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Abstract

The stability of two-dimensionel parallel flows of an in-
compressible fluid is investigated, based upon a study of the equation
of Orr.and Sommerfeld alcong the linés initiated by Heisenberg. The
theofy of Heisenberg is carefully exemined and further developed
to obtain several general and specific results on hydrodynamic stability.
“lost of the disputes in the existing theories are clearly brought out
and carefully settled, It is further shown that all symetricel and
all boundary-layer types of velocity distributions are unstable above
a certein minimum critical Reynolds number, vhose agproximate value
car be easily calculated from equetions (12,24) ané (12,25) respectively.
Generel charecteristics of the curve of neutral stability are obtained
(Fig. 9). Compléete numerical calculations of this curve have been
carried through for the plane Poiseuille flow and the Blasius flow.

In the first case, the mirimum criticel Reynolds number is found to

be 16000, based upon the maximum velocity snd the width of the channel.
In the second cese, the number is 400, based upon the free stream
velocity and the displacement thickness of the boundaery layer.

Physical interpretations of thé results obbtained are given, based

upon the comservation of vorbticity in a perfect fluid and its

diffusion by viscous forces, Indications are also given to comnect

the stability theory with Teylor's theory of transition to turbulence.
It is hopned that this work mey remove all the doubts of applying the
theory of small oscillations bto the treatment of hydrodynamic stability

using Vavier-Stokes equations for an incompressible fluid.
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PRELITMINARY CONSIDERATIONS



I. Introduction

The study of the stability of”laminar mobtion and its transi=-
tion to turbulence dates back to the time of Helmholtz and Reynolds,(sa)
and has already attracted great attention at the end of the last cen-
tury,* From that time onwards, the subject has not only become =a
major problem for research workers in hydrodynamics, but has also
attracted the atbention of such great theoretical physicists as
Lord Rngeigh,(55‘37) Lord Kelvin,(17s18) Lorentz,(ZI) Sommerfeld(5l)
and Heisenberg,(lz)-just to mention a few names,=- whose chief in-
terest is not essentiall& limited to the study of mechanics itself,
Although numercus contributions have since been made, the subject !
has remained one of considerable dispube, as can be seen from fhe
two general léctures given by Taylor(63) and by Synge(56) as late as
1938, BStill more recently, there appeared the work of ertler(6e7)
and of Thomas(64).

All the research works on the stability of laminar motions
have the following final aims,.

1) The first aim is to determine whether a given flow (or a
given class of flows) is ultimately unstable for sufficiently large
Reynolds numbers. For this purpose, it is desirable to obtain some
simple general criterion, which will give a rapid classification of
velocity profiles regarding their stability.

2) The second purpose is to determine the minimum critical

Reynolds number at which instability begins. It i1s often easier to |

* In 1888, the problem was proposed as the subject for the Adams
Prize Essay by Rayleigh and Stokes.



find sufficient conditions for stability, than to find the condition
for.passage from stability to instability,

3) TFinally, we want to understand the physical mechanism under=
lying the phenomens by giving theoretical interpretations and experi=-
mental confirmations of the results obtained from mathematical analysis.

Although numerous atbempts have been mede in these direc-
tions, especially for the apparently simplest cases of parallel flows
in two dimensioms, our knowledge is sfill very meagre. The classical
cése of plane Poiseuille motion has remained an unsettled problem,*
and no satisfactory gemeral results have been reached regarding the
stability of a real fluid, The best=known general criterion ils that
of Rayleigh and Tollmien, classifying profiles according to the
occurrence of a flex** with respect to the sbability of a fluid at
EEEEEEEE_Reynolds numbers., HJowever, the significance of their results
has been too much exaggerated and often misunderstood, and no physical
interpretation has ever been given., The present work offers such
an interpretation, but also shows that the results can give only little
indication regarding the instability of a real (viscous) fluid. This
will be discussed more in detail below,

The chief aim of the present work is to try to eanswer the
three gquestions mentioned abo#e for two-dinensional parallel flows.

The following results have been cbtained.
1) It is shomn that all velocity distributions of the symmetricel

type and of the boundary-layer bype are unstable for sufficiently

* ¢f, Synge's lecture
*% Following Professors E.H. Moore and H., Bateman, we shall use the
word "flex" for "point of inflection.®



large (but finite) values of the Reynolds number. (The plane
Poiseuillé motion is included as a special case)

2) \A very siﬁple method is obtained by which me can caléulate
the minimum Reynolds number marking the begimming of instability with
very little numerical labor.

3) The tendency toward instability of a profile with a point of
inflectibn is interpreted by considering the distribution of vorticity.
The effect of viscosiby is considered‘as diffusing the disturbance
from the "eriticel layer" indide the fluid and from the solid boundary.
A very simple quantity is thereby derived which serves as a measure
of the effect of viscosiby. This can also be easily comnected with
the general mathematical theory,

As numerical examples, we have worked out the curve of
neutral stability for the Poiseuille case and the Blasius case,
Comparisons with existing results are discussed. The relation between
instability and transition to turbulence is discussed in the last
section of this paper.

Since the present results differ markedly from customary
beliefs, it is necessary to trace the history of the existing lines
of thought in order to give recognition to earliér ideas and results
of which the present work makes use, and to analyse all the results
in disagreement with the present conciusions. The review of litera-
ture is not intended Eo be exhaustive; we only try to cite 81l the
necessary referénces. A more complete bibliography is given by Batemangz)

| Before coming to the complete survey, we shall meke a
few more remarks regarding the criterion of stability of Rayleigh(55)

and Tollmien(67),



Remarks on the criterion of Rayleigh and Tollmien

The work .of Rayleigh and of Tollmien tends to give the
impression that the occurrence of a flex in the profile is the de=-
cisive factor in the determination of instability not only in the
case of an inviscid fluidj¥ but also in the case of a viscous fluld#**,
However, the present investigation shows that this is by no means the
case., When instability first occurs, as one increases the Reynolds
number, viscous forces still play a dominant role, and the mein
charecteristics of the behavior of the fiuid with fespect to a dis=-
turbance do not depend upon the occurrence of a flex in the veloecity
curve. Indeed, it is physically improbable that a slight change of
pressure gradient in the case of a boundary layer,=—which may cause
a passage from a velocity curve without a flex to one with & flex—
should cause a radical change in thé essential characteristics of
stability. As we shall see later, the instability of a boundary
layer depends more on the outside free stream than on the occurrence
of a point of inflection. It might be argued that the free stream
is analogous to & point of inflection in that a vanishing curvature
is involved; but even if this is adnitted, we must still nobte that
the essential features in this case are not obtained from an
analysis neglecting the effect of viscosity. Indeed, from inviscid
analysis, it is concluded that & boundary layer with zero or favorable

pressure gradient is stable, except for the very trivial type of

* By this we meen the limiting case of infinitely large Reynolds
numbers.
%% See Taylor's discussion on p. 308 of reference (63).



disturbance with infinite wave~length and zero phase velocity.

The present investigetion shows that all boundary-layer profiles

can be unstable, and exhibits results in agreemeﬁt with the physical
suggestion just discussed, |

The importence of a flex is further belittled by consider=
ing an exémple vhere its occurrence does not imply the possibility
of a neutral disturbance in an inviscid fluld, even of the trivial
type (section 7). It is also to be ﬁoted that Tollmien's proof of
the instability of a profile with a flex has been carried through
only for the symmetrical and the boundary-layer types. These profiles
are shown by the present work to be unstable under the influence of
viscosity, whether a flex occurs or not.

In spite of all these points against the decisive nature
of a flex, it must be admitted that its occurrence certainly makes
the motion comparativelyvuﬁstable. This cen be expecﬁeﬁ from Ray-
leigh's original rééﬁlts, and cen be seen more clearly from the inter-
pretation of the mechanism of "inertial instability" given in sections
9, 10, However, these results must not be taken to indicate any
decisive ph&sical significance of a flex. The essential features of
instability can oniy be obtained through considerations of the effect
of viscosity.

There is another point which is usvally misunderstood in
cormection with the stebility of an inviscid fluid. It is often
concluded from.Rayleigh;s analysis that there is no vossible dis-
turbance of any kind at infinite Reymolds numbers if the profile

has no flex.x*

* Tollmien (67), p. 88



This has aroused suspiciom regarding the validity of Rayleigh's
analysis,.becaqse it does not appear reascnable physically.%
However, the conclﬁsion is purely & mathematical misunderstending.
Damped disturbances are not excluded.ﬁy Rayleigh's analysis.

This point is very closely related to the long=~disputed
gquestion of the crossing substitution.** In the present investi-

gation, it is shown that such a process (in its proper sense) is

not necessary in obtaining all the stability characteristies. It

wangas—

is used only when we want to calculate the form of a damped dis-
turbance, —a rather insignificent thing to do. A damped disturbance
is shown in the present investigation to have two immer friction
layers, Only the form of the damped disturbence in between these
layers is to be calculated by using a "crossing substitution.”

In the usual theories, the existence of two inner friction layers

is not even recognized.

* Frederichs, (101), p. 209
%% The explanation and discussion of this question will be given
“in section 5.



II. Hisborical Survey of Existing Theorieés

There seem to be two schools of thought in regard to the
cause of transition from steady to turbulent conditions. One school
has fhought that tramsition is due to a definite instability of the
flow, i.e., to a condition in which infinitesimal disturbancés will
grow exponentially. Another regards the motion in most cases as
definitely stable for infinitesimel disturbances but liable to be
made turbulent by suitable disturbances of finite magnitude or by a
large enough pressure gradient., Both schools however, agree that the
£luid can be consideréd as incompressible and that its motion is
governed by the Ngvier-Stokes eguations of motion. Since the agree-
ment between theory and experiment has not been very satisfactory,
it has also been proposed that thg cause of trensition must be traced
back to the effect of compressibility or to the possible failure of
the Navier-Stokes equations. The present work tends to confirm the
simplest point of view that the moti&n in most cases is definitely
unstable for infinitesimal disturbances governed by the Havier-
Stokes equations for an incompre§sible fluid.

