Z /ay/(+4)—/__ﬁa log 4/ (142)

4

which, as a approaches 1, gives

Fr*
- r Ioe 2
Jj o = ez 7

Fl > o0

(143 )

Since the thickness t = 4 s this result may alsc be interpreted

2
D 8t .
T T E log 2 (144,

where g is the dynemic pressures Thus for & sweepback of 45°, the drag
is of the order of the force produced by one dynemic pressure acting
over an ares equal to the square of the airfoil thickness = & surprise

ingly low result for the limit at Mach number 1o



The resélﬁ in equation (143, is exactly twice that computed by
von Kerman (Ref. 22, for the limiting case of & strictly two=dimens
sional swept wing as Macﬁ number 1 is approschede Presumebly the
discrepancy is due Lo the fact that the limit ir the present case
is approsched for a wing with tips which begin and remain as sharp
points, so that there is an essential difference in the charsacter
of the tips during the limiting process.

Similaer results can be cbtained for the case of a rectangular
wing of finite aspect ratioc. The classical result, for infinite
aspect ratio, predicts that the drag increases near M = 1 as
(Mg - ljak/b, while for the finite aspect ratio case, it can be
shown that the dreg increases only as lcg(Mz w l)glg The finite
aspect ratio drag calculation will be outlined briefly below.

Consider first the rectangular wing of Fig. 38, for which the
Mach wave from one tip does not reach the other tip, i.e., Pb > Cs
The pressure at P will have the value calculated for an infinite
twoedimensional wing plus e tip correction. The tip correction may
be regarded as the influence at P of a source distribution in region
A equal and opposite to the source distribution st correspending
chordwise stations on the remainder of the wing. If A (x,) is the
slope (in the x—direetién) of the airfoll surface, then the correction
to the twoedimensional potential, A;ﬁ , for a point influenced only
by oné'wing tip will be

LBy o S
_
g - Z [3s)s |
| @ 7,

where

Z, o +(Z- VB
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Theﬁ .
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g‘/l/fj‘ca:—/—y—/—g- Ax

and the ineremental u-veloclity is
_/Jy
A/L/ As) g 45 (145,
X-§)Vr-5)* g2g*

o
The loeal pressure inecrement is Ap = = pU ¢x’ and the local drag

inerement, for both sides of the airfoil is
a(an) = 2 A{x} Ap dxe

The totel dreg correction, consisting of the integral ef this incree

ment over the reglon OMN, becomes-

4D = = ﬂ A/z/afz/ ’Vf) okl o
/! ;)//2, 5)2 /S’Zya (148,

772 a-£)/&
Als)ds
//)a’/ /_/_ T f
o g g=0
where the order of integration was reversed in the last steps From
this,
: - y 4
2p7° -
AD: — —W‘eﬁ_z //?/K)dx//?/f)a’f (147,
o '

o
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But if t(x) is the thickness of the sairfeil, then

Ms) - S els) = 265)

and

Aﬂ—~—é—— ééo/).’ - O (148

Thus the drag correction for thisc ase, Pfb > C, is zero, and the drag

has its two-dimensionsl walue

<
_Z_éﬂgz 2 (149
2, = T A(s) dx /

In the case that Pb > C, illustrated in Fig. 39, the calculetion
proceeds as before, except that the integrati@n of the drag inecrement
is carried out only over WORQs But since the integral over MNO will
be gero, as before, it is nevessary only to calculate mirms the

integral of the drag inecrement over MGR. Thus

4D = 2P /?/z)dz /z/;/y / — gjﬁ;[ﬂ;z —

for the influence of one wing ‘i::.pg For both tips, and reversing the

crder of inbegration,
-85 (e-£ )8

Jp- L/MMX/,;/;M;/ gy
(¥-5) Vi) % 2 g%yt




or,

F-1-s6 |

Ab= —E"’/Mdﬂ’)l/ )/f)\//l—f)z-_/s’zéz e
(X-¥) (149

This incrément will always be negative, and can be easily calculated
in specific cmses, Consider, for example, an airfoil with double-wedge

profile, and maximum thickness at the 507 chord point. Then for

9 < ¥ <<e/a ACE) = + A,

c/2<§'<c/ ACE) = — A,

Inserting these values of ,R in equetion (149, and cerrying
out the successive integrations over the mecessary imtervals, one

obtains finallys

20724} — - s,z -l el
40 = 7[9//’;2—/5624-2/55 cosh ;;6—2-

— ég/géc: cos c?, \//C:
/6252 —//gc /566 cos é—é‘/ (151,

The basic twoedimensionel drag is, of course,
2 2
2 .éC /P T /20
/5, (152)