The theory of finite disturbances dates back to Reynolds (38)
and Kelvin(le). It was developed by Schiller, Taylor and others.*
Mathematical investigations of such finite disturbances are mainly
ba.sed on considerations of energy or of the square of vorticity
of the disturbance, because the solution of the non-linear equations

satisfied by the disturbence is extremely difficult. We shall dis-

* See Taylor's lecture (83) for references to the works on finite
disturbances,



cuss thisAIine of thought briefly at the end 6f this paper together
with our own results. Fof more details, the reader is referred to
the lecture of Taylor(GB), and the papers of Synge(55), end Thomas (64),
For small disturbances, the use of positive definite in-
tegrals of energy and vorticity of the disturbance has also been
extensively used. These considerations havé been discussed by Orr(zg),
Lorentz(21), von Kéfmén(15), Synge(56:57) and others. For excellent
acocounts of this phase of the theory, the readef is referred to
the works of Noether(27), von Kérmén(l5), Prandtl(34), and Synge(57).
Some more references are cited at the end of this paper. As is now
well=known, this method can only give sufficient conditions for
stability. Also, since all disturbances are usually allowed, including
those which do not satisfy the hydrodynamic equations of motion, a
larger viscous decay 1s reéuired to insure stability than when these
disturbences are excluded. Consequently, the limit of stability is
always found to be much lower than the experimental values., However,
from these considerations‘Synge(57) has arrived at a very convenient
fofm for a sufficient condition for stability of two-dimensional
parallel flow with respect to two~dimensional disturbances. This
will be found to Be very useful for:the discussians‘in section 12,
To get more concrete results, we haﬁe to solve the linear=
ized equations satisfied by the disturbance. The most successful
case appeared to be Taylor's treatmént of Couefte flow(ao) between
concentric cylinders. Hié'work was verified by the experiments
carried out by himself(Go’Gz)and by others(zo). A rigorous mathe-

matical investigation in this connection was made by Faxen(4).



In fackt, it is now known that his analysis is a typical case of the
skability of a ‘fluid mobtion where the centrifugal force plays a
dominant part. Sﬁch cases were first comsidered by Lord Bayleigh(57),
who gave a condition for the stability of an inviseid fluid, Mathe;
matical proof of a sufficient condition of stability of Ccustte
flow was recently given by synge(58), Extension of Taylor's work to
the boundary layer over a curved wall was carried out by Ggrtler<6’7),
who used numerical methods with success,

While the investigation of curved flows was uneventiul,
the investigation of axially symmebtrical flows was not exbtensive.
The Poiseuille flow in a circular pipe was studied by Sexl(47s48)
with a conclusion of stability. Prandtl gave some discussions of
the possible cause of instability in his article in Durand's Aero=-
dynemic Theory.

The most extensive and most eventful discussion of hy=
drodynamic sbability seems to be the treatmént of parallel flows
by atbempbting to solve the eigen=-value problem assoclabed with the
linearized equations goveming the disturbance,

This line of developmen’t can he esasily traced along the
work of Helmholtz, Lord Rayleigh(SB’Bs), Orr(zg), Sommerfeld(51),
von Viges(28) (22), nopr(14), Preanatl(33), Tietjens(65), Heisenberg(l2),
Tollmien(66’68), and Schlichting(44s46). Other contributions are
those of Noeﬁher<28), Solberg<5o>, éouthwell(52), Squire<53>,

Goldstein (5), and Pekeris(31s32),
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For convenience, the theory considers two=-dimensional
wavy disturbances propagating along the direction of the main flow,
Squire has showmn that three=dimensional wavy disturbances are more
stable than two-dimensional ones. However, Frandtl still mentions
the possibility of greater instability of three~dimensional distur-
bances in his article appearing after Squire's paper.

The first study of two~dimensional hydrodynamic stability
‘was made by Helmholtz. He proved the instability of wavy disturbances
over the surface of discontinuity of two parallel streams of different
velocities, ILater, Rayleigh(zs) realized that Helmholtz's approxi=
mation was not good enough for bringing out the main features of a
flow with continuous velocity distributions. He therefore made an
improved approximaﬁion consisting of several linear profiles joined
up continuously., The vorticity distribution then has constant values
in several layers, but has a discontinuity in passing from one
layer to another, Investigations with comtinucus vorticity disbri-
butions were also made. Rayleigh's work was mainly concerned with
an inviscid fluid, but he also realized the importance of the immer
friction 1ayer(35). Two main results were 6bbtained, The first is
that instability (in en inviseid fluid) can only occur with velocity
distributions having a point of inflection, and that in the case of
neutrally stable disburbance, the inner friction layer is unavoidable.
The second is obtained from the analysis of broken linear profiles:
it substantiates the first result by demmstrating definite insbabllity

of broken linear velocity distributions of the type shown in Fig. 1,(a),



and only sbability in the other cases, Rayleigh(55) supported his
result b& obtaining the condition determining stability in the apnrox-
imate form Y, 2

(2.1) f}, dy (w-e) =0,

where w(y) is the velocity distribubion, yi, Yo are the coordinates

of the solid boundaries, and ¢ is a consbtant, whose real part re-
presents the wave velocity and whose imaginary part gives damping

or amplification.

NMeanwaile, the exact analysis of linear velocity distri-
butions inecluding the effect of viscosity was given by von Hises<25:24),
and Hopf(14) and was also studied by Rayleigh(35). The results in=-
dicate only stability. Prandtl and Tietjens(65) applied Rayleigh's
method. of approximation to the stability of the boundary layer, taking
account of the effect of viscosity., In such an approximation, the
immer friction layer mentioned above for continuous vorticibty dis-
tributions was left out, The result of Tietjens did not give a
minimun critical Reynolds number.

It was I{eisenberg(IB)_ who first studied the stability of
a variable continuous vortiecity distribution with success. As a
pérticular exarple, he demonstrated that the pvlane Poiseuille flow
was wunstable for sufficiently large Reynolds numbers. Also,
using the same equation (2.1) with which Rayleigh supported his
approximation with linear profiles, Heisenberg pointed out the fallaey
in Rayleigh's method. The essential point is that the corners in
the velocity profile introduce extraneous roots for the above equation

for ¢, Consequently, the results of this type of analysis depend
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upon the_ﬂénner‘in which the velocity distribution is apvroxime ted.

Heisenverg's numerical computation was, however, incomplete
and very rough, and his theory was not generally accepted. Better
kmown are the results of Tollmien and Schlichting. They studied
the cases of Blasius(sﬁ) and plane Couette flcw(41), using essentially
Heisenberg's theory. The former case was pursued very much in de-
tail. TFor the latter case, Schlichting followed the idea of Prandtl,
asserting that the instability may be attributed to the initial
unsteady distribution prior to the forme tion of the linear profile,
Indeed, the same kind of idea was also suggested by Prandtl to
account for the instability of Poiseuille flow by aseribing it to
the entrance section where the profile is not yet parabolic(ss).

This problem will be discussed in detail later, (section 14.)

For an inviscid fluid, Tollmien has alsé proved the insta-
bility of boundary=-layer and symmebrical profiles with a point of
inflection(67>. For a viscous fluid, the present invesﬁigaﬁion
shows that Instability depends upon the general type of these pro-
files rather than on the appearsance of the point of inflectbiom. The
inner friction layer plays a dominent role in determinirg the in=
stability. Abbempts to interpret this vpoint physiéally are given by

Prandtl(zé) and in the present paper,



PART I GENERAL THRORY



3+ General formulation of the problem

e shall now formulate the problem of the stability of two=
dimensional parallel flows mathematically. In the first place, we
note that if the steady motion is stfictly two=dimensional and par=
allel; the velocity distribution must be either linear or parabolic
(if body forces are absent)., We then have

1) +the plane Couette flow, or

2) +the plane Poiseuille flow, or

' 3) a combination of these two flows,
The problem would then be very restricted.

However, there is a large number of ceases vhere the flow
is essentially parallel to one direction. These are the cases where
the boundary=layer consideration is permissible. The following are
importent special cases belonging to this class:

4) inlet flow between parallel walls, flow in a slightly con=

vergent or @ivergent channel,

5) flow along a flat piate,

8) wake behind a cylindrical body, jet from e narrow slit.
Whether these flows can be properly considered as belonging to the
same class as the above three is a question of some controversy.
_‘Taylor has criticized Tollmien's work with the boundary layer on
this gromd(63), In the Acpendix of this paper, we shall try to
demonstrate that this treatment is generally permissible, but that
the interpretation of the results must be taken up with care. A

full discussion of Tollmien's work will also be found there,
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AIh considering the stability of the main flow, we superpose
vpon it a hydrodynamically possible small disturbance, and comsider
its behavior. The disturbance is small in the sense that the inertial
forces corresponding to the disburbance alone are negligible and that
its behavior is waltered when its amplitude is (say) doubled or
halvéd. It is then simplest to comnsider separate harmonic components
with respect to time, which may be damped, neubral, or self-excited.
By considering disturbances which are also spadially periodic both
in the direction of flow and in the direction perpendicular to the
plane of symmetry of the main motion, Squire(55) was able to show
that two-dimensional disturbances are less stable than three-dimen-
sional disturbences. Hence, important features of the stability
problem can be obtained by considering two=-dimemsional disturbances
glone. This is an essential difference between the stability of a
parallel'flow and of a curved flow, In the latter case, three-
dimensional disturbances are of ubmost importance.

The consideration of periodic disturbances alone is again
a question of some controversy. dJustification has been attempted and
objection has been raised. TWe shall see later that at least the
difficulties raised are chiefly due to a misinterpretation of the
me.thematical results.

Adnitting that we can consider two-dimensional disturbaﬁces
alone, we have a much simplified physical picbwre at hand. If the
effect of viscosity is negligible, we have the well-known fact of

conservation of vorticity for two-dimensional motions. A&ctually,



the stability problem is found to depend both on the inertial forces
and on thé viscous forces. However, the effect of viscosity is also
well=known to be oﬂe of diffusion of vorticity. Thus, important
results can be expectéd from considerations of vorticity transfer,

Since the question of stability occurs only at very large
Reynolds numbers, it seems reasonable to neglect the effect of vis~
cosity cbmpletely at first and then consider its effect later.

The first step of the investigation méy be termed "inertial stability™;
“the second step may be termed "viscous stability", particularly

when viscosity plays a dominant role., These concepts will prove use=
ful later,

Let us now proceed to the mathematical formulation of the
problem., We shall give a complete derivation of the stability
equations soithat we can see how to settle the dispubtes about the
approximations in considering velocity distributions of the boundary=
layer type.

Admitting Squire's work as a2 proper indication that only
two-dimensional disturbeances need be considered, we may conveniently
consider the equation of vorticity

(3.1) Ahn{,ayx—vij = Y44y,

with the velocity components

(5.2) u=vy=;_;-) very, =L,

and the vorticity

(5.5) ¢ = %—2—; = = (Yo ¥y, ) =- 2y,



As usual, ¥ is the kinemetical viscosity in (3.1). We mey add that
Squire'’s original proof was intended for flow bounded between two
parallel walls, There is no difficulby in seeing that the proof

holds also for a fluid extending to infinity, because the essential

boundary conditions for the disturbances are the sane.

Let us put
(3.4) V=Vl Wiogt),
where W(x,y) reoresents the steady main flow and \¢/(x,y,t) repre-
sents the disburbance. Main flows which vary but slowly with time
can also be treated this way, but we shall restrict ourselves bo
steady flows in order to fix our ideas.

If we substitute (3.4) into (3.1), the terms corresponding
to the mein flow will cancel each other out. If we now drop the terms
quedratic in ‘%Qx,y,t) and its derivatives, we have the equation
(3.5) 2+ Y 0= Y 2 gAY, - Y AY =y s,

We shall now aséume the flow o be mainly parallel to the x-axis,
Using the boundary=-layer approximation, we should drop the x-deriva-
tive of any quantity comnected with the mean flow compared with its
y-derivative., But for the disturbance we would expect ¢{ and W},
to be of the same order of magnitude, This will be verified a poster=
iori in the specific examples., Further discussions will be found

in the apvendix, With these considerations, (3.5) reduces to

3

3
/ / / y /
(3.6) 4y, +M/}Avl~uxa—;—3 = YALY
Now we shall make an approximation of the same order by
_ Yu _ YV : .
teking for w = ¥ and . T their local values at a given

¥ agv - }013



value x, of x. Then we may wirite
' / ' / /
(8.7) ijc v 3y AV, - uy'(})\pl = VALY,

For the boundary conditions, we shall also consider the local boundaries.

The problem is then essentially simplified, and can be treated
similarly to plane Couette and Poiseuille flows. We consider & main
flow between two parallel plenes y = yq and y = ¥y, with a more or
less arbitrary distribution of velocity w(y). Then the disturbance

\P/(x,y,t) must be found as a solution of (3.7) satisfying the con=-
ditidns u! = v' = 0 over the boundaries, |

The usual way of dealing with the solution of (3.7) subject

to given boundary conditions is to comsider periodic disturbances.
We shall refer all velocities to a charactsristic velocity U and all
lengths to a characteristic 1ength.l s and define the Reynolds number
R = UUZ//V . The two-dimensional periodic disturbance of a field

of flow in which the main flow is w(y) may be represented by the
Te(x-tt) ‘

stream function ¢/=§9%)Q, s and the linearigzed differential
equation for ¢ (y) is

] L i ___.-:],._ I~V_. ] [*8
(3.8) (w-e) (g~ ) m W @ = MR(? 20 ¢ 4-0((;)))

as can be easily obtained from (3.7)., We shall take a to be always
real and positive, while ¢ may be complex:
(3.9) c= ¢, ric, .
If we consider a flow limited between the planes y = v1 and y = yz,
the equation (8.8) is to be solved under the boundary conditions
(3,10) ¢ly)=o, ply)=o0, @//g,)=oj 30/(32)=o.

Let us now forget about the physical problem and consider

the differential equation (3.8) as a linear differential equation of



the fourth order in the complex y-plane, To be sure, the function
w(y) is defined only for real values of y between ¥q and Vo. TWe
can of course, consider it as defined for other values of v by analytical
continuation, We shall assume that the function thus defined is
holomorphic in every finite region with.which'we shall be concerned.

The equation (3.8) then has every point in the region wnder
consideration as a regular point, and its coefficients are also
entire funotions of the paremeters ¢, u, and aR (regarded as camplex
variables), By a well-known theorem in the theory of differential
equations, the solutions of (3.8) are analytic functions of the
variable y and of the parameters c, o, and oR, being in fact entire
functions of the parameters.

These simple generel analybtical considerations appear to
have escaped notice from earlier investigators., In sections 4, &5 of
this éaper, we shall find this type of consideration very important
in settling the controversies about the guestion of convergence of
the series used in the actual solution of the egquations (3.8) and
(3.14).

Let us derote a fundamental system of solutions of (3.8)
by ¢(v),  @(y), ¢(y)s ¢,(y)s the dependence upon the parameters
¢, ¢y, oR being understood. The conditim (3,10) will give rise to
the secular equation
(3.11) Flea=®)=] ) ¢ly) @) g0)
(4 %QJ %%J %Jh)
Su) € el gl
fl) el Gl gl

!
O
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Since the function T(c,x,aR) is an entire fu-ction of the variables
c, 0y 0R, we can solve for c, obtaining
(3.12) ¢ = ¢ {ayR).
There may be several branches of the solubion, or there may be none
as in the case where F(c,o,aR) is (say) exp(aRe)., In general, we would
expect the solution to be unigue, or we may consider only one branch
of the solution.

When o ard F are later taken to be real and positive, it
is convenient to separate (3.12) into its real end imaginary parts.

Thus,

(3.13) = (4R),
¢C. = ci(d,R) )

3

It is customary to plot curves of constant ¢y or acy in the o-R
plane, The curve c; = O gives the limit of stability.

We are particularly inberested in the case where the Rey-
nolds number is very large. The sbudy of this case is complicated
by the fact that the functions @, ¢, f3, f4 involved have essential
singularities at the irfinite point of the oR plane, TFrom the
differential equation (3.8) itself, we see that when ol > ©© , we
have the equation
(3.14) (w-e)(¢"- «¢)- W'y = 0,
which is only of the second order, Thus, two solutions of (3.8) are
lost. From detailed mathematical investigations, we shall find later
that two linear independent solutions of (3.8), say'tﬁ and q% > will
satisfy (3.14) in the limit of infinite oR, except in the neighborhood
of the point where w = ¢, The other two linearly independent solu-

tios 35 and ?4 are highly osecillating for large of and would
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therefore disappear in the limit of infinite oR. Furthermore, we
shall s=ze that‘?s and ¢, can be so chosen that if 503 %) > 504(},),
then ?3(%)‘44 9h(3z) s with corresponding relations for their

derivatives., It then appears plausible that the limiting form of

(3.11) for infinite oR is

(3.15) alh) ¢l | =0,
@) @)

with (ﬂ(ﬂ) ?2(}) satisfying (3.14). This point will be fully dis=-
cussed in section 6.

The condition (3.15) states that we are looking for a solu-
tion @(y) of (3.14) satisfying the boundary conditions
(3.16) ¢ly)=0, ¢()=o0,
with the other two conditions of (3.10) relaxed. Physically, this
means that we allow a slipping along the walls y = ¥ and y = yo.
For very large Reynolds numbers, only a very thin layer of fluid will
stick to the solid, and we have naturally an avnvarent slipping.
These points will be taken up =2gain more carefully after a thorough

mathematical investigation of the solutious.
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4, Solution of Orr-Sommerfled’s equation by methods of successive
approximations '

The staﬁility equation of Orr anc Sommerfeld
(4.1)' (w-c) ((?u_ o(z.(? ) - w’NCP - ";,'_iﬁ: ((f;v—lo(ch”-l- o(l#cf )
has a fundamental system of four solutions, which are analytic func=
tions of y (wherever w(y) is amalytic) and which are entire functims
of « , ¢, and oR. In order to obtain useful solutbions, 1t is
usual to expand the solutions as power series of a suitable small
parameter, say, l/&R.. However, since l/&R.occurs with the highest
derivative in (4.1), the study of such an expansion becomes very
complicated., It will be dme later.

a) Solution by convergent sseries., An alternative method* is

to choose & small parameter & related to 1/&}{ and first make a
change of variable (y, being so far an arbitrary point)

(4.2) y-Yo=27, 1=y,

so thet (4.1) becomes

(.8)  (wee) (K- ) - 'y = = (4 2" o)

«Re?*

where

(4.4) {w-c = (wa-c) - - (i)!) - %.(37)1\; .

I} I 174 iv 2
W= w, tw, - We +oee
o (87) + g (27)

The solution is then obtained in the form

(4.5) A (y') = X('q) = X(O)(’)Z) + € x(')(q) 4_8':-%(1)(.7) boons ,

and the differentisl equations for the approximations of successive

* This method was first used by Heisenberg, loc. cit.(lz), p. 588.



orders cen be obtained by substituting (4.4) and (4.5) into (4.3)
and equating all the coefficients of the various powers of & to zero.
If we take ¥, to be the point where w = ¢, the proper
parameter to be chosen is l
3
(4.6) t=(«R)",
. . . . () i) (z)
The differential equations for the functions J (7)} X (7), X (71 ))

are as follows:
o ro)ll ,,,“v

(4.7) {& ‘*”lx =o,

sh 0,,? x(n)" (»\)w_~ “-l (76)) n> 1 ;

where L, , (7(,) ~is a linear combination of x"’i X 'j (1)

and their derivatives, In particular,
(4.8) LDQ” - woll (X(c)— _}LX{O)”)_

e note that the homogeneous part is the same for all the
differen‘tiabl equations of (4.7). Hence, if we can solve the initial
approximation, the rest can all }be obtained by quadratures. Indeed,

o)
whose

the first equation of (4.7) is Stokes' equation* for X%
solution can be readily expressed in terms of Bessel's functions

of the order 1/3. Thus, we have the four particular intégrals#s

# of. The exact treatment of (4.1) by Hopf(14)and Reyleigh(86) for
the case w' = O,
*¥% Nobte that %M and 76;: and also 7( have no branch point at ’2 = 0,
The order of the solutions {‘f,)‘h, %,%} agrees with Tollmien's nota-
tion. They are §<93,304,<f.,‘j>1} in Heisenberg's notation. Hemlg)enberg
gave the solutions ¢; and ¢, in the form @, = (w- c)f)) He [3(a)*® Jd
(p. 589 and Eq. (19a), p. 591). It cen be e25ily verified *that these
are the same as X3,)4. up to a constant factor w/s and to the proper
order of approximation, Nobte that throughout Heisenberg's paper, i

is to be replaced by -«i in order to conform to our notetion. This

can be seen from a comparison of our equation (4.1) with his equation
(7a) The difference arises from a dif f‘orence of notation in the
stream function \y(x,y,‘t).



Ky =m,
x1=1 7

d,,jaﬂ H '[3 (mp]
o P b By,
for the first equation of (4.7), where

(4.10) x, =(w!)>.

(4.9)

The higher approximetions are given by

) Bt L - P ], 100

These are the explicit formulae for finding the approximations of
various orders. In actual calculations, only the initial approxi-
mation (4.9) is required,

Furthermore, the series (4,5) is convergent provided g

is restricted so that the series (4.4) are convergent,. For then the

differential equation (4.3) for X{n) s When normelized, has analytic
functions of the parameter & as its coefficients. Hence, a funda-
mental system of its solubtions consists of féur analytic functions
of € .