D, =



As the Mach number approaches 1, (Pb — 0), the dominant terms

ir equation (161 ) ares

: Sz ‘
“Fo U P 272 .
AD - L2 [ 2 8767 by - gbc 77/2]
7‘/52 .

Combining this with equation (151), and noting that A,= Z ror
this wing, one finds that

CD /2 é y/ /

— — = log 153 )

72 7T . C 7 /5, ( /
Thus the drag coefficient has the same type of logarithmic singularity
near M = 1 as was found for the delta wing with no trailing edge sweeps

back. The drag reduction from the two-dimensional case, as given by

equetion (151) will be quite appreciable for low aspect ratios.
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PART VIII

CONCLUSIONS

In‘?art.II it was shown that a reasonable approximate soluticen
to the esquations of motion for the supersonic flow of a perfect
fluid is. obtained by assuming the disturbance velocities to be small.
One possible method of represénting solutions to the linesarized
eguatiens, in terms of sources and doublets, was develecped and
discusseds It was shown that this representation was particulerly
suitable for calculating the flow over thin three-~dimensional airfoils
at zere angle of attack, and can a&iso be used to represent the flow
over airfoils at finite angles of attack.

The equations were applied in Parts IV, V and VI to the calcula=~
tion of the pressure distrihutions and dreg forces acting on a femily
of wings of nearly ﬁriangﬁlar planform, with a simple thickness distri-
bution, called the delba wings. It was found that with the exceptien
of smell regions on the airfoil, the disturbances resulting from the
soclution do fall within the assumptions of the linearized theory, if
the airfoil thickness is sufficiently smells It wes also found that
the drag acting on’these airfoils may depend criticelly upon the
detsils of the planform and thicknesg distribution; and that opbtimum
choiées may be made of these various geometrical parameters for
partiéulgr design problems. The essential results of the drag calcu-
lations for this eirfoll femily were sumarized in Figs. 20 to 32,

In general, the results indicated that (a) the "sweepback“ of
a Wing is charscterized not only by its planform, but the geometry of

its meximim thickness lines, and (b, the essential effect of increasing



Y-

sweepback ig to lower thg drag coefficient in the low supersonic
speed range, with a drag rise or peak at some higher Mach mumber,
near the renge where the Mach weves are parallel to the leading edge
or maxiﬁum thickﬁess lines, |

Finally, it was concluded that the possible adjustments to the
shape of the drag curve 8s a funchtion of Mach number could be used
to advantage in sevefal ways, with the cholice depending on the

requirements of a partiéular engineering problem.
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APPENDIX I

SUMMARY OF SYMBOLS

Undisturbed or free stream velocity (in x-dirsction /.

Notes The subscript is dropped in the linearized solutions,.

Total velocities in directions of x, y and z axes respectively.

Perturbation velocities in directions of x, y and z axes,

Perturbation velocity potential,

Mach number

pressure

density

dynemic pressurse = pUz/ég

ratic of specific heats, C p/cve

pressure coefficient = {p = poz/ﬁ, where p, is free stream
preasure.
Mz = 1 = cobangent of Mach angle,

angle between airfoil leading edge and normal to stream
direction (sweepback angle); sse Fig, 6 or 8,

‘tan

k/B, = relative sweepback parameter,

slope of airfoil surface in x~direction.

total airfoil chord, apex to tip, (see Fig. 8 /o

airfoil root chord

x=distance from trailing edge at root to airfoil tip.

x~distance from maximum thiekness point at root chord to

airfoll +tip.
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maximum thickness point location, fraction of root chord.

airfoil drag, both sides of a symmetrical airfoil.

“airfoil actuel planform aree.

drag coefficient =D/gS.

~airfoil maximum thickness,

%/ = thickness ratic.

functions used in drag calculations, defined by equationse
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