It should be mentioned that if Y, is not taken at the
particular point for which w = ¢, the proper parameter to be taken
is (ocR.)—% . instead of (dK)—é- . In this case, all the approxi-
mations can be expressed in terms of elemenbtary transcendental func=-

tims. However, it is mnot found particularly advantegeous to do so,

because the study of crossing substitution would not be easy. Also,
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the method is then too much different from those used by earlier
investipgators Yo allow an easy comparison of the results,

b) Solution by asymptotic series. Although the previous method

is 'i:heéretically c;,bompile'te, it 1s usually more convenient to use
asymptotic series for numeriéal purposes, Heisenberg has given two
asymptotic methods, each of which gives only two particular solutions
of (4.1). These methods will now be described and investipated
mathematically more in detail, because Helsenberg's work has received
some criticism in this conﬁec’cion.*

The first of these methods is to develop tf(y) in powers
of (dK-Sl. Te pub
(a12) 9=+ kg l;)nmz ) +-o-
and substitute into (4.1). Comparing corresponding powers of @R) s

we have the following differential equations
(O A o n (=)
(w-c.)((f - cf”)-—w $ =

k) k (k ) (k-) " (k-1)
(w—‘-)(‘f( = ( )) W (f —(-—L{ ) i o(ch ' 4—o<"LSo })
kz1),

The initial approximetion satisfies the inviscid equation and can be

(4.13)

solved by de’veloping <f‘°) in powers of <, Indeed, two particula.f
integrals of (4.13) are
R y
¢ (w—c){ﬁof)+°¢z'ﬁ()+o< R, (4)+--
(4.14) { '{ 4 z‘} ) g }’
D= (wme) { R+ SR TR ()4

2

% Tollmien, loc. c¢it,, 1929, p. 43
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where

"ﬁo(}):: 1; 2mz, }) f dg w‘-c) jd?(w—c) (}) nzo,
R, (;.)=f;l37(ur—c)‘?-) £, ,00 f d?('w’C) f o(? w-c) ﬁm nzo

The point I might have been any fixed point instead of one of the

(4.15)

end points; but it 1s found convenient to take it this way.
Having found two particular integrals for ?“) s We can

obtain the higher approximations by gquadratures. In actual calcu-

lations, this is not necessary.

From the gemeral nature of the equation (4.1), ?(y)
is an entire function of ¢R. Hence, the infinite point of the aR-
plane is a singular point, unless ?(y) is independent of aR., Con-
sequently, the series (4.11) is asymptotic, unless ¢(y) is a
polynomial of (aR)™, We note also that (4.13) is of the second order,
so that only two solutions are obtained by this method. The solu-
tions of (4.13) are entire functions of o and hence the series (4.14)
are uniformly convergent for any finite region of the complex
az-plane, for a fixed value of y, except when y is the singular point
Yo 5% the differential equation (4.13).%

In fact, the differential equation (4.13) has a logarithmic
singularity at the point Yo+ This point is however an ordinary
péint in the exact equation (4.1), and the singularity is introduced

purely by the method of asymptotic inbtegration. However, the

% This can also be seen from bthe series itself, So long as it is
possible to lead a pa th of flnlte length from y; to y on which w - ¢ f 0,
the general terms «* hnyand o Hﬁzﬁ‘ of the two series are bounded by

A M/ )t and BEMST/en)!l respectively (4,B,M being(guitebly) fixed
constants), and hence the series coverge like the cosine and the

sine series respectively., Heisenberg did not prove the convergence of
these series, bub sbated that their convergence can be hoped to be
sufficlently rapid for o? of the order of unity (loe. cit., 1924,

pp. 584, 587), This was made & point of criticism by Tollmien (loc.cit.,
1929, v. 43).



appearance of this singularity gives a serious ambiguiby in the deter=-
nination of the correct path leading from yy to y in order that (4.14)

mey give valid approximetions to integrals of (4.1) all along the path,*

The proper way to settle this question is to compare the solutims

(4.14) with the asymphotic expansions of the regular solubtions obtained

by the previous method., This will be done later after we have de-

scribed the second asymptotic method of Heisenberg for the other two

particular integrals; for the same kind of problem also arises there.

To obbtain two other integrals of (4.1) in asymptotic forms,

———tpacn

let us make the transformation

(4.18) g (4) = ext { f}(})d}} .
Then, we obtein the non-linear differentinl equation
(r17) o {grg-of w2 Igh e sy gy o) 4 }
for the function g(y). We try to solve this by putbing
(4.18) 9(3):%77{ 9.9+ g, ;)4— $.00+ -~
Then, we obtain the set of oquabtions
(w—c)}f=—ig:*, (w—c)(gl+2?rog»,)=—f(43v33]+63:091f)
(w-c)(gﬁg‘ﬂz?o?z—«‘)i w'= "fb (43 .+ égﬂ +2?o ,g ‘43 ’,~Zo<1207')

i} _} 4 o “:'2?«9 "f"V! "7/

o
&

# Considerable dispubte has arisen in this cmnection. UNote that it

is impossible to dispense with this difficulty be remarking that

the two different determinations will differ only by a constant
multiple of a particular inbtegral. If we draw two paths from ¥

to y and obbtain such a difference in the solution, it is evident

that the asymplbotic solution camot be valid o both paths, because
the exact equation (4.1) haes no singuler point at vy = y_ and hence

its solution must be single-valued. A&lthough a mistake here would

not cause serlous difficulties so far as the numerical evaluation of
the eigen-value problem is concerned, it does lead to misunderstanding
and confusion elsevhere. Iwven after Heisenberg and Tollmien have
analyzed this problem in some detail, they still take the very mis-
leading stép of taking the complex conjugate of the inviscid equation
(Heisenberg, loc. cit., 1924, p. 596; Tollmien, loc, cit., 1935, p. 88).
This point will be discussed more fully later,
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ilence, we ocan obtain the successive apvroximations without integration.

Thus,
) o . 59
(4.10) Pt iw-e), =~ 29, °

Tor definiteness, we deline

(4,20) M}(,;)=%, M}(y;-c)=o, for w-c>o0.

For negative values of w=c, we carnot decide, without further investi=
gation, whether w.j,(w-c).—-'rr or Mg(w—C)= —T , The point ¥y, where
w = ¢ appeared in the previous asymptotic solution as a logarithmic
branch point; here it is an algebraic brench point. The détermiration
of correct path should follow the same criterion as the other two
integrals, that (4.18) gives two asymptotic solutions of the exmch

equation (4.1). all along the mth, The correct path might be ex-

pected to be the same as the previous path., All these will be dis-
cussed in the next secbion.
After such a question is settled, substitution of (4.19)

into (4.16) and (4.17) gives the two asymptotic solutions

-5 Y
(.2) (gl = fo-0)* exp [~ [ SixRo-) dy |
-5
304(}) = (w-¢) ‘*er, f+ j;w/iock(w—c)wj} 5
where factors of the order ueacf,(elR.)"i = [+ C)(«K)-z are

taken as unity.
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5. Analytical properties. of the solutions.

Having thus obtained four asymptotic solutions of the equa-
tion  (4.1), we must try to correlate them with the four solutious
(4.9) and (4.11), and above all to study the correct determinetion
of path around the artificial singularity introduced by the asymptobic
methods.» For this purpose, we consider the asymptotic expansions of
the four regular solubions obtained By the first method and trans-

form them beck into the independent variable y.

Let us recall that the asymptotic expansions of the Hankel

M, fz)
functions l*L ( ) are given byx*

B S @ (5r)
Gy [P~ () iR} i "2 (t_)z%—} ST egE <A,
H%(g) w-(;g)zexf{d(g-%')}-{n—i _(iir_)_}’ —aw < Mj§<”rr.

1f we put £ = %'(i“°7j% » then (5. 1) becomes
R : 3 3] In s
H('l)[ ]~ (2) (i) 2 {2t 4_,571;}{“0(7 )}) 2 uglan)<

(5.2) = '% T 3 - .
h H?I%«W(—% 1) P S o ot} - caplep<

With the help of these formulae and taking the legitimate
process of integrating the asymptotic expeansions term by term, we

obtain

(©) ) tw, » _ | (w’ +E_>” 2)
Kireky = = (R
(o)

(5.5) 7‘2*€?<5)='*&3‘-’-‘1'7f”ﬂj -5 gy,
963 NCow;/t)z _Q,(F{ (75 T} Ctm,St yy,) ex/a{ fl/w(Kw(}}o zt;}

7(’1(:) ~ Cﬁhs/t )Z :’:_QX,I;{ (o(v)) Q4L}= } 5() %{ fq/Lo(Rw(g“}oLel}}

* cfoy €a8es G.ll. Watson, "Theory of Bessel Functions¥, Cambriage,
(1922), p. 198,
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These formulae can be easily seen bto agree with the four asymptotic
solutions (4.13) and (4.21) to the proper order of approximetion, if
we replace y; by y, in ?f) (which is permissible),

In evaluating the asymptotic expressions (5.3), the argument

of «97 must satisfy both requirements specified in (5.2), i.€.,

(5.4) - < agley) < T

In this range, the asymptotic solutions (4.13) and (4.,21) hold, %

Having thus established the range of validity of these solutioms,
it is no longer necessary to make further comparisons of the two
methods of solution.

At least three plans are now possible for further numerical
work. First, we may use the four solutions‘obtﬁined.in the approxi-
mete form (4.9). Secondly, we may use the féur asymptotic solutions
(4.14) and (4.21), Thirdly, we mey epproximate { ?.z‘?z,‘?3,?ﬁ-}
by the four functions { AR x‘i’} given by (4.14) and (2.9).

The first method is very similar to the method used by Hopf and Tietjens

for linear veloelty distributions, where the exact solutions are

given by functions of the general nature as those in (4.9). For

. . N o) (o) .
curved velocity distributions, the furctions X, , Xa do not give
¢, and qi'with sufficient acguracy, and this plan is not good.
The second plan was used by Heisenberg in his investigation of the

stability of the Poiseuile flow; but he also realized that it served

*Cf. Heisenberg, loc., cit., p. 591. Notice a difference of notation.



only part of his purpose, and he stated that the third plan should be
used.* Tollmien substantially adopted the third plan for his in-
vestigation of the stability of the boundary layer, although he did
not point out the connection of his method with Heisenberg's work.
Instead of the expressions (4.14) for ?' and qa’ s he used solu~-
tions in the forms of power series in y. These sélutims are.easily
menageable only for linear and parabolic velocity distributions.
Accordingly, he tried to approximate the Blasius profile with such
profiles, Since such a?proximations are not good enough in the
neighborhood of the point y = y,, where w = ¢, his discussion becomes
very complicated; In the present work, we baée our calculations

upon the use of (4.14)., It will be seen that our method can be applied
to any profile with good accuracy. A comparison with Tollmien's
method will be discussed in the Appendix,

It may be added that the adoptibn of the third plan leaves
an error of the order of («KS in.<ﬁ and ¢, , and an error of the
order of (otR.)—’% in ¢, end &, . These errors can be reduced by
including the higher approximations, In practice, this is hardly
‘necessary. A detailed discussion of numerical accuracy will be found
in the Appendix.

Further discussions. Having thus established the range of

%

validity of the asymptotic solutions, we shall try to settle a few

questions of considerable dispute, namely, (a) the “crossing substie

¥,0C, cit., p. $04.
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tution®, (b) the inner friction layers, and (c) the complex conjugate
of the inviscid solution.

a) The “crossing substitution". From previous discussions, it

is evident that if we pass from \J>RL(},) to Y < 'R/U}o) along a path
below the point y,, we are always in a region of the y-plane where
the above asymptotic solutions hold, and no further investigation
is necessary. In fact, if ¢;> O (and is small) and 'R,Q(wo')>° s the
point Vo is above the real axis, and‘the asymptotic solutions are

valid along the real axis of y. In Tthe case of real c, the point

Yo is on the real axis, and there is one point on the real axis where

the asymptotic solutions fail to be valid. In the case ¢;< 0 , and
RL(WS) <0, the point y, is below the real axis, and the lines
Y i S i . s s . ! ]
wmy{do(y,'go)} =-7% '’ 7 intersect the real axis in two points kg, Jf-
(4 < 5é< 3,;< y'z) %, Thus, the asymptotic expressions (4.14) and (4.21)
s . < I "
represent one solution for }}, }J{ < y’f— and 3_% <3‘< 32/ s but not

. / " . .
the same solution for de<y < }f_ o« It is necessary to obtain a

suitable “crossing substitution® in order to obtain the correct

solutions for -25 <I-‘a/‘g{°(a{3,‘}c)} < %’L (i.e., in crossing the
lines %{MO(J—JO)} =~ZZL 5 % ). TFor this purpose, we must obtain

: @fra,. 3
the asymptotic expansion of the Hankel function Hé’ [32(%7)] pro-
per to that region. The analytical expression would then be quite

different from that given in (5.2). Thus, in crossing the two points

% and 3%'_ of the real axis, the asymptotic s6lutions fail €o be

% The whole theory must be modified for extremely highly damped solue
tions for which y/ y
ions for which 4. <y <y < g’% )
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analytic expressions, Fowever, it is to be noted that the failure of
the asymptotic solutions along the real axis does not exclude their
use in the investigation of the boundary value problems to be con-
sidered below, so long as we are concerned only with the eigen=-
value problemn, t 1s only necessary that these solutions should be
valid in a comnected region containing the end=points ¥y and Yoo
The.calculation of the amplitude distridbution of the disturbance (the
cigen-function) in the neighborhood of the inner friction layers,
however, 1s to be made with the regular solutions. Or, we con cal-
culate the eigen-function for };<}<=j¥ by using a proper "erossing
substitution", Since we are chiefly concerned with the eiger=-value
problem, we shall not go into further detalls,

In order to make the situation still clearer, let us see
what would haopen if we try +to obtain our solutions for y <L7©K(}J
by going along a path above the voint Ve For simplicity, let us
take the case of real ¢ with ug’:»o s and consider the asymptotic

R O (G . .
expressions &, and %* given by (5.3). We have (A,B being

arbitrary constents)
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These are. obtained by taking a path below the point Vo If we had

taken the other path, then Mg("’) ™ for '))< 0, and we would have
. (o) . .

the functions ?3 and (f’q s which agrees with 3‘3 and (fl/- for

11>0 , but are defined by

Sr.

=t 2xp {%‘(«m)])

-

Mw

5~ Al e

g

i
e+,
_'5{{'
~ (o)
GO BT e f3la) 1Y,
for ?,<O. Thus, if A and B are taken to be the same, we have

N(a)

%3

Hence, if we took (}\;3(" and (f(") to be the proper determinations, we

. (9) ~ (o, . (o)
=-ig?, B=-ig?, o fo <o

would have to make the following “erossing substitution" corresponding

to a passage from ’]> 0 to W,(O:

7 (o)

Ps : @3 => i(}lf)
{@4: G > i 3

If we note that g“’)« ‘fu) both for WwW-¢>0 and for w-c <0, we would

also have the following eguivelent change:

L

i Py: S"M ;")4-{ e
B g

?

which may be compared with equation (16), p. 589 of Heisenberg's
paper. In making the comparison, note his definition of the -a.ﬁgle
of w-c, (p. 585),‘ and the difference of notation in the fundamental
equation of stabllity. Note also that he is having in mind the case

where wo/< 0. It seems that Heisenberg has made the situation
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unnecessarily complicated by taking an unsuitable path.

The study of crossing substitution whould also be compared
with the work of Jeffreys(192) and the W-¥-B method(108) in quantum
mechenics.* In those cases, a differential equation of the form

ea(f" + %(}) ¢ =0 is considered., If this equation is treated by
the method of section 4 by writing ¢ =x(°)(7))+£i;‘)(?')+--.) Y-y = €n, and

(o)

i
y;)——-;{er .} €9 +e-, the equation for X () is X% ;:7)6(°)=°

) / (il
”’ w, 7(;(0) =0, It is evident that our '7

) iv

as compared with (4,7) X
corresponds to +i1' in their case, Kramers has shown that the cuts
in their asymptotic expansions are the lines MJ,(’*I)= + '7“/3 .
‘Thus, in our case, the cuts should be a/\?("’) = %, 5‘2"" + This
agrees with our previous discussions., An important difference is

the following. In their case, the two bbundary points on the real

axis are separated into two reglons of the copilplex plane by the

cubs, so that a "crossing subsbitution" is absolutely necessary., In

our case, the two boundary points on the real axis belong to the

same region, and a "crossing substitution"is superfluous, so far

as the eigen~value problem is concerned,

b) There is also a very significant physical interpretation
associated with the "crossing substitution" of the asymptotic solu~
tions. The initial approximations tfllo) and lf:) satisfy The inviscid

equation, Hence, if ci> o, theée solutions hold throughout the part

* I am indebted to Professor P. S. Epstein for calling my attention
to this comparison,
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(yi,yz) of the real axis, the effect of viscosity is entirely negli-
gible inside the fluld for sufficiently large Reynolds numbers.

It Ci$-0 » the inviscid solution can never hold all along the real
axis, and hence the effect of viscosity inside the fluid is not
nepligible, however large the Reynolds number mey be., The sinpularity
of the asymptotic solutions mﬁansra‘veny rapid change of velocity
within a small distence so that the effect of viscosity is no longer
negligible there, FPhysically, such a point on the real axis
corresponds to a layer of fluid where the viscous forces play an
imporbant role, The existence of such an immer friction-layer at

Yy = ¥, where w = ¢ (real) was first noticed by Lord Rayleigh.(35)

Referring to the foregoing discussions, we see that there

are two immer friction layers for the damped oscillations, one for

the neutral oscillations, and ncne for the self-excited oscillations,

In the neutral case, the first term of (4.1) disappears
at the critical layer w = c. The equation then represents a balancing
of VOrticity transferred by the disturbence and that diffused away
by the effect of viscosity. It is therefore understandable that the
effect of viscosity must be predominant there, In the other two cases,
W - ¢ never vanishés in the fluid, there is the vorticiby carried
by the mein flow (relative to an observer moving with the phase
velocity ?ﬁi and there is always the change of vorticity due to
amplification or damping. In the case of amplified oscillations,

these two effects cean be in equilibrium with the btransfer of vorticity

due to the disturbance, and the effect of viscosity is completely
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"negligible at very large Reynolds numbers. In the case of damped
oscillations, these effects presumably never balance oub each other,
thus resulting in the formation of two eritical layers, where the
effec;,t of viscosibty is not negligible,

¢) The complex conjugate of the solution @ (y). It is often

argued,* that if (f(y) is a solution of the inviscid equation with
an eig;eh-value ¢, then §(y) is another solution with the eigen-
value ¢, satisfying the same boundary conditions on the real axis,
Thus, to each damped solution, bthere is always a corresponding am=
plified solution, and vice versa, This argument is In direct contra-
diction to the foregoing discussions, because an amplified solution
and a damped solubtiocn have entirely different characteristics with
respect to imner friction layers, It appears therefore, that (_-f;(y)
should still represent a solution of the same mature as So(y).

This can be seen more clearly from an examination of the
complete equation (4.1). If we take the camplex conjugate of that
equation, and write y for S'r' (which is essentially dome in the usual
argument), we have
I R B o P T
The complete sbream function \Z/(x,y,t) sgtisfying this equation is

’io((z-?‘:t)

Floagt)= Fly) e |

% Heisenberg, loec. cit. p. 5963 Tollmien, loc. cit., 1935, p. €8,
The failure of such an argument would indicate that Heisenberg's
classification of velocity profiles on p. 597 of his paper is untenable.



Thus, if Im(c)< 0, Im(c) >0, we still have a damped solution. This
should also hold for the inviscid equation, since it is regarded as
e limiting case of the viscous equation., From the inviscid equation
itself, there is no way of telling whether Im(e) > O correcsponds to
demping or to amplification.

In fact, the asymptotic solutions of equation (5.5)

(including the inviscid solutions) holds for
T - T -
(5.6) -7 < Mg{«,(;—g,)} <=, wly=< .

Thus, we have a solution ?(y), valid in a region which 1s gquite
improper for an asymptobic solution of (4.1). (Compare (5.4) and
‘(5.6)@) Hence, it is not legitimate to conclude that a solution

of a different nature cdn.be obtained by baking the complex conjugate.
The influence of these discussions upon the usual conclusions regard-
ing inertial stebility will be discussed fully in +the next part of the

paper.,
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6. The boundary wvalue problems

So far, the solutions are discussed with little reference
to the boundary conditions to be satisfied. The bou dary conditions
are essentially that the velocities of disturbance should vanish on
the solid boundaries, and also ab infinity, if the field of flow
extends to infirity, However, it is often convenient to use equi-
velent boundary conditions for certain types of veloeity distributions.

In order not to be lost in too much generalities, we shall
1imit ourselves to three classes of velocity distributions (as
specified below and shown in the figure), and select our fundamental
interval (y;, yo) so that

w’(;)ao, for y<cy<y, .
We shall define our characteristic length so that yo-yq = 1, and
et qlyse,R) ¢ (y5e % aR), g(y; ¢, %R), G, (4; ¢,0,«R) Do
a fundamental system’of solutions of (4,1) arranged in the order
discussed above,

Case (1) Flow between solid walls in relative motion. In this

case, the boundary conditions are given by

(6.1) 1) = ¢lyy = ¢l = ¢4y =0,

because the velocity of the disturbance should vanish on both the
solid boundaries, ' The determinantal equation corresponding to these

conditions is



 THE TR YR
Y2 2 B P
o % T
G Y4 W G

(6.2)

F

]
O

(#,2,xR) = |

where ¢ , ‘fl{J oo stand for Cﬁ%)) (ﬁ/{}') s oee In this and
all later discussions, a subscript 1 or 2 attached to a function
of y shall denote the value of that function at y = ¥y 0T Y TV,
respectively.

Case (2) Symmretiéal flow between solid walls at rest., In

this case, 1t 1is easily seen from (4,1) that the disturbance can be
separatéd into two independent parts, one symmetrical with respect
to the line y =y, and the other antisymetrical. (a) If G(y)

is a symmetrical mi‘uncticn (entisymmetrical disturbance), then the
conditions

(6.9) Pl = ¢4 = ¢(5) = ¢l = 0

hold, and we have the determinantel equatiom

‘F]( ?Zl ?3! (ﬁ”
(6.4) F (M,C,MK):: % %1 ) (fu/| = 0.
2 ' q»l' o/ ?/ ’
:7;, ;:' 322 T
I ' (fh- b5 (f;;. (ﬁ;l.’é

(b)Azf(y) is an odd function of y-y, (symmetrical disturbance), then

the bowmdary conditions are

(6.5) (P(:}I) — ?/(;I) = (f(}l/‘ = (P‘I(}l)-: O,
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|
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y 28
It then appears that the sign of the real part of P = fg % i«R(&f—»ﬁ)
t
is of consegquence. It cen be verified that it is always positive

B

when ¢;> 0. Tor then the path of integration can be taken slomg the
real axis of v, and ws have - < 0rg (w- c‘) < G ; consequently

( @ﬂj P) < With reference to (4.21), {(6.11) and (6.12),
we see that the condition P = mwi , n = integer, expres

1.1 Feed j o~ o AT 3 -
that Py Fua = P4y Pan » when temms of the order [(R) are

: R . e e an e e e s
neglected. This is the correscted form of the first solu
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are functionzs of ¢ alore.

with

1 > k] 3 oy Y 4
nave @180 chosen the charscberistic veloeity so that

w, = 1. Referring to (6.23), we have

<

)cl (d’c) =-C (fu ’ f; (°(;c'> == (lez P
)t3~<°‘/°~) = w/ Pt E_L Pz 2 Ta e)= (lez * '}i ?": :

1 e - - ) P . .
it is found convenient to tran

2 an
P = K' Pz ™ (1-¢) Z ® Nth ?
Cfl; = (]-(‘.)—l (l—o(tHz)

!

¢, = K, @ + (-9 (,—«é ,,anz“) + (s-ci @1’2'% -

where the functions M (e) and W _(c) are defined by

o
o
®
v ]
=3

S

¥

"”anHh“ H;"&Hﬂ~;; h=3
WN-“ = }”(%"" Ka H%m; h22 .

incipal advant

integrals ffg and qu_ o FOr £Xe

L
I - 3
tremely lerge values of oR so that (« K) < (a?{)s(i-@ »>1,
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~corresponding to the secondery flow (9.5) and (9.6}, 1t causes a

Adisbortion of ;,hg main vortielty distribution as indicated in the
2 4 Al 2 iz P
figure { After a very small of time t the vorticlls
at the is changed by the amount
g 100 S (*c ) - 5’t /(
(9.10 43» = 17("13. o });
14
because 1t is replaced by a fluid element from below, which retains

. o = (LI
ieity. This ¢

the element of fluild under consideration. It

1 CO I o e IS IR o 4. 2 - - 2 NN 3 o . O
cen be easily seen that the effect 1s a small veloclty with components

Sulgn) = - L Jf»% Flogi£y) Bboy) e dy

svgmn= L ff% Glogity) 3¢ loy) de dly,

extended over the whole reglon between the plenes.

we have the following components of acceleration ot the point fg’,'?) :
= .1 (2 / / .

o az(?ﬁ}) = T fg;)" 61@};?,7)1:(2,{}) f,,("})cfau:s?,/

.5-‘-#;

o= )y Bl

Let us first consider the y-component of this accsleration,

x sand ; enter into the Green's Tunchion

(9.13) = — L R ") 2 Gl - <
{(9.13) ﬂ} (E,?]) g7 j]‘bf/g)go{j) 3% G//g/>I7> Jhd?.
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Jlaye) e’y de dy

(9.14)
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1 I and J Thus
*l: D8 10° Lilit
D 0
I = qo( dx d ==ffu( 2%
¥ go 3/ 3) ) dl
[ 2p \
= ﬂ% (c’*f“h‘ A”id’;/} by (10,12).
If we note that
! N e
___) -2:2 ( o v
'23, % &} 7} 3
the into the form (10.20).
Tollowing an exmcbly analogous process, we have

T = ﬂ a+ﬁi¢}*d}30)
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n=o =0

<0 2
n —
S K, ()= 0,
w=0 S 2n4]
Hence, when o = a_, and ¢ = ¢ + Ac, differing but slightly from
C., We have

(11.1)  Ae= s p + =
r{l- i, R "
) ;0{5 Ko (<) o Z’é"(s K'znu(‘)
Similer considerations of (6.14), (6.15), and (6.16) give respectively
00
ar
T m
(13.2) A ¢ = e '\Z; D(S HZV»«H (CS)
- o0 2 / >
X KC; > oc;K%u(cs)
X = n
(11. 3) he = et t?o_o xs@ H?;h(CS) >
. "
ors;&cf’ g <, Kan(cs)
o=
. oo 2n 2 04}
(11.4) Al = e®" % oK Hzms(es) + (1- ‘x) 1%0(5 Hz,,(cs>
- SV._,_. Y . ; o o0 Int| / .
~ O(SKQ "Zj ol Kln (C$> + ()- ¢S) ,\ngi K)M'(c‘)

O . Yy TP 1 e e A e e [
In gereral, it 1g not very essy to determine whether As% > 0 or L0,

- . " . b1 - ) 1. b SRR T . ER Y
wever, when c¢_ and o_ are both small, but not zero, all the above
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For the eyaluation of the imaginary vart corresponding to the inviscid
soluisions, they,used the exact profile. The calculatim of Schlichting
is showm dotted in the fizure, Tollmien's curve lies between the
oresent curve and Schlichting's., Schlichting also calculated the
amplilication of the unstable disturbances, and the amplitude distri-
bution end energy balance of the neutral disturbances. Since the
neutral curve in his caleunlation is inexact, it night be desirable

to repeat his calculations., Using the present scheme of calculation
(as will be explained in the appendix), less numerical labor will

be required than in Schlichting's original work.



Stability of Blasius TFlow

Table IV

c 2 Rl Z s
0.2 0,071 7510 2.35 0.696
0.3 0,139 1340 2.48 0.641
0,35 0,201 696 2.66 0.578
0,40 0,298 436 2,94 0,496
0.41 0. 339 395 3. 04 0.473
0. 42 0,411 399 3432 0.414
0.41 0,435 512 3,60 0.367
0,40 0,417 648 3.68 0, 356
0. 35 0,356 1435 4,03 0,310
0.3 0.287 3645 4,15 0.296
0.2 0.181 33800 5.10 0.218
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14,  Physical discussion of results; prospect of further developments,

Let ué now suwararize all the results which have been obtained
srd discuss their physical significence. In the first place, we may
conclude that all the inertial forces controlling the stability of
two-dimensianal parallel flows can be considered in terms of the dis=
tribution of vorticity. If the gradient of vorticity of the main
flow does not venish inside the fluid, then amplified disturbances

cannot exist emcept through the effect of viscosity.

In fact, the effect of viscosity 1s in general destabilizing
for very large Reynolds numbers. Thus, if a wavy disturbance of
finite weve-length can exist neutrally for an inviscid fluid, it will
be amplified through the effect of viscosity. Indeed, if the Reynolds
number of a flow is continually decreased, a disturbarce of finite
wave-length, which is damped at very large Reynolds numbers, becomes
amplified, unless the wave-length is so small as bto cause excessive
dissipation at any Reynolds number, For still smaller Reynolds num-—
bers, the damping effect becomes predominant, and we have again a
decay of the disturbance, However, for the pérticular disturbance
of infinite wave-length (essentially a steady deviation), the effect
of viscosity mey be sald to be always of the nature of a demping,.

The effect of viscoslibty is essentially one of diffusion of
verticity. It can be seen more clearly from the following considera-

tiong: Let us imegine a disturbance originating from the inner friction

.

layer where the phase wvelocity of the disturbance is equal to the

velocity of the main flow., During one period ‘zqu./&clL of the
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disturbance, the viscous forces will propagate it side=wise through

a distonce of the order /\[Z'n'Vl/o(clL =[/lw/xR¢. It is signi-

ficent Lo compere this distance with the distance between the inner
friction layer and the solid bouwndary. Zor if they are mnearly equal,
it means that the effect of wviscosliby is dominant at lecst from the
solid surface to that layer., This ratio is approximately
(14.1) 8 = /2T

A ,
with z defined by (11.6). This quantity may be regarded as a measure
of the effect of viscosity. Its value is included in Tables III and
IV, ‘e notice that the value of s decreases from 0,7 to 0.5 as we
follow the lower branch of the neutral curve of stability from in-
finite Reynolds number to the minirum critical Reynolds number. Then,
as s decreases to zaro, we are following the other branch of the
neutral curve to infinite Leynolds numbers. Thus, {(see Figs. 10, 11,12)
the lower branch is essentielly controlled by the effest of viscosity;
its effect is stebilizing, an increase of Reynolds number giving
instability. On the other branch, the effect of viscosity on diffu=~
sion of verbicity is overwhelming in comparisan with the effect of
dissipation, its. effect is destabilizing,vanz increase of Ieynolds
number giving stability. This destabilizing mechenism is essen-
tially to shift the phase difference between the u and v components

of the disturbance. It has been explained Iin some detall in Prandtl's

‘article from the voirnt of view of ener palance.,
S
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If we consider disturbances from the wall and from the inner
Triction layer, we may regard the region in between 4o be wholly
governed by the éffect of viscosity, if these disturhances meet alter
a period. Thus, it is rot without significance that the nminimum
critical Teynolds number occurs for s = 1/@ approximately, which may
be regorded as marking the passage from stabhiliz effect to de=-
stabilizing effect of the viscous forces.

These discussims hold both for symmetrical velocity dis-
tributions and for boundsry-layer Jdistribubions. In both cases, ih
has been denmonstrated that the instability is essentially caused by
the effect of viscosity. These velocity distributions are unstable
whether a poirt of inflection occurs in the velccity profile or not.
Thus, although the gradient of vorticity plays a peart ir controlling
the stability of the fl&w, it is by no means the dominant factor,
particularly at low Reynolds numbers. There is thus no reason to

. ~ -

associate a point of inflection in the profile directly with in-

Fir

stebility. This removes Taylor's objection of instability theories
based on von Doenhoff's experiments.* Even if the point of inflection
in the velocity profile occurs in the leading part of the plate in
his experiments, the flow there is definitely stable,

There is ancther objection raised by Taylor ageinst Tollmien's
work on the stebility of the boundary layer. He qguestions whebther

the change of houndary=layer thickness should not have a drastic in-

038
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# Taylor, loc. cit. (63), P.



fluence., .This point can only be settled experimentally. So far as
ematical comsiderations are concerned, it seems justifiable to con-

sider a boundary layer as e parallel flew; the fractiomal varietion

ma th-

of thickness is very small over a distance of one wave-length of the

disturbance, and the error incurred is only a few per cent. & fuller

dlscussion of all the errors involved in the theory will be given in

the Jppendix.

There is another point which should be settled by experime
investigantions, Since the general impression was that the plane
?oiseuille flow was steble, Prandtl had sdvanced the idez that in=-
stability occurred at the entrance flow where the velocity distri-
bution is not yet parabolic. The present work certeinly concludes
that such entrance flows are unstable, if they can be comsidered as
approximately parallel, It is hard to decide theoretically whether
a well=devEloped turbhleﬁce has already been reached before the
parabolic profile is estzblished., This presumably depends upon the
conditions of disturbance at the inlet. The question can be best
settled experimentally.

Of the six types of problems mentioned in section I, (1),
(2), and (5) seem to be quite settled. The vresent work on the boun
dary layer checks Tollmien's result‘approxirately, with a minimum
eritical Reynolds number 2 & = 400. The minimum critical Heynolds
nurber for plene Polseullle flow is found to be 16000 based upon the

width of the charmel, These values are at least not in disagreement

ntal

with the existing experimental results. It would be very interesting
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if experiments can be csrried out to check the theoreticel
results so far obtzined.

Since plane Couette motion is concluded to be sTtable while
plane Poiseuille motion is conoluded.to be unstable, it'seems inter-
esting to investigete a combination of them Tto find out when does the
instability begin as one wvaries the pfessure gradient and the relative
motion of the plates.,

~ The stability of two-dimensional jets and wekes has never
been investigated including the effect of viscosity, It seems that
a study of the stability of two-dimensional wake might give us valuable
information regarding the X&rmén vortex street, — particularly re-
garding the minimum Reynolds number of its occurrence and the width
of the street as compared with the size of the body.*

Trensition to turbulence. The sueccess of Taylor's theory cof

.transition(Gl:Gé) to turbulence in the boundary-~layer as caused by
external turbulence seems to throw the instability theoriles at a dis-
advantage., IHowever, Taylor's work cen at most be regarded as only
one phase of the problem, 1l.e., concerning ceses vhere the extemal
turbulence plays a dominant role. In fact, it is not impossible to
construct a stability theory, taking account of the free turbulence

outside the boundary-layer, in case this 1s the main cause of transi-

'
tion. The boundary condition ¢ * “-ﬁ’ = 0 at the edse of the boundary

* This problem has been attempnted by Helsenberg; see Goldstein's book
(108).



=~108-

layer sigaifies that the disturbance there has equal magnitudes in
directions parallel arnd perpendicuvlar to the wall. This can be easily
reconciled with the nearly isobropic turbulence in the free strean.

ce courée, the theory can only be puéhed to the point where nm-

linear effects begin to appear, Ctherwise, we have to deal with a

[V

1.

very difficult mathermatical problem. It is possible that the beginning
of non=linear effect is not far from the actual point of transition.
Then the instability theory should give useful results regarding

transition, which night be expected te check with experiment.
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Appendix

In the following paragraphs, we shall describe the methods
with which the numerical caloulations-of section 13 are carried out.
We shall then give a more thorough discussion of the numerical accuracy
involved in the calculations. Special emphssis will be placed on the
case of Blasius flow,

Rule of calculation. The caleculations required in section 13

are as follows: (1) to find the values of o and z corresponding to
ea.ch value of ¢ by using equations (11.11), with u and v defined by
(11.8) and (11.10); and (2) to calculate R from (11.12). To do this,
we may take the following procedure, e first plob .93 against E;; H
then plot the corresponding right-hand side members of (11.11) iﬁ a
similar mammer in the same.diagram. Notihg that the latter are
Tunctions of o and ¢ only, the plotting may be dme by drawing curves
of constant o (or constant ¢)., The intersections of this set of
curve with the ( Hi; 32 ) curve give the desired results.

This procedure is however, very laborious. A4 simpler method
is as follows: As will be seen below, the imaginary parts of H's,
M's and M's appearing in (11,8) and (11.10) are very smll compared

with that of Kl(c),'we can therefore use the approximation
"
wwr

3 for w = ¢,
W

(1) v=v(c) = - aw,
The following steps are.then taken:
(1) Caleulation of aR., In this step, the auxiliary functions

Ale), wry(e), v(o)

are required. These are tabulated in Tables (Va) and (VI) for the

[=5
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cases considered. Jdaving calculated these fumctions, we can determine
z and u for each value of ¢3 R is then determined from (1l. 12). In
actual practice, a procedure of successive approximatims is used.

£ o ()
Taking \?LO) = \%;(Z”) = v, u(°)= }/: = 9; (z(q)), we heave the

successive approximations of u, z, %L/ ?‘ given by
1

?.(mi-l): » {HA} {(H-)\‘l«.m)m-l- (),n—)”}—‘ )

L

D }f“){(u,\u‘”)h (,\v)‘} {(ﬂ)(w\u"))} -1-)‘1?(! Aub") l
In each appro;«:ima*bion, 3{“ and z )a.r\, determined graphically
from \%;“() . ‘
(ii) Calculation of a. For this purpose, She addibional

auxiliary Junctions

wicRl = w'yck 1{1{1( ) * fc} s Hy(e), Eole), Mgle), Wgle)s oo
are required., These are tabuleted in Tables (1) and (VI) for the
cases considered., The methods of evaluating these functions and their
accuracy will be discussed below, Tor sufficient accuracy in the
final resuits, only the reel parts of Hz,' Mgs iz are required, besides

wf, cRl and Hl’ Having calculated these functions, we can determine

1
the value of o from the real part of the equation (11.8) or (11.10),

A similar method of successive approximations may be used by writing

those equations in the forms

/
2 uJ"C— “A/I,L -
= =M
X H,(“'W(CRL) #‘) P-—K P—“ J P?.n Zm}l/H")

|- O(LHZ"- 0(4‘/\(4."'" "(l- c)w(o(3N3+ o(%-}-... )
T s

/
N,c

W- w‘,dk,z.

o =

(1-o"4,)
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An approximate value of o is put inko the right=hand side to obtein

an. approximation of the higher order on the left-hand side. TFor the

initial approximation, take o« = O,

Table V

Auxiliery Functions for Calculating
the Stability of Plane Poiseuille Flow

(2)
c vﬂo A v
0 2,000 0 0]
0.1 1.898 0,0263 0.188
0.2 1,788 0.0558 0.444
0.3 1.672 0.0889 6.815
0.4 1,548 0,1270 1.569
() — S
c w'yeRl Hy b= ) Mg NS
0 o 0,533 0,218 0,060 0.193
0.1 0,101 0,410 0.195 0.042 0.222
0.2 0,154 Q.SO7 0. 169 0.028 0,254
0.3 0.191 0.223 0.141 0,020 0.292

0.4 0,223 0,160 0.111 0.015 0,345




Table VI

Auxiliary Functions for Calculating
the Stability of Blasius Flow

c A" w'lch Hl H? MS NS

0 0 0] 0,602 0.235 0,075 0,198

0.1 0,0069 0,0615 0,470 0.212 G.057 0.227

0.2 0.0635 0,207 0, 357 C.186 0,043 0.259

0.3 0,202 0,458 0,265 0.188 0,035 0.297

0.4 0,523  0.858  0.192 0,128  0.030 0,350

0.6 1.195 1,423 0,139 0.092 0,030 0,415

In all the calculations, it is found accurate enough to teke

1:.1-7 =-w'! =
o 1+ A=0
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. Humerical accuracy of the calculations. The numerical

aceuracy of our calculation as based upon the final equations given
In section 6 are limited by several factors:

(i) Dy neglecting quantities of the orders e~F and (aR)~! in
the reduction of the determinantal equations of the boundary—vaiue
problems,

(ii) by using the inviscid solutions for g, end Py (error of
the order (aR)™Y ),

(iii) by the approximations of the rapidly varying solutions
TB and Q@ as discussed at the end of section 6,

(iv) by the bowdary-layer approximation used in setting up
the equation of stability (except in the casss of nlane Couetbe and
Poiscuille flows).

Finally, certain numerical approxime tions have to be used in the actual
evaluation of the quantities u and v in equations (11.11). We shall
now discuss these facbors one after another,

The inaccuracy due to (i) and (ii) is hegligible in all the
cases considered, because oR is always sufficiently large. In connec-
tion with (iii), the situation is more complicatéd, The first aovprox=
imation of the asymptotic solution should give an ervor of the order

-4
of (aR) z 3 while the first approximation using Hankel functions
[}

. e - .
should zive an error of the order (aR) « It might therefore be
thought that the asymptotic method should alwmys give a bebter approxi-
mation,., However, this is not the case. TFor the order of accuracy

of the first method is based upon & fixed value of y, while that of
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the second is based upon a fixed value of 7 o Thus, if oR may be
allowed to become very large while y = Y, remains to be of the order

of unity, the first method is definitély better. This is the case

Wii:h “the quantities Pusz %{z . With 503‘ and ?3; » the situation
is differeﬁt. Here, yléyo ié always small, Except for one branch

of the neutral curve for profiles with a flex, Y1~V goes to zero as

aR becomes infinite., Because of the sm&llness of Y1V o2 the asymptotic
sblution (which fails to be accurate in the neighborhood of yo)

never gives a good approximation. This is why the other method has

to be used in most of the calculations, and we are limited to an
accuracy of (aR)—%- . We note that the curvature of the velocity
distribution does not come into this awvproximation. Thus, for better
accuracy, & second approximation should be used, the error being then
1{)'3&

reduced to the order of (al » However, since the error in

the method used is only 5 few per cent, and an improvement in accuracy
would not alter the general conclusions, it does not seem worth while
to improve the accuracy in the light of general interest, Indeed,
the inaccuracy due to the other causes (to be discussed) is also of
the same order of magnitude. Another support to the method used is
that 1t does agree with the asymptotic method when z is large; there
is only a small discrepancy (ef. eg. (6.33)).

The effect of the change of the thickness of the‘boundafy
layer may be taken to be more serious then a mere numerical inaccuracy,
Taylor regarded this as invalidating the exisbting instability theory

of the boundary layer. This question can best be setitled experimentally,
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Fof the present, we only wont to know its effect upon our boundary
value problem.’ An approximete cstimste of this effect may be cal=
culated by counsidering the chenge of the thickuess of the boundary
1@fer for one wave-length of the disturbance. This caﬁ be easily
verified#* to be 4r(1.72)2/b1 Ry For the lowest value of Uy Rl in=-
volved in the calculations of section 13, this is about 6 per cent.
Thus, the error is not large. Hence, in the physical interpretation
of the resulbts, we need only consider a change of Reynolds nunber as
we pass down stream., One interesting point is the Zollowing: As
the Reynolds number keeps or increasing, all disturbances finally
become stable, if the linear theory holds throughout., Thus, the

transitior to turbulernce depends upcn the occurrence of the non~linear

effect and hence must depend upon the amount of initial Jdisturbance.

2

Calculation of qg?) (;?, ete, e shall now discuss the
method by which these quantities are evaluated for the calculation
of w and v in the equstions (11.8) and (11.10)., A discussion bf the
accuracy of the present method and of Tollmien's methed of evaluating
these quantities will also be made.

The original question 1s to evaluate the Iintegrals ﬁm(c)
and Km(c} as occurring in (6.2&). Various methods are possible for
carrying out the calculation, including straightforward numerical
integration., The method to be desceribed is an attempt at a siplest

me, With the transformations (6.28), we hope to bring out the dominant

* ¢f. Goldstein {108), last coluvmn of table of De 157,



terms of the series (58.24), and the cslculations of u and v according
to (11.8) and (11.10) are based upon the use of the transformed series
(6.27). ‘e mple the following approximiticns.

(i) The imaginary part v is chiefly given by that of the first
term, namely, w’lc(Kl + ;E%;—); this implies that the Imcginary part
due to E,(c), Mz(c), No{c), ete. are negligible.

(ii) The real part receives also little contribution from those
of Hz(c), Kg(c), NB(G),.-. and hence these need be calculated only
approxinately.

(iii) The secries are cut short, terms like Hé, H4,... are entirely
neglected. Let us proceed to justify these approximetions,

The justification of (ii) and (iii) is based upon the
following two facts. (a) the guantities in the series involved decrease
roughly like l/h! » ™ being the numbor of integrations involved
in defining a certein term, (b) For «< 1, the terms alsc decrease as
o, Thus, the azcuracy is not very good for o > 1, namely for low
Reynolds numbers. Dut from e consultation of Tables V and VI, and the
mapner in which the integrals Hz(c), 1%(0), Ns(c), .. enbter (11.8) and
(11.10), we see thot an error of ten ver cent in these integrals will
cause a negligible error in the fiﬁal results,

The justificavion of (i) needs more explanation. For de=

finiteness, lebt us take ¥i(c) as an example. ow
3 i 3

N L N 2
Na(c) = ; d;}(w—c) J‘y'd}(w—c) J;|d,}(w-c) ,
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This can be expressed as the sum of the following thrse integrals:

"

.
J.\Tgl(o)

Jo 4 ~
K1<C>-f§, oy 1= f} Uy fomes?

Py Py s

It

ng(C)

e (c ) = Jﬁ;’y - c)-zgd}(w—.c)” f ;’“ J} - C)—z,.

The third integral is real, because y > Vor & further transformation

of the las’ inbegration in Nz end lig, like

3
fy o™= o= [ty

gives

Wy = {1{1(0)}’~J‘;}:"%W0)x_ K|(°)L?vd‘3(w'°sz ”"")—2;

ag = Ky () f:’d}(w—ézgd’%”' _°>9V‘f;%("’ ) T;f‘?f{”"‘)z&%‘}(”‘ J"

Tow, the last integral is real because y< y. Further, it can be

easlly wverified that

30 2 2 — 2
‘Lfl A‘}(w—o) L::Lo{}(w—c_) = f;ﬂd}(w’-c) :’Lj; Jg,(w—c) _

Zence, the only term which cen contribute to the imaginary part of

w0 ) 2 2 ) , 3 .

1‘-&3(c) is {1\1(0)} ffﬂdgf(w'"‘«) . oW, ¢ 1s usually small so that we
|

mey pub

/33
(we)
15y * )

ff dy (o= 5 (g = 4
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Hence,

{ k|(c)}?” J;"Jy(w—c)i,___ { e K (c)} —3'— — 4 .

How we have approximately

7 chl(c) =1 - vi,
Substituting into the above expression, we obtain the imaginary part
of Wv(c) as —Bw‘lcv/ﬁw'lé o This will give a coutribution of approxi=-
metely -—é% {5f§§lil}z1r to the imaginary part of v. This is
negligible, because the facbor preceding v is at most of the order
oft 0,02 in our calculations. Thus, 1t is justifiable to neglect the
contribution of NS to v, With the other terms, the approximetion is
ever. better; thus, the imaginary part of Hz(c) iz of the order of ®
times that of X, (c), 2nd that of Mg(c) is of the order of ¢f %imes

that of K, (c).
s

Having thus justified the approximetions described above, the

task is to evalwte Kl(c}, Hl(c), Hz

degree of accuracy., For parabolic distribution, these integrals can

(e}, Mz(c) s and NS(C) with proper

be evaluated exactly; the approximetion (ii) is not necessary. Thus,

(2) H) = A

@) oo | b tva L]
Kle) = P +4A3 {&,}—-_——,*a_ amr})

(4) | hat

(O = 352222 o A ) - 20y - B fly (1) - ]

MB(O -£ K, + — &A { +f M'} Py %o— ";:'?QL %— 44@6}

a+|

P4
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) R0} = g (3) sVl e et | - sl

D D) oyt Bl o]

where

2 S—‘
8) & = l-c =t 2L da®
( 4 A=a 3 e, = A- /3- .

These are the equations on UlAl(‘h Tab'l.e V is based, where only the real
parts are given. TFor eny other profile, the rule is as follows.

(i) Zvaluate Kl(c with as ruch accurecy es possible. Usually,
we bresk it into two parts

@R KO, KOs o 5

where 'yl < yj < Jo oo The walue of yj is chosen so that Kll(c)
can be calculated wivh sufficient accuracy by developing w as a power
series of (yl Vo) waile I<12(c) can be evaluated by developing the
integrand as a power series of c/w.

(ii) ECveluate by mumerical integration the quaniities

(10) H“d)“Jﬁ%”}d},

(11) = "‘" fy.z"”‘? )

(12) H,0) = ffv" 4y PR

(1) M, () = ffz“’”‘ﬁ; Wy | ?”}d?’
e N, o) = J‘g{?1w~2‘t}/ J, ;'1.“., 4 f;»wﬂz 7



(iii}  The inbegrel i, (¢) "is then given by -

15 H(¢) = m, (0} + I + o2,
) 1, (e) = 1, (0] ;(0) e *e

(1*') The real part of the uwegr ls 1I2(c), 1T6(c 735(0) are

£

obte ined by ccomparison with the corresponding gquentities for parsbolic

distribution (Table V ). Thus, for example,
w\2
(18) z(c) =15(0) = ( ) ¢ corresponding quantity for

parabolic distribution.
The idea of the last step is essertially to avproximebe the given
profile with a parabolic one.

For the Blasius »nrofile, (viith w'l =2, ¥, = yl = 0.4-),
3

ve obtain
(C)+ o= == 0.5lIs= 0393 e — |- $H3E ~ |- fe3 '~ |-368'¢ ooz ety

0,8~-¢

+3—<¢+§;"c§+~—-)(/0}‘—‘—+wr

(A7) { Kol = oToow [slhe 425887 3800t Skl e+ TubScieeen

K, T.’Lt = o Jubs + [ l] e+ 4SS 2-037c3+ 4_o7<s>c'*+ 9623 %4 o-

\

+ g.(cﬂ- }{ic$+_.__> 4 O.ig_'_ +L_,r) _

In evaluating these inteprals, we take

W= Z(y—Jl) - \y-;yl) s 0¢ ¥y £ 0,4y
(18) w=1=-{0.0 - Gy} % 0.geyyp 0.9,
w =1 O.QSy—ylé 1.

For the irtegrals H (0) and 1-1'1(0), we make use of the Imown valies

——

* P, Coldstein, (106), p. 136,



of the displacement thickness. ﬂ and the momentum thickness 62 .

3, = -% (1.7208) = 0.28673,
(19)
R _
@L— 7 (1.32824) = 0,11087.
Thus,
(20) H(0) =1 - & - 8, = 0.6026, H’l(O) = -2 (1~ &, ) = -1.4265, -

The velues of Hy(0), MS(O), NS(O) as evaluated by numerical ine-
tegration are given in the first row of Table VI. The rest of the
table is consbructed by following the procedure described above,

We see that the method of approximation developed above is
purely & numerical one, and the calculatlion can be done without ex=
cessive labor. In any case, even if the above method does not give
satisfactory results,.suitable approximations can always be devised
Por the evaluation of the necessary integrals. This is the advantage
of using Heisanﬁerg’s form of the inviscid solutions. In the method
used by Tollmien, it is necessary that the ﬁrofile may be eapproximated
by linear and parsbolic parts; otherﬁise, the numerical labor is.
emcessive. A more serious criticism of Tollmien's method is the
joining of the inviscid solutiomé at the point of junctlion of thg
two approximate profiles. Mothematically speaking, such a junction
presents an essential singularity in the coefficients of the differ=
ential equation (3.8) or (3.14). HNumerically speaking, serious

difficulty would be expected when ¢ is equal or even orly very rear



to the veloecity of Jjunction, because the inviscid solution falls

there. Tollmien did not reveal how he overcame this difficulty,*

* Tollmien (66), footunote, p. 37.
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Legend

Broken profiles investigated by Lord Rayleigh.
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T'ig.
Case {a) may be unstable; the other two ceses are stable.
Tig, 2 = Diagrams showing the relative position of the real axis
ané the region of validity of the asymptotic solubions
in each of the three cases, ¢; 20 .

ige 3 - The three types of velocity distributions.

The function }(Z) shovm in its real and imaginary part
(¢f, Table I).
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Tig, 5 = Paths around the ocritical point in the case €, <0 .,
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The reglon of analyticity of the inviscid solutions.

ige 7 = Stream lires of a ncutral disburbance as observed by an
observer moviung with the wave wvelccity,

Lcceleration of vortices in a non-uniform field of wvorticity.

.
oo
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Pig. 9 = General shapes of the curve of neutral stability.

Fig. 10 Calculation of the minimum critical ZReynolds numbers.,
Fig, 11 = Stability of pressure flcw through a chaimel,

Present calculations, with the extrapolation
of an asymptotic branch.

————— Heisenberg's calculation.

Points investiceted by Pekeris.
< -,

x

Tig, 12 = Stability of the boumdary layer with zero pressure gradient,
Present calculation

—————— Schlichting's caelculation

Fig, 12a = Stability of the boundary layer with zero pressure gradient
(Semi-logeritimic scale).

Present calculation.

————— Tollmien's caleulation.

— Schlichting's calculation.
